2018-05-07 Edward Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / tree-cfg.c
blob2ada965edd61689af35896ccc7c1536d98a6dc62
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (location_t locus)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.locus = locus;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (
1179 &item, LOCATION_LINE (locus), INSERT);
1180 gcc_assert (slot);
1181 if (*slot == HTAB_EMPTY_ENTRY)
1183 *slot = XNEW (struct locus_discrim_map);
1184 gcc_assert (*slot);
1185 (*slot)->locus = locus;
1186 (*slot)->discriminator = 0;
1188 (*slot)->discriminator++;
1189 return (*slot)->discriminator;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 static bool
1195 same_line_p (location_t locus1, location_t locus2)
1197 expanded_location from, to;
1199 if (locus1 == locus2)
1200 return true;
1202 from = expand_location (locus1);
1203 to = expand_location (locus2);
1205 if (from.line != to.line)
1206 return false;
1207 if (from.file == to.file)
1208 return true;
1209 return (from.file != NULL
1210 && to.file != NULL
1211 && filename_cmp (from.file, to.file) == 0);
1214 /* Assign discriminators to each basic block. */
1216 static void
1217 assign_discriminators (void)
1219 basic_block bb;
1221 FOR_EACH_BB_FN (bb, cfun)
1223 edge e;
1224 edge_iterator ei;
1225 gimple *last = last_stmt (bb);
1226 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1228 if (locus == UNKNOWN_LOCATION)
1229 continue;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, gimple_location (first)))
1236 || (last && same_line_p (locus, gimple_location (last))))
1238 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 bb->discriminator = next_discriminator_for_locus (locus);
1240 else
1241 e->dest->discriminator = next_discriminator_for_locus (locus);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1249 static void
1250 make_cond_expr_edges (basic_block bb)
1252 gcond *entry = as_a <gcond *> (last_stmt (bb));
1253 gimple *then_stmt, *else_stmt;
1254 basic_block then_bb, else_bb;
1255 tree then_label, else_label;
1256 edge e;
1258 gcc_assert (entry);
1259 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1261 /* Entry basic blocks for each component. */
1262 then_label = gimple_cond_true_label (entry);
1263 else_label = gimple_cond_false_label (entry);
1264 then_bb = label_to_block (then_label);
1265 else_bb = label_to_block (else_label);
1266 then_stmt = first_stmt (then_bb);
1267 else_stmt = first_stmt (else_bb);
1269 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1270 e->goto_locus = gimple_location (then_stmt);
1271 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1272 if (e)
1273 e->goto_locus = gimple_location (else_stmt);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry, NULL_TREE);
1277 gimple_cond_set_false_label (entry, NULL_TREE);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1286 element. */
1288 bool
1289 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1291 tree t, next;
1293 for (t = value; t; t = next)
1295 next = CASE_CHAIN (t);
1296 CASE_CHAIN (t) = NULL;
1299 return true;
1302 /* Start recording information mapping edges to case labels. */
1304 void
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases == NULL);
1308 edge_to_cases = new hash_map<edge, tree>;
1309 touched_switch_bbs = BITMAP_ALLOC (NULL);
1312 /* Return nonzero if we are recording information for case labels. */
1314 static bool
1315 recording_case_labels_p (void)
1317 return (edge_to_cases != NULL);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1322 void
1323 end_recording_case_labels (void)
1325 bitmap_iterator bi;
1326 unsigned i;
1327 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1328 delete edge_to_cases;
1329 edge_to_cases = NULL;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1332 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1333 if (bb)
1335 gimple *stmt = last_stmt (bb);
1336 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1337 group_case_labels_stmt (as_a <gswitch *> (stmt));
1340 BITMAP_FREE (touched_switch_bbs);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1348 static tree
1349 get_cases_for_edge (edge e, gswitch *t)
1351 tree *slot;
1352 size_t i, n;
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1357 return NULL;
1359 slot = edge_to_cases->get (e);
1360 if (slot)
1361 return *slot;
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n = gimple_switch_num_labels (t);
1368 for (i = 0; i < n; i++)
1370 tree elt = gimple_switch_label (t, i);
1371 tree lab = CASE_LABEL (elt);
1372 basic_block label_bb = label_to_block (lab);
1373 edge this_edge = find_edge (e->src, label_bb);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 a new chain. */
1377 tree &s = edge_to_cases->get_or_insert (this_edge);
1378 CASE_CHAIN (elt) = s;
1379 s = elt;
1382 return *edge_to_cases->get (e);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1387 static void
1388 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1390 size_t i, n;
1392 n = gimple_switch_num_labels (entry);
1394 for (i = 0; i < n; ++i)
1396 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1397 basic_block label_bb = label_to_block (lab);
1398 make_edge (bb, label_bb, 0);
1403 /* Return the basic block holding label DEST. */
1405 basic_block
1406 label_to_block_fn (struct function *ifun, tree dest)
1408 int uid = LABEL_DECL_UID (dest);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid < 0)
1415 gimple_stmt_iterator gsi =
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1417 gimple *stmt;
1419 stmt = gimple_build_label (dest);
1420 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1421 uid = LABEL_DECL_UID (dest);
1423 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1424 return NULL;
1425 return (*ifun->cfg->x_label_to_block_map)[uid];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1431 static bool
1432 make_goto_expr_edges (basic_block bb)
1434 gimple_stmt_iterator last = gsi_last_bb (bb);
1435 gimple *goto_t = gsi_stmt (last);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t))
1440 tree dest = gimple_goto_dest (goto_t);
1441 basic_block label_bb = label_to_block (dest);
1442 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1443 e->goto_locus = gimple_location (goto_t);
1444 gsi_remove (&last, true);
1445 return false;
1448 /* A computed GOTO creates abnormal edges. */
1449 return true;
1452 /* Create edges for an asm statement with labels at block BB. */
1454 static void
1455 make_gimple_asm_edges (basic_block bb)
1457 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1458 int i, n = gimple_asm_nlabels (stmt);
1460 for (i = 0; i < n; ++i)
1462 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1463 basic_block label_bb = label_to_block (label);
1464 make_edge (bb, label_bb, 0);
1468 /*---------------------------------------------------------------------------
1469 Flowgraph analysis
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1483 /* The label. */
1484 tree label;
1486 /* True if the label is referenced from somewhere. */
1487 bool used;
1488 } *label_for_bb;
1490 /* Given LABEL return the first label in the same basic block. */
1492 static tree
1493 main_block_label (tree label)
1495 basic_block bb = label_to_block (label);
1496 tree main_label = label_for_bb[bb->index].label;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1499 if (!main_label)
1501 label_for_bb[bb->index].label = label;
1502 main_label = label;
1505 label_for_bb[bb->index].used = true;
1506 return main_label;
1509 /* Clean up redundant labels within the exception tree. */
1511 static void
1512 cleanup_dead_labels_eh (void)
1514 eh_landing_pad lp;
1515 eh_region r;
1516 tree lab;
1517 int i;
1519 if (cfun->eh == NULL)
1520 return;
1522 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1523 if (lp && lp->post_landing_pad)
1525 lab = main_block_label (lp->post_landing_pad);
1526 if (lab != lp->post_landing_pad)
1528 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1529 EH_LANDING_PAD_NR (lab) = lp->index;
1533 FOR_ALL_EH_REGION (r)
1534 switch (r->type)
1536 case ERT_CLEANUP:
1537 case ERT_MUST_NOT_THROW:
1538 break;
1540 case ERT_TRY:
1542 eh_catch c;
1543 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1545 lab = c->label;
1546 if (lab)
1547 c->label = main_block_label (lab);
1550 break;
1552 case ERT_ALLOWED_EXCEPTIONS:
1553 lab = r->u.allowed.label;
1554 if (lab)
1555 r->u.allowed.label = main_block_label (lab);
1556 break;
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1566 void
1567 cleanup_dead_labels (void)
1569 basic_block bb;
1570 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb, cfun)
1576 gimple_stmt_iterator i;
1578 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1580 tree label;
1581 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1583 if (!label_stmt)
1584 break;
1586 label = gimple_label_label (label_stmt);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb[bb->index].label)
1592 label_for_bb[bb->index].label = label;
1593 continue;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label)
1600 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1602 label_for_bb[bb->index].label = label;
1603 break;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb, cfun)
1612 gimple *stmt = last_stmt (bb);
1613 tree label, new_label;
1615 if (!stmt)
1616 continue;
1618 switch (gimple_code (stmt))
1620 case GIMPLE_COND:
1622 gcond *cond_stmt = as_a <gcond *> (stmt);
1623 label = gimple_cond_true_label (cond_stmt);
1624 if (label)
1626 new_label = main_block_label (label);
1627 if (new_label != label)
1628 gimple_cond_set_true_label (cond_stmt, new_label);
1631 label = gimple_cond_false_label (cond_stmt);
1632 if (label)
1634 new_label = main_block_label (label);
1635 if (new_label != label)
1636 gimple_cond_set_false_label (cond_stmt, new_label);
1639 break;
1641 case GIMPLE_SWITCH:
1643 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1644 size_t i, n = gimple_switch_num_labels (switch_stmt);
1646 /* Replace all destination labels. */
1647 for (i = 0; i < n; ++i)
1649 tree case_label = gimple_switch_label (switch_stmt, i);
1650 label = CASE_LABEL (case_label);
1651 new_label = main_block_label (label);
1652 if (new_label != label)
1653 CASE_LABEL (case_label) = new_label;
1655 break;
1658 case GIMPLE_ASM:
1660 gasm *asm_stmt = as_a <gasm *> (stmt);
1661 int i, n = gimple_asm_nlabels (asm_stmt);
1663 for (i = 0; i < n; ++i)
1665 tree cons = gimple_asm_label_op (asm_stmt, i);
1666 tree label = main_block_label (TREE_VALUE (cons));
1667 TREE_VALUE (cons) = label;
1669 break;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1674 case GIMPLE_GOTO:
1675 if (!computed_goto_p (stmt))
1677 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1678 label = gimple_goto_dest (goto_stmt);
1679 new_label = main_block_label (label);
1680 if (new_label != label)
1681 gimple_goto_set_dest (goto_stmt, new_label);
1683 break;
1685 case GIMPLE_TRANSACTION:
1687 gtransaction *txn = as_a <gtransaction *> (stmt);
1689 label = gimple_transaction_label_norm (txn);
1690 if (label)
1692 new_label = main_block_label (label);
1693 if (new_label != label)
1694 gimple_transaction_set_label_norm (txn, new_label);
1697 label = gimple_transaction_label_uninst (txn);
1698 if (label)
1700 new_label = main_block_label (label);
1701 if (new_label != label)
1702 gimple_transaction_set_label_uninst (txn, new_label);
1705 label = gimple_transaction_label_over (txn);
1706 if (label)
1708 new_label = main_block_label (label);
1709 if (new_label != label)
1710 gimple_transaction_set_label_over (txn, new_label);
1713 break;
1715 default:
1716 break;
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb, cfun)
1728 gimple_stmt_iterator i;
1729 tree label_for_this_bb = label_for_bb[bb->index].label;
1731 if (!label_for_this_bb)
1732 continue;
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb[bb->index].used)
1736 label_for_this_bb = NULL;
1738 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1740 tree label;
1741 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1743 if (!label_stmt)
1744 break;
1746 label = gimple_label_label (label_stmt);
1748 if (label == label_for_this_bb
1749 || !DECL_ARTIFICIAL (label)
1750 || DECL_NONLOCAL (label)
1751 || FORCED_LABEL (label))
1752 gsi_next (&i);
1753 else
1754 gsi_remove (&i, true);
1758 free (label_for_bb);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1765 bool
1766 group_case_labels_stmt (gswitch *stmt)
1768 int old_size = gimple_switch_num_labels (stmt);
1769 int i, next_index, new_size;
1770 basic_block default_bb = NULL;
1772 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1774 /* Look for possible opportunities to merge cases. */
1775 new_size = i = 1;
1776 while (i < old_size)
1778 tree base_case, base_high;
1779 basic_block base_bb;
1781 base_case = gimple_switch_label (stmt, i);
1783 gcc_assert (base_case);
1784 base_bb = label_to_block (CASE_LABEL (base_case));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb == NULL || base_bb == default_bb)
1790 i++;
1791 continue;
1794 base_high = CASE_HIGH (base_case)
1795 ? CASE_HIGH (base_case)
1796 : CASE_LOW (base_case);
1797 next_index = i + 1;
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index < old_size)
1804 tree merge_case = gimple_switch_label (stmt, next_index);
1805 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1806 wide_int bhp1 = wi::to_wide (base_high) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb == base_bb
1811 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1813 base_high = CASE_HIGH (merge_case) ?
1814 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1815 CASE_HIGH (base_case) = base_high;
1816 next_index++;
1818 else
1819 break;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb->succs) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1831 != BUILTINS_LOCATION)))
1833 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1834 if (base_edge != NULL)
1835 remove_edge_and_dominated_blocks (base_edge);
1836 i = next_index;
1837 continue;
1840 if (new_size < i)
1841 gimple_switch_set_label (stmt, new_size,
1842 gimple_switch_label (stmt, i));
1843 i = next_index;
1844 new_size++;
1847 gcc_assert (new_size <= old_size);
1849 if (new_size < old_size)
1850 gimple_switch_set_num_labels (stmt, new_size);
1852 return new_size < old_size;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1857 same label. */
1859 bool
1860 group_case_labels (void)
1862 basic_block bb;
1863 bool changed = false;
1865 FOR_EACH_BB_FN (bb, cfun)
1867 gimple *stmt = last_stmt (bb);
1868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1869 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1872 return changed;
1875 /* Checks whether we can merge block B into block A. */
1877 static bool
1878 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1880 gimple *stmt;
1882 if (!single_succ_p (a))
1883 return false;
1885 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1886 return false;
1888 if (single_succ (a) != b)
1889 return false;
1891 if (!single_pred_p (b))
1892 return false;
1894 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1895 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1896 return false;
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt = last_stmt (a);
1901 if (stmt && stmt_ends_bb_p (stmt))
1902 return false;
1904 /* Do not allow a block with only a non-local label to be merged. */
1905 if (stmt)
1906 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1908 return false;
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1912 gsi_next (&gsi))
1914 tree lab;
1915 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1916 if (!label_stmt)
1917 break;
1918 lab = gimple_label_label (label_stmt);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1922 return false;
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1928 if (current_loops
1929 && b->loop_father->latch == b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1931 && (b->loop_father->header == a
1932 || b->loop_father != a->loop_father))
1933 return false;
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1941 gphi *phi = gsi.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi)))
1944 return false;
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1948 if (!optimize
1949 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1951 location_t goto_locus = single_succ_edge (a)->goto_locus;
1952 gimple_stmt_iterator prev, next;
1953 prev = gsi_last_nondebug_bb (a);
1954 next = gsi_after_labels (b);
1955 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1956 gsi_next_nondebug (&next);
1957 if ((gsi_end_p (prev)
1958 || gimple_location (gsi_stmt (prev)) != goto_locus)
1959 && (gsi_end_p (next)
1960 || gimple_location (gsi_stmt (next)) != goto_locus))
1961 return false;
1964 return true;
1967 /* Replaces all uses of NAME by VAL. */
1969 void
1970 replace_uses_by (tree name, tree val)
1972 imm_use_iterator imm_iter;
1973 use_operand_p use;
1974 gimple *stmt;
1975 edge e;
1977 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt))
1982 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1984 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1986 replace_exp (use, val);
1988 if (gimple_code (stmt) == GIMPLE_PHI)
1990 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1991 PHI_ARG_INDEX_FROM_USE (use));
1992 if (e->flags & EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2004 if (gimple_code (stmt) != GIMPLE_PHI)
2006 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2007 gimple *orig_stmt = stmt;
2008 size_t i;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val))
2015 for (i = 0; i < gimple_num_ops (stmt); i++)
2017 tree op = gimple_op (stmt, i);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op && TREE_CODE (op) == ADDR_EXPR)
2022 recompute_tree_invariant_for_addr_expr (op);
2025 if (fold_stmt (&gsi))
2026 stmt = gsi_stmt (gsi);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2031 update_stmt (stmt);
2035 gcc_checking_assert (has_zero_uses (name));
2037 /* Also update the trees stored in loop structures. */
2038 if (current_loops)
2040 struct loop *loop;
2042 FOR_EACH_LOOP (loop, 0)
2044 substitute_in_loop_info (loop, name, val);
2049 /* Merge block B into block A. */
2051 static void
2052 gimple_merge_blocks (basic_block a, basic_block b)
2054 gimple_stmt_iterator last, gsi;
2055 gphi_iterator psi;
2057 if (dump_file)
2058 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi = gsi_last_bb (a);
2063 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2065 gimple *phi = gsi_stmt (psi);
2066 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2067 gimple *copy;
2068 bool may_replace_uses = (virtual_operand_p (def)
2069 || may_propagate_copy (def, use));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2073 if (current_loops
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2075 && !virtual_operand_p (def)
2076 && TREE_CODE (use) == SSA_NAME
2077 && a->loop_father != b->loop_father)
2078 may_replace_uses = false;
2080 if (!may_replace_uses)
2082 gcc_assert (!virtual_operand_p (def));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy = gimple_build_assign (def, use);
2089 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2090 remove_phi_node (&psi, false);
2092 else
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2096 the stmt. */
2097 if (virtual_operand_p (def))
2099 imm_use_iterator iter;
2100 use_operand_p use_p;
2101 gimple *stmt;
2103 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2105 SET_USE (use_p, use);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2110 else
2111 replace_uses_by (def, use);
2113 remove_phi_node (&psi, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b, a);
2120 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2121 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2126 gimple *stmt = gsi_stmt (gsi);
2127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2129 tree label = gimple_label_label (label_stmt);
2130 int lp_nr;
2132 gsi_remove (&gsi, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label))
2142 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2143 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2148 gimple *dbg = gimple_build_debug_bind (label,
2149 integer_zero_node,
2150 stmt);
2151 gimple_debug_bind_reset_value (dbg);
2152 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2155 lp_nr = EH_LANDING_PAD_NR (label);
2156 if (lp_nr)
2158 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2159 lp->post_landing_pad = NULL;
2162 else
2164 gimple_set_bb (stmt, a);
2165 gsi_next (&gsi);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2171 profiles. */
2172 if (a->loop_father == b->loop_father)
2174 a->count = a->count.merge (b->count);
2177 /* Merge the sequences. */
2178 last = gsi_last_bb (a);
2179 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2180 set_bb_seq (b, NULL);
2182 if (cfgcleanup_altered_bbs)
2183 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2192 basic_block
2193 single_noncomplex_succ (basic_block bb)
2195 edge e0, e1;
2196 if (EDGE_COUNT (bb->succs) != 2)
2197 return bb;
2199 e0 = EDGE_SUCC (bb, 0);
2200 e1 = EDGE_SUCC (bb, 1);
2201 if (e0->flags & EDGE_COMPLEX)
2202 return e1->dest;
2203 if (e1->flags & EDGE_COMPLEX)
2204 return e0->dest;
2206 return bb;
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2211 void
2212 notice_special_calls (gcall *call)
2214 int flags = gimple_call_flags (call);
2216 if (flags & ECF_MAY_BE_ALLOCA)
2217 cfun->calls_alloca = true;
2218 if (flags & ECF_RETURNS_TWICE)
2219 cfun->calls_setjmp = true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2226 void
2227 clear_special_calls (void)
2229 cfun->calls_alloca = false;
2230 cfun->calls_setjmp = false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2235 static void
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb->succs) > 0)
2244 remove_edge (EDGE_SUCC (bb, 0));
2248 /* Remove statements of basic block BB. */
2250 static void
2251 remove_bb (basic_block bb)
2253 gimple_stmt_iterator i;
2255 if (dump_file)
2257 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2258 if (dump_flags & TDF_DETAILS)
2260 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2261 fprintf (dump_file, "\n");
2265 if (current_loops)
2267 struct loop *loop = bb->loop_father;
2269 /* If a loop gets removed, clean up the information associated
2270 with it. */
2271 if (loop->latch == bb
2272 || loop->header == bb)
2273 free_numbers_of_iterations_estimates (loop);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb) != NULL)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 details. */
2283 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2285 gimple *stmt = gsi_stmt (i);
2286 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2287 if (label_stmt
2288 && (FORCED_LABEL (gimple_label_label (label_stmt))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2291 basic_block new_bb;
2292 gimple_stmt_iterator new_gsi;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2296 non-locality. */
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2303 new_bb = bb->prev_bb;
2304 /* Don't move any labels into ENTRY block. */
2305 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2307 new_bb = single_succ (new_bb);
2308 gcc_assert (new_bb != bb);
2310 new_gsi = gsi_start_bb (new_bb);
2311 gsi_remove (&i, false);
2312 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2314 else
2316 /* Release SSA definitions. */
2317 release_defs (stmt);
2318 gsi_remove (&i, true);
2321 if (gsi_end_p (i))
2322 i = gsi_last_bb (bb);
2323 else
2324 gsi_prev (&i);
2328 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2329 bb->il.gimple.seq = NULL;
2330 bb->il.gimple.phi_nodes = NULL;
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336 the edge that will be taken out of the block.
2337 If VAL is NULL_TREE, then the current value of the final statement's
2338 predicate or index is used.
2339 If the value does not match a unique edge, NULL is returned. */
2341 edge
2342 find_taken_edge (basic_block bb, tree val)
2344 gimple *stmt;
2346 stmt = last_stmt (bb);
2348 /* Handle ENTRY and EXIT. */
2349 if (!stmt)
2350 return NULL;
2352 if (gimple_code (stmt) == GIMPLE_COND)
2353 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2355 if (gimple_code (stmt) == GIMPLE_SWITCH)
2356 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2358 if (computed_goto_p (stmt))
2360 /* Only optimize if the argument is a label, if the argument is
2361 not a label then we can not construct a proper CFG.
2363 It may be the case that we only need to allow the LABEL_REF to
2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365 appear inside a LABEL_EXPR just to be safe. */
2366 if (val
2367 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2368 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2369 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2372 /* Otherwise we only know the taken successor edge if it's unique. */
2373 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377 statement, determine which of the outgoing edges will be taken out of the
2378 block. Return NULL if either edge may be taken. */
2380 static edge
2381 find_taken_edge_computed_goto (basic_block bb, tree val)
2383 basic_block dest;
2384 edge e = NULL;
2386 dest = label_to_block (val);
2387 if (dest)
2388 e = find_edge (bb, dest);
2390 /* It's possible for find_edge to return NULL here on invalid code
2391 that abuses the labels-as-values extension (e.g. code that attempts to
2392 jump *between* functions via stored labels-as-values; PR 84136).
2393 If so, then we simply return that NULL for the edge.
2394 We don't currently have a way of detecting such invalid code, so we
2395 can't assert that it was the case when a NULL edge occurs here. */
2397 return e;
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401 determine which of the two edges will be taken out of
2402 the statement's block. Return NULL if either edge may be taken.
2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2404 is used. */
2406 static edge
2407 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2409 edge true_edge, false_edge;
2411 if (val == NULL_TREE)
2413 /* Use the current value of the predicate. */
2414 if (gimple_cond_true_p (cond_stmt))
2415 val = integer_one_node;
2416 else if (gimple_cond_false_p (cond_stmt))
2417 val = integer_zero_node;
2418 else
2419 return NULL;
2421 else if (TREE_CODE (val) != INTEGER_CST)
2422 return NULL;
2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2425 &true_edge, &false_edge);
2427 return (integer_zerop (val) ? false_edge : true_edge);
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431 which edge will be taken out of the statement's block. Return NULL if any
2432 edge may be taken.
2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2434 is used. */
2436 static edge
2437 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2439 basic_block dest_bb;
2440 edge e;
2441 tree taken_case;
2443 if (gimple_switch_num_labels (switch_stmt) == 1)
2444 taken_case = gimple_switch_default_label (switch_stmt);
2445 else
2447 if (val == NULL_TREE)
2448 val = gimple_switch_index (switch_stmt);
2449 if (TREE_CODE (val) != INTEGER_CST)
2450 return NULL;
2451 else
2452 taken_case = find_case_label_for_value (switch_stmt, val);
2454 dest_bb = label_to_block (CASE_LABEL (taken_case));
2456 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2457 gcc_assert (e);
2458 return e;
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463 We can make optimal use here of the fact that the case labels are
2464 sorted: We can do a binary search for a case matching VAL. */
2466 static tree
2467 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2469 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2470 tree default_case = gimple_switch_default_label (switch_stmt);
2472 for (low = 0, high = n; high - low > 1; )
2474 size_t i = (high + low) / 2;
2475 tree t = gimple_switch_label (switch_stmt, i);
2476 int cmp;
2478 /* Cache the result of comparing CASE_LOW and val. */
2479 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2481 if (cmp > 0)
2482 high = i;
2483 else
2484 low = i;
2486 if (CASE_HIGH (t) == NULL)
2488 /* A singe-valued case label. */
2489 if (cmp == 0)
2490 return t;
2492 else
2494 /* A case range. We can only handle integer ranges. */
2495 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2496 return t;
2500 return default_case;
2504 /* Dump a basic block on stderr. */
2506 void
2507 gimple_debug_bb (basic_block bb)
2509 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2513 /* Dump basic block with index N on stderr. */
2515 basic_block
2516 gimple_debug_bb_n (int n)
2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2519 return BASIC_BLOCK_FOR_FN (cfun, n);
2523 /* Dump the CFG on stderr.
2525 FLAGS are the same used by the tree dumping functions
2526 (see TDF_* in dumpfile.h). */
2528 void
2529 gimple_debug_cfg (dump_flags_t flags)
2531 gimple_dump_cfg (stderr, flags);
2535 /* Dump the program showing basic block boundaries on the given FILE.
2537 FLAGS are the same used by the tree dumping functions (see TDF_* in
2538 tree.h). */
2540 void
2541 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2543 if (flags & TDF_DETAILS)
2545 dump_function_header (file, current_function_decl, flags);
2546 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2548 last_basic_block_for_fn (cfun));
2550 brief_dump_cfg (file, flags);
2551 fprintf (file, "\n");
2554 if (flags & TDF_STATS)
2555 dump_cfg_stats (file);
2557 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2561 /* Dump CFG statistics on FILE. */
2563 void
2564 dump_cfg_stats (FILE *file)
2566 static long max_num_merged_labels = 0;
2567 unsigned long size, total = 0;
2568 long num_edges;
2569 basic_block bb;
2570 const char * const fmt_str = "%-30s%-13s%12s\n";
2571 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2572 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2573 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2574 const char *funcname = current_function_name ();
2576 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2578 fprintf (file, "---------------------------------------------------------\n");
2579 fprintf (file, fmt_str, "", " Number of ", "Memory");
2580 fprintf (file, fmt_str, "", " instances ", "used ");
2581 fprintf (file, "---------------------------------------------------------\n");
2583 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2584 total += size;
2585 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2586 SCALE (size), LABEL (size));
2588 num_edges = 0;
2589 FOR_EACH_BB_FN (bb, cfun)
2590 num_edges += EDGE_COUNT (bb->succs);
2591 size = num_edges * sizeof (struct edge_def);
2592 total += size;
2593 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2595 fprintf (file, "---------------------------------------------------------\n");
2596 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2597 LABEL (total));
2598 fprintf (file, "---------------------------------------------------------\n");
2599 fprintf (file, "\n");
2601 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2602 max_num_merged_labels = cfg_stats.num_merged_labels;
2604 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 cfg_stats.num_merged_labels, max_num_merged_labels);
2607 fprintf (file, "\n");
2611 /* Dump CFG statistics on stderr. Keep extern so that it's always
2612 linked in the final executable. */
2614 DEBUG_FUNCTION void
2615 debug_cfg_stats (void)
2617 dump_cfg_stats (stderr);
2620 /*---------------------------------------------------------------------------
2621 Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625 flow. Transfers of control flow associated with EH are excluded. */
2627 static bool
2628 call_can_make_abnormal_goto (gimple *t)
2630 /* If the function has no non-local labels, then a call cannot make an
2631 abnormal transfer of control. */
2632 if (!cfun->has_nonlocal_label
2633 && !cfun->calls_setjmp)
2634 return false;
2636 /* Likewise if the call has no side effects. */
2637 if (!gimple_has_side_effects (t))
2638 return false;
2640 /* Likewise if the called function is leaf. */
2641 if (gimple_call_flags (t) & ECF_LEAF)
2642 return false;
2644 return true;
2648 /* Return true if T can make an abnormal transfer of control flow.
2649 Transfers of control flow associated with EH are excluded. */
2651 bool
2652 stmt_can_make_abnormal_goto (gimple *t)
2654 if (computed_goto_p (t))
2655 return true;
2656 if (is_gimple_call (t))
2657 return call_can_make_abnormal_goto (t);
2658 return false;
2662 /* Return true if T represents a stmt that always transfers control. */
2664 bool
2665 is_ctrl_stmt (gimple *t)
2667 switch (gimple_code (t))
2669 case GIMPLE_COND:
2670 case GIMPLE_SWITCH:
2671 case GIMPLE_GOTO:
2672 case GIMPLE_RETURN:
2673 case GIMPLE_RESX:
2674 return true;
2675 default:
2676 return false;
2681 /* Return true if T is a statement that may alter the flow of control
2682 (e.g., a call to a non-returning function). */
2684 bool
2685 is_ctrl_altering_stmt (gimple *t)
2687 gcc_assert (t);
2689 switch (gimple_code (t))
2691 case GIMPLE_CALL:
2692 /* Per stmt call flag indicates whether the call could alter
2693 controlflow. */
2694 if (gimple_call_ctrl_altering_p (t))
2695 return true;
2696 break;
2698 case GIMPLE_EH_DISPATCH:
2699 /* EH_DISPATCH branches to the individual catch handlers at
2700 this level of a try or allowed-exceptions region. It can
2701 fallthru to the next statement as well. */
2702 return true;
2704 case GIMPLE_ASM:
2705 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2706 return true;
2707 break;
2709 CASE_GIMPLE_OMP:
2710 /* OpenMP directives alter control flow. */
2711 return true;
2713 case GIMPLE_TRANSACTION:
2714 /* A transaction start alters control flow. */
2715 return true;
2717 default:
2718 break;
2721 /* If a statement can throw, it alters control flow. */
2722 return stmt_can_throw_internal (t);
2726 /* Return true if T is a simple local goto. */
2728 bool
2729 simple_goto_p (gimple *t)
2731 return (gimple_code (t) == GIMPLE_GOTO
2732 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2736 /* Return true if STMT should start a new basic block. PREV_STMT is
2737 the statement preceding STMT. It is used when STMT is a label or a
2738 case label. Labels should only start a new basic block if their
2739 previous statement wasn't a label. Otherwise, sequence of labels
2740 would generate unnecessary basic blocks that only contain a single
2741 label. */
2743 static inline bool
2744 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2746 if (stmt == NULL)
2747 return false;
2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750 any nondebug stmts in the block. We don't want to start another
2751 block in this case: the debug stmt will already have started the
2752 one STMT would start if we weren't outputting debug stmts. */
2753 if (prev_stmt && is_gimple_debug (prev_stmt))
2754 return false;
2756 /* Labels start a new basic block only if the preceding statement
2757 wasn't a label of the same type. This prevents the creation of
2758 consecutive blocks that have nothing but a single label. */
2759 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2761 /* Nonlocal and computed GOTO targets always start a new block. */
2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2763 || FORCED_LABEL (gimple_label_label (label_stmt)))
2764 return true;
2766 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2768 if (DECL_NONLOCAL (gimple_label_label (
2769 as_a <glabel *> (prev_stmt))))
2770 return true;
2772 cfg_stats.num_merged_labels++;
2773 return false;
2775 else
2776 return true;
2778 else if (gimple_code (stmt) == GIMPLE_CALL)
2780 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2781 /* setjmp acts similar to a nonlocal GOTO target and thus should
2782 start a new block. */
2783 return true;
2784 if (gimple_call_internal_p (stmt, IFN_PHI)
2785 && prev_stmt
2786 && gimple_code (prev_stmt) != GIMPLE_LABEL
2787 && (gimple_code (prev_stmt) != GIMPLE_CALL
2788 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2789 /* PHI nodes start a new block unless preceeded by a label
2790 or another PHI. */
2791 return true;
2794 return false;
2798 /* Return true if T should end a basic block. */
2800 bool
2801 stmt_ends_bb_p (gimple *t)
2803 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2806 /* Remove block annotations and other data structures. */
2808 void
2809 delete_tree_cfg_annotations (struct function *fn)
2811 vec_free (label_to_block_map_for_fn (fn));
2814 /* Return the virtual phi in BB. */
2816 gphi *
2817 get_virtual_phi (basic_block bb)
2819 for (gphi_iterator gsi = gsi_start_phis (bb);
2820 !gsi_end_p (gsi);
2821 gsi_next (&gsi))
2823 gphi *phi = gsi.phi ();
2825 if (virtual_operand_p (PHI_RESULT (phi)))
2826 return phi;
2829 return NULL;
2832 /* Return the first statement in basic block BB. */
2834 gimple *
2835 first_stmt (basic_block bb)
2837 gimple_stmt_iterator i = gsi_start_bb (bb);
2838 gimple *stmt = NULL;
2840 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2842 gsi_next (&i);
2843 stmt = NULL;
2845 return stmt;
2848 /* Return the first non-label statement in basic block BB. */
2850 static gimple *
2851 first_non_label_stmt (basic_block bb)
2853 gimple_stmt_iterator i = gsi_start_bb (bb);
2854 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2855 gsi_next (&i);
2856 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2859 /* Return the last statement in basic block BB. */
2861 gimple *
2862 last_stmt (basic_block bb)
2864 gimple_stmt_iterator i = gsi_last_bb (bb);
2865 gimple *stmt = NULL;
2867 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2869 gsi_prev (&i);
2870 stmt = NULL;
2872 return stmt;
2875 /* Return the last statement of an otherwise empty block. Return NULL
2876 if the block is totally empty, or if it contains more than one
2877 statement. */
2879 gimple *
2880 last_and_only_stmt (basic_block bb)
2882 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2883 gimple *last, *prev;
2885 if (gsi_end_p (i))
2886 return NULL;
2888 last = gsi_stmt (i);
2889 gsi_prev_nondebug (&i);
2890 if (gsi_end_p (i))
2891 return last;
2893 /* Empty statements should no longer appear in the instruction stream.
2894 Everything that might have appeared before should be deleted by
2895 remove_useless_stmts, and the optimizers should just gsi_remove
2896 instead of smashing with build_empty_stmt.
2898 Thus the only thing that should appear here in a block containing
2899 one executable statement is a label. */
2900 prev = gsi_stmt (i);
2901 if (gimple_code (prev) == GIMPLE_LABEL)
2902 return last;
2903 else
2904 return NULL;
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2909 static void
2910 reinstall_phi_args (edge new_edge, edge old_edge)
2912 edge_var_map *vm;
2913 int i;
2914 gphi_iterator phis;
2916 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2917 if (!v)
2918 return;
2920 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2921 v->iterate (i, &vm) && !gsi_end_p (phis);
2922 i++, gsi_next (&phis))
2924 gphi *phi = phis.phi ();
2925 tree result = redirect_edge_var_map_result (vm);
2926 tree arg = redirect_edge_var_map_def (vm);
2928 gcc_assert (result == gimple_phi_result (phi));
2930 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2933 redirect_edge_var_map_clear (old_edge);
2936 /* Returns the basic block after which the new basic block created
2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2938 near its "logical" location. This is of most help to humans looking
2939 at debugging dumps. */
2941 basic_block
2942 split_edge_bb_loc (edge edge_in)
2944 basic_block dest = edge_in->dest;
2945 basic_block dest_prev = dest->prev_bb;
2947 if (dest_prev)
2949 edge e = find_edge (dest_prev, dest);
2950 if (e && !(e->flags & EDGE_COMPLEX))
2951 return edge_in->src;
2953 return dest_prev;
2956 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2957 Abort on abnormal edges. */
2959 static basic_block
2960 gimple_split_edge (edge edge_in)
2962 basic_block new_bb, after_bb, dest;
2963 edge new_edge, e;
2965 /* Abnormal edges cannot be split. */
2966 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2968 dest = edge_in->dest;
2970 after_bb = split_edge_bb_loc (edge_in);
2972 new_bb = create_empty_bb (after_bb);
2973 new_bb->count = edge_in->count ();
2975 e = redirect_edge_and_branch (edge_in, new_bb);
2976 gcc_assert (e == edge_in);
2978 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2979 reinstall_phi_args (new_edge, e);
2981 return new_bb;
2985 /* Verify properties of the address expression T whose base should be
2986 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2988 static bool
2989 verify_address (tree t, bool verify_addressable)
2991 bool old_constant;
2992 bool old_side_effects;
2993 bool new_constant;
2994 bool new_side_effects;
2996 old_constant = TREE_CONSTANT (t);
2997 old_side_effects = TREE_SIDE_EFFECTS (t);
2999 recompute_tree_invariant_for_addr_expr (t);
3000 new_side_effects = TREE_SIDE_EFFECTS (t);
3001 new_constant = TREE_CONSTANT (t);
3003 if (old_constant != new_constant)
3005 error ("constant not recomputed when ADDR_EXPR changed");
3006 return true;
3008 if (old_side_effects != new_side_effects)
3010 error ("side effects not recomputed when ADDR_EXPR changed");
3011 return true;
3014 tree base = TREE_OPERAND (t, 0);
3015 while (handled_component_p (base))
3016 base = TREE_OPERAND (base, 0);
3018 if (!(VAR_P (base)
3019 || TREE_CODE (base) == PARM_DECL
3020 || TREE_CODE (base) == RESULT_DECL))
3021 return false;
3023 if (DECL_GIMPLE_REG_P (base))
3025 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3026 return true;
3029 if (verify_addressable && !TREE_ADDRESSABLE (base))
3031 error ("address taken, but ADDRESSABLE bit not set");
3032 return true;
3035 return false;
3039 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3040 Returns true if there is an error, otherwise false. */
3042 static bool
3043 verify_types_in_gimple_min_lval (tree expr)
3045 tree op;
3047 if (is_gimple_id (expr))
3048 return false;
3050 if (TREE_CODE (expr) != TARGET_MEM_REF
3051 && TREE_CODE (expr) != MEM_REF)
3053 error ("invalid expression for min lvalue");
3054 return true;
3057 /* TARGET_MEM_REFs are strange beasts. */
3058 if (TREE_CODE (expr) == TARGET_MEM_REF)
3059 return false;
3061 op = TREE_OPERAND (expr, 0);
3062 if (!is_gimple_val (op))
3064 error ("invalid operand in indirect reference");
3065 debug_generic_stmt (op);
3066 return true;
3068 /* Memory references now generally can involve a value conversion. */
3070 return false;
3073 /* Verify if EXPR is a valid GIMPLE reference expression. If
3074 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3075 if there is an error, otherwise false. */
3077 static bool
3078 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3080 if (TREE_CODE (expr) == REALPART_EXPR
3081 || TREE_CODE (expr) == IMAGPART_EXPR
3082 || TREE_CODE (expr) == BIT_FIELD_REF)
3084 tree op = TREE_OPERAND (expr, 0);
3085 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3087 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3088 return true;
3091 if (TREE_CODE (expr) == BIT_FIELD_REF)
3093 tree t1 = TREE_OPERAND (expr, 1);
3094 tree t2 = TREE_OPERAND (expr, 2);
3095 poly_uint64 size, bitpos;
3096 if (!poly_int_tree_p (t1, &size)
3097 || !poly_int_tree_p (t2, &bitpos)
3098 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3099 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3101 error ("invalid position or size operand to BIT_FIELD_REF");
3102 return true;
3104 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3105 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3107 error ("integral result type precision does not match "
3108 "field size of BIT_FIELD_REF");
3109 return true;
3111 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3112 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3113 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3114 size))
3116 error ("mode size of non-integral result does not "
3117 "match field size of BIT_FIELD_REF");
3118 return true;
3120 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3121 && maybe_gt (size + bitpos,
3122 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3124 error ("position plus size exceeds size of referenced object in "
3125 "BIT_FIELD_REF");
3126 return true;
3130 if ((TREE_CODE (expr) == REALPART_EXPR
3131 || TREE_CODE (expr) == IMAGPART_EXPR)
3132 && !useless_type_conversion_p (TREE_TYPE (expr),
3133 TREE_TYPE (TREE_TYPE (op))))
3135 error ("type mismatch in real/imagpart reference");
3136 debug_generic_stmt (TREE_TYPE (expr));
3137 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3138 return true;
3140 expr = op;
3143 while (handled_component_p (expr))
3145 if (TREE_CODE (expr) == REALPART_EXPR
3146 || TREE_CODE (expr) == IMAGPART_EXPR
3147 || TREE_CODE (expr) == BIT_FIELD_REF)
3149 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3150 return true;
3153 tree op = TREE_OPERAND (expr, 0);
3155 if (TREE_CODE (expr) == ARRAY_REF
3156 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3158 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3159 || (TREE_OPERAND (expr, 2)
3160 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3161 || (TREE_OPERAND (expr, 3)
3162 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3164 error ("invalid operands to array reference");
3165 debug_generic_stmt (expr);
3166 return true;
3170 /* Verify if the reference array element types are compatible. */
3171 if (TREE_CODE (expr) == ARRAY_REF
3172 && !useless_type_conversion_p (TREE_TYPE (expr),
3173 TREE_TYPE (TREE_TYPE (op))))
3175 error ("type mismatch in array reference");
3176 debug_generic_stmt (TREE_TYPE (expr));
3177 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3178 return true;
3180 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3181 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3182 TREE_TYPE (TREE_TYPE (op))))
3184 error ("type mismatch in array range reference");
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3186 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3187 return true;
3190 if (TREE_CODE (expr) == COMPONENT_REF)
3192 if (TREE_OPERAND (expr, 2)
3193 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3195 error ("invalid COMPONENT_REF offset operator");
3196 return true;
3198 if (!useless_type_conversion_p (TREE_TYPE (expr),
3199 TREE_TYPE (TREE_OPERAND (expr, 1))))
3201 error ("type mismatch in component reference");
3202 debug_generic_stmt (TREE_TYPE (expr));
3203 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3204 return true;
3208 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3210 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3211 that their operand is not an SSA name or an invariant when
3212 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3213 bug). Otherwise there is nothing to verify, gross mismatches at
3214 most invoke undefined behavior. */
3215 if (require_lvalue
3216 && (TREE_CODE (op) == SSA_NAME
3217 || is_gimple_min_invariant (op)))
3219 error ("conversion of an SSA_NAME on the left hand side");
3220 debug_generic_stmt (expr);
3221 return true;
3223 else if (TREE_CODE (op) == SSA_NAME
3224 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3226 error ("conversion of register to a different size");
3227 debug_generic_stmt (expr);
3228 return true;
3230 else if (!handled_component_p (op))
3231 return false;
3234 expr = op;
3237 if (TREE_CODE (expr) == MEM_REF)
3239 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3240 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3241 && verify_address (TREE_OPERAND (expr, 0), false)))
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr);
3245 return true;
3247 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr);
3252 return true;
3255 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3257 if (!TMR_BASE (expr)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3259 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3260 && verify_address (TMR_BASE (expr), false)))
3262 error ("invalid address operand in TARGET_MEM_REF");
3263 return true;
3265 if (!TMR_OFFSET (expr)
3266 || !poly_int_tree_p (TMR_OFFSET (expr))
3267 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3269 error ("invalid offset operand in TARGET_MEM_REF");
3270 debug_generic_stmt (expr);
3271 return true;
3274 else if (TREE_CODE (expr) == INDIRECT_REF)
3276 error ("INDIRECT_REF in gimple IL");
3277 debug_generic_stmt (expr);
3278 return true;
3281 return ((require_lvalue || !is_gimple_min_invariant (expr))
3282 && verify_types_in_gimple_min_lval (expr));
3285 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3286 list of pointer-to types that is trivially convertible to DEST. */
3288 static bool
3289 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3291 tree src;
3293 if (!TYPE_POINTER_TO (src_obj))
3294 return true;
3296 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3297 if (useless_type_conversion_p (dest, src))
3298 return true;
3300 return false;
3303 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3304 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3306 static bool
3307 valid_fixed_convert_types_p (tree type1, tree type2)
3309 return (FIXED_POINT_TYPE_P (type1)
3310 && (INTEGRAL_TYPE_P (type2)
3311 || SCALAR_FLOAT_TYPE_P (type2)
3312 || FIXED_POINT_TYPE_P (type2)));
3315 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3316 is a problem, otherwise false. */
3318 static bool
3319 verify_gimple_call (gcall *stmt)
3321 tree fn = gimple_call_fn (stmt);
3322 tree fntype, fndecl;
3323 unsigned i;
3325 if (gimple_call_internal_p (stmt))
3327 if (fn)
3329 error ("gimple call has two targets");
3330 debug_generic_stmt (fn);
3331 return true;
3333 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3334 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3336 return false;
3339 else
3341 if (!fn)
3343 error ("gimple call has no target");
3344 return true;
3348 if (fn && !is_gimple_call_addr (fn))
3350 error ("invalid function in gimple call");
3351 debug_generic_stmt (fn);
3352 return true;
3355 if (fn
3356 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3357 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3358 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3360 error ("non-function in gimple call");
3361 return true;
3364 fndecl = gimple_call_fndecl (stmt);
3365 if (fndecl
3366 && TREE_CODE (fndecl) == FUNCTION_DECL
3367 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3368 && !DECL_PURE_P (fndecl)
3369 && !TREE_READONLY (fndecl))
3371 error ("invalid pure const state for function");
3372 return true;
3375 tree lhs = gimple_call_lhs (stmt);
3376 if (lhs
3377 && (!is_gimple_lvalue (lhs)
3378 || verify_types_in_gimple_reference (lhs, true)))
3380 error ("invalid LHS in gimple call");
3381 return true;
3384 if (gimple_call_ctrl_altering_p (stmt)
3385 && gimple_call_noreturn_p (stmt)
3386 && should_remove_lhs_p (lhs))
3388 error ("LHS in noreturn call");
3389 return true;
3392 fntype = gimple_call_fntype (stmt);
3393 if (fntype
3394 && lhs
3395 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3396 /* ??? At least C++ misses conversions at assignments from
3397 void * call results.
3398 For now simply allow arbitrary pointer type conversions. */
3399 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3400 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3402 error ("invalid conversion in gimple call");
3403 debug_generic_stmt (TREE_TYPE (lhs));
3404 debug_generic_stmt (TREE_TYPE (fntype));
3405 return true;
3408 if (gimple_call_chain (stmt)
3409 && !is_gimple_val (gimple_call_chain (stmt)))
3411 error ("invalid static chain in gimple call");
3412 debug_generic_stmt (gimple_call_chain (stmt));
3413 return true;
3416 /* If there is a static chain argument, the call should either be
3417 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3418 if (gimple_call_chain (stmt)
3419 && fndecl
3420 && !DECL_STATIC_CHAIN (fndecl))
3422 error ("static chain with function that doesn%'t use one");
3423 return true;
3426 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3428 switch (DECL_FUNCTION_CODE (fndecl))
3430 case BUILT_IN_UNREACHABLE:
3431 case BUILT_IN_TRAP:
3432 if (gimple_call_num_args (stmt) > 0)
3434 /* Built-in unreachable with parameters might not be caught by
3435 undefined behavior sanitizer. Front-ends do check users do not
3436 call them that way but we also produce calls to
3437 __builtin_unreachable internally, for example when IPA figures
3438 out a call cannot happen in a legal program. In such cases,
3439 we must make sure arguments are stripped off. */
3440 error ("__builtin_unreachable or __builtin_trap call with "
3441 "arguments");
3442 return true;
3444 break;
3445 default:
3446 break;
3450 /* ??? The C frontend passes unpromoted arguments in case it
3451 didn't see a function declaration before the call. So for now
3452 leave the call arguments mostly unverified. Once we gimplify
3453 unit-at-a-time we have a chance to fix this. */
3455 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3457 tree arg = gimple_call_arg (stmt, i);
3458 if ((is_gimple_reg_type (TREE_TYPE (arg))
3459 && !is_gimple_val (arg))
3460 || (!is_gimple_reg_type (TREE_TYPE (arg))
3461 && !is_gimple_lvalue (arg)))
3463 error ("invalid argument to gimple call");
3464 debug_generic_expr (arg);
3465 return true;
3469 return false;
3472 /* Verifies the gimple comparison with the result type TYPE and
3473 the operands OP0 and OP1, comparison code is CODE. */
3475 static bool
3476 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3478 tree op0_type = TREE_TYPE (op0);
3479 tree op1_type = TREE_TYPE (op1);
3481 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3483 error ("invalid operands in gimple comparison");
3484 return true;
3487 /* For comparisons we do not have the operations type as the
3488 effective type the comparison is carried out in. Instead
3489 we require that either the first operand is trivially
3490 convertible into the second, or the other way around.
3491 Because we special-case pointers to void we allow
3492 comparisons of pointers with the same mode as well. */
3493 if (!useless_type_conversion_p (op0_type, op1_type)
3494 && !useless_type_conversion_p (op1_type, op0_type)
3495 && (!POINTER_TYPE_P (op0_type)
3496 || !POINTER_TYPE_P (op1_type)
3497 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3499 error ("mismatching comparison operand types");
3500 debug_generic_expr (op0_type);
3501 debug_generic_expr (op1_type);
3502 return true;
3505 /* The resulting type of a comparison may be an effective boolean type. */
3506 if (INTEGRAL_TYPE_P (type)
3507 && (TREE_CODE (type) == BOOLEAN_TYPE
3508 || TYPE_PRECISION (type) == 1))
3510 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3511 || TREE_CODE (op1_type) == VECTOR_TYPE)
3512 && code != EQ_EXPR && code != NE_EXPR
3513 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3514 && !VECTOR_INTEGER_TYPE_P (op0_type))
3516 error ("unsupported operation or type for vector comparison"
3517 " returning a boolean");
3518 debug_generic_expr (op0_type);
3519 debug_generic_expr (op1_type);
3520 return true;
3523 /* Or a boolean vector type with the same element count
3524 as the comparison operand types. */
3525 else if (TREE_CODE (type) == VECTOR_TYPE
3526 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3528 if (TREE_CODE (op0_type) != VECTOR_TYPE
3529 || TREE_CODE (op1_type) != VECTOR_TYPE)
3531 error ("non-vector operands in vector comparison");
3532 debug_generic_expr (op0_type);
3533 debug_generic_expr (op1_type);
3534 return true;
3537 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3538 TYPE_VECTOR_SUBPARTS (op0_type)))
3540 error ("invalid vector comparison resulting type");
3541 debug_generic_expr (type);
3542 return true;
3545 else
3547 error ("bogus comparison result type");
3548 debug_generic_expr (type);
3549 return true;
3552 return false;
3555 /* Verify a gimple assignment statement STMT with an unary rhs.
3556 Returns true if anything is wrong. */
3558 static bool
3559 verify_gimple_assign_unary (gassign *stmt)
3561 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3562 tree lhs = gimple_assign_lhs (stmt);
3563 tree lhs_type = TREE_TYPE (lhs);
3564 tree rhs1 = gimple_assign_rhs1 (stmt);
3565 tree rhs1_type = TREE_TYPE (rhs1);
3567 if (!is_gimple_reg (lhs))
3569 error ("non-register as LHS of unary operation");
3570 return true;
3573 if (!is_gimple_val (rhs1))
3575 error ("invalid operand in unary operation");
3576 return true;
3579 /* First handle conversions. */
3580 switch (rhs_code)
3582 CASE_CONVERT:
3584 /* Allow conversions from pointer type to integral type only if
3585 there is no sign or zero extension involved.
3586 For targets were the precision of ptrofftype doesn't match that
3587 of pointers we need to allow arbitrary conversions to ptrofftype. */
3588 if ((POINTER_TYPE_P (lhs_type)
3589 && INTEGRAL_TYPE_P (rhs1_type))
3590 || (POINTER_TYPE_P (rhs1_type)
3591 && INTEGRAL_TYPE_P (lhs_type)
3592 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3593 || ptrofftype_p (lhs_type))))
3594 return false;
3596 /* Allow conversion from integral to offset type and vice versa. */
3597 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3598 && INTEGRAL_TYPE_P (rhs1_type))
3599 || (INTEGRAL_TYPE_P (lhs_type)
3600 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3601 return false;
3603 /* Otherwise assert we are converting between types of the
3604 same kind. */
3605 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3607 error ("invalid types in nop conversion");
3608 debug_generic_expr (lhs_type);
3609 debug_generic_expr (rhs1_type);
3610 return true;
3613 return false;
3616 case ADDR_SPACE_CONVERT_EXPR:
3618 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3619 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3620 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3622 error ("invalid types in address space conversion");
3623 debug_generic_expr (lhs_type);
3624 debug_generic_expr (rhs1_type);
3625 return true;
3628 return false;
3631 case FIXED_CONVERT_EXPR:
3633 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3634 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3636 error ("invalid types in fixed-point conversion");
3637 debug_generic_expr (lhs_type);
3638 debug_generic_expr (rhs1_type);
3639 return true;
3642 return false;
3645 case FLOAT_EXPR:
3647 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3648 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3649 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3651 error ("invalid types in conversion to floating point");
3652 debug_generic_expr (lhs_type);
3653 debug_generic_expr (rhs1_type);
3654 return true;
3657 return false;
3660 case FIX_TRUNC_EXPR:
3662 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3663 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3664 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3666 error ("invalid types in conversion to integer");
3667 debug_generic_expr (lhs_type);
3668 debug_generic_expr (rhs1_type);
3669 return true;
3672 return false;
3675 case VEC_UNPACK_HI_EXPR:
3676 case VEC_UNPACK_LO_EXPR:
3677 case VEC_UNPACK_FLOAT_HI_EXPR:
3678 case VEC_UNPACK_FLOAT_LO_EXPR:
3679 /* FIXME. */
3680 return false;
3682 case NEGATE_EXPR:
3683 case ABS_EXPR:
3684 case BIT_NOT_EXPR:
3685 case PAREN_EXPR:
3686 case CONJ_EXPR:
3687 break;
3689 case VEC_DUPLICATE_EXPR:
3690 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3691 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3693 error ("vec_duplicate should be from a scalar to a like vector");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 return true;
3698 return false;
3700 default:
3701 gcc_unreachable ();
3704 /* For the remaining codes assert there is no conversion involved. */
3705 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3707 error ("non-trivial conversion in unary operation");
3708 debug_generic_expr (lhs_type);
3709 debug_generic_expr (rhs1_type);
3710 return true;
3713 return false;
3716 /* Verify a gimple assignment statement STMT with a binary rhs.
3717 Returns true if anything is wrong. */
3719 static bool
3720 verify_gimple_assign_binary (gassign *stmt)
3722 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3723 tree lhs = gimple_assign_lhs (stmt);
3724 tree lhs_type = TREE_TYPE (lhs);
3725 tree rhs1 = gimple_assign_rhs1 (stmt);
3726 tree rhs1_type = TREE_TYPE (rhs1);
3727 tree rhs2 = gimple_assign_rhs2 (stmt);
3728 tree rhs2_type = TREE_TYPE (rhs2);
3730 if (!is_gimple_reg (lhs))
3732 error ("non-register as LHS of binary operation");
3733 return true;
3736 if (!is_gimple_val (rhs1)
3737 || !is_gimple_val (rhs2))
3739 error ("invalid operands in binary operation");
3740 return true;
3743 /* First handle operations that involve different types. */
3744 switch (rhs_code)
3746 case COMPLEX_EXPR:
3748 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3749 || !(INTEGRAL_TYPE_P (rhs1_type)
3750 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3751 || !(INTEGRAL_TYPE_P (rhs2_type)
3752 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3754 error ("type mismatch in complex expression");
3755 debug_generic_expr (lhs_type);
3756 debug_generic_expr (rhs1_type);
3757 debug_generic_expr (rhs2_type);
3758 return true;
3761 return false;
3764 case LSHIFT_EXPR:
3765 case RSHIFT_EXPR:
3766 case LROTATE_EXPR:
3767 case RROTATE_EXPR:
3769 /* Shifts and rotates are ok on integral types, fixed point
3770 types and integer vector types. */
3771 if ((!INTEGRAL_TYPE_P (rhs1_type)
3772 && !FIXED_POINT_TYPE_P (rhs1_type)
3773 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3774 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3775 || (!INTEGRAL_TYPE_P (rhs2_type)
3776 /* Vector shifts of vectors are also ok. */
3777 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3778 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3779 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3780 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3781 || !useless_type_conversion_p (lhs_type, rhs1_type))
3783 error ("type mismatch in shift expression");
3784 debug_generic_expr (lhs_type);
3785 debug_generic_expr (rhs1_type);
3786 debug_generic_expr (rhs2_type);
3787 return true;
3790 return false;
3793 case WIDEN_LSHIFT_EXPR:
3795 if (!INTEGRAL_TYPE_P (lhs_type)
3796 || !INTEGRAL_TYPE_P (rhs1_type)
3797 || TREE_CODE (rhs2) != INTEGER_CST
3798 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3800 error ("type mismatch in widening vector shift expression");
3801 debug_generic_expr (lhs_type);
3802 debug_generic_expr (rhs1_type);
3803 debug_generic_expr (rhs2_type);
3804 return true;
3807 return false;
3810 case VEC_WIDEN_LSHIFT_HI_EXPR:
3811 case VEC_WIDEN_LSHIFT_LO_EXPR:
3813 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3814 || TREE_CODE (lhs_type) != VECTOR_TYPE
3815 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3816 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3817 || TREE_CODE (rhs2) != INTEGER_CST
3818 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3819 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3821 error ("type mismatch in widening vector shift expression");
3822 debug_generic_expr (lhs_type);
3823 debug_generic_expr (rhs1_type);
3824 debug_generic_expr (rhs2_type);
3825 return true;
3828 return false;
3831 case PLUS_EXPR:
3832 case MINUS_EXPR:
3834 tree lhs_etype = lhs_type;
3835 tree rhs1_etype = rhs1_type;
3836 tree rhs2_etype = rhs2_type;
3837 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3839 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3840 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3842 error ("invalid non-vector operands to vector valued plus");
3843 return true;
3845 lhs_etype = TREE_TYPE (lhs_type);
3846 rhs1_etype = TREE_TYPE (rhs1_type);
3847 rhs2_etype = TREE_TYPE (rhs2_type);
3849 if (POINTER_TYPE_P (lhs_etype)
3850 || POINTER_TYPE_P (rhs1_etype)
3851 || POINTER_TYPE_P (rhs2_etype))
3853 error ("invalid (pointer) operands to plus/minus");
3854 return true;
3857 /* Continue with generic binary expression handling. */
3858 break;
3861 case POINTER_PLUS_EXPR:
3863 if (!POINTER_TYPE_P (rhs1_type)
3864 || !useless_type_conversion_p (lhs_type, rhs1_type)
3865 || !ptrofftype_p (rhs2_type))
3867 error ("type mismatch in pointer plus expression");
3868 debug_generic_stmt (lhs_type);
3869 debug_generic_stmt (rhs1_type);
3870 debug_generic_stmt (rhs2_type);
3871 return true;
3874 return false;
3877 case POINTER_DIFF_EXPR:
3879 if (!POINTER_TYPE_P (rhs1_type)
3880 || !POINTER_TYPE_P (rhs2_type)
3881 /* Because we special-case pointers to void we allow difference
3882 of arbitrary pointers with the same mode. */
3883 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
3884 || TREE_CODE (lhs_type) != INTEGER_TYPE
3885 || TYPE_UNSIGNED (lhs_type)
3886 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
3888 error ("type mismatch in pointer diff expression");
3889 debug_generic_stmt (lhs_type);
3890 debug_generic_stmt (rhs1_type);
3891 debug_generic_stmt (rhs2_type);
3892 return true;
3895 return false;
3898 case TRUTH_ANDIF_EXPR:
3899 case TRUTH_ORIF_EXPR:
3900 case TRUTH_AND_EXPR:
3901 case TRUTH_OR_EXPR:
3902 case TRUTH_XOR_EXPR:
3904 gcc_unreachable ();
3906 case LT_EXPR:
3907 case LE_EXPR:
3908 case GT_EXPR:
3909 case GE_EXPR:
3910 case EQ_EXPR:
3911 case NE_EXPR:
3912 case UNORDERED_EXPR:
3913 case ORDERED_EXPR:
3914 case UNLT_EXPR:
3915 case UNLE_EXPR:
3916 case UNGT_EXPR:
3917 case UNGE_EXPR:
3918 case UNEQ_EXPR:
3919 case LTGT_EXPR:
3920 /* Comparisons are also binary, but the result type is not
3921 connected to the operand types. */
3922 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3924 case WIDEN_MULT_EXPR:
3925 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3926 return true;
3927 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3928 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3930 case WIDEN_SUM_EXPR:
3932 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
3933 || TREE_CODE (lhs_type) != VECTOR_TYPE)
3934 && ((!INTEGRAL_TYPE_P (rhs1_type)
3935 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
3936 || (!INTEGRAL_TYPE_P (lhs_type)
3937 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
3938 || !useless_type_conversion_p (lhs_type, rhs2_type)
3939 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
3940 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3942 error ("type mismatch in widening sum reduction");
3943 debug_generic_expr (lhs_type);
3944 debug_generic_expr (rhs1_type);
3945 debug_generic_expr (rhs2_type);
3946 return true;
3948 return false;
3951 case VEC_WIDEN_MULT_HI_EXPR:
3952 case VEC_WIDEN_MULT_LO_EXPR:
3953 case VEC_WIDEN_MULT_EVEN_EXPR:
3954 case VEC_WIDEN_MULT_ODD_EXPR:
3956 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3957 || TREE_CODE (lhs_type) != VECTOR_TYPE
3958 || !types_compatible_p (rhs1_type, rhs2_type)
3959 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3960 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3962 error ("type mismatch in vector widening multiplication");
3963 debug_generic_expr (lhs_type);
3964 debug_generic_expr (rhs1_type);
3965 debug_generic_expr (rhs2_type);
3966 return true;
3968 return false;
3971 case VEC_PACK_TRUNC_EXPR:
3972 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
3973 vector boolean types. */
3974 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
3975 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
3976 && types_compatible_p (rhs1_type, rhs2_type)
3977 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
3978 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
3979 return false;
3981 /* Fallthru. */
3982 case VEC_PACK_SAT_EXPR:
3983 case VEC_PACK_FIX_TRUNC_EXPR:
3985 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3986 || TREE_CODE (lhs_type) != VECTOR_TYPE
3987 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
3988 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3989 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
3990 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3991 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
3992 || !types_compatible_p (rhs1_type, rhs2_type)
3993 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
3994 2 * GET_MODE_SIZE (element_mode (lhs_type))))
3996 error ("type mismatch in vector pack expression");
3997 debug_generic_expr (lhs_type);
3998 debug_generic_expr (rhs1_type);
3999 debug_generic_expr (rhs2_type);
4000 return true;
4003 return false;
4006 case MULT_EXPR:
4007 case MULT_HIGHPART_EXPR:
4008 case TRUNC_DIV_EXPR:
4009 case CEIL_DIV_EXPR:
4010 case FLOOR_DIV_EXPR:
4011 case ROUND_DIV_EXPR:
4012 case TRUNC_MOD_EXPR:
4013 case CEIL_MOD_EXPR:
4014 case FLOOR_MOD_EXPR:
4015 case ROUND_MOD_EXPR:
4016 case RDIV_EXPR:
4017 case EXACT_DIV_EXPR:
4018 case MIN_EXPR:
4019 case MAX_EXPR:
4020 case BIT_IOR_EXPR:
4021 case BIT_XOR_EXPR:
4022 case BIT_AND_EXPR:
4023 /* Continue with generic binary expression handling. */
4024 break;
4026 case VEC_SERIES_EXPR:
4027 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4029 error ("type mismatch in series expression");
4030 debug_generic_expr (rhs1_type);
4031 debug_generic_expr (rhs2_type);
4032 return true;
4034 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4035 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4037 error ("vector type expected in series expression");
4038 debug_generic_expr (lhs_type);
4039 return true;
4041 return false;
4043 default:
4044 gcc_unreachable ();
4047 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4048 || !useless_type_conversion_p (lhs_type, rhs2_type))
4050 error ("type mismatch in binary expression");
4051 debug_generic_stmt (lhs_type);
4052 debug_generic_stmt (rhs1_type);
4053 debug_generic_stmt (rhs2_type);
4054 return true;
4057 return false;
4060 /* Verify a gimple assignment statement STMT with a ternary rhs.
4061 Returns true if anything is wrong. */
4063 static bool
4064 verify_gimple_assign_ternary (gassign *stmt)
4066 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4067 tree lhs = gimple_assign_lhs (stmt);
4068 tree lhs_type = TREE_TYPE (lhs);
4069 tree rhs1 = gimple_assign_rhs1 (stmt);
4070 tree rhs1_type = TREE_TYPE (rhs1);
4071 tree rhs2 = gimple_assign_rhs2 (stmt);
4072 tree rhs2_type = TREE_TYPE (rhs2);
4073 tree rhs3 = gimple_assign_rhs3 (stmt);
4074 tree rhs3_type = TREE_TYPE (rhs3);
4076 if (!is_gimple_reg (lhs))
4078 error ("non-register as LHS of ternary operation");
4079 return true;
4082 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4083 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4084 || !is_gimple_val (rhs2)
4085 || !is_gimple_val (rhs3))
4087 error ("invalid operands in ternary operation");
4088 return true;
4091 /* First handle operations that involve different types. */
4092 switch (rhs_code)
4094 case WIDEN_MULT_PLUS_EXPR:
4095 case WIDEN_MULT_MINUS_EXPR:
4096 if ((!INTEGRAL_TYPE_P (rhs1_type)
4097 && !FIXED_POINT_TYPE_P (rhs1_type))
4098 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4099 || !useless_type_conversion_p (lhs_type, rhs3_type)
4100 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4101 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4103 error ("type mismatch in widening multiply-accumulate expression");
4104 debug_generic_expr (lhs_type);
4105 debug_generic_expr (rhs1_type);
4106 debug_generic_expr (rhs2_type);
4107 debug_generic_expr (rhs3_type);
4108 return true;
4110 break;
4112 case FMA_EXPR:
4113 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4114 || !useless_type_conversion_p (lhs_type, rhs2_type)
4115 || !useless_type_conversion_p (lhs_type, rhs3_type))
4117 error ("type mismatch in fused multiply-add expression");
4118 debug_generic_expr (lhs_type);
4119 debug_generic_expr (rhs1_type);
4120 debug_generic_expr (rhs2_type);
4121 debug_generic_expr (rhs3_type);
4122 return true;
4124 break;
4126 case VEC_COND_EXPR:
4127 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4128 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4129 TYPE_VECTOR_SUBPARTS (lhs_type)))
4131 error ("the first argument of a VEC_COND_EXPR must be of a "
4132 "boolean vector type of the same number of elements "
4133 "as the result");
4134 debug_generic_expr (lhs_type);
4135 debug_generic_expr (rhs1_type);
4136 return true;
4138 /* Fallthrough. */
4139 case COND_EXPR:
4140 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4141 || !useless_type_conversion_p (lhs_type, rhs3_type))
4143 error ("type mismatch in conditional expression");
4144 debug_generic_expr (lhs_type);
4145 debug_generic_expr (rhs2_type);
4146 debug_generic_expr (rhs3_type);
4147 return true;
4149 break;
4151 case VEC_PERM_EXPR:
4152 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4153 || !useless_type_conversion_p (lhs_type, rhs2_type))
4155 error ("type mismatch in vector permute expression");
4156 debug_generic_expr (lhs_type);
4157 debug_generic_expr (rhs1_type);
4158 debug_generic_expr (rhs2_type);
4159 debug_generic_expr (rhs3_type);
4160 return true;
4163 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4164 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4165 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4167 error ("vector types expected in vector permute expression");
4168 debug_generic_expr (lhs_type);
4169 debug_generic_expr (rhs1_type);
4170 debug_generic_expr (rhs2_type);
4171 debug_generic_expr (rhs3_type);
4172 return true;
4175 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4176 TYPE_VECTOR_SUBPARTS (rhs2_type))
4177 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4178 TYPE_VECTOR_SUBPARTS (rhs3_type))
4179 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4180 TYPE_VECTOR_SUBPARTS (lhs_type)))
4182 error ("vectors with different element number found "
4183 "in vector permute expression");
4184 debug_generic_expr (lhs_type);
4185 debug_generic_expr (rhs1_type);
4186 debug_generic_expr (rhs2_type);
4187 debug_generic_expr (rhs3_type);
4188 return true;
4191 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4192 || (TREE_CODE (rhs3) != VECTOR_CST
4193 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4194 (TREE_TYPE (rhs3_type)))
4195 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4196 (TREE_TYPE (rhs1_type))))))
4198 error ("invalid mask type in vector permute expression");
4199 debug_generic_expr (lhs_type);
4200 debug_generic_expr (rhs1_type);
4201 debug_generic_expr (rhs2_type);
4202 debug_generic_expr (rhs3_type);
4203 return true;
4206 return false;
4208 case SAD_EXPR:
4209 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4210 || !useless_type_conversion_p (lhs_type, rhs3_type)
4211 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4212 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4214 error ("type mismatch in sad expression");
4215 debug_generic_expr (lhs_type);
4216 debug_generic_expr (rhs1_type);
4217 debug_generic_expr (rhs2_type);
4218 debug_generic_expr (rhs3_type);
4219 return true;
4222 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4223 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4224 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4226 error ("vector types expected in sad expression");
4227 debug_generic_expr (lhs_type);
4228 debug_generic_expr (rhs1_type);
4229 debug_generic_expr (rhs2_type);
4230 debug_generic_expr (rhs3_type);
4231 return true;
4234 return false;
4236 case BIT_INSERT_EXPR:
4237 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4239 error ("type mismatch in BIT_INSERT_EXPR");
4240 debug_generic_expr (lhs_type);
4241 debug_generic_expr (rhs1_type);
4242 return true;
4244 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4245 && INTEGRAL_TYPE_P (rhs2_type))
4246 || (VECTOR_TYPE_P (rhs1_type)
4247 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4249 error ("not allowed type combination in BIT_INSERT_EXPR");
4250 debug_generic_expr (rhs1_type);
4251 debug_generic_expr (rhs2_type);
4252 return true;
4254 if (! tree_fits_uhwi_p (rhs3)
4255 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4256 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4258 error ("invalid position or size in BIT_INSERT_EXPR");
4259 return true;
4261 if (INTEGRAL_TYPE_P (rhs1_type))
4263 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4264 if (bitpos >= TYPE_PRECISION (rhs1_type)
4265 || (bitpos + TYPE_PRECISION (rhs2_type)
4266 > TYPE_PRECISION (rhs1_type)))
4268 error ("insertion out of range in BIT_INSERT_EXPR");
4269 return true;
4272 else if (VECTOR_TYPE_P (rhs1_type))
4274 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4275 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4276 if (bitpos % bitsize != 0)
4278 error ("vector insertion not at element boundary");
4279 return true;
4282 return false;
4284 case DOT_PROD_EXPR:
4286 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4287 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4288 && ((!INTEGRAL_TYPE_P (rhs1_type)
4289 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4290 || (!INTEGRAL_TYPE_P (lhs_type)
4291 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4292 || !types_compatible_p (rhs1_type, rhs2_type)
4293 || !useless_type_conversion_p (lhs_type, rhs3_type)
4294 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4295 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4297 error ("type mismatch in dot product reduction");
4298 debug_generic_expr (lhs_type);
4299 debug_generic_expr (rhs1_type);
4300 debug_generic_expr (rhs2_type);
4301 return true;
4303 return false;
4306 case REALIGN_LOAD_EXPR:
4307 /* FIXME. */
4308 return false;
4310 default:
4311 gcc_unreachable ();
4313 return false;
4316 /* Verify a gimple assignment statement STMT with a single rhs.
4317 Returns true if anything is wrong. */
4319 static bool
4320 verify_gimple_assign_single (gassign *stmt)
4322 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4323 tree lhs = gimple_assign_lhs (stmt);
4324 tree lhs_type = TREE_TYPE (lhs);
4325 tree rhs1 = gimple_assign_rhs1 (stmt);
4326 tree rhs1_type = TREE_TYPE (rhs1);
4327 bool res = false;
4329 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4331 error ("non-trivial conversion at assignment");
4332 debug_generic_expr (lhs_type);
4333 debug_generic_expr (rhs1_type);
4334 return true;
4337 if (gimple_clobber_p (stmt)
4338 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4340 error ("non-decl/MEM_REF LHS in clobber statement");
4341 debug_generic_expr (lhs);
4342 return true;
4345 if (handled_component_p (lhs)
4346 || TREE_CODE (lhs) == MEM_REF
4347 || TREE_CODE (lhs) == TARGET_MEM_REF)
4348 res |= verify_types_in_gimple_reference (lhs, true);
4350 /* Special codes we cannot handle via their class. */
4351 switch (rhs_code)
4353 case ADDR_EXPR:
4355 tree op = TREE_OPERAND (rhs1, 0);
4356 if (!is_gimple_addressable (op))
4358 error ("invalid operand in unary expression");
4359 return true;
4362 /* Technically there is no longer a need for matching types, but
4363 gimple hygiene asks for this check. In LTO we can end up
4364 combining incompatible units and thus end up with addresses
4365 of globals that change their type to a common one. */
4366 if (!in_lto_p
4367 && !types_compatible_p (TREE_TYPE (op),
4368 TREE_TYPE (TREE_TYPE (rhs1)))
4369 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4370 TREE_TYPE (op)))
4372 error ("type mismatch in address expression");
4373 debug_generic_stmt (TREE_TYPE (rhs1));
4374 debug_generic_stmt (TREE_TYPE (op));
4375 return true;
4378 return (verify_address (rhs1, true)
4379 || verify_types_in_gimple_reference (op, true));
4382 /* tcc_reference */
4383 case INDIRECT_REF:
4384 error ("INDIRECT_REF in gimple IL");
4385 return true;
4387 case COMPONENT_REF:
4388 case BIT_FIELD_REF:
4389 case ARRAY_REF:
4390 case ARRAY_RANGE_REF:
4391 case VIEW_CONVERT_EXPR:
4392 case REALPART_EXPR:
4393 case IMAGPART_EXPR:
4394 case TARGET_MEM_REF:
4395 case MEM_REF:
4396 if (!is_gimple_reg (lhs)
4397 && is_gimple_reg_type (TREE_TYPE (lhs)))
4399 error ("invalid rhs for gimple memory store");
4400 debug_generic_stmt (lhs);
4401 debug_generic_stmt (rhs1);
4402 return true;
4404 return res || verify_types_in_gimple_reference (rhs1, false);
4406 /* tcc_constant */
4407 case SSA_NAME:
4408 case INTEGER_CST:
4409 case REAL_CST:
4410 case FIXED_CST:
4411 case COMPLEX_CST:
4412 case VECTOR_CST:
4413 case STRING_CST:
4414 return res;
4416 /* tcc_declaration */
4417 case CONST_DECL:
4418 return res;
4419 case VAR_DECL:
4420 case PARM_DECL:
4421 if (!is_gimple_reg (lhs)
4422 && !is_gimple_reg (rhs1)
4423 && is_gimple_reg_type (TREE_TYPE (lhs)))
4425 error ("invalid rhs for gimple memory store");
4426 debug_generic_stmt (lhs);
4427 debug_generic_stmt (rhs1);
4428 return true;
4430 return res;
4432 case CONSTRUCTOR:
4433 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4435 unsigned int i;
4436 tree elt_i, elt_v, elt_t = NULL_TREE;
4438 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4439 return res;
4440 /* For vector CONSTRUCTORs we require that either it is empty
4441 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4442 (then the element count must be correct to cover the whole
4443 outer vector and index must be NULL on all elements, or it is
4444 a CONSTRUCTOR of scalar elements, where we as an exception allow
4445 smaller number of elements (assuming zero filling) and
4446 consecutive indexes as compared to NULL indexes (such
4447 CONSTRUCTORs can appear in the IL from FEs). */
4448 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4450 if (elt_t == NULL_TREE)
4452 elt_t = TREE_TYPE (elt_v);
4453 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4455 tree elt_t = TREE_TYPE (elt_v);
4456 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4457 TREE_TYPE (elt_t)))
4459 error ("incorrect type of vector CONSTRUCTOR"
4460 " elements");
4461 debug_generic_stmt (rhs1);
4462 return true;
4464 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4465 * TYPE_VECTOR_SUBPARTS (elt_t),
4466 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4468 error ("incorrect number of vector CONSTRUCTOR"
4469 " elements");
4470 debug_generic_stmt (rhs1);
4471 return true;
4474 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4475 elt_t))
4477 error ("incorrect type of vector CONSTRUCTOR elements");
4478 debug_generic_stmt (rhs1);
4479 return true;
4481 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4482 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4484 error ("incorrect number of vector CONSTRUCTOR elements");
4485 debug_generic_stmt (rhs1);
4486 return true;
4489 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4491 error ("incorrect type of vector CONSTRUCTOR elements");
4492 debug_generic_stmt (rhs1);
4493 return true;
4495 if (elt_i != NULL_TREE
4496 && (TREE_CODE (elt_t) == VECTOR_TYPE
4497 || TREE_CODE (elt_i) != INTEGER_CST
4498 || compare_tree_int (elt_i, i) != 0))
4500 error ("vector CONSTRUCTOR with non-NULL element index");
4501 debug_generic_stmt (rhs1);
4502 return true;
4504 if (!is_gimple_val (elt_v))
4506 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4507 debug_generic_stmt (rhs1);
4508 return true;
4512 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4514 error ("non-vector CONSTRUCTOR with elements");
4515 debug_generic_stmt (rhs1);
4516 return true;
4518 return res;
4520 case ASSERT_EXPR:
4521 /* FIXME. */
4522 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4523 if (rhs1 == boolean_false_node)
4525 error ("ASSERT_EXPR with an always-false condition");
4526 debug_generic_stmt (rhs1);
4527 return true;
4529 break;
4531 case OBJ_TYPE_REF:
4532 case WITH_SIZE_EXPR:
4533 /* FIXME. */
4534 return res;
4536 default:;
4539 return res;
4542 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4543 is a problem, otherwise false. */
4545 static bool
4546 verify_gimple_assign (gassign *stmt)
4548 switch (gimple_assign_rhs_class (stmt))
4550 case GIMPLE_SINGLE_RHS:
4551 return verify_gimple_assign_single (stmt);
4553 case GIMPLE_UNARY_RHS:
4554 return verify_gimple_assign_unary (stmt);
4556 case GIMPLE_BINARY_RHS:
4557 return verify_gimple_assign_binary (stmt);
4559 case GIMPLE_TERNARY_RHS:
4560 return verify_gimple_assign_ternary (stmt);
4562 default:
4563 gcc_unreachable ();
4567 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4568 is a problem, otherwise false. */
4570 static bool
4571 verify_gimple_return (greturn *stmt)
4573 tree op = gimple_return_retval (stmt);
4574 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4576 /* We cannot test for present return values as we do not fix up missing
4577 return values from the original source. */
4578 if (op == NULL)
4579 return false;
4581 if (!is_gimple_val (op)
4582 && TREE_CODE (op) != RESULT_DECL)
4584 error ("invalid operand in return statement");
4585 debug_generic_stmt (op);
4586 return true;
4589 if ((TREE_CODE (op) == RESULT_DECL
4590 && DECL_BY_REFERENCE (op))
4591 || (TREE_CODE (op) == SSA_NAME
4592 && SSA_NAME_VAR (op)
4593 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4594 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4595 op = TREE_TYPE (op);
4597 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4599 error ("invalid conversion in return statement");
4600 debug_generic_stmt (restype);
4601 debug_generic_stmt (TREE_TYPE (op));
4602 return true;
4605 return false;
4609 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4610 is a problem, otherwise false. */
4612 static bool
4613 verify_gimple_goto (ggoto *stmt)
4615 tree dest = gimple_goto_dest (stmt);
4617 /* ??? We have two canonical forms of direct goto destinations, a
4618 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4619 if (TREE_CODE (dest) != LABEL_DECL
4620 && (!is_gimple_val (dest)
4621 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4623 error ("goto destination is neither a label nor a pointer");
4624 return true;
4627 return false;
4630 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4631 is a problem, otherwise false. */
4633 static bool
4634 verify_gimple_switch (gswitch *stmt)
4636 unsigned int i, n;
4637 tree elt, prev_upper_bound = NULL_TREE;
4638 tree index_type, elt_type = NULL_TREE;
4640 if (!is_gimple_val (gimple_switch_index (stmt)))
4642 error ("invalid operand to switch statement");
4643 debug_generic_stmt (gimple_switch_index (stmt));
4644 return true;
4647 index_type = TREE_TYPE (gimple_switch_index (stmt));
4648 if (! INTEGRAL_TYPE_P (index_type))
4650 error ("non-integral type switch statement");
4651 debug_generic_expr (index_type);
4652 return true;
4655 elt = gimple_switch_label (stmt, 0);
4656 if (CASE_LOW (elt) != NULL_TREE
4657 || CASE_HIGH (elt) != NULL_TREE
4658 || CASE_CHAIN (elt) != NULL_TREE)
4660 error ("invalid default case label in switch statement");
4661 debug_generic_expr (elt);
4662 return true;
4665 n = gimple_switch_num_labels (stmt);
4666 for (i = 1; i < n; i++)
4668 elt = gimple_switch_label (stmt, i);
4670 if (CASE_CHAIN (elt))
4672 error ("invalid CASE_CHAIN");
4673 debug_generic_expr (elt);
4674 return true;
4676 if (! CASE_LOW (elt))
4678 error ("invalid case label in switch statement");
4679 debug_generic_expr (elt);
4680 return true;
4682 if (CASE_HIGH (elt)
4683 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4685 error ("invalid case range in switch statement");
4686 debug_generic_expr (elt);
4687 return true;
4690 if (elt_type)
4692 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4693 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4695 error ("type mismatch for case label in switch statement");
4696 debug_generic_expr (elt);
4697 return true;
4700 else
4702 elt_type = TREE_TYPE (CASE_LOW (elt));
4703 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4705 error ("type precision mismatch in switch statement");
4706 return true;
4710 if (prev_upper_bound)
4712 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4714 error ("case labels not sorted in switch statement");
4715 return true;
4719 prev_upper_bound = CASE_HIGH (elt);
4720 if (! prev_upper_bound)
4721 prev_upper_bound = CASE_LOW (elt);
4724 return false;
4727 /* Verify a gimple debug statement STMT.
4728 Returns true if anything is wrong. */
4730 static bool
4731 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4733 /* There isn't much that could be wrong in a gimple debug stmt. A
4734 gimple debug bind stmt, for example, maps a tree, that's usually
4735 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4736 component or member of an aggregate type, to another tree, that
4737 can be an arbitrary expression. These stmts expand into debug
4738 insns, and are converted to debug notes by var-tracking.c. */
4739 return false;
4742 /* Verify a gimple label statement STMT.
4743 Returns true if anything is wrong. */
4745 static bool
4746 verify_gimple_label (glabel *stmt)
4748 tree decl = gimple_label_label (stmt);
4749 int uid;
4750 bool err = false;
4752 if (TREE_CODE (decl) != LABEL_DECL)
4753 return true;
4754 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4755 && DECL_CONTEXT (decl) != current_function_decl)
4757 error ("label's context is not the current function decl");
4758 err |= true;
4761 uid = LABEL_DECL_UID (decl);
4762 if (cfun->cfg
4763 && (uid == -1
4764 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4766 error ("incorrect entry in label_to_block_map");
4767 err |= true;
4770 uid = EH_LANDING_PAD_NR (decl);
4771 if (uid)
4773 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4774 if (decl != lp->post_landing_pad)
4776 error ("incorrect setting of landing pad number");
4777 err |= true;
4781 return err;
4784 /* Verify a gimple cond statement STMT.
4785 Returns true if anything is wrong. */
4787 static bool
4788 verify_gimple_cond (gcond *stmt)
4790 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4792 error ("invalid comparison code in gimple cond");
4793 return true;
4795 if (!(!gimple_cond_true_label (stmt)
4796 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4797 || !(!gimple_cond_false_label (stmt)
4798 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4800 error ("invalid labels in gimple cond");
4801 return true;
4804 return verify_gimple_comparison (boolean_type_node,
4805 gimple_cond_lhs (stmt),
4806 gimple_cond_rhs (stmt),
4807 gimple_cond_code (stmt));
4810 /* Verify the GIMPLE statement STMT. Returns true if there is an
4811 error, otherwise false. */
4813 static bool
4814 verify_gimple_stmt (gimple *stmt)
4816 switch (gimple_code (stmt))
4818 case GIMPLE_ASSIGN:
4819 return verify_gimple_assign (as_a <gassign *> (stmt));
4821 case GIMPLE_LABEL:
4822 return verify_gimple_label (as_a <glabel *> (stmt));
4824 case GIMPLE_CALL:
4825 return verify_gimple_call (as_a <gcall *> (stmt));
4827 case GIMPLE_COND:
4828 return verify_gimple_cond (as_a <gcond *> (stmt));
4830 case GIMPLE_GOTO:
4831 return verify_gimple_goto (as_a <ggoto *> (stmt));
4833 case GIMPLE_SWITCH:
4834 return verify_gimple_switch (as_a <gswitch *> (stmt));
4836 case GIMPLE_RETURN:
4837 return verify_gimple_return (as_a <greturn *> (stmt));
4839 case GIMPLE_ASM:
4840 return false;
4842 case GIMPLE_TRANSACTION:
4843 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4845 /* Tuples that do not have tree operands. */
4846 case GIMPLE_NOP:
4847 case GIMPLE_PREDICT:
4848 case GIMPLE_RESX:
4849 case GIMPLE_EH_DISPATCH:
4850 case GIMPLE_EH_MUST_NOT_THROW:
4851 return false;
4853 CASE_GIMPLE_OMP:
4854 /* OpenMP directives are validated by the FE and never operated
4855 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4856 non-gimple expressions when the main index variable has had
4857 its address taken. This does not affect the loop itself
4858 because the header of an GIMPLE_OMP_FOR is merely used to determine
4859 how to setup the parallel iteration. */
4860 return false;
4862 case GIMPLE_DEBUG:
4863 return verify_gimple_debug (stmt);
4865 default:
4866 gcc_unreachable ();
4870 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4871 and false otherwise. */
4873 static bool
4874 verify_gimple_phi (gphi *phi)
4876 bool err = false;
4877 unsigned i;
4878 tree phi_result = gimple_phi_result (phi);
4879 bool virtual_p;
4881 if (!phi_result)
4883 error ("invalid PHI result");
4884 return true;
4887 virtual_p = virtual_operand_p (phi_result);
4888 if (TREE_CODE (phi_result) != SSA_NAME
4889 || (virtual_p
4890 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4892 error ("invalid PHI result");
4893 err = true;
4896 for (i = 0; i < gimple_phi_num_args (phi); i++)
4898 tree t = gimple_phi_arg_def (phi, i);
4900 if (!t)
4902 error ("missing PHI def");
4903 err |= true;
4904 continue;
4906 /* Addressable variables do have SSA_NAMEs but they
4907 are not considered gimple values. */
4908 else if ((TREE_CODE (t) == SSA_NAME
4909 && virtual_p != virtual_operand_p (t))
4910 || (virtual_p
4911 && (TREE_CODE (t) != SSA_NAME
4912 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4913 || (!virtual_p
4914 && !is_gimple_val (t)))
4916 error ("invalid PHI argument");
4917 debug_generic_expr (t);
4918 err |= true;
4920 #ifdef ENABLE_TYPES_CHECKING
4921 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4923 error ("incompatible types in PHI argument %u", i);
4924 debug_generic_stmt (TREE_TYPE (phi_result));
4925 debug_generic_stmt (TREE_TYPE (t));
4926 err |= true;
4928 #endif
4931 return err;
4934 /* Verify the GIMPLE statements inside the sequence STMTS. */
4936 static bool
4937 verify_gimple_in_seq_2 (gimple_seq stmts)
4939 gimple_stmt_iterator ittr;
4940 bool err = false;
4942 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4944 gimple *stmt = gsi_stmt (ittr);
4946 switch (gimple_code (stmt))
4948 case GIMPLE_BIND:
4949 err |= verify_gimple_in_seq_2 (
4950 gimple_bind_body (as_a <gbind *> (stmt)));
4951 break;
4953 case GIMPLE_TRY:
4954 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4955 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4956 break;
4958 case GIMPLE_EH_FILTER:
4959 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4960 break;
4962 case GIMPLE_EH_ELSE:
4964 geh_else *eh_else = as_a <geh_else *> (stmt);
4965 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4966 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4968 break;
4970 case GIMPLE_CATCH:
4971 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4972 as_a <gcatch *> (stmt)));
4973 break;
4975 case GIMPLE_TRANSACTION:
4976 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4977 break;
4979 default:
4981 bool err2 = verify_gimple_stmt (stmt);
4982 if (err2)
4983 debug_gimple_stmt (stmt);
4984 err |= err2;
4989 return err;
4992 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4993 is a problem, otherwise false. */
4995 static bool
4996 verify_gimple_transaction (gtransaction *stmt)
4998 tree lab;
5000 lab = gimple_transaction_label_norm (stmt);
5001 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5002 return true;
5003 lab = gimple_transaction_label_uninst (stmt);
5004 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5005 return true;
5006 lab = gimple_transaction_label_over (stmt);
5007 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5008 return true;
5010 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5014 /* Verify the GIMPLE statements inside the statement list STMTS. */
5016 DEBUG_FUNCTION void
5017 verify_gimple_in_seq (gimple_seq stmts)
5019 timevar_push (TV_TREE_STMT_VERIFY);
5020 if (verify_gimple_in_seq_2 (stmts))
5021 internal_error ("verify_gimple failed");
5022 timevar_pop (TV_TREE_STMT_VERIFY);
5025 /* Return true when the T can be shared. */
5027 static bool
5028 tree_node_can_be_shared (tree t)
5030 if (IS_TYPE_OR_DECL_P (t)
5031 || TREE_CODE (t) == SSA_NAME
5032 || TREE_CODE (t) == IDENTIFIER_NODE
5033 || TREE_CODE (t) == CASE_LABEL_EXPR
5034 || is_gimple_min_invariant (t))
5035 return true;
5037 if (t == error_mark_node)
5038 return true;
5040 return false;
5043 /* Called via walk_tree. Verify tree sharing. */
5045 static tree
5046 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5048 hash_set<void *> *visited = (hash_set<void *> *) data;
5050 if (tree_node_can_be_shared (*tp))
5052 *walk_subtrees = false;
5053 return NULL;
5056 if (visited->add (*tp))
5057 return *tp;
5059 return NULL;
5062 /* Called via walk_gimple_stmt. Verify tree sharing. */
5064 static tree
5065 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5067 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5068 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5071 static bool eh_error_found;
5072 bool
5073 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5074 hash_set<gimple *> *visited)
5076 if (!visited->contains (stmt))
5078 error ("dead STMT in EH table");
5079 debug_gimple_stmt (stmt);
5080 eh_error_found = true;
5082 return true;
5085 /* Verify if the location LOCs block is in BLOCKS. */
5087 static bool
5088 verify_location (hash_set<tree> *blocks, location_t loc)
5090 tree block = LOCATION_BLOCK (loc);
5091 if (block != NULL_TREE
5092 && !blocks->contains (block))
5094 error ("location references block not in block tree");
5095 return true;
5097 if (block != NULL_TREE)
5098 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5099 return false;
5102 /* Called via walk_tree. Verify that expressions have no blocks. */
5104 static tree
5105 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5107 if (!EXPR_P (*tp))
5109 *walk_subtrees = false;
5110 return NULL;
5113 location_t loc = EXPR_LOCATION (*tp);
5114 if (LOCATION_BLOCK (loc) != NULL)
5115 return *tp;
5117 return NULL;
5120 /* Called via walk_tree. Verify locations of expressions. */
5122 static tree
5123 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5125 hash_set<tree> *blocks = (hash_set<tree> *) data;
5126 tree t = *tp;
5128 /* ??? This doesn't really belong here but there's no good place to
5129 stick this remainder of old verify_expr. */
5130 /* ??? This barfs on debug stmts which contain binds to vars with
5131 different function context. */
5132 #if 0
5133 if (VAR_P (t)
5134 || TREE_CODE (t) == PARM_DECL
5135 || TREE_CODE (t) == RESULT_DECL)
5137 tree context = decl_function_context (t);
5138 if (context != cfun->decl
5139 && !SCOPE_FILE_SCOPE_P (context)
5140 && !TREE_STATIC (t)
5141 && !DECL_EXTERNAL (t))
5143 error ("local declaration from a different function");
5144 return t;
5147 #endif
5149 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5151 tree x = DECL_DEBUG_EXPR (t);
5152 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5153 if (addr)
5154 return addr;
5156 if ((VAR_P (t)
5157 || TREE_CODE (t) == PARM_DECL
5158 || TREE_CODE (t) == RESULT_DECL)
5159 && DECL_HAS_VALUE_EXPR_P (t))
5161 tree x = DECL_VALUE_EXPR (t);
5162 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5163 if (addr)
5164 return addr;
5167 if (!EXPR_P (t))
5169 *walk_subtrees = false;
5170 return NULL;
5173 location_t loc = EXPR_LOCATION (t);
5174 if (verify_location (blocks, loc))
5175 return t;
5177 return NULL;
5180 /* Called via walk_gimple_op. Verify locations of expressions. */
5182 static tree
5183 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5185 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5186 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5189 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5191 static void
5192 collect_subblocks (hash_set<tree> *blocks, tree block)
5194 tree t;
5195 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5197 blocks->add (t);
5198 collect_subblocks (blocks, t);
5202 /* Verify the GIMPLE statements in the CFG of FN. */
5204 DEBUG_FUNCTION void
5205 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5207 basic_block bb;
5208 bool err = false;
5210 timevar_push (TV_TREE_STMT_VERIFY);
5211 hash_set<void *> visited;
5212 hash_set<gimple *> visited_throwing_stmts;
5214 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5215 hash_set<tree> blocks;
5216 if (DECL_INITIAL (fn->decl))
5218 blocks.add (DECL_INITIAL (fn->decl));
5219 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5222 FOR_EACH_BB_FN (bb, fn)
5224 gimple_stmt_iterator gsi;
5226 for (gphi_iterator gpi = gsi_start_phis (bb);
5227 !gsi_end_p (gpi);
5228 gsi_next (&gpi))
5230 gphi *phi = gpi.phi ();
5231 bool err2 = false;
5232 unsigned i;
5234 if (gimple_bb (phi) != bb)
5236 error ("gimple_bb (phi) is set to a wrong basic block");
5237 err2 = true;
5240 err2 |= verify_gimple_phi (phi);
5242 /* Only PHI arguments have locations. */
5243 if (gimple_location (phi) != UNKNOWN_LOCATION)
5245 error ("PHI node with location");
5246 err2 = true;
5249 for (i = 0; i < gimple_phi_num_args (phi); i++)
5251 tree arg = gimple_phi_arg_def (phi, i);
5252 tree addr = walk_tree (&arg, verify_node_sharing_1,
5253 &visited, NULL);
5254 if (addr)
5256 error ("incorrect sharing of tree nodes");
5257 debug_generic_expr (addr);
5258 err2 |= true;
5260 location_t loc = gimple_phi_arg_location (phi, i);
5261 if (virtual_operand_p (gimple_phi_result (phi))
5262 && loc != UNKNOWN_LOCATION)
5264 error ("virtual PHI with argument locations");
5265 err2 = true;
5267 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5268 if (addr)
5270 debug_generic_expr (addr);
5271 err2 = true;
5273 err2 |= verify_location (&blocks, loc);
5276 if (err2)
5277 debug_gimple_stmt (phi);
5278 err |= err2;
5281 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5283 gimple *stmt = gsi_stmt (gsi);
5284 bool err2 = false;
5285 struct walk_stmt_info wi;
5286 tree addr;
5287 int lp_nr;
5289 if (gimple_bb (stmt) != bb)
5291 error ("gimple_bb (stmt) is set to a wrong basic block");
5292 err2 = true;
5295 err2 |= verify_gimple_stmt (stmt);
5296 err2 |= verify_location (&blocks, gimple_location (stmt));
5298 memset (&wi, 0, sizeof (wi));
5299 wi.info = (void *) &visited;
5300 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5301 if (addr)
5303 error ("incorrect sharing of tree nodes");
5304 debug_generic_expr (addr);
5305 err2 |= true;
5308 memset (&wi, 0, sizeof (wi));
5309 wi.info = (void *) &blocks;
5310 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5311 if (addr)
5313 debug_generic_expr (addr);
5314 err2 |= true;
5317 /* If the statement is marked as part of an EH region, then it is
5318 expected that the statement could throw. Verify that when we
5319 have optimizations that simplify statements such that we prove
5320 that they cannot throw, that we update other data structures
5321 to match. */
5322 lp_nr = lookup_stmt_eh_lp (stmt);
5323 if (lp_nr != 0)
5324 visited_throwing_stmts.add (stmt);
5325 if (lp_nr > 0)
5327 if (!stmt_could_throw_p (stmt))
5329 if (verify_nothrow)
5331 error ("statement marked for throw, but doesn%'t");
5332 err2 |= true;
5335 else if (!gsi_one_before_end_p (gsi))
5337 error ("statement marked for throw in middle of block");
5338 err2 |= true;
5342 if (err2)
5343 debug_gimple_stmt (stmt);
5344 err |= err2;
5348 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5349 eh_error_found = false;
5350 if (eh_table)
5351 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5352 (&visited_throwing_stmts);
5354 if (err || eh_error_found)
5355 internal_error ("verify_gimple failed");
5357 verify_histograms ();
5358 timevar_pop (TV_TREE_STMT_VERIFY);
5362 /* Verifies that the flow information is OK. */
5364 static int
5365 gimple_verify_flow_info (void)
5367 int err = 0;
5368 basic_block bb;
5369 gimple_stmt_iterator gsi;
5370 gimple *stmt;
5371 edge e;
5372 edge_iterator ei;
5374 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5375 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5377 error ("ENTRY_BLOCK has IL associated with it");
5378 err = 1;
5381 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5382 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5384 error ("EXIT_BLOCK has IL associated with it");
5385 err = 1;
5388 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5389 if (e->flags & EDGE_FALLTHRU)
5391 error ("fallthru to exit from bb %d", e->src->index);
5392 err = 1;
5395 FOR_EACH_BB_FN (bb, cfun)
5397 bool found_ctrl_stmt = false;
5399 stmt = NULL;
5401 /* Skip labels on the start of basic block. */
5402 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5404 tree label;
5405 gimple *prev_stmt = stmt;
5407 stmt = gsi_stmt (gsi);
5409 if (gimple_code (stmt) != GIMPLE_LABEL)
5410 break;
5412 label = gimple_label_label (as_a <glabel *> (stmt));
5413 if (prev_stmt && DECL_NONLOCAL (label))
5415 error ("nonlocal label ");
5416 print_generic_expr (stderr, label);
5417 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5418 bb->index);
5419 err = 1;
5422 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5424 error ("EH landing pad label ");
5425 print_generic_expr (stderr, label);
5426 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5427 bb->index);
5428 err = 1;
5431 if (label_to_block (label) != bb)
5433 error ("label ");
5434 print_generic_expr (stderr, label);
5435 fprintf (stderr, " to block does not match in bb %d",
5436 bb->index);
5437 err = 1;
5440 if (decl_function_context (label) != current_function_decl)
5442 error ("label ");
5443 print_generic_expr (stderr, label);
5444 fprintf (stderr, " has incorrect context in bb %d",
5445 bb->index);
5446 err = 1;
5450 /* Verify that body of basic block BB is free of control flow. */
5451 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5453 gimple *stmt = gsi_stmt (gsi);
5455 if (found_ctrl_stmt)
5457 error ("control flow in the middle of basic block %d",
5458 bb->index);
5459 err = 1;
5462 if (stmt_ends_bb_p (stmt))
5463 found_ctrl_stmt = true;
5465 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5467 error ("label ");
5468 print_generic_expr (stderr, gimple_label_label (label_stmt));
5469 fprintf (stderr, " in the middle of basic block %d", bb->index);
5470 err = 1;
5474 gsi = gsi_last_nondebug_bb (bb);
5475 if (gsi_end_p (gsi))
5476 continue;
5478 stmt = gsi_stmt (gsi);
5480 if (gimple_code (stmt) == GIMPLE_LABEL)
5481 continue;
5483 err |= verify_eh_edges (stmt);
5485 if (is_ctrl_stmt (stmt))
5487 FOR_EACH_EDGE (e, ei, bb->succs)
5488 if (e->flags & EDGE_FALLTHRU)
5490 error ("fallthru edge after a control statement in bb %d",
5491 bb->index);
5492 err = 1;
5496 if (gimple_code (stmt) != GIMPLE_COND)
5498 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5499 after anything else but if statement. */
5500 FOR_EACH_EDGE (e, ei, bb->succs)
5501 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5503 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5504 bb->index);
5505 err = 1;
5509 switch (gimple_code (stmt))
5511 case GIMPLE_COND:
5513 edge true_edge;
5514 edge false_edge;
5516 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5518 if (!true_edge
5519 || !false_edge
5520 || !(true_edge->flags & EDGE_TRUE_VALUE)
5521 || !(false_edge->flags & EDGE_FALSE_VALUE)
5522 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5523 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5524 || EDGE_COUNT (bb->succs) >= 3)
5526 error ("wrong outgoing edge flags at end of bb %d",
5527 bb->index);
5528 err = 1;
5531 break;
5533 case GIMPLE_GOTO:
5534 if (simple_goto_p (stmt))
5536 error ("explicit goto at end of bb %d", bb->index);
5537 err = 1;
5539 else
5541 /* FIXME. We should double check that the labels in the
5542 destination blocks have their address taken. */
5543 FOR_EACH_EDGE (e, ei, bb->succs)
5544 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5545 | EDGE_FALSE_VALUE))
5546 || !(e->flags & EDGE_ABNORMAL))
5548 error ("wrong outgoing edge flags at end of bb %d",
5549 bb->index);
5550 err = 1;
5553 break;
5555 case GIMPLE_CALL:
5556 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5557 break;
5558 /* fallthru */
5559 case GIMPLE_RETURN:
5560 if (!single_succ_p (bb)
5561 || (single_succ_edge (bb)->flags
5562 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5563 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5565 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5566 err = 1;
5568 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5570 error ("return edge does not point to exit in bb %d",
5571 bb->index);
5572 err = 1;
5574 break;
5576 case GIMPLE_SWITCH:
5578 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5579 tree prev;
5580 edge e;
5581 size_t i, n;
5583 n = gimple_switch_num_labels (switch_stmt);
5585 /* Mark all the destination basic blocks. */
5586 for (i = 0; i < n; ++i)
5588 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5589 basic_block label_bb = label_to_block (lab);
5590 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5591 label_bb->aux = (void *)1;
5594 /* Verify that the case labels are sorted. */
5595 prev = gimple_switch_label (switch_stmt, 0);
5596 for (i = 1; i < n; ++i)
5598 tree c = gimple_switch_label (switch_stmt, i);
5599 if (!CASE_LOW (c))
5601 error ("found default case not at the start of "
5602 "case vector");
5603 err = 1;
5604 continue;
5606 if (CASE_LOW (prev)
5607 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5609 error ("case labels not sorted: ");
5610 print_generic_expr (stderr, prev);
5611 fprintf (stderr," is greater than ");
5612 print_generic_expr (stderr, c);
5613 fprintf (stderr," but comes before it.\n");
5614 err = 1;
5616 prev = c;
5618 /* VRP will remove the default case if it can prove it will
5619 never be executed. So do not verify there always exists
5620 a default case here. */
5622 FOR_EACH_EDGE (e, ei, bb->succs)
5624 if (!e->dest->aux)
5626 error ("extra outgoing edge %d->%d",
5627 bb->index, e->dest->index);
5628 err = 1;
5631 e->dest->aux = (void *)2;
5632 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5633 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5635 error ("wrong outgoing edge flags at end of bb %d",
5636 bb->index);
5637 err = 1;
5641 /* Check that we have all of them. */
5642 for (i = 0; i < n; ++i)
5644 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5645 basic_block label_bb = label_to_block (lab);
5647 if (label_bb->aux != (void *)2)
5649 error ("missing edge %i->%i", bb->index, label_bb->index);
5650 err = 1;
5654 FOR_EACH_EDGE (e, ei, bb->succs)
5655 e->dest->aux = (void *)0;
5657 break;
5659 case GIMPLE_EH_DISPATCH:
5660 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5661 break;
5663 default:
5664 break;
5668 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5669 verify_dominators (CDI_DOMINATORS);
5671 return err;
5675 /* Updates phi nodes after creating a forwarder block joined
5676 by edge FALLTHRU. */
5678 static void
5679 gimple_make_forwarder_block (edge fallthru)
5681 edge e;
5682 edge_iterator ei;
5683 basic_block dummy, bb;
5684 tree var;
5685 gphi_iterator gsi;
5687 dummy = fallthru->src;
5688 bb = fallthru->dest;
5690 if (single_pred_p (bb))
5691 return;
5693 /* If we redirected a branch we must create new PHI nodes at the
5694 start of BB. */
5695 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5697 gphi *phi, *new_phi;
5699 phi = gsi.phi ();
5700 var = gimple_phi_result (phi);
5701 new_phi = create_phi_node (var, bb);
5702 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5703 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5704 UNKNOWN_LOCATION);
5707 /* Add the arguments we have stored on edges. */
5708 FOR_EACH_EDGE (e, ei, bb->preds)
5710 if (e == fallthru)
5711 continue;
5713 flush_pending_stmts (e);
5718 /* Return a non-special label in the head of basic block BLOCK.
5719 Create one if it doesn't exist. */
5721 tree
5722 gimple_block_label (basic_block bb)
5724 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5725 bool first = true;
5726 tree label;
5727 glabel *stmt;
5729 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5731 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5732 if (!stmt)
5733 break;
5734 label = gimple_label_label (stmt);
5735 if (!DECL_NONLOCAL (label))
5737 if (!first)
5738 gsi_move_before (&i, &s);
5739 return label;
5743 label = create_artificial_label (UNKNOWN_LOCATION);
5744 stmt = gimple_build_label (label);
5745 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5746 return label;
5750 /* Attempt to perform edge redirection by replacing a possibly complex
5751 jump instruction by a goto or by removing the jump completely.
5752 This can apply only if all edges now point to the same block. The
5753 parameters and return values are equivalent to
5754 redirect_edge_and_branch. */
5756 static edge
5757 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5759 basic_block src = e->src;
5760 gimple_stmt_iterator i;
5761 gimple *stmt;
5763 /* We can replace or remove a complex jump only when we have exactly
5764 two edges. */
5765 if (EDGE_COUNT (src->succs) != 2
5766 /* Verify that all targets will be TARGET. Specifically, the
5767 edge that is not E must also go to TARGET. */
5768 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5769 return NULL;
5771 i = gsi_last_bb (src);
5772 if (gsi_end_p (i))
5773 return NULL;
5775 stmt = gsi_stmt (i);
5777 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5779 gsi_remove (&i, true);
5780 e = ssa_redirect_edge (e, target);
5781 e->flags = EDGE_FALLTHRU;
5782 return e;
5785 return NULL;
5789 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5790 edge representing the redirected branch. */
5792 static edge
5793 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5795 basic_block bb = e->src;
5796 gimple_stmt_iterator gsi;
5797 edge ret;
5798 gimple *stmt;
5800 if (e->flags & EDGE_ABNORMAL)
5801 return NULL;
5803 if (e->dest == dest)
5804 return NULL;
5806 if (e->flags & EDGE_EH)
5807 return redirect_eh_edge (e, dest);
5809 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5811 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5812 if (ret)
5813 return ret;
5816 gsi = gsi_last_nondebug_bb (bb);
5817 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5819 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5821 case GIMPLE_COND:
5822 /* For COND_EXPR, we only need to redirect the edge. */
5823 break;
5825 case GIMPLE_GOTO:
5826 /* No non-abnormal edges should lead from a non-simple goto, and
5827 simple ones should be represented implicitly. */
5828 gcc_unreachable ();
5830 case GIMPLE_SWITCH:
5832 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5833 tree label = gimple_block_label (dest);
5834 tree cases = get_cases_for_edge (e, switch_stmt);
5836 /* If we have a list of cases associated with E, then use it
5837 as it's a lot faster than walking the entire case vector. */
5838 if (cases)
5840 edge e2 = find_edge (e->src, dest);
5841 tree last, first;
5843 first = cases;
5844 while (cases)
5846 last = cases;
5847 CASE_LABEL (cases) = label;
5848 cases = CASE_CHAIN (cases);
5851 /* If there was already an edge in the CFG, then we need
5852 to move all the cases associated with E to E2. */
5853 if (e2)
5855 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5857 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5858 CASE_CHAIN (cases2) = first;
5860 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5862 else
5864 size_t i, n = gimple_switch_num_labels (switch_stmt);
5866 for (i = 0; i < n; i++)
5868 tree elt = gimple_switch_label (switch_stmt, i);
5869 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5870 CASE_LABEL (elt) = label;
5874 break;
5876 case GIMPLE_ASM:
5878 gasm *asm_stmt = as_a <gasm *> (stmt);
5879 int i, n = gimple_asm_nlabels (asm_stmt);
5880 tree label = NULL;
5882 for (i = 0; i < n; ++i)
5884 tree cons = gimple_asm_label_op (asm_stmt, i);
5885 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5887 if (!label)
5888 label = gimple_block_label (dest);
5889 TREE_VALUE (cons) = label;
5893 /* If we didn't find any label matching the former edge in the
5894 asm labels, we must be redirecting the fallthrough
5895 edge. */
5896 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5898 break;
5900 case GIMPLE_RETURN:
5901 gsi_remove (&gsi, true);
5902 e->flags |= EDGE_FALLTHRU;
5903 break;
5905 case GIMPLE_OMP_RETURN:
5906 case GIMPLE_OMP_CONTINUE:
5907 case GIMPLE_OMP_SECTIONS_SWITCH:
5908 case GIMPLE_OMP_FOR:
5909 /* The edges from OMP constructs can be simply redirected. */
5910 break;
5912 case GIMPLE_EH_DISPATCH:
5913 if (!(e->flags & EDGE_FALLTHRU))
5914 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5915 break;
5917 case GIMPLE_TRANSACTION:
5918 if (e->flags & EDGE_TM_ABORT)
5919 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5920 gimple_block_label (dest));
5921 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5922 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5923 gimple_block_label (dest));
5924 else
5925 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5926 gimple_block_label (dest));
5927 break;
5929 default:
5930 /* Otherwise it must be a fallthru edge, and we don't need to
5931 do anything besides redirecting it. */
5932 gcc_assert (e->flags & EDGE_FALLTHRU);
5933 break;
5936 /* Update/insert PHI nodes as necessary. */
5938 /* Now update the edges in the CFG. */
5939 e = ssa_redirect_edge (e, dest);
5941 return e;
5944 /* Returns true if it is possible to remove edge E by redirecting
5945 it to the destination of the other edge from E->src. */
5947 static bool
5948 gimple_can_remove_branch_p (const_edge e)
5950 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5951 return false;
5953 return true;
5956 /* Simple wrapper, as we can always redirect fallthru edges. */
5958 static basic_block
5959 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5961 e = gimple_redirect_edge_and_branch (e, dest);
5962 gcc_assert (e);
5964 return NULL;
5968 /* Splits basic block BB after statement STMT (but at least after the
5969 labels). If STMT is NULL, BB is split just after the labels. */
5971 static basic_block
5972 gimple_split_block (basic_block bb, void *stmt)
5974 gimple_stmt_iterator gsi;
5975 gimple_stmt_iterator gsi_tgt;
5976 gimple_seq list;
5977 basic_block new_bb;
5978 edge e;
5979 edge_iterator ei;
5981 new_bb = create_empty_bb (bb);
5983 /* Redirect the outgoing edges. */
5984 new_bb->succs = bb->succs;
5985 bb->succs = NULL;
5986 FOR_EACH_EDGE (e, ei, new_bb->succs)
5987 e->src = new_bb;
5989 /* Get a stmt iterator pointing to the first stmt to move. */
5990 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5991 gsi = gsi_after_labels (bb);
5992 else
5994 gsi = gsi_for_stmt ((gimple *) stmt);
5995 gsi_next (&gsi);
5998 /* Move everything from GSI to the new basic block. */
5999 if (gsi_end_p (gsi))
6000 return new_bb;
6002 /* Split the statement list - avoid re-creating new containers as this
6003 brings ugly quadratic memory consumption in the inliner.
6004 (We are still quadratic since we need to update stmt BB pointers,
6005 sadly.) */
6006 gsi_split_seq_before (&gsi, &list);
6007 set_bb_seq (new_bb, list);
6008 for (gsi_tgt = gsi_start (list);
6009 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6010 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6012 return new_bb;
6016 /* Moves basic block BB after block AFTER. */
6018 static bool
6019 gimple_move_block_after (basic_block bb, basic_block after)
6021 if (bb->prev_bb == after)
6022 return true;
6024 unlink_block (bb);
6025 link_block (bb, after);
6027 return true;
6031 /* Return TRUE if block BB has no executable statements, otherwise return
6032 FALSE. */
6034 static bool
6035 gimple_empty_block_p (basic_block bb)
6037 /* BB must have no executable statements. */
6038 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6039 if (phi_nodes (bb))
6040 return false;
6041 if (gsi_end_p (gsi))
6042 return true;
6043 if (is_gimple_debug (gsi_stmt (gsi)))
6044 gsi_next_nondebug (&gsi);
6045 return gsi_end_p (gsi);
6049 /* Split a basic block if it ends with a conditional branch and if the
6050 other part of the block is not empty. */
6052 static basic_block
6053 gimple_split_block_before_cond_jump (basic_block bb)
6055 gimple *last, *split_point;
6056 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6057 if (gsi_end_p (gsi))
6058 return NULL;
6059 last = gsi_stmt (gsi);
6060 if (gimple_code (last) != GIMPLE_COND
6061 && gimple_code (last) != GIMPLE_SWITCH)
6062 return NULL;
6063 gsi_prev (&gsi);
6064 split_point = gsi_stmt (gsi);
6065 return split_block (bb, split_point)->dest;
6069 /* Return true if basic_block can be duplicated. */
6071 static bool
6072 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6074 return true;
6077 /* Create a duplicate of the basic block BB. NOTE: This does not
6078 preserve SSA form. */
6080 static basic_block
6081 gimple_duplicate_bb (basic_block bb)
6083 basic_block new_bb;
6084 gimple_stmt_iterator gsi_tgt;
6086 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6088 /* Copy the PHI nodes. We ignore PHI node arguments here because
6089 the incoming edges have not been setup yet. */
6090 for (gphi_iterator gpi = gsi_start_phis (bb);
6091 !gsi_end_p (gpi);
6092 gsi_next (&gpi))
6094 gphi *phi, *copy;
6095 phi = gpi.phi ();
6096 copy = create_phi_node (NULL_TREE, new_bb);
6097 create_new_def_for (gimple_phi_result (phi), copy,
6098 gimple_phi_result_ptr (copy));
6099 gimple_set_uid (copy, gimple_uid (phi));
6102 gsi_tgt = gsi_start_bb (new_bb);
6103 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6104 !gsi_end_p (gsi);
6105 gsi_next (&gsi))
6107 def_operand_p def_p;
6108 ssa_op_iter op_iter;
6109 tree lhs;
6110 gimple *stmt, *copy;
6112 stmt = gsi_stmt (gsi);
6113 if (gimple_code (stmt) == GIMPLE_LABEL)
6114 continue;
6116 /* Don't duplicate label debug stmts. */
6117 if (gimple_debug_bind_p (stmt)
6118 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6119 == LABEL_DECL)
6120 continue;
6122 /* Create a new copy of STMT and duplicate STMT's virtual
6123 operands. */
6124 copy = gimple_copy (stmt);
6125 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6127 maybe_duplicate_eh_stmt (copy, stmt);
6128 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6130 /* When copying around a stmt writing into a local non-user
6131 aggregate, make sure it won't share stack slot with other
6132 vars. */
6133 lhs = gimple_get_lhs (stmt);
6134 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6136 tree base = get_base_address (lhs);
6137 if (base
6138 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6139 && DECL_IGNORED_P (base)
6140 && !TREE_STATIC (base)
6141 && !DECL_EXTERNAL (base)
6142 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6143 DECL_NONSHAREABLE (base) = 1;
6146 /* Create new names for all the definitions created by COPY and
6147 add replacement mappings for each new name. */
6148 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6149 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6152 return new_bb;
6155 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6157 static void
6158 add_phi_args_after_copy_edge (edge e_copy)
6160 basic_block bb, bb_copy = e_copy->src, dest;
6161 edge e;
6162 edge_iterator ei;
6163 gphi *phi, *phi_copy;
6164 tree def;
6165 gphi_iterator psi, psi_copy;
6167 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6168 return;
6170 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6172 if (e_copy->dest->flags & BB_DUPLICATED)
6173 dest = get_bb_original (e_copy->dest);
6174 else
6175 dest = e_copy->dest;
6177 e = find_edge (bb, dest);
6178 if (!e)
6180 /* During loop unrolling the target of the latch edge is copied.
6181 In this case we are not looking for edge to dest, but to
6182 duplicated block whose original was dest. */
6183 FOR_EACH_EDGE (e, ei, bb->succs)
6185 if ((e->dest->flags & BB_DUPLICATED)
6186 && get_bb_original (e->dest) == dest)
6187 break;
6190 gcc_assert (e != NULL);
6193 for (psi = gsi_start_phis (e->dest),
6194 psi_copy = gsi_start_phis (e_copy->dest);
6195 !gsi_end_p (psi);
6196 gsi_next (&psi), gsi_next (&psi_copy))
6198 phi = psi.phi ();
6199 phi_copy = psi_copy.phi ();
6200 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6201 add_phi_arg (phi_copy, def, e_copy,
6202 gimple_phi_arg_location_from_edge (phi, e));
6207 /* Basic block BB_COPY was created by code duplication. Add phi node
6208 arguments for edges going out of BB_COPY. The blocks that were
6209 duplicated have BB_DUPLICATED set. */
6211 void
6212 add_phi_args_after_copy_bb (basic_block bb_copy)
6214 edge e_copy;
6215 edge_iterator ei;
6217 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6219 add_phi_args_after_copy_edge (e_copy);
6223 /* Blocks in REGION_COPY array of length N_REGION were created by
6224 duplication of basic blocks. Add phi node arguments for edges
6225 going from these blocks. If E_COPY is not NULL, also add
6226 phi node arguments for its destination.*/
6228 void
6229 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6230 edge e_copy)
6232 unsigned i;
6234 for (i = 0; i < n_region; i++)
6235 region_copy[i]->flags |= BB_DUPLICATED;
6237 for (i = 0; i < n_region; i++)
6238 add_phi_args_after_copy_bb (region_copy[i]);
6239 if (e_copy)
6240 add_phi_args_after_copy_edge (e_copy);
6242 for (i = 0; i < n_region; i++)
6243 region_copy[i]->flags &= ~BB_DUPLICATED;
6246 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6247 important exit edge EXIT. By important we mean that no SSA name defined
6248 inside region is live over the other exit edges of the region. All entry
6249 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6250 to the duplicate of the region. Dominance and loop information is
6251 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6252 UPDATE_DOMINANCE is false then we assume that the caller will update the
6253 dominance information after calling this function. The new basic
6254 blocks are stored to REGION_COPY in the same order as they had in REGION,
6255 provided that REGION_COPY is not NULL.
6256 The function returns false if it is unable to copy the region,
6257 true otherwise. */
6259 bool
6260 gimple_duplicate_sese_region (edge entry, edge exit,
6261 basic_block *region, unsigned n_region,
6262 basic_block *region_copy,
6263 bool update_dominance)
6265 unsigned i;
6266 bool free_region_copy = false, copying_header = false;
6267 struct loop *loop = entry->dest->loop_father;
6268 edge exit_copy;
6269 vec<basic_block> doms = vNULL;
6270 edge redirected;
6271 profile_count total_count = profile_count::uninitialized ();
6272 profile_count entry_count = profile_count::uninitialized ();
6274 if (!can_copy_bbs_p (region, n_region))
6275 return false;
6277 /* Some sanity checking. Note that we do not check for all possible
6278 missuses of the functions. I.e. if you ask to copy something weird,
6279 it will work, but the state of structures probably will not be
6280 correct. */
6281 for (i = 0; i < n_region; i++)
6283 /* We do not handle subloops, i.e. all the blocks must belong to the
6284 same loop. */
6285 if (region[i]->loop_father != loop)
6286 return false;
6288 if (region[i] != entry->dest
6289 && region[i] == loop->header)
6290 return false;
6293 /* In case the function is used for loop header copying (which is the primary
6294 use), ensure that EXIT and its copy will be new latch and entry edges. */
6295 if (loop->header == entry->dest)
6297 copying_header = true;
6299 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6300 return false;
6302 for (i = 0; i < n_region; i++)
6303 if (region[i] != exit->src
6304 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6305 return false;
6308 initialize_original_copy_tables ();
6310 if (copying_header)
6311 set_loop_copy (loop, loop_outer (loop));
6312 else
6313 set_loop_copy (loop, loop);
6315 if (!region_copy)
6317 region_copy = XNEWVEC (basic_block, n_region);
6318 free_region_copy = true;
6321 /* Record blocks outside the region that are dominated by something
6322 inside. */
6323 if (update_dominance)
6325 doms.create (0);
6326 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6329 if (entry->dest->count.initialized_p ())
6331 total_count = entry->dest->count;
6332 entry_count = entry->count ();
6333 /* Fix up corner cases, to avoid division by zero or creation of negative
6334 frequencies. */
6335 if (entry_count > total_count)
6336 entry_count = total_count;
6339 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6340 split_edge_bb_loc (entry), update_dominance);
6341 if (total_count.initialized_p () && entry_count.initialized_p ())
6343 scale_bbs_frequencies_profile_count (region, n_region,
6344 total_count - entry_count,
6345 total_count);
6346 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6347 total_count);
6350 if (copying_header)
6352 loop->header = exit->dest;
6353 loop->latch = exit->src;
6356 /* Redirect the entry and add the phi node arguments. */
6357 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6358 gcc_assert (redirected != NULL);
6359 flush_pending_stmts (entry);
6361 /* Concerning updating of dominators: We must recount dominators
6362 for entry block and its copy. Anything that is outside of the
6363 region, but was dominated by something inside needs recounting as
6364 well. */
6365 if (update_dominance)
6367 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6368 doms.safe_push (get_bb_original (entry->dest));
6369 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6370 doms.release ();
6373 /* Add the other PHI node arguments. */
6374 add_phi_args_after_copy (region_copy, n_region, NULL);
6376 if (free_region_copy)
6377 free (region_copy);
6379 free_original_copy_tables ();
6380 return true;
6383 /* Checks if BB is part of the region defined by N_REGION BBS. */
6384 static bool
6385 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6387 unsigned int n;
6389 for (n = 0; n < n_region; n++)
6391 if (bb == bbs[n])
6392 return true;
6394 return false;
6397 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6398 are stored to REGION_COPY in the same order in that they appear
6399 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6400 the region, EXIT an exit from it. The condition guarding EXIT
6401 is moved to ENTRY. Returns true if duplication succeeds, false
6402 otherwise.
6404 For example,
6406 some_code;
6407 if (cond)
6409 else
6412 is transformed to
6414 if (cond)
6416 some_code;
6419 else
6421 some_code;
6426 bool
6427 gimple_duplicate_sese_tail (edge entry, edge exit,
6428 basic_block *region, unsigned n_region,
6429 basic_block *region_copy)
6431 unsigned i;
6432 bool free_region_copy = false;
6433 struct loop *loop = exit->dest->loop_father;
6434 struct loop *orig_loop = entry->dest->loop_father;
6435 basic_block switch_bb, entry_bb, nentry_bb;
6436 vec<basic_block> doms;
6437 profile_count total_count = profile_count::uninitialized (),
6438 exit_count = profile_count::uninitialized ();
6439 edge exits[2], nexits[2], e;
6440 gimple_stmt_iterator gsi;
6441 gimple *cond_stmt;
6442 edge sorig, snew;
6443 basic_block exit_bb;
6444 gphi_iterator psi;
6445 gphi *phi;
6446 tree def;
6447 struct loop *target, *aloop, *cloop;
6449 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6450 exits[0] = exit;
6451 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6453 if (!can_copy_bbs_p (region, n_region))
6454 return false;
6456 initialize_original_copy_tables ();
6457 set_loop_copy (orig_loop, loop);
6459 target= loop;
6460 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6462 if (bb_part_of_region_p (aloop->header, region, n_region))
6464 cloop = duplicate_loop (aloop, target);
6465 duplicate_subloops (aloop, cloop);
6469 if (!region_copy)
6471 region_copy = XNEWVEC (basic_block, n_region);
6472 free_region_copy = true;
6475 gcc_assert (!need_ssa_update_p (cfun));
6477 /* Record blocks outside the region that are dominated by something
6478 inside. */
6479 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6481 total_count = exit->src->count;
6482 exit_count = exit->count ();
6483 /* Fix up corner cases, to avoid division by zero or creation of negative
6484 frequencies. */
6485 if (exit_count > total_count)
6486 exit_count = total_count;
6488 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6489 split_edge_bb_loc (exit), true);
6490 if (total_count.initialized_p () && exit_count.initialized_p ())
6492 scale_bbs_frequencies_profile_count (region, n_region,
6493 total_count - exit_count,
6494 total_count);
6495 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6496 total_count);
6499 /* Create the switch block, and put the exit condition to it. */
6500 entry_bb = entry->dest;
6501 nentry_bb = get_bb_copy (entry_bb);
6502 if (!last_stmt (entry->src)
6503 || !stmt_ends_bb_p (last_stmt (entry->src)))
6504 switch_bb = entry->src;
6505 else
6506 switch_bb = split_edge (entry);
6507 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6509 gsi = gsi_last_bb (switch_bb);
6510 cond_stmt = last_stmt (exit->src);
6511 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6512 cond_stmt = gimple_copy (cond_stmt);
6514 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6516 sorig = single_succ_edge (switch_bb);
6517 sorig->flags = exits[1]->flags;
6518 sorig->probability = exits[1]->probability;
6519 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6520 snew->probability = exits[0]->probability;
6523 /* Register the new edge from SWITCH_BB in loop exit lists. */
6524 rescan_loop_exit (snew, true, false);
6526 /* Add the PHI node arguments. */
6527 add_phi_args_after_copy (region_copy, n_region, snew);
6529 /* Get rid of now superfluous conditions and associated edges (and phi node
6530 arguments). */
6531 exit_bb = exit->dest;
6533 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6534 PENDING_STMT (e) = NULL;
6536 /* The latch of ORIG_LOOP was copied, and so was the backedge
6537 to the original header. We redirect this backedge to EXIT_BB. */
6538 for (i = 0; i < n_region; i++)
6539 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6541 gcc_assert (single_succ_edge (region_copy[i]));
6542 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6543 PENDING_STMT (e) = NULL;
6544 for (psi = gsi_start_phis (exit_bb);
6545 !gsi_end_p (psi);
6546 gsi_next (&psi))
6548 phi = psi.phi ();
6549 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6550 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6553 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6554 PENDING_STMT (e) = NULL;
6556 /* Anything that is outside of the region, but was dominated by something
6557 inside needs to update dominance info. */
6558 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6559 doms.release ();
6560 /* Update the SSA web. */
6561 update_ssa (TODO_update_ssa);
6563 if (free_region_copy)
6564 free (region_copy);
6566 free_original_copy_tables ();
6567 return true;
6570 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6571 adding blocks when the dominator traversal reaches EXIT. This
6572 function silently assumes that ENTRY strictly dominates EXIT. */
6574 void
6575 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6576 vec<basic_block> *bbs_p)
6578 basic_block son;
6580 for (son = first_dom_son (CDI_DOMINATORS, entry);
6581 son;
6582 son = next_dom_son (CDI_DOMINATORS, son))
6584 bbs_p->safe_push (son);
6585 if (son != exit)
6586 gather_blocks_in_sese_region (son, exit, bbs_p);
6590 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6591 The duplicates are recorded in VARS_MAP. */
6593 static void
6594 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6595 tree to_context)
6597 tree t = *tp, new_t;
6598 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6600 if (DECL_CONTEXT (t) == to_context)
6601 return;
6603 bool existed;
6604 tree &loc = vars_map->get_or_insert (t, &existed);
6606 if (!existed)
6608 if (SSA_VAR_P (t))
6610 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6611 add_local_decl (f, new_t);
6613 else
6615 gcc_assert (TREE_CODE (t) == CONST_DECL);
6616 new_t = copy_node (t);
6618 DECL_CONTEXT (new_t) = to_context;
6620 loc = new_t;
6622 else
6623 new_t = loc;
6625 *tp = new_t;
6629 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6630 VARS_MAP maps old ssa names and var_decls to the new ones. */
6632 static tree
6633 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6634 tree to_context)
6636 tree new_name;
6638 gcc_assert (!virtual_operand_p (name));
6640 tree *loc = vars_map->get (name);
6642 if (!loc)
6644 tree decl = SSA_NAME_VAR (name);
6645 if (decl)
6647 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6648 replace_by_duplicate_decl (&decl, vars_map, to_context);
6649 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6650 decl, SSA_NAME_DEF_STMT (name));
6652 else
6653 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6654 name, SSA_NAME_DEF_STMT (name));
6656 /* Now that we've used the def stmt to define new_name, make sure it
6657 doesn't define name anymore. */
6658 SSA_NAME_DEF_STMT (name) = NULL;
6660 vars_map->put (name, new_name);
6662 else
6663 new_name = *loc;
6665 return new_name;
6668 struct move_stmt_d
6670 tree orig_block;
6671 tree new_block;
6672 tree from_context;
6673 tree to_context;
6674 hash_map<tree, tree> *vars_map;
6675 htab_t new_label_map;
6676 hash_map<void *, void *> *eh_map;
6677 bool remap_decls_p;
6680 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6681 contained in *TP if it has been ORIG_BLOCK previously and change the
6682 DECL_CONTEXT of every local variable referenced in *TP. */
6684 static tree
6685 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6687 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6688 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6689 tree t = *tp;
6691 if (EXPR_P (t))
6693 tree block = TREE_BLOCK (t);
6694 if (block == NULL_TREE)
6696 else if (block == p->orig_block
6697 || p->orig_block == NULL_TREE)
6698 TREE_SET_BLOCK (t, p->new_block);
6699 else if (flag_checking)
6701 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6702 block = BLOCK_SUPERCONTEXT (block);
6703 gcc_assert (block == p->orig_block);
6706 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6708 if (TREE_CODE (t) == SSA_NAME)
6709 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6710 else if (TREE_CODE (t) == PARM_DECL
6711 && gimple_in_ssa_p (cfun))
6712 *tp = *(p->vars_map->get (t));
6713 else if (TREE_CODE (t) == LABEL_DECL)
6715 if (p->new_label_map)
6717 struct tree_map in, *out;
6718 in.base.from = t;
6719 out = (struct tree_map *)
6720 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6721 if (out)
6722 *tp = t = out->to;
6725 /* For FORCED_LABELs we can end up with references from other
6726 functions if some SESE regions are outlined. It is UB to
6727 jump in between them, but they could be used just for printing
6728 addresses etc. In that case, DECL_CONTEXT on the label should
6729 be the function containing the glabel stmt with that LABEL_DECL,
6730 rather than whatever function a reference to the label was seen
6731 last time. */
6732 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6733 DECL_CONTEXT (t) = p->to_context;
6735 else if (p->remap_decls_p)
6737 /* Replace T with its duplicate. T should no longer appear in the
6738 parent function, so this looks wasteful; however, it may appear
6739 in referenced_vars, and more importantly, as virtual operands of
6740 statements, and in alias lists of other variables. It would be
6741 quite difficult to expunge it from all those places. ??? It might
6742 suffice to do this for addressable variables. */
6743 if ((VAR_P (t) && !is_global_var (t))
6744 || TREE_CODE (t) == CONST_DECL)
6745 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6747 *walk_subtrees = 0;
6749 else if (TYPE_P (t))
6750 *walk_subtrees = 0;
6752 return NULL_TREE;
6755 /* Helper for move_stmt_r. Given an EH region number for the source
6756 function, map that to the duplicate EH regio number in the dest. */
6758 static int
6759 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6761 eh_region old_r, new_r;
6763 old_r = get_eh_region_from_number (old_nr);
6764 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6766 return new_r->index;
6769 /* Similar, but operate on INTEGER_CSTs. */
6771 static tree
6772 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6774 int old_nr, new_nr;
6776 old_nr = tree_to_shwi (old_t_nr);
6777 new_nr = move_stmt_eh_region_nr (old_nr, p);
6779 return build_int_cst (integer_type_node, new_nr);
6782 /* Like move_stmt_op, but for gimple statements.
6784 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6785 contained in the current statement in *GSI_P and change the
6786 DECL_CONTEXT of every local variable referenced in the current
6787 statement. */
6789 static tree
6790 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6791 struct walk_stmt_info *wi)
6793 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6794 gimple *stmt = gsi_stmt (*gsi_p);
6795 tree block = gimple_block (stmt);
6797 if (block == p->orig_block
6798 || (p->orig_block == NULL_TREE
6799 && block != NULL_TREE))
6800 gimple_set_block (stmt, p->new_block);
6802 switch (gimple_code (stmt))
6804 case GIMPLE_CALL:
6805 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6807 tree r, fndecl = gimple_call_fndecl (stmt);
6808 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6809 switch (DECL_FUNCTION_CODE (fndecl))
6811 case BUILT_IN_EH_COPY_VALUES:
6812 r = gimple_call_arg (stmt, 1);
6813 r = move_stmt_eh_region_tree_nr (r, p);
6814 gimple_call_set_arg (stmt, 1, r);
6815 /* FALLTHRU */
6817 case BUILT_IN_EH_POINTER:
6818 case BUILT_IN_EH_FILTER:
6819 r = gimple_call_arg (stmt, 0);
6820 r = move_stmt_eh_region_tree_nr (r, p);
6821 gimple_call_set_arg (stmt, 0, r);
6822 break;
6824 default:
6825 break;
6828 break;
6830 case GIMPLE_RESX:
6832 gresx *resx_stmt = as_a <gresx *> (stmt);
6833 int r = gimple_resx_region (resx_stmt);
6834 r = move_stmt_eh_region_nr (r, p);
6835 gimple_resx_set_region (resx_stmt, r);
6837 break;
6839 case GIMPLE_EH_DISPATCH:
6841 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6842 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6843 r = move_stmt_eh_region_nr (r, p);
6844 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6846 break;
6848 case GIMPLE_OMP_RETURN:
6849 case GIMPLE_OMP_CONTINUE:
6850 break;
6852 case GIMPLE_LABEL:
6854 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6855 so that such labels can be referenced from other regions.
6856 Make sure to update it when seeing a GIMPLE_LABEL though,
6857 that is the owner of the label. */
6858 walk_gimple_op (stmt, move_stmt_op, wi);
6859 *handled_ops_p = true;
6860 tree label = gimple_label_label (as_a <glabel *> (stmt));
6861 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
6862 DECL_CONTEXT (label) = p->to_context;
6864 break;
6866 default:
6867 if (is_gimple_omp (stmt))
6869 /* Do not remap variables inside OMP directives. Variables
6870 referenced in clauses and directive header belong to the
6871 parent function and should not be moved into the child
6872 function. */
6873 bool save_remap_decls_p = p->remap_decls_p;
6874 p->remap_decls_p = false;
6875 *handled_ops_p = true;
6877 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6878 move_stmt_op, wi);
6880 p->remap_decls_p = save_remap_decls_p;
6882 break;
6885 return NULL_TREE;
6888 /* Move basic block BB from function CFUN to function DEST_FN. The
6889 block is moved out of the original linked list and placed after
6890 block AFTER in the new list. Also, the block is removed from the
6891 original array of blocks and placed in DEST_FN's array of blocks.
6892 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6893 updated to reflect the moved edges.
6895 The local variables are remapped to new instances, VARS_MAP is used
6896 to record the mapping. */
6898 static void
6899 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6900 basic_block after, bool update_edge_count_p,
6901 struct move_stmt_d *d)
6903 struct control_flow_graph *cfg;
6904 edge_iterator ei;
6905 edge e;
6906 gimple_stmt_iterator si;
6907 unsigned old_len, new_len;
6909 /* Remove BB from dominance structures. */
6910 delete_from_dominance_info (CDI_DOMINATORS, bb);
6912 /* Move BB from its current loop to the copy in the new function. */
6913 if (current_loops)
6915 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6916 if (new_loop)
6917 bb->loop_father = new_loop;
6920 /* Link BB to the new linked list. */
6921 move_block_after (bb, after);
6923 /* Update the edge count in the corresponding flowgraphs. */
6924 if (update_edge_count_p)
6925 FOR_EACH_EDGE (e, ei, bb->succs)
6927 cfun->cfg->x_n_edges--;
6928 dest_cfun->cfg->x_n_edges++;
6931 /* Remove BB from the original basic block array. */
6932 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6933 cfun->cfg->x_n_basic_blocks--;
6935 /* Grow DEST_CFUN's basic block array if needed. */
6936 cfg = dest_cfun->cfg;
6937 cfg->x_n_basic_blocks++;
6938 if (bb->index >= cfg->x_last_basic_block)
6939 cfg->x_last_basic_block = bb->index + 1;
6941 old_len = vec_safe_length (cfg->x_basic_block_info);
6942 if ((unsigned) cfg->x_last_basic_block >= old_len)
6944 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6945 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6948 (*cfg->x_basic_block_info)[bb->index] = bb;
6950 /* Remap the variables in phi nodes. */
6951 for (gphi_iterator psi = gsi_start_phis (bb);
6952 !gsi_end_p (psi); )
6954 gphi *phi = psi.phi ();
6955 use_operand_p use;
6956 tree op = PHI_RESULT (phi);
6957 ssa_op_iter oi;
6958 unsigned i;
6960 if (virtual_operand_p (op))
6962 /* Remove the phi nodes for virtual operands (alias analysis will be
6963 run for the new function, anyway). */
6964 remove_phi_node (&psi, true);
6965 continue;
6968 SET_PHI_RESULT (phi,
6969 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6970 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6972 op = USE_FROM_PTR (use);
6973 if (TREE_CODE (op) == SSA_NAME)
6974 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6977 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6979 location_t locus = gimple_phi_arg_location (phi, i);
6980 tree block = LOCATION_BLOCK (locus);
6982 if (locus == UNKNOWN_LOCATION)
6983 continue;
6984 if (d->orig_block == NULL_TREE || block == d->orig_block)
6986 locus = set_block (locus, d->new_block);
6987 gimple_phi_arg_set_location (phi, i, locus);
6991 gsi_next (&psi);
6994 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6996 gimple *stmt = gsi_stmt (si);
6997 struct walk_stmt_info wi;
6999 memset (&wi, 0, sizeof (wi));
7000 wi.info = d;
7001 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7003 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7005 tree label = gimple_label_label (label_stmt);
7006 int uid = LABEL_DECL_UID (label);
7008 gcc_assert (uid > -1);
7010 old_len = vec_safe_length (cfg->x_label_to_block_map);
7011 if (old_len <= (unsigned) uid)
7013 new_len = 3 * uid / 2 + 1;
7014 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7017 (*cfg->x_label_to_block_map)[uid] = bb;
7018 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7020 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7022 if (uid >= dest_cfun->cfg->last_label_uid)
7023 dest_cfun->cfg->last_label_uid = uid + 1;
7026 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7027 remove_stmt_from_eh_lp_fn (cfun, stmt);
7029 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7030 gimple_remove_stmt_histograms (cfun, stmt);
7032 /* We cannot leave any operands allocated from the operand caches of
7033 the current function. */
7034 free_stmt_operands (cfun, stmt);
7035 push_cfun (dest_cfun);
7036 update_stmt (stmt);
7037 pop_cfun ();
7040 FOR_EACH_EDGE (e, ei, bb->succs)
7041 if (e->goto_locus != UNKNOWN_LOCATION)
7043 tree block = LOCATION_BLOCK (e->goto_locus);
7044 if (d->orig_block == NULL_TREE
7045 || block == d->orig_block)
7046 e->goto_locus = set_block (e->goto_locus, d->new_block);
7050 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7051 the outermost EH region. Use REGION as the incoming base EH region. */
7053 static eh_region
7054 find_outermost_region_in_block (struct function *src_cfun,
7055 basic_block bb, eh_region region)
7057 gimple_stmt_iterator si;
7059 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7061 gimple *stmt = gsi_stmt (si);
7062 eh_region stmt_region;
7063 int lp_nr;
7065 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7066 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7067 if (stmt_region)
7069 if (region == NULL)
7070 region = stmt_region;
7071 else if (stmt_region != region)
7073 region = eh_region_outermost (src_cfun, stmt_region, region);
7074 gcc_assert (region != NULL);
7079 return region;
7082 static tree
7083 new_label_mapper (tree decl, void *data)
7085 htab_t hash = (htab_t) data;
7086 struct tree_map *m;
7087 void **slot;
7089 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7091 m = XNEW (struct tree_map);
7092 m->hash = DECL_UID (decl);
7093 m->base.from = decl;
7094 m->to = create_artificial_label (UNKNOWN_LOCATION);
7095 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7096 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7097 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7099 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7100 gcc_assert (*slot == NULL);
7102 *slot = m;
7104 return m->to;
7107 /* Tree walker to replace the decls used inside value expressions by
7108 duplicates. */
7110 static tree
7111 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7113 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7115 switch (TREE_CODE (*tp))
7117 case VAR_DECL:
7118 case PARM_DECL:
7119 case RESULT_DECL:
7120 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7121 break;
7122 default:
7123 break;
7126 if (IS_TYPE_OR_DECL_P (*tp))
7127 *walk_subtrees = false;
7129 return NULL;
7132 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7133 subblocks. */
7135 static void
7136 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7137 tree to_context)
7139 tree *tp, t;
7141 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7143 t = *tp;
7144 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7145 continue;
7146 replace_by_duplicate_decl (&t, vars_map, to_context);
7147 if (t != *tp)
7149 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7151 tree x = DECL_VALUE_EXPR (*tp);
7152 struct replace_decls_d rd = { vars_map, to_context };
7153 unshare_expr (x);
7154 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7155 SET_DECL_VALUE_EXPR (t, x);
7156 DECL_HAS_VALUE_EXPR_P (t) = 1;
7158 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7159 *tp = t;
7163 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7164 replace_block_vars_by_duplicates (block, vars_map, to_context);
7167 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7168 from FN1 to FN2. */
7170 static void
7171 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7172 struct loop *loop)
7174 /* Discard it from the old loop array. */
7175 (*get_loops (fn1))[loop->num] = NULL;
7177 /* Place it in the new loop array, assigning it a new number. */
7178 loop->num = number_of_loops (fn2);
7179 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7181 /* Recurse to children. */
7182 for (loop = loop->inner; loop; loop = loop->next)
7183 fixup_loop_arrays_after_move (fn1, fn2, loop);
7186 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7187 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7189 DEBUG_FUNCTION void
7190 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7192 basic_block bb;
7193 edge_iterator ei;
7194 edge e;
7195 bitmap bbs = BITMAP_ALLOC (NULL);
7196 int i;
7198 gcc_assert (entry != NULL);
7199 gcc_assert (entry != exit);
7200 gcc_assert (bbs_p != NULL);
7202 gcc_assert (bbs_p->length () > 0);
7204 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7205 bitmap_set_bit (bbs, bb->index);
7207 gcc_assert (bitmap_bit_p (bbs, entry->index));
7208 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7210 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7212 if (bb == entry)
7214 gcc_assert (single_pred_p (entry));
7215 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7217 else
7218 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7220 e = ei_edge (ei);
7221 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7224 if (bb == exit)
7226 gcc_assert (single_succ_p (exit));
7227 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7229 else
7230 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7232 e = ei_edge (ei);
7233 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7237 BITMAP_FREE (bbs);
7240 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7242 bool
7243 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7245 bitmap release_names = (bitmap)data;
7247 if (TREE_CODE (from) != SSA_NAME)
7248 return true;
7250 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7251 return true;
7254 /* Return LOOP_DIST_ALIAS call if present in BB. */
7256 static gimple *
7257 find_loop_dist_alias (basic_block bb)
7259 gimple *g = last_stmt (bb);
7260 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7261 return NULL;
7263 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7264 gsi_prev (&gsi);
7265 if (gsi_end_p (gsi))
7266 return NULL;
7268 g = gsi_stmt (gsi);
7269 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7270 return g;
7271 return NULL;
7274 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7275 to VALUE and update any immediate uses of it's LHS. */
7277 void
7278 fold_loop_internal_call (gimple *g, tree value)
7280 tree lhs = gimple_call_lhs (g);
7281 use_operand_p use_p;
7282 imm_use_iterator iter;
7283 gimple *use_stmt;
7284 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7286 update_call_from_tree (&gsi, value);
7287 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7289 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7290 SET_USE (use_p, value);
7291 update_stmt (use_stmt);
7295 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7296 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7297 single basic block in the original CFG and the new basic block is
7298 returned. DEST_CFUN must not have a CFG yet.
7300 Note that the region need not be a pure SESE region. Blocks inside
7301 the region may contain calls to abort/exit. The only restriction
7302 is that ENTRY_BB should be the only entry point and it must
7303 dominate EXIT_BB.
7305 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7306 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7307 to the new function.
7309 All local variables referenced in the region are assumed to be in
7310 the corresponding BLOCK_VARS and unexpanded variable lists
7311 associated with DEST_CFUN.
7313 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7314 reimplement move_sese_region_to_fn by duplicating the region rather than
7315 moving it. */
7317 basic_block
7318 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7319 basic_block exit_bb, tree orig_block)
7321 vec<basic_block> bbs, dom_bbs;
7322 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7323 basic_block after, bb, *entry_pred, *exit_succ, abb;
7324 struct function *saved_cfun = cfun;
7325 int *entry_flag, *exit_flag;
7326 profile_probability *entry_prob, *exit_prob;
7327 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7328 edge e;
7329 edge_iterator ei;
7330 htab_t new_label_map;
7331 hash_map<void *, void *> *eh_map;
7332 struct loop *loop = entry_bb->loop_father;
7333 struct loop *loop0 = get_loop (saved_cfun, 0);
7334 struct move_stmt_d d;
7336 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7337 region. */
7338 gcc_assert (entry_bb != exit_bb
7339 && (!exit_bb
7340 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7342 /* Collect all the blocks in the region. Manually add ENTRY_BB
7343 because it won't be added by dfs_enumerate_from. */
7344 bbs.create (0);
7345 bbs.safe_push (entry_bb);
7346 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7348 if (flag_checking)
7349 verify_sese (entry_bb, exit_bb, &bbs);
7351 /* The blocks that used to be dominated by something in BBS will now be
7352 dominated by the new block. */
7353 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7354 bbs.address (),
7355 bbs.length ());
7357 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7358 the predecessor edges to ENTRY_BB and the successor edges to
7359 EXIT_BB so that we can re-attach them to the new basic block that
7360 will replace the region. */
7361 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7362 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7363 entry_flag = XNEWVEC (int, num_entry_edges);
7364 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7365 i = 0;
7366 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7368 entry_prob[i] = e->probability;
7369 entry_flag[i] = e->flags;
7370 entry_pred[i++] = e->src;
7371 remove_edge (e);
7374 if (exit_bb)
7376 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7377 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7378 exit_flag = XNEWVEC (int, num_exit_edges);
7379 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7380 i = 0;
7381 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7383 exit_prob[i] = e->probability;
7384 exit_flag[i] = e->flags;
7385 exit_succ[i++] = e->dest;
7386 remove_edge (e);
7389 else
7391 num_exit_edges = 0;
7392 exit_succ = NULL;
7393 exit_flag = NULL;
7394 exit_prob = NULL;
7397 /* Switch context to the child function to initialize DEST_FN's CFG. */
7398 gcc_assert (dest_cfun->cfg == NULL);
7399 push_cfun (dest_cfun);
7401 init_empty_tree_cfg ();
7403 /* Initialize EH information for the new function. */
7404 eh_map = NULL;
7405 new_label_map = NULL;
7406 if (saved_cfun->eh)
7408 eh_region region = NULL;
7410 FOR_EACH_VEC_ELT (bbs, i, bb)
7411 region = find_outermost_region_in_block (saved_cfun, bb, region);
7413 init_eh_for_function ();
7414 if (region != NULL)
7416 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7417 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7418 new_label_mapper, new_label_map);
7422 /* Initialize an empty loop tree. */
7423 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7424 init_loops_structure (dest_cfun, loops, 1);
7425 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7426 set_loops_for_fn (dest_cfun, loops);
7428 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7430 /* Move the outlined loop tree part. */
7431 num_nodes = bbs.length ();
7432 FOR_EACH_VEC_ELT (bbs, i, bb)
7434 if (bb->loop_father->header == bb)
7436 struct loop *this_loop = bb->loop_father;
7437 struct loop *outer = loop_outer (this_loop);
7438 if (outer == loop
7439 /* If the SESE region contains some bbs ending with
7440 a noreturn call, those are considered to belong
7441 to the outermost loop in saved_cfun, rather than
7442 the entry_bb's loop_father. */
7443 || outer == loop0)
7445 if (outer != loop)
7446 num_nodes -= this_loop->num_nodes;
7447 flow_loop_tree_node_remove (bb->loop_father);
7448 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7449 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7452 else if (bb->loop_father == loop0 && loop0 != loop)
7453 num_nodes--;
7455 /* Remove loop exits from the outlined region. */
7456 if (loops_for_fn (saved_cfun)->exits)
7457 FOR_EACH_EDGE (e, ei, bb->succs)
7459 struct loops *l = loops_for_fn (saved_cfun);
7460 loop_exit **slot
7461 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7462 NO_INSERT);
7463 if (slot)
7464 l->exits->clear_slot (slot);
7468 /* Adjust the number of blocks in the tree root of the outlined part. */
7469 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7471 /* Setup a mapping to be used by move_block_to_fn. */
7472 loop->aux = current_loops->tree_root;
7473 loop0->aux = current_loops->tree_root;
7475 /* Fix up orig_loop_num. If the block referenced in it has been moved
7476 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7477 struct loop *dloop;
7478 signed char *moved_orig_loop_num = NULL;
7479 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7480 if (dloop->orig_loop_num)
7482 if (moved_orig_loop_num == NULL)
7483 moved_orig_loop_num
7484 = XCNEWVEC (signed char, vec_safe_length (larray));
7485 if ((*larray)[dloop->orig_loop_num] != NULL
7486 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7488 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7489 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7490 moved_orig_loop_num[dloop->orig_loop_num]++;
7491 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7493 else
7495 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7496 dloop->orig_loop_num = 0;
7499 pop_cfun ();
7501 if (moved_orig_loop_num)
7503 FOR_EACH_VEC_ELT (bbs, i, bb)
7505 gimple *g = find_loop_dist_alias (bb);
7506 if (g == NULL)
7507 continue;
7509 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7510 gcc_assert (orig_loop_num
7511 && (unsigned) orig_loop_num < vec_safe_length (larray));
7512 if (moved_orig_loop_num[orig_loop_num] == 2)
7514 /* If we have moved both loops with this orig_loop_num into
7515 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7516 too, update the first argument. */
7517 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7518 && (get_loop (saved_cfun, dloop->orig_loop_num)
7519 == NULL));
7520 tree t = build_int_cst (integer_type_node,
7521 (*larray)[dloop->orig_loop_num]->num);
7522 gimple_call_set_arg (g, 0, t);
7523 update_stmt (g);
7524 /* Make sure the following loop will not update it. */
7525 moved_orig_loop_num[orig_loop_num] = 0;
7527 else
7528 /* Otherwise at least one of the loops stayed in saved_cfun.
7529 Remove the LOOP_DIST_ALIAS call. */
7530 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7532 FOR_EACH_BB_FN (bb, saved_cfun)
7534 gimple *g = find_loop_dist_alias (bb);
7535 if (g == NULL)
7536 continue;
7537 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7538 gcc_assert (orig_loop_num
7539 && (unsigned) orig_loop_num < vec_safe_length (larray));
7540 if (moved_orig_loop_num[orig_loop_num])
7541 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7542 of the corresponding loops was moved, remove it. */
7543 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7545 XDELETEVEC (moved_orig_loop_num);
7547 ggc_free (larray);
7549 /* Move blocks from BBS into DEST_CFUN. */
7550 gcc_assert (bbs.length () >= 2);
7551 after = dest_cfun->cfg->x_entry_block_ptr;
7552 hash_map<tree, tree> vars_map;
7554 memset (&d, 0, sizeof (d));
7555 d.orig_block = orig_block;
7556 d.new_block = DECL_INITIAL (dest_cfun->decl);
7557 d.from_context = cfun->decl;
7558 d.to_context = dest_cfun->decl;
7559 d.vars_map = &vars_map;
7560 d.new_label_map = new_label_map;
7561 d.eh_map = eh_map;
7562 d.remap_decls_p = true;
7564 if (gimple_in_ssa_p (cfun))
7565 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7567 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7568 set_ssa_default_def (dest_cfun, arg, narg);
7569 vars_map.put (arg, narg);
7572 FOR_EACH_VEC_ELT (bbs, i, bb)
7574 /* No need to update edge counts on the last block. It has
7575 already been updated earlier when we detached the region from
7576 the original CFG. */
7577 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7578 after = bb;
7581 loop->aux = NULL;
7582 loop0->aux = NULL;
7583 /* Loop sizes are no longer correct, fix them up. */
7584 loop->num_nodes -= num_nodes;
7585 for (struct loop *outer = loop_outer (loop);
7586 outer; outer = loop_outer (outer))
7587 outer->num_nodes -= num_nodes;
7588 loop0->num_nodes -= bbs.length () - num_nodes;
7590 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7592 struct loop *aloop;
7593 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7594 if (aloop != NULL)
7596 if (aloop->simduid)
7598 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7599 d.to_context);
7600 dest_cfun->has_simduid_loops = true;
7602 if (aloop->force_vectorize)
7603 dest_cfun->has_force_vectorize_loops = true;
7607 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7608 if (orig_block)
7610 tree block;
7611 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7612 == NULL_TREE);
7613 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7614 = BLOCK_SUBBLOCKS (orig_block);
7615 for (block = BLOCK_SUBBLOCKS (orig_block);
7616 block; block = BLOCK_CHAIN (block))
7617 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7618 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7621 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7622 &vars_map, dest_cfun->decl);
7624 if (new_label_map)
7625 htab_delete (new_label_map);
7626 if (eh_map)
7627 delete eh_map;
7629 if (gimple_in_ssa_p (cfun))
7631 /* We need to release ssa-names in a defined order, so first find them,
7632 and then iterate in ascending version order. */
7633 bitmap release_names = BITMAP_ALLOC (NULL);
7634 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7635 bitmap_iterator bi;
7636 unsigned i;
7637 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7638 release_ssa_name (ssa_name (i));
7639 BITMAP_FREE (release_names);
7642 /* Rewire the entry and exit blocks. The successor to the entry
7643 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7644 the child function. Similarly, the predecessor of DEST_FN's
7645 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7646 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7647 various CFG manipulation function get to the right CFG.
7649 FIXME, this is silly. The CFG ought to become a parameter to
7650 these helpers. */
7651 push_cfun (dest_cfun);
7652 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7653 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7654 if (exit_bb)
7656 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7657 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7659 else
7660 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7661 pop_cfun ();
7663 /* Back in the original function, the SESE region has disappeared,
7664 create a new basic block in its place. */
7665 bb = create_empty_bb (entry_pred[0]);
7666 if (current_loops)
7667 add_bb_to_loop (bb, loop);
7668 for (i = 0; i < num_entry_edges; i++)
7670 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7671 e->probability = entry_prob[i];
7674 for (i = 0; i < num_exit_edges; i++)
7676 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7677 e->probability = exit_prob[i];
7680 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7681 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7682 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7683 dom_bbs.release ();
7685 if (exit_bb)
7687 free (exit_prob);
7688 free (exit_flag);
7689 free (exit_succ);
7691 free (entry_prob);
7692 free (entry_flag);
7693 free (entry_pred);
7694 bbs.release ();
7696 return bb;
7699 /* Dump default def DEF to file FILE using FLAGS and indentation
7700 SPC. */
7702 static void
7703 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7705 for (int i = 0; i < spc; ++i)
7706 fprintf (file, " ");
7707 dump_ssaname_info_to_file (file, def, spc);
7709 print_generic_expr (file, TREE_TYPE (def), flags);
7710 fprintf (file, " ");
7711 print_generic_expr (file, def, flags);
7712 fprintf (file, " = ");
7713 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7714 fprintf (file, ";\n");
7717 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7719 static void
7720 print_no_sanitize_attr_value (FILE *file, tree value)
7722 unsigned int flags = tree_to_uhwi (value);
7723 bool first = true;
7724 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7726 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7728 if (!first)
7729 fprintf (file, " | ");
7730 fprintf (file, "%s", sanitizer_opts[i].name);
7731 first = false;
7736 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7739 void
7740 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7742 tree arg, var, old_current_fndecl = current_function_decl;
7743 struct function *dsf;
7744 bool ignore_topmost_bind = false, any_var = false;
7745 basic_block bb;
7746 tree chain;
7747 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7748 && decl_is_tm_clone (fndecl));
7749 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7751 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7753 fprintf (file, "__attribute__((");
7755 bool first = true;
7756 tree chain;
7757 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7758 first = false, chain = TREE_CHAIN (chain))
7760 if (!first)
7761 fprintf (file, ", ");
7763 tree name = get_attribute_name (chain);
7764 print_generic_expr (file, name, dump_flags);
7765 if (TREE_VALUE (chain) != NULL_TREE)
7767 fprintf (file, " (");
7769 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7770 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7771 else
7772 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7773 fprintf (file, ")");
7777 fprintf (file, "))\n");
7780 current_function_decl = fndecl;
7781 if (flags & TDF_GIMPLE)
7783 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7784 dump_flags | TDF_SLIM);
7785 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7787 else
7788 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7790 arg = DECL_ARGUMENTS (fndecl);
7791 while (arg)
7793 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7794 fprintf (file, " ");
7795 print_generic_expr (file, arg, dump_flags);
7796 if (DECL_CHAIN (arg))
7797 fprintf (file, ", ");
7798 arg = DECL_CHAIN (arg);
7800 fprintf (file, ")\n");
7802 dsf = DECL_STRUCT_FUNCTION (fndecl);
7803 if (dsf && (flags & TDF_EH))
7804 dump_eh_tree (file, dsf);
7806 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7808 dump_node (fndecl, TDF_SLIM | flags, file);
7809 current_function_decl = old_current_fndecl;
7810 return;
7813 /* When GIMPLE is lowered, the variables are no longer available in
7814 BIND_EXPRs, so display them separately. */
7815 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7817 unsigned ix;
7818 ignore_topmost_bind = true;
7820 fprintf (file, "{\n");
7821 if (gimple_in_ssa_p (fun)
7822 && (flags & TDF_ALIAS))
7824 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7825 arg = DECL_CHAIN (arg))
7827 tree def = ssa_default_def (fun, arg);
7828 if (def)
7829 dump_default_def (file, def, 2, flags);
7832 tree res = DECL_RESULT (fun->decl);
7833 if (res != NULL_TREE
7834 && DECL_BY_REFERENCE (res))
7836 tree def = ssa_default_def (fun, res);
7837 if (def)
7838 dump_default_def (file, def, 2, flags);
7841 tree static_chain = fun->static_chain_decl;
7842 if (static_chain != NULL_TREE)
7844 tree def = ssa_default_def (fun, static_chain);
7845 if (def)
7846 dump_default_def (file, def, 2, flags);
7850 if (!vec_safe_is_empty (fun->local_decls))
7851 FOR_EACH_LOCAL_DECL (fun, ix, var)
7853 print_generic_decl (file, var, flags);
7854 fprintf (file, "\n");
7856 any_var = true;
7859 tree name;
7861 if (gimple_in_ssa_p (cfun))
7862 FOR_EACH_SSA_NAME (ix, name, cfun)
7864 if (!SSA_NAME_VAR (name))
7866 fprintf (file, " ");
7867 print_generic_expr (file, TREE_TYPE (name), flags);
7868 fprintf (file, " ");
7869 print_generic_expr (file, name, flags);
7870 fprintf (file, ";\n");
7872 any_var = true;
7877 if (fun && fun->decl == fndecl
7878 && fun->cfg
7879 && basic_block_info_for_fn (fun))
7881 /* If the CFG has been built, emit a CFG-based dump. */
7882 if (!ignore_topmost_bind)
7883 fprintf (file, "{\n");
7885 if (any_var && n_basic_blocks_for_fn (fun))
7886 fprintf (file, "\n");
7888 FOR_EACH_BB_FN (bb, fun)
7889 dump_bb (file, bb, 2, flags);
7891 fprintf (file, "}\n");
7893 else if (fun->curr_properties & PROP_gimple_any)
7895 /* The function is now in GIMPLE form but the CFG has not been
7896 built yet. Emit the single sequence of GIMPLE statements
7897 that make up its body. */
7898 gimple_seq body = gimple_body (fndecl);
7900 if (gimple_seq_first_stmt (body)
7901 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7902 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7903 print_gimple_seq (file, body, 0, flags);
7904 else
7906 if (!ignore_topmost_bind)
7907 fprintf (file, "{\n");
7909 if (any_var)
7910 fprintf (file, "\n");
7912 print_gimple_seq (file, body, 2, flags);
7913 fprintf (file, "}\n");
7916 else
7918 int indent;
7920 /* Make a tree based dump. */
7921 chain = DECL_SAVED_TREE (fndecl);
7922 if (chain && TREE_CODE (chain) == BIND_EXPR)
7924 if (ignore_topmost_bind)
7926 chain = BIND_EXPR_BODY (chain);
7927 indent = 2;
7929 else
7930 indent = 0;
7932 else
7934 if (!ignore_topmost_bind)
7936 fprintf (file, "{\n");
7937 /* No topmost bind, pretend it's ignored for later. */
7938 ignore_topmost_bind = true;
7940 indent = 2;
7943 if (any_var)
7944 fprintf (file, "\n");
7946 print_generic_stmt_indented (file, chain, flags, indent);
7947 if (ignore_topmost_bind)
7948 fprintf (file, "}\n");
7951 if (flags & TDF_ENUMERATE_LOCALS)
7952 dump_enumerated_decls (file, flags);
7953 fprintf (file, "\n\n");
7955 current_function_decl = old_current_fndecl;
7958 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7960 DEBUG_FUNCTION void
7961 debug_function (tree fn, dump_flags_t flags)
7963 dump_function_to_file (fn, stderr, flags);
7967 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7969 static void
7970 print_pred_bbs (FILE *file, basic_block bb)
7972 edge e;
7973 edge_iterator ei;
7975 FOR_EACH_EDGE (e, ei, bb->preds)
7976 fprintf (file, "bb_%d ", e->src->index);
7980 /* Print on FILE the indexes for the successors of basic_block BB. */
7982 static void
7983 print_succ_bbs (FILE *file, basic_block bb)
7985 edge e;
7986 edge_iterator ei;
7988 FOR_EACH_EDGE (e, ei, bb->succs)
7989 fprintf (file, "bb_%d ", e->dest->index);
7992 /* Print to FILE the basic block BB following the VERBOSITY level. */
7994 void
7995 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7997 char *s_indent = (char *) alloca ((size_t) indent + 1);
7998 memset ((void *) s_indent, ' ', (size_t) indent);
7999 s_indent[indent] = '\0';
8001 /* Print basic_block's header. */
8002 if (verbosity >= 2)
8004 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8005 print_pred_bbs (file, bb);
8006 fprintf (file, "}, succs = {");
8007 print_succ_bbs (file, bb);
8008 fprintf (file, "})\n");
8011 /* Print basic_block's body. */
8012 if (verbosity >= 3)
8014 fprintf (file, "%s {\n", s_indent);
8015 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8016 fprintf (file, "%s }\n", s_indent);
8020 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8022 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8023 VERBOSITY level this outputs the contents of the loop, or just its
8024 structure. */
8026 static void
8027 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8029 char *s_indent;
8030 basic_block bb;
8032 if (loop == NULL)
8033 return;
8035 s_indent = (char *) alloca ((size_t) indent + 1);
8036 memset ((void *) s_indent, ' ', (size_t) indent);
8037 s_indent[indent] = '\0';
8039 /* Print loop's header. */
8040 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8041 if (loop->header)
8042 fprintf (file, "header = %d", loop->header->index);
8043 else
8045 fprintf (file, "deleted)\n");
8046 return;
8048 if (loop->latch)
8049 fprintf (file, ", latch = %d", loop->latch->index);
8050 else
8051 fprintf (file, ", multiple latches");
8052 fprintf (file, ", niter = ");
8053 print_generic_expr (file, loop->nb_iterations);
8055 if (loop->any_upper_bound)
8057 fprintf (file, ", upper_bound = ");
8058 print_decu (loop->nb_iterations_upper_bound, file);
8060 if (loop->any_likely_upper_bound)
8062 fprintf (file, ", likely_upper_bound = ");
8063 print_decu (loop->nb_iterations_likely_upper_bound, file);
8066 if (loop->any_estimate)
8068 fprintf (file, ", estimate = ");
8069 print_decu (loop->nb_iterations_estimate, file);
8071 if (loop->unroll)
8072 fprintf (file, ", unroll = %d", loop->unroll);
8073 fprintf (file, ")\n");
8075 /* Print loop's body. */
8076 if (verbosity >= 1)
8078 fprintf (file, "%s{\n", s_indent);
8079 FOR_EACH_BB_FN (bb, cfun)
8080 if (bb->loop_father == loop)
8081 print_loops_bb (file, bb, indent, verbosity);
8083 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8084 fprintf (file, "%s}\n", s_indent);
8088 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8089 spaces. Following VERBOSITY level this outputs the contents of the
8090 loop, or just its structure. */
8092 static void
8093 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8094 int verbosity)
8096 if (loop == NULL)
8097 return;
8099 print_loop (file, loop, indent, verbosity);
8100 print_loop_and_siblings (file, loop->next, indent, verbosity);
8103 /* Follow a CFG edge from the entry point of the program, and on entry
8104 of a loop, pretty print the loop structure on FILE. */
8106 void
8107 print_loops (FILE *file, int verbosity)
8109 basic_block bb;
8111 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8112 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8113 if (bb && bb->loop_father)
8114 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8117 /* Dump a loop. */
8119 DEBUG_FUNCTION void
8120 debug (struct loop &ref)
8122 print_loop (stderr, &ref, 0, /*verbosity*/0);
8125 DEBUG_FUNCTION void
8126 debug (struct loop *ptr)
8128 if (ptr)
8129 debug (*ptr);
8130 else
8131 fprintf (stderr, "<nil>\n");
8134 /* Dump a loop verbosely. */
8136 DEBUG_FUNCTION void
8137 debug_verbose (struct loop &ref)
8139 print_loop (stderr, &ref, 0, /*verbosity*/3);
8142 DEBUG_FUNCTION void
8143 debug_verbose (struct loop *ptr)
8145 if (ptr)
8146 debug (*ptr);
8147 else
8148 fprintf (stderr, "<nil>\n");
8152 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8154 DEBUG_FUNCTION void
8155 debug_loops (int verbosity)
8157 print_loops (stderr, verbosity);
8160 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8162 DEBUG_FUNCTION void
8163 debug_loop (struct loop *loop, int verbosity)
8165 print_loop (stderr, loop, 0, verbosity);
8168 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8169 level. */
8171 DEBUG_FUNCTION void
8172 debug_loop_num (unsigned num, int verbosity)
8174 debug_loop (get_loop (cfun, num), verbosity);
8177 /* Return true if BB ends with a call, possibly followed by some
8178 instructions that must stay with the call. Return false,
8179 otherwise. */
8181 static bool
8182 gimple_block_ends_with_call_p (basic_block bb)
8184 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8185 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8189 /* Return true if BB ends with a conditional branch. Return false,
8190 otherwise. */
8192 static bool
8193 gimple_block_ends_with_condjump_p (const_basic_block bb)
8195 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8196 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8200 /* Return true if statement T may terminate execution of BB in ways not
8201 explicitly represtented in the CFG. */
8203 bool
8204 stmt_can_terminate_bb_p (gimple *t)
8206 tree fndecl = NULL_TREE;
8207 int call_flags = 0;
8209 /* Eh exception not handled internally terminates execution of the whole
8210 function. */
8211 if (stmt_can_throw_external (t))
8212 return true;
8214 /* NORETURN and LONGJMP calls already have an edge to exit.
8215 CONST and PURE calls do not need one.
8216 We don't currently check for CONST and PURE here, although
8217 it would be a good idea, because those attributes are
8218 figured out from the RTL in mark_constant_function, and
8219 the counter incrementation code from -fprofile-arcs
8220 leads to different results from -fbranch-probabilities. */
8221 if (is_gimple_call (t))
8223 fndecl = gimple_call_fndecl (t);
8224 call_flags = gimple_call_flags (t);
8227 if (is_gimple_call (t)
8228 && fndecl
8229 && DECL_BUILT_IN (fndecl)
8230 && (call_flags & ECF_NOTHROW)
8231 && !(call_flags & ECF_RETURNS_TWICE)
8232 /* fork() doesn't really return twice, but the effect of
8233 wrapping it in __gcov_fork() which calls __gcov_flush()
8234 and clears the counters before forking has the same
8235 effect as returning twice. Force a fake edge. */
8236 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8237 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8238 return false;
8240 if (is_gimple_call (t))
8242 edge_iterator ei;
8243 edge e;
8244 basic_block bb;
8246 if (call_flags & (ECF_PURE | ECF_CONST)
8247 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8248 return false;
8250 /* Function call may do longjmp, terminate program or do other things.
8251 Special case noreturn that have non-abnormal edges out as in this case
8252 the fact is sufficiently represented by lack of edges out of T. */
8253 if (!(call_flags & ECF_NORETURN))
8254 return true;
8256 bb = gimple_bb (t);
8257 FOR_EACH_EDGE (e, ei, bb->succs)
8258 if ((e->flags & EDGE_FAKE) == 0)
8259 return true;
8262 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8263 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8264 return true;
8266 return false;
8270 /* Add fake edges to the function exit for any non constant and non
8271 noreturn calls (or noreturn calls with EH/abnormal edges),
8272 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8273 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8274 that were split.
8276 The goal is to expose cases in which entering a basic block does
8277 not imply that all subsequent instructions must be executed. */
8279 static int
8280 gimple_flow_call_edges_add (sbitmap blocks)
8282 int i;
8283 int blocks_split = 0;
8284 int last_bb = last_basic_block_for_fn (cfun);
8285 bool check_last_block = false;
8287 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8288 return 0;
8290 if (! blocks)
8291 check_last_block = true;
8292 else
8293 check_last_block = bitmap_bit_p (blocks,
8294 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8296 /* In the last basic block, before epilogue generation, there will be
8297 a fallthru edge to EXIT. Special care is required if the last insn
8298 of the last basic block is a call because make_edge folds duplicate
8299 edges, which would result in the fallthru edge also being marked
8300 fake, which would result in the fallthru edge being removed by
8301 remove_fake_edges, which would result in an invalid CFG.
8303 Moreover, we can't elide the outgoing fake edge, since the block
8304 profiler needs to take this into account in order to solve the minimal
8305 spanning tree in the case that the call doesn't return.
8307 Handle this by adding a dummy instruction in a new last basic block. */
8308 if (check_last_block)
8310 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8311 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8312 gimple *t = NULL;
8314 if (!gsi_end_p (gsi))
8315 t = gsi_stmt (gsi);
8317 if (t && stmt_can_terminate_bb_p (t))
8319 edge e;
8321 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8322 if (e)
8324 gsi_insert_on_edge (e, gimple_build_nop ());
8325 gsi_commit_edge_inserts ();
8330 /* Now add fake edges to the function exit for any non constant
8331 calls since there is no way that we can determine if they will
8332 return or not... */
8333 for (i = 0; i < last_bb; i++)
8335 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8336 gimple_stmt_iterator gsi;
8337 gimple *stmt, *last_stmt;
8339 if (!bb)
8340 continue;
8342 if (blocks && !bitmap_bit_p (blocks, i))
8343 continue;
8345 gsi = gsi_last_nondebug_bb (bb);
8346 if (!gsi_end_p (gsi))
8348 last_stmt = gsi_stmt (gsi);
8351 stmt = gsi_stmt (gsi);
8352 if (stmt_can_terminate_bb_p (stmt))
8354 edge e;
8356 /* The handling above of the final block before the
8357 epilogue should be enough to verify that there is
8358 no edge to the exit block in CFG already.
8359 Calling make_edge in such case would cause us to
8360 mark that edge as fake and remove it later. */
8361 if (flag_checking && stmt == last_stmt)
8363 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8364 gcc_assert (e == NULL);
8367 /* Note that the following may create a new basic block
8368 and renumber the existing basic blocks. */
8369 if (stmt != last_stmt)
8371 e = split_block (bb, stmt);
8372 if (e)
8373 blocks_split++;
8375 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8376 e->probability = profile_probability::guessed_never ();
8378 gsi_prev (&gsi);
8380 while (!gsi_end_p (gsi));
8384 if (blocks_split)
8385 checking_verify_flow_info ();
8387 return blocks_split;
8390 /* Removes edge E and all the blocks dominated by it, and updates dominance
8391 information. The IL in E->src needs to be updated separately.
8392 If dominance info is not available, only the edge E is removed.*/
8394 void
8395 remove_edge_and_dominated_blocks (edge e)
8397 vec<basic_block> bbs_to_remove = vNULL;
8398 vec<basic_block> bbs_to_fix_dom = vNULL;
8399 edge f;
8400 edge_iterator ei;
8401 bool none_removed = false;
8402 unsigned i;
8403 basic_block bb, dbb;
8404 bitmap_iterator bi;
8406 /* If we are removing a path inside a non-root loop that may change
8407 loop ownership of blocks or remove loops. Mark loops for fixup. */
8408 if (current_loops
8409 && loop_outer (e->src->loop_father) != NULL
8410 && e->src->loop_father == e->dest->loop_father)
8411 loops_state_set (LOOPS_NEED_FIXUP);
8413 if (!dom_info_available_p (CDI_DOMINATORS))
8415 remove_edge (e);
8416 return;
8419 /* No updating is needed for edges to exit. */
8420 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8422 if (cfgcleanup_altered_bbs)
8423 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8424 remove_edge (e);
8425 return;
8428 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8429 that is not dominated by E->dest, then this set is empty. Otherwise,
8430 all the basic blocks dominated by E->dest are removed.
8432 Also, to DF_IDOM we store the immediate dominators of the blocks in
8433 the dominance frontier of E (i.e., of the successors of the
8434 removed blocks, if there are any, and of E->dest otherwise). */
8435 FOR_EACH_EDGE (f, ei, e->dest->preds)
8437 if (f == e)
8438 continue;
8440 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8442 none_removed = true;
8443 break;
8447 auto_bitmap df, df_idom;
8448 if (none_removed)
8449 bitmap_set_bit (df_idom,
8450 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8451 else
8453 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8454 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8456 FOR_EACH_EDGE (f, ei, bb->succs)
8458 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8459 bitmap_set_bit (df, f->dest->index);
8462 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8463 bitmap_clear_bit (df, bb->index);
8465 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8467 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8468 bitmap_set_bit (df_idom,
8469 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8473 if (cfgcleanup_altered_bbs)
8475 /* Record the set of the altered basic blocks. */
8476 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8477 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8480 /* Remove E and the cancelled blocks. */
8481 if (none_removed)
8482 remove_edge (e);
8483 else
8485 /* Walk backwards so as to get a chance to substitute all
8486 released DEFs into debug stmts. See
8487 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8488 details. */
8489 for (i = bbs_to_remove.length (); i-- > 0; )
8490 delete_basic_block (bbs_to_remove[i]);
8493 /* Update the dominance information. The immediate dominator may change only
8494 for blocks whose immediate dominator belongs to DF_IDOM:
8496 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8497 removal. Let Z the arbitrary block such that idom(Z) = Y and
8498 Z dominates X after the removal. Before removal, there exists a path P
8499 from Y to X that avoids Z. Let F be the last edge on P that is
8500 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8501 dominates W, and because of P, Z does not dominate W), and W belongs to
8502 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8503 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8505 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8506 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8507 dbb;
8508 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8509 bbs_to_fix_dom.safe_push (dbb);
8512 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8514 bbs_to_remove.release ();
8515 bbs_to_fix_dom.release ();
8518 /* Purge dead EH edges from basic block BB. */
8520 bool
8521 gimple_purge_dead_eh_edges (basic_block bb)
8523 bool changed = false;
8524 edge e;
8525 edge_iterator ei;
8526 gimple *stmt = last_stmt (bb);
8528 if (stmt && stmt_can_throw_internal (stmt))
8529 return false;
8531 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8533 if (e->flags & EDGE_EH)
8535 remove_edge_and_dominated_blocks (e);
8536 changed = true;
8538 else
8539 ei_next (&ei);
8542 return changed;
8545 /* Purge dead EH edges from basic block listed in BLOCKS. */
8547 bool
8548 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8550 bool changed = false;
8551 unsigned i;
8552 bitmap_iterator bi;
8554 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8556 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8558 /* Earlier gimple_purge_dead_eh_edges could have removed
8559 this basic block already. */
8560 gcc_assert (bb || changed);
8561 if (bb != NULL)
8562 changed |= gimple_purge_dead_eh_edges (bb);
8565 return changed;
8568 /* Purge dead abnormal call edges from basic block BB. */
8570 bool
8571 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8573 bool changed = false;
8574 edge e;
8575 edge_iterator ei;
8576 gimple *stmt = last_stmt (bb);
8578 if (!cfun->has_nonlocal_label
8579 && !cfun->calls_setjmp)
8580 return false;
8582 if (stmt && stmt_can_make_abnormal_goto (stmt))
8583 return false;
8585 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8587 if (e->flags & EDGE_ABNORMAL)
8589 if (e->flags & EDGE_FALLTHRU)
8590 e->flags &= ~EDGE_ABNORMAL;
8591 else
8592 remove_edge_and_dominated_blocks (e);
8593 changed = true;
8595 else
8596 ei_next (&ei);
8599 return changed;
8602 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8604 bool
8605 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8607 bool changed = false;
8608 unsigned i;
8609 bitmap_iterator bi;
8611 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8613 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8615 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8616 this basic block already. */
8617 gcc_assert (bb || changed);
8618 if (bb != NULL)
8619 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8622 return changed;
8625 /* This function is called whenever a new edge is created or
8626 redirected. */
8628 static void
8629 gimple_execute_on_growing_pred (edge e)
8631 basic_block bb = e->dest;
8633 if (!gimple_seq_empty_p (phi_nodes (bb)))
8634 reserve_phi_args_for_new_edge (bb);
8637 /* This function is called immediately before edge E is removed from
8638 the edge vector E->dest->preds. */
8640 static void
8641 gimple_execute_on_shrinking_pred (edge e)
8643 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8644 remove_phi_args (e);
8647 /*---------------------------------------------------------------------------
8648 Helper functions for Loop versioning
8649 ---------------------------------------------------------------------------*/
8651 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8652 of 'first'. Both of them are dominated by 'new_head' basic block. When
8653 'new_head' was created by 'second's incoming edge it received phi arguments
8654 on the edge by split_edge(). Later, additional edge 'e' was created to
8655 connect 'new_head' and 'first'. Now this routine adds phi args on this
8656 additional edge 'e' that new_head to second edge received as part of edge
8657 splitting. */
8659 static void
8660 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8661 basic_block new_head, edge e)
8663 gphi *phi1, *phi2;
8664 gphi_iterator psi1, psi2;
8665 tree def;
8666 edge e2 = find_edge (new_head, second);
8668 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8669 edge, we should always have an edge from NEW_HEAD to SECOND. */
8670 gcc_assert (e2 != NULL);
8672 /* Browse all 'second' basic block phi nodes and add phi args to
8673 edge 'e' for 'first' head. PHI args are always in correct order. */
8675 for (psi2 = gsi_start_phis (second),
8676 psi1 = gsi_start_phis (first);
8677 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8678 gsi_next (&psi2), gsi_next (&psi1))
8680 phi1 = psi1.phi ();
8681 phi2 = psi2.phi ();
8682 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8683 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8688 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8689 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8690 the destination of the ELSE part. */
8692 static void
8693 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8694 basic_block second_head ATTRIBUTE_UNUSED,
8695 basic_block cond_bb, void *cond_e)
8697 gimple_stmt_iterator gsi;
8698 gimple *new_cond_expr;
8699 tree cond_expr = (tree) cond_e;
8700 edge e0;
8702 /* Build new conditional expr */
8703 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8704 NULL_TREE, NULL_TREE);
8706 /* Add new cond in cond_bb. */
8707 gsi = gsi_last_bb (cond_bb);
8708 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8710 /* Adjust edges appropriately to connect new head with first head
8711 as well as second head. */
8712 e0 = single_succ_edge (cond_bb);
8713 e0->flags &= ~EDGE_FALLTHRU;
8714 e0->flags |= EDGE_FALSE_VALUE;
8718 /* Do book-keeping of basic block BB for the profile consistency checker.
8719 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8720 then do post-pass accounting. Store the counting in RECORD. */
8721 static void
8722 gimple_account_profile_record (basic_block bb, int after_pass,
8723 struct profile_record *record)
8725 gimple_stmt_iterator i;
8726 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8728 record->size[after_pass]
8729 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8730 if (bb->count.initialized_p ())
8731 record->time[after_pass]
8732 += estimate_num_insns (gsi_stmt (i),
8733 &eni_time_weights) * bb->count.to_gcov_type ();
8734 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8735 record->time[after_pass]
8736 += estimate_num_insns (gsi_stmt (i),
8737 &eni_time_weights) * bb->count.to_frequency (cfun);
8741 struct cfg_hooks gimple_cfg_hooks = {
8742 "gimple",
8743 gimple_verify_flow_info,
8744 gimple_dump_bb, /* dump_bb */
8745 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8746 create_bb, /* create_basic_block */
8747 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8748 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8749 gimple_can_remove_branch_p, /* can_remove_branch_p */
8750 remove_bb, /* delete_basic_block */
8751 gimple_split_block, /* split_block */
8752 gimple_move_block_after, /* move_block_after */
8753 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8754 gimple_merge_blocks, /* merge_blocks */
8755 gimple_predict_edge, /* predict_edge */
8756 gimple_predicted_by_p, /* predicted_by_p */
8757 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8758 gimple_duplicate_bb, /* duplicate_block */
8759 gimple_split_edge, /* split_edge */
8760 gimple_make_forwarder_block, /* make_forward_block */
8761 NULL, /* tidy_fallthru_edge */
8762 NULL, /* force_nonfallthru */
8763 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8764 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8765 gimple_flow_call_edges_add, /* flow_call_edges_add */
8766 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8767 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8768 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8769 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8770 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8771 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8772 flush_pending_stmts, /* flush_pending_stmts */
8773 gimple_empty_block_p, /* block_empty_p */
8774 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8775 gimple_account_profile_record,
8779 /* Split all critical edges. */
8781 unsigned int
8782 split_critical_edges (void)
8784 basic_block bb;
8785 edge e;
8786 edge_iterator ei;
8788 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8789 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8790 mappings around the calls to split_edge. */
8791 start_recording_case_labels ();
8792 FOR_ALL_BB_FN (bb, cfun)
8794 FOR_EACH_EDGE (e, ei, bb->succs)
8796 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8797 split_edge (e);
8798 /* PRE inserts statements to edges and expects that
8799 since split_critical_edges was done beforehand, committing edge
8800 insertions will not split more edges. In addition to critical
8801 edges we must split edges that have multiple successors and
8802 end by control flow statements, such as RESX.
8803 Go ahead and split them too. This matches the logic in
8804 gimple_find_edge_insert_loc. */
8805 else if ((!single_pred_p (e->dest)
8806 || !gimple_seq_empty_p (phi_nodes (e->dest))
8807 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8808 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8809 && !(e->flags & EDGE_ABNORMAL))
8811 gimple_stmt_iterator gsi;
8813 gsi = gsi_last_bb (e->src);
8814 if (!gsi_end_p (gsi)
8815 && stmt_ends_bb_p (gsi_stmt (gsi))
8816 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8817 && !gimple_call_builtin_p (gsi_stmt (gsi),
8818 BUILT_IN_RETURN)))
8819 split_edge (e);
8823 end_recording_case_labels ();
8824 return 0;
8827 namespace {
8829 const pass_data pass_data_split_crit_edges =
8831 GIMPLE_PASS, /* type */
8832 "crited", /* name */
8833 OPTGROUP_NONE, /* optinfo_flags */
8834 TV_TREE_SPLIT_EDGES, /* tv_id */
8835 PROP_cfg, /* properties_required */
8836 PROP_no_crit_edges, /* properties_provided */
8837 0, /* properties_destroyed */
8838 0, /* todo_flags_start */
8839 0, /* todo_flags_finish */
8842 class pass_split_crit_edges : public gimple_opt_pass
8844 public:
8845 pass_split_crit_edges (gcc::context *ctxt)
8846 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8849 /* opt_pass methods: */
8850 virtual unsigned int execute (function *) { return split_critical_edges (); }
8852 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8853 }; // class pass_split_crit_edges
8855 } // anon namespace
8857 gimple_opt_pass *
8858 make_pass_split_crit_edges (gcc::context *ctxt)
8860 return new pass_split_crit_edges (ctxt);
8864 /* Insert COND expression which is GIMPLE_COND after STMT
8865 in basic block BB with appropriate basic block split
8866 and creation of a new conditionally executed basic block.
8867 Update profile so the new bb is visited with probability PROB.
8868 Return created basic block. */
8869 basic_block
8870 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8871 profile_probability prob)
8873 edge fall = split_block (bb, stmt);
8874 gimple_stmt_iterator iter = gsi_last_bb (bb);
8875 basic_block new_bb;
8877 /* Insert cond statement. */
8878 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8879 if (gsi_end_p (iter))
8880 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8881 else
8882 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8884 /* Create conditionally executed block. */
8885 new_bb = create_empty_bb (bb);
8886 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8887 e->probability = prob;
8888 new_bb->count = e->count ();
8889 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8891 /* Fix edge for split bb. */
8892 fall->flags = EDGE_FALSE_VALUE;
8893 fall->probability -= e->probability;
8895 /* Update dominance info. */
8896 if (dom_info_available_p (CDI_DOMINATORS))
8898 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8899 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8902 /* Update loop info. */
8903 if (current_loops)
8904 add_bb_to_loop (new_bb, bb->loop_father);
8906 return new_bb;
8909 /* Build a ternary operation and gimplify it. Emit code before GSI.
8910 Return the gimple_val holding the result. */
8912 tree
8913 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8914 tree type, tree a, tree b, tree c)
8916 tree ret;
8917 location_t loc = gimple_location (gsi_stmt (*gsi));
8919 ret = fold_build3_loc (loc, code, type, a, b, c);
8920 STRIP_NOPS (ret);
8922 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8923 GSI_SAME_STMT);
8926 /* Build a binary operation and gimplify it. Emit code before GSI.
8927 Return the gimple_val holding the result. */
8929 tree
8930 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8931 tree type, tree a, tree b)
8933 tree ret;
8935 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8936 STRIP_NOPS (ret);
8938 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8939 GSI_SAME_STMT);
8942 /* Build a unary operation and gimplify it. Emit code before GSI.
8943 Return the gimple_val holding the result. */
8945 tree
8946 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8947 tree a)
8949 tree ret;
8951 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8952 STRIP_NOPS (ret);
8954 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8955 GSI_SAME_STMT);
8960 /* Given a basic block B which ends with a conditional and has
8961 precisely two successors, determine which of the edges is taken if
8962 the conditional is true and which is taken if the conditional is
8963 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8965 void
8966 extract_true_false_edges_from_block (basic_block b,
8967 edge *true_edge,
8968 edge *false_edge)
8970 edge e = EDGE_SUCC (b, 0);
8972 if (e->flags & EDGE_TRUE_VALUE)
8974 *true_edge = e;
8975 *false_edge = EDGE_SUCC (b, 1);
8977 else
8979 *false_edge = e;
8980 *true_edge = EDGE_SUCC (b, 1);
8985 /* From a controlling predicate in the immediate dominator DOM of
8986 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8987 predicate evaluates to true and false and store them to
8988 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8989 they are non-NULL. Returns true if the edges can be determined,
8990 else return false. */
8992 bool
8993 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8994 edge *true_controlled_edge,
8995 edge *false_controlled_edge)
8997 basic_block bb = phiblock;
8998 edge true_edge, false_edge, tem;
8999 edge e0 = NULL, e1 = NULL;
9001 /* We have to verify that one edge into the PHI node is dominated
9002 by the true edge of the predicate block and the other edge
9003 dominated by the false edge. This ensures that the PHI argument
9004 we are going to take is completely determined by the path we
9005 take from the predicate block.
9006 We can only use BB dominance checks below if the destination of
9007 the true/false edges are dominated by their edge, thus only
9008 have a single predecessor. */
9009 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9010 tem = EDGE_PRED (bb, 0);
9011 if (tem == true_edge
9012 || (single_pred_p (true_edge->dest)
9013 && (tem->src == true_edge->dest
9014 || dominated_by_p (CDI_DOMINATORS,
9015 tem->src, true_edge->dest))))
9016 e0 = tem;
9017 else if (tem == false_edge
9018 || (single_pred_p (false_edge->dest)
9019 && (tem->src == false_edge->dest
9020 || dominated_by_p (CDI_DOMINATORS,
9021 tem->src, false_edge->dest))))
9022 e1 = tem;
9023 else
9024 return false;
9025 tem = EDGE_PRED (bb, 1);
9026 if (tem == true_edge
9027 || (single_pred_p (true_edge->dest)
9028 && (tem->src == true_edge->dest
9029 || dominated_by_p (CDI_DOMINATORS,
9030 tem->src, true_edge->dest))))
9031 e0 = tem;
9032 else if (tem == false_edge
9033 || (single_pred_p (false_edge->dest)
9034 && (tem->src == false_edge->dest
9035 || dominated_by_p (CDI_DOMINATORS,
9036 tem->src, false_edge->dest))))
9037 e1 = tem;
9038 else
9039 return false;
9040 if (!e0 || !e1)
9041 return false;
9043 if (true_controlled_edge)
9044 *true_controlled_edge = e0;
9045 if (false_controlled_edge)
9046 *false_controlled_edge = e1;
9048 return true;
9051 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9052 range [low, high]. Place associated stmts before *GSI. */
9054 void
9055 generate_range_test (basic_block bb, tree index, tree low, tree high,
9056 tree *lhs, tree *rhs)
9058 tree type = TREE_TYPE (index);
9059 tree utype = unsigned_type_for (type);
9061 low = fold_convert (type, low);
9062 high = fold_convert (type, high);
9064 tree tmp = make_ssa_name (type);
9065 gassign *sub1
9066 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9068 *lhs = make_ssa_name (utype);
9069 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9071 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9072 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9073 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9074 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9077 /* Emit return warnings. */
9079 namespace {
9081 const pass_data pass_data_warn_function_return =
9083 GIMPLE_PASS, /* type */
9084 "*warn_function_return", /* name */
9085 OPTGROUP_NONE, /* optinfo_flags */
9086 TV_NONE, /* tv_id */
9087 PROP_cfg, /* properties_required */
9088 0, /* properties_provided */
9089 0, /* properties_destroyed */
9090 0, /* todo_flags_start */
9091 0, /* todo_flags_finish */
9094 class pass_warn_function_return : public gimple_opt_pass
9096 public:
9097 pass_warn_function_return (gcc::context *ctxt)
9098 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9101 /* opt_pass methods: */
9102 virtual unsigned int execute (function *);
9104 }; // class pass_warn_function_return
9106 unsigned int
9107 pass_warn_function_return::execute (function *fun)
9109 source_location location;
9110 gimple *last;
9111 edge e;
9112 edge_iterator ei;
9114 if (!targetm.warn_func_return (fun->decl))
9115 return 0;
9117 /* If we have a path to EXIT, then we do return. */
9118 if (TREE_THIS_VOLATILE (fun->decl)
9119 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9121 location = UNKNOWN_LOCATION;
9122 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9123 (e = ei_safe_edge (ei)); )
9125 last = last_stmt (e->src);
9126 if ((gimple_code (last) == GIMPLE_RETURN
9127 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9128 && location == UNKNOWN_LOCATION
9129 && ((location = LOCATION_LOCUS (gimple_location (last)))
9130 != UNKNOWN_LOCATION)
9131 && !optimize)
9132 break;
9133 /* When optimizing, replace return stmts in noreturn functions
9134 with __builtin_unreachable () call. */
9135 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9137 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9138 gimple *new_stmt = gimple_build_call (fndecl, 0);
9139 gimple_set_location (new_stmt, gimple_location (last));
9140 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9141 gsi_replace (&gsi, new_stmt, true);
9142 remove_edge (e);
9144 else
9145 ei_next (&ei);
9147 if (location == UNKNOWN_LOCATION)
9148 location = cfun->function_end_locus;
9149 warning_at (location, 0, "%<noreturn%> function does return");
9152 /* If we see "return;" in some basic block, then we do reach the end
9153 without returning a value. */
9154 else if (warn_return_type > 0
9155 && !TREE_NO_WARNING (fun->decl)
9156 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9160 gimple *last = last_stmt (e->src);
9161 greturn *return_stmt = dyn_cast <greturn *> (last);
9162 if (return_stmt
9163 && gimple_return_retval (return_stmt) == NULL
9164 && !gimple_no_warning_p (last))
9166 location = gimple_location (last);
9167 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9168 location = fun->function_end_locus;
9169 warning_at (location, OPT_Wreturn_type,
9170 "control reaches end of non-void function");
9171 TREE_NO_WARNING (fun->decl) = 1;
9172 break;
9175 /* The C++ FE turns fallthrough from the end of non-void function
9176 into __builtin_unreachable () call with BUILTINS_LOCATION.
9177 Recognize those too. */
9178 basic_block bb;
9179 if (!TREE_NO_WARNING (fun->decl))
9180 FOR_EACH_BB_FN (bb, fun)
9181 if (EDGE_COUNT (bb->succs) == 0)
9183 gimple *last = last_stmt (bb);
9184 const enum built_in_function ubsan_missing_ret
9185 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9186 if (last
9187 && ((LOCATION_LOCUS (gimple_location (last))
9188 == BUILTINS_LOCATION
9189 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9190 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9192 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9193 gsi_prev_nondebug (&gsi);
9194 gimple *prev = gsi_stmt (gsi);
9195 if (prev == NULL)
9196 location = UNKNOWN_LOCATION;
9197 else
9198 location = gimple_location (prev);
9199 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9200 location = fun->function_end_locus;
9201 warning_at (location, OPT_Wreturn_type,
9202 "control reaches end of non-void function");
9203 TREE_NO_WARNING (fun->decl) = 1;
9204 break;
9208 return 0;
9211 } // anon namespace
9213 gimple_opt_pass *
9214 make_pass_warn_function_return (gcc::context *ctxt)
9216 return new pass_warn_function_return (ctxt);
9219 /* Walk a gimplified function and warn for functions whose return value is
9220 ignored and attribute((warn_unused_result)) is set. This is done before
9221 inlining, so we don't have to worry about that. */
9223 static void
9224 do_warn_unused_result (gimple_seq seq)
9226 tree fdecl, ftype;
9227 gimple_stmt_iterator i;
9229 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9231 gimple *g = gsi_stmt (i);
9233 switch (gimple_code (g))
9235 case GIMPLE_BIND:
9236 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9237 break;
9238 case GIMPLE_TRY:
9239 do_warn_unused_result (gimple_try_eval (g));
9240 do_warn_unused_result (gimple_try_cleanup (g));
9241 break;
9242 case GIMPLE_CATCH:
9243 do_warn_unused_result (gimple_catch_handler (
9244 as_a <gcatch *> (g)));
9245 break;
9246 case GIMPLE_EH_FILTER:
9247 do_warn_unused_result (gimple_eh_filter_failure (g));
9248 break;
9250 case GIMPLE_CALL:
9251 if (gimple_call_lhs (g))
9252 break;
9253 if (gimple_call_internal_p (g))
9254 break;
9256 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9257 LHS. All calls whose value is ignored should be
9258 represented like this. Look for the attribute. */
9259 fdecl = gimple_call_fndecl (g);
9260 ftype = gimple_call_fntype (g);
9262 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9264 location_t loc = gimple_location (g);
9266 if (fdecl)
9267 warning_at (loc, OPT_Wunused_result,
9268 "ignoring return value of %qD, "
9269 "declared with attribute warn_unused_result",
9270 fdecl);
9271 else
9272 warning_at (loc, OPT_Wunused_result,
9273 "ignoring return value of function "
9274 "declared with attribute warn_unused_result");
9276 break;
9278 default:
9279 /* Not a container, not a call, or a call whose value is used. */
9280 break;
9285 namespace {
9287 const pass_data pass_data_warn_unused_result =
9289 GIMPLE_PASS, /* type */
9290 "*warn_unused_result", /* name */
9291 OPTGROUP_NONE, /* optinfo_flags */
9292 TV_NONE, /* tv_id */
9293 PROP_gimple_any, /* properties_required */
9294 0, /* properties_provided */
9295 0, /* properties_destroyed */
9296 0, /* todo_flags_start */
9297 0, /* todo_flags_finish */
9300 class pass_warn_unused_result : public gimple_opt_pass
9302 public:
9303 pass_warn_unused_result (gcc::context *ctxt)
9304 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9307 /* opt_pass methods: */
9308 virtual bool gate (function *) { return flag_warn_unused_result; }
9309 virtual unsigned int execute (function *)
9311 do_warn_unused_result (gimple_body (current_function_decl));
9312 return 0;
9315 }; // class pass_warn_unused_result
9317 } // anon namespace
9319 gimple_opt_pass *
9320 make_pass_warn_unused_result (gcc::context *ctxt)
9322 return new pass_warn_unused_result (ctxt);
9325 /* IPA passes, compilation of earlier functions or inlining
9326 might have changed some properties, such as marked functions nothrow,
9327 pure, const or noreturn.
9328 Remove redundant edges and basic blocks, and create new ones if necessary.
9330 This pass can't be executed as stand alone pass from pass manager, because
9331 in between inlining and this fixup the verify_flow_info would fail. */
9333 unsigned int
9334 execute_fixup_cfg (void)
9336 basic_block bb;
9337 gimple_stmt_iterator gsi;
9338 int todo = 0;
9339 cgraph_node *node = cgraph_node::get (current_function_decl);
9340 profile_count num = node->count;
9341 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9342 bool scale = num.initialized_p () && !(num == den);
9344 if (scale)
9346 profile_count::adjust_for_ipa_scaling (&num, &den);
9347 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9348 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9349 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9352 FOR_EACH_BB_FN (bb, cfun)
9354 if (scale)
9355 bb->count = bb->count.apply_scale (num, den);
9356 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9358 gimple *stmt = gsi_stmt (gsi);
9359 tree decl = is_gimple_call (stmt)
9360 ? gimple_call_fndecl (stmt)
9361 : NULL;
9362 if (decl)
9364 int flags = gimple_call_flags (stmt);
9365 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9367 if (gimple_purge_dead_abnormal_call_edges (bb))
9368 todo |= TODO_cleanup_cfg;
9370 if (gimple_in_ssa_p (cfun))
9372 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9373 update_stmt (stmt);
9377 if (flags & ECF_NORETURN
9378 && fixup_noreturn_call (stmt))
9379 todo |= TODO_cleanup_cfg;
9382 /* Remove stores to variables we marked write-only.
9383 Keep access when store has side effect, i.e. in case when source
9384 is volatile. */
9385 if (gimple_store_p (stmt)
9386 && !gimple_has_side_effects (stmt))
9388 tree lhs = get_base_address (gimple_get_lhs (stmt));
9390 if (VAR_P (lhs)
9391 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9392 && varpool_node::get (lhs)->writeonly)
9394 unlink_stmt_vdef (stmt);
9395 gsi_remove (&gsi, true);
9396 release_defs (stmt);
9397 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9398 continue;
9401 /* For calls we can simply remove LHS when it is known
9402 to be write-only. */
9403 if (is_gimple_call (stmt)
9404 && gimple_get_lhs (stmt))
9406 tree lhs = get_base_address (gimple_get_lhs (stmt));
9408 if (VAR_P (lhs)
9409 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9410 && varpool_node::get (lhs)->writeonly)
9412 gimple_call_set_lhs (stmt, NULL);
9413 update_stmt (stmt);
9414 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9418 if (maybe_clean_eh_stmt (stmt)
9419 && gimple_purge_dead_eh_edges (bb))
9420 todo |= TODO_cleanup_cfg;
9421 gsi_next (&gsi);
9424 /* If we have a basic block with no successors that does not
9425 end with a control statement or a noreturn call end it with
9426 a call to __builtin_unreachable. This situation can occur
9427 when inlining a noreturn call that does in fact return. */
9428 if (EDGE_COUNT (bb->succs) == 0)
9430 gimple *stmt = last_stmt (bb);
9431 if (!stmt
9432 || (!is_ctrl_stmt (stmt)
9433 && (!is_gimple_call (stmt)
9434 || !gimple_call_noreturn_p (stmt))))
9436 if (stmt && is_gimple_call (stmt))
9437 gimple_call_set_ctrl_altering (stmt, false);
9438 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9439 stmt = gimple_build_call (fndecl, 0);
9440 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9441 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9442 if (!cfun->after_inlining)
9444 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9445 node->create_edge (cgraph_node::get_create (fndecl),
9446 call_stmt, bb->count);
9451 if (scale)
9452 compute_function_frequency ();
9454 if (current_loops
9455 && (todo & TODO_cleanup_cfg))
9456 loops_state_set (LOOPS_NEED_FIXUP);
9458 return todo;
9461 namespace {
9463 const pass_data pass_data_fixup_cfg =
9465 GIMPLE_PASS, /* type */
9466 "fixup_cfg", /* name */
9467 OPTGROUP_NONE, /* optinfo_flags */
9468 TV_NONE, /* tv_id */
9469 PROP_cfg, /* properties_required */
9470 0, /* properties_provided */
9471 0, /* properties_destroyed */
9472 0, /* todo_flags_start */
9473 0, /* todo_flags_finish */
9476 class pass_fixup_cfg : public gimple_opt_pass
9478 public:
9479 pass_fixup_cfg (gcc::context *ctxt)
9480 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9483 /* opt_pass methods: */
9484 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9485 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9487 }; // class pass_fixup_cfg
9489 } // anon namespace
9491 gimple_opt_pass *
9492 make_pass_fixup_cfg (gcc::context *ctxt)
9494 return new pass_fixup_cfg (ctxt);
9497 /* Garbage collection support for edge_def. */
9499 extern void gt_ggc_mx (tree&);
9500 extern void gt_ggc_mx (gimple *&);
9501 extern void gt_ggc_mx (rtx&);
9502 extern void gt_ggc_mx (basic_block&);
9504 static void
9505 gt_ggc_mx (rtx_insn *& x)
9507 if (x)
9508 gt_ggc_mx_rtx_def ((void *) x);
9511 void
9512 gt_ggc_mx (edge_def *e)
9514 tree block = LOCATION_BLOCK (e->goto_locus);
9515 gt_ggc_mx (e->src);
9516 gt_ggc_mx (e->dest);
9517 if (current_ir_type () == IR_GIMPLE)
9518 gt_ggc_mx (e->insns.g);
9519 else
9520 gt_ggc_mx (e->insns.r);
9521 gt_ggc_mx (block);
9524 /* PCH support for edge_def. */
9526 extern void gt_pch_nx (tree&);
9527 extern void gt_pch_nx (gimple *&);
9528 extern void gt_pch_nx (rtx&);
9529 extern void gt_pch_nx (basic_block&);
9531 static void
9532 gt_pch_nx (rtx_insn *& x)
9534 if (x)
9535 gt_pch_nx_rtx_def ((void *) x);
9538 void
9539 gt_pch_nx (edge_def *e)
9541 tree block = LOCATION_BLOCK (e->goto_locus);
9542 gt_pch_nx (e->src);
9543 gt_pch_nx (e->dest);
9544 if (current_ir_type () == IR_GIMPLE)
9545 gt_pch_nx (e->insns.g);
9546 else
9547 gt_pch_nx (e->insns.r);
9548 gt_pch_nx (block);
9551 void
9552 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9554 tree block = LOCATION_BLOCK (e->goto_locus);
9555 op (&(e->src), cookie);
9556 op (&(e->dest), cookie);
9557 if (current_ir_type () == IR_GIMPLE)
9558 op (&(e->insns.g), cookie);
9559 else
9560 op (&(e->insns.r), cookie);
9561 op (&(block), cookie);
9564 #if CHECKING_P
9566 namespace selftest {
9568 /* Helper function for CFG selftests: create a dummy function decl
9569 and push it as cfun. */
9571 static tree
9572 push_fndecl (const char *name)
9574 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9575 /* FIXME: this uses input_location: */
9576 tree fndecl = build_fn_decl (name, fn_type);
9577 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9578 NULL_TREE, integer_type_node);
9579 DECL_RESULT (fndecl) = retval;
9580 push_struct_function (fndecl);
9581 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9582 ASSERT_TRUE (fun != NULL);
9583 init_empty_tree_cfg_for_function (fun);
9584 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9585 ASSERT_EQ (0, n_edges_for_fn (fun));
9586 return fndecl;
9589 /* These tests directly create CFGs.
9590 Compare with the static fns within tree-cfg.c:
9591 - build_gimple_cfg
9592 - make_blocks: calls create_basic_block (seq, bb);
9593 - make_edges. */
9595 /* Verify a simple cfg of the form:
9596 ENTRY -> A -> B -> C -> EXIT. */
9598 static void
9599 test_linear_chain ()
9601 gimple_register_cfg_hooks ();
9603 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9604 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9606 /* Create some empty blocks. */
9607 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9608 basic_block bb_b = create_empty_bb (bb_a);
9609 basic_block bb_c = create_empty_bb (bb_b);
9611 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9612 ASSERT_EQ (0, n_edges_for_fn (fun));
9614 /* Create some edges: a simple linear chain of BBs. */
9615 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9616 make_edge (bb_a, bb_b, 0);
9617 make_edge (bb_b, bb_c, 0);
9618 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9620 /* Verify the edges. */
9621 ASSERT_EQ (4, n_edges_for_fn (fun));
9622 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9623 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9624 ASSERT_EQ (1, bb_a->preds->length ());
9625 ASSERT_EQ (1, bb_a->succs->length ());
9626 ASSERT_EQ (1, bb_b->preds->length ());
9627 ASSERT_EQ (1, bb_b->succs->length ());
9628 ASSERT_EQ (1, bb_c->preds->length ());
9629 ASSERT_EQ (1, bb_c->succs->length ());
9630 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9631 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9633 /* Verify the dominance information
9634 Each BB in our simple chain should be dominated by the one before
9635 it. */
9636 calculate_dominance_info (CDI_DOMINATORS);
9637 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9638 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9639 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9640 ASSERT_EQ (1, dom_by_b.length ());
9641 ASSERT_EQ (bb_c, dom_by_b[0]);
9642 free_dominance_info (CDI_DOMINATORS);
9643 dom_by_b.release ();
9645 /* Similarly for post-dominance: each BB in our chain is post-dominated
9646 by the one after it. */
9647 calculate_dominance_info (CDI_POST_DOMINATORS);
9648 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9649 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9650 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9651 ASSERT_EQ (1, postdom_by_b.length ());
9652 ASSERT_EQ (bb_a, postdom_by_b[0]);
9653 free_dominance_info (CDI_POST_DOMINATORS);
9654 postdom_by_b.release ();
9656 pop_cfun ();
9659 /* Verify a simple CFG of the form:
9660 ENTRY
9664 /t \f
9670 EXIT. */
9672 static void
9673 test_diamond ()
9675 gimple_register_cfg_hooks ();
9677 tree fndecl = push_fndecl ("cfg_test_diamond");
9678 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9680 /* Create some empty blocks. */
9681 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9682 basic_block bb_b = create_empty_bb (bb_a);
9683 basic_block bb_c = create_empty_bb (bb_a);
9684 basic_block bb_d = create_empty_bb (bb_b);
9686 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9687 ASSERT_EQ (0, n_edges_for_fn (fun));
9689 /* Create the edges. */
9690 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9691 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9692 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9693 make_edge (bb_b, bb_d, 0);
9694 make_edge (bb_c, bb_d, 0);
9695 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9697 /* Verify the edges. */
9698 ASSERT_EQ (6, n_edges_for_fn (fun));
9699 ASSERT_EQ (1, bb_a->preds->length ());
9700 ASSERT_EQ (2, bb_a->succs->length ());
9701 ASSERT_EQ (1, bb_b->preds->length ());
9702 ASSERT_EQ (1, bb_b->succs->length ());
9703 ASSERT_EQ (1, bb_c->preds->length ());
9704 ASSERT_EQ (1, bb_c->succs->length ());
9705 ASSERT_EQ (2, bb_d->preds->length ());
9706 ASSERT_EQ (1, bb_d->succs->length ());
9708 /* Verify the dominance information. */
9709 calculate_dominance_info (CDI_DOMINATORS);
9710 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9711 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9712 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9713 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9714 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9715 dom_by_a.release ();
9716 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9717 ASSERT_EQ (0, dom_by_b.length ());
9718 dom_by_b.release ();
9719 free_dominance_info (CDI_DOMINATORS);
9721 /* Similarly for post-dominance. */
9722 calculate_dominance_info (CDI_POST_DOMINATORS);
9723 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9724 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9725 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9726 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9727 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9728 postdom_by_d.release ();
9729 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9730 ASSERT_EQ (0, postdom_by_b.length ());
9731 postdom_by_b.release ();
9732 free_dominance_info (CDI_POST_DOMINATORS);
9734 pop_cfun ();
9737 /* Verify that we can handle a CFG containing a "complete" aka
9738 fully-connected subgraph (where A B C D below all have edges
9739 pointing to each other node, also to themselves).
9740 e.g.:
9741 ENTRY EXIT
9747 A<--->B
9748 ^^ ^^
9749 | \ / |
9750 | X |
9751 | / \ |
9752 VV VV
9753 C<--->D
9756 static void
9757 test_fully_connected ()
9759 gimple_register_cfg_hooks ();
9761 tree fndecl = push_fndecl ("cfg_fully_connected");
9762 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9764 const int n = 4;
9766 /* Create some empty blocks. */
9767 auto_vec <basic_block> subgraph_nodes;
9768 for (int i = 0; i < n; i++)
9769 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9771 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9772 ASSERT_EQ (0, n_edges_for_fn (fun));
9774 /* Create the edges. */
9775 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9776 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9777 for (int i = 0; i < n; i++)
9778 for (int j = 0; j < n; j++)
9779 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9781 /* Verify the edges. */
9782 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9783 /* The first one is linked to ENTRY/EXIT as well as itself and
9784 everything else. */
9785 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9786 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9787 /* The other ones in the subgraph are linked to everything in
9788 the subgraph (including themselves). */
9789 for (int i = 1; i < n; i++)
9791 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9792 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9795 /* Verify the dominance information. */
9796 calculate_dominance_info (CDI_DOMINATORS);
9797 /* The initial block in the subgraph should be dominated by ENTRY. */
9798 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9799 get_immediate_dominator (CDI_DOMINATORS,
9800 subgraph_nodes[0]));
9801 /* Every other block in the subgraph should be dominated by the
9802 initial block. */
9803 for (int i = 1; i < n; i++)
9804 ASSERT_EQ (subgraph_nodes[0],
9805 get_immediate_dominator (CDI_DOMINATORS,
9806 subgraph_nodes[i]));
9807 free_dominance_info (CDI_DOMINATORS);
9809 /* Similarly for post-dominance. */
9810 calculate_dominance_info (CDI_POST_DOMINATORS);
9811 /* The initial block in the subgraph should be postdominated by EXIT. */
9812 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9813 get_immediate_dominator (CDI_POST_DOMINATORS,
9814 subgraph_nodes[0]));
9815 /* Every other block in the subgraph should be postdominated by the
9816 initial block, since that leads to EXIT. */
9817 for (int i = 1; i < n; i++)
9818 ASSERT_EQ (subgraph_nodes[0],
9819 get_immediate_dominator (CDI_POST_DOMINATORS,
9820 subgraph_nodes[i]));
9821 free_dominance_info (CDI_POST_DOMINATORS);
9823 pop_cfun ();
9826 /* Run all of the selftests within this file. */
9828 void
9829 tree_cfg_c_tests ()
9831 test_linear_chain ();
9832 test_diamond ();
9833 test_fully_connected ();
9836 } // namespace selftest
9838 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9839 - loop
9840 - nested loops
9841 - switch statement (a block with many out-edges)
9842 - something that jumps to itself
9843 - etc */
9845 #endif /* CHECKING_P */