* arm.h (CONDITIONAL_REGISTER_USAGE): Avoid signed/unsigned
[official-gcc.git] / gcc / recog.c
blobd7618b90305d87d9880f8c235202a80f21c4ee75
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
46 #else
47 #define STACK_PUSH_CODE PRE_INC
48 #endif
49 #endif
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
54 #else
55 #define STACK_POP_CODE POST_DEC
56 #endif
57 #endif
59 static void validate_replace_rtx_1 PARAMS ((rtx *, rtx, rtx, rtx));
60 static rtx *find_single_use_1 PARAMS ((rtx, rtx *));
61 static void validate_replace_src_1 PARAMS ((rtx *, void *));
62 static rtx split_insn PARAMS ((rtx));
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
72 int volatile_ok;
74 struct recog_data recog_data;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
83 int which_alternative;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
89 int reload_completed;
91 /* Initialize data used by the function `recog'.
92 This must be called once in the compilation of a function
93 before any insn recognition may be done in the function. */
95 void
96 init_recog_no_volatile ()
98 volatile_ok = 0;
101 void
102 init_recog ()
104 volatile_ok = 1;
107 /* Try recognizing the instruction INSN,
108 and return the code number that results.
109 Remember the code so that repeated calls do not
110 need to spend the time for actual rerecognition.
112 This function is the normal interface to instruction recognition.
113 The automatically-generated function `recog' is normally called
114 through this one. (The only exception is in combine.c.) */
117 recog_memoized_1 (insn)
118 rtx insn;
120 if (INSN_CODE (insn) < 0)
121 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
122 return INSN_CODE (insn);
125 /* Check that X is an insn-body for an `asm' with operands
126 and that the operands mentioned in it are legitimate. */
129 check_asm_operands (x)
130 rtx x;
132 int noperands;
133 rtx *operands;
134 const char **constraints;
135 int i;
137 /* Post-reload, be more strict with things. */
138 if (reload_completed)
140 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
141 extract_insn (make_insn_raw (x));
142 constrain_operands (1);
143 return which_alternative >= 0;
146 noperands = asm_noperands (x);
147 if (noperands < 0)
148 return 0;
149 if (noperands == 0)
150 return 1;
152 operands = (rtx *) alloca (noperands * sizeof (rtx));
153 constraints = (const char **) alloca (noperands * sizeof (char *));
155 decode_asm_operands (x, operands, NULL, constraints, NULL);
157 for (i = 0; i < noperands; i++)
159 const char *c = constraints[i];
160 if (c[0] == '%')
161 c++;
162 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
163 c = constraints[c[0] - '0'];
165 if (! asm_operand_ok (operands[i], c))
166 return 0;
169 return 1;
172 /* Static data for the next two routines. */
174 typedef struct change_t
176 rtx object;
177 int old_code;
178 rtx *loc;
179 rtx old;
180 } change_t;
182 static change_t *changes;
183 static int changes_allocated;
185 static int num_changes = 0;
187 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
188 at which NEW will be placed. If OBJECT is zero, no validation is done,
189 the change is simply made.
191 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
192 will be called with the address and mode as parameters. If OBJECT is
193 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
194 the change in place.
196 IN_GROUP is nonzero if this is part of a group of changes that must be
197 performed as a group. In that case, the changes will be stored. The
198 function `apply_change_group' will validate and apply the changes.
200 If IN_GROUP is zero, this is a single change. Try to recognize the insn
201 or validate the memory reference with the change applied. If the result
202 is not valid for the machine, suppress the change and return zero.
203 Otherwise, perform the change and return 1. */
206 validate_change (object, loc, new, in_group)
207 rtx object;
208 rtx *loc;
209 rtx new;
210 int in_group;
212 rtx old = *loc;
214 if (old == new || rtx_equal_p (old, new))
215 return 1;
217 if (in_group == 0 && num_changes != 0)
218 abort ();
220 *loc = new;
222 /* Save the information describing this change. */
223 if (num_changes >= changes_allocated)
225 if (changes_allocated == 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated = MAX_RECOG_OPERANDS * 5;
229 else
230 changes_allocated *= 2;
232 changes =
233 (change_t*) xrealloc (changes,
234 sizeof (change_t) * changes_allocated);
237 changes[num_changes].object = object;
238 changes[num_changes].loc = loc;
239 changes[num_changes].old = old;
241 if (object && GET_CODE (object) != MEM)
243 /* Set INSN_CODE to force rerecognition of insn. Save old code in
244 case invalid. */
245 changes[num_changes].old_code = INSN_CODE (object);
246 INSN_CODE (object) = -1;
249 num_changes++;
251 /* If we are making a group of changes, return 1. Otherwise, validate the
252 change group we made. */
254 if (in_group)
255 return 1;
256 else
257 return apply_change_group ();
260 /* This subroutine of apply_change_group verifies whether the changes to INSN
261 were valid; i.e. whether INSN can still be recognized. */
264 insn_invalid_p (insn)
265 rtx insn;
267 rtx pat = PATTERN (insn);
268 int num_clobbers = 0;
269 /* If we are before reload and the pattern is a SET, see if we can add
270 clobbers. */
271 int icode = recog (pat, insn,
272 (GET_CODE (pat) == SET
273 && ! reload_completed && ! reload_in_progress)
274 ? &num_clobbers : 0);
275 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
278 /* If this is an asm and the operand aren't legal, then fail. Likewise if
279 this is not an asm and the insn wasn't recognized. */
280 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
281 || (!is_asm && icode < 0))
282 return 1;
284 /* If we have to add CLOBBERs, fail if we have to add ones that reference
285 hard registers since our callers can't know if they are live or not.
286 Otherwise, add them. */
287 if (num_clobbers > 0)
289 rtx newpat;
291 if (added_clobbers_hard_reg_p (icode))
292 return 1;
294 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
295 XVECEXP (newpat, 0, 0) = pat;
296 add_clobbers (newpat, icode);
297 PATTERN (insn) = pat = newpat;
300 /* After reload, verify that all constraints are satisfied. */
301 if (reload_completed)
303 extract_insn (insn);
305 if (! constrain_operands (1))
306 return 1;
309 INSN_CODE (insn) = icode;
310 return 0;
313 /* Return number of changes made and not validated yet. */
315 num_changes_pending ()
317 return num_changes;
320 /* Apply a group of changes previously issued with `validate_change'.
321 Return 1 if all changes are valid, zero otherwise. */
324 apply_change_group ()
326 int i;
327 rtx last_validated = NULL_RTX;
329 /* The changes have been applied and all INSN_CODEs have been reset to force
330 rerecognition.
332 The changes are valid if we aren't given an object, or if we are
333 given a MEM and it still is a valid address, or if this is in insn
334 and it is recognized. In the latter case, if reload has completed,
335 we also require that the operands meet the constraints for
336 the insn. */
338 for (i = 0; i < num_changes; i++)
340 rtx object = changes[i].object;
342 /* if there is no object to test or if it is the same as the one we
343 already tested, ignore it. */
344 if (object == 0 || object == last_validated)
345 continue;
347 if (GET_CODE (object) == MEM)
349 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
350 break;
352 else if (insn_invalid_p (object))
354 rtx pat = PATTERN (object);
356 /* Perhaps we couldn't recognize the insn because there were
357 extra CLOBBERs at the end. If so, try to re-recognize
358 without the last CLOBBER (later iterations will cause each of
359 them to be eliminated, in turn). But don't do this if we
360 have an ASM_OPERAND. */
361 if (GET_CODE (pat) == PARALLEL
362 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
363 && asm_noperands (PATTERN (object)) < 0)
365 rtx newpat;
367 if (XVECLEN (pat, 0) == 2)
368 newpat = XVECEXP (pat, 0, 0);
369 else
371 int j;
373 newpat
374 = gen_rtx_PARALLEL (VOIDmode,
375 rtvec_alloc (XVECLEN (pat, 0) - 1));
376 for (j = 0; j < XVECLEN (newpat, 0); j++)
377 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
380 /* Add a new change to this group to replace the pattern
381 with this new pattern. Then consider this change
382 as having succeeded. The change we added will
383 cause the entire call to fail if things remain invalid.
385 Note that this can lose if a later change than the one
386 we are processing specified &XVECEXP (PATTERN (object), 0, X)
387 but this shouldn't occur. */
389 validate_change (object, &PATTERN (object), newpat, 1);
390 continue;
392 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
393 /* If this insn is a CLOBBER or USE, it is always valid, but is
394 never recognized. */
395 continue;
396 else
397 break;
399 last_validated = object;
402 if (i == num_changes)
404 basic_block bb;
406 for (i = 0; i < num_changes; i++)
407 if (changes[i].object
408 && INSN_P (changes[i].object)
409 && (bb = BLOCK_FOR_INSN (changes[i].object)))
410 bb->flags |= BB_DIRTY;
412 num_changes = 0;
413 return 1;
415 else
417 cancel_changes (0);
418 return 0;
422 /* Return the number of changes so far in the current group. */
425 num_validated_changes ()
427 return num_changes;
430 /* Retract the changes numbered NUM and up. */
432 void
433 cancel_changes (num)
434 int num;
436 int i;
438 /* Back out all the changes. Do this in the opposite order in which
439 they were made. */
440 for (i = num_changes - 1; i >= num; i--)
442 *changes[i].loc = changes[i].old;
443 if (changes[i].object && GET_CODE (changes[i].object) != MEM)
444 INSN_CODE (changes[i].object) = changes[i].old_code;
446 num_changes = num;
449 /* Replace every occurrence of FROM in X with TO. Mark each change with
450 validate_change passing OBJECT. */
452 static void
453 validate_replace_rtx_1 (loc, from, to, object)
454 rtx *loc;
455 rtx from, to, object;
457 int i, j;
458 const char *fmt;
459 rtx x = *loc;
460 enum rtx_code code;
461 enum machine_mode op0_mode = VOIDmode;
462 int prev_changes = num_changes;
463 rtx new;
465 if (!x)
466 return;
468 code = GET_CODE (x);
469 fmt = GET_RTX_FORMAT (code);
470 if (fmt[0] == 'e')
471 op0_mode = GET_MODE (XEXP (x, 0));
473 /* X matches FROM if it is the same rtx or they are both referring to the
474 same register in the same mode. Avoid calling rtx_equal_p unless the
475 operands look similar. */
477 if (x == from
478 || (GET_CODE (x) == REG && GET_CODE (from) == REG
479 && GET_MODE (x) == GET_MODE (from)
480 && REGNO (x) == REGNO (from))
481 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
482 && rtx_equal_p (x, from)))
484 validate_change (object, loc, to, 1);
485 return;
488 /* Call ourself recursively to perform the replacements. */
490 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
492 if (fmt[i] == 'e')
493 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
494 else if (fmt[i] == 'E')
495 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
496 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
499 /* If we didn't substitute, there is nothing more to do. */
500 if (num_changes == prev_changes)
501 return;
503 /* Allow substituted expression to have different mode. This is used by
504 regmove to change mode of pseudo register. */
505 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
506 op0_mode = GET_MODE (XEXP (x, 0));
508 /* Do changes needed to keep rtx consistent. Don't do any other
509 simplifications, as it is not our job. */
511 if ((GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
512 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
514 validate_change (object, loc,
515 gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
516 : swap_condition (code),
517 GET_MODE (x), XEXP (x, 1),
518 XEXP (x, 0)), 1);
519 x = *loc;
520 code = GET_CODE (x);
523 switch (code)
525 case PLUS:
526 /* If we have a PLUS whose second operand is now a CONST_INT, use
527 simplify_gen_binary to try to simplify it.
528 ??? We may want later to remove this, once simplification is
529 separated from this function. */
530 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
531 validate_change (object, loc,
532 simplify_gen_binary
533 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
534 break;
535 case MINUS:
536 if (GET_CODE (XEXP (x, 1)) == CONST_INT
537 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
538 validate_change (object, loc,
539 simplify_gen_binary
540 (PLUS, GET_MODE (x), XEXP (x, 0),
541 simplify_gen_unary (NEG,
542 GET_MODE (x), XEXP (x, 1),
543 GET_MODE (x))), 1);
544 break;
545 case ZERO_EXTEND:
546 case SIGN_EXTEND:
547 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
549 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
550 op0_mode);
551 /* If any of the above failed, substitute in something that
552 we know won't be recognized. */
553 if (!new)
554 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
555 validate_change (object, loc, new, 1);
557 break;
558 case SUBREG:
559 /* All subregs possible to simplify should be simplified. */
560 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
561 SUBREG_BYTE (x));
563 /* Subregs of VOIDmode operands are incorrect. */
564 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
565 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
566 if (new)
567 validate_change (object, loc, new, 1);
568 break;
569 case ZERO_EXTRACT:
570 case SIGN_EXTRACT:
571 /* If we are replacing a register with memory, try to change the memory
572 to be the mode required for memory in extract operations (this isn't
573 likely to be an insertion operation; if it was, nothing bad will
574 happen, we might just fail in some cases). */
576 if (GET_CODE (XEXP (x, 0)) == MEM
577 && GET_CODE (XEXP (x, 1)) == CONST_INT
578 && GET_CODE (XEXP (x, 2)) == CONST_INT
579 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
580 && !MEM_VOLATILE_P (XEXP (x, 0)))
582 enum machine_mode wanted_mode = VOIDmode;
583 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
584 int pos = INTVAL (XEXP (x, 2));
586 if (GET_CODE (x) == ZERO_EXTRACT)
588 enum machine_mode new_mode
589 = mode_for_extraction (EP_extzv, 1);
590 if (new_mode != MAX_MACHINE_MODE)
591 wanted_mode = new_mode;
593 else if (GET_CODE (x) == SIGN_EXTRACT)
595 enum machine_mode new_mode
596 = mode_for_extraction (EP_extv, 1);
597 if (new_mode != MAX_MACHINE_MODE)
598 wanted_mode = new_mode;
601 /* If we have a narrower mode, we can do something. */
602 if (wanted_mode != VOIDmode
603 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
605 int offset = pos / BITS_PER_UNIT;
606 rtx newmem;
608 /* If the bytes and bits are counted differently, we
609 must adjust the offset. */
610 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
611 offset =
612 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
613 offset);
615 pos %= GET_MODE_BITSIZE (wanted_mode);
617 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
619 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
620 validate_change (object, &XEXP (x, 0), newmem, 1);
624 break;
626 default:
627 break;
631 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
632 with TO. After all changes have been made, validate by seeing
633 if INSN is still valid. */
636 validate_replace_rtx_subexp (from, to, insn, loc)
637 rtx from, to, insn, *loc;
639 validate_replace_rtx_1 (loc, from, to, insn);
640 return apply_change_group ();
643 /* Try replacing every occurrence of FROM in INSN with TO. After all
644 changes have been made, validate by seeing if INSN is still valid. */
647 validate_replace_rtx (from, to, insn)
648 rtx from, to, insn;
650 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
651 return apply_change_group ();
654 /* Try replacing every occurrence of FROM in INSN with TO. */
656 void
657 validate_replace_rtx_group (from, to, insn)
658 rtx from, to, insn;
660 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
663 /* Function called by note_uses to replace used subexpressions. */
664 struct validate_replace_src_data
666 rtx from; /* Old RTX */
667 rtx to; /* New RTX */
668 rtx insn; /* Insn in which substitution is occurring. */
671 static void
672 validate_replace_src_1 (x, data)
673 rtx *x;
674 void *data;
676 struct validate_replace_src_data *d
677 = (struct validate_replace_src_data *) data;
679 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
682 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
683 SET_DESTs. */
685 void
686 validate_replace_src_group (from, to, insn)
687 rtx from, to, insn;
689 struct validate_replace_src_data d;
691 d.from = from;
692 d.to = to;
693 d.insn = insn;
694 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
697 /* Same as validate_replace_src_group, but validate by seeing if
698 INSN is still valid. */
700 validate_replace_src (from, to, insn)
701 rtx from, to, insn;
703 validate_replace_src_group (from, to, insn);
704 return apply_change_group ();
707 #ifdef HAVE_cc0
708 /* Return 1 if the insn using CC0 set by INSN does not contain
709 any ordered tests applied to the condition codes.
710 EQ and NE tests do not count. */
713 next_insn_tests_no_inequality (insn)
714 rtx insn;
716 rtx next = next_cc0_user (insn);
718 /* If there is no next insn, we have to take the conservative choice. */
719 if (next == 0)
720 return 0;
722 return ((GET_CODE (next) == JUMP_INSN
723 || GET_CODE (next) == INSN
724 || GET_CODE (next) == CALL_INSN)
725 && ! inequality_comparisons_p (PATTERN (next)));
728 #if 0 /* This is useless since the insn that sets the cc's
729 must be followed immediately by the use of them. */
730 /* Return 1 if the CC value set up by INSN is not used. */
733 next_insns_test_no_inequality (insn)
734 rtx insn;
736 rtx next = NEXT_INSN (insn);
738 for (; next != 0; next = NEXT_INSN (next))
740 if (GET_CODE (next) == CODE_LABEL
741 || GET_CODE (next) == BARRIER)
742 return 1;
743 if (GET_CODE (next) == NOTE)
744 continue;
745 if (inequality_comparisons_p (PATTERN (next)))
746 return 0;
747 if (sets_cc0_p (PATTERN (next)) == 1)
748 return 1;
749 if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
750 return 1;
752 return 1;
754 #endif
755 #endif
757 /* This is used by find_single_use to locate an rtx that contains exactly one
758 use of DEST, which is typically either a REG or CC0. It returns a
759 pointer to the innermost rtx expression containing DEST. Appearances of
760 DEST that are being used to totally replace it are not counted. */
762 static rtx *
763 find_single_use_1 (dest, loc)
764 rtx dest;
765 rtx *loc;
767 rtx x = *loc;
768 enum rtx_code code = GET_CODE (x);
769 rtx *result = 0;
770 rtx *this_result;
771 int i;
772 const char *fmt;
774 switch (code)
776 case CONST_INT:
777 case CONST:
778 case LABEL_REF:
779 case SYMBOL_REF:
780 case CONST_DOUBLE:
781 case CONST_VECTOR:
782 case CLOBBER:
783 return 0;
785 case SET:
786 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
787 of a REG that occupies all of the REG, the insn uses DEST if
788 it is mentioned in the destination or the source. Otherwise, we
789 need just check the source. */
790 if (GET_CODE (SET_DEST (x)) != CC0
791 && GET_CODE (SET_DEST (x)) != PC
792 && GET_CODE (SET_DEST (x)) != REG
793 && ! (GET_CODE (SET_DEST (x)) == SUBREG
794 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
795 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
796 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
797 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
798 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
799 break;
801 return find_single_use_1 (dest, &SET_SRC (x));
803 case MEM:
804 case SUBREG:
805 return find_single_use_1 (dest, &XEXP (x, 0));
807 default:
808 break;
811 /* If it wasn't one of the common cases above, check each expression and
812 vector of this code. Look for a unique usage of DEST. */
814 fmt = GET_RTX_FORMAT (code);
815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
817 if (fmt[i] == 'e')
819 if (dest == XEXP (x, i)
820 || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
821 && REGNO (dest) == REGNO (XEXP (x, i))))
822 this_result = loc;
823 else
824 this_result = find_single_use_1 (dest, &XEXP (x, i));
826 if (result == 0)
827 result = this_result;
828 else if (this_result)
829 /* Duplicate usage. */
830 return 0;
832 else if (fmt[i] == 'E')
834 int j;
836 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
838 if (XVECEXP (x, i, j) == dest
839 || (GET_CODE (dest) == REG
840 && GET_CODE (XVECEXP (x, i, j)) == REG
841 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
842 this_result = loc;
843 else
844 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
846 if (result == 0)
847 result = this_result;
848 else if (this_result)
849 return 0;
854 return result;
857 /* See if DEST, produced in INSN, is used only a single time in the
858 sequel. If so, return a pointer to the innermost rtx expression in which
859 it is used.
861 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
863 This routine will return usually zero either before flow is called (because
864 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
865 note can't be trusted).
867 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
868 care about REG_DEAD notes or LOG_LINKS.
870 Otherwise, we find the single use by finding an insn that has a
871 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
872 only referenced once in that insn, we know that it must be the first
873 and last insn referencing DEST. */
875 rtx *
876 find_single_use (dest, insn, ploc)
877 rtx dest;
878 rtx insn;
879 rtx *ploc;
881 rtx next;
882 rtx *result;
883 rtx link;
885 #ifdef HAVE_cc0
886 if (dest == cc0_rtx)
888 next = NEXT_INSN (insn);
889 if (next == 0
890 || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
891 return 0;
893 result = find_single_use_1 (dest, &PATTERN (next));
894 if (result && ploc)
895 *ploc = next;
896 return result;
898 #endif
900 if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
901 return 0;
903 for (next = next_nonnote_insn (insn);
904 next != 0 && GET_CODE (next) != CODE_LABEL;
905 next = next_nonnote_insn (next))
906 if (INSN_P (next) && dead_or_set_p (next, dest))
908 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
909 if (XEXP (link, 0) == insn)
910 break;
912 if (link)
914 result = find_single_use_1 (dest, &PATTERN (next));
915 if (ploc)
916 *ploc = next;
917 return result;
921 return 0;
924 /* Return 1 if OP is a valid general operand for machine mode MODE.
925 This is either a register reference, a memory reference,
926 or a constant. In the case of a memory reference, the address
927 is checked for general validity for the target machine.
929 Register and memory references must have mode MODE in order to be valid,
930 but some constants have no machine mode and are valid for any mode.
932 If MODE is VOIDmode, OP is checked for validity for whatever mode
933 it has.
935 The main use of this function is as a predicate in match_operand
936 expressions in the machine description.
938 For an explanation of this function's behavior for registers of
939 class NO_REGS, see the comment for `register_operand'. */
942 general_operand (op, mode)
943 rtx op;
944 enum machine_mode mode;
946 enum rtx_code code = GET_CODE (op);
948 if (mode == VOIDmode)
949 mode = GET_MODE (op);
951 /* Don't accept CONST_INT or anything similar
952 if the caller wants something floating. */
953 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
954 && GET_MODE_CLASS (mode) != MODE_INT
955 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
956 return 0;
958 if (GET_CODE (op) == CONST_INT
959 && mode != VOIDmode
960 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
961 return 0;
963 if (CONSTANT_P (op))
964 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
965 || mode == VOIDmode)
966 #ifdef LEGITIMATE_PIC_OPERAND_P
967 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
968 #endif
969 && LEGITIMATE_CONSTANT_P (op));
971 /* Except for certain constants with VOIDmode, already checked for,
972 OP's mode must match MODE if MODE specifies a mode. */
974 if (GET_MODE (op) != mode)
975 return 0;
977 if (code == SUBREG)
979 rtx sub = SUBREG_REG (op);
981 #ifdef INSN_SCHEDULING
982 /* On machines that have insn scheduling, we want all memory
983 reference to be explicit, so outlaw paradoxical SUBREGs. */
984 if (GET_CODE (sub) == MEM
985 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
986 return 0;
987 #endif
988 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
989 may result in incorrect reference. We should simplify all valid
990 subregs of MEM anyway. But allow this after reload because we
991 might be called from cleanup_subreg_operands.
993 ??? This is a kludge. */
994 if (!reload_completed && SUBREG_BYTE (op) != 0
995 && GET_CODE (sub) == MEM)
996 return 0;
998 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
999 create such rtl, and we must reject it. */
1000 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1001 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1002 return 0;
1004 op = sub;
1005 code = GET_CODE (op);
1008 if (code == REG)
1009 /* A register whose class is NO_REGS is not a general operand. */
1010 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1011 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
1013 if (code == MEM)
1015 rtx y = XEXP (op, 0);
1017 if (! volatile_ok && MEM_VOLATILE_P (op))
1018 return 0;
1020 if (GET_CODE (y) == ADDRESSOF)
1021 return 1;
1023 /* Use the mem's mode, since it will be reloaded thus. */
1024 mode = GET_MODE (op);
1025 GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
1028 /* Pretend this is an operand for now; we'll run force_operand
1029 on its replacement in fixup_var_refs_1. */
1030 if (code == ADDRESSOF)
1031 return 1;
1033 return 0;
1035 win:
1036 return 1;
1039 /* Return 1 if OP is a valid memory address for a memory reference
1040 of mode MODE.
1042 The main use of this function is as a predicate in match_operand
1043 expressions in the machine description. */
1046 address_operand (op, mode)
1047 rtx op;
1048 enum machine_mode mode;
1050 return memory_address_p (mode, op);
1053 /* Return 1 if OP is a register reference of mode MODE.
1054 If MODE is VOIDmode, accept a register in any mode.
1056 The main use of this function is as a predicate in match_operand
1057 expressions in the machine description.
1059 As a special exception, registers whose class is NO_REGS are
1060 not accepted by `register_operand'. The reason for this change
1061 is to allow the representation of special architecture artifacts
1062 (such as a condition code register) without extending the rtl
1063 definitions. Since registers of class NO_REGS cannot be used
1064 as registers in any case where register classes are examined,
1065 it is most consistent to keep this function from accepting them. */
1068 register_operand (op, mode)
1069 rtx op;
1070 enum machine_mode mode;
1072 if (GET_MODE (op) != mode && mode != VOIDmode)
1073 return 0;
1075 if (GET_CODE (op) == SUBREG)
1077 rtx sub = SUBREG_REG (op);
1079 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1080 because it is guaranteed to be reloaded into one.
1081 Just make sure the MEM is valid in itself.
1082 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1083 but currently it does result from (SUBREG (REG)...) where the
1084 reg went on the stack.) */
1085 if (! reload_completed && GET_CODE (sub) == MEM)
1086 return general_operand (op, mode);
1088 #ifdef CANNOT_CHANGE_MODE_CLASS
1089 if (GET_CODE (sub) == REG
1090 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1091 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), mode, GET_MODE (sub))
1092 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1093 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1094 return 0;
1095 #endif
1097 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1098 create such rtl, and we must reject it. */
1099 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1100 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1101 return 0;
1103 op = sub;
1106 /* If we have an ADDRESSOF, consider it valid since it will be
1107 converted into something that will not be a MEM. */
1108 if (GET_CODE (op) == ADDRESSOF)
1109 return 1;
1111 /* We don't consider registers whose class is NO_REGS
1112 to be a register operand. */
1113 return (GET_CODE (op) == REG
1114 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1115 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1118 /* Return 1 for a register in Pmode; ignore the tested mode. */
1121 pmode_register_operand (op, mode)
1122 rtx op;
1123 enum machine_mode mode ATTRIBUTE_UNUSED;
1125 return register_operand (op, Pmode);
1128 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1129 or a hard register. */
1132 scratch_operand (op, mode)
1133 rtx op;
1134 enum machine_mode mode;
1136 if (GET_MODE (op) != mode && mode != VOIDmode)
1137 return 0;
1139 return (GET_CODE (op) == SCRATCH
1140 || (GET_CODE (op) == REG
1141 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1144 /* Return 1 if OP is a valid immediate operand for mode MODE.
1146 The main use of this function is as a predicate in match_operand
1147 expressions in the machine description. */
1150 immediate_operand (op, mode)
1151 rtx op;
1152 enum machine_mode mode;
1154 /* Don't accept CONST_INT or anything similar
1155 if the caller wants something floating. */
1156 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1157 && GET_MODE_CLASS (mode) != MODE_INT
1158 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1159 return 0;
1161 if (GET_CODE (op) == CONST_INT
1162 && mode != VOIDmode
1163 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1164 return 0;
1166 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1167 result in 0/1. It seems a safe assumption that this is
1168 in range for everyone. */
1169 if (GET_CODE (op) == CONSTANT_P_RTX)
1170 return 1;
1172 return (CONSTANT_P (op)
1173 && (GET_MODE (op) == mode || mode == VOIDmode
1174 || GET_MODE (op) == VOIDmode)
1175 #ifdef LEGITIMATE_PIC_OPERAND_P
1176 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1177 #endif
1178 && LEGITIMATE_CONSTANT_P (op));
1181 /* Returns 1 if OP is an operand that is a CONST_INT. */
1184 const_int_operand (op, mode)
1185 rtx op;
1186 enum machine_mode mode;
1188 if (GET_CODE (op) != CONST_INT)
1189 return 0;
1191 if (mode != VOIDmode
1192 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1193 return 0;
1195 return 1;
1198 /* Returns 1 if OP is an operand that is a constant integer or constant
1199 floating-point number. */
1202 const_double_operand (op, mode)
1203 rtx op;
1204 enum machine_mode mode;
1206 /* Don't accept CONST_INT or anything similar
1207 if the caller wants something floating. */
1208 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1209 && GET_MODE_CLASS (mode) != MODE_INT
1210 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1211 return 0;
1213 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1214 && (mode == VOIDmode || GET_MODE (op) == mode
1215 || GET_MODE (op) == VOIDmode));
1218 /* Return 1 if OP is a general operand that is not an immediate operand. */
1221 nonimmediate_operand (op, mode)
1222 rtx op;
1223 enum machine_mode mode;
1225 return (general_operand (op, mode) && ! CONSTANT_P (op));
1228 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1231 nonmemory_operand (op, mode)
1232 rtx op;
1233 enum machine_mode mode;
1235 if (CONSTANT_P (op))
1237 /* Don't accept CONST_INT or anything similar
1238 if the caller wants something floating. */
1239 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1240 && GET_MODE_CLASS (mode) != MODE_INT
1241 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1242 return 0;
1244 if (GET_CODE (op) == CONST_INT
1245 && mode != VOIDmode
1246 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1247 return 0;
1249 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1250 || mode == VOIDmode)
1251 #ifdef LEGITIMATE_PIC_OPERAND_P
1252 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1253 #endif
1254 && LEGITIMATE_CONSTANT_P (op));
1257 if (GET_MODE (op) != mode && mode != VOIDmode)
1258 return 0;
1260 if (GET_CODE (op) == SUBREG)
1262 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1263 because it is guaranteed to be reloaded into one.
1264 Just make sure the MEM is valid in itself.
1265 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1266 but currently it does result from (SUBREG (REG)...) where the
1267 reg went on the stack.) */
1268 if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
1269 return general_operand (op, mode);
1270 op = SUBREG_REG (op);
1273 /* We don't consider registers whose class is NO_REGS
1274 to be a register operand. */
1275 return (GET_CODE (op) == REG
1276 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1277 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1280 /* Return 1 if OP is a valid operand that stands for pushing a
1281 value of mode MODE onto the stack.
1283 The main use of this function is as a predicate in match_operand
1284 expressions in the machine description. */
1287 push_operand (op, mode)
1288 rtx op;
1289 enum machine_mode mode;
1291 unsigned int rounded_size = GET_MODE_SIZE (mode);
1293 #ifdef PUSH_ROUNDING
1294 rounded_size = PUSH_ROUNDING (rounded_size);
1295 #endif
1297 if (GET_CODE (op) != MEM)
1298 return 0;
1300 if (mode != VOIDmode && GET_MODE (op) != mode)
1301 return 0;
1303 op = XEXP (op, 0);
1305 if (rounded_size == GET_MODE_SIZE (mode))
1307 if (GET_CODE (op) != STACK_PUSH_CODE)
1308 return 0;
1310 else
1312 if (GET_CODE (op) != PRE_MODIFY
1313 || GET_CODE (XEXP (op, 1)) != PLUS
1314 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1315 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1316 #ifdef STACK_GROWS_DOWNWARD
1317 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1318 #else
1319 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1320 #endif
1322 return 0;
1325 return XEXP (op, 0) == stack_pointer_rtx;
1328 /* Return 1 if OP is a valid operand that stands for popping a
1329 value of mode MODE off the stack.
1331 The main use of this function is as a predicate in match_operand
1332 expressions in the machine description. */
1335 pop_operand (op, mode)
1336 rtx op;
1337 enum machine_mode mode;
1339 if (GET_CODE (op) != MEM)
1340 return 0;
1342 if (mode != VOIDmode && GET_MODE (op) != mode)
1343 return 0;
1345 op = XEXP (op, 0);
1347 if (GET_CODE (op) != STACK_POP_CODE)
1348 return 0;
1350 return XEXP (op, 0) == stack_pointer_rtx;
1353 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1356 memory_address_p (mode, addr)
1357 enum machine_mode mode ATTRIBUTE_UNUSED;
1358 rtx addr;
1360 if (GET_CODE (addr) == ADDRESSOF)
1361 return 1;
1363 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1364 return 0;
1366 win:
1367 return 1;
1370 /* Return 1 if OP is a valid memory reference with mode MODE,
1371 including a valid address.
1373 The main use of this function is as a predicate in match_operand
1374 expressions in the machine description. */
1377 memory_operand (op, mode)
1378 rtx op;
1379 enum machine_mode mode;
1381 rtx inner;
1383 if (! reload_completed)
1384 /* Note that no SUBREG is a memory operand before end of reload pass,
1385 because (SUBREG (MEM...)) forces reloading into a register. */
1386 return GET_CODE (op) == MEM && general_operand (op, mode);
1388 if (mode != VOIDmode && GET_MODE (op) != mode)
1389 return 0;
1391 inner = op;
1392 if (GET_CODE (inner) == SUBREG)
1393 inner = SUBREG_REG (inner);
1395 return (GET_CODE (inner) == MEM && general_operand (op, mode));
1398 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1399 that is, a memory reference whose address is a general_operand. */
1402 indirect_operand (op, mode)
1403 rtx op;
1404 enum machine_mode mode;
1406 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1407 if (! reload_completed
1408 && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
1410 int offset = SUBREG_BYTE (op);
1411 rtx inner = SUBREG_REG (op);
1413 if (mode != VOIDmode && GET_MODE (op) != mode)
1414 return 0;
1416 /* The only way that we can have a general_operand as the resulting
1417 address is if OFFSET is zero and the address already is an operand
1418 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1419 operand. */
1421 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1422 || (GET_CODE (XEXP (inner, 0)) == PLUS
1423 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1424 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1425 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1428 return (GET_CODE (op) == MEM
1429 && memory_operand (op, mode)
1430 && general_operand (XEXP (op, 0), Pmode));
1433 /* Return 1 if this is a comparison operator. This allows the use of
1434 MATCH_OPERATOR to recognize all the branch insns. */
1437 comparison_operator (op, mode)
1438 rtx op;
1439 enum machine_mode mode;
1441 return ((mode == VOIDmode || GET_MODE (op) == mode)
1442 && GET_RTX_CLASS (GET_CODE (op)) == '<');
1445 /* If BODY is an insn body that uses ASM_OPERANDS,
1446 return the number of operands (both input and output) in the insn.
1447 Otherwise return -1. */
1450 asm_noperands (body)
1451 rtx body;
1453 switch (GET_CODE (body))
1455 case ASM_OPERANDS:
1456 /* No output operands: return number of input operands. */
1457 return ASM_OPERANDS_INPUT_LENGTH (body);
1458 case SET:
1459 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1460 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1461 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1462 else
1463 return -1;
1464 case PARALLEL:
1465 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1466 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1468 /* Multiple output operands, or 1 output plus some clobbers:
1469 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1470 int i;
1471 int n_sets;
1473 /* Count backwards through CLOBBERs to determine number of SETs. */
1474 for (i = XVECLEN (body, 0); i > 0; i--)
1476 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1477 break;
1478 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1479 return -1;
1482 /* N_SETS is now number of output operands. */
1483 n_sets = i;
1485 /* Verify that all the SETs we have
1486 came from a single original asm_operands insn
1487 (so that invalid combinations are blocked). */
1488 for (i = 0; i < n_sets; i++)
1490 rtx elt = XVECEXP (body, 0, i);
1491 if (GET_CODE (elt) != SET)
1492 return -1;
1493 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1494 return -1;
1495 /* If these ASM_OPERANDS rtx's came from different original insns
1496 then they aren't allowed together. */
1497 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1498 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1499 return -1;
1501 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1502 + n_sets);
1504 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1506 /* 0 outputs, but some clobbers:
1507 body is [(asm_operands ...) (clobber (reg ...))...]. */
1508 int i;
1510 /* Make sure all the other parallel things really are clobbers. */
1511 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1512 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1513 return -1;
1515 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1517 else
1518 return -1;
1519 default:
1520 return -1;
1524 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1525 copy its operands (both input and output) into the vector OPERANDS,
1526 the locations of the operands within the insn into the vector OPERAND_LOCS,
1527 and the constraints for the operands into CONSTRAINTS.
1528 Write the modes of the operands into MODES.
1529 Return the assembler-template.
1531 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1532 we don't store that info. */
1534 const char *
1535 decode_asm_operands (body, operands, operand_locs, constraints, modes)
1536 rtx body;
1537 rtx *operands;
1538 rtx **operand_locs;
1539 const char **constraints;
1540 enum machine_mode *modes;
1542 int i;
1543 int noperands;
1544 const char *template = 0;
1546 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1548 rtx asmop = SET_SRC (body);
1549 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1551 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1553 for (i = 1; i < noperands; i++)
1555 if (operand_locs)
1556 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1557 if (operands)
1558 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1559 if (constraints)
1560 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1561 if (modes)
1562 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1565 /* The output is in the SET.
1566 Its constraint is in the ASM_OPERANDS itself. */
1567 if (operands)
1568 operands[0] = SET_DEST (body);
1569 if (operand_locs)
1570 operand_locs[0] = &SET_DEST (body);
1571 if (constraints)
1572 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1573 if (modes)
1574 modes[0] = GET_MODE (SET_DEST (body));
1575 template = ASM_OPERANDS_TEMPLATE (asmop);
1577 else if (GET_CODE (body) == ASM_OPERANDS)
1579 rtx asmop = body;
1580 /* No output operands: BODY is (asm_operands ....). */
1582 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1584 /* The input operands are found in the 1st element vector. */
1585 /* Constraints for inputs are in the 2nd element vector. */
1586 for (i = 0; i < noperands; i++)
1588 if (operand_locs)
1589 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1590 if (operands)
1591 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1592 if (constraints)
1593 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1594 if (modes)
1595 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1597 template = ASM_OPERANDS_TEMPLATE (asmop);
1599 else if (GET_CODE (body) == PARALLEL
1600 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1601 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1603 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1604 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1605 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1606 int nout = 0; /* Does not include CLOBBERs. */
1608 /* At least one output, plus some CLOBBERs. */
1610 /* The outputs are in the SETs.
1611 Their constraints are in the ASM_OPERANDS itself. */
1612 for (i = 0; i < nparallel; i++)
1614 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1615 break; /* Past last SET */
1617 if (operands)
1618 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1619 if (operand_locs)
1620 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1621 if (constraints)
1622 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1623 if (modes)
1624 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1625 nout++;
1628 for (i = 0; i < nin; i++)
1630 if (operand_locs)
1631 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1632 if (operands)
1633 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1634 if (constraints)
1635 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1636 if (modes)
1637 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1640 template = ASM_OPERANDS_TEMPLATE (asmop);
1642 else if (GET_CODE (body) == PARALLEL
1643 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1645 /* No outputs, but some CLOBBERs. */
1647 rtx asmop = XVECEXP (body, 0, 0);
1648 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1650 for (i = 0; i < nin; i++)
1652 if (operand_locs)
1653 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1654 if (operands)
1655 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1656 if (constraints)
1657 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1658 if (modes)
1659 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1662 template = ASM_OPERANDS_TEMPLATE (asmop);
1665 return template;
1668 /* Check if an asm_operand matches it's constraints.
1669 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1672 asm_operand_ok (op, constraint)
1673 rtx op;
1674 const char *constraint;
1676 int result = 0;
1678 /* Use constrain_operands after reload. */
1679 if (reload_completed)
1680 abort ();
1682 while (*constraint)
1684 char c = *constraint;
1685 int len;
1686 switch (c)
1688 case ',':
1689 constraint++;
1690 continue;
1691 case '=':
1692 case '+':
1693 case '*':
1694 case '%':
1695 case '!':
1696 case '#':
1697 case '&':
1698 case '?':
1699 break;
1701 case '0': case '1': case '2': case '3': case '4':
1702 case '5': case '6': case '7': case '8': case '9':
1703 /* For best results, our caller should have given us the
1704 proper matching constraint, but we can't actually fail
1705 the check if they didn't. Indicate that results are
1706 inconclusive. */
1708 constraint++;
1709 while (ISDIGIT (*constraint));
1710 if (! result)
1711 result = -1;
1712 continue;
1714 case 'p':
1715 if (address_operand (op, VOIDmode))
1716 result = 1;
1717 break;
1719 case 'm':
1720 case 'V': /* non-offsettable */
1721 if (memory_operand (op, VOIDmode))
1722 result = 1;
1723 break;
1725 case 'o': /* offsettable */
1726 if (offsettable_nonstrict_memref_p (op))
1727 result = 1;
1728 break;
1730 case '<':
1731 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1732 excepting those that expand_call created. Further, on some
1733 machines which do not have generalized auto inc/dec, an inc/dec
1734 is not a memory_operand.
1736 Match any memory and hope things are resolved after reload. */
1738 if (GET_CODE (op) == MEM
1739 && (1
1740 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1741 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1742 result = 1;
1743 break;
1745 case '>':
1746 if (GET_CODE (op) == MEM
1747 && (1
1748 || GET_CODE (XEXP (op, 0)) == PRE_INC
1749 || GET_CODE (XEXP (op, 0)) == POST_INC))
1750 result = 1;
1751 break;
1753 case 'E':
1754 case 'F':
1755 if (GET_CODE (op) == CONST_DOUBLE
1756 || (GET_CODE (op) == CONST_VECTOR
1757 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1758 result = 1;
1759 break;
1761 case 'G':
1762 if (GET_CODE (op) == CONST_DOUBLE
1763 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1764 result = 1;
1765 break;
1766 case 'H':
1767 if (GET_CODE (op) == CONST_DOUBLE
1768 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1769 result = 1;
1770 break;
1772 case 's':
1773 if (GET_CODE (op) == CONST_INT
1774 || (GET_CODE (op) == CONST_DOUBLE
1775 && GET_MODE (op) == VOIDmode))
1776 break;
1777 /* FALLTHRU */
1779 case 'i':
1780 if (CONSTANT_P (op)
1781 #ifdef LEGITIMATE_PIC_OPERAND_P
1782 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1783 #endif
1785 result = 1;
1786 break;
1788 case 'n':
1789 if (GET_CODE (op) == CONST_INT
1790 || (GET_CODE (op) == CONST_DOUBLE
1791 && GET_MODE (op) == VOIDmode))
1792 result = 1;
1793 break;
1795 case 'I':
1796 if (GET_CODE (op) == CONST_INT
1797 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1798 result = 1;
1799 break;
1800 case 'J':
1801 if (GET_CODE (op) == CONST_INT
1802 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1803 result = 1;
1804 break;
1805 case 'K':
1806 if (GET_CODE (op) == CONST_INT
1807 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1808 result = 1;
1809 break;
1810 case 'L':
1811 if (GET_CODE (op) == CONST_INT
1812 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1813 result = 1;
1814 break;
1815 case 'M':
1816 if (GET_CODE (op) == CONST_INT
1817 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1818 result = 1;
1819 break;
1820 case 'N':
1821 if (GET_CODE (op) == CONST_INT
1822 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1823 result = 1;
1824 break;
1825 case 'O':
1826 if (GET_CODE (op) == CONST_INT
1827 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1828 result = 1;
1829 break;
1830 case 'P':
1831 if (GET_CODE (op) == CONST_INT
1832 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1833 result = 1;
1834 break;
1836 case 'X':
1837 result = 1;
1839 case 'g':
1840 if (general_operand (op, VOIDmode))
1841 result = 1;
1842 break;
1844 default:
1845 /* For all other letters, we first check for a register class,
1846 otherwise it is an EXTRA_CONSTRAINT. */
1847 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1849 case 'r':
1850 if (GET_MODE (op) == BLKmode)
1851 break;
1852 if (register_operand (op, VOIDmode))
1853 result = 1;
1855 #ifdef EXTRA_CONSTRAINT_STR
1856 if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1857 result = 1;
1858 if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1860 /* Every memory operand can be reloaded to fit. */
1861 if (memory_operand (op, VOIDmode))
1862 result = 1;
1864 if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1866 /* Every address operand can be reloaded to fit. */
1867 if (address_operand (op, VOIDmode))
1868 result = 1;
1870 #endif
1871 break;
1873 len = CONSTRAINT_LEN (c, constraint);
1875 constraint++;
1876 while (--len && *constraint);
1877 if (len)
1878 return 0;
1881 return result;
1884 /* Given an rtx *P, if it is a sum containing an integer constant term,
1885 return the location (type rtx *) of the pointer to that constant term.
1886 Otherwise, return a null pointer. */
1888 rtx *
1889 find_constant_term_loc (p)
1890 rtx *p;
1892 rtx *tem;
1893 enum rtx_code code = GET_CODE (*p);
1895 /* If *P IS such a constant term, P is its location. */
1897 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1898 || code == CONST)
1899 return p;
1901 /* Otherwise, if not a sum, it has no constant term. */
1903 if (GET_CODE (*p) != PLUS)
1904 return 0;
1906 /* If one of the summands is constant, return its location. */
1908 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1909 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1910 return p;
1912 /* Otherwise, check each summand for containing a constant term. */
1914 if (XEXP (*p, 0) != 0)
1916 tem = find_constant_term_loc (&XEXP (*p, 0));
1917 if (tem != 0)
1918 return tem;
1921 if (XEXP (*p, 1) != 0)
1923 tem = find_constant_term_loc (&XEXP (*p, 1));
1924 if (tem != 0)
1925 return tem;
1928 return 0;
1931 /* Return 1 if OP is a memory reference
1932 whose address contains no side effects
1933 and remains valid after the addition
1934 of a positive integer less than the
1935 size of the object being referenced.
1937 We assume that the original address is valid and do not check it.
1939 This uses strict_memory_address_p as a subroutine, so
1940 don't use it before reload. */
1943 offsettable_memref_p (op)
1944 rtx op;
1946 return ((GET_CODE (op) == MEM)
1947 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1950 /* Similar, but don't require a strictly valid mem ref:
1951 consider pseudo-regs valid as index or base regs. */
1954 offsettable_nonstrict_memref_p (op)
1955 rtx op;
1957 return ((GET_CODE (op) == MEM)
1958 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1961 /* Return 1 if Y is a memory address which contains no side effects
1962 and would remain valid after the addition of a positive integer
1963 less than the size of that mode.
1965 We assume that the original address is valid and do not check it.
1966 We do check that it is valid for narrower modes.
1968 If STRICTP is nonzero, we require a strictly valid address,
1969 for the sake of use in reload.c. */
1972 offsettable_address_p (strictp, mode, y)
1973 int strictp;
1974 enum machine_mode mode;
1975 rtx y;
1977 enum rtx_code ycode = GET_CODE (y);
1978 rtx z;
1979 rtx y1 = y;
1980 rtx *y2;
1981 int (*addressp) PARAMS ((enum machine_mode, rtx)) =
1982 (strictp ? strict_memory_address_p : memory_address_p);
1983 unsigned int mode_sz = GET_MODE_SIZE (mode);
1985 if (CONSTANT_ADDRESS_P (y))
1986 return 1;
1988 /* Adjusting an offsettable address involves changing to a narrower mode.
1989 Make sure that's OK. */
1991 if (mode_dependent_address_p (y))
1992 return 0;
1994 /* ??? How much offset does an offsettable BLKmode reference need?
1995 Clearly that depends on the situation in which it's being used.
1996 However, the current situation in which we test 0xffffffff is
1997 less than ideal. Caveat user. */
1998 if (mode_sz == 0)
1999 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2001 /* If the expression contains a constant term,
2002 see if it remains valid when max possible offset is added. */
2004 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
2006 int good;
2008 y1 = *y2;
2009 *y2 = plus_constant (*y2, mode_sz - 1);
2010 /* Use QImode because an odd displacement may be automatically invalid
2011 for any wider mode. But it should be valid for a single byte. */
2012 good = (*addressp) (QImode, y);
2014 /* In any case, restore old contents of memory. */
2015 *y2 = y1;
2016 return good;
2019 if (GET_RTX_CLASS (ycode) == 'a')
2020 return 0;
2022 /* The offset added here is chosen as the maximum offset that
2023 any instruction could need to add when operating on something
2024 of the specified mode. We assume that if Y and Y+c are
2025 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2026 go inside a LO_SUM here, so we do so as well. */
2027 if (GET_CODE (y) == LO_SUM
2028 && mode != BLKmode
2029 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2030 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
2031 plus_constant (XEXP (y, 1), mode_sz - 1));
2032 else
2033 z = plus_constant (y, mode_sz - 1);
2035 /* Use QImode because an odd displacement may be automatically invalid
2036 for any wider mode. But it should be valid for a single byte. */
2037 return (*addressp) (QImode, z);
2040 /* Return 1 if ADDR is an address-expression whose effect depends
2041 on the mode of the memory reference it is used in.
2043 Autoincrement addressing is a typical example of mode-dependence
2044 because the amount of the increment depends on the mode. */
2047 mode_dependent_address_p (addr)
2048 rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
2050 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
2051 return 0;
2052 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2053 win: ATTRIBUTE_UNUSED_LABEL
2054 return 1;
2057 /* Return 1 if OP is a general operand
2058 other than a memory ref with a mode dependent address. */
2061 mode_independent_operand (op, mode)
2062 enum machine_mode mode;
2063 rtx op;
2065 rtx addr;
2067 if (! general_operand (op, mode))
2068 return 0;
2070 if (GET_CODE (op) != MEM)
2071 return 1;
2073 addr = XEXP (op, 0);
2074 GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
2075 return 1;
2076 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2077 lose: ATTRIBUTE_UNUSED_LABEL
2078 return 0;
2081 /* Like extract_insn, but save insn extracted and don't extract again, when
2082 called again for the same insn expecting that recog_data still contain the
2083 valid information. This is used primary by gen_attr infrastructure that
2084 often does extract insn again and again. */
2085 void
2086 extract_insn_cached (insn)
2087 rtx insn;
2089 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2090 return;
2091 extract_insn (insn);
2092 recog_data.insn = insn;
2094 /* Do cached extract_insn, constrain_operand and complain about failures.
2095 Used by insn_attrtab. */
2096 void
2097 extract_constrain_insn_cached (insn)
2098 rtx insn;
2100 extract_insn_cached (insn);
2101 if (which_alternative == -1
2102 && !constrain_operands (reload_completed))
2103 fatal_insn_not_found (insn);
2105 /* Do cached constrain_operand and complain about failures. */
2107 constrain_operands_cached (strict)
2108 int strict;
2110 if (which_alternative == -1)
2111 return constrain_operands (strict);
2112 else
2113 return 1;
2116 /* Analyze INSN and fill in recog_data. */
2118 void
2119 extract_insn (insn)
2120 rtx insn;
2122 int i;
2123 int icode;
2124 int noperands;
2125 rtx body = PATTERN (insn);
2127 recog_data.insn = NULL;
2128 recog_data.n_operands = 0;
2129 recog_data.n_alternatives = 0;
2130 recog_data.n_dups = 0;
2131 which_alternative = -1;
2133 switch (GET_CODE (body))
2135 case USE:
2136 case CLOBBER:
2137 case ASM_INPUT:
2138 case ADDR_VEC:
2139 case ADDR_DIFF_VEC:
2140 return;
2142 case SET:
2143 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2144 goto asm_insn;
2145 else
2146 goto normal_insn;
2147 case PARALLEL:
2148 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2149 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2150 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2151 goto asm_insn;
2152 else
2153 goto normal_insn;
2154 case ASM_OPERANDS:
2155 asm_insn:
2156 recog_data.n_operands = noperands = asm_noperands (body);
2157 if (noperands >= 0)
2159 /* This insn is an `asm' with operands. */
2161 /* expand_asm_operands makes sure there aren't too many operands. */
2162 if (noperands > MAX_RECOG_OPERANDS)
2163 abort ();
2165 /* Now get the operand values and constraints out of the insn. */
2166 decode_asm_operands (body, recog_data.operand,
2167 recog_data.operand_loc,
2168 recog_data.constraints,
2169 recog_data.operand_mode);
2170 if (noperands > 0)
2172 const char *p = recog_data.constraints[0];
2173 recog_data.n_alternatives = 1;
2174 while (*p)
2175 recog_data.n_alternatives += (*p++ == ',');
2177 break;
2179 fatal_insn_not_found (insn);
2181 default:
2182 normal_insn:
2183 /* Ordinary insn: recognize it, get the operands via insn_extract
2184 and get the constraints. */
2186 icode = recog_memoized (insn);
2187 if (icode < 0)
2188 fatal_insn_not_found (insn);
2190 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2191 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2192 recog_data.n_dups = insn_data[icode].n_dups;
2194 insn_extract (insn);
2196 for (i = 0; i < noperands; i++)
2198 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2199 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2200 /* VOIDmode match_operands gets mode from their real operand. */
2201 if (recog_data.operand_mode[i] == VOIDmode)
2202 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2205 for (i = 0; i < noperands; i++)
2206 recog_data.operand_type[i]
2207 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2208 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2209 : OP_IN);
2211 if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
2212 abort ();
2215 /* After calling extract_insn, you can use this function to extract some
2216 information from the constraint strings into a more usable form.
2217 The collected data is stored in recog_op_alt. */
2218 void
2219 preprocess_constraints ()
2221 int i;
2223 memset (recog_op_alt, 0, sizeof recog_op_alt);
2224 for (i = 0; i < recog_data.n_operands; i++)
2226 int j;
2227 struct operand_alternative *op_alt;
2228 const char *p = recog_data.constraints[i];
2230 op_alt = recog_op_alt[i];
2232 for (j = 0; j < recog_data.n_alternatives; j++)
2234 op_alt[j].class = NO_REGS;
2235 op_alt[j].constraint = p;
2236 op_alt[j].matches = -1;
2237 op_alt[j].matched = -1;
2239 if (*p == '\0' || *p == ',')
2241 op_alt[j].anything_ok = 1;
2242 continue;
2245 for (;;)
2247 char c = *p;
2248 if (c == '#')
2250 c = *++p;
2251 while (c != ',' && c != '\0');
2252 if (c == ',' || c == '\0')
2254 p++;
2255 break;
2258 switch (c)
2260 case '=': case '+': case '*': case '%':
2261 case 'E': case 'F': case 'G': case 'H':
2262 case 's': case 'i': case 'n':
2263 case 'I': case 'J': case 'K': case 'L':
2264 case 'M': case 'N': case 'O': case 'P':
2265 /* These don't say anything we care about. */
2266 break;
2268 case '?':
2269 op_alt[j].reject += 6;
2270 break;
2271 case '!':
2272 op_alt[j].reject += 600;
2273 break;
2274 case '&':
2275 op_alt[j].earlyclobber = 1;
2276 break;
2278 case '0': case '1': case '2': case '3': case '4':
2279 case '5': case '6': case '7': case '8': case '9':
2281 char *end;
2282 op_alt[j].matches = strtoul (p, &end, 10);
2283 recog_op_alt[op_alt[j].matches][j].matched = i;
2284 p = end;
2286 continue;
2288 case 'm':
2289 op_alt[j].memory_ok = 1;
2290 break;
2291 case '<':
2292 op_alt[j].decmem_ok = 1;
2293 break;
2294 case '>':
2295 op_alt[j].incmem_ok = 1;
2296 break;
2297 case 'V':
2298 op_alt[j].nonoffmem_ok = 1;
2299 break;
2300 case 'o':
2301 op_alt[j].offmem_ok = 1;
2302 break;
2303 case 'X':
2304 op_alt[j].anything_ok = 1;
2305 break;
2307 case 'p':
2308 op_alt[j].is_address = 1;
2309 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
2310 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2311 break;
2313 case 'g': case 'r':
2314 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
2315 break;
2317 default:
2318 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2320 op_alt[j].memory_ok = 1;
2321 break;
2323 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2325 op_alt[j].is_address = 1;
2326 op_alt[j].class
2327 = (reg_class_subunion
2328 [(int) op_alt[j].class]
2329 [(int) MODE_BASE_REG_CLASS (VOIDmode)]);
2330 break;
2333 op_alt[j].class
2334 = (reg_class_subunion
2335 [(int) op_alt[j].class]
2336 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2337 break;
2339 p += CONSTRAINT_LEN (c, p);
2345 /* Check the operands of an insn against the insn's operand constraints
2346 and return 1 if they are valid.
2347 The information about the insn's operands, constraints, operand modes
2348 etc. is obtained from the global variables set up by extract_insn.
2350 WHICH_ALTERNATIVE is set to a number which indicates which
2351 alternative of constraints was matched: 0 for the first alternative,
2352 1 for the next, etc.
2354 In addition, when two operands are required to match
2355 and it happens that the output operand is (reg) while the
2356 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2357 make the output operand look like the input.
2358 This is because the output operand is the one the template will print.
2360 This is used in final, just before printing the assembler code and by
2361 the routines that determine an insn's attribute.
2363 If STRICT is a positive nonzero value, it means that we have been
2364 called after reload has been completed. In that case, we must
2365 do all checks strictly. If it is zero, it means that we have been called
2366 before reload has completed. In that case, we first try to see if we can
2367 find an alternative that matches strictly. If not, we try again, this
2368 time assuming that reload will fix up the insn. This provides a "best
2369 guess" for the alternative and is used to compute attributes of insns prior
2370 to reload. A negative value of STRICT is used for this internal call. */
2372 struct funny_match
2374 int this, other;
2378 constrain_operands (strict)
2379 int strict;
2381 const char *constraints[MAX_RECOG_OPERANDS];
2382 int matching_operands[MAX_RECOG_OPERANDS];
2383 int earlyclobber[MAX_RECOG_OPERANDS];
2384 int c;
2386 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2387 int funny_match_index;
2389 which_alternative = 0;
2390 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2391 return 1;
2393 for (c = 0; c < recog_data.n_operands; c++)
2395 constraints[c] = recog_data.constraints[c];
2396 matching_operands[c] = -1;
2401 int opno;
2402 int lose = 0;
2403 funny_match_index = 0;
2405 for (opno = 0; opno < recog_data.n_operands; opno++)
2407 rtx op = recog_data.operand[opno];
2408 enum machine_mode mode = GET_MODE (op);
2409 const char *p = constraints[opno];
2410 int offset = 0;
2411 int win = 0;
2412 int val;
2413 int len;
2415 earlyclobber[opno] = 0;
2417 /* A unary operator may be accepted by the predicate, but it
2418 is irrelevant for matching constraints. */
2419 if (GET_RTX_CLASS (GET_CODE (op)) == '1')
2420 op = XEXP (op, 0);
2422 if (GET_CODE (op) == SUBREG)
2424 if (GET_CODE (SUBREG_REG (op)) == REG
2425 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2426 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2427 GET_MODE (SUBREG_REG (op)),
2428 SUBREG_BYTE (op),
2429 GET_MODE (op));
2430 op = SUBREG_REG (op);
2433 /* An empty constraint or empty alternative
2434 allows anything which matched the pattern. */
2435 if (*p == 0 || *p == ',')
2436 win = 1;
2439 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2441 case '\0':
2442 len = 0;
2443 break;
2444 case ',':
2445 c = '\0';
2446 break;
2448 case '?': case '!': case '*': case '%':
2449 case '=': case '+':
2450 break;
2452 case '#':
2453 /* Ignore rest of this alternative as far as
2454 constraint checking is concerned. */
2456 p++;
2457 while (*p && *p != ',');
2458 len = 0;
2459 break;
2461 case '&':
2462 earlyclobber[opno] = 1;
2463 break;
2465 case '0': case '1': case '2': case '3': case '4':
2466 case '5': case '6': case '7': case '8': case '9':
2468 /* This operand must be the same as a previous one.
2469 This kind of constraint is used for instructions such
2470 as add when they take only two operands.
2472 Note that the lower-numbered operand is passed first.
2474 If we are not testing strictly, assume that this
2475 constraint will be satisfied. */
2477 char *end;
2478 int match;
2480 match = strtoul (p, &end, 10);
2481 p = end;
2483 if (strict < 0)
2484 val = 1;
2485 else
2487 rtx op1 = recog_data.operand[match];
2488 rtx op2 = recog_data.operand[opno];
2490 /* A unary operator may be accepted by the predicate,
2491 but it is irrelevant for matching constraints. */
2492 if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
2493 op1 = XEXP (op1, 0);
2494 if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
2495 op2 = XEXP (op2, 0);
2497 val = operands_match_p (op1, op2);
2500 matching_operands[opno] = match;
2501 matching_operands[match] = opno;
2503 if (val != 0)
2504 win = 1;
2506 /* If output is *x and input is *--x, arrange later
2507 to change the output to *--x as well, since the
2508 output op is the one that will be printed. */
2509 if (val == 2 && strict > 0)
2511 funny_match[funny_match_index].this = opno;
2512 funny_match[funny_match_index++].other = match;
2515 len = 0;
2516 break;
2518 case 'p':
2519 /* p is used for address_operands. When we are called by
2520 gen_reload, no one will have checked that the address is
2521 strictly valid, i.e., that all pseudos requiring hard regs
2522 have gotten them. */
2523 if (strict <= 0
2524 || (strict_memory_address_p (recog_data.operand_mode[opno],
2525 op)))
2526 win = 1;
2527 break;
2529 /* No need to check general_operand again;
2530 it was done in insn-recog.c. */
2531 case 'g':
2532 /* Anything goes unless it is a REG and really has a hard reg
2533 but the hard reg is not in the class GENERAL_REGS. */
2534 if (strict < 0
2535 || GENERAL_REGS == ALL_REGS
2536 || GET_CODE (op) != REG
2537 || (reload_in_progress
2538 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2539 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2540 win = 1;
2541 break;
2543 case 'X':
2544 /* This is used for a MATCH_SCRATCH in the cases when
2545 we don't actually need anything. So anything goes
2546 any time. */
2547 win = 1;
2548 break;
2550 case 'm':
2551 if (GET_CODE (op) == MEM
2552 /* Before reload, accept what reload can turn into mem. */
2553 || (strict < 0 && CONSTANT_P (op))
2554 /* During reload, accept a pseudo */
2555 || (reload_in_progress && GET_CODE (op) == REG
2556 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2557 win = 1;
2558 break;
2560 case '<':
2561 if (GET_CODE (op) == MEM
2562 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2563 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2564 win = 1;
2565 break;
2567 case '>':
2568 if (GET_CODE (op) == MEM
2569 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2570 || GET_CODE (XEXP (op, 0)) == POST_INC))
2571 win = 1;
2572 break;
2574 case 'E':
2575 case 'F':
2576 if (GET_CODE (op) == CONST_DOUBLE
2577 || (GET_CODE (op) == CONST_VECTOR
2578 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2579 win = 1;
2580 break;
2582 case 'G':
2583 case 'H':
2584 if (GET_CODE (op) == CONST_DOUBLE
2585 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2586 win = 1;
2587 break;
2589 case 's':
2590 if (GET_CODE (op) == CONST_INT
2591 || (GET_CODE (op) == CONST_DOUBLE
2592 && GET_MODE (op) == VOIDmode))
2593 break;
2594 case 'i':
2595 if (CONSTANT_P (op))
2596 win = 1;
2597 break;
2599 case 'n':
2600 if (GET_CODE (op) == CONST_INT
2601 || (GET_CODE (op) == CONST_DOUBLE
2602 && GET_MODE (op) == VOIDmode))
2603 win = 1;
2604 break;
2606 case 'I':
2607 case 'J':
2608 case 'K':
2609 case 'L':
2610 case 'M':
2611 case 'N':
2612 case 'O':
2613 case 'P':
2614 if (GET_CODE (op) == CONST_INT
2615 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2616 win = 1;
2617 break;
2619 case 'V':
2620 if (GET_CODE (op) == MEM
2621 && ((strict > 0 && ! offsettable_memref_p (op))
2622 || (strict < 0
2623 && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
2624 || (reload_in_progress
2625 && !(GET_CODE (op) == REG
2626 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2627 win = 1;
2628 break;
2630 case 'o':
2631 if ((strict > 0 && offsettable_memref_p (op))
2632 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2633 /* Before reload, accept what reload can handle. */
2634 || (strict < 0
2635 && (CONSTANT_P (op) || GET_CODE (op) == MEM))
2636 /* During reload, accept a pseudo */
2637 || (reload_in_progress && GET_CODE (op) == REG
2638 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2639 win = 1;
2640 break;
2642 default:
2644 enum reg_class class;
2646 class = (c == 'r'
2647 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2648 if (class != NO_REGS)
2650 if (strict < 0
2651 || (strict == 0
2652 && GET_CODE (op) == REG
2653 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2654 || (strict == 0 && GET_CODE (op) == SCRATCH)
2655 || (GET_CODE (op) == REG
2656 && reg_fits_class_p (op, class, offset, mode)))
2657 win = 1;
2659 #ifdef EXTRA_CONSTRAINT_STR
2660 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2661 win = 1;
2663 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2665 /* Every memory operand can be reloaded to fit. */
2666 if (strict < 0 && GET_CODE (op) == MEM)
2667 win = 1;
2669 /* Before reload, accept what reload can turn into mem. */
2670 if (strict < 0 && CONSTANT_P (op))
2671 win = 1;
2673 /* During reload, accept a pseudo */
2674 if (reload_in_progress && GET_CODE (op) == REG
2675 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2676 win = 1;
2678 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2680 /* Every address operand can be reloaded to fit. */
2681 if (strict < 0)
2682 win = 1;
2684 #endif
2685 break;
2688 while (p += len, c);
2690 constraints[opno] = p;
2691 /* If this operand did not win somehow,
2692 this alternative loses. */
2693 if (! win)
2694 lose = 1;
2696 /* This alternative won; the operands are ok.
2697 Change whichever operands this alternative says to change. */
2698 if (! lose)
2700 int opno, eopno;
2702 /* See if any earlyclobber operand conflicts with some other
2703 operand. */
2705 if (strict > 0)
2706 for (eopno = 0; eopno < recog_data.n_operands; eopno++)
2707 /* Ignore earlyclobber operands now in memory,
2708 because we would often report failure when we have
2709 two memory operands, one of which was formerly a REG. */
2710 if (earlyclobber[eopno]
2711 && GET_CODE (recog_data.operand[eopno]) == REG)
2712 for (opno = 0; opno < recog_data.n_operands; opno++)
2713 if ((GET_CODE (recog_data.operand[opno]) == MEM
2714 || recog_data.operand_type[opno] != OP_OUT)
2715 && opno != eopno
2716 /* Ignore things like match_operator operands. */
2717 && *recog_data.constraints[opno] != 0
2718 && ! (matching_operands[opno] == eopno
2719 && operands_match_p (recog_data.operand[opno],
2720 recog_data.operand[eopno]))
2721 && ! safe_from_earlyclobber (recog_data.operand[opno],
2722 recog_data.operand[eopno]))
2723 lose = 1;
2725 if (! lose)
2727 while (--funny_match_index >= 0)
2729 recog_data.operand[funny_match[funny_match_index].other]
2730 = recog_data.operand[funny_match[funny_match_index].this];
2733 return 1;
2737 which_alternative++;
2739 while (which_alternative < recog_data.n_alternatives);
2741 which_alternative = -1;
2742 /* If we are about to reject this, but we are not to test strictly,
2743 try a very loose test. Only return failure if it fails also. */
2744 if (strict == 0)
2745 return constrain_operands (-1);
2746 else
2747 return 0;
2750 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2751 is a hard reg in class CLASS when its regno is offset by OFFSET
2752 and changed to mode MODE.
2753 If REG occupies multiple hard regs, all of them must be in CLASS. */
2756 reg_fits_class_p (operand, class, offset, mode)
2757 rtx operand;
2758 enum reg_class class;
2759 int offset;
2760 enum machine_mode mode;
2762 int regno = REGNO (operand);
2763 if (regno < FIRST_PSEUDO_REGISTER
2764 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2765 regno + offset))
2767 int sr;
2768 regno += offset;
2769 for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
2770 sr > 0; sr--)
2771 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2772 regno + sr))
2773 break;
2774 return sr == 0;
2777 return 0;
2780 /* Split single instruction. Helper function for split_all_insns.
2781 Return last insn in the sequence if successful, or NULL if unsuccessful. */
2782 static rtx
2783 split_insn (insn)
2784 rtx insn;
2786 rtx set;
2787 if (!INSN_P (insn))
2789 /* Don't split no-op move insns. These should silently
2790 disappear later in final. Splitting such insns would
2791 break the code that handles REG_NO_CONFLICT blocks. */
2793 else if ((set = single_set (insn)) != NULL && set_noop_p (set))
2795 /* Nops get in the way while scheduling, so delete them
2796 now if register allocation has already been done. It
2797 is too risky to try to do this before register
2798 allocation, and there are unlikely to be very many
2799 nops then anyways. */
2800 if (reload_completed)
2801 delete_insn_and_edges (insn);
2803 else
2805 /* Split insns here to get max fine-grain parallelism. */
2806 rtx first = PREV_INSN (insn);
2807 rtx last = try_split (PATTERN (insn), insn, 1);
2809 if (last != insn)
2811 /* try_split returns the NOTE that INSN became. */
2812 PUT_CODE (insn, NOTE);
2813 NOTE_SOURCE_FILE (insn) = 0;
2814 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2816 /* ??? Coddle to md files that generate subregs in post-
2817 reload splitters instead of computing the proper
2818 hard register. */
2819 if (reload_completed && first != last)
2821 first = NEXT_INSN (first);
2822 while (1)
2824 if (INSN_P (first))
2825 cleanup_subreg_operands (first);
2826 if (first == last)
2827 break;
2828 first = NEXT_INSN (first);
2831 return last;
2834 return NULL_RTX;
2836 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2838 void
2839 split_all_insns (upd_life)
2840 int upd_life;
2842 sbitmap blocks;
2843 int changed;
2844 basic_block bb;
2846 blocks = sbitmap_alloc (last_basic_block);
2847 sbitmap_zero (blocks);
2848 changed = 0;
2850 FOR_EACH_BB_REVERSE (bb)
2852 rtx insn, next;
2853 bool finish = false;
2855 for (insn = bb->head; !finish ; insn = next)
2857 rtx last;
2859 /* Can't use `next_real_insn' because that might go across
2860 CODE_LABELS and short-out basic blocks. */
2861 next = NEXT_INSN (insn);
2862 finish = (insn == bb->end);
2863 last = split_insn (insn);
2864 if (last)
2866 /* The split sequence may include barrier, but the
2867 BB boundary we are interested in will be set to previous
2868 one. */
2870 while (GET_CODE (last) == BARRIER)
2871 last = PREV_INSN (last);
2872 SET_BIT (blocks, bb->index);
2873 changed = 1;
2874 insn = last;
2879 if (changed)
2881 find_many_sub_basic_blocks (blocks);
2884 if (changed && upd_life)
2886 count_or_remove_death_notes (blocks, 1);
2887 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
2889 #ifdef ENABLE_CHECKING
2890 verify_flow_info ();
2891 #endif
2893 sbitmap_free (blocks);
2896 /* Same as split_all_insns, but do not expect CFG to be available.
2897 Used by machine dependent reorg passes. */
2899 void
2900 split_all_insns_noflow ()
2902 rtx next, insn;
2904 for (insn = get_insns (); insn; insn = next)
2906 next = NEXT_INSN (insn);
2907 split_insn (insn);
2909 return;
2912 #ifdef HAVE_peephole2
2913 struct peep2_insn_data
2915 rtx insn;
2916 regset live_before;
2919 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2920 static int peep2_current;
2922 /* A non-insn marker indicating the last insn of the block.
2923 The live_before regset for this element is correct, indicating
2924 global_live_at_end for the block. */
2925 #define PEEP2_EOB pc_rtx
2927 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2928 does not exist. Used by the recognizer to find the next insn to match
2929 in a multi-insn pattern. */
2932 peep2_next_insn (n)
2933 int n;
2935 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2936 abort ();
2938 n += peep2_current;
2939 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2940 n -= MAX_INSNS_PER_PEEP2 + 1;
2942 if (peep2_insn_data[n].insn == PEEP2_EOB)
2943 return NULL_RTX;
2944 return peep2_insn_data[n].insn;
2947 /* Return true if REGNO is dead before the Nth non-note insn
2948 after `current'. */
2951 peep2_regno_dead_p (ofs, regno)
2952 int ofs;
2953 int regno;
2955 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2956 abort ();
2958 ofs += peep2_current;
2959 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2960 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2962 if (peep2_insn_data[ofs].insn == NULL_RTX)
2963 abort ();
2965 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2968 /* Similarly for a REG. */
2971 peep2_reg_dead_p (ofs, reg)
2972 int ofs;
2973 rtx reg;
2975 int regno, n;
2977 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2978 abort ();
2980 ofs += peep2_current;
2981 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2982 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2984 if (peep2_insn_data[ofs].insn == NULL_RTX)
2985 abort ();
2987 regno = REGNO (reg);
2988 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2989 while (--n >= 0)
2990 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2991 return 0;
2992 return 1;
2995 /* Try to find a hard register of mode MODE, matching the register class in
2996 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2997 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2998 in which case the only condition is that the register must be available
2999 before CURRENT_INSN.
3000 Registers that already have bits set in REG_SET will not be considered.
3002 If an appropriate register is available, it will be returned and the
3003 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3004 returned. */
3007 peep2_find_free_register (from, to, class_str, mode, reg_set)
3008 int from, to;
3009 const char *class_str;
3010 enum machine_mode mode;
3011 HARD_REG_SET *reg_set;
3013 static int search_ofs;
3014 enum reg_class class;
3015 HARD_REG_SET live;
3016 int i;
3018 if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
3019 abort ();
3021 from += peep2_current;
3022 if (from >= MAX_INSNS_PER_PEEP2 + 1)
3023 from -= MAX_INSNS_PER_PEEP2 + 1;
3024 to += peep2_current;
3025 if (to >= MAX_INSNS_PER_PEEP2 + 1)
3026 to -= MAX_INSNS_PER_PEEP2 + 1;
3028 if (peep2_insn_data[from].insn == NULL_RTX)
3029 abort ();
3030 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3032 while (from != to)
3034 HARD_REG_SET this_live;
3036 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
3037 from = 0;
3038 if (peep2_insn_data[from].insn == NULL_RTX)
3039 abort ();
3040 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3041 IOR_HARD_REG_SET (live, this_live);
3044 class = (class_str[0] == 'r' ? GENERAL_REGS
3045 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3047 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3049 int raw_regno, regno, success, j;
3051 /* Distribute the free registers as much as possible. */
3052 raw_regno = search_ofs + i;
3053 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3054 raw_regno -= FIRST_PSEUDO_REGISTER;
3055 #ifdef REG_ALLOC_ORDER
3056 regno = reg_alloc_order[raw_regno];
3057 #else
3058 regno = raw_regno;
3059 #endif
3061 /* Don't allocate fixed registers. */
3062 if (fixed_regs[regno])
3063 continue;
3064 /* Make sure the register is of the right class. */
3065 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
3066 continue;
3067 /* And can support the mode we need. */
3068 if (! HARD_REGNO_MODE_OK (regno, mode))
3069 continue;
3070 /* And that we don't create an extra save/restore. */
3071 if (! call_used_regs[regno] && ! regs_ever_live[regno])
3072 continue;
3073 /* And we don't clobber traceback for noreturn functions. */
3074 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3075 && (! reload_completed || frame_pointer_needed))
3076 continue;
3078 success = 1;
3079 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
3081 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3082 || TEST_HARD_REG_BIT (live, regno + j))
3084 success = 0;
3085 break;
3088 if (success)
3090 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
3091 SET_HARD_REG_BIT (*reg_set, regno + j);
3093 /* Start the next search with the next register. */
3094 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3095 raw_regno = 0;
3096 search_ofs = raw_regno;
3098 return gen_rtx_REG (mode, regno);
3102 search_ofs = 0;
3103 return NULL_RTX;
3106 /* Perform the peephole2 optimization pass. */
3108 void
3109 peephole2_optimize (dump_file)
3110 FILE *dump_file ATTRIBUTE_UNUSED;
3112 regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
3113 rtx insn, prev;
3114 regset live;
3115 int i;
3116 basic_block bb;
3117 #ifdef HAVE_conditional_execution
3118 sbitmap blocks;
3119 bool changed;
3120 #endif
3121 bool do_cleanup_cfg = false;
3122 bool do_rebuild_jump_labels = false;
3124 /* Initialize the regsets we're going to use. */
3125 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3126 peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
3127 live = INITIALIZE_REG_SET (rs_heads[i]);
3129 #ifdef HAVE_conditional_execution
3130 blocks = sbitmap_alloc (last_basic_block);
3131 sbitmap_zero (blocks);
3132 changed = false;
3133 #else
3134 count_or_remove_death_notes (NULL, 1);
3135 #endif
3137 FOR_EACH_BB_REVERSE (bb)
3139 struct propagate_block_info *pbi;
3141 /* Indicate that all slots except the last holds invalid data. */
3142 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3143 peep2_insn_data[i].insn = NULL_RTX;
3145 /* Indicate that the last slot contains live_after data. */
3146 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3147 peep2_current = MAX_INSNS_PER_PEEP2;
3149 /* Start up propagation. */
3150 COPY_REG_SET (live, bb->global_live_at_end);
3151 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3153 #ifdef HAVE_conditional_execution
3154 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3155 #else
3156 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3157 #endif
3159 for (insn = bb->end; ; insn = prev)
3161 prev = PREV_INSN (insn);
3162 if (INSN_P (insn))
3164 rtx try, before_try, x;
3165 int match_len;
3166 rtx note;
3167 bool was_call = false;
3169 /* Record this insn. */
3170 if (--peep2_current < 0)
3171 peep2_current = MAX_INSNS_PER_PEEP2;
3172 peep2_insn_data[peep2_current].insn = insn;
3173 propagate_one_insn (pbi, insn);
3174 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3176 /* Match the peephole. */
3177 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3178 if (try != NULL)
3180 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3181 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3182 cfg-related call notes. */
3183 for (i = 0; i <= match_len; ++i)
3185 int j;
3186 rtx old_insn, new_insn, note;
3188 j = i + peep2_current;
3189 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3190 j -= MAX_INSNS_PER_PEEP2 + 1;
3191 old_insn = peep2_insn_data[j].insn;
3192 if (GET_CODE (old_insn) != CALL_INSN)
3193 continue;
3194 was_call = true;
3196 new_insn = try;
3197 while (new_insn != NULL_RTX)
3199 if (GET_CODE (new_insn) == CALL_INSN)
3200 break;
3201 new_insn = NEXT_INSN (new_insn);
3204 if (new_insn == NULL_RTX)
3205 abort ();
3207 CALL_INSN_FUNCTION_USAGE (new_insn)
3208 = CALL_INSN_FUNCTION_USAGE (old_insn);
3210 for (note = REG_NOTES (old_insn);
3211 note;
3212 note = XEXP (note, 1))
3213 switch (REG_NOTE_KIND (note))
3215 case REG_NORETURN:
3216 case REG_SETJMP:
3217 case REG_ALWAYS_RETURN:
3218 REG_NOTES (new_insn)
3219 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3220 XEXP (note, 0),
3221 REG_NOTES (new_insn));
3222 default:
3223 /* Discard all other reg notes. */
3224 break;
3227 /* Croak if there is another call in the sequence. */
3228 while (++i <= match_len)
3230 j = i + peep2_current;
3231 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3232 j -= MAX_INSNS_PER_PEEP2 + 1;
3233 old_insn = peep2_insn_data[j].insn;
3234 if (GET_CODE (old_insn) == CALL_INSN)
3235 abort ();
3237 break;
3240 i = match_len + peep2_current;
3241 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3242 i -= MAX_INSNS_PER_PEEP2 + 1;
3244 note = find_reg_note (peep2_insn_data[i].insn,
3245 REG_EH_REGION, NULL_RTX);
3247 /* Replace the old sequence with the new. */
3248 try = emit_insn_after_scope (try, peep2_insn_data[i].insn,
3249 INSN_SCOPE (peep2_insn_data[i].insn));
3250 before_try = PREV_INSN (insn);
3251 delete_insn_chain (insn, peep2_insn_data[i].insn);
3253 /* Re-insert the EH_REGION notes. */
3254 if (note || (was_call && nonlocal_goto_handler_labels))
3256 edge eh_edge;
3258 for (eh_edge = bb->succ; eh_edge
3259 ; eh_edge = eh_edge->succ_next)
3260 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3261 break;
3263 for (x = try ; x != before_try ; x = PREV_INSN (x))
3264 if (GET_CODE (x) == CALL_INSN
3265 || (flag_non_call_exceptions
3266 && may_trap_p (PATTERN (x))
3267 && !find_reg_note (x, REG_EH_REGION, NULL)))
3269 if (note)
3270 REG_NOTES (x)
3271 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3272 XEXP (note, 0),
3273 REG_NOTES (x));
3275 if (x != bb->end && eh_edge)
3277 edge nfte, nehe;
3278 int flags;
3280 nfte = split_block (bb, x);
3281 flags = (eh_edge->flags
3282 & (EDGE_EH | EDGE_ABNORMAL));
3283 if (GET_CODE (x) == CALL_INSN)
3284 flags |= EDGE_ABNORMAL_CALL;
3285 nehe = make_edge (nfte->src, eh_edge->dest,
3286 flags);
3288 nehe->probability = eh_edge->probability;
3289 nfte->probability
3290 = REG_BR_PROB_BASE - nehe->probability;
3292 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3293 #ifdef HAVE_conditional_execution
3294 SET_BIT (blocks, nfte->dest->index);
3295 changed = true;
3296 #endif
3297 bb = nfte->src;
3298 eh_edge = nehe;
3302 /* Converting possibly trapping insn to non-trapping is
3303 possible. Zap dummy outgoing edges. */
3304 do_cleanup_cfg |= purge_dead_edges (bb);
3307 #ifdef HAVE_conditional_execution
3308 /* With conditional execution, we cannot back up the
3309 live information so easily, since the conditional
3310 death data structures are not so self-contained.
3311 So record that we've made a modification to this
3312 block and update life information at the end. */
3313 SET_BIT (blocks, bb->index);
3314 changed = true;
3316 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3317 peep2_insn_data[i].insn = NULL_RTX;
3318 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3319 #else
3320 /* Back up lifetime information past the end of the
3321 newly created sequence. */
3322 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3323 i = 0;
3324 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3326 /* Update life information for the new sequence. */
3327 x = try;
3330 if (INSN_P (x))
3332 if (--i < 0)
3333 i = MAX_INSNS_PER_PEEP2;
3334 peep2_insn_data[i].insn = x;
3335 propagate_one_insn (pbi, x);
3336 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3338 x = PREV_INSN (x);
3340 while (x != prev);
3342 /* ??? Should verify that LIVE now matches what we
3343 had before the new sequence. */
3345 peep2_current = i;
3346 #endif
3348 /* If we generated a jump instruction, it won't have
3349 JUMP_LABEL set. Recompute after we're done. */
3350 for (x = try; x != before_try; x = PREV_INSN (x))
3351 if (GET_CODE (x) == JUMP_INSN)
3353 do_rebuild_jump_labels = true;
3354 break;
3359 if (insn == bb->head)
3360 break;
3363 free_propagate_block_info (pbi);
3366 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3367 FREE_REG_SET (peep2_insn_data[i].live_before);
3368 FREE_REG_SET (live);
3370 if (do_rebuild_jump_labels)
3371 rebuild_jump_labels (get_insns ());
3373 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3374 we've changed global life since exception handlers are no longer
3375 reachable. */
3376 if (do_cleanup_cfg)
3378 cleanup_cfg (0);
3379 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3381 #ifdef HAVE_conditional_execution
3382 else
3384 count_or_remove_death_notes (blocks, 1);
3385 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3387 sbitmap_free (blocks);
3388 #endif
3390 #endif /* HAVE_peephole2 */
3392 /* Common predicates for use with define_bypass. */
3394 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3395 data not the address operand(s) of the store. IN_INSN must be
3396 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3397 SETs inside. */
3400 store_data_bypass_p (out_insn, in_insn)
3401 rtx out_insn, in_insn;
3403 rtx out_set, in_set;
3405 in_set = single_set (in_insn);
3406 if (! in_set)
3407 abort ();
3409 if (GET_CODE (SET_DEST (in_set)) != MEM)
3410 return false;
3412 out_set = single_set (out_insn);
3413 if (out_set)
3415 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3416 return false;
3418 else
3420 rtx out_pat;
3421 int i;
3423 out_pat = PATTERN (out_insn);
3424 if (GET_CODE (out_pat) != PARALLEL)
3425 abort ();
3427 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3429 rtx exp = XVECEXP (out_pat, 0, i);
3431 if (GET_CODE (exp) == CLOBBER)
3432 continue;
3434 if (GET_CODE (exp) != SET)
3435 abort ();
3437 if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
3438 return false;
3442 return true;
3445 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3446 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3447 or multiple set; IN_INSN should be single_set for truth, but for convenience
3448 of insn categorization may be any JUMP or CALL insn. */
3451 if_test_bypass_p (out_insn, in_insn)
3452 rtx out_insn, in_insn;
3454 rtx out_set, in_set;
3456 in_set = single_set (in_insn);
3457 if (! in_set)
3459 if (GET_CODE (in_insn) == JUMP_INSN || GET_CODE (in_insn) == CALL_INSN)
3460 return false;
3461 abort ();
3464 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3465 return false;
3466 in_set = SET_SRC (in_set);
3468 out_set = single_set (out_insn);
3469 if (out_set)
3471 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3472 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3473 return false;
3475 else
3477 rtx out_pat;
3478 int i;
3480 out_pat = PATTERN (out_insn);
3481 if (GET_CODE (out_pat) != PARALLEL)
3482 abort ();
3484 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3486 rtx exp = XVECEXP (out_pat, 0, i);
3488 if (GET_CODE (exp) == CLOBBER)
3489 continue;
3491 if (GET_CODE (exp) != SET)
3492 abort ();
3494 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3495 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3496 return false;
3500 return true;