2018-05-07 Edward Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / expr.c
blob9dd0e60d24d3e4829c44b2df65f2013920eced48
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
60 #include "builtins.h"
61 #include "tree-chkp.h"
62 #include "rtl-chkp.h"
63 #include "ccmp.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT);
79 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
80 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
81 static rtx_insn *compress_float_constant (rtx, rtx);
82 static rtx get_subtarget (rtx);
83 static void store_constructor (tree, rtx, int, poly_int64, bool);
84 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
85 machine_mode, tree, alias_set_type, bool, bool);
87 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
89 static int is_aligning_offset (const_tree, const_tree);
90 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
91 static rtx do_store_flag (sepops, rtx, machine_mode);
92 #ifdef PUSH_ROUNDING
93 static void emit_single_push_insn (machine_mode, rtx, tree);
94 #endif
95 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
96 profile_probability);
97 static rtx const_vector_from_tree (tree);
98 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
99 static tree tree_expr_size (const_tree);
100 static HOST_WIDE_INT int_expr_size (tree);
101 static void convert_mode_scalar (rtx, rtx, int);
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
108 void
109 init_expr_target (void)
111 rtx pat;
112 int num_clobbers;
113 rtx mem, mem1;
114 rtx reg;
116 /* Try indexing by frame ptr and try by stack ptr.
117 It is known that on the Convex the stack ptr isn't a valid index.
118 With luck, one or the other is valid on any machine. */
119 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
120 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
122 /* A scratch register we can modify in-place below to avoid
123 useless RTL allocations. */
124 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
126 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
127 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
128 PATTERN (insn) = pat;
130 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
131 mode = (machine_mode) ((int) mode + 1))
133 int regno;
135 direct_load[(int) mode] = direct_store[(int) mode] = 0;
136 PUT_MODE (mem, mode);
137 PUT_MODE (mem1, mode);
139 /* See if there is some register that can be used in this mode and
140 directly loaded or stored from memory. */
142 if (mode != VOIDmode && mode != BLKmode)
143 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
144 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
145 regno++)
147 if (!targetm.hard_regno_mode_ok (regno, mode))
148 continue;
150 set_mode_and_regno (reg, mode, regno);
152 SET_SRC (pat) = mem;
153 SET_DEST (pat) = reg;
154 if (recog (pat, insn, &num_clobbers) >= 0)
155 direct_load[(int) mode] = 1;
157 SET_SRC (pat) = mem1;
158 SET_DEST (pat) = reg;
159 if (recog (pat, insn, &num_clobbers) >= 0)
160 direct_load[(int) mode] = 1;
162 SET_SRC (pat) = reg;
163 SET_DEST (pat) = mem;
164 if (recog (pat, insn, &num_clobbers) >= 0)
165 direct_store[(int) mode] = 1;
167 SET_SRC (pat) = reg;
168 SET_DEST (pat) = mem1;
169 if (recog (pat, insn, &num_clobbers) >= 0)
170 direct_store[(int) mode] = 1;
174 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
176 opt_scalar_float_mode mode_iter;
177 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
179 scalar_float_mode mode = mode_iter.require ();
180 scalar_float_mode srcmode;
181 FOR_EACH_MODE_UNTIL (srcmode, mode)
183 enum insn_code ic;
185 ic = can_extend_p (mode, srcmode, 0);
186 if (ic == CODE_FOR_nothing)
187 continue;
189 PUT_MODE (mem, srcmode);
191 if (insn_operand_matches (ic, 1, mem))
192 float_extend_from_mem[mode][srcmode] = true;
197 /* This is run at the start of compiling a function. */
199 void
200 init_expr (void)
202 memset (&crtl->expr, 0, sizeof (crtl->expr));
205 /* Copy data from FROM to TO, where the machine modes are not the same.
206 Both modes may be integer, or both may be floating, or both may be
207 fixed-point.
208 UNSIGNEDP should be nonzero if FROM is an unsigned type.
209 This causes zero-extension instead of sign-extension. */
211 void
212 convert_move (rtx to, rtx from, int unsignedp)
214 machine_mode to_mode = GET_MODE (to);
215 machine_mode from_mode = GET_MODE (from);
217 gcc_assert (to_mode != BLKmode);
218 gcc_assert (from_mode != BLKmode);
220 /* If the source and destination are already the same, then there's
221 nothing to do. */
222 if (to == from)
223 return;
225 /* If FROM is a SUBREG that indicates that we have already done at least
226 the required extension, strip it. We don't handle such SUBREGs as
227 TO here. */
229 scalar_int_mode to_int_mode;
230 if (GET_CODE (from) == SUBREG
231 && SUBREG_PROMOTED_VAR_P (from)
232 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
233 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
234 >= GET_MODE_PRECISION (to_int_mode))
235 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
237 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
238 from_mode = to_int_mode;
241 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
243 if (to_mode == from_mode
244 || (from_mode == VOIDmode && CONSTANT_P (from)))
246 emit_move_insn (to, from);
247 return;
250 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
252 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
253 GET_MODE_BITSIZE (to_mode)));
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
260 emit_move_insn (to, from);
261 return;
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
271 convert_mode_scalar (to, from, unsignedp);
274 /* Like convert_move, but deals only with scalar modes. */
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
287 gcc_assert (to_real == from_real);
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
293 if (to_real)
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
312 /* Try converting directly if the insn is supported. */
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
343 convert_optab ctab;
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
388 if (to_mode == full_mode)
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
418 /* Now both modes are integers. */
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
499 gcc_assert (subword);
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
505 insns = get_insns ();
506 end_sequence ();
508 emit_insn (insns);
509 return;
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
528 /* Now follow all the conversions between integers
529 no more than a word long. */
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
560 else
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
637 return convert_modes (mode, VOIDmode, x, unsignedp);
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
653 rtx temp;
654 scalar_int_mode int_mode;
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
670 if (mode == oldmode)
671 return x;
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || CONST_POLY_INT_P (x)
696 || (REG_P (x)
697 && (!HARD_REGISTER_P (x)
698 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
699 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
700 return gen_lowpart (int_mode, x);
702 /* Converting from integer constant into mode is always equivalent to an
703 subreg operation. */
704 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
706 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
707 GET_MODE_BITSIZE (oldmode)));
708 return simplify_gen_subreg (mode, x, oldmode, 0);
711 temp = gen_reg_rtx (mode);
712 convert_move (temp, x, unsignedp);
713 return temp;
716 /* Return the largest alignment we can use for doing a move (or store)
717 of MAX_PIECES. ALIGN is the largest alignment we could use. */
719 static unsigned int
720 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
722 scalar_int_mode tmode
723 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
725 if (align >= GET_MODE_ALIGNMENT (tmode))
726 align = GET_MODE_ALIGNMENT (tmode);
727 else
729 scalar_int_mode xmode = NARROWEST_INT_MODE;
730 opt_scalar_int_mode mode_iter;
731 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
733 tmode = mode_iter.require ();
734 if (GET_MODE_SIZE (tmode) > max_pieces
735 || targetm.slow_unaligned_access (tmode, align))
736 break;
737 xmode = tmode;
740 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
743 return align;
746 /* Return the widest integer mode that is narrower than SIZE bytes. */
748 static scalar_int_mode
749 widest_int_mode_for_size (unsigned int size)
751 scalar_int_mode result = NARROWEST_INT_MODE;
753 gcc_checking_assert (size > 1);
755 opt_scalar_int_mode tmode;
756 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
757 if (GET_MODE_SIZE (tmode.require ()) < size)
758 result = tmode.require ();
760 return result;
763 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
764 and should be performed piecewise. */
766 static bool
767 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
768 enum by_pieces_operation op)
770 return targetm.use_by_pieces_infrastructure_p (len, align, op,
771 optimize_insn_for_speed_p ());
774 /* Determine whether the LEN bytes can be moved by using several move
775 instructions. Return nonzero if a call to move_by_pieces should
776 succeed. */
778 bool
779 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
781 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
784 /* Return number of insns required to perform operation OP by pieces
785 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
787 unsigned HOST_WIDE_INT
788 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
789 unsigned int max_size, by_pieces_operation op)
791 unsigned HOST_WIDE_INT n_insns = 0;
793 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
795 while (max_size > 1 && l > 0)
797 scalar_int_mode mode = widest_int_mode_for_size (max_size);
798 enum insn_code icode;
800 unsigned int modesize = GET_MODE_SIZE (mode);
802 icode = optab_handler (mov_optab, mode);
803 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
805 unsigned HOST_WIDE_INT n_pieces = l / modesize;
806 l %= modesize;
807 switch (op)
809 default:
810 n_insns += n_pieces;
811 break;
813 case COMPARE_BY_PIECES:
814 int batch = targetm.compare_by_pieces_branch_ratio (mode);
815 int batch_ops = 4 * batch - 1;
816 unsigned HOST_WIDE_INT full = n_pieces / batch;
817 n_insns += full * batch_ops;
818 if (n_pieces % batch != 0)
819 n_insns++;
820 break;
824 max_size = modesize;
827 gcc_assert (!l);
828 return n_insns;
831 /* Used when performing piecewise block operations, holds information
832 about one of the memory objects involved. The member functions
833 can be used to generate code for loading from the object and
834 updating the address when iterating. */
836 class pieces_addr
838 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
839 stack pushes. */
840 rtx m_obj;
841 /* The address of the object. Can differ from that seen in the
842 MEM rtx if we copied the address to a register. */
843 rtx m_addr;
844 /* Nonzero if the address on the object has an autoincrement already,
845 signifies whether that was an increment or decrement. */
846 signed char m_addr_inc;
847 /* Nonzero if we intend to use autoinc without the address already
848 having autoinc form. We will insert add insns around each memory
849 reference, expecting later passes to form autoinc addressing modes.
850 The only supported options are predecrement and postincrement. */
851 signed char m_explicit_inc;
852 /* True if we have either of the two possible cases of using
853 autoincrement. */
854 bool m_auto;
855 /* True if this is an address to be used for load operations rather
856 than stores. */
857 bool m_is_load;
859 /* Optionally, a function to obtain constants for any given offset into
860 the objects, and data associated with it. */
861 by_pieces_constfn m_constfn;
862 void *m_cfndata;
863 public:
864 pieces_addr (rtx, bool, by_pieces_constfn, void *);
865 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
866 void increment_address (HOST_WIDE_INT);
867 void maybe_predec (HOST_WIDE_INT);
868 void maybe_postinc (HOST_WIDE_INT);
869 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
870 int get_addr_inc ()
872 return m_addr_inc;
876 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
877 true if the operation to be performed on this object is a load
878 rather than a store. For stores, OBJ can be NULL, in which case we
879 assume the operation is a stack push. For loads, the optional
880 CONSTFN and its associated CFNDATA can be used in place of the
881 memory load. */
883 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
884 void *cfndata)
885 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
887 m_addr_inc = 0;
888 m_auto = false;
889 if (obj)
891 rtx addr = XEXP (obj, 0);
892 rtx_code code = GET_CODE (addr);
893 m_addr = addr;
894 bool dec = code == PRE_DEC || code == POST_DEC;
895 bool inc = code == PRE_INC || code == POST_INC;
896 m_auto = inc || dec;
897 if (m_auto)
898 m_addr_inc = dec ? -1 : 1;
900 /* While we have always looked for these codes here, the code
901 implementing the memory operation has never handled them.
902 Support could be added later if necessary or beneficial. */
903 gcc_assert (code != PRE_INC && code != POST_DEC);
905 else
907 m_addr = NULL_RTX;
908 if (!is_load)
910 m_auto = true;
911 if (STACK_GROWS_DOWNWARD)
912 m_addr_inc = -1;
913 else
914 m_addr_inc = 1;
916 else
917 gcc_assert (constfn != NULL);
919 m_explicit_inc = 0;
920 if (constfn)
921 gcc_assert (is_load);
924 /* Decide whether to use autoinc for an address involved in a memory op.
925 MODE is the mode of the accesses, REVERSE is true if we've decided to
926 perform the operation starting from the end, and LEN is the length of
927 the operation. Don't override an earlier decision to set m_auto. */
929 void
930 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
931 HOST_WIDE_INT len)
933 if (m_auto || m_obj == NULL_RTX)
934 return;
936 bool use_predec = (m_is_load
937 ? USE_LOAD_PRE_DECREMENT (mode)
938 : USE_STORE_PRE_DECREMENT (mode));
939 bool use_postinc = (m_is_load
940 ? USE_LOAD_POST_INCREMENT (mode)
941 : USE_STORE_POST_INCREMENT (mode));
942 machine_mode addr_mode = get_address_mode (m_obj);
944 if (use_predec && reverse)
946 m_addr = copy_to_mode_reg (addr_mode,
947 plus_constant (addr_mode,
948 m_addr, len));
949 m_auto = true;
950 m_explicit_inc = -1;
952 else if (use_postinc && !reverse)
954 m_addr = copy_to_mode_reg (addr_mode, m_addr);
955 m_auto = true;
956 m_explicit_inc = 1;
958 else if (CONSTANT_P (m_addr))
959 m_addr = copy_to_mode_reg (addr_mode, m_addr);
962 /* Adjust the address to refer to the data at OFFSET in MODE. If we
963 are using autoincrement for this address, we don't add the offset,
964 but we still modify the MEM's properties. */
967 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
969 if (m_constfn)
970 return m_constfn (m_cfndata, offset, mode);
971 if (m_obj == NULL_RTX)
972 return NULL_RTX;
973 if (m_auto)
974 return adjust_automodify_address (m_obj, mode, m_addr, offset);
975 else
976 return adjust_address (m_obj, mode, offset);
979 /* Emit an add instruction to increment the address by SIZE. */
981 void
982 pieces_addr::increment_address (HOST_WIDE_INT size)
984 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
985 emit_insn (gen_add2_insn (m_addr, amount));
988 /* If we are supposed to decrement the address after each access, emit code
989 to do so now. Increment by SIZE (which has should have the correct sign
990 already). */
992 void
993 pieces_addr::maybe_predec (HOST_WIDE_INT size)
995 if (m_explicit_inc >= 0)
996 return;
997 gcc_assert (HAVE_PRE_DECREMENT);
998 increment_address (size);
1001 /* If we are supposed to decrement the address after each access, emit code
1002 to do so now. Increment by SIZE. */
1004 void
1005 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1007 if (m_explicit_inc <= 0)
1008 return;
1009 gcc_assert (HAVE_POST_INCREMENT);
1010 increment_address (size);
1013 /* This structure is used by do_op_by_pieces to describe the operation
1014 to be performed. */
1016 class op_by_pieces_d
1018 protected:
1019 pieces_addr m_to, m_from;
1020 unsigned HOST_WIDE_INT m_len;
1021 HOST_WIDE_INT m_offset;
1022 unsigned int m_align;
1023 unsigned int m_max_size;
1024 bool m_reverse;
1026 /* Virtual functions, overriden by derived classes for the specific
1027 operation. */
1028 virtual void generate (rtx, rtx, machine_mode) = 0;
1029 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1030 virtual void finish_mode (machine_mode)
1034 public:
1035 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1036 unsigned HOST_WIDE_INT, unsigned int);
1037 void run ();
1040 /* The constructor for an op_by_pieces_d structure. We require two
1041 objects named TO and FROM, which are identified as loads or stores
1042 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1043 and its associated FROM_CFN_DATA can be used to replace loads with
1044 constant values. LEN describes the length of the operation. */
1046 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1047 rtx from, bool from_load,
1048 by_pieces_constfn from_cfn,
1049 void *from_cfn_data,
1050 unsigned HOST_WIDE_INT len,
1051 unsigned int align)
1052 : m_to (to, to_load, NULL, NULL),
1053 m_from (from, from_load, from_cfn, from_cfn_data),
1054 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1056 int toi = m_to.get_addr_inc ();
1057 int fromi = m_from.get_addr_inc ();
1058 if (toi >= 0 && fromi >= 0)
1059 m_reverse = false;
1060 else if (toi <= 0 && fromi <= 0)
1061 m_reverse = true;
1062 else
1063 gcc_unreachable ();
1065 m_offset = m_reverse ? len : 0;
1066 align = MIN (to ? MEM_ALIGN (to) : align,
1067 from ? MEM_ALIGN (from) : align);
1069 /* If copying requires more than two move insns,
1070 copy addresses to registers (to make displacements shorter)
1071 and use post-increment if available. */
1072 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1074 /* Find the mode of the largest comparison. */
1075 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1077 m_from.decide_autoinc (mode, m_reverse, len);
1078 m_to.decide_autoinc (mode, m_reverse, len);
1081 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1082 m_align = align;
1085 /* This function contains the main loop used for expanding a block
1086 operation. First move what we can in the largest integer mode,
1087 then go to successively smaller modes. For every access, call
1088 GENFUN with the two operands and the EXTRA_DATA. */
1090 void
1091 op_by_pieces_d::run ()
1093 while (m_max_size > 1 && m_len > 0)
1095 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1097 if (prepare_mode (mode, m_align))
1099 unsigned int size = GET_MODE_SIZE (mode);
1100 rtx to1 = NULL_RTX, from1;
1102 while (m_len >= size)
1104 if (m_reverse)
1105 m_offset -= size;
1107 to1 = m_to.adjust (mode, m_offset);
1108 from1 = m_from.adjust (mode, m_offset);
1110 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1111 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1113 generate (to1, from1, mode);
1115 m_to.maybe_postinc (size);
1116 m_from.maybe_postinc (size);
1118 if (!m_reverse)
1119 m_offset += size;
1121 m_len -= size;
1124 finish_mode (mode);
1127 m_max_size = GET_MODE_SIZE (mode);
1130 /* The code above should have handled everything. */
1131 gcc_assert (!m_len);
1134 /* Derived class from op_by_pieces_d, providing support for block move
1135 operations. */
1137 class move_by_pieces_d : public op_by_pieces_d
1139 insn_gen_fn m_gen_fun;
1140 void generate (rtx, rtx, machine_mode);
1141 bool prepare_mode (machine_mode, unsigned int);
1143 public:
1144 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1145 unsigned int align)
1146 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1149 rtx finish_endp (int);
1152 /* Return true if MODE can be used for a set of copies, given an
1153 alignment ALIGN. Prepare whatever data is necessary for later
1154 calls to generate. */
1156 bool
1157 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1159 insn_code icode = optab_handler (mov_optab, mode);
1160 m_gen_fun = GEN_FCN (icode);
1161 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1164 /* A callback used when iterating for a compare_by_pieces_operation.
1165 OP0 and OP1 are the values that have been loaded and should be
1166 compared in MODE. If OP0 is NULL, this means we should generate a
1167 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1168 gen function that should be used to generate the mode. */
1170 void
1171 move_by_pieces_d::generate (rtx op0, rtx op1,
1172 machine_mode mode ATTRIBUTE_UNUSED)
1174 #ifdef PUSH_ROUNDING
1175 if (op0 == NULL_RTX)
1177 emit_single_push_insn (mode, op1, NULL);
1178 return;
1180 #endif
1181 emit_insn (m_gen_fun (op0, op1));
1184 /* Perform the final adjustment at the end of a string to obtain the
1185 correct return value for the block operation. If ENDP is 1 return
1186 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1187 end minus one byte ala stpcpy. */
1190 move_by_pieces_d::finish_endp (int endp)
1192 gcc_assert (!m_reverse);
1193 if (endp == 2)
1195 m_to.maybe_postinc (-1);
1196 --m_offset;
1198 return m_to.adjust (QImode, m_offset);
1201 /* Generate several move instructions to copy LEN bytes from block FROM to
1202 block TO. (These are MEM rtx's with BLKmode).
1204 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1205 used to push FROM to the stack.
1207 ALIGN is maximum stack alignment we can assume.
1209 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1210 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1211 stpcpy. */
1214 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1215 unsigned int align, int endp)
1217 #ifndef PUSH_ROUNDING
1218 if (to == NULL)
1219 gcc_unreachable ();
1220 #endif
1222 move_by_pieces_d data (to, from, len, align);
1224 data.run ();
1226 if (endp)
1227 return data.finish_endp (endp);
1228 else
1229 return to;
1232 /* Derived class from op_by_pieces_d, providing support for block move
1233 operations. */
1235 class store_by_pieces_d : public op_by_pieces_d
1237 insn_gen_fn m_gen_fun;
1238 void generate (rtx, rtx, machine_mode);
1239 bool prepare_mode (machine_mode, unsigned int);
1241 public:
1242 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1243 unsigned HOST_WIDE_INT len, unsigned int align)
1244 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1247 rtx finish_endp (int);
1250 /* Return true if MODE can be used for a set of stores, given an
1251 alignment ALIGN. Prepare whatever data is necessary for later
1252 calls to generate. */
1254 bool
1255 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1257 insn_code icode = optab_handler (mov_optab, mode);
1258 m_gen_fun = GEN_FCN (icode);
1259 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1262 /* A callback used when iterating for a store_by_pieces_operation.
1263 OP0 and OP1 are the values that have been loaded and should be
1264 compared in MODE. If OP0 is NULL, this means we should generate a
1265 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1266 gen function that should be used to generate the mode. */
1268 void
1269 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1271 emit_insn (m_gen_fun (op0, op1));
1274 /* Perform the final adjustment at the end of a string to obtain the
1275 correct return value for the block operation. If ENDP is 1 return
1276 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1277 end minus one byte ala stpcpy. */
1280 store_by_pieces_d::finish_endp (int endp)
1282 gcc_assert (!m_reverse);
1283 if (endp == 2)
1285 m_to.maybe_postinc (-1);
1286 --m_offset;
1288 return m_to.adjust (QImode, m_offset);
1291 /* Determine whether the LEN bytes generated by CONSTFUN can be
1292 stored to memory using several move instructions. CONSTFUNDATA is
1293 a pointer which will be passed as argument in every CONSTFUN call.
1294 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1295 a memset operation and false if it's a copy of a constant string.
1296 Return nonzero if a call to store_by_pieces should succeed. */
1299 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1300 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1301 void *constfundata, unsigned int align, bool memsetp)
1303 unsigned HOST_WIDE_INT l;
1304 unsigned int max_size;
1305 HOST_WIDE_INT offset = 0;
1306 enum insn_code icode;
1307 int reverse;
1308 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1309 rtx cst ATTRIBUTE_UNUSED;
1311 if (len == 0)
1312 return 1;
1314 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1315 memsetp
1316 ? SET_BY_PIECES
1317 : STORE_BY_PIECES,
1318 optimize_insn_for_speed_p ()))
1319 return 0;
1321 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1323 /* We would first store what we can in the largest integer mode, then go to
1324 successively smaller modes. */
1326 for (reverse = 0;
1327 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1328 reverse++)
1330 l = len;
1331 max_size = STORE_MAX_PIECES + 1;
1332 while (max_size > 1 && l > 0)
1334 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1336 icode = optab_handler (mov_optab, mode);
1337 if (icode != CODE_FOR_nothing
1338 && align >= GET_MODE_ALIGNMENT (mode))
1340 unsigned int size = GET_MODE_SIZE (mode);
1342 while (l >= size)
1344 if (reverse)
1345 offset -= size;
1347 cst = (*constfun) (constfundata, offset, mode);
1348 if (!targetm.legitimate_constant_p (mode, cst))
1349 return 0;
1351 if (!reverse)
1352 offset += size;
1354 l -= size;
1358 max_size = GET_MODE_SIZE (mode);
1361 /* The code above should have handled everything. */
1362 gcc_assert (!l);
1365 return 1;
1368 /* Generate several move instructions to store LEN bytes generated by
1369 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1370 pointer which will be passed as argument in every CONSTFUN call.
1371 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1372 a memset operation and false if it's a copy of a constant string.
1373 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1374 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1375 stpcpy. */
1378 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1379 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1380 void *constfundata, unsigned int align, bool memsetp, int endp)
1382 if (len == 0)
1384 gcc_assert (endp != 2);
1385 return to;
1388 gcc_assert (targetm.use_by_pieces_infrastructure_p
1389 (len, align,
1390 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1391 optimize_insn_for_speed_p ()));
1393 store_by_pieces_d data (to, constfun, constfundata, len, align);
1394 data.run ();
1396 if (endp)
1397 return data.finish_endp (endp);
1398 else
1399 return to;
1402 /* Callback routine for clear_by_pieces.
1403 Return const0_rtx unconditionally. */
1405 static rtx
1406 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1408 return const0_rtx;
1411 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1412 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1414 static void
1415 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1417 if (len == 0)
1418 return;
1420 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1421 data.run ();
1424 /* Context used by compare_by_pieces_genfn. It stores the fail label
1425 to jump to in case of miscomparison, and for branch ratios greater than 1,
1426 it stores an accumulator and the current and maximum counts before
1427 emitting another branch. */
1429 class compare_by_pieces_d : public op_by_pieces_d
1431 rtx_code_label *m_fail_label;
1432 rtx m_accumulator;
1433 int m_count, m_batch;
1435 void generate (rtx, rtx, machine_mode);
1436 bool prepare_mode (machine_mode, unsigned int);
1437 void finish_mode (machine_mode);
1438 public:
1439 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1440 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1441 rtx_code_label *fail_label)
1442 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1444 m_fail_label = fail_label;
1448 /* A callback used when iterating for a compare_by_pieces_operation.
1449 OP0 and OP1 are the values that have been loaded and should be
1450 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1451 context structure. */
1453 void
1454 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1456 if (m_batch > 1)
1458 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1459 true, OPTAB_LIB_WIDEN);
1460 if (m_count != 0)
1461 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1462 true, OPTAB_LIB_WIDEN);
1463 m_accumulator = temp;
1465 if (++m_count < m_batch)
1466 return;
1468 m_count = 0;
1469 op0 = m_accumulator;
1470 op1 = const0_rtx;
1471 m_accumulator = NULL_RTX;
1473 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1474 m_fail_label, profile_probability::uninitialized ());
1477 /* Return true if MODE can be used for a set of moves and comparisons,
1478 given an alignment ALIGN. Prepare whatever data is necessary for
1479 later calls to generate. */
1481 bool
1482 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1484 insn_code icode = optab_handler (mov_optab, mode);
1485 if (icode == CODE_FOR_nothing
1486 || align < GET_MODE_ALIGNMENT (mode)
1487 || !can_compare_p (EQ, mode, ccp_jump))
1488 return false;
1489 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1490 if (m_batch < 0)
1491 return false;
1492 m_accumulator = NULL_RTX;
1493 m_count = 0;
1494 return true;
1497 /* Called after expanding a series of comparisons in MODE. If we have
1498 accumulated results for which we haven't emitted a branch yet, do
1499 so now. */
1501 void
1502 compare_by_pieces_d::finish_mode (machine_mode mode)
1504 if (m_accumulator != NULL_RTX)
1505 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1506 NULL_RTX, NULL, m_fail_label,
1507 profile_probability::uninitialized ());
1510 /* Generate several move instructions to compare LEN bytes from blocks
1511 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1513 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1514 used to push FROM to the stack.
1516 ALIGN is maximum stack alignment we can assume.
1518 Optionally, the caller can pass a constfn and associated data in A1_CFN
1519 and A1_CFN_DATA. describing that the second operand being compared is a
1520 known constant and how to obtain its data. */
1522 static rtx
1523 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1524 rtx target, unsigned int align,
1525 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1527 rtx_code_label *fail_label = gen_label_rtx ();
1528 rtx_code_label *end_label = gen_label_rtx ();
1530 if (target == NULL_RTX
1531 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1532 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1534 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1535 fail_label);
1537 data.run ();
1539 emit_move_insn (target, const0_rtx);
1540 emit_jump (end_label);
1541 emit_barrier ();
1542 emit_label (fail_label);
1543 emit_move_insn (target, const1_rtx);
1544 emit_label (end_label);
1546 return target;
1549 /* Emit code to move a block Y to a block X. This may be done with
1550 string-move instructions, with multiple scalar move instructions,
1551 or with a library call.
1553 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1554 SIZE is an rtx that says how long they are.
1555 ALIGN is the maximum alignment we can assume they have.
1556 METHOD describes what kind of copy this is, and what mechanisms may be used.
1557 MIN_SIZE is the minimal size of block to move
1558 MAX_SIZE is the maximal size of block to move, if it can not be represented
1559 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1561 Return the address of the new block, if memcpy is called and returns it,
1562 0 otherwise. */
1565 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1566 unsigned int expected_align, HOST_WIDE_INT expected_size,
1567 unsigned HOST_WIDE_INT min_size,
1568 unsigned HOST_WIDE_INT max_size,
1569 unsigned HOST_WIDE_INT probable_max_size)
1571 int may_use_call;
1572 rtx retval = 0;
1573 unsigned int align;
1575 gcc_assert (size);
1576 if (CONST_INT_P (size) && INTVAL (size) == 0)
1577 return 0;
1579 switch (method)
1581 case BLOCK_OP_NORMAL:
1582 case BLOCK_OP_TAILCALL:
1583 may_use_call = 1;
1584 break;
1586 case BLOCK_OP_CALL_PARM:
1587 may_use_call = block_move_libcall_safe_for_call_parm ();
1589 /* Make inhibit_defer_pop nonzero around the library call
1590 to force it to pop the arguments right away. */
1591 NO_DEFER_POP;
1592 break;
1594 case BLOCK_OP_NO_LIBCALL:
1595 may_use_call = 0;
1596 break;
1598 case BLOCK_OP_NO_LIBCALL_RET:
1599 may_use_call = -1;
1600 break;
1602 default:
1603 gcc_unreachable ();
1606 gcc_assert (MEM_P (x) && MEM_P (y));
1607 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1608 gcc_assert (align >= BITS_PER_UNIT);
1610 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1611 block copy is more efficient for other large modes, e.g. DCmode. */
1612 x = adjust_address (x, BLKmode, 0);
1613 y = adjust_address (y, BLKmode, 0);
1615 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1616 can be incorrect is coming from __builtin_memcpy. */
1617 if (CONST_INT_P (size))
1619 x = shallow_copy_rtx (x);
1620 y = shallow_copy_rtx (y);
1621 set_mem_size (x, INTVAL (size));
1622 set_mem_size (y, INTVAL (size));
1625 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1626 move_by_pieces (x, y, INTVAL (size), align, 0);
1627 else if (emit_block_move_via_movmem (x, y, size, align,
1628 expected_align, expected_size,
1629 min_size, max_size, probable_max_size))
1631 else if (may_use_call
1632 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1633 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1635 if (may_use_call < 0)
1636 return pc_rtx;
1638 /* Since x and y are passed to a libcall, mark the corresponding
1639 tree EXPR as addressable. */
1640 tree y_expr = MEM_EXPR (y);
1641 tree x_expr = MEM_EXPR (x);
1642 if (y_expr)
1643 mark_addressable (y_expr);
1644 if (x_expr)
1645 mark_addressable (x_expr);
1646 retval = emit_block_copy_via_libcall (x, y, size,
1647 method == BLOCK_OP_TAILCALL);
1650 else
1651 emit_block_move_via_loop (x, y, size, align);
1653 if (method == BLOCK_OP_CALL_PARM)
1654 OK_DEFER_POP;
1656 return retval;
1660 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1662 unsigned HOST_WIDE_INT max, min = 0;
1663 if (GET_CODE (size) == CONST_INT)
1664 min = max = UINTVAL (size);
1665 else
1666 max = GET_MODE_MASK (GET_MODE (size));
1667 return emit_block_move_hints (x, y, size, method, 0, -1,
1668 min, max, max);
1671 /* A subroutine of emit_block_move. Returns true if calling the
1672 block move libcall will not clobber any parameters which may have
1673 already been placed on the stack. */
1675 static bool
1676 block_move_libcall_safe_for_call_parm (void)
1678 #if defined (REG_PARM_STACK_SPACE)
1679 tree fn;
1680 #endif
1682 /* If arguments are pushed on the stack, then they're safe. */
1683 if (PUSH_ARGS)
1684 return true;
1686 /* If registers go on the stack anyway, any argument is sure to clobber
1687 an outgoing argument. */
1688 #if defined (REG_PARM_STACK_SPACE)
1689 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1690 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1691 depend on its argument. */
1692 (void) fn;
1693 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1694 && REG_PARM_STACK_SPACE (fn) != 0)
1695 return false;
1696 #endif
1698 /* If any argument goes in memory, then it might clobber an outgoing
1699 argument. */
1701 CUMULATIVE_ARGS args_so_far_v;
1702 cumulative_args_t args_so_far;
1703 tree fn, arg;
1705 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1706 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1707 args_so_far = pack_cumulative_args (&args_so_far_v);
1709 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1710 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1712 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1713 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1714 NULL_TREE, true);
1715 if (!tmp || !REG_P (tmp))
1716 return false;
1717 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1718 return false;
1719 targetm.calls.function_arg_advance (args_so_far, mode,
1720 NULL_TREE, true);
1723 return true;
1726 /* A subroutine of emit_block_move. Expand a movmem pattern;
1727 return true if successful. */
1729 static bool
1730 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1731 unsigned int expected_align, HOST_WIDE_INT expected_size,
1732 unsigned HOST_WIDE_INT min_size,
1733 unsigned HOST_WIDE_INT max_size,
1734 unsigned HOST_WIDE_INT probable_max_size)
1736 int save_volatile_ok = volatile_ok;
1738 if (expected_align < align)
1739 expected_align = align;
1740 if (expected_size != -1)
1742 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1743 expected_size = probable_max_size;
1744 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1745 expected_size = min_size;
1748 /* Since this is a move insn, we don't care about volatility. */
1749 volatile_ok = 1;
1751 /* Try the most limited insn first, because there's no point
1752 including more than one in the machine description unless
1753 the more limited one has some advantage. */
1755 opt_scalar_int_mode mode_iter;
1756 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1758 scalar_int_mode mode = mode_iter.require ();
1759 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1761 if (code != CODE_FOR_nothing
1762 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1763 here because if SIZE is less than the mode mask, as it is
1764 returned by the macro, it will definitely be less than the
1765 actual mode mask. Since SIZE is within the Pmode address
1766 space, we limit MODE to Pmode. */
1767 && ((CONST_INT_P (size)
1768 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1769 <= (GET_MODE_MASK (mode) >> 1)))
1770 || max_size <= (GET_MODE_MASK (mode) >> 1)
1771 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1773 struct expand_operand ops[9];
1774 unsigned int nops;
1776 /* ??? When called via emit_block_move_for_call, it'd be
1777 nice if there were some way to inform the backend, so
1778 that it doesn't fail the expansion because it thinks
1779 emitting the libcall would be more efficient. */
1780 nops = insn_data[(int) code].n_generator_args;
1781 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1783 create_fixed_operand (&ops[0], x);
1784 create_fixed_operand (&ops[1], y);
1785 /* The check above guarantees that this size conversion is valid. */
1786 create_convert_operand_to (&ops[2], size, mode, true);
1787 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1788 if (nops >= 6)
1790 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1791 create_integer_operand (&ops[5], expected_size);
1793 if (nops >= 8)
1795 create_integer_operand (&ops[6], min_size);
1796 /* If we can not represent the maximal size,
1797 make parameter NULL. */
1798 if ((HOST_WIDE_INT) max_size != -1)
1799 create_integer_operand (&ops[7], max_size);
1800 else
1801 create_fixed_operand (&ops[7], NULL);
1803 if (nops == 9)
1805 /* If we can not represent the maximal size,
1806 make parameter NULL. */
1807 if ((HOST_WIDE_INT) probable_max_size != -1)
1808 create_integer_operand (&ops[8], probable_max_size);
1809 else
1810 create_fixed_operand (&ops[8], NULL);
1812 if (maybe_expand_insn (code, nops, ops))
1814 volatile_ok = save_volatile_ok;
1815 return true;
1820 volatile_ok = save_volatile_ok;
1821 return false;
1824 /* A subroutine of emit_block_move. Copy the data via an explicit
1825 loop. This is used only when libcalls are forbidden. */
1826 /* ??? It'd be nice to copy in hunks larger than QImode. */
1828 static void
1829 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1830 unsigned int align ATTRIBUTE_UNUSED)
1832 rtx_code_label *cmp_label, *top_label;
1833 rtx iter, x_addr, y_addr, tmp;
1834 machine_mode x_addr_mode = get_address_mode (x);
1835 machine_mode y_addr_mode = get_address_mode (y);
1836 machine_mode iter_mode;
1838 iter_mode = GET_MODE (size);
1839 if (iter_mode == VOIDmode)
1840 iter_mode = word_mode;
1842 top_label = gen_label_rtx ();
1843 cmp_label = gen_label_rtx ();
1844 iter = gen_reg_rtx (iter_mode);
1846 emit_move_insn (iter, const0_rtx);
1848 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1849 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1850 do_pending_stack_adjust ();
1852 emit_jump (cmp_label);
1853 emit_label (top_label);
1855 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1856 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1858 if (x_addr_mode != y_addr_mode)
1859 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1860 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1862 x = change_address (x, QImode, x_addr);
1863 y = change_address (y, QImode, y_addr);
1865 emit_move_insn (x, y);
1867 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1868 true, OPTAB_LIB_WIDEN);
1869 if (tmp != iter)
1870 emit_move_insn (iter, tmp);
1872 emit_label (cmp_label);
1874 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1875 true, top_label,
1876 profile_probability::guessed_always ()
1877 .apply_scale (9, 10));
1880 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1881 TAILCALL is true if this is a tail call. */
1884 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1885 rtx size, bool tailcall)
1887 rtx dst_addr, src_addr;
1888 tree call_expr, dst_tree, src_tree, size_tree;
1889 machine_mode size_mode;
1891 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1892 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1893 dst_tree = make_tree (ptr_type_node, dst_addr);
1895 src_addr = copy_addr_to_reg (XEXP (src, 0));
1896 src_addr = convert_memory_address (ptr_mode, src_addr);
1897 src_tree = make_tree (ptr_type_node, src_addr);
1899 size_mode = TYPE_MODE (sizetype);
1900 size = convert_to_mode (size_mode, size, 1);
1901 size = copy_to_mode_reg (size_mode, size);
1902 size_tree = make_tree (sizetype, size);
1904 /* It is incorrect to use the libcall calling conventions for calls to
1905 memcpy/memmove/memcmp because they can be provided by the user. */
1906 tree fn = builtin_decl_implicit (fncode);
1907 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1908 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1910 return expand_call (call_expr, NULL_RTX, false);
1913 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1914 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1915 otherwise return null. */
1918 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1919 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1920 HOST_WIDE_INT align)
1922 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1924 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1925 target = NULL_RTX;
1927 struct expand_operand ops[5];
1928 create_output_operand (&ops[0], target, insn_mode);
1929 create_fixed_operand (&ops[1], arg1_rtx);
1930 create_fixed_operand (&ops[2], arg2_rtx);
1931 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1932 TYPE_UNSIGNED (arg3_type));
1933 create_integer_operand (&ops[4], align);
1934 if (maybe_expand_insn (icode, 5, ops))
1935 return ops[0].value;
1936 return NULL_RTX;
1939 /* Expand a block compare between X and Y with length LEN using the
1940 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1941 of the expression that was used to calculate the length. ALIGN
1942 gives the known minimum common alignment. */
1944 static rtx
1945 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1946 unsigned align)
1948 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1949 implementing memcmp because it will stop if it encounters two
1950 zero bytes. */
1951 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1953 if (icode == CODE_FOR_nothing)
1954 return NULL_RTX;
1956 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1959 /* Emit code to compare a block Y to a block X. This may be done with
1960 string-compare instructions, with multiple scalar instructions,
1961 or with a library call.
1963 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1964 they are. LEN_TYPE is the type of the expression that was used to
1965 calculate it.
1967 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1968 value of a normal memcmp call, instead we can just compare for equality.
1969 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1970 returning NULL_RTX.
1972 Optionally, the caller can pass a constfn and associated data in Y_CFN
1973 and Y_CFN_DATA. describing that the second operand being compared is a
1974 known constant and how to obtain its data.
1975 Return the result of the comparison, or NULL_RTX if we failed to
1976 perform the operation. */
1979 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1980 bool equality_only, by_pieces_constfn y_cfn,
1981 void *y_cfndata)
1983 rtx result = 0;
1985 if (CONST_INT_P (len) && INTVAL (len) == 0)
1986 return const0_rtx;
1988 gcc_assert (MEM_P (x) && MEM_P (y));
1989 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1990 gcc_assert (align >= BITS_PER_UNIT);
1992 x = adjust_address (x, BLKmode, 0);
1993 y = adjust_address (y, BLKmode, 0);
1995 if (equality_only
1996 && CONST_INT_P (len)
1997 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1998 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1999 y_cfn, y_cfndata);
2000 else
2001 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2003 return result;
2006 /* Copy all or part of a value X into registers starting at REGNO.
2007 The number of registers to be filled is NREGS. */
2009 void
2010 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2012 if (nregs == 0)
2013 return;
2015 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2016 x = validize_mem (force_const_mem (mode, x));
2018 /* See if the machine can do this with a load multiple insn. */
2019 if (targetm.have_load_multiple ())
2021 rtx_insn *last = get_last_insn ();
2022 rtx first = gen_rtx_REG (word_mode, regno);
2023 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2024 GEN_INT (nregs)))
2026 emit_insn (pat);
2027 return;
2029 else
2030 delete_insns_since (last);
2033 for (int i = 0; i < nregs; i++)
2034 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2035 operand_subword_force (x, i, mode));
2038 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2039 The number of registers to be filled is NREGS. */
2041 void
2042 move_block_from_reg (int regno, rtx x, int nregs)
2044 if (nregs == 0)
2045 return;
2047 /* See if the machine can do this with a store multiple insn. */
2048 if (targetm.have_store_multiple ())
2050 rtx_insn *last = get_last_insn ();
2051 rtx first = gen_rtx_REG (word_mode, regno);
2052 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2053 GEN_INT (nregs)))
2055 emit_insn (pat);
2056 return;
2058 else
2059 delete_insns_since (last);
2062 for (int i = 0; i < nregs; i++)
2064 rtx tem = operand_subword (x, i, 1, BLKmode);
2066 gcc_assert (tem);
2068 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2072 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2073 ORIG, where ORIG is a non-consecutive group of registers represented by
2074 a PARALLEL. The clone is identical to the original except in that the
2075 original set of registers is replaced by a new set of pseudo registers.
2076 The new set has the same modes as the original set. */
2079 gen_group_rtx (rtx orig)
2081 int i, length;
2082 rtx *tmps;
2084 gcc_assert (GET_CODE (orig) == PARALLEL);
2086 length = XVECLEN (orig, 0);
2087 tmps = XALLOCAVEC (rtx, length);
2089 /* Skip a NULL entry in first slot. */
2090 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2092 if (i)
2093 tmps[0] = 0;
2095 for (; i < length; i++)
2097 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2098 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2100 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2103 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2106 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2107 except that values are placed in TMPS[i], and must later be moved
2108 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2110 static void
2111 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2112 poly_int64 ssize)
2114 rtx src;
2115 int start, i;
2116 machine_mode m = GET_MODE (orig_src);
2118 gcc_assert (GET_CODE (dst) == PARALLEL);
2120 if (m != VOIDmode
2121 && !SCALAR_INT_MODE_P (m)
2122 && !MEM_P (orig_src)
2123 && GET_CODE (orig_src) != CONCAT)
2125 scalar_int_mode imode;
2126 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2128 src = gen_reg_rtx (imode);
2129 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2131 else
2133 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2134 emit_move_insn (src, orig_src);
2136 emit_group_load_1 (tmps, dst, src, type, ssize);
2137 return;
2140 /* Check for a NULL entry, used to indicate that the parameter goes
2141 both on the stack and in registers. */
2142 if (XEXP (XVECEXP (dst, 0, 0), 0))
2143 start = 0;
2144 else
2145 start = 1;
2147 /* Process the pieces. */
2148 for (i = start; i < XVECLEN (dst, 0); i++)
2150 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2151 poly_int64 bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2152 poly_int64 bytelen = GET_MODE_SIZE (mode);
2153 poly_int64 shift = 0;
2155 /* Handle trailing fragments that run over the size of the struct.
2156 It's the target's responsibility to make sure that the fragment
2157 cannot be strictly smaller in some cases and strictly larger
2158 in others. */
2159 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2160 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2162 /* Arrange to shift the fragment to where it belongs.
2163 extract_bit_field loads to the lsb of the reg. */
2164 if (
2165 #ifdef BLOCK_REG_PADDING
2166 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2167 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2168 #else
2169 BYTES_BIG_ENDIAN
2170 #endif
2172 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2173 bytelen = ssize - bytepos;
2174 gcc_assert (maybe_gt (bytelen, 0));
2177 /* If we won't be loading directly from memory, protect the real source
2178 from strange tricks we might play; but make sure that the source can
2179 be loaded directly into the destination. */
2180 src = orig_src;
2181 if (!MEM_P (orig_src)
2182 && (!CONSTANT_P (orig_src)
2183 || (GET_MODE (orig_src) != mode
2184 && GET_MODE (orig_src) != VOIDmode)))
2186 if (GET_MODE (orig_src) == VOIDmode)
2187 src = gen_reg_rtx (mode);
2188 else
2189 src = gen_reg_rtx (GET_MODE (orig_src));
2191 emit_move_insn (src, orig_src);
2194 /* Optimize the access just a bit. */
2195 if (MEM_P (src)
2196 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2197 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2198 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2199 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2201 tmps[i] = gen_reg_rtx (mode);
2202 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2204 else if (COMPLEX_MODE_P (mode)
2205 && GET_MODE (src) == mode
2206 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2207 /* Let emit_move_complex do the bulk of the work. */
2208 tmps[i] = src;
2209 else if (GET_CODE (src) == CONCAT)
2211 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2212 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2213 unsigned int elt;
2214 poly_int64 subpos;
2216 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2217 && known_le (subpos + bytelen, slen0))
2219 /* The following assumes that the concatenated objects all
2220 have the same size. In this case, a simple calculation
2221 can be used to determine the object and the bit field
2222 to be extracted. */
2223 tmps[i] = XEXP (src, elt);
2224 if (maybe_ne (subpos, 0)
2225 || maybe_ne (subpos + bytelen, slen0)
2226 || (!CONSTANT_P (tmps[i])
2227 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2228 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2229 subpos * BITS_PER_UNIT,
2230 1, NULL_RTX, mode, mode, false,
2231 NULL);
2233 else
2235 rtx mem;
2237 gcc_assert (known_eq (bytepos, 0));
2238 mem = assign_stack_temp (GET_MODE (src), slen);
2239 emit_move_insn (mem, src);
2240 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2241 0, 1, NULL_RTX, mode, mode, false,
2242 NULL);
2245 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2246 SIMD register, which is currently broken. While we get GCC
2247 to emit proper RTL for these cases, let's dump to memory. */
2248 else if (VECTOR_MODE_P (GET_MODE (dst))
2249 && REG_P (src))
2251 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2252 rtx mem;
2254 mem = assign_stack_temp (GET_MODE (src), slen);
2255 emit_move_insn (mem, src);
2256 tmps[i] = adjust_address (mem, mode, bytepos);
2258 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2259 && XVECLEN (dst, 0) > 1)
2260 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2261 else if (CONSTANT_P (src))
2263 if (known_eq (bytelen, ssize))
2264 tmps[i] = src;
2265 else
2267 rtx first, second;
2269 /* TODO: const_wide_int can have sizes other than this... */
2270 gcc_assert (known_eq (2 * bytelen, ssize));
2271 split_double (src, &first, &second);
2272 if (i)
2273 tmps[i] = second;
2274 else
2275 tmps[i] = first;
2278 else if (REG_P (src) && GET_MODE (src) == mode)
2279 tmps[i] = src;
2280 else
2281 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2282 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2283 mode, mode, false, NULL);
2285 if (maybe_ne (shift, 0))
2286 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2287 shift, tmps[i], 0);
2291 /* Emit code to move a block SRC of type TYPE to a block DST,
2292 where DST is non-consecutive registers represented by a PARALLEL.
2293 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2294 if not known. */
2296 void
2297 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2299 rtx *tmps;
2300 int i;
2302 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2303 emit_group_load_1 (tmps, dst, src, type, ssize);
2305 /* Copy the extracted pieces into the proper (probable) hard regs. */
2306 for (i = 0; i < XVECLEN (dst, 0); i++)
2308 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2309 if (d == NULL)
2310 continue;
2311 emit_move_insn (d, tmps[i]);
2315 /* Similar, but load SRC into new pseudos in a format that looks like
2316 PARALLEL. This can later be fed to emit_group_move to get things
2317 in the right place. */
2320 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2322 rtvec vec;
2323 int i;
2325 vec = rtvec_alloc (XVECLEN (parallel, 0));
2326 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2328 /* Convert the vector to look just like the original PARALLEL, except
2329 with the computed values. */
2330 for (i = 0; i < XVECLEN (parallel, 0); i++)
2332 rtx e = XVECEXP (parallel, 0, i);
2333 rtx d = XEXP (e, 0);
2335 if (d)
2337 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2338 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2340 RTVEC_ELT (vec, i) = e;
2343 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2346 /* Emit code to move a block SRC to block DST, where SRC and DST are
2347 non-consecutive groups of registers, each represented by a PARALLEL. */
2349 void
2350 emit_group_move (rtx dst, rtx src)
2352 int i;
2354 gcc_assert (GET_CODE (src) == PARALLEL
2355 && GET_CODE (dst) == PARALLEL
2356 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2358 /* Skip first entry if NULL. */
2359 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2360 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2361 XEXP (XVECEXP (src, 0, i), 0));
2364 /* Move a group of registers represented by a PARALLEL into pseudos. */
2367 emit_group_move_into_temps (rtx src)
2369 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2370 int i;
2372 for (i = 0; i < XVECLEN (src, 0); i++)
2374 rtx e = XVECEXP (src, 0, i);
2375 rtx d = XEXP (e, 0);
2377 if (d)
2378 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2379 RTVEC_ELT (vec, i) = e;
2382 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2385 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2386 where SRC is non-consecutive registers represented by a PARALLEL.
2387 SSIZE represents the total size of block ORIG_DST, or -1 if not
2388 known. */
2390 void
2391 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2392 poly_int64 ssize)
2394 rtx *tmps, dst;
2395 int start, finish, i;
2396 machine_mode m = GET_MODE (orig_dst);
2398 gcc_assert (GET_CODE (src) == PARALLEL);
2400 if (!SCALAR_INT_MODE_P (m)
2401 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2403 scalar_int_mode imode;
2404 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2406 dst = gen_reg_rtx (imode);
2407 emit_group_store (dst, src, type, ssize);
2408 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2410 else
2412 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2413 emit_group_store (dst, src, type, ssize);
2415 emit_move_insn (orig_dst, dst);
2416 return;
2419 /* Check for a NULL entry, used to indicate that the parameter goes
2420 both on the stack and in registers. */
2421 if (XEXP (XVECEXP (src, 0, 0), 0))
2422 start = 0;
2423 else
2424 start = 1;
2425 finish = XVECLEN (src, 0);
2427 tmps = XALLOCAVEC (rtx, finish);
2429 /* Copy the (probable) hard regs into pseudos. */
2430 for (i = start; i < finish; i++)
2432 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2433 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2435 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2436 emit_move_insn (tmps[i], reg);
2438 else
2439 tmps[i] = reg;
2442 /* If we won't be storing directly into memory, protect the real destination
2443 from strange tricks we might play. */
2444 dst = orig_dst;
2445 if (GET_CODE (dst) == PARALLEL)
2447 rtx temp;
2449 /* We can get a PARALLEL dst if there is a conditional expression in
2450 a return statement. In that case, the dst and src are the same,
2451 so no action is necessary. */
2452 if (rtx_equal_p (dst, src))
2453 return;
2455 /* It is unclear if we can ever reach here, but we may as well handle
2456 it. Allocate a temporary, and split this into a store/load to/from
2457 the temporary. */
2458 temp = assign_stack_temp (GET_MODE (dst), ssize);
2459 emit_group_store (temp, src, type, ssize);
2460 emit_group_load (dst, temp, type, ssize);
2461 return;
2463 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2465 machine_mode outer = GET_MODE (dst);
2466 machine_mode inner;
2467 poly_int64 bytepos;
2468 bool done = false;
2469 rtx temp;
2471 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2472 dst = gen_reg_rtx (outer);
2474 /* Make life a bit easier for combine. */
2475 /* If the first element of the vector is the low part
2476 of the destination mode, use a paradoxical subreg to
2477 initialize the destination. */
2478 if (start < finish)
2480 inner = GET_MODE (tmps[start]);
2481 bytepos = subreg_lowpart_offset (inner, outer);
2482 if (known_eq (INTVAL (XEXP (XVECEXP (src, 0, start), 1)), bytepos))
2484 temp = simplify_gen_subreg (outer, tmps[start],
2485 inner, 0);
2486 if (temp)
2488 emit_move_insn (dst, temp);
2489 done = true;
2490 start++;
2495 /* If the first element wasn't the low part, try the last. */
2496 if (!done
2497 && start < finish - 1)
2499 inner = GET_MODE (tmps[finish - 1]);
2500 bytepos = subreg_lowpart_offset (inner, outer);
2501 if (known_eq (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)),
2502 bytepos))
2504 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2505 inner, 0);
2506 if (temp)
2508 emit_move_insn (dst, temp);
2509 done = true;
2510 finish--;
2515 /* Otherwise, simply initialize the result to zero. */
2516 if (!done)
2517 emit_move_insn (dst, CONST0_RTX (outer));
2520 /* Process the pieces. */
2521 for (i = start; i < finish; i++)
2523 poly_int64 bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2524 machine_mode mode = GET_MODE (tmps[i]);
2525 poly_int64 bytelen = GET_MODE_SIZE (mode);
2526 poly_uint64 adj_bytelen;
2527 rtx dest = dst;
2529 /* Handle trailing fragments that run over the size of the struct.
2530 It's the target's responsibility to make sure that the fragment
2531 cannot be strictly smaller in some cases and strictly larger
2532 in others. */
2533 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2534 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2535 adj_bytelen = ssize - bytepos;
2536 else
2537 adj_bytelen = bytelen;
2539 if (GET_CODE (dst) == CONCAT)
2541 if (known_le (bytepos + adj_bytelen,
2542 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2543 dest = XEXP (dst, 0);
2544 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2546 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2547 dest = XEXP (dst, 1);
2549 else
2551 machine_mode dest_mode = GET_MODE (dest);
2552 machine_mode tmp_mode = GET_MODE (tmps[i]);
2554 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2556 if (GET_MODE_ALIGNMENT (dest_mode)
2557 >= GET_MODE_ALIGNMENT (tmp_mode))
2559 dest = assign_stack_temp (dest_mode,
2560 GET_MODE_SIZE (dest_mode));
2561 emit_move_insn (adjust_address (dest,
2562 tmp_mode,
2563 bytepos),
2564 tmps[i]);
2565 dst = dest;
2567 else
2569 dest = assign_stack_temp (tmp_mode,
2570 GET_MODE_SIZE (tmp_mode));
2571 emit_move_insn (dest, tmps[i]);
2572 dst = adjust_address (dest, dest_mode, bytepos);
2574 break;
2578 /* Handle trailing fragments that run over the size of the struct. */
2579 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2581 /* store_bit_field always takes its value from the lsb.
2582 Move the fragment to the lsb if it's not already there. */
2583 if (
2584 #ifdef BLOCK_REG_PADDING
2585 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2586 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2587 #else
2588 BYTES_BIG_ENDIAN
2589 #endif
2592 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2593 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2594 shift, tmps[i], 0);
2597 /* Make sure not to write past the end of the struct. */
2598 store_bit_field (dest,
2599 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2600 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2601 VOIDmode, tmps[i], false);
2604 /* Optimize the access just a bit. */
2605 else if (MEM_P (dest)
2606 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2607 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2608 && multiple_p (bytepos * BITS_PER_UNIT,
2609 GET_MODE_ALIGNMENT (mode))
2610 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2611 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2613 else
2614 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2615 0, 0, mode, tmps[i], false);
2618 /* Copy from the pseudo into the (probable) hard reg. */
2619 if (orig_dst != dst)
2620 emit_move_insn (orig_dst, dst);
2623 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2624 of the value stored in X. */
2627 maybe_emit_group_store (rtx x, tree type)
2629 machine_mode mode = TYPE_MODE (type);
2630 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2631 if (GET_CODE (x) == PARALLEL)
2633 rtx result = gen_reg_rtx (mode);
2634 emit_group_store (result, x, type, int_size_in_bytes (type));
2635 return result;
2637 return x;
2640 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2642 This is used on targets that return BLKmode values in registers. */
2644 static void
2645 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2647 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2648 rtx src = NULL, dst = NULL;
2649 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2650 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2651 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2652 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2653 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2654 fixed_size_mode copy_mode;
2656 /* BLKmode registers created in the back-end shouldn't have survived. */
2657 gcc_assert (mode != BLKmode);
2659 /* If the structure doesn't take up a whole number of words, see whether
2660 SRCREG is padded on the left or on the right. If it's on the left,
2661 set PADDING_CORRECTION to the number of bits to skip.
2663 In most ABIs, the structure will be returned at the least end of
2664 the register, which translates to right padding on little-endian
2665 targets and left padding on big-endian targets. The opposite
2666 holds if the structure is returned at the most significant
2667 end of the register. */
2668 if (bytes % UNITS_PER_WORD != 0
2669 && (targetm.calls.return_in_msb (type)
2670 ? !BYTES_BIG_ENDIAN
2671 : BYTES_BIG_ENDIAN))
2672 padding_correction
2673 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2675 /* We can use a single move if we have an exact mode for the size. */
2676 else if (MEM_P (target)
2677 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2678 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2679 && bytes == GET_MODE_SIZE (mode))
2681 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2682 return;
2685 /* And if we additionally have the same mode for a register. */
2686 else if (REG_P (target)
2687 && GET_MODE (target) == mode
2688 && bytes == GET_MODE_SIZE (mode))
2690 emit_move_insn (target, srcreg);
2691 return;
2694 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2695 into a new pseudo which is a full word. */
2696 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2698 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2699 mode = word_mode;
2702 /* Copy the structure BITSIZE bits at a time. If the target lives in
2703 memory, take care of not reading/writing past its end by selecting
2704 a copy mode suited to BITSIZE. This should always be possible given
2705 how it is computed.
2707 If the target lives in register, make sure not to select a copy mode
2708 larger than the mode of the register.
2710 We could probably emit more efficient code for machines which do not use
2711 strict alignment, but it doesn't seem worth the effort at the current
2712 time. */
2714 copy_mode = word_mode;
2715 if (MEM_P (target))
2717 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2718 if (mem_mode.exists ())
2719 copy_mode = mem_mode.require ();
2721 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2722 copy_mode = tmode;
2724 for (bitpos = 0, xbitpos = padding_correction;
2725 bitpos < bytes * BITS_PER_UNIT;
2726 bitpos += bitsize, xbitpos += bitsize)
2728 /* We need a new source operand each time xbitpos is on a
2729 word boundary and when xbitpos == padding_correction
2730 (the first time through). */
2731 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2732 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2734 /* We need a new destination operand each time bitpos is on
2735 a word boundary. */
2736 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2737 dst = target;
2738 else if (bitpos % BITS_PER_WORD == 0)
2739 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2741 /* Use xbitpos for the source extraction (right justified) and
2742 bitpos for the destination store (left justified). */
2743 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2744 extract_bit_field (src, bitsize,
2745 xbitpos % BITS_PER_WORD, 1,
2746 NULL_RTX, copy_mode, copy_mode,
2747 false, NULL),
2748 false);
2752 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2753 register if it contains any data, otherwise return null.
2755 This is used on targets that return BLKmode values in registers. */
2758 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2760 int i, n_regs;
2761 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2762 unsigned int bitsize;
2763 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2764 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2765 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2766 fixed_size_mode dst_mode;
2768 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2770 x = expand_normal (src);
2772 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2773 if (bytes == 0)
2774 return NULL_RTX;
2776 /* If the structure doesn't take up a whole number of words, see
2777 whether the register value should be padded on the left or on
2778 the right. Set PADDING_CORRECTION to the number of padding
2779 bits needed on the left side.
2781 In most ABIs, the structure will be returned at the least end of
2782 the register, which translates to right padding on little-endian
2783 targets and left padding on big-endian targets. The opposite
2784 holds if the structure is returned at the most significant
2785 end of the register. */
2786 if (bytes % UNITS_PER_WORD != 0
2787 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2788 ? !BYTES_BIG_ENDIAN
2789 : BYTES_BIG_ENDIAN))
2790 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2791 * BITS_PER_UNIT));
2793 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2794 dst_words = XALLOCAVEC (rtx, n_regs);
2795 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2797 /* Copy the structure BITSIZE bits at a time. */
2798 for (bitpos = 0, xbitpos = padding_correction;
2799 bitpos < bytes * BITS_PER_UNIT;
2800 bitpos += bitsize, xbitpos += bitsize)
2802 /* We need a new destination pseudo each time xbitpos is
2803 on a word boundary and when xbitpos == padding_correction
2804 (the first time through). */
2805 if (xbitpos % BITS_PER_WORD == 0
2806 || xbitpos == padding_correction)
2808 /* Generate an appropriate register. */
2809 dst_word = gen_reg_rtx (word_mode);
2810 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2812 /* Clear the destination before we move anything into it. */
2813 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2816 /* We need a new source operand each time bitpos is on a word
2817 boundary. */
2818 if (bitpos % BITS_PER_WORD == 0)
2819 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2821 /* Use bitpos for the source extraction (left justified) and
2822 xbitpos for the destination store (right justified). */
2823 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2824 0, 0, word_mode,
2825 extract_bit_field (src_word, bitsize,
2826 bitpos % BITS_PER_WORD, 1,
2827 NULL_RTX, word_mode, word_mode,
2828 false, NULL),
2829 false);
2832 if (mode == BLKmode)
2834 /* Find the smallest integer mode large enough to hold the
2835 entire structure. */
2836 opt_scalar_int_mode mode_iter;
2837 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2838 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2839 break;
2841 /* A suitable mode should have been found. */
2842 mode = mode_iter.require ();
2845 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2846 dst_mode = word_mode;
2847 else
2848 dst_mode = mode;
2849 dst = gen_reg_rtx (dst_mode);
2851 for (i = 0; i < n_regs; i++)
2852 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2854 if (mode != dst_mode)
2855 dst = gen_lowpart (mode, dst);
2857 return dst;
2860 /* Add a USE expression for REG to the (possibly empty) list pointed
2861 to by CALL_FUSAGE. REG must denote a hard register. */
2863 void
2864 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2866 gcc_assert (REG_P (reg));
2868 if (!HARD_REGISTER_P (reg))
2869 return;
2871 *call_fusage
2872 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2875 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2876 to by CALL_FUSAGE. REG must denote a hard register. */
2878 void
2879 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2881 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2883 *call_fusage
2884 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2887 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2888 starting at REGNO. All of these registers must be hard registers. */
2890 void
2891 use_regs (rtx *call_fusage, int regno, int nregs)
2893 int i;
2895 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2897 for (i = 0; i < nregs; i++)
2898 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2901 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2902 PARALLEL REGS. This is for calls that pass values in multiple
2903 non-contiguous locations. The Irix 6 ABI has examples of this. */
2905 void
2906 use_group_regs (rtx *call_fusage, rtx regs)
2908 int i;
2910 for (i = 0; i < XVECLEN (regs, 0); i++)
2912 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2914 /* A NULL entry means the parameter goes both on the stack and in
2915 registers. This can also be a MEM for targets that pass values
2916 partially on the stack and partially in registers. */
2917 if (reg != 0 && REG_P (reg))
2918 use_reg (call_fusage, reg);
2922 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2923 assigment and the code of the expresion on the RHS is CODE. Return
2924 NULL otherwise. */
2926 static gimple *
2927 get_def_for_expr (tree name, enum tree_code code)
2929 gimple *def_stmt;
2931 if (TREE_CODE (name) != SSA_NAME)
2932 return NULL;
2934 def_stmt = get_gimple_for_ssa_name (name);
2935 if (!def_stmt
2936 || gimple_assign_rhs_code (def_stmt) != code)
2937 return NULL;
2939 return def_stmt;
2942 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2943 assigment and the class of the expresion on the RHS is CLASS. Return
2944 NULL otherwise. */
2946 static gimple *
2947 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2949 gimple *def_stmt;
2951 if (TREE_CODE (name) != SSA_NAME)
2952 return NULL;
2954 def_stmt = get_gimple_for_ssa_name (name);
2955 if (!def_stmt
2956 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2957 return NULL;
2959 return def_stmt;
2962 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2963 its length in bytes. */
2966 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2967 unsigned int expected_align, HOST_WIDE_INT expected_size,
2968 unsigned HOST_WIDE_INT min_size,
2969 unsigned HOST_WIDE_INT max_size,
2970 unsigned HOST_WIDE_INT probable_max_size)
2972 machine_mode mode = GET_MODE (object);
2973 unsigned int align;
2975 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2977 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2978 just move a zero. Otherwise, do this a piece at a time. */
2979 if (mode != BLKmode
2980 && CONST_INT_P (size)
2981 && known_eq (INTVAL (size), GET_MODE_SIZE (mode)))
2983 rtx zero = CONST0_RTX (mode);
2984 if (zero != NULL)
2986 emit_move_insn (object, zero);
2987 return NULL;
2990 if (COMPLEX_MODE_P (mode))
2992 zero = CONST0_RTX (GET_MODE_INNER (mode));
2993 if (zero != NULL)
2995 write_complex_part (object, zero, 0);
2996 write_complex_part (object, zero, 1);
2997 return NULL;
3002 if (size == const0_rtx)
3003 return NULL;
3005 align = MEM_ALIGN (object);
3007 if (CONST_INT_P (size)
3008 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3009 CLEAR_BY_PIECES,
3010 optimize_insn_for_speed_p ()))
3011 clear_by_pieces (object, INTVAL (size), align);
3012 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3013 expected_align, expected_size,
3014 min_size, max_size, probable_max_size))
3016 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3017 return set_storage_via_libcall (object, size, const0_rtx,
3018 method == BLOCK_OP_TAILCALL);
3019 else
3020 gcc_unreachable ();
3022 return NULL;
3026 clear_storage (rtx object, rtx size, enum block_op_methods method)
3028 unsigned HOST_WIDE_INT max, min = 0;
3029 if (GET_CODE (size) == CONST_INT)
3030 min = max = UINTVAL (size);
3031 else
3032 max = GET_MODE_MASK (GET_MODE (size));
3033 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3037 /* A subroutine of clear_storage. Expand a call to memset.
3038 Return the return value of memset, 0 otherwise. */
3041 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3043 tree call_expr, fn, object_tree, size_tree, val_tree;
3044 machine_mode size_mode;
3046 object = copy_addr_to_reg (XEXP (object, 0));
3047 object_tree = make_tree (ptr_type_node, object);
3049 if (!CONST_INT_P (val))
3050 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3051 val_tree = make_tree (integer_type_node, val);
3053 size_mode = TYPE_MODE (sizetype);
3054 size = convert_to_mode (size_mode, size, 1);
3055 size = copy_to_mode_reg (size_mode, size);
3056 size_tree = make_tree (sizetype, size);
3058 /* It is incorrect to use the libcall calling conventions for calls to
3059 memset because it can be provided by the user. */
3060 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3061 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3062 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3064 return expand_call (call_expr, NULL_RTX, false);
3067 /* Expand a setmem pattern; return true if successful. */
3069 bool
3070 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3071 unsigned int expected_align, HOST_WIDE_INT expected_size,
3072 unsigned HOST_WIDE_INT min_size,
3073 unsigned HOST_WIDE_INT max_size,
3074 unsigned HOST_WIDE_INT probable_max_size)
3076 /* Try the most limited insn first, because there's no point
3077 including more than one in the machine description unless
3078 the more limited one has some advantage. */
3080 if (expected_align < align)
3081 expected_align = align;
3082 if (expected_size != -1)
3084 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3085 expected_size = max_size;
3086 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3087 expected_size = min_size;
3090 opt_scalar_int_mode mode_iter;
3091 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3093 scalar_int_mode mode = mode_iter.require ();
3094 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3096 if (code != CODE_FOR_nothing
3097 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3098 here because if SIZE is less than the mode mask, as it is
3099 returned by the macro, it will definitely be less than the
3100 actual mode mask. Since SIZE is within the Pmode address
3101 space, we limit MODE to Pmode. */
3102 && ((CONST_INT_P (size)
3103 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3104 <= (GET_MODE_MASK (mode) >> 1)))
3105 || max_size <= (GET_MODE_MASK (mode) >> 1)
3106 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3108 struct expand_operand ops[9];
3109 unsigned int nops;
3111 nops = insn_data[(int) code].n_generator_args;
3112 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3114 create_fixed_operand (&ops[0], object);
3115 /* The check above guarantees that this size conversion is valid. */
3116 create_convert_operand_to (&ops[1], size, mode, true);
3117 create_convert_operand_from (&ops[2], val, byte_mode, true);
3118 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3119 if (nops >= 6)
3121 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3122 create_integer_operand (&ops[5], expected_size);
3124 if (nops >= 8)
3126 create_integer_operand (&ops[6], min_size);
3127 /* If we can not represent the maximal size,
3128 make parameter NULL. */
3129 if ((HOST_WIDE_INT) max_size != -1)
3130 create_integer_operand (&ops[7], max_size);
3131 else
3132 create_fixed_operand (&ops[7], NULL);
3134 if (nops == 9)
3136 /* If we can not represent the maximal size,
3137 make parameter NULL. */
3138 if ((HOST_WIDE_INT) probable_max_size != -1)
3139 create_integer_operand (&ops[8], probable_max_size);
3140 else
3141 create_fixed_operand (&ops[8], NULL);
3143 if (maybe_expand_insn (code, nops, ops))
3144 return true;
3148 return false;
3152 /* Write to one of the components of the complex value CPLX. Write VAL to
3153 the real part if IMAG_P is false, and the imaginary part if its true. */
3155 void
3156 write_complex_part (rtx cplx, rtx val, bool imag_p)
3158 machine_mode cmode;
3159 scalar_mode imode;
3160 unsigned ibitsize;
3162 if (GET_CODE (cplx) == CONCAT)
3164 emit_move_insn (XEXP (cplx, imag_p), val);
3165 return;
3168 cmode = GET_MODE (cplx);
3169 imode = GET_MODE_INNER (cmode);
3170 ibitsize = GET_MODE_BITSIZE (imode);
3172 /* For MEMs simplify_gen_subreg may generate an invalid new address
3173 because, e.g., the original address is considered mode-dependent
3174 by the target, which restricts simplify_subreg from invoking
3175 adjust_address_nv. Instead of preparing fallback support for an
3176 invalid address, we call adjust_address_nv directly. */
3177 if (MEM_P (cplx))
3179 emit_move_insn (adjust_address_nv (cplx, imode,
3180 imag_p ? GET_MODE_SIZE (imode) : 0),
3181 val);
3182 return;
3185 /* If the sub-object is at least word sized, then we know that subregging
3186 will work. This special case is important, since store_bit_field
3187 wants to operate on integer modes, and there's rarely an OImode to
3188 correspond to TCmode. */
3189 if (ibitsize >= BITS_PER_WORD
3190 /* For hard regs we have exact predicates. Assume we can split
3191 the original object if it spans an even number of hard regs.
3192 This special case is important for SCmode on 64-bit platforms
3193 where the natural size of floating-point regs is 32-bit. */
3194 || (REG_P (cplx)
3195 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3196 && REG_NREGS (cplx) % 2 == 0))
3198 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3199 imag_p ? GET_MODE_SIZE (imode) : 0);
3200 if (part)
3202 emit_move_insn (part, val);
3203 return;
3205 else
3206 /* simplify_gen_subreg may fail for sub-word MEMs. */
3207 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3210 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3211 false);
3214 /* Extract one of the components of the complex value CPLX. Extract the
3215 real part if IMAG_P is false, and the imaginary part if it's true. */
3218 read_complex_part (rtx cplx, bool imag_p)
3220 machine_mode cmode;
3221 scalar_mode imode;
3222 unsigned ibitsize;
3224 if (GET_CODE (cplx) == CONCAT)
3225 return XEXP (cplx, imag_p);
3227 cmode = GET_MODE (cplx);
3228 imode = GET_MODE_INNER (cmode);
3229 ibitsize = GET_MODE_BITSIZE (imode);
3231 /* Special case reads from complex constants that got spilled to memory. */
3232 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3234 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3235 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3237 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3238 if (CONSTANT_CLASS_P (part))
3239 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3243 /* For MEMs simplify_gen_subreg may generate an invalid new address
3244 because, e.g., the original address is considered mode-dependent
3245 by the target, which restricts simplify_subreg from invoking
3246 adjust_address_nv. Instead of preparing fallback support for an
3247 invalid address, we call adjust_address_nv directly. */
3248 if (MEM_P (cplx))
3249 return adjust_address_nv (cplx, imode,
3250 imag_p ? GET_MODE_SIZE (imode) : 0);
3252 /* If the sub-object is at least word sized, then we know that subregging
3253 will work. This special case is important, since extract_bit_field
3254 wants to operate on integer modes, and there's rarely an OImode to
3255 correspond to TCmode. */
3256 if (ibitsize >= BITS_PER_WORD
3257 /* For hard regs we have exact predicates. Assume we can split
3258 the original object if it spans an even number of hard regs.
3259 This special case is important for SCmode on 64-bit platforms
3260 where the natural size of floating-point regs is 32-bit. */
3261 || (REG_P (cplx)
3262 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3263 && REG_NREGS (cplx) % 2 == 0))
3265 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3266 imag_p ? GET_MODE_SIZE (imode) : 0);
3267 if (ret)
3268 return ret;
3269 else
3270 /* simplify_gen_subreg may fail for sub-word MEMs. */
3271 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3274 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3275 true, NULL_RTX, imode, imode, false, NULL);
3278 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3279 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3280 represented in NEW_MODE. If FORCE is true, this will never happen, as
3281 we'll force-create a SUBREG if needed. */
3283 static rtx
3284 emit_move_change_mode (machine_mode new_mode,
3285 machine_mode old_mode, rtx x, bool force)
3287 rtx ret;
3289 if (push_operand (x, GET_MODE (x)))
3291 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3292 MEM_COPY_ATTRIBUTES (ret, x);
3294 else if (MEM_P (x))
3296 /* We don't have to worry about changing the address since the
3297 size in bytes is supposed to be the same. */
3298 if (reload_in_progress)
3300 /* Copy the MEM to change the mode and move any
3301 substitutions from the old MEM to the new one. */
3302 ret = adjust_address_nv (x, new_mode, 0);
3303 copy_replacements (x, ret);
3305 else
3306 ret = adjust_address (x, new_mode, 0);
3308 else
3310 /* Note that we do want simplify_subreg's behavior of validating
3311 that the new mode is ok for a hard register. If we were to use
3312 simplify_gen_subreg, we would create the subreg, but would
3313 probably run into the target not being able to implement it. */
3314 /* Except, of course, when FORCE is true, when this is exactly what
3315 we want. Which is needed for CCmodes on some targets. */
3316 if (force)
3317 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3318 else
3319 ret = simplify_subreg (new_mode, x, old_mode, 0);
3322 return ret;
3325 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3326 an integer mode of the same size as MODE. Returns the instruction
3327 emitted, or NULL if such a move could not be generated. */
3329 static rtx_insn *
3330 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3332 scalar_int_mode imode;
3333 enum insn_code code;
3335 /* There must exist a mode of the exact size we require. */
3336 if (!int_mode_for_mode (mode).exists (&imode))
3337 return NULL;
3339 /* The target must support moves in this mode. */
3340 code = optab_handler (mov_optab, imode);
3341 if (code == CODE_FOR_nothing)
3342 return NULL;
3344 x = emit_move_change_mode (imode, mode, x, force);
3345 if (x == NULL_RTX)
3346 return NULL;
3347 y = emit_move_change_mode (imode, mode, y, force);
3348 if (y == NULL_RTX)
3349 return NULL;
3350 return emit_insn (GEN_FCN (code) (x, y));
3353 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3354 Return an equivalent MEM that does not use an auto-increment. */
3357 emit_move_resolve_push (machine_mode mode, rtx x)
3359 enum rtx_code code = GET_CODE (XEXP (x, 0));
3360 rtx temp;
3362 poly_int64 adjust = GET_MODE_SIZE (mode);
3363 #ifdef PUSH_ROUNDING
3364 adjust = PUSH_ROUNDING (adjust);
3365 #endif
3366 if (code == PRE_DEC || code == POST_DEC)
3367 adjust = -adjust;
3368 else if (code == PRE_MODIFY || code == POST_MODIFY)
3370 rtx expr = XEXP (XEXP (x, 0), 1);
3372 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3373 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3374 if (GET_CODE (expr) == MINUS)
3375 val = -val;
3376 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3377 adjust = val;
3380 /* Do not use anti_adjust_stack, since we don't want to update
3381 stack_pointer_delta. */
3382 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3383 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3384 0, OPTAB_LIB_WIDEN);
3385 if (temp != stack_pointer_rtx)
3386 emit_move_insn (stack_pointer_rtx, temp);
3388 switch (code)
3390 case PRE_INC:
3391 case PRE_DEC:
3392 case PRE_MODIFY:
3393 temp = stack_pointer_rtx;
3394 break;
3395 case POST_INC:
3396 case POST_DEC:
3397 case POST_MODIFY:
3398 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3399 break;
3400 default:
3401 gcc_unreachable ();
3404 return replace_equiv_address (x, temp);
3407 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3408 X is known to satisfy push_operand, and MODE is known to be complex.
3409 Returns the last instruction emitted. */
3411 rtx_insn *
3412 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3414 scalar_mode submode = GET_MODE_INNER (mode);
3415 bool imag_first;
3417 #ifdef PUSH_ROUNDING
3418 poly_int64 submodesize = GET_MODE_SIZE (submode);
3420 /* In case we output to the stack, but the size is smaller than the
3421 machine can push exactly, we need to use move instructions. */
3422 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3424 x = emit_move_resolve_push (mode, x);
3425 return emit_move_insn (x, y);
3427 #endif
3429 /* Note that the real part always precedes the imag part in memory
3430 regardless of machine's endianness. */
3431 switch (GET_CODE (XEXP (x, 0)))
3433 case PRE_DEC:
3434 case POST_DEC:
3435 imag_first = true;
3436 break;
3437 case PRE_INC:
3438 case POST_INC:
3439 imag_first = false;
3440 break;
3441 default:
3442 gcc_unreachable ();
3445 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3446 read_complex_part (y, imag_first));
3447 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3448 read_complex_part (y, !imag_first));
3451 /* A subroutine of emit_move_complex. Perform the move from Y to X
3452 via two moves of the parts. Returns the last instruction emitted. */
3454 rtx_insn *
3455 emit_move_complex_parts (rtx x, rtx y)
3457 /* Show the output dies here. This is necessary for SUBREGs
3458 of pseudos since we cannot track their lifetimes correctly;
3459 hard regs shouldn't appear here except as return values. */
3460 if (!reload_completed && !reload_in_progress
3461 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3462 emit_clobber (x);
3464 write_complex_part (x, read_complex_part (y, false), false);
3465 write_complex_part (x, read_complex_part (y, true), true);
3467 return get_last_insn ();
3470 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3471 MODE is known to be complex. Returns the last instruction emitted. */
3473 static rtx_insn *
3474 emit_move_complex (machine_mode mode, rtx x, rtx y)
3476 bool try_int;
3478 /* Need to take special care for pushes, to maintain proper ordering
3479 of the data, and possibly extra padding. */
3480 if (push_operand (x, mode))
3481 return emit_move_complex_push (mode, x, y);
3483 /* See if we can coerce the target into moving both values at once, except
3484 for floating point where we favor moving as parts if this is easy. */
3485 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3486 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3487 && !(REG_P (x)
3488 && HARD_REGISTER_P (x)
3489 && REG_NREGS (x) == 1)
3490 && !(REG_P (y)
3491 && HARD_REGISTER_P (y)
3492 && REG_NREGS (y) == 1))
3493 try_int = false;
3494 /* Not possible if the values are inherently not adjacent. */
3495 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3496 try_int = false;
3497 /* Is possible if both are registers (or subregs of registers). */
3498 else if (register_operand (x, mode) && register_operand (y, mode))
3499 try_int = true;
3500 /* If one of the operands is a memory, and alignment constraints
3501 are friendly enough, we may be able to do combined memory operations.
3502 We do not attempt this if Y is a constant because that combination is
3503 usually better with the by-parts thing below. */
3504 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3505 && (!STRICT_ALIGNMENT
3506 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3507 try_int = true;
3508 else
3509 try_int = false;
3511 if (try_int)
3513 rtx_insn *ret;
3515 /* For memory to memory moves, optimal behavior can be had with the
3516 existing block move logic. */
3517 if (MEM_P (x) && MEM_P (y))
3519 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3520 BLOCK_OP_NO_LIBCALL);
3521 return get_last_insn ();
3524 ret = emit_move_via_integer (mode, x, y, true);
3525 if (ret)
3526 return ret;
3529 return emit_move_complex_parts (x, y);
3532 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3533 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3535 static rtx_insn *
3536 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3538 rtx_insn *ret;
3540 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3541 if (mode != CCmode)
3543 enum insn_code code = optab_handler (mov_optab, CCmode);
3544 if (code != CODE_FOR_nothing)
3546 x = emit_move_change_mode (CCmode, mode, x, true);
3547 y = emit_move_change_mode (CCmode, mode, y, true);
3548 return emit_insn (GEN_FCN (code) (x, y));
3552 /* Otherwise, find the MODE_INT mode of the same width. */
3553 ret = emit_move_via_integer (mode, x, y, false);
3554 gcc_assert (ret != NULL);
3555 return ret;
3558 /* Return true if word I of OP lies entirely in the
3559 undefined bits of a paradoxical subreg. */
3561 static bool
3562 undefined_operand_subword_p (const_rtx op, int i)
3564 if (GET_CODE (op) != SUBREG)
3565 return false;
3566 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3567 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3568 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3569 || known_le (offset, -UNITS_PER_WORD));
3572 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3573 MODE is any multi-word or full-word mode that lacks a move_insn
3574 pattern. Note that you will get better code if you define such
3575 patterns, even if they must turn into multiple assembler instructions. */
3577 static rtx_insn *
3578 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3580 rtx_insn *last_insn = 0;
3581 rtx_insn *seq;
3582 rtx inner;
3583 bool need_clobber;
3584 int i, mode_size;
3586 /* This function can only handle cases where the number of words is
3587 known at compile time. */
3588 mode_size = GET_MODE_SIZE (mode).to_constant ();
3589 gcc_assert (mode_size >= UNITS_PER_WORD);
3591 /* If X is a push on the stack, do the push now and replace
3592 X with a reference to the stack pointer. */
3593 if (push_operand (x, mode))
3594 x = emit_move_resolve_push (mode, x);
3596 /* If we are in reload, see if either operand is a MEM whose address
3597 is scheduled for replacement. */
3598 if (reload_in_progress && MEM_P (x)
3599 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3600 x = replace_equiv_address_nv (x, inner);
3601 if (reload_in_progress && MEM_P (y)
3602 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3603 y = replace_equiv_address_nv (y, inner);
3605 start_sequence ();
3607 need_clobber = false;
3608 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3610 rtx xpart = operand_subword (x, i, 1, mode);
3611 rtx ypart;
3613 /* Do not generate code for a move if it would come entirely
3614 from the undefined bits of a paradoxical subreg. */
3615 if (undefined_operand_subword_p (y, i))
3616 continue;
3618 ypart = operand_subword (y, i, 1, mode);
3620 /* If we can't get a part of Y, put Y into memory if it is a
3621 constant. Otherwise, force it into a register. Then we must
3622 be able to get a part of Y. */
3623 if (ypart == 0 && CONSTANT_P (y))
3625 y = use_anchored_address (force_const_mem (mode, y));
3626 ypart = operand_subword (y, i, 1, mode);
3628 else if (ypart == 0)
3629 ypart = operand_subword_force (y, i, mode);
3631 gcc_assert (xpart && ypart);
3633 need_clobber |= (GET_CODE (xpart) == SUBREG);
3635 last_insn = emit_move_insn (xpart, ypart);
3638 seq = get_insns ();
3639 end_sequence ();
3641 /* Show the output dies here. This is necessary for SUBREGs
3642 of pseudos since we cannot track their lifetimes correctly;
3643 hard regs shouldn't appear here except as return values.
3644 We never want to emit such a clobber after reload. */
3645 if (x != y
3646 && ! (reload_in_progress || reload_completed)
3647 && need_clobber != 0)
3648 emit_clobber (x);
3650 emit_insn (seq);
3652 return last_insn;
3655 /* Low level part of emit_move_insn.
3656 Called just like emit_move_insn, but assumes X and Y
3657 are basically valid. */
3659 rtx_insn *
3660 emit_move_insn_1 (rtx x, rtx y)
3662 machine_mode mode = GET_MODE (x);
3663 enum insn_code code;
3665 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3667 code = optab_handler (mov_optab, mode);
3668 if (code != CODE_FOR_nothing)
3669 return emit_insn (GEN_FCN (code) (x, y));
3671 /* Expand complex moves by moving real part and imag part. */
3672 if (COMPLEX_MODE_P (mode))
3673 return emit_move_complex (mode, x, y);
3675 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3676 || ALL_FIXED_POINT_MODE_P (mode))
3678 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3680 /* If we can't find an integer mode, use multi words. */
3681 if (result)
3682 return result;
3683 else
3684 return emit_move_multi_word (mode, x, y);
3687 if (GET_MODE_CLASS (mode) == MODE_CC)
3688 return emit_move_ccmode (mode, x, y);
3690 /* Try using a move pattern for the corresponding integer mode. This is
3691 only safe when simplify_subreg can convert MODE constants into integer
3692 constants. At present, it can only do this reliably if the value
3693 fits within a HOST_WIDE_INT. */
3694 if (!CONSTANT_P (y)
3695 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3697 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3699 if (ret)
3701 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3702 return ret;
3706 return emit_move_multi_word (mode, x, y);
3709 /* Generate code to copy Y into X.
3710 Both Y and X must have the same mode, except that
3711 Y can be a constant with VOIDmode.
3712 This mode cannot be BLKmode; use emit_block_move for that.
3714 Return the last instruction emitted. */
3716 rtx_insn *
3717 emit_move_insn (rtx x, rtx y)
3719 machine_mode mode = GET_MODE (x);
3720 rtx y_cst = NULL_RTX;
3721 rtx_insn *last_insn;
3722 rtx set;
3724 gcc_assert (mode != BLKmode
3725 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3727 if (CONSTANT_P (y))
3729 if (optimize
3730 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3731 && (last_insn = compress_float_constant (x, y)))
3732 return last_insn;
3734 y_cst = y;
3736 if (!targetm.legitimate_constant_p (mode, y))
3738 y = force_const_mem (mode, y);
3740 /* If the target's cannot_force_const_mem prevented the spill,
3741 assume that the target's move expanders will also take care
3742 of the non-legitimate constant. */
3743 if (!y)
3744 y = y_cst;
3745 else
3746 y = use_anchored_address (y);
3750 /* If X or Y are memory references, verify that their addresses are valid
3751 for the machine. */
3752 if (MEM_P (x)
3753 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3754 MEM_ADDR_SPACE (x))
3755 && ! push_operand (x, GET_MODE (x))))
3756 x = validize_mem (x);
3758 if (MEM_P (y)
3759 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3760 MEM_ADDR_SPACE (y)))
3761 y = validize_mem (y);
3763 gcc_assert (mode != BLKmode);
3765 last_insn = emit_move_insn_1 (x, y);
3767 if (y_cst && REG_P (x)
3768 && (set = single_set (last_insn)) != NULL_RTX
3769 && SET_DEST (set) == x
3770 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3771 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3773 return last_insn;
3776 /* Generate the body of an instruction to copy Y into X.
3777 It may be a list of insns, if one insn isn't enough. */
3779 rtx_insn *
3780 gen_move_insn (rtx x, rtx y)
3782 rtx_insn *seq;
3784 start_sequence ();
3785 emit_move_insn_1 (x, y);
3786 seq = get_insns ();
3787 end_sequence ();
3788 return seq;
3791 /* If Y is representable exactly in a narrower mode, and the target can
3792 perform the extension directly from constant or memory, then emit the
3793 move as an extension. */
3795 static rtx_insn *
3796 compress_float_constant (rtx x, rtx y)
3798 machine_mode dstmode = GET_MODE (x);
3799 machine_mode orig_srcmode = GET_MODE (y);
3800 machine_mode srcmode;
3801 const REAL_VALUE_TYPE *r;
3802 int oldcost, newcost;
3803 bool speed = optimize_insn_for_speed_p ();
3805 r = CONST_DOUBLE_REAL_VALUE (y);
3807 if (targetm.legitimate_constant_p (dstmode, y))
3808 oldcost = set_src_cost (y, orig_srcmode, speed);
3809 else
3810 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3812 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3814 enum insn_code ic;
3815 rtx trunc_y;
3816 rtx_insn *last_insn;
3818 /* Skip if the target can't extend this way. */
3819 ic = can_extend_p (dstmode, srcmode, 0);
3820 if (ic == CODE_FOR_nothing)
3821 continue;
3823 /* Skip if the narrowed value isn't exact. */
3824 if (! exact_real_truncate (srcmode, r))
3825 continue;
3827 trunc_y = const_double_from_real_value (*r, srcmode);
3829 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3831 /* Skip if the target needs extra instructions to perform
3832 the extension. */
3833 if (!insn_operand_matches (ic, 1, trunc_y))
3834 continue;
3835 /* This is valid, but may not be cheaper than the original. */
3836 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3837 dstmode, speed);
3838 if (oldcost < newcost)
3839 continue;
3841 else if (float_extend_from_mem[dstmode][srcmode])
3843 trunc_y = force_const_mem (srcmode, trunc_y);
3844 /* This is valid, but may not be cheaper than the original. */
3845 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3846 dstmode, speed);
3847 if (oldcost < newcost)
3848 continue;
3849 trunc_y = validize_mem (trunc_y);
3851 else
3852 continue;
3854 /* For CSE's benefit, force the compressed constant pool entry
3855 into a new pseudo. This constant may be used in different modes,
3856 and if not, combine will put things back together for us. */
3857 trunc_y = force_reg (srcmode, trunc_y);
3859 /* If x is a hard register, perform the extension into a pseudo,
3860 so that e.g. stack realignment code is aware of it. */
3861 rtx target = x;
3862 if (REG_P (x) && HARD_REGISTER_P (x))
3863 target = gen_reg_rtx (dstmode);
3865 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3866 last_insn = get_last_insn ();
3868 if (REG_P (target))
3869 set_unique_reg_note (last_insn, REG_EQUAL, y);
3871 if (target != x)
3872 return emit_move_insn (x, target);
3873 return last_insn;
3876 return NULL;
3879 /* Pushing data onto the stack. */
3881 /* Push a block of length SIZE (perhaps variable)
3882 and return an rtx to address the beginning of the block.
3883 The value may be virtual_outgoing_args_rtx.
3885 EXTRA is the number of bytes of padding to push in addition to SIZE.
3886 BELOW nonzero means this padding comes at low addresses;
3887 otherwise, the padding comes at high addresses. */
3890 push_block (rtx size, poly_int64 extra, int below)
3892 rtx temp;
3894 size = convert_modes (Pmode, ptr_mode, size, 1);
3895 if (CONSTANT_P (size))
3896 anti_adjust_stack (plus_constant (Pmode, size, extra));
3897 else if (REG_P (size) && known_eq (extra, 0))
3898 anti_adjust_stack (size);
3899 else
3901 temp = copy_to_mode_reg (Pmode, size);
3902 if (maybe_ne (extra, 0))
3903 temp = expand_binop (Pmode, add_optab, temp,
3904 gen_int_mode (extra, Pmode),
3905 temp, 0, OPTAB_LIB_WIDEN);
3906 anti_adjust_stack (temp);
3909 if (STACK_GROWS_DOWNWARD)
3911 temp = virtual_outgoing_args_rtx;
3912 if (maybe_ne (extra, 0) && below)
3913 temp = plus_constant (Pmode, temp, extra);
3915 else
3917 if (CONST_INT_P (size))
3918 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3919 -INTVAL (size) - (below ? 0 : extra));
3920 else if (maybe_ne (extra, 0) && !below)
3921 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3922 negate_rtx (Pmode, plus_constant (Pmode, size,
3923 extra)));
3924 else
3925 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3926 negate_rtx (Pmode, size));
3929 return memory_address (NARROWEST_INT_MODE, temp);
3932 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3934 static rtx
3935 mem_autoinc_base (rtx mem)
3937 if (MEM_P (mem))
3939 rtx addr = XEXP (mem, 0);
3940 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3941 return XEXP (addr, 0);
3943 return NULL;
3946 /* A utility routine used here, in reload, and in try_split. The insns
3947 after PREV up to and including LAST are known to adjust the stack,
3948 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3949 placing notes as appropriate. PREV may be NULL, indicating the
3950 entire insn sequence prior to LAST should be scanned.
3952 The set of allowed stack pointer modifications is small:
3953 (1) One or more auto-inc style memory references (aka pushes),
3954 (2) One or more addition/subtraction with the SP as destination,
3955 (3) A single move insn with the SP as destination,
3956 (4) A call_pop insn,
3957 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3959 Insns in the sequence that do not modify the SP are ignored,
3960 except for noreturn calls.
3962 The return value is the amount of adjustment that can be trivially
3963 verified, via immediate operand or auto-inc. If the adjustment
3964 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
3966 poly_int64
3967 find_args_size_adjust (rtx_insn *insn)
3969 rtx dest, set, pat;
3970 int i;
3972 pat = PATTERN (insn);
3973 set = NULL;
3975 /* Look for a call_pop pattern. */
3976 if (CALL_P (insn))
3978 /* We have to allow non-call_pop patterns for the case
3979 of emit_single_push_insn of a TLS address. */
3980 if (GET_CODE (pat) != PARALLEL)
3981 return 0;
3983 /* All call_pop have a stack pointer adjust in the parallel.
3984 The call itself is always first, and the stack adjust is
3985 usually last, so search from the end. */
3986 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3988 set = XVECEXP (pat, 0, i);
3989 if (GET_CODE (set) != SET)
3990 continue;
3991 dest = SET_DEST (set);
3992 if (dest == stack_pointer_rtx)
3993 break;
3995 /* We'd better have found the stack pointer adjust. */
3996 if (i == 0)
3997 return 0;
3998 /* Fall through to process the extracted SET and DEST
3999 as if it was a standalone insn. */
4001 else if (GET_CODE (pat) == SET)
4002 set = pat;
4003 else if ((set = single_set (insn)) != NULL)
4005 else if (GET_CODE (pat) == PARALLEL)
4007 /* ??? Some older ports use a parallel with a stack adjust
4008 and a store for a PUSH_ROUNDING pattern, rather than a
4009 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4010 /* ??? See h8300 and m68k, pushqi1. */
4011 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4013 set = XVECEXP (pat, 0, i);
4014 if (GET_CODE (set) != SET)
4015 continue;
4016 dest = SET_DEST (set);
4017 if (dest == stack_pointer_rtx)
4018 break;
4020 /* We do not expect an auto-inc of the sp in the parallel. */
4021 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4022 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4023 != stack_pointer_rtx);
4025 if (i < 0)
4026 return 0;
4028 else
4029 return 0;
4031 dest = SET_DEST (set);
4033 /* Look for direct modifications of the stack pointer. */
4034 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4036 /* Look for a trivial adjustment, otherwise assume nothing. */
4037 /* Note that the SPU restore_stack_block pattern refers to
4038 the stack pointer in V4SImode. Consider that non-trivial. */
4039 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4040 && GET_CODE (SET_SRC (set)) == PLUS
4041 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4042 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4043 return INTVAL (XEXP (SET_SRC (set), 1));
4044 /* ??? Reload can generate no-op moves, which will be cleaned
4045 up later. Recognize it and continue searching. */
4046 else if (rtx_equal_p (dest, SET_SRC (set)))
4047 return 0;
4048 else
4049 return HOST_WIDE_INT_MIN;
4051 else
4053 rtx mem, addr;
4055 /* Otherwise only think about autoinc patterns. */
4056 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4058 mem = dest;
4059 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4060 != stack_pointer_rtx);
4062 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4063 mem = SET_SRC (set);
4064 else
4065 return 0;
4067 addr = XEXP (mem, 0);
4068 switch (GET_CODE (addr))
4070 case PRE_INC:
4071 case POST_INC:
4072 return GET_MODE_SIZE (GET_MODE (mem));
4073 case PRE_DEC:
4074 case POST_DEC:
4075 return -GET_MODE_SIZE (GET_MODE (mem));
4076 case PRE_MODIFY:
4077 case POST_MODIFY:
4078 addr = XEXP (addr, 1);
4079 gcc_assert (GET_CODE (addr) == PLUS);
4080 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4081 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4082 return INTVAL (XEXP (addr, 1));
4083 default:
4084 gcc_unreachable ();
4089 poly_int64
4090 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4091 poly_int64 end_args_size)
4093 poly_int64 args_size = end_args_size;
4094 bool saw_unknown = false;
4095 rtx_insn *insn;
4097 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4099 if (!NONDEBUG_INSN_P (insn))
4100 continue;
4102 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4103 a call argument containing a TLS address that itself requires
4104 a call to __tls_get_addr. The handling of stack_pointer_delta
4105 in emit_single_push_insn is supposed to ensure that any such
4106 notes are already correct. */
4107 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4108 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4110 poly_int64 this_delta = find_args_size_adjust (insn);
4111 if (known_eq (this_delta, 0))
4113 if (!CALL_P (insn)
4114 || ACCUMULATE_OUTGOING_ARGS
4115 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4116 continue;
4119 gcc_assert (!saw_unknown);
4120 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4121 saw_unknown = true;
4123 if (!note)
4124 add_args_size_note (insn, args_size);
4125 if (STACK_GROWS_DOWNWARD)
4126 this_delta = -poly_uint64 (this_delta);
4128 if (saw_unknown)
4129 args_size = HOST_WIDE_INT_MIN;
4130 else
4131 args_size -= this_delta;
4134 return args_size;
4137 #ifdef PUSH_ROUNDING
4138 /* Emit single push insn. */
4140 static void
4141 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4143 rtx dest_addr;
4144 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4145 rtx dest;
4146 enum insn_code icode;
4148 /* If there is push pattern, use it. Otherwise try old way of throwing
4149 MEM representing push operation to move expander. */
4150 icode = optab_handler (push_optab, mode);
4151 if (icode != CODE_FOR_nothing)
4153 struct expand_operand ops[1];
4155 create_input_operand (&ops[0], x, mode);
4156 if (maybe_expand_insn (icode, 1, ops))
4157 return;
4159 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4160 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4161 /* If we are to pad downward, adjust the stack pointer first and
4162 then store X into the stack location using an offset. This is
4163 because emit_move_insn does not know how to pad; it does not have
4164 access to type. */
4165 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4167 emit_move_insn (stack_pointer_rtx,
4168 expand_binop (Pmode,
4169 STACK_GROWS_DOWNWARD ? sub_optab
4170 : add_optab,
4171 stack_pointer_rtx,
4172 gen_int_mode (rounded_size, Pmode),
4173 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4175 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4176 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4177 /* We have already decremented the stack pointer, so get the
4178 previous value. */
4179 offset += rounded_size;
4181 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4182 /* We have already incremented the stack pointer, so get the
4183 previous value. */
4184 offset -= rounded_size;
4186 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4188 else
4190 if (STACK_GROWS_DOWNWARD)
4191 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4192 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4193 else
4194 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4195 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4197 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4200 dest = gen_rtx_MEM (mode, dest_addr);
4202 if (type != 0)
4204 set_mem_attributes (dest, type, 1);
4206 if (cfun->tail_call_marked)
4207 /* Function incoming arguments may overlap with sibling call
4208 outgoing arguments and we cannot allow reordering of reads
4209 from function arguments with stores to outgoing arguments
4210 of sibling calls. */
4211 set_mem_alias_set (dest, 0);
4213 emit_move_insn (dest, x);
4216 /* Emit and annotate a single push insn. */
4218 static void
4219 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4221 poly_int64 delta, old_delta = stack_pointer_delta;
4222 rtx_insn *prev = get_last_insn ();
4223 rtx_insn *last;
4225 emit_single_push_insn_1 (mode, x, type);
4227 /* Adjust stack_pointer_delta to describe the situation after the push
4228 we just performed. Note that we must do this after the push rather
4229 than before the push in case calculating X needs pushes and pops of
4230 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4231 for such pushes and pops must not include the effect of the future
4232 push of X. */
4233 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4235 last = get_last_insn ();
4237 /* Notice the common case where we emitted exactly one insn. */
4238 if (PREV_INSN (last) == prev)
4240 add_args_size_note (last, stack_pointer_delta);
4241 return;
4244 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4245 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4246 || known_eq (delta, old_delta));
4248 #endif
4250 /* If reading SIZE bytes from X will end up reading from
4251 Y return the number of bytes that overlap. Return -1
4252 if there is no overlap or -2 if we can't determine
4253 (for example when X and Y have different base registers). */
4255 static int
4256 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4258 rtx tmp = plus_constant (Pmode, x, size);
4259 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4261 if (!CONST_INT_P (sub))
4262 return -2;
4264 HOST_WIDE_INT val = INTVAL (sub);
4266 return IN_RANGE (val, 1, size) ? val : -1;
4269 /* Generate code to push X onto the stack, assuming it has mode MODE and
4270 type TYPE.
4271 MODE is redundant except when X is a CONST_INT (since they don't
4272 carry mode info).
4273 SIZE is an rtx for the size of data to be copied (in bytes),
4274 needed only if X is BLKmode.
4275 Return true if successful. May return false if asked to push a
4276 partial argument during a sibcall optimization (as specified by
4277 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4278 to not overlap.
4280 ALIGN (in bits) is maximum alignment we can assume.
4282 If PARTIAL and REG are both nonzero, then copy that many of the first
4283 bytes of X into registers starting with REG, and push the rest of X.
4284 The amount of space pushed is decreased by PARTIAL bytes.
4285 REG must be a hard register in this case.
4286 If REG is zero but PARTIAL is not, take any all others actions for an
4287 argument partially in registers, but do not actually load any
4288 registers.
4290 EXTRA is the amount in bytes of extra space to leave next to this arg.
4291 This is ignored if an argument block has already been allocated.
4293 On a machine that lacks real push insns, ARGS_ADDR is the address of
4294 the bottom of the argument block for this call. We use indexing off there
4295 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4296 argument block has not been preallocated.
4298 ARGS_SO_FAR is the size of args previously pushed for this call.
4300 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4301 for arguments passed in registers. If nonzero, it will be the number
4302 of bytes required. */
4304 bool
4305 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4306 unsigned int align, int partial, rtx reg, poly_int64 extra,
4307 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4308 rtx alignment_pad, bool sibcall_p)
4310 rtx xinner;
4311 pad_direction stack_direction
4312 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4314 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4315 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4316 Default is below for small data on big-endian machines; else above. */
4317 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4319 /* Invert direction if stack is post-decrement.
4320 FIXME: why? */
4321 if (STACK_PUSH_CODE == POST_DEC)
4322 if (where_pad != PAD_NONE)
4323 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4325 xinner = x;
4327 int nregs = partial / UNITS_PER_WORD;
4328 rtx *tmp_regs = NULL;
4329 int overlapping = 0;
4331 if (mode == BLKmode
4332 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4334 /* Copy a block into the stack, entirely or partially. */
4336 rtx temp;
4337 int used;
4338 int offset;
4339 int skip;
4341 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4342 used = partial - offset;
4344 if (mode != BLKmode)
4346 /* A value is to be stored in an insufficiently aligned
4347 stack slot; copy via a suitably aligned slot if
4348 necessary. */
4349 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4350 if (!MEM_P (xinner))
4352 temp = assign_temp (type, 1, 1);
4353 emit_move_insn (temp, xinner);
4354 xinner = temp;
4358 gcc_assert (size);
4360 /* USED is now the # of bytes we need not copy to the stack
4361 because registers will take care of them. */
4363 if (partial != 0)
4364 xinner = adjust_address (xinner, BLKmode, used);
4366 /* If the partial register-part of the arg counts in its stack size,
4367 skip the part of stack space corresponding to the registers.
4368 Otherwise, start copying to the beginning of the stack space,
4369 by setting SKIP to 0. */
4370 skip = (reg_parm_stack_space == 0) ? 0 : used;
4372 #ifdef PUSH_ROUNDING
4373 /* Do it with several push insns if that doesn't take lots of insns
4374 and if there is no difficulty with push insns that skip bytes
4375 on the stack for alignment purposes. */
4376 if (args_addr == 0
4377 && PUSH_ARGS
4378 && CONST_INT_P (size)
4379 && skip == 0
4380 && MEM_ALIGN (xinner) >= align
4381 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4382 /* Here we avoid the case of a structure whose weak alignment
4383 forces many pushes of a small amount of data,
4384 and such small pushes do rounding that causes trouble. */
4385 && ((!targetm.slow_unaligned_access (word_mode, align))
4386 || align >= BIGGEST_ALIGNMENT
4387 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4388 align / BITS_PER_UNIT))
4389 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4391 /* Push padding now if padding above and stack grows down,
4392 or if padding below and stack grows up.
4393 But if space already allocated, this has already been done. */
4394 if (maybe_ne (extra, 0)
4395 && args_addr == 0
4396 && where_pad != PAD_NONE
4397 && where_pad != stack_direction)
4398 anti_adjust_stack (gen_int_mode (extra, Pmode));
4400 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4402 else
4403 #endif /* PUSH_ROUNDING */
4405 rtx target;
4407 /* Otherwise make space on the stack and copy the data
4408 to the address of that space. */
4410 /* Deduct words put into registers from the size we must copy. */
4411 if (partial != 0)
4413 if (CONST_INT_P (size))
4414 size = GEN_INT (INTVAL (size) - used);
4415 else
4416 size = expand_binop (GET_MODE (size), sub_optab, size,
4417 gen_int_mode (used, GET_MODE (size)),
4418 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4421 /* Get the address of the stack space.
4422 In this case, we do not deal with EXTRA separately.
4423 A single stack adjust will do. */
4424 if (! args_addr)
4426 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4427 extra = 0;
4429 else if (CONST_INT_P (args_so_far))
4430 temp = memory_address (BLKmode,
4431 plus_constant (Pmode, args_addr,
4432 skip + INTVAL (args_so_far)));
4433 else
4434 temp = memory_address (BLKmode,
4435 plus_constant (Pmode,
4436 gen_rtx_PLUS (Pmode,
4437 args_addr,
4438 args_so_far),
4439 skip));
4441 if (!ACCUMULATE_OUTGOING_ARGS)
4443 /* If the source is referenced relative to the stack pointer,
4444 copy it to another register to stabilize it. We do not need
4445 to do this if we know that we won't be changing sp. */
4447 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4448 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4449 temp = copy_to_reg (temp);
4452 target = gen_rtx_MEM (BLKmode, temp);
4454 /* We do *not* set_mem_attributes here, because incoming arguments
4455 may overlap with sibling call outgoing arguments and we cannot
4456 allow reordering of reads from function arguments with stores
4457 to outgoing arguments of sibling calls. We do, however, want
4458 to record the alignment of the stack slot. */
4459 /* ALIGN may well be better aligned than TYPE, e.g. due to
4460 PARM_BOUNDARY. Assume the caller isn't lying. */
4461 set_mem_align (target, align);
4463 /* If part should go in registers and pushing to that part would
4464 overwrite some of the values that need to go into regs, load the
4465 overlapping values into temporary pseudos to be moved into the hard
4466 regs at the end after the stack pushing has completed.
4467 We cannot load them directly into the hard regs here because
4468 they can be clobbered by the block move expansions.
4469 See PR 65358. */
4471 if (partial > 0 && reg != 0 && mode == BLKmode
4472 && GET_CODE (reg) != PARALLEL)
4474 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4475 if (overlapping > 0)
4477 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4478 overlapping /= UNITS_PER_WORD;
4480 tmp_regs = XALLOCAVEC (rtx, overlapping);
4482 for (int i = 0; i < overlapping; i++)
4483 tmp_regs[i] = gen_reg_rtx (word_mode);
4485 for (int i = 0; i < overlapping; i++)
4486 emit_move_insn (tmp_regs[i],
4487 operand_subword_force (target, i, mode));
4489 else if (overlapping == -1)
4490 overlapping = 0;
4491 /* Could not determine whether there is overlap.
4492 Fail the sibcall. */
4493 else
4495 overlapping = 0;
4496 if (sibcall_p)
4497 return false;
4500 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4503 else if (partial > 0)
4505 /* Scalar partly in registers. This case is only supported
4506 for fixed-wdth modes. */
4507 int size = GET_MODE_SIZE (mode).to_constant ();
4508 size /= UNITS_PER_WORD;
4509 int i;
4510 int not_stack;
4511 /* # bytes of start of argument
4512 that we must make space for but need not store. */
4513 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4514 int args_offset = INTVAL (args_so_far);
4515 int skip;
4517 /* Push padding now if padding above and stack grows down,
4518 or if padding below and stack grows up.
4519 But if space already allocated, this has already been done. */
4520 if (maybe_ne (extra, 0)
4521 && args_addr == 0
4522 && where_pad != PAD_NONE
4523 && where_pad != stack_direction)
4524 anti_adjust_stack (gen_int_mode (extra, Pmode));
4526 /* If we make space by pushing it, we might as well push
4527 the real data. Otherwise, we can leave OFFSET nonzero
4528 and leave the space uninitialized. */
4529 if (args_addr == 0)
4530 offset = 0;
4532 /* Now NOT_STACK gets the number of words that we don't need to
4533 allocate on the stack. Convert OFFSET to words too. */
4534 not_stack = (partial - offset) / UNITS_PER_WORD;
4535 offset /= UNITS_PER_WORD;
4537 /* If the partial register-part of the arg counts in its stack size,
4538 skip the part of stack space corresponding to the registers.
4539 Otherwise, start copying to the beginning of the stack space,
4540 by setting SKIP to 0. */
4541 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4543 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4544 x = validize_mem (force_const_mem (mode, x));
4546 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4547 SUBREGs of such registers are not allowed. */
4548 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4549 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4550 x = copy_to_reg (x);
4552 /* Loop over all the words allocated on the stack for this arg. */
4553 /* We can do it by words, because any scalar bigger than a word
4554 has a size a multiple of a word. */
4555 for (i = size - 1; i >= not_stack; i--)
4556 if (i >= not_stack + offset)
4557 if (!emit_push_insn (operand_subword_force (x, i, mode),
4558 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4559 0, args_addr,
4560 GEN_INT (args_offset + ((i - not_stack + skip)
4561 * UNITS_PER_WORD)),
4562 reg_parm_stack_space, alignment_pad, sibcall_p))
4563 return false;
4565 else
4567 rtx addr;
4568 rtx dest;
4570 /* Push padding now if padding above and stack grows down,
4571 or if padding below and stack grows up.
4572 But if space already allocated, this has already been done. */
4573 if (maybe_ne (extra, 0)
4574 && args_addr == 0
4575 && where_pad != PAD_NONE
4576 && where_pad != stack_direction)
4577 anti_adjust_stack (gen_int_mode (extra, Pmode));
4579 #ifdef PUSH_ROUNDING
4580 if (args_addr == 0 && PUSH_ARGS)
4581 emit_single_push_insn (mode, x, type);
4582 else
4583 #endif
4585 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4586 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4588 /* We do *not* set_mem_attributes here, because incoming arguments
4589 may overlap with sibling call outgoing arguments and we cannot
4590 allow reordering of reads from function arguments with stores
4591 to outgoing arguments of sibling calls. We do, however, want
4592 to record the alignment of the stack slot. */
4593 /* ALIGN may well be better aligned than TYPE, e.g. due to
4594 PARM_BOUNDARY. Assume the caller isn't lying. */
4595 set_mem_align (dest, align);
4597 emit_move_insn (dest, x);
4601 /* Move the partial arguments into the registers and any overlapping
4602 values that we moved into the pseudos in tmp_regs. */
4603 if (partial > 0 && reg != 0)
4605 /* Handle calls that pass values in multiple non-contiguous locations.
4606 The Irix 6 ABI has examples of this. */
4607 if (GET_CODE (reg) == PARALLEL)
4608 emit_group_load (reg, x, type, -1);
4609 else
4611 gcc_assert (partial % UNITS_PER_WORD == 0);
4612 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4614 for (int i = 0; i < overlapping; i++)
4615 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4616 + nregs - overlapping + i),
4617 tmp_regs[i]);
4622 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4623 anti_adjust_stack (gen_int_mode (extra, Pmode));
4625 if (alignment_pad && args_addr == 0)
4626 anti_adjust_stack (alignment_pad);
4628 return true;
4631 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4632 operations. */
4634 static rtx
4635 get_subtarget (rtx x)
4637 return (optimize
4638 || x == 0
4639 /* Only registers can be subtargets. */
4640 || !REG_P (x)
4641 /* Don't use hard regs to avoid extending their life. */
4642 || REGNO (x) < FIRST_PSEUDO_REGISTER
4643 ? 0 : x);
4646 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4647 FIELD is a bitfield. Returns true if the optimization was successful,
4648 and there's nothing else to do. */
4650 static bool
4651 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4652 poly_uint64 pbitpos,
4653 poly_uint64 pbitregion_start,
4654 poly_uint64 pbitregion_end,
4655 machine_mode mode1, rtx str_rtx,
4656 tree to, tree src, bool reverse)
4658 /* str_mode is not guaranteed to be a scalar type. */
4659 machine_mode str_mode = GET_MODE (str_rtx);
4660 unsigned int str_bitsize;
4661 tree op0, op1;
4662 rtx value, result;
4663 optab binop;
4664 gimple *srcstmt;
4665 enum tree_code code;
4667 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4668 if (mode1 != VOIDmode
4669 || !pbitsize.is_constant (&bitsize)
4670 || !pbitpos.is_constant (&bitpos)
4671 || !pbitregion_start.is_constant (&bitregion_start)
4672 || !pbitregion_end.is_constant (&bitregion_end)
4673 || bitsize >= BITS_PER_WORD
4674 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4675 || str_bitsize > BITS_PER_WORD
4676 || TREE_SIDE_EFFECTS (to)
4677 || TREE_THIS_VOLATILE (to))
4678 return false;
4680 STRIP_NOPS (src);
4681 if (TREE_CODE (src) != SSA_NAME)
4682 return false;
4683 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4684 return false;
4686 srcstmt = get_gimple_for_ssa_name (src);
4687 if (!srcstmt
4688 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4689 return false;
4691 code = gimple_assign_rhs_code (srcstmt);
4693 op0 = gimple_assign_rhs1 (srcstmt);
4695 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4696 to find its initialization. Hopefully the initialization will
4697 be from a bitfield load. */
4698 if (TREE_CODE (op0) == SSA_NAME)
4700 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4702 /* We want to eventually have OP0 be the same as TO, which
4703 should be a bitfield. */
4704 if (!op0stmt
4705 || !is_gimple_assign (op0stmt)
4706 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4707 return false;
4708 op0 = gimple_assign_rhs1 (op0stmt);
4711 op1 = gimple_assign_rhs2 (srcstmt);
4713 if (!operand_equal_p (to, op0, 0))
4714 return false;
4716 if (MEM_P (str_rtx))
4718 unsigned HOST_WIDE_INT offset1;
4720 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4721 str_bitsize = BITS_PER_WORD;
4723 scalar_int_mode best_mode;
4724 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4725 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4726 return false;
4727 str_mode = best_mode;
4728 str_bitsize = GET_MODE_BITSIZE (best_mode);
4730 offset1 = bitpos;
4731 bitpos %= str_bitsize;
4732 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4733 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4735 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4736 return false;
4738 /* If the bit field covers the whole REG/MEM, store_field
4739 will likely generate better code. */
4740 if (bitsize >= str_bitsize)
4741 return false;
4743 /* We can't handle fields split across multiple entities. */
4744 if (bitpos + bitsize > str_bitsize)
4745 return false;
4747 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4748 bitpos = str_bitsize - bitpos - bitsize;
4750 switch (code)
4752 case PLUS_EXPR:
4753 case MINUS_EXPR:
4754 /* For now, just optimize the case of the topmost bitfield
4755 where we don't need to do any masking and also
4756 1 bit bitfields where xor can be used.
4757 We might win by one instruction for the other bitfields
4758 too if insv/extv instructions aren't used, so that
4759 can be added later. */
4760 if ((reverse || bitpos + bitsize != str_bitsize)
4761 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4762 break;
4764 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4765 value = convert_modes (str_mode,
4766 TYPE_MODE (TREE_TYPE (op1)), value,
4767 TYPE_UNSIGNED (TREE_TYPE (op1)));
4769 /* We may be accessing data outside the field, which means
4770 we can alias adjacent data. */
4771 if (MEM_P (str_rtx))
4773 str_rtx = shallow_copy_rtx (str_rtx);
4774 set_mem_alias_set (str_rtx, 0);
4775 set_mem_expr (str_rtx, 0);
4778 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4780 value = expand_and (str_mode, value, const1_rtx, NULL);
4781 binop = xor_optab;
4783 else
4784 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4786 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4787 if (reverse)
4788 value = flip_storage_order (str_mode, value);
4789 result = expand_binop (str_mode, binop, str_rtx,
4790 value, str_rtx, 1, OPTAB_WIDEN);
4791 if (result != str_rtx)
4792 emit_move_insn (str_rtx, result);
4793 return true;
4795 case BIT_IOR_EXPR:
4796 case BIT_XOR_EXPR:
4797 if (TREE_CODE (op1) != INTEGER_CST)
4798 break;
4799 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4800 value = convert_modes (str_mode,
4801 TYPE_MODE (TREE_TYPE (op1)), value,
4802 TYPE_UNSIGNED (TREE_TYPE (op1)));
4804 /* We may be accessing data outside the field, which means
4805 we can alias adjacent data. */
4806 if (MEM_P (str_rtx))
4808 str_rtx = shallow_copy_rtx (str_rtx);
4809 set_mem_alias_set (str_rtx, 0);
4810 set_mem_expr (str_rtx, 0);
4813 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4814 if (bitpos + bitsize != str_bitsize)
4816 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4817 str_mode);
4818 value = expand_and (str_mode, value, mask, NULL_RTX);
4820 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4821 if (reverse)
4822 value = flip_storage_order (str_mode, value);
4823 result = expand_binop (str_mode, binop, str_rtx,
4824 value, str_rtx, 1, OPTAB_WIDEN);
4825 if (result != str_rtx)
4826 emit_move_insn (str_rtx, result);
4827 return true;
4829 default:
4830 break;
4833 return false;
4836 /* In the C++ memory model, consecutive bit fields in a structure are
4837 considered one memory location.
4839 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4840 returns the bit range of consecutive bits in which this COMPONENT_REF
4841 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4842 and *OFFSET may be adjusted in the process.
4844 If the access does not need to be restricted, 0 is returned in both
4845 *BITSTART and *BITEND. */
4847 void
4848 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
4849 poly_int64_pod *bitpos, tree *offset)
4851 poly_int64 bitoffset;
4852 tree field, repr;
4854 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4856 field = TREE_OPERAND (exp, 1);
4857 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4858 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4859 need to limit the range we can access. */
4860 if (!repr)
4862 *bitstart = *bitend = 0;
4863 return;
4866 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4867 part of a larger bit field, then the representative does not serve any
4868 useful purpose. This can occur in Ada. */
4869 if (handled_component_p (TREE_OPERAND (exp, 0)))
4871 machine_mode rmode;
4872 poly_int64 rbitsize, rbitpos;
4873 tree roffset;
4874 int unsignedp, reversep, volatilep = 0;
4875 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4876 &roffset, &rmode, &unsignedp, &reversep,
4877 &volatilep);
4878 if (!multiple_p (rbitpos, BITS_PER_UNIT))
4880 *bitstart = *bitend = 0;
4881 return;
4885 /* Compute the adjustment to bitpos from the offset of the field
4886 relative to the representative. DECL_FIELD_OFFSET of field and
4887 repr are the same by construction if they are not constants,
4888 see finish_bitfield_layout. */
4889 poly_uint64 field_offset, repr_offset;
4890 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
4891 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
4892 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
4893 else
4894 bitoffset = 0;
4895 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4896 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4898 /* If the adjustment is larger than bitpos, we would have a negative bit
4899 position for the lower bound and this may wreak havoc later. Adjust
4900 offset and bitpos to make the lower bound non-negative in that case. */
4901 if (maybe_gt (bitoffset, *bitpos))
4903 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
4904 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
4906 *bitpos += adjust_bits;
4907 if (*offset == NULL_TREE)
4908 *offset = size_int (-adjust_bytes);
4909 else
4910 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
4911 *bitstart = 0;
4913 else
4914 *bitstart = *bitpos - bitoffset;
4916 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4919 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4920 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4921 DECL_RTL was not set yet, return NORTL. */
4923 static inline bool
4924 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4926 if (TREE_CODE (addr) != ADDR_EXPR)
4927 return false;
4929 tree base = TREE_OPERAND (addr, 0);
4931 if (!DECL_P (base)
4932 || TREE_ADDRESSABLE (base)
4933 || DECL_MODE (base) == BLKmode)
4934 return false;
4936 if (!DECL_RTL_SET_P (base))
4937 return nortl;
4939 return (!MEM_P (DECL_RTL (base)));
4942 /* Returns true if the MEM_REF REF refers to an object that does not
4943 reside in memory and has non-BLKmode. */
4945 static inline bool
4946 mem_ref_refers_to_non_mem_p (tree ref)
4948 tree base = TREE_OPERAND (ref, 0);
4949 return addr_expr_of_non_mem_decl_p_1 (base, false);
4952 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4953 is true, try generating a nontemporal store. */
4955 void
4956 expand_assignment (tree to, tree from, bool nontemporal)
4958 rtx to_rtx = 0;
4959 rtx result;
4960 machine_mode mode;
4961 unsigned int align;
4962 enum insn_code icode;
4964 /* Don't crash if the lhs of the assignment was erroneous. */
4965 if (TREE_CODE (to) == ERROR_MARK)
4967 expand_normal (from);
4968 return;
4971 /* Optimize away no-op moves without side-effects. */
4972 if (operand_equal_p (to, from, 0))
4973 return;
4975 /* Handle misaligned stores. */
4976 mode = TYPE_MODE (TREE_TYPE (to));
4977 if ((TREE_CODE (to) == MEM_REF
4978 || TREE_CODE (to) == TARGET_MEM_REF)
4979 && mode != BLKmode
4980 && !mem_ref_refers_to_non_mem_p (to)
4981 && ((align = get_object_alignment (to))
4982 < GET_MODE_ALIGNMENT (mode))
4983 && (((icode = optab_handler (movmisalign_optab, mode))
4984 != CODE_FOR_nothing)
4985 || targetm.slow_unaligned_access (mode, align)))
4987 rtx reg, mem;
4989 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4990 reg = force_not_mem (reg);
4991 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4992 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4993 reg = flip_storage_order (mode, reg);
4995 if (icode != CODE_FOR_nothing)
4997 struct expand_operand ops[2];
4999 create_fixed_operand (&ops[0], mem);
5000 create_input_operand (&ops[1], reg, mode);
5001 /* The movmisalign<mode> pattern cannot fail, else the assignment
5002 would silently be omitted. */
5003 expand_insn (icode, 2, ops);
5005 else
5006 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5007 false);
5008 return;
5011 /* Assignment of a structure component needs special treatment
5012 if the structure component's rtx is not simply a MEM.
5013 Assignment of an array element at a constant index, and assignment of
5014 an array element in an unaligned packed structure field, has the same
5015 problem. Same for (partially) storing into a non-memory object. */
5016 if (handled_component_p (to)
5017 || (TREE_CODE (to) == MEM_REF
5018 && (REF_REVERSE_STORAGE_ORDER (to)
5019 || mem_ref_refers_to_non_mem_p (to)))
5020 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5022 machine_mode mode1;
5023 poly_int64 bitsize, bitpos;
5024 poly_uint64 bitregion_start = 0;
5025 poly_uint64 bitregion_end = 0;
5026 tree offset;
5027 int unsignedp, reversep, volatilep = 0;
5028 tree tem;
5030 push_temp_slots ();
5031 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5032 &unsignedp, &reversep, &volatilep);
5034 /* Make sure bitpos is not negative, it can wreak havoc later. */
5035 if (maybe_lt (bitpos, 0))
5037 gcc_assert (offset == NULL_TREE);
5038 offset = size_int (bits_to_bytes_round_down (bitpos));
5039 bitpos = num_trailing_bits (bitpos);
5042 if (TREE_CODE (to) == COMPONENT_REF
5043 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5044 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5045 /* The C++ memory model naturally applies to byte-aligned fields.
5046 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5047 BITSIZE are not byte-aligned, there is no need to limit the range
5048 we can access. This can occur with packed structures in Ada. */
5049 else if (maybe_gt (bitsize, 0)
5050 && multiple_p (bitsize, BITS_PER_UNIT)
5051 && multiple_p (bitpos, BITS_PER_UNIT))
5053 bitregion_start = bitpos;
5054 bitregion_end = bitpos + bitsize - 1;
5057 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5059 /* If the field has a mode, we want to access it in the
5060 field's mode, not the computed mode.
5061 If a MEM has VOIDmode (external with incomplete type),
5062 use BLKmode for it instead. */
5063 if (MEM_P (to_rtx))
5065 if (mode1 != VOIDmode)
5066 to_rtx = adjust_address (to_rtx, mode1, 0);
5067 else if (GET_MODE (to_rtx) == VOIDmode)
5068 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5071 if (offset != 0)
5073 machine_mode address_mode;
5074 rtx offset_rtx;
5076 if (!MEM_P (to_rtx))
5078 /* We can get constant negative offsets into arrays with broken
5079 user code. Translate this to a trap instead of ICEing. */
5080 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5081 expand_builtin_trap ();
5082 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5085 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5086 address_mode = get_address_mode (to_rtx);
5087 if (GET_MODE (offset_rtx) != address_mode)
5089 /* We cannot be sure that the RTL in offset_rtx is valid outside
5090 of a memory address context, so force it into a register
5091 before attempting to convert it to the desired mode. */
5092 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5093 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5096 /* If we have an expression in OFFSET_RTX and a non-zero
5097 byte offset in BITPOS, adding the byte offset before the
5098 OFFSET_RTX results in better intermediate code, which makes
5099 later rtl optimization passes perform better.
5101 We prefer intermediate code like this:
5103 r124:DI=r123:DI+0x18
5104 [r124:DI]=r121:DI
5106 ... instead of ...
5108 r124:DI=r123:DI+0x10
5109 [r124:DI+0x8]=r121:DI
5111 This is only done for aligned data values, as these can
5112 be expected to result in single move instructions. */
5113 poly_int64 bytepos;
5114 if (mode1 != VOIDmode
5115 && maybe_ne (bitpos, 0)
5116 && maybe_gt (bitsize, 0)
5117 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5118 && multiple_p (bitpos, bitsize)
5119 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5120 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5122 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5123 bitregion_start = 0;
5124 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5125 bitregion_end -= bitpos;
5126 bitpos = 0;
5129 to_rtx = offset_address (to_rtx, offset_rtx,
5130 highest_pow2_factor_for_target (to,
5131 offset));
5134 /* No action is needed if the target is not a memory and the field
5135 lies completely outside that target. This can occur if the source
5136 code contains an out-of-bounds access to a small array. */
5137 if (!MEM_P (to_rtx)
5138 && GET_MODE (to_rtx) != BLKmode
5139 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5141 expand_normal (from);
5142 result = NULL;
5144 /* Handle expand_expr of a complex value returning a CONCAT. */
5145 else if (GET_CODE (to_rtx) == CONCAT)
5147 machine_mode to_mode = GET_MODE (to_rtx);
5148 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5149 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5150 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5151 if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE (to_rtx)
5152 && COMPLEX_MODE_P (GET_MODE (to_rtx))
5153 && known_eq (bitpos, 0)
5154 && known_eq (bitsize, mode_bitsize))
5155 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5156 else if (known_eq (bitsize, inner_bitsize)
5157 && (known_eq (bitpos, 0)
5158 || known_eq (bitpos, inner_bitsize)))
5159 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5160 false, nontemporal, reversep);
5161 else if (known_le (bitpos + bitsize, inner_bitsize))
5162 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5163 bitregion_start, bitregion_end,
5164 mode1, from, get_alias_set (to),
5165 nontemporal, reversep);
5166 else if (known_ge (bitpos, inner_bitsize))
5167 result = store_field (XEXP (to_rtx, 1), bitsize,
5168 bitpos - inner_bitsize,
5169 bitregion_start, bitregion_end,
5170 mode1, from, get_alias_set (to),
5171 nontemporal, reversep);
5172 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5174 result = expand_normal (from);
5175 if (GET_CODE (result) == CONCAT)
5177 to_mode = GET_MODE_INNER (to_mode);
5178 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5179 rtx from_real
5180 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5181 from_mode, 0);
5182 rtx from_imag
5183 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5184 from_mode, 0);
5185 if (!from_real || !from_imag)
5186 goto concat_store_slow;
5187 emit_move_insn (XEXP (to_rtx, 0), from_real);
5188 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5190 else
5192 rtx from_rtx
5193 = simplify_gen_subreg (to_mode, result,
5194 TYPE_MODE (TREE_TYPE (from)), 0);
5195 if (from_rtx)
5197 emit_move_insn (XEXP (to_rtx, 0),
5198 read_complex_part (from_rtx, false));
5199 emit_move_insn (XEXP (to_rtx, 1),
5200 read_complex_part (from_rtx, true));
5202 else
5204 machine_mode to_mode
5205 = GET_MODE_INNER (GET_MODE (to_rtx));
5206 rtx from_real
5207 = simplify_gen_subreg (to_mode, result,
5208 TYPE_MODE (TREE_TYPE (from)),
5210 rtx from_imag
5211 = simplify_gen_subreg (to_mode, result,
5212 TYPE_MODE (TREE_TYPE (from)),
5213 GET_MODE_SIZE (to_mode));
5214 if (!from_real || !from_imag)
5215 goto concat_store_slow;
5216 emit_move_insn (XEXP (to_rtx, 0), from_real);
5217 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5221 else
5223 concat_store_slow:;
5224 rtx temp = assign_stack_temp (to_mode,
5225 GET_MODE_SIZE (GET_MODE (to_rtx)));
5226 write_complex_part (temp, XEXP (to_rtx, 0), false);
5227 write_complex_part (temp, XEXP (to_rtx, 1), true);
5228 result = store_field (temp, bitsize, bitpos,
5229 bitregion_start, bitregion_end,
5230 mode1, from, get_alias_set (to),
5231 nontemporal, reversep);
5232 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5233 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5236 else
5238 if (MEM_P (to_rtx))
5240 /* If the field is at offset zero, we could have been given the
5241 DECL_RTX of the parent struct. Don't munge it. */
5242 to_rtx = shallow_copy_rtx (to_rtx);
5243 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5244 if (volatilep)
5245 MEM_VOLATILE_P (to_rtx) = 1;
5248 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5249 bitregion_start, bitregion_end,
5250 mode1, to_rtx, to, from,
5251 reversep))
5252 result = NULL;
5253 else
5254 result = store_field (to_rtx, bitsize, bitpos,
5255 bitregion_start, bitregion_end,
5256 mode1, from, get_alias_set (to),
5257 nontemporal, reversep);
5260 if (result)
5261 preserve_temp_slots (result);
5262 pop_temp_slots ();
5263 return;
5266 /* If the rhs is a function call and its value is not an aggregate,
5267 call the function before we start to compute the lhs.
5268 This is needed for correct code for cases such as
5269 val = setjmp (buf) on machines where reference to val
5270 requires loading up part of an address in a separate insn.
5272 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5273 since it might be a promoted variable where the zero- or sign- extension
5274 needs to be done. Handling this in the normal way is safe because no
5275 computation is done before the call. The same is true for SSA names. */
5276 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5277 && COMPLETE_TYPE_P (TREE_TYPE (from))
5278 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5279 && ! (((VAR_P (to)
5280 || TREE_CODE (to) == PARM_DECL
5281 || TREE_CODE (to) == RESULT_DECL)
5282 && REG_P (DECL_RTL (to)))
5283 || TREE_CODE (to) == SSA_NAME))
5285 rtx value;
5286 rtx bounds;
5288 push_temp_slots ();
5289 value = expand_normal (from);
5291 /* Split value and bounds to store them separately. */
5292 chkp_split_slot (value, &value, &bounds);
5294 if (to_rtx == 0)
5295 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5297 /* Handle calls that return values in multiple non-contiguous locations.
5298 The Irix 6 ABI has examples of this. */
5299 if (GET_CODE (to_rtx) == PARALLEL)
5301 if (GET_CODE (value) == PARALLEL)
5302 emit_group_move (to_rtx, value);
5303 else
5304 emit_group_load (to_rtx, value, TREE_TYPE (from),
5305 int_size_in_bytes (TREE_TYPE (from)));
5307 else if (GET_CODE (value) == PARALLEL)
5308 emit_group_store (to_rtx, value, TREE_TYPE (from),
5309 int_size_in_bytes (TREE_TYPE (from)));
5310 else if (GET_MODE (to_rtx) == BLKmode)
5312 /* Handle calls that return BLKmode values in registers. */
5313 if (REG_P (value))
5314 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5315 else
5316 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5318 else
5320 if (POINTER_TYPE_P (TREE_TYPE (to)))
5321 value = convert_memory_address_addr_space
5322 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5323 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5325 emit_move_insn (to_rtx, value);
5328 /* Store bounds if required. */
5329 if (bounds
5330 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5332 gcc_assert (MEM_P (to_rtx));
5333 chkp_emit_bounds_store (bounds, value, to_rtx);
5336 preserve_temp_slots (to_rtx);
5337 pop_temp_slots ();
5338 return;
5341 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5342 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5344 /* Don't move directly into a return register. */
5345 if (TREE_CODE (to) == RESULT_DECL
5346 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5348 rtx temp;
5350 push_temp_slots ();
5352 /* If the source is itself a return value, it still is in a pseudo at
5353 this point so we can move it back to the return register directly. */
5354 if (REG_P (to_rtx)
5355 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5356 && TREE_CODE (from) != CALL_EXPR)
5357 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5358 else
5359 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5361 /* Handle calls that return values in multiple non-contiguous locations.
5362 The Irix 6 ABI has examples of this. */
5363 if (GET_CODE (to_rtx) == PARALLEL)
5365 if (GET_CODE (temp) == PARALLEL)
5366 emit_group_move (to_rtx, temp);
5367 else
5368 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5369 int_size_in_bytes (TREE_TYPE (from)));
5371 else if (temp)
5372 emit_move_insn (to_rtx, temp);
5374 preserve_temp_slots (to_rtx);
5375 pop_temp_slots ();
5376 return;
5379 /* In case we are returning the contents of an object which overlaps
5380 the place the value is being stored, use a safe function when copying
5381 a value through a pointer into a structure value return block. */
5382 if (TREE_CODE (to) == RESULT_DECL
5383 && TREE_CODE (from) == INDIRECT_REF
5384 && ADDR_SPACE_GENERIC_P
5385 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5386 && refs_may_alias_p (to, from)
5387 && cfun->returns_struct
5388 && !cfun->returns_pcc_struct)
5390 rtx from_rtx, size;
5392 push_temp_slots ();
5393 size = expr_size (from);
5394 from_rtx = expand_normal (from);
5396 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5398 preserve_temp_slots (to_rtx);
5399 pop_temp_slots ();
5400 return;
5403 /* Compute FROM and store the value in the rtx we got. */
5405 push_temp_slots ();
5406 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5407 preserve_temp_slots (result);
5408 pop_temp_slots ();
5409 return;
5412 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5413 succeeded, false otherwise. */
5415 bool
5416 emit_storent_insn (rtx to, rtx from)
5418 struct expand_operand ops[2];
5419 machine_mode mode = GET_MODE (to);
5420 enum insn_code code = optab_handler (storent_optab, mode);
5422 if (code == CODE_FOR_nothing)
5423 return false;
5425 create_fixed_operand (&ops[0], to);
5426 create_input_operand (&ops[1], from, mode);
5427 return maybe_expand_insn (code, 2, ops);
5430 /* Generate code for computing expression EXP,
5431 and storing the value into TARGET.
5433 If the mode is BLKmode then we may return TARGET itself.
5434 It turns out that in BLKmode it doesn't cause a problem.
5435 because C has no operators that could combine two different
5436 assignments into the same BLKmode object with different values
5437 with no sequence point. Will other languages need this to
5438 be more thorough?
5440 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5441 stack, and block moves may need to be treated specially.
5443 If NONTEMPORAL is true, try using a nontemporal store instruction.
5445 If REVERSE is true, the store is to be done in reverse order.
5447 If BTARGET is not NULL then computed bounds of EXP are
5448 associated with BTARGET. */
5451 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5452 bool nontemporal, bool reverse, tree btarget)
5454 rtx temp;
5455 rtx alt_rtl = NULL_RTX;
5456 location_t loc = curr_insn_location ();
5458 if (VOID_TYPE_P (TREE_TYPE (exp)))
5460 /* C++ can generate ?: expressions with a throw expression in one
5461 branch and an rvalue in the other. Here, we resolve attempts to
5462 store the throw expression's nonexistent result. */
5463 gcc_assert (!call_param_p);
5464 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5465 return NULL_RTX;
5467 if (TREE_CODE (exp) == COMPOUND_EXPR)
5469 /* Perform first part of compound expression, then assign from second
5470 part. */
5471 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5472 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5473 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5474 call_param_p, nontemporal, reverse,
5475 btarget);
5477 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5479 /* For conditional expression, get safe form of the target. Then
5480 test the condition, doing the appropriate assignment on either
5481 side. This avoids the creation of unnecessary temporaries.
5482 For non-BLKmode, it is more efficient not to do this. */
5484 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5486 do_pending_stack_adjust ();
5487 NO_DEFER_POP;
5488 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5489 profile_probability::uninitialized ());
5490 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5491 nontemporal, reverse, btarget);
5492 emit_jump_insn (targetm.gen_jump (lab2));
5493 emit_barrier ();
5494 emit_label (lab1);
5495 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5496 nontemporal, reverse, btarget);
5497 emit_label (lab2);
5498 OK_DEFER_POP;
5500 return NULL_RTX;
5502 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5503 /* If this is a scalar in a register that is stored in a wider mode
5504 than the declared mode, compute the result into its declared mode
5505 and then convert to the wider mode. Our value is the computed
5506 expression. */
5508 rtx inner_target = 0;
5509 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5510 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5512 /* We can do the conversion inside EXP, which will often result
5513 in some optimizations. Do the conversion in two steps: first
5514 change the signedness, if needed, then the extend. But don't
5515 do this if the type of EXP is a subtype of something else
5516 since then the conversion might involve more than just
5517 converting modes. */
5518 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5519 && TREE_TYPE (TREE_TYPE (exp)) == 0
5520 && GET_MODE_PRECISION (outer_mode)
5521 == TYPE_PRECISION (TREE_TYPE (exp)))
5523 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5524 TYPE_UNSIGNED (TREE_TYPE (exp))))
5526 /* Some types, e.g. Fortran's logical*4, won't have a signed
5527 version, so use the mode instead. */
5528 tree ntype
5529 = (signed_or_unsigned_type_for
5530 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5531 if (ntype == NULL)
5532 ntype = lang_hooks.types.type_for_mode
5533 (TYPE_MODE (TREE_TYPE (exp)),
5534 SUBREG_PROMOTED_SIGN (target));
5536 exp = fold_convert_loc (loc, ntype, exp);
5539 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5540 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5541 exp);
5543 inner_target = SUBREG_REG (target);
5546 temp = expand_expr (exp, inner_target, VOIDmode,
5547 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5549 /* Handle bounds returned by call. */
5550 if (TREE_CODE (exp) == CALL_EXPR)
5552 rtx bounds;
5553 chkp_split_slot (temp, &temp, &bounds);
5554 if (bounds && btarget)
5556 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5557 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5558 chkp_set_rtl_bounds (btarget, tmp);
5562 /* If TEMP is a VOIDmode constant, use convert_modes to make
5563 sure that we properly convert it. */
5564 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5566 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5567 temp, SUBREG_PROMOTED_SIGN (target));
5568 temp = convert_modes (inner_mode, outer_mode, temp,
5569 SUBREG_PROMOTED_SIGN (target));
5572 convert_move (SUBREG_REG (target), temp,
5573 SUBREG_PROMOTED_SIGN (target));
5575 return NULL_RTX;
5577 else if ((TREE_CODE (exp) == STRING_CST
5578 || (TREE_CODE (exp) == MEM_REF
5579 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5580 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5581 == STRING_CST
5582 && integer_zerop (TREE_OPERAND (exp, 1))))
5583 && !nontemporal && !call_param_p
5584 && MEM_P (target))
5586 /* Optimize initialization of an array with a STRING_CST. */
5587 HOST_WIDE_INT exp_len, str_copy_len;
5588 rtx dest_mem;
5589 tree str = TREE_CODE (exp) == STRING_CST
5590 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5592 exp_len = int_expr_size (exp);
5593 if (exp_len <= 0)
5594 goto normal_expr;
5596 if (TREE_STRING_LENGTH (str) <= 0)
5597 goto normal_expr;
5599 str_copy_len = strlen (TREE_STRING_POINTER (str));
5600 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5601 goto normal_expr;
5603 str_copy_len = TREE_STRING_LENGTH (str);
5604 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5605 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5607 str_copy_len += STORE_MAX_PIECES - 1;
5608 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5610 str_copy_len = MIN (str_copy_len, exp_len);
5611 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5612 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5613 MEM_ALIGN (target), false))
5614 goto normal_expr;
5616 dest_mem = target;
5618 dest_mem = store_by_pieces (dest_mem,
5619 str_copy_len, builtin_strncpy_read_str,
5620 CONST_CAST (char *,
5621 TREE_STRING_POINTER (str)),
5622 MEM_ALIGN (target), false,
5623 exp_len > str_copy_len ? 1 : 0);
5624 if (exp_len > str_copy_len)
5625 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5626 GEN_INT (exp_len - str_copy_len),
5627 BLOCK_OP_NORMAL);
5628 return NULL_RTX;
5630 else
5632 rtx tmp_target;
5634 normal_expr:
5635 /* If we want to use a nontemporal or a reverse order store, force the
5636 value into a register first. */
5637 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5638 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5639 (call_param_p
5640 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5641 &alt_rtl, false);
5643 /* Handle bounds returned by call. */
5644 if (TREE_CODE (exp) == CALL_EXPR)
5646 rtx bounds;
5647 chkp_split_slot (temp, &temp, &bounds);
5648 if (bounds && btarget)
5650 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5651 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5652 chkp_set_rtl_bounds (btarget, tmp);
5657 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5658 the same as that of TARGET, adjust the constant. This is needed, for
5659 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5660 only a word-sized value. */
5661 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5662 && TREE_CODE (exp) != ERROR_MARK
5663 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5665 if (GET_MODE_CLASS (GET_MODE (target))
5666 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5667 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5668 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5670 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5671 TYPE_MODE (TREE_TYPE (exp)), 0);
5672 if (t)
5673 temp = t;
5675 if (GET_MODE (temp) == VOIDmode)
5676 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5677 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5680 /* If value was not generated in the target, store it there.
5681 Convert the value to TARGET's type first if necessary and emit the
5682 pending incrementations that have been queued when expanding EXP.
5683 Note that we cannot emit the whole queue blindly because this will
5684 effectively disable the POST_INC optimization later.
5686 If TEMP and TARGET compare equal according to rtx_equal_p, but
5687 one or both of them are volatile memory refs, we have to distinguish
5688 two cases:
5689 - expand_expr has used TARGET. In this case, we must not generate
5690 another copy. This can be detected by TARGET being equal according
5691 to == .
5692 - expand_expr has not used TARGET - that means that the source just
5693 happens to have the same RTX form. Since temp will have been created
5694 by expand_expr, it will compare unequal according to == .
5695 We must generate a copy in this case, to reach the correct number
5696 of volatile memory references. */
5698 if ((! rtx_equal_p (temp, target)
5699 || (temp != target && (side_effects_p (temp)
5700 || side_effects_p (target))))
5701 && TREE_CODE (exp) != ERROR_MARK
5702 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5703 but TARGET is not valid memory reference, TEMP will differ
5704 from TARGET although it is really the same location. */
5705 && !(alt_rtl
5706 && rtx_equal_p (alt_rtl, target)
5707 && !side_effects_p (alt_rtl)
5708 && !side_effects_p (target))
5709 /* If there's nothing to copy, don't bother. Don't call
5710 expr_size unless necessary, because some front-ends (C++)
5711 expr_size-hook must not be given objects that are not
5712 supposed to be bit-copied or bit-initialized. */
5713 && expr_size (exp) != const0_rtx)
5715 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5717 if (GET_MODE (target) == BLKmode)
5719 /* Handle calls that return BLKmode values in registers. */
5720 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5721 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5722 else
5723 store_bit_field (target,
5724 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5725 0, 0, 0, GET_MODE (temp), temp, reverse);
5727 else
5728 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5731 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5733 /* Handle copying a string constant into an array. The string
5734 constant may be shorter than the array. So copy just the string's
5735 actual length, and clear the rest. First get the size of the data
5736 type of the string, which is actually the size of the target. */
5737 rtx size = expr_size (exp);
5739 if (CONST_INT_P (size)
5740 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5741 emit_block_move (target, temp, size,
5742 (call_param_p
5743 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5744 else
5746 machine_mode pointer_mode
5747 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5748 machine_mode address_mode = get_address_mode (target);
5750 /* Compute the size of the data to copy from the string. */
5751 tree copy_size
5752 = size_binop_loc (loc, MIN_EXPR,
5753 make_tree (sizetype, size),
5754 size_int (TREE_STRING_LENGTH (exp)));
5755 rtx copy_size_rtx
5756 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5757 (call_param_p
5758 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5759 rtx_code_label *label = 0;
5761 /* Copy that much. */
5762 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5763 TYPE_UNSIGNED (sizetype));
5764 emit_block_move (target, temp, copy_size_rtx,
5765 (call_param_p
5766 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5768 /* Figure out how much is left in TARGET that we have to clear.
5769 Do all calculations in pointer_mode. */
5770 if (CONST_INT_P (copy_size_rtx))
5772 size = plus_constant (address_mode, size,
5773 -INTVAL (copy_size_rtx));
5774 target = adjust_address (target, BLKmode,
5775 INTVAL (copy_size_rtx));
5777 else
5779 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5780 copy_size_rtx, NULL_RTX, 0,
5781 OPTAB_LIB_WIDEN);
5783 if (GET_MODE (copy_size_rtx) != address_mode)
5784 copy_size_rtx = convert_to_mode (address_mode,
5785 copy_size_rtx,
5786 TYPE_UNSIGNED (sizetype));
5788 target = offset_address (target, copy_size_rtx,
5789 highest_pow2_factor (copy_size));
5790 label = gen_label_rtx ();
5791 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5792 GET_MODE (size), 0, label);
5795 if (size != const0_rtx)
5796 clear_storage (target, size, BLOCK_OP_NORMAL);
5798 if (label)
5799 emit_label (label);
5802 /* Handle calls that return values in multiple non-contiguous locations.
5803 The Irix 6 ABI has examples of this. */
5804 else if (GET_CODE (target) == PARALLEL)
5806 if (GET_CODE (temp) == PARALLEL)
5807 emit_group_move (target, temp);
5808 else
5809 emit_group_load (target, temp, TREE_TYPE (exp),
5810 int_size_in_bytes (TREE_TYPE (exp)));
5812 else if (GET_CODE (temp) == PARALLEL)
5813 emit_group_store (target, temp, TREE_TYPE (exp),
5814 int_size_in_bytes (TREE_TYPE (exp)));
5815 else if (GET_MODE (temp) == BLKmode)
5816 emit_block_move (target, temp, expr_size (exp),
5817 (call_param_p
5818 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5819 /* If we emit a nontemporal store, there is nothing else to do. */
5820 else if (nontemporal && emit_storent_insn (target, temp))
5822 else
5824 if (reverse)
5825 temp = flip_storage_order (GET_MODE (target), temp);
5826 temp = force_operand (temp, target);
5827 if (temp != target)
5828 emit_move_insn (target, temp);
5832 return NULL_RTX;
5835 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5837 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5838 bool reverse)
5840 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5841 reverse, NULL);
5844 /* Return true if field F of structure TYPE is a flexible array. */
5846 static bool
5847 flexible_array_member_p (const_tree f, const_tree type)
5849 const_tree tf;
5851 tf = TREE_TYPE (f);
5852 return (DECL_CHAIN (f) == NULL
5853 && TREE_CODE (tf) == ARRAY_TYPE
5854 && TYPE_DOMAIN (tf)
5855 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5856 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5857 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5858 && int_size_in_bytes (type) >= 0);
5861 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5862 must have in order for it to completely initialize a value of type TYPE.
5863 Return -1 if the number isn't known.
5865 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5867 static HOST_WIDE_INT
5868 count_type_elements (const_tree type, bool for_ctor_p)
5870 switch (TREE_CODE (type))
5872 case ARRAY_TYPE:
5874 tree nelts;
5876 nelts = array_type_nelts (type);
5877 if (nelts && tree_fits_uhwi_p (nelts))
5879 unsigned HOST_WIDE_INT n;
5881 n = tree_to_uhwi (nelts) + 1;
5882 if (n == 0 || for_ctor_p)
5883 return n;
5884 else
5885 return n * count_type_elements (TREE_TYPE (type), false);
5887 return for_ctor_p ? -1 : 1;
5890 case RECORD_TYPE:
5892 unsigned HOST_WIDE_INT n;
5893 tree f;
5895 n = 0;
5896 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5897 if (TREE_CODE (f) == FIELD_DECL)
5899 if (!for_ctor_p)
5900 n += count_type_elements (TREE_TYPE (f), false);
5901 else if (!flexible_array_member_p (f, type))
5902 /* Don't count flexible arrays, which are not supposed
5903 to be initialized. */
5904 n += 1;
5907 return n;
5910 case UNION_TYPE:
5911 case QUAL_UNION_TYPE:
5913 tree f;
5914 HOST_WIDE_INT n, m;
5916 gcc_assert (!for_ctor_p);
5917 /* Estimate the number of scalars in each field and pick the
5918 maximum. Other estimates would do instead; the idea is simply
5919 to make sure that the estimate is not sensitive to the ordering
5920 of the fields. */
5921 n = 1;
5922 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5923 if (TREE_CODE (f) == FIELD_DECL)
5925 m = count_type_elements (TREE_TYPE (f), false);
5926 /* If the field doesn't span the whole union, add an extra
5927 scalar for the rest. */
5928 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5929 TYPE_SIZE (type)) != 1)
5930 m++;
5931 if (n < m)
5932 n = m;
5934 return n;
5937 case COMPLEX_TYPE:
5938 return 2;
5940 case VECTOR_TYPE:
5942 unsigned HOST_WIDE_INT nelts;
5943 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
5944 return nelts;
5945 else
5946 return -1;
5949 case INTEGER_TYPE:
5950 case REAL_TYPE:
5951 case FIXED_POINT_TYPE:
5952 case ENUMERAL_TYPE:
5953 case BOOLEAN_TYPE:
5954 case POINTER_TYPE:
5955 case OFFSET_TYPE:
5956 case REFERENCE_TYPE:
5957 case NULLPTR_TYPE:
5958 return 1;
5960 case ERROR_MARK:
5961 return 0;
5963 case VOID_TYPE:
5964 case METHOD_TYPE:
5965 case FUNCTION_TYPE:
5966 case LANG_TYPE:
5967 default:
5968 gcc_unreachable ();
5972 /* Helper for categorize_ctor_elements. Identical interface. */
5974 static bool
5975 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5976 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5978 unsigned HOST_WIDE_INT idx;
5979 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5980 tree value, purpose, elt_type;
5982 /* Whether CTOR is a valid constant initializer, in accordance with what
5983 initializer_constant_valid_p does. If inferred from the constructor
5984 elements, true until proven otherwise. */
5985 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5986 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5988 nz_elts = 0;
5989 init_elts = 0;
5990 num_fields = 0;
5991 elt_type = NULL_TREE;
5993 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5995 HOST_WIDE_INT mult = 1;
5997 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5999 tree lo_index = TREE_OPERAND (purpose, 0);
6000 tree hi_index = TREE_OPERAND (purpose, 1);
6002 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6003 mult = (tree_to_uhwi (hi_index)
6004 - tree_to_uhwi (lo_index) + 1);
6006 num_fields += mult;
6007 elt_type = TREE_TYPE (value);
6009 switch (TREE_CODE (value))
6011 case CONSTRUCTOR:
6013 HOST_WIDE_INT nz = 0, ic = 0;
6015 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
6016 p_complete);
6018 nz_elts += mult * nz;
6019 init_elts += mult * ic;
6021 if (const_from_elts_p && const_p)
6022 const_p = const_elt_p;
6024 break;
6026 case INTEGER_CST:
6027 case REAL_CST:
6028 case FIXED_CST:
6029 if (!initializer_zerop (value))
6030 nz_elts += mult;
6031 init_elts += mult;
6032 break;
6034 case STRING_CST:
6035 nz_elts += mult * TREE_STRING_LENGTH (value);
6036 init_elts += mult * TREE_STRING_LENGTH (value);
6037 break;
6039 case COMPLEX_CST:
6040 if (!initializer_zerop (TREE_REALPART (value)))
6041 nz_elts += mult;
6042 if (!initializer_zerop (TREE_IMAGPART (value)))
6043 nz_elts += mult;
6044 init_elts += mult;
6045 break;
6047 case VECTOR_CST:
6049 /* We can only construct constant-length vectors using
6050 CONSTRUCTOR. */
6051 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6052 for (unsigned int i = 0; i < nunits; ++i)
6054 tree v = VECTOR_CST_ELT (value, i);
6055 if (!initializer_zerop (v))
6056 nz_elts += mult;
6057 init_elts += mult;
6060 break;
6062 default:
6064 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6065 nz_elts += mult * tc;
6066 init_elts += mult * tc;
6068 if (const_from_elts_p && const_p)
6069 const_p
6070 = initializer_constant_valid_p (value,
6071 elt_type,
6072 TYPE_REVERSE_STORAGE_ORDER
6073 (TREE_TYPE (ctor)))
6074 != NULL_TREE;
6076 break;
6080 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6081 num_fields, elt_type))
6082 *p_complete = false;
6084 *p_nz_elts += nz_elts;
6085 *p_init_elts += init_elts;
6087 return const_p;
6090 /* Examine CTOR to discover:
6091 * how many scalar fields are set to nonzero values,
6092 and place it in *P_NZ_ELTS;
6093 * how many scalar fields in total are in CTOR,
6094 and place it in *P_ELT_COUNT.
6095 * whether the constructor is complete -- in the sense that every
6096 meaningful byte is explicitly given a value --
6097 and place it in *P_COMPLETE.
6099 Return whether or not CTOR is a valid static constant initializer, the same
6100 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6102 bool
6103 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6104 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6106 *p_nz_elts = 0;
6107 *p_init_elts = 0;
6108 *p_complete = true;
6110 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6113 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6114 of which had type LAST_TYPE. Each element was itself a complete
6115 initializer, in the sense that every meaningful byte was explicitly
6116 given a value. Return true if the same is true for the constructor
6117 as a whole. */
6119 bool
6120 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6121 const_tree last_type)
6123 if (TREE_CODE (type) == UNION_TYPE
6124 || TREE_CODE (type) == QUAL_UNION_TYPE)
6126 if (num_elts == 0)
6127 return false;
6129 gcc_assert (num_elts == 1 && last_type);
6131 /* ??? We could look at each element of the union, and find the
6132 largest element. Which would avoid comparing the size of the
6133 initialized element against any tail padding in the union.
6134 Doesn't seem worth the effort... */
6135 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6138 return count_type_elements (type, true) == num_elts;
6141 /* Return 1 if EXP contains mostly (3/4) zeros. */
6143 static int
6144 mostly_zeros_p (const_tree exp)
6146 if (TREE_CODE (exp) == CONSTRUCTOR)
6148 HOST_WIDE_INT nz_elts, init_elts;
6149 bool complete_p;
6151 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6152 return !complete_p || nz_elts < init_elts / 4;
6155 return initializer_zerop (exp);
6158 /* Return 1 if EXP contains all zeros. */
6160 static int
6161 all_zeros_p (const_tree exp)
6163 if (TREE_CODE (exp) == CONSTRUCTOR)
6165 HOST_WIDE_INT nz_elts, init_elts;
6166 bool complete_p;
6168 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6169 return nz_elts == 0;
6172 return initializer_zerop (exp);
6175 /* Helper function for store_constructor.
6176 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6177 CLEARED is as for store_constructor.
6178 ALIAS_SET is the alias set to use for any stores.
6179 If REVERSE is true, the store is to be done in reverse order.
6181 This provides a recursive shortcut back to store_constructor when it isn't
6182 necessary to go through store_field. This is so that we can pass through
6183 the cleared field to let store_constructor know that we may not have to
6184 clear a substructure if the outer structure has already been cleared. */
6186 static void
6187 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6188 poly_uint64 bitregion_start,
6189 poly_uint64 bitregion_end,
6190 machine_mode mode,
6191 tree exp, int cleared,
6192 alias_set_type alias_set, bool reverse)
6194 poly_int64 bytepos;
6195 poly_uint64 bytesize;
6196 if (TREE_CODE (exp) == CONSTRUCTOR
6197 /* We can only call store_constructor recursively if the size and
6198 bit position are on a byte boundary. */
6199 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6200 && maybe_ne (bitsize, 0U)
6201 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6202 /* If we have a nonzero bitpos for a register target, then we just
6203 let store_field do the bitfield handling. This is unlikely to
6204 generate unnecessary clear instructions anyways. */
6205 && (known_eq (bitpos, 0) || MEM_P (target)))
6207 if (MEM_P (target))
6209 machine_mode target_mode = GET_MODE (target);
6210 if (target_mode != BLKmode
6211 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6212 target_mode = BLKmode;
6213 target = adjust_address (target, target_mode, bytepos);
6217 /* Update the alias set, if required. */
6218 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6219 && MEM_ALIAS_SET (target) != 0)
6221 target = copy_rtx (target);
6222 set_mem_alias_set (target, alias_set);
6225 store_constructor (exp, target, cleared, bytesize, reverse);
6227 else
6228 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6229 exp, alias_set, false, reverse);
6233 /* Returns the number of FIELD_DECLs in TYPE. */
6235 static int
6236 fields_length (const_tree type)
6238 tree t = TYPE_FIELDS (type);
6239 int count = 0;
6241 for (; t; t = DECL_CHAIN (t))
6242 if (TREE_CODE (t) == FIELD_DECL)
6243 ++count;
6245 return count;
6249 /* Store the value of constructor EXP into the rtx TARGET.
6250 TARGET is either a REG or a MEM; we know it cannot conflict, since
6251 safe_from_p has been called.
6252 CLEARED is true if TARGET is known to have been zero'd.
6253 SIZE is the number of bytes of TARGET we are allowed to modify: this
6254 may not be the same as the size of EXP if we are assigning to a field
6255 which has been packed to exclude padding bits.
6256 If REVERSE is true, the store is to be done in reverse order. */
6258 static void
6259 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6260 bool reverse)
6262 tree type = TREE_TYPE (exp);
6263 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6264 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6266 switch (TREE_CODE (type))
6268 case RECORD_TYPE:
6269 case UNION_TYPE:
6270 case QUAL_UNION_TYPE:
6272 unsigned HOST_WIDE_INT idx;
6273 tree field, value;
6275 /* The storage order is specified for every aggregate type. */
6276 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6278 /* If size is zero or the target is already cleared, do nothing. */
6279 if (known_eq (size, 0) || cleared)
6280 cleared = 1;
6281 /* We either clear the aggregate or indicate the value is dead. */
6282 else if ((TREE_CODE (type) == UNION_TYPE
6283 || TREE_CODE (type) == QUAL_UNION_TYPE)
6284 && ! CONSTRUCTOR_ELTS (exp))
6285 /* If the constructor is empty, clear the union. */
6287 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6288 cleared = 1;
6291 /* If we are building a static constructor into a register,
6292 set the initial value as zero so we can fold the value into
6293 a constant. But if more than one register is involved,
6294 this probably loses. */
6295 else if (REG_P (target) && TREE_STATIC (exp)
6296 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6297 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6299 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6300 cleared = 1;
6303 /* If the constructor has fewer fields than the structure or
6304 if we are initializing the structure to mostly zeros, clear
6305 the whole structure first. Don't do this if TARGET is a
6306 register whose mode size isn't equal to SIZE since
6307 clear_storage can't handle this case. */
6308 else if (known_size_p (size)
6309 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6310 || mostly_zeros_p (exp))
6311 && (!REG_P (target)
6312 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6314 clear_storage (target, gen_int_mode (size, Pmode),
6315 BLOCK_OP_NORMAL);
6316 cleared = 1;
6319 if (REG_P (target) && !cleared)
6320 emit_clobber (target);
6322 /* Store each element of the constructor into the
6323 corresponding field of TARGET. */
6324 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6326 machine_mode mode;
6327 HOST_WIDE_INT bitsize;
6328 HOST_WIDE_INT bitpos = 0;
6329 tree offset;
6330 rtx to_rtx = target;
6332 /* Just ignore missing fields. We cleared the whole
6333 structure, above, if any fields are missing. */
6334 if (field == 0)
6335 continue;
6337 if (cleared && initializer_zerop (value))
6338 continue;
6340 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6341 bitsize = tree_to_uhwi (DECL_SIZE (field));
6342 else
6343 gcc_unreachable ();
6345 mode = DECL_MODE (field);
6346 if (DECL_BIT_FIELD (field))
6347 mode = VOIDmode;
6349 offset = DECL_FIELD_OFFSET (field);
6350 if (tree_fits_shwi_p (offset)
6351 && tree_fits_shwi_p (bit_position (field)))
6353 bitpos = int_bit_position (field);
6354 offset = NULL_TREE;
6356 else
6357 gcc_unreachable ();
6359 /* If this initializes a field that is smaller than a
6360 word, at the start of a word, try to widen it to a full
6361 word. This special case allows us to output C++ member
6362 function initializations in a form that the optimizers
6363 can understand. */
6364 if (WORD_REGISTER_OPERATIONS
6365 && REG_P (target)
6366 && bitsize < BITS_PER_WORD
6367 && bitpos % BITS_PER_WORD == 0
6368 && GET_MODE_CLASS (mode) == MODE_INT
6369 && TREE_CODE (value) == INTEGER_CST
6370 && exp_size >= 0
6371 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6373 tree type = TREE_TYPE (value);
6375 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6377 type = lang_hooks.types.type_for_mode
6378 (word_mode, TYPE_UNSIGNED (type));
6379 value = fold_convert (type, value);
6380 /* Make sure the bits beyond the original bitsize are zero
6381 so that we can correctly avoid extra zeroing stores in
6382 later constructor elements. */
6383 tree bitsize_mask
6384 = wide_int_to_tree (type, wi::mask (bitsize, false,
6385 BITS_PER_WORD));
6386 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6389 if (BYTES_BIG_ENDIAN)
6390 value
6391 = fold_build2 (LSHIFT_EXPR, type, value,
6392 build_int_cst (type,
6393 BITS_PER_WORD - bitsize));
6394 bitsize = BITS_PER_WORD;
6395 mode = word_mode;
6398 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6399 && DECL_NONADDRESSABLE_P (field))
6401 to_rtx = copy_rtx (to_rtx);
6402 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6405 store_constructor_field (to_rtx, bitsize, bitpos,
6406 0, bitregion_end, mode,
6407 value, cleared,
6408 get_alias_set (TREE_TYPE (field)),
6409 reverse);
6411 break;
6413 case ARRAY_TYPE:
6415 tree value, index;
6416 unsigned HOST_WIDE_INT i;
6417 int need_to_clear;
6418 tree domain;
6419 tree elttype = TREE_TYPE (type);
6420 int const_bounds_p;
6421 HOST_WIDE_INT minelt = 0;
6422 HOST_WIDE_INT maxelt = 0;
6424 /* The storage order is specified for every aggregate type. */
6425 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6427 domain = TYPE_DOMAIN (type);
6428 const_bounds_p = (TYPE_MIN_VALUE (domain)
6429 && TYPE_MAX_VALUE (domain)
6430 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6431 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6433 /* If we have constant bounds for the range of the type, get them. */
6434 if (const_bounds_p)
6436 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6437 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6440 /* If the constructor has fewer elements than the array, clear
6441 the whole array first. Similarly if this is static
6442 constructor of a non-BLKmode object. */
6443 if (cleared)
6444 need_to_clear = 0;
6445 else if (REG_P (target) && TREE_STATIC (exp))
6446 need_to_clear = 1;
6447 else
6449 unsigned HOST_WIDE_INT idx;
6450 tree index, value;
6451 HOST_WIDE_INT count = 0, zero_count = 0;
6452 need_to_clear = ! const_bounds_p;
6454 /* This loop is a more accurate version of the loop in
6455 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6456 is also needed to check for missing elements. */
6457 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6459 HOST_WIDE_INT this_node_count;
6461 if (need_to_clear)
6462 break;
6464 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6466 tree lo_index = TREE_OPERAND (index, 0);
6467 tree hi_index = TREE_OPERAND (index, 1);
6469 if (! tree_fits_uhwi_p (lo_index)
6470 || ! tree_fits_uhwi_p (hi_index))
6472 need_to_clear = 1;
6473 break;
6476 this_node_count = (tree_to_uhwi (hi_index)
6477 - tree_to_uhwi (lo_index) + 1);
6479 else
6480 this_node_count = 1;
6482 count += this_node_count;
6483 if (mostly_zeros_p (value))
6484 zero_count += this_node_count;
6487 /* Clear the entire array first if there are any missing
6488 elements, or if the incidence of zero elements is >=
6489 75%. */
6490 if (! need_to_clear
6491 && (count < maxelt - minelt + 1
6492 || 4 * zero_count >= 3 * count))
6493 need_to_clear = 1;
6496 if (need_to_clear && maybe_gt (size, 0))
6498 if (REG_P (target))
6499 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6500 else
6501 clear_storage (target, gen_int_mode (size, Pmode),
6502 BLOCK_OP_NORMAL);
6503 cleared = 1;
6506 if (!cleared && REG_P (target))
6507 /* Inform later passes that the old value is dead. */
6508 emit_clobber (target);
6510 /* Store each element of the constructor into the
6511 corresponding element of TARGET, determined by counting the
6512 elements. */
6513 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6515 machine_mode mode;
6516 poly_int64 bitsize;
6517 HOST_WIDE_INT bitpos;
6518 rtx xtarget = target;
6520 if (cleared && initializer_zerop (value))
6521 continue;
6523 mode = TYPE_MODE (elttype);
6524 if (mode == BLKmode)
6525 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6526 ? tree_to_uhwi (TYPE_SIZE (elttype))
6527 : -1);
6528 else
6529 bitsize = GET_MODE_BITSIZE (mode);
6531 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6533 tree lo_index = TREE_OPERAND (index, 0);
6534 tree hi_index = TREE_OPERAND (index, 1);
6535 rtx index_r, pos_rtx;
6536 HOST_WIDE_INT lo, hi, count;
6537 tree position;
6539 /* If the range is constant and "small", unroll the loop. */
6540 if (const_bounds_p
6541 && tree_fits_shwi_p (lo_index)
6542 && tree_fits_shwi_p (hi_index)
6543 && (lo = tree_to_shwi (lo_index),
6544 hi = tree_to_shwi (hi_index),
6545 count = hi - lo + 1,
6546 (!MEM_P (target)
6547 || count <= 2
6548 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6549 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6550 <= 40 * 8)))))
6552 lo -= minelt; hi -= minelt;
6553 for (; lo <= hi; lo++)
6555 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6557 if (MEM_P (target)
6558 && !MEM_KEEP_ALIAS_SET_P (target)
6559 && TREE_CODE (type) == ARRAY_TYPE
6560 && TYPE_NONALIASED_COMPONENT (type))
6562 target = copy_rtx (target);
6563 MEM_KEEP_ALIAS_SET_P (target) = 1;
6566 store_constructor_field
6567 (target, bitsize, bitpos, 0, bitregion_end,
6568 mode, value, cleared,
6569 get_alias_set (elttype), reverse);
6572 else
6574 rtx_code_label *loop_start = gen_label_rtx ();
6575 rtx_code_label *loop_end = gen_label_rtx ();
6576 tree exit_cond;
6578 expand_normal (hi_index);
6580 index = build_decl (EXPR_LOCATION (exp),
6581 VAR_DECL, NULL_TREE, domain);
6582 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6583 SET_DECL_RTL (index, index_r);
6584 store_expr (lo_index, index_r, 0, false, reverse);
6586 /* Build the head of the loop. */
6587 do_pending_stack_adjust ();
6588 emit_label (loop_start);
6590 /* Assign value to element index. */
6591 position =
6592 fold_convert (ssizetype,
6593 fold_build2 (MINUS_EXPR,
6594 TREE_TYPE (index),
6595 index,
6596 TYPE_MIN_VALUE (domain)));
6598 position =
6599 size_binop (MULT_EXPR, position,
6600 fold_convert (ssizetype,
6601 TYPE_SIZE_UNIT (elttype)));
6603 pos_rtx = expand_normal (position);
6604 xtarget = offset_address (target, pos_rtx,
6605 highest_pow2_factor (position));
6606 xtarget = adjust_address (xtarget, mode, 0);
6607 if (TREE_CODE (value) == CONSTRUCTOR)
6608 store_constructor (value, xtarget, cleared,
6609 exact_div (bitsize, BITS_PER_UNIT),
6610 reverse);
6611 else
6612 store_expr (value, xtarget, 0, false, reverse);
6614 /* Generate a conditional jump to exit the loop. */
6615 exit_cond = build2 (LT_EXPR, integer_type_node,
6616 index, hi_index);
6617 jumpif (exit_cond, loop_end,
6618 profile_probability::uninitialized ());
6620 /* Update the loop counter, and jump to the head of
6621 the loop. */
6622 expand_assignment (index,
6623 build2 (PLUS_EXPR, TREE_TYPE (index),
6624 index, integer_one_node),
6625 false);
6627 emit_jump (loop_start);
6629 /* Build the end of the loop. */
6630 emit_label (loop_end);
6633 else if ((index != 0 && ! tree_fits_shwi_p (index))
6634 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6636 tree position;
6638 if (index == 0)
6639 index = ssize_int (1);
6641 if (minelt)
6642 index = fold_convert (ssizetype,
6643 fold_build2 (MINUS_EXPR,
6644 TREE_TYPE (index),
6645 index,
6646 TYPE_MIN_VALUE (domain)));
6648 position =
6649 size_binop (MULT_EXPR, index,
6650 fold_convert (ssizetype,
6651 TYPE_SIZE_UNIT (elttype)));
6652 xtarget = offset_address (target,
6653 expand_normal (position),
6654 highest_pow2_factor (position));
6655 xtarget = adjust_address (xtarget, mode, 0);
6656 store_expr (value, xtarget, 0, false, reverse);
6658 else
6660 if (index != 0)
6661 bitpos = ((tree_to_shwi (index) - minelt)
6662 * tree_to_uhwi (TYPE_SIZE (elttype)));
6663 else
6664 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6666 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6667 && TREE_CODE (type) == ARRAY_TYPE
6668 && TYPE_NONALIASED_COMPONENT (type))
6670 target = copy_rtx (target);
6671 MEM_KEEP_ALIAS_SET_P (target) = 1;
6673 store_constructor_field (target, bitsize, bitpos, 0,
6674 bitregion_end, mode, value,
6675 cleared, get_alias_set (elttype),
6676 reverse);
6679 break;
6682 case VECTOR_TYPE:
6684 unsigned HOST_WIDE_INT idx;
6685 constructor_elt *ce;
6686 int i;
6687 int need_to_clear;
6688 insn_code icode = CODE_FOR_nothing;
6689 tree elt;
6690 tree elttype = TREE_TYPE (type);
6691 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6692 machine_mode eltmode = TYPE_MODE (elttype);
6693 HOST_WIDE_INT bitsize;
6694 HOST_WIDE_INT bitpos;
6695 rtvec vector = NULL;
6696 poly_uint64 n_elts;
6697 unsigned HOST_WIDE_INT const_n_elts;
6698 alias_set_type alias;
6699 bool vec_vec_init_p = false;
6700 machine_mode mode = GET_MODE (target);
6702 gcc_assert (eltmode != BLKmode);
6704 /* Try using vec_duplicate_optab for uniform vectors. */
6705 if (!TREE_SIDE_EFFECTS (exp)
6706 && VECTOR_MODE_P (mode)
6707 && eltmode == GET_MODE_INNER (mode)
6708 && ((icode = optab_handler (vec_duplicate_optab, mode))
6709 != CODE_FOR_nothing)
6710 && (elt = uniform_vector_p (exp)))
6712 struct expand_operand ops[2];
6713 create_output_operand (&ops[0], target, mode);
6714 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6715 expand_insn (icode, 2, ops);
6716 if (!rtx_equal_p (target, ops[0].value))
6717 emit_move_insn (target, ops[0].value);
6718 break;
6721 n_elts = TYPE_VECTOR_SUBPARTS (type);
6722 if (REG_P (target)
6723 && VECTOR_MODE_P (mode)
6724 && n_elts.is_constant (&const_n_elts))
6726 machine_mode emode = eltmode;
6728 if (CONSTRUCTOR_NELTS (exp)
6729 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6730 == VECTOR_TYPE))
6732 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6733 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6734 * TYPE_VECTOR_SUBPARTS (etype),
6735 n_elts));
6736 emode = TYPE_MODE (etype);
6738 icode = convert_optab_handler (vec_init_optab, mode, emode);
6739 if (icode != CODE_FOR_nothing)
6741 unsigned int i, n = const_n_elts;
6743 if (emode != eltmode)
6745 n = CONSTRUCTOR_NELTS (exp);
6746 vec_vec_init_p = true;
6748 vector = rtvec_alloc (n);
6749 for (i = 0; i < n; i++)
6750 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6754 /* If the constructor has fewer elements than the vector,
6755 clear the whole array first. Similarly if this is static
6756 constructor of a non-BLKmode object. */
6757 if (cleared)
6758 need_to_clear = 0;
6759 else if (REG_P (target) && TREE_STATIC (exp))
6760 need_to_clear = 1;
6761 else
6763 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6764 tree value;
6766 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6768 tree sz = TYPE_SIZE (TREE_TYPE (value));
6769 int n_elts_here
6770 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6771 TYPE_SIZE (elttype)));
6773 count += n_elts_here;
6774 if (mostly_zeros_p (value))
6775 zero_count += n_elts_here;
6778 /* Clear the entire vector first if there are any missing elements,
6779 or if the incidence of zero elements is >= 75%. */
6780 need_to_clear = (maybe_lt (count, n_elts)
6781 || 4 * zero_count >= 3 * count);
6784 if (need_to_clear && maybe_gt (size, 0) && !vector)
6786 if (REG_P (target))
6787 emit_move_insn (target, CONST0_RTX (mode));
6788 else
6789 clear_storage (target, gen_int_mode (size, Pmode),
6790 BLOCK_OP_NORMAL);
6791 cleared = 1;
6794 /* Inform later passes that the old value is dead. */
6795 if (!cleared && !vector && REG_P (target))
6796 emit_move_insn (target, CONST0_RTX (mode));
6798 if (MEM_P (target))
6799 alias = MEM_ALIAS_SET (target);
6800 else
6801 alias = get_alias_set (elttype);
6803 /* Store each element of the constructor into the corresponding
6804 element of TARGET, determined by counting the elements. */
6805 for (idx = 0, i = 0;
6806 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6807 idx++, i += bitsize / elt_size)
6809 HOST_WIDE_INT eltpos;
6810 tree value = ce->value;
6812 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6813 if (cleared && initializer_zerop (value))
6814 continue;
6816 if (ce->index)
6817 eltpos = tree_to_uhwi (ce->index);
6818 else
6819 eltpos = i;
6821 if (vector)
6823 if (vec_vec_init_p)
6825 gcc_assert (ce->index == NULL_TREE);
6826 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6827 eltpos = idx;
6829 else
6830 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6831 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6833 else
6835 machine_mode value_mode
6836 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6837 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6838 bitpos = eltpos * elt_size;
6839 store_constructor_field (target, bitsize, bitpos, 0,
6840 bitregion_end, value_mode,
6841 value, cleared, alias, reverse);
6845 if (vector)
6846 emit_insn (GEN_FCN (icode) (target,
6847 gen_rtx_PARALLEL (mode, vector)));
6848 break;
6851 default:
6852 gcc_unreachable ();
6856 /* Store the value of EXP (an expression tree)
6857 into a subfield of TARGET which has mode MODE and occupies
6858 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6859 If MODE is VOIDmode, it means that we are storing into a bit-field.
6861 BITREGION_START is bitpos of the first bitfield in this region.
6862 BITREGION_END is the bitpos of the ending bitfield in this region.
6863 These two fields are 0, if the C++ memory model does not apply,
6864 or we are not interested in keeping track of bitfield regions.
6866 Always return const0_rtx unless we have something particular to
6867 return.
6869 ALIAS_SET is the alias set for the destination. This value will
6870 (in general) be different from that for TARGET, since TARGET is a
6871 reference to the containing structure.
6873 If NONTEMPORAL is true, try generating a nontemporal store.
6875 If REVERSE is true, the store is to be done in reverse order. */
6877 static rtx
6878 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
6879 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
6880 machine_mode mode, tree exp,
6881 alias_set_type alias_set, bool nontemporal, bool reverse)
6883 if (TREE_CODE (exp) == ERROR_MARK)
6884 return const0_rtx;
6886 /* If we have nothing to store, do nothing unless the expression has
6887 side-effects. Don't do that for zero sized addressable lhs of
6888 calls. */
6889 if (known_eq (bitsize, 0)
6890 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6891 || TREE_CODE (exp) != CALL_EXPR))
6892 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6894 if (GET_CODE (target) == CONCAT)
6896 /* We're storing into a struct containing a single __complex. */
6898 gcc_assert (known_eq (bitpos, 0));
6899 return store_expr (exp, target, 0, nontemporal, reverse);
6902 /* If the structure is in a register or if the component
6903 is a bit field, we cannot use addressing to access it.
6904 Use bit-field techniques or SUBREG to store in it. */
6906 poly_int64 decl_bitsize;
6907 if (mode == VOIDmode
6908 || (mode != BLKmode && ! direct_store[(int) mode]
6909 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6910 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6911 || REG_P (target)
6912 || GET_CODE (target) == SUBREG
6913 /* If the field isn't aligned enough to store as an ordinary memref,
6914 store it as a bit field. */
6915 || (mode != BLKmode
6916 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6917 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
6918 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6919 || !multiple_p (bitpos, BITS_PER_UNIT)))
6920 || (known_size_p (bitsize)
6921 && mode != BLKmode
6922 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
6923 /* If the RHS and field are a constant size and the size of the
6924 RHS isn't the same size as the bitfield, we must use bitfield
6925 operations. */
6926 || (known_size_p (bitsize)
6927 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
6928 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
6929 bitsize)
6930 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6931 we will handle specially below. */
6932 && !(TREE_CODE (exp) == CONSTRUCTOR
6933 && multiple_p (bitsize, BITS_PER_UNIT))
6934 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6935 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6936 includes some extra padding. store_expr / expand_expr will in
6937 that case call get_inner_reference that will have the bitsize
6938 we check here and thus the block move will not clobber the
6939 padding that shouldn't be clobbered. In the future we could
6940 replace the TREE_ADDRESSABLE check with a check that
6941 get_base_address needs to live in memory. */
6942 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6943 || TREE_CODE (exp) != COMPONENT_REF
6944 || !multiple_p (bitsize, BITS_PER_UNIT)
6945 || !multiple_p (bitpos, BITS_PER_UNIT)
6946 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
6947 &decl_bitsize)
6948 || maybe_ne (decl_bitsize, bitsize)))
6949 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6950 decl we must use bitfield operations. */
6951 || (known_size_p (bitsize)
6952 && TREE_CODE (exp) == MEM_REF
6953 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6954 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6955 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6956 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6958 rtx temp;
6959 gimple *nop_def;
6961 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6962 implies a mask operation. If the precision is the same size as
6963 the field we're storing into, that mask is redundant. This is
6964 particularly common with bit field assignments generated by the
6965 C front end. */
6966 nop_def = get_def_for_expr (exp, NOP_EXPR);
6967 if (nop_def)
6969 tree type = TREE_TYPE (exp);
6970 if (INTEGRAL_TYPE_P (type)
6971 && maybe_ne (TYPE_PRECISION (type),
6972 GET_MODE_BITSIZE (TYPE_MODE (type)))
6973 && known_eq (bitsize, TYPE_PRECISION (type)))
6975 tree op = gimple_assign_rhs1 (nop_def);
6976 type = TREE_TYPE (op);
6977 if (INTEGRAL_TYPE_P (type)
6978 && known_ge (TYPE_PRECISION (type), bitsize))
6979 exp = op;
6983 temp = expand_normal (exp);
6985 /* We don't support variable-sized BLKmode bitfields, since our
6986 handling of BLKmode is bound up with the ability to break
6987 things into words. */
6988 gcc_assert (mode != BLKmode || bitsize.is_constant ());
6990 /* Handle calls that return values in multiple non-contiguous locations.
6991 The Irix 6 ABI has examples of this. */
6992 if (GET_CODE (temp) == PARALLEL)
6994 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6995 machine_mode temp_mode = GET_MODE (temp);
6996 if (temp_mode == BLKmode || temp_mode == VOIDmode)
6997 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
6998 rtx temp_target = gen_reg_rtx (temp_mode);
6999 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7000 temp = temp_target;
7003 /* Handle calls that return BLKmode values in registers. */
7004 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7006 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7007 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7008 temp = temp_target;
7011 /* If the value has aggregate type and an integral mode then, if BITSIZE
7012 is narrower than this mode and this is for big-endian data, we first
7013 need to put the value into the low-order bits for store_bit_field,
7014 except when MODE is BLKmode and BITSIZE larger than the word size
7015 (see the handling of fields larger than a word in store_bit_field).
7016 Moreover, the field may be not aligned on a byte boundary; in this
7017 case, if it has reverse storage order, it needs to be accessed as a
7018 scalar field with reverse storage order and we must first put the
7019 value into target order. */
7020 scalar_int_mode temp_mode;
7021 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7022 && is_int_mode (GET_MODE (temp), &temp_mode))
7024 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7026 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7028 if (reverse)
7029 temp = flip_storage_order (temp_mode, temp);
7031 gcc_checking_assert (known_le (bitsize, size));
7032 if (maybe_lt (bitsize, size)
7033 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7034 /* Use of to_constant for BLKmode was checked above. */
7035 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7036 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7037 size - bitsize, NULL_RTX, 1);
7040 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7041 if (mode != VOIDmode && mode != BLKmode
7042 && mode != TYPE_MODE (TREE_TYPE (exp)))
7043 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7045 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7046 and BITPOS must be aligned on a byte boundary. If so, we simply do
7047 a block copy. Likewise for a BLKmode-like TARGET. */
7048 if (GET_MODE (temp) == BLKmode
7049 && (GET_MODE (target) == BLKmode
7050 || (MEM_P (target)
7051 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7052 && multiple_p (bitpos, BITS_PER_UNIT)
7053 && multiple_p (bitsize, BITS_PER_UNIT))))
7055 gcc_assert (MEM_P (target) && MEM_P (temp));
7056 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7057 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7059 target = adjust_address (target, VOIDmode, bytepos);
7060 emit_block_move (target, temp,
7061 gen_int_mode (bytesize, Pmode),
7062 BLOCK_OP_NORMAL);
7064 return const0_rtx;
7067 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7068 word size, we need to load the value (see again store_bit_field). */
7069 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7071 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
7072 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7073 temp_mode, false, NULL);
7076 /* Store the value in the bitfield. */
7077 store_bit_field (target, bitsize, bitpos,
7078 bitregion_start, bitregion_end,
7079 mode, temp, reverse);
7081 return const0_rtx;
7083 else
7085 /* Now build a reference to just the desired component. */
7086 rtx to_rtx = adjust_address (target, mode,
7087 exact_div (bitpos, BITS_PER_UNIT));
7089 if (to_rtx == target)
7090 to_rtx = copy_rtx (to_rtx);
7092 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7093 set_mem_alias_set (to_rtx, alias_set);
7095 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7096 into a target smaller than its type; handle that case now. */
7097 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7099 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7100 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7101 return to_rtx;
7104 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7108 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7109 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7110 codes and find the ultimate containing object, which we return.
7112 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7113 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7114 storage order of the field.
7115 If the position of the field is variable, we store a tree
7116 giving the variable offset (in units) in *POFFSET.
7117 This offset is in addition to the bit position.
7118 If the position is not variable, we store 0 in *POFFSET.
7120 If any of the extraction expressions is volatile,
7121 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7123 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7124 Otherwise, it is a mode that can be used to access the field.
7126 If the field describes a variable-sized object, *PMODE is set to
7127 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7128 this case, but the address of the object can be found. */
7130 tree
7131 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7132 poly_int64_pod *pbitpos, tree *poffset,
7133 machine_mode *pmode, int *punsignedp,
7134 int *preversep, int *pvolatilep)
7136 tree size_tree = 0;
7137 machine_mode mode = VOIDmode;
7138 bool blkmode_bitfield = false;
7139 tree offset = size_zero_node;
7140 poly_offset_int bit_offset = 0;
7142 /* First get the mode, signedness, storage order and size. We do this from
7143 just the outermost expression. */
7144 *pbitsize = -1;
7145 if (TREE_CODE (exp) == COMPONENT_REF)
7147 tree field = TREE_OPERAND (exp, 1);
7148 size_tree = DECL_SIZE (field);
7149 if (flag_strict_volatile_bitfields > 0
7150 && TREE_THIS_VOLATILE (exp)
7151 && DECL_BIT_FIELD_TYPE (field)
7152 && DECL_MODE (field) != BLKmode)
7153 /* Volatile bitfields should be accessed in the mode of the
7154 field's type, not the mode computed based on the bit
7155 size. */
7156 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7157 else if (!DECL_BIT_FIELD (field))
7159 mode = DECL_MODE (field);
7160 /* For vector fields re-check the target flags, as DECL_MODE
7161 could have been set with different target flags than
7162 the current function has. */
7163 if (mode == BLKmode
7164 && VECTOR_TYPE_P (TREE_TYPE (field))
7165 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7166 mode = TYPE_MODE (TREE_TYPE (field));
7168 else if (DECL_MODE (field) == BLKmode)
7169 blkmode_bitfield = true;
7171 *punsignedp = DECL_UNSIGNED (field);
7173 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7175 size_tree = TREE_OPERAND (exp, 1);
7176 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7177 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7179 /* For vector types, with the correct size of access, use the mode of
7180 inner type. */
7181 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7182 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7183 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7184 mode = TYPE_MODE (TREE_TYPE (exp));
7186 else
7188 mode = TYPE_MODE (TREE_TYPE (exp));
7189 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7191 if (mode == BLKmode)
7192 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7193 else
7194 *pbitsize = GET_MODE_BITSIZE (mode);
7197 if (size_tree != 0)
7199 if (! tree_fits_uhwi_p (size_tree))
7200 mode = BLKmode, *pbitsize = -1;
7201 else
7202 *pbitsize = tree_to_uhwi (size_tree);
7205 *preversep = reverse_storage_order_for_component_p (exp);
7207 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7208 and find the ultimate containing object. */
7209 while (1)
7211 switch (TREE_CODE (exp))
7213 case BIT_FIELD_REF:
7214 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7215 break;
7217 case COMPONENT_REF:
7219 tree field = TREE_OPERAND (exp, 1);
7220 tree this_offset = component_ref_field_offset (exp);
7222 /* If this field hasn't been filled in yet, don't go past it.
7223 This should only happen when folding expressions made during
7224 type construction. */
7225 if (this_offset == 0)
7226 break;
7228 offset = size_binop (PLUS_EXPR, offset, this_offset);
7229 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7231 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7233 break;
7235 case ARRAY_REF:
7236 case ARRAY_RANGE_REF:
7238 tree index = TREE_OPERAND (exp, 1);
7239 tree low_bound = array_ref_low_bound (exp);
7240 tree unit_size = array_ref_element_size (exp);
7242 /* We assume all arrays have sizes that are a multiple of a byte.
7243 First subtract the lower bound, if any, in the type of the
7244 index, then convert to sizetype and multiply by the size of
7245 the array element. */
7246 if (! integer_zerop (low_bound))
7247 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7248 index, low_bound);
7250 offset = size_binop (PLUS_EXPR, offset,
7251 size_binop (MULT_EXPR,
7252 fold_convert (sizetype, index),
7253 unit_size));
7255 break;
7257 case REALPART_EXPR:
7258 break;
7260 case IMAGPART_EXPR:
7261 bit_offset += *pbitsize;
7262 break;
7264 case VIEW_CONVERT_EXPR:
7265 break;
7267 case MEM_REF:
7268 /* Hand back the decl for MEM[&decl, off]. */
7269 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7271 tree off = TREE_OPERAND (exp, 1);
7272 if (!integer_zerop (off))
7274 poly_offset_int boff = mem_ref_offset (exp);
7275 boff <<= LOG2_BITS_PER_UNIT;
7276 bit_offset += boff;
7278 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7280 goto done;
7282 default:
7283 goto done;
7286 /* If any reference in the chain is volatile, the effect is volatile. */
7287 if (TREE_THIS_VOLATILE (exp))
7288 *pvolatilep = 1;
7290 exp = TREE_OPERAND (exp, 0);
7292 done:
7294 /* If OFFSET is constant, see if we can return the whole thing as a
7295 constant bit position. Make sure to handle overflow during
7296 this conversion. */
7297 if (poly_int_tree_p (offset))
7299 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7300 TYPE_PRECISION (sizetype));
7301 tem <<= LOG2_BITS_PER_UNIT;
7302 tem += bit_offset;
7303 if (tem.to_shwi (pbitpos))
7304 *poffset = offset = NULL_TREE;
7307 /* Otherwise, split it up. */
7308 if (offset)
7310 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7311 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7313 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7314 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7315 offset = size_binop (PLUS_EXPR, offset,
7316 build_int_cst (sizetype, bytes.force_shwi ()));
7319 *poffset = offset;
7322 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7323 if (mode == VOIDmode
7324 && blkmode_bitfield
7325 && multiple_p (*pbitpos, BITS_PER_UNIT)
7326 && multiple_p (*pbitsize, BITS_PER_UNIT))
7327 *pmode = BLKmode;
7328 else
7329 *pmode = mode;
7331 return exp;
7334 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7336 static unsigned HOST_WIDE_INT
7337 target_align (const_tree target)
7339 /* We might have a chain of nested references with intermediate misaligning
7340 bitfields components, so need to recurse to find out. */
7342 unsigned HOST_WIDE_INT this_align, outer_align;
7344 switch (TREE_CODE (target))
7346 case BIT_FIELD_REF:
7347 return 1;
7349 case COMPONENT_REF:
7350 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7351 outer_align = target_align (TREE_OPERAND (target, 0));
7352 return MIN (this_align, outer_align);
7354 case ARRAY_REF:
7355 case ARRAY_RANGE_REF:
7356 this_align = TYPE_ALIGN (TREE_TYPE (target));
7357 outer_align = target_align (TREE_OPERAND (target, 0));
7358 return MIN (this_align, outer_align);
7360 CASE_CONVERT:
7361 case NON_LVALUE_EXPR:
7362 case VIEW_CONVERT_EXPR:
7363 this_align = TYPE_ALIGN (TREE_TYPE (target));
7364 outer_align = target_align (TREE_OPERAND (target, 0));
7365 return MAX (this_align, outer_align);
7367 default:
7368 return TYPE_ALIGN (TREE_TYPE (target));
7373 /* Given an rtx VALUE that may contain additions and multiplications, return
7374 an equivalent value that just refers to a register, memory, or constant.
7375 This is done by generating instructions to perform the arithmetic and
7376 returning a pseudo-register containing the value.
7378 The returned value may be a REG, SUBREG, MEM or constant. */
7381 force_operand (rtx value, rtx target)
7383 rtx op1, op2;
7384 /* Use subtarget as the target for operand 0 of a binary operation. */
7385 rtx subtarget = get_subtarget (target);
7386 enum rtx_code code = GET_CODE (value);
7388 /* Check for subreg applied to an expression produced by loop optimizer. */
7389 if (code == SUBREG
7390 && !REG_P (SUBREG_REG (value))
7391 && !MEM_P (SUBREG_REG (value)))
7393 value
7394 = simplify_gen_subreg (GET_MODE (value),
7395 force_reg (GET_MODE (SUBREG_REG (value)),
7396 force_operand (SUBREG_REG (value),
7397 NULL_RTX)),
7398 GET_MODE (SUBREG_REG (value)),
7399 SUBREG_BYTE (value));
7400 code = GET_CODE (value);
7403 /* Check for a PIC address load. */
7404 if ((code == PLUS || code == MINUS)
7405 && XEXP (value, 0) == pic_offset_table_rtx
7406 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7407 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7408 || GET_CODE (XEXP (value, 1)) == CONST))
7410 if (!subtarget)
7411 subtarget = gen_reg_rtx (GET_MODE (value));
7412 emit_move_insn (subtarget, value);
7413 return subtarget;
7416 if (ARITHMETIC_P (value))
7418 op2 = XEXP (value, 1);
7419 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7420 subtarget = 0;
7421 if (code == MINUS && CONST_INT_P (op2))
7423 code = PLUS;
7424 op2 = negate_rtx (GET_MODE (value), op2);
7427 /* Check for an addition with OP2 a constant integer and our first
7428 operand a PLUS of a virtual register and something else. In that
7429 case, we want to emit the sum of the virtual register and the
7430 constant first and then add the other value. This allows virtual
7431 register instantiation to simply modify the constant rather than
7432 creating another one around this addition. */
7433 if (code == PLUS && CONST_INT_P (op2)
7434 && GET_CODE (XEXP (value, 0)) == PLUS
7435 && REG_P (XEXP (XEXP (value, 0), 0))
7436 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7437 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7439 rtx temp = expand_simple_binop (GET_MODE (value), code,
7440 XEXP (XEXP (value, 0), 0), op2,
7441 subtarget, 0, OPTAB_LIB_WIDEN);
7442 return expand_simple_binop (GET_MODE (value), code, temp,
7443 force_operand (XEXP (XEXP (value,
7444 0), 1), 0),
7445 target, 0, OPTAB_LIB_WIDEN);
7448 op1 = force_operand (XEXP (value, 0), subtarget);
7449 op2 = force_operand (op2, NULL_RTX);
7450 switch (code)
7452 case MULT:
7453 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7454 case DIV:
7455 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7456 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7457 target, 1, OPTAB_LIB_WIDEN);
7458 else
7459 return expand_divmod (0,
7460 FLOAT_MODE_P (GET_MODE (value))
7461 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7462 GET_MODE (value), op1, op2, target, 0);
7463 case MOD:
7464 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7465 target, 0);
7466 case UDIV:
7467 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7468 target, 1);
7469 case UMOD:
7470 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7471 target, 1);
7472 case ASHIFTRT:
7473 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7474 target, 0, OPTAB_LIB_WIDEN);
7475 default:
7476 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7477 target, 1, OPTAB_LIB_WIDEN);
7480 if (UNARY_P (value))
7482 if (!target)
7483 target = gen_reg_rtx (GET_MODE (value));
7484 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7485 switch (code)
7487 case ZERO_EXTEND:
7488 case SIGN_EXTEND:
7489 case TRUNCATE:
7490 case FLOAT_EXTEND:
7491 case FLOAT_TRUNCATE:
7492 convert_move (target, op1, code == ZERO_EXTEND);
7493 return target;
7495 case FIX:
7496 case UNSIGNED_FIX:
7497 expand_fix (target, op1, code == UNSIGNED_FIX);
7498 return target;
7500 case FLOAT:
7501 case UNSIGNED_FLOAT:
7502 expand_float (target, op1, code == UNSIGNED_FLOAT);
7503 return target;
7505 default:
7506 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7510 #ifdef INSN_SCHEDULING
7511 /* On machines that have insn scheduling, we want all memory reference to be
7512 explicit, so we need to deal with such paradoxical SUBREGs. */
7513 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7514 value
7515 = simplify_gen_subreg (GET_MODE (value),
7516 force_reg (GET_MODE (SUBREG_REG (value)),
7517 force_operand (SUBREG_REG (value),
7518 NULL_RTX)),
7519 GET_MODE (SUBREG_REG (value)),
7520 SUBREG_BYTE (value));
7521 #endif
7523 return value;
7526 /* Subroutine of expand_expr: return nonzero iff there is no way that
7527 EXP can reference X, which is being modified. TOP_P is nonzero if this
7528 call is going to be used to determine whether we need a temporary
7529 for EXP, as opposed to a recursive call to this function.
7531 It is always safe for this routine to return zero since it merely
7532 searches for optimization opportunities. */
7535 safe_from_p (const_rtx x, tree exp, int top_p)
7537 rtx exp_rtl = 0;
7538 int i, nops;
7540 if (x == 0
7541 /* If EXP has varying size, we MUST use a target since we currently
7542 have no way of allocating temporaries of variable size
7543 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7544 So we assume here that something at a higher level has prevented a
7545 clash. This is somewhat bogus, but the best we can do. Only
7546 do this when X is BLKmode and when we are at the top level. */
7547 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7548 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7549 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7550 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7551 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7552 != INTEGER_CST)
7553 && GET_MODE (x) == BLKmode)
7554 /* If X is in the outgoing argument area, it is always safe. */
7555 || (MEM_P (x)
7556 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7557 || (GET_CODE (XEXP (x, 0)) == PLUS
7558 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7559 return 1;
7561 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7562 find the underlying pseudo. */
7563 if (GET_CODE (x) == SUBREG)
7565 x = SUBREG_REG (x);
7566 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7567 return 0;
7570 /* Now look at our tree code and possibly recurse. */
7571 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7573 case tcc_declaration:
7574 exp_rtl = DECL_RTL_IF_SET (exp);
7575 break;
7577 case tcc_constant:
7578 return 1;
7580 case tcc_exceptional:
7581 if (TREE_CODE (exp) == TREE_LIST)
7583 while (1)
7585 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7586 return 0;
7587 exp = TREE_CHAIN (exp);
7588 if (!exp)
7589 return 1;
7590 if (TREE_CODE (exp) != TREE_LIST)
7591 return safe_from_p (x, exp, 0);
7594 else if (TREE_CODE (exp) == CONSTRUCTOR)
7596 constructor_elt *ce;
7597 unsigned HOST_WIDE_INT idx;
7599 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7600 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7601 || !safe_from_p (x, ce->value, 0))
7602 return 0;
7603 return 1;
7605 else if (TREE_CODE (exp) == ERROR_MARK)
7606 return 1; /* An already-visited SAVE_EXPR? */
7607 else
7608 return 0;
7610 case tcc_statement:
7611 /* The only case we look at here is the DECL_INITIAL inside a
7612 DECL_EXPR. */
7613 return (TREE_CODE (exp) != DECL_EXPR
7614 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7615 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7616 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7618 case tcc_binary:
7619 case tcc_comparison:
7620 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7621 return 0;
7622 /* Fall through. */
7624 case tcc_unary:
7625 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7627 case tcc_expression:
7628 case tcc_reference:
7629 case tcc_vl_exp:
7630 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7631 the expression. If it is set, we conflict iff we are that rtx or
7632 both are in memory. Otherwise, we check all operands of the
7633 expression recursively. */
7635 switch (TREE_CODE (exp))
7637 case ADDR_EXPR:
7638 /* If the operand is static or we are static, we can't conflict.
7639 Likewise if we don't conflict with the operand at all. */
7640 if (staticp (TREE_OPERAND (exp, 0))
7641 || TREE_STATIC (exp)
7642 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7643 return 1;
7645 /* Otherwise, the only way this can conflict is if we are taking
7646 the address of a DECL a that address if part of X, which is
7647 very rare. */
7648 exp = TREE_OPERAND (exp, 0);
7649 if (DECL_P (exp))
7651 if (!DECL_RTL_SET_P (exp)
7652 || !MEM_P (DECL_RTL (exp)))
7653 return 0;
7654 else
7655 exp_rtl = XEXP (DECL_RTL (exp), 0);
7657 break;
7659 case MEM_REF:
7660 if (MEM_P (x)
7661 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7662 get_alias_set (exp)))
7663 return 0;
7664 break;
7666 case CALL_EXPR:
7667 /* Assume that the call will clobber all hard registers and
7668 all of memory. */
7669 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7670 || MEM_P (x))
7671 return 0;
7672 break;
7674 case WITH_CLEANUP_EXPR:
7675 case CLEANUP_POINT_EXPR:
7676 /* Lowered by gimplify.c. */
7677 gcc_unreachable ();
7679 case SAVE_EXPR:
7680 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7682 default:
7683 break;
7686 /* If we have an rtx, we do not need to scan our operands. */
7687 if (exp_rtl)
7688 break;
7690 nops = TREE_OPERAND_LENGTH (exp);
7691 for (i = 0; i < nops; i++)
7692 if (TREE_OPERAND (exp, i) != 0
7693 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7694 return 0;
7696 break;
7698 case tcc_type:
7699 /* Should never get a type here. */
7700 gcc_unreachable ();
7703 /* If we have an rtl, find any enclosed object. Then see if we conflict
7704 with it. */
7705 if (exp_rtl)
7707 if (GET_CODE (exp_rtl) == SUBREG)
7709 exp_rtl = SUBREG_REG (exp_rtl);
7710 if (REG_P (exp_rtl)
7711 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7712 return 0;
7715 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7716 are memory and they conflict. */
7717 return ! (rtx_equal_p (x, exp_rtl)
7718 || (MEM_P (x) && MEM_P (exp_rtl)
7719 && true_dependence (exp_rtl, VOIDmode, x)));
7722 /* If we reach here, it is safe. */
7723 return 1;
7727 /* Return the highest power of two that EXP is known to be a multiple of.
7728 This is used in updating alignment of MEMs in array references. */
7730 unsigned HOST_WIDE_INT
7731 highest_pow2_factor (const_tree exp)
7733 unsigned HOST_WIDE_INT ret;
7734 int trailing_zeros = tree_ctz (exp);
7735 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7736 return BIGGEST_ALIGNMENT;
7737 ret = HOST_WIDE_INT_1U << trailing_zeros;
7738 if (ret > BIGGEST_ALIGNMENT)
7739 return BIGGEST_ALIGNMENT;
7740 return ret;
7743 /* Similar, except that the alignment requirements of TARGET are
7744 taken into account. Assume it is at least as aligned as its
7745 type, unless it is a COMPONENT_REF in which case the layout of
7746 the structure gives the alignment. */
7748 static unsigned HOST_WIDE_INT
7749 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7751 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7752 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7754 return MAX (factor, talign);
7757 /* Convert the tree comparison code TCODE to the rtl one where the
7758 signedness is UNSIGNEDP. */
7760 static enum rtx_code
7761 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7763 enum rtx_code code;
7764 switch (tcode)
7766 case EQ_EXPR:
7767 code = EQ;
7768 break;
7769 case NE_EXPR:
7770 code = NE;
7771 break;
7772 case LT_EXPR:
7773 code = unsignedp ? LTU : LT;
7774 break;
7775 case LE_EXPR:
7776 code = unsignedp ? LEU : LE;
7777 break;
7778 case GT_EXPR:
7779 code = unsignedp ? GTU : GT;
7780 break;
7781 case GE_EXPR:
7782 code = unsignedp ? GEU : GE;
7783 break;
7784 case UNORDERED_EXPR:
7785 code = UNORDERED;
7786 break;
7787 case ORDERED_EXPR:
7788 code = ORDERED;
7789 break;
7790 case UNLT_EXPR:
7791 code = UNLT;
7792 break;
7793 case UNLE_EXPR:
7794 code = UNLE;
7795 break;
7796 case UNGT_EXPR:
7797 code = UNGT;
7798 break;
7799 case UNGE_EXPR:
7800 code = UNGE;
7801 break;
7802 case UNEQ_EXPR:
7803 code = UNEQ;
7804 break;
7805 case LTGT_EXPR:
7806 code = LTGT;
7807 break;
7809 default:
7810 gcc_unreachable ();
7812 return code;
7815 /* Subroutine of expand_expr. Expand the two operands of a binary
7816 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7817 The value may be stored in TARGET if TARGET is nonzero. The
7818 MODIFIER argument is as documented by expand_expr. */
7820 void
7821 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7822 enum expand_modifier modifier)
7824 if (! safe_from_p (target, exp1, 1))
7825 target = 0;
7826 if (operand_equal_p (exp0, exp1, 0))
7828 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7829 *op1 = copy_rtx (*op0);
7831 else
7833 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7834 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7839 /* Return a MEM that contains constant EXP. DEFER is as for
7840 output_constant_def and MODIFIER is as for expand_expr. */
7842 static rtx
7843 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7845 rtx mem;
7847 mem = output_constant_def (exp, defer);
7848 if (modifier != EXPAND_INITIALIZER)
7849 mem = use_anchored_address (mem);
7850 return mem;
7853 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7854 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7856 static rtx
7857 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7858 enum expand_modifier modifier, addr_space_t as)
7860 rtx result, subtarget;
7861 tree inner, offset;
7862 poly_int64 bitsize, bitpos;
7863 int unsignedp, reversep, volatilep = 0;
7864 machine_mode mode1;
7866 /* If we are taking the address of a constant and are at the top level,
7867 we have to use output_constant_def since we can't call force_const_mem
7868 at top level. */
7869 /* ??? This should be considered a front-end bug. We should not be
7870 generating ADDR_EXPR of something that isn't an LVALUE. The only
7871 exception here is STRING_CST. */
7872 if (CONSTANT_CLASS_P (exp))
7874 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7875 if (modifier < EXPAND_SUM)
7876 result = force_operand (result, target);
7877 return result;
7880 /* Everything must be something allowed by is_gimple_addressable. */
7881 switch (TREE_CODE (exp))
7883 case INDIRECT_REF:
7884 /* This case will happen via recursion for &a->b. */
7885 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7887 case MEM_REF:
7889 tree tem = TREE_OPERAND (exp, 0);
7890 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7891 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7892 return expand_expr (tem, target, tmode, modifier);
7895 case TARGET_MEM_REF:
7896 return addr_for_mem_ref (exp, as, true);
7898 case CONST_DECL:
7899 /* Expand the initializer like constants above. */
7900 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7901 0, modifier), 0);
7902 if (modifier < EXPAND_SUM)
7903 result = force_operand (result, target);
7904 return result;
7906 case REALPART_EXPR:
7907 /* The real part of the complex number is always first, therefore
7908 the address is the same as the address of the parent object. */
7909 offset = 0;
7910 bitpos = 0;
7911 inner = TREE_OPERAND (exp, 0);
7912 break;
7914 case IMAGPART_EXPR:
7915 /* The imaginary part of the complex number is always second.
7916 The expression is therefore always offset by the size of the
7917 scalar type. */
7918 offset = 0;
7919 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7920 inner = TREE_OPERAND (exp, 0);
7921 break;
7923 case COMPOUND_LITERAL_EXPR:
7924 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7925 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7926 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7927 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7928 the initializers aren't gimplified. */
7929 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7930 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7931 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7932 target, tmode, modifier, as);
7933 /* FALLTHRU */
7934 default:
7935 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7936 expand_expr, as that can have various side effects; LABEL_DECLs for
7937 example, may not have their DECL_RTL set yet. Expand the rtl of
7938 CONSTRUCTORs too, which should yield a memory reference for the
7939 constructor's contents. Assume language specific tree nodes can
7940 be expanded in some interesting way. */
7941 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7942 if (DECL_P (exp)
7943 || TREE_CODE (exp) == CONSTRUCTOR
7944 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7946 result = expand_expr (exp, target, tmode,
7947 modifier == EXPAND_INITIALIZER
7948 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7950 /* If the DECL isn't in memory, then the DECL wasn't properly
7951 marked TREE_ADDRESSABLE, which will be either a front-end
7952 or a tree optimizer bug. */
7954 gcc_assert (MEM_P (result));
7955 result = XEXP (result, 0);
7957 /* ??? Is this needed anymore? */
7958 if (DECL_P (exp))
7959 TREE_USED (exp) = 1;
7961 if (modifier != EXPAND_INITIALIZER
7962 && modifier != EXPAND_CONST_ADDRESS
7963 && modifier != EXPAND_SUM)
7964 result = force_operand (result, target);
7965 return result;
7968 /* Pass FALSE as the last argument to get_inner_reference although
7969 we are expanding to RTL. The rationale is that we know how to
7970 handle "aligning nodes" here: we can just bypass them because
7971 they won't change the final object whose address will be returned
7972 (they actually exist only for that purpose). */
7973 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7974 &unsignedp, &reversep, &volatilep);
7975 break;
7978 /* We must have made progress. */
7979 gcc_assert (inner != exp);
7981 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
7982 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7983 inner alignment, force the inner to be sufficiently aligned. */
7984 if (CONSTANT_CLASS_P (inner)
7985 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7987 inner = copy_node (inner);
7988 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7989 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7990 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7992 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7994 if (offset)
7996 rtx tmp;
7998 if (modifier != EXPAND_NORMAL)
7999 result = force_operand (result, NULL);
8000 tmp = expand_expr (offset, NULL_RTX, tmode,
8001 modifier == EXPAND_INITIALIZER
8002 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8004 /* expand_expr is allowed to return an object in a mode other
8005 than TMODE. If it did, we need to convert. */
8006 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8007 tmp = convert_modes (tmode, GET_MODE (tmp),
8008 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8009 result = convert_memory_address_addr_space (tmode, result, as);
8010 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8012 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8013 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8014 else
8016 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8017 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8018 1, OPTAB_LIB_WIDEN);
8022 if (maybe_ne (bitpos, 0))
8024 /* Someone beforehand should have rejected taking the address
8025 of an object that isn't byte-aligned. */
8026 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8027 result = convert_memory_address_addr_space (tmode, result, as);
8028 result = plus_constant (tmode, result, bytepos);
8029 if (modifier < EXPAND_SUM)
8030 result = force_operand (result, target);
8033 return result;
8036 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8037 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8039 static rtx
8040 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8041 enum expand_modifier modifier)
8043 addr_space_t as = ADDR_SPACE_GENERIC;
8044 scalar_int_mode address_mode = Pmode;
8045 scalar_int_mode pointer_mode = ptr_mode;
8046 machine_mode rmode;
8047 rtx result;
8049 /* Target mode of VOIDmode says "whatever's natural". */
8050 if (tmode == VOIDmode)
8051 tmode = TYPE_MODE (TREE_TYPE (exp));
8053 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8055 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8056 address_mode = targetm.addr_space.address_mode (as);
8057 pointer_mode = targetm.addr_space.pointer_mode (as);
8060 /* We can get called with some Weird Things if the user does silliness
8061 like "(short) &a". In that case, convert_memory_address won't do
8062 the right thing, so ignore the given target mode. */
8063 scalar_int_mode new_tmode = (tmode == pointer_mode
8064 ? pointer_mode
8065 : address_mode);
8067 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8068 new_tmode, modifier, as);
8070 /* Despite expand_expr claims concerning ignoring TMODE when not
8071 strictly convenient, stuff breaks if we don't honor it. Note
8072 that combined with the above, we only do this for pointer modes. */
8073 rmode = GET_MODE (result);
8074 if (rmode == VOIDmode)
8075 rmode = new_tmode;
8076 if (rmode != new_tmode)
8077 result = convert_memory_address_addr_space (new_tmode, result, as);
8079 return result;
8082 /* Generate code for computing CONSTRUCTOR EXP.
8083 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8084 is TRUE, instead of creating a temporary variable in memory
8085 NULL is returned and the caller needs to handle it differently. */
8087 static rtx
8088 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8089 bool avoid_temp_mem)
8091 tree type = TREE_TYPE (exp);
8092 machine_mode mode = TYPE_MODE (type);
8094 /* Try to avoid creating a temporary at all. This is possible
8095 if all of the initializer is zero.
8096 FIXME: try to handle all [0..255] initializers we can handle
8097 with memset. */
8098 if (TREE_STATIC (exp)
8099 && !TREE_ADDRESSABLE (exp)
8100 && target != 0 && mode == BLKmode
8101 && all_zeros_p (exp))
8103 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8104 return target;
8107 /* All elts simple constants => refer to a constant in memory. But
8108 if this is a non-BLKmode mode, let it store a field at a time
8109 since that should make a CONST_INT, CONST_WIDE_INT or
8110 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8111 use, it is best to store directly into the target unless the type
8112 is large enough that memcpy will be used. If we are making an
8113 initializer and all operands are constant, put it in memory as
8114 well.
8116 FIXME: Avoid trying to fill vector constructors piece-meal.
8117 Output them with output_constant_def below unless we're sure
8118 they're zeros. This should go away when vector initializers
8119 are treated like VECTOR_CST instead of arrays. */
8120 if ((TREE_STATIC (exp)
8121 && ((mode == BLKmode
8122 && ! (target != 0 && safe_from_p (target, exp, 1)))
8123 || TREE_ADDRESSABLE (exp)
8124 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8125 && (! can_move_by_pieces
8126 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8127 TYPE_ALIGN (type)))
8128 && ! mostly_zeros_p (exp))))
8129 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8130 && TREE_CONSTANT (exp)))
8132 rtx constructor;
8134 if (avoid_temp_mem)
8135 return NULL_RTX;
8137 constructor = expand_expr_constant (exp, 1, modifier);
8139 if (modifier != EXPAND_CONST_ADDRESS
8140 && modifier != EXPAND_INITIALIZER
8141 && modifier != EXPAND_SUM)
8142 constructor = validize_mem (constructor);
8144 return constructor;
8147 /* Handle calls that pass values in multiple non-contiguous
8148 locations. The Irix 6 ABI has examples of this. */
8149 if (target == 0 || ! safe_from_p (target, exp, 1)
8150 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8152 if (avoid_temp_mem)
8153 return NULL_RTX;
8155 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8158 store_constructor (exp, target, 0, int_expr_size (exp), false);
8159 return target;
8163 /* expand_expr: generate code for computing expression EXP.
8164 An rtx for the computed value is returned. The value is never null.
8165 In the case of a void EXP, const0_rtx is returned.
8167 The value may be stored in TARGET if TARGET is nonzero.
8168 TARGET is just a suggestion; callers must assume that
8169 the rtx returned may not be the same as TARGET.
8171 If TARGET is CONST0_RTX, it means that the value will be ignored.
8173 If TMODE is not VOIDmode, it suggests generating the
8174 result in mode TMODE. But this is done only when convenient.
8175 Otherwise, TMODE is ignored and the value generated in its natural mode.
8176 TMODE is just a suggestion; callers must assume that
8177 the rtx returned may not have mode TMODE.
8179 Note that TARGET may have neither TMODE nor MODE. In that case, it
8180 probably will not be used.
8182 If MODIFIER is EXPAND_SUM then when EXP is an addition
8183 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8184 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8185 products as above, or REG or MEM, or constant.
8186 Ordinarily in such cases we would output mul or add instructions
8187 and then return a pseudo reg containing the sum.
8189 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8190 it also marks a label as absolutely required (it can't be dead).
8191 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8192 This is used for outputting expressions used in initializers.
8194 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8195 with a constant address even if that address is not normally legitimate.
8196 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8198 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8199 a call parameter. Such targets require special care as we haven't yet
8200 marked TARGET so that it's safe from being trashed by libcalls. We
8201 don't want to use TARGET for anything but the final result;
8202 Intermediate values must go elsewhere. Additionally, calls to
8203 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8205 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8206 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8207 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8208 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8209 recursively.
8211 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8212 In this case, we don't adjust a returned MEM rtx that wouldn't be
8213 sufficiently aligned for its mode; instead, it's up to the caller
8214 to deal with it afterwards. This is used to make sure that unaligned
8215 base objects for which out-of-bounds accesses are supported, for
8216 example record types with trailing arrays, aren't realigned behind
8217 the back of the caller.
8218 The normal operating mode is to pass FALSE for this parameter. */
8221 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8222 enum expand_modifier modifier, rtx *alt_rtl,
8223 bool inner_reference_p)
8225 rtx ret;
8227 /* Handle ERROR_MARK before anybody tries to access its type. */
8228 if (TREE_CODE (exp) == ERROR_MARK
8229 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8231 ret = CONST0_RTX (tmode);
8232 return ret ? ret : const0_rtx;
8235 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8236 inner_reference_p);
8237 return ret;
8240 /* Try to expand the conditional expression which is represented by
8241 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8242 return the rtl reg which represents the result. Otherwise return
8243 NULL_RTX. */
8245 static rtx
8246 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8247 tree treeop1 ATTRIBUTE_UNUSED,
8248 tree treeop2 ATTRIBUTE_UNUSED)
8250 rtx insn;
8251 rtx op00, op01, op1, op2;
8252 enum rtx_code comparison_code;
8253 machine_mode comparison_mode;
8254 gimple *srcstmt;
8255 rtx temp;
8256 tree type = TREE_TYPE (treeop1);
8257 int unsignedp = TYPE_UNSIGNED (type);
8258 machine_mode mode = TYPE_MODE (type);
8259 machine_mode orig_mode = mode;
8260 static bool expanding_cond_expr_using_cmove = false;
8262 /* Conditional move expansion can end up TERing two operands which,
8263 when recursively hitting conditional expressions can result in
8264 exponential behavior if the cmove expansion ultimatively fails.
8265 It's hardly profitable to TER a cmove into a cmove so avoid doing
8266 that by failing early if we end up recursing. */
8267 if (expanding_cond_expr_using_cmove)
8268 return NULL_RTX;
8270 /* If we cannot do a conditional move on the mode, try doing it
8271 with the promoted mode. */
8272 if (!can_conditionally_move_p (mode))
8274 mode = promote_mode (type, mode, &unsignedp);
8275 if (!can_conditionally_move_p (mode))
8276 return NULL_RTX;
8277 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8279 else
8280 temp = assign_temp (type, 0, 1);
8282 expanding_cond_expr_using_cmove = true;
8283 start_sequence ();
8284 expand_operands (treeop1, treeop2,
8285 temp, &op1, &op2, EXPAND_NORMAL);
8287 if (TREE_CODE (treeop0) == SSA_NAME
8288 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8290 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8291 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8292 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8293 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8294 comparison_mode = TYPE_MODE (type);
8295 unsignedp = TYPE_UNSIGNED (type);
8296 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8298 else if (COMPARISON_CLASS_P (treeop0))
8300 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8301 enum tree_code cmpcode = TREE_CODE (treeop0);
8302 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8303 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8304 unsignedp = TYPE_UNSIGNED (type);
8305 comparison_mode = TYPE_MODE (type);
8306 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8308 else
8310 op00 = expand_normal (treeop0);
8311 op01 = const0_rtx;
8312 comparison_code = NE;
8313 comparison_mode = GET_MODE (op00);
8314 if (comparison_mode == VOIDmode)
8315 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8317 expanding_cond_expr_using_cmove = false;
8319 if (GET_MODE (op1) != mode)
8320 op1 = gen_lowpart (mode, op1);
8322 if (GET_MODE (op2) != mode)
8323 op2 = gen_lowpart (mode, op2);
8325 /* Try to emit the conditional move. */
8326 insn = emit_conditional_move (temp, comparison_code,
8327 op00, op01, comparison_mode,
8328 op1, op2, mode,
8329 unsignedp);
8331 /* If we could do the conditional move, emit the sequence,
8332 and return. */
8333 if (insn)
8335 rtx_insn *seq = get_insns ();
8336 end_sequence ();
8337 emit_insn (seq);
8338 return convert_modes (orig_mode, mode, temp, 0);
8341 /* Otherwise discard the sequence and fall back to code with
8342 branches. */
8343 end_sequence ();
8344 return NULL_RTX;
8348 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8349 enum expand_modifier modifier)
8351 rtx op0, op1, op2, temp;
8352 rtx_code_label *lab;
8353 tree type;
8354 int unsignedp;
8355 machine_mode mode;
8356 scalar_int_mode int_mode;
8357 enum tree_code code = ops->code;
8358 optab this_optab;
8359 rtx subtarget, original_target;
8360 int ignore;
8361 bool reduce_bit_field;
8362 location_t loc = ops->location;
8363 tree treeop0, treeop1, treeop2;
8364 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8365 ? reduce_to_bit_field_precision ((expr), \
8366 target, \
8367 type) \
8368 : (expr))
8370 type = ops->type;
8371 mode = TYPE_MODE (type);
8372 unsignedp = TYPE_UNSIGNED (type);
8374 treeop0 = ops->op0;
8375 treeop1 = ops->op1;
8376 treeop2 = ops->op2;
8378 /* We should be called only on simple (binary or unary) expressions,
8379 exactly those that are valid in gimple expressions that aren't
8380 GIMPLE_SINGLE_RHS (or invalid). */
8381 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8382 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8383 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8385 ignore = (target == const0_rtx
8386 || ((CONVERT_EXPR_CODE_P (code)
8387 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8388 && TREE_CODE (type) == VOID_TYPE));
8390 /* We should be called only if we need the result. */
8391 gcc_assert (!ignore);
8393 /* An operation in what may be a bit-field type needs the
8394 result to be reduced to the precision of the bit-field type,
8395 which is narrower than that of the type's mode. */
8396 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8397 && !type_has_mode_precision_p (type));
8399 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8400 target = 0;
8402 /* Use subtarget as the target for operand 0 of a binary operation. */
8403 subtarget = get_subtarget (target);
8404 original_target = target;
8406 switch (code)
8408 case NON_LVALUE_EXPR:
8409 case PAREN_EXPR:
8410 CASE_CONVERT:
8411 if (treeop0 == error_mark_node)
8412 return const0_rtx;
8414 if (TREE_CODE (type) == UNION_TYPE)
8416 tree valtype = TREE_TYPE (treeop0);
8418 /* If both input and output are BLKmode, this conversion isn't doing
8419 anything except possibly changing memory attribute. */
8420 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8422 rtx result = expand_expr (treeop0, target, tmode,
8423 modifier);
8425 result = copy_rtx (result);
8426 set_mem_attributes (result, type, 0);
8427 return result;
8430 if (target == 0)
8432 if (TYPE_MODE (type) != BLKmode)
8433 target = gen_reg_rtx (TYPE_MODE (type));
8434 else
8435 target = assign_temp (type, 1, 1);
8438 if (MEM_P (target))
8439 /* Store data into beginning of memory target. */
8440 store_expr (treeop0,
8441 adjust_address (target, TYPE_MODE (valtype), 0),
8442 modifier == EXPAND_STACK_PARM,
8443 false, TYPE_REVERSE_STORAGE_ORDER (type));
8445 else
8447 gcc_assert (REG_P (target)
8448 && !TYPE_REVERSE_STORAGE_ORDER (type));
8450 /* Store this field into a union of the proper type. */
8451 poly_uint64 op0_size
8452 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8453 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8454 store_field (target,
8455 /* The conversion must be constructed so that
8456 we know at compile time how many bits
8457 to preserve. */
8458 ordered_min (op0_size, union_size),
8459 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8460 false, false);
8463 /* Return the entire union. */
8464 return target;
8467 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8469 op0 = expand_expr (treeop0, target, VOIDmode,
8470 modifier);
8472 /* If the signedness of the conversion differs and OP0 is
8473 a promoted SUBREG, clear that indication since we now
8474 have to do the proper extension. */
8475 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8476 && GET_CODE (op0) == SUBREG)
8477 SUBREG_PROMOTED_VAR_P (op0) = 0;
8479 return REDUCE_BIT_FIELD (op0);
8482 op0 = expand_expr (treeop0, NULL_RTX, mode,
8483 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8484 if (GET_MODE (op0) == mode)
8487 /* If OP0 is a constant, just convert it into the proper mode. */
8488 else if (CONSTANT_P (op0))
8490 tree inner_type = TREE_TYPE (treeop0);
8491 machine_mode inner_mode = GET_MODE (op0);
8493 if (inner_mode == VOIDmode)
8494 inner_mode = TYPE_MODE (inner_type);
8496 if (modifier == EXPAND_INITIALIZER)
8497 op0 = lowpart_subreg (mode, op0, inner_mode);
8498 else
8499 op0= convert_modes (mode, inner_mode, op0,
8500 TYPE_UNSIGNED (inner_type));
8503 else if (modifier == EXPAND_INITIALIZER)
8504 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8505 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8507 else if (target == 0)
8508 op0 = convert_to_mode (mode, op0,
8509 TYPE_UNSIGNED (TREE_TYPE
8510 (treeop0)));
8511 else
8513 convert_move (target, op0,
8514 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8515 op0 = target;
8518 return REDUCE_BIT_FIELD (op0);
8520 case ADDR_SPACE_CONVERT_EXPR:
8522 tree treeop0_type = TREE_TYPE (treeop0);
8524 gcc_assert (POINTER_TYPE_P (type));
8525 gcc_assert (POINTER_TYPE_P (treeop0_type));
8527 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8528 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8530 /* Conversions between pointers to the same address space should
8531 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8532 gcc_assert (as_to != as_from);
8534 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8536 /* Ask target code to handle conversion between pointers
8537 to overlapping address spaces. */
8538 if (targetm.addr_space.subset_p (as_to, as_from)
8539 || targetm.addr_space.subset_p (as_from, as_to))
8541 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8543 else
8545 /* For disjoint address spaces, converting anything but a null
8546 pointer invokes undefined behavior. We truncate or extend the
8547 value as if we'd converted via integers, which handles 0 as
8548 required, and all others as the programmer likely expects. */
8549 #ifndef POINTERS_EXTEND_UNSIGNED
8550 const int POINTERS_EXTEND_UNSIGNED = 1;
8551 #endif
8552 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8553 op0, POINTERS_EXTEND_UNSIGNED);
8555 gcc_assert (op0);
8556 return op0;
8559 case POINTER_PLUS_EXPR:
8560 /* Even though the sizetype mode and the pointer's mode can be different
8561 expand is able to handle this correctly and get the correct result out
8562 of the PLUS_EXPR code. */
8563 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8564 if sizetype precision is smaller than pointer precision. */
8565 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8566 treeop1 = fold_convert_loc (loc, type,
8567 fold_convert_loc (loc, ssizetype,
8568 treeop1));
8569 /* If sizetype precision is larger than pointer precision, truncate the
8570 offset to have matching modes. */
8571 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8572 treeop1 = fold_convert_loc (loc, type, treeop1);
8573 /* FALLTHRU */
8575 case PLUS_EXPR:
8576 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8577 something else, make sure we add the register to the constant and
8578 then to the other thing. This case can occur during strength
8579 reduction and doing it this way will produce better code if the
8580 frame pointer or argument pointer is eliminated.
8582 fold-const.c will ensure that the constant is always in the inner
8583 PLUS_EXPR, so the only case we need to do anything about is if
8584 sp, ap, or fp is our second argument, in which case we must swap
8585 the innermost first argument and our second argument. */
8587 if (TREE_CODE (treeop0) == PLUS_EXPR
8588 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8589 && VAR_P (treeop1)
8590 && (DECL_RTL (treeop1) == frame_pointer_rtx
8591 || DECL_RTL (treeop1) == stack_pointer_rtx
8592 || DECL_RTL (treeop1) == arg_pointer_rtx))
8594 gcc_unreachable ();
8597 /* If the result is to be ptr_mode and we are adding an integer to
8598 something, we might be forming a constant. So try to use
8599 plus_constant. If it produces a sum and we can't accept it,
8600 use force_operand. This allows P = &ARR[const] to generate
8601 efficient code on machines where a SYMBOL_REF is not a valid
8602 address.
8604 If this is an EXPAND_SUM call, always return the sum. */
8605 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8606 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8608 if (modifier == EXPAND_STACK_PARM)
8609 target = 0;
8610 if (TREE_CODE (treeop0) == INTEGER_CST
8611 && HWI_COMPUTABLE_MODE_P (mode)
8612 && TREE_CONSTANT (treeop1))
8614 rtx constant_part;
8615 HOST_WIDE_INT wc;
8616 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8618 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8619 EXPAND_SUM);
8620 /* Use wi::shwi to ensure that the constant is
8621 truncated according to the mode of OP1, then sign extended
8622 to a HOST_WIDE_INT. Using the constant directly can result
8623 in non-canonical RTL in a 64x32 cross compile. */
8624 wc = TREE_INT_CST_LOW (treeop0);
8625 constant_part =
8626 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8627 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8628 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8629 op1 = force_operand (op1, target);
8630 return REDUCE_BIT_FIELD (op1);
8633 else if (TREE_CODE (treeop1) == INTEGER_CST
8634 && HWI_COMPUTABLE_MODE_P (mode)
8635 && TREE_CONSTANT (treeop0))
8637 rtx constant_part;
8638 HOST_WIDE_INT wc;
8639 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8641 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8642 (modifier == EXPAND_INITIALIZER
8643 ? EXPAND_INITIALIZER : EXPAND_SUM));
8644 if (! CONSTANT_P (op0))
8646 op1 = expand_expr (treeop1, NULL_RTX,
8647 VOIDmode, modifier);
8648 /* Return a PLUS if modifier says it's OK. */
8649 if (modifier == EXPAND_SUM
8650 || modifier == EXPAND_INITIALIZER)
8651 return simplify_gen_binary (PLUS, mode, op0, op1);
8652 goto binop2;
8654 /* Use wi::shwi to ensure that the constant is
8655 truncated according to the mode of OP1, then sign extended
8656 to a HOST_WIDE_INT. Using the constant directly can result
8657 in non-canonical RTL in a 64x32 cross compile. */
8658 wc = TREE_INT_CST_LOW (treeop1);
8659 constant_part
8660 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8661 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8662 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8663 op0 = force_operand (op0, target);
8664 return REDUCE_BIT_FIELD (op0);
8668 /* Use TER to expand pointer addition of a negated value
8669 as pointer subtraction. */
8670 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8671 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8672 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8673 && TREE_CODE (treeop1) == SSA_NAME
8674 && TYPE_MODE (TREE_TYPE (treeop0))
8675 == TYPE_MODE (TREE_TYPE (treeop1)))
8677 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8678 if (def)
8680 treeop1 = gimple_assign_rhs1 (def);
8681 code = MINUS_EXPR;
8682 goto do_minus;
8686 /* No sense saving up arithmetic to be done
8687 if it's all in the wrong mode to form part of an address.
8688 And force_operand won't know whether to sign-extend or
8689 zero-extend. */
8690 if (modifier != EXPAND_INITIALIZER
8691 && (modifier != EXPAND_SUM || mode != ptr_mode))
8693 expand_operands (treeop0, treeop1,
8694 subtarget, &op0, &op1, modifier);
8695 if (op0 == const0_rtx)
8696 return op1;
8697 if (op1 == const0_rtx)
8698 return op0;
8699 goto binop2;
8702 expand_operands (treeop0, treeop1,
8703 subtarget, &op0, &op1, modifier);
8704 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8706 case MINUS_EXPR:
8707 case POINTER_DIFF_EXPR:
8708 do_minus:
8709 /* For initializers, we are allowed to return a MINUS of two
8710 symbolic constants. Here we handle all cases when both operands
8711 are constant. */
8712 /* Handle difference of two symbolic constants,
8713 for the sake of an initializer. */
8714 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8715 && really_constant_p (treeop0)
8716 && really_constant_p (treeop1))
8718 expand_operands (treeop0, treeop1,
8719 NULL_RTX, &op0, &op1, modifier);
8720 return simplify_gen_binary (MINUS, mode, op0, op1);
8723 /* No sense saving up arithmetic to be done
8724 if it's all in the wrong mode to form part of an address.
8725 And force_operand won't know whether to sign-extend or
8726 zero-extend. */
8727 if (modifier != EXPAND_INITIALIZER
8728 && (modifier != EXPAND_SUM || mode != ptr_mode))
8729 goto binop;
8731 expand_operands (treeop0, treeop1,
8732 subtarget, &op0, &op1, modifier);
8734 /* Convert A - const to A + (-const). */
8735 if (CONST_INT_P (op1))
8737 op1 = negate_rtx (mode, op1);
8738 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8741 goto binop2;
8743 case WIDEN_MULT_PLUS_EXPR:
8744 case WIDEN_MULT_MINUS_EXPR:
8745 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8746 op2 = expand_normal (treeop2);
8747 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8748 target, unsignedp);
8749 return target;
8751 case WIDEN_MULT_EXPR:
8752 /* If first operand is constant, swap them.
8753 Thus the following special case checks need only
8754 check the second operand. */
8755 if (TREE_CODE (treeop0) == INTEGER_CST)
8756 std::swap (treeop0, treeop1);
8758 /* First, check if we have a multiplication of one signed and one
8759 unsigned operand. */
8760 if (TREE_CODE (treeop1) != INTEGER_CST
8761 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8762 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8764 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8765 this_optab = usmul_widen_optab;
8766 if (find_widening_optab_handler (this_optab, mode, innermode)
8767 != CODE_FOR_nothing)
8769 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8770 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8771 EXPAND_NORMAL);
8772 else
8773 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8774 EXPAND_NORMAL);
8775 /* op0 and op1 might still be constant, despite the above
8776 != INTEGER_CST check. Handle it. */
8777 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8779 op0 = convert_modes (innermode, mode, op0, true);
8780 op1 = convert_modes (innermode, mode, op1, false);
8781 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8782 target, unsignedp));
8784 goto binop3;
8787 /* Check for a multiplication with matching signedness. */
8788 else if ((TREE_CODE (treeop1) == INTEGER_CST
8789 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8790 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8791 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8793 tree op0type = TREE_TYPE (treeop0);
8794 machine_mode innermode = TYPE_MODE (op0type);
8795 bool zextend_p = TYPE_UNSIGNED (op0type);
8796 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8797 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8799 if (TREE_CODE (treeop0) != INTEGER_CST)
8801 if (find_widening_optab_handler (this_optab, mode, innermode)
8802 != CODE_FOR_nothing)
8804 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8805 EXPAND_NORMAL);
8806 /* op0 and op1 might still be constant, despite the above
8807 != INTEGER_CST check. Handle it. */
8808 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8810 widen_mult_const:
8811 op0 = convert_modes (innermode, mode, op0, zextend_p);
8813 = convert_modes (innermode, mode, op1,
8814 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8815 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8816 target,
8817 unsignedp));
8819 temp = expand_widening_mult (mode, op0, op1, target,
8820 unsignedp, this_optab);
8821 return REDUCE_BIT_FIELD (temp);
8823 if (find_widening_optab_handler (other_optab, mode, innermode)
8824 != CODE_FOR_nothing
8825 && innermode == word_mode)
8827 rtx htem, hipart;
8828 op0 = expand_normal (treeop0);
8829 if (TREE_CODE (treeop1) == INTEGER_CST)
8830 op1 = convert_modes (word_mode, mode,
8831 expand_normal (treeop1),
8832 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8833 else
8834 op1 = expand_normal (treeop1);
8835 /* op0 and op1 might still be constant, despite the above
8836 != INTEGER_CST check. Handle it. */
8837 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8838 goto widen_mult_const;
8839 temp = expand_binop (mode, other_optab, op0, op1, target,
8840 unsignedp, OPTAB_LIB_WIDEN);
8841 hipart = gen_highpart (word_mode, temp);
8842 htem = expand_mult_highpart_adjust (word_mode, hipart,
8843 op0, op1, hipart,
8844 zextend_p);
8845 if (htem != hipart)
8846 emit_move_insn (hipart, htem);
8847 return REDUCE_BIT_FIELD (temp);
8851 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8852 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8853 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8854 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8856 case FMA_EXPR:
8858 optab opt = fma_optab;
8859 gimple *def0, *def2;
8861 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8862 call. */
8863 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8865 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8866 tree call_expr;
8868 gcc_assert (fn != NULL_TREE);
8869 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8870 return expand_builtin (call_expr, target, subtarget, mode, false);
8873 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8874 /* The multiplication is commutative - look at its 2nd operand
8875 if the first isn't fed by a negate. */
8876 if (!def0)
8878 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8879 /* Swap operands if the 2nd operand is fed by a negate. */
8880 if (def0)
8881 std::swap (treeop0, treeop1);
8883 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8885 op0 = op2 = NULL;
8887 if (def0 && def2
8888 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8890 opt = fnms_optab;
8891 op0 = expand_normal (gimple_assign_rhs1 (def0));
8892 op2 = expand_normal (gimple_assign_rhs1 (def2));
8894 else if (def0
8895 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8897 opt = fnma_optab;
8898 op0 = expand_normal (gimple_assign_rhs1 (def0));
8900 else if (def2
8901 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8903 opt = fms_optab;
8904 op2 = expand_normal (gimple_assign_rhs1 (def2));
8907 if (op0 == NULL)
8908 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8909 if (op2 == NULL)
8910 op2 = expand_normal (treeop2);
8911 op1 = expand_normal (treeop1);
8913 return expand_ternary_op (TYPE_MODE (type), opt,
8914 op0, op1, op2, target, 0);
8917 case MULT_EXPR:
8918 /* If this is a fixed-point operation, then we cannot use the code
8919 below because "expand_mult" doesn't support sat/no-sat fixed-point
8920 multiplications. */
8921 if (ALL_FIXED_POINT_MODE_P (mode))
8922 goto binop;
8924 /* If first operand is constant, swap them.
8925 Thus the following special case checks need only
8926 check the second operand. */
8927 if (TREE_CODE (treeop0) == INTEGER_CST)
8928 std::swap (treeop0, treeop1);
8930 /* Attempt to return something suitable for generating an
8931 indexed address, for machines that support that. */
8933 if (modifier == EXPAND_SUM && mode == ptr_mode
8934 && tree_fits_shwi_p (treeop1))
8936 tree exp1 = treeop1;
8938 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8939 EXPAND_SUM);
8941 if (!REG_P (op0))
8942 op0 = force_operand (op0, NULL_RTX);
8943 if (!REG_P (op0))
8944 op0 = copy_to_mode_reg (mode, op0);
8946 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8947 gen_int_mode (tree_to_shwi (exp1),
8948 TYPE_MODE (TREE_TYPE (exp1)))));
8951 if (modifier == EXPAND_STACK_PARM)
8952 target = 0;
8954 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8955 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8957 case TRUNC_MOD_EXPR:
8958 case FLOOR_MOD_EXPR:
8959 case CEIL_MOD_EXPR:
8960 case ROUND_MOD_EXPR:
8962 case TRUNC_DIV_EXPR:
8963 case FLOOR_DIV_EXPR:
8964 case CEIL_DIV_EXPR:
8965 case ROUND_DIV_EXPR:
8966 case EXACT_DIV_EXPR:
8968 /* If this is a fixed-point operation, then we cannot use the code
8969 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8970 divisions. */
8971 if (ALL_FIXED_POINT_MODE_P (mode))
8972 goto binop;
8974 if (modifier == EXPAND_STACK_PARM)
8975 target = 0;
8976 /* Possible optimization: compute the dividend with EXPAND_SUM
8977 then if the divisor is constant can optimize the case
8978 where some terms of the dividend have coeffs divisible by it. */
8979 expand_operands (treeop0, treeop1,
8980 subtarget, &op0, &op1, EXPAND_NORMAL);
8981 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8982 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8983 if (SCALAR_INT_MODE_P (mode)
8984 && optimize >= 2
8985 && get_range_pos_neg (treeop0) == 1
8986 && get_range_pos_neg (treeop1) == 1)
8988 /* If both arguments are known to be positive when interpreted
8989 as signed, we can expand it as both signed and unsigned
8990 division or modulo. Choose the cheaper sequence in that case. */
8991 bool speed_p = optimize_insn_for_speed_p ();
8992 do_pending_stack_adjust ();
8993 start_sequence ();
8994 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8995 rtx_insn *uns_insns = get_insns ();
8996 end_sequence ();
8997 start_sequence ();
8998 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8999 rtx_insn *sgn_insns = get_insns ();
9000 end_sequence ();
9001 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9002 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9004 /* If costs are the same then use as tie breaker the other
9005 other factor. */
9006 if (uns_cost == sgn_cost)
9008 uns_cost = seq_cost (uns_insns, !speed_p);
9009 sgn_cost = seq_cost (sgn_insns, !speed_p);
9012 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9014 emit_insn (uns_insns);
9015 return uns_ret;
9017 emit_insn (sgn_insns);
9018 return sgn_ret;
9020 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9022 case RDIV_EXPR:
9023 goto binop;
9025 case MULT_HIGHPART_EXPR:
9026 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9027 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9028 gcc_assert (temp);
9029 return temp;
9031 case FIXED_CONVERT_EXPR:
9032 op0 = expand_normal (treeop0);
9033 if (target == 0 || modifier == EXPAND_STACK_PARM)
9034 target = gen_reg_rtx (mode);
9036 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9037 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9038 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9039 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9040 else
9041 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9042 return target;
9044 case FIX_TRUNC_EXPR:
9045 op0 = expand_normal (treeop0);
9046 if (target == 0 || modifier == EXPAND_STACK_PARM)
9047 target = gen_reg_rtx (mode);
9048 expand_fix (target, op0, unsignedp);
9049 return target;
9051 case FLOAT_EXPR:
9052 op0 = expand_normal (treeop0);
9053 if (target == 0 || modifier == EXPAND_STACK_PARM)
9054 target = gen_reg_rtx (mode);
9055 /* expand_float can't figure out what to do if FROM has VOIDmode.
9056 So give it the correct mode. With -O, cse will optimize this. */
9057 if (GET_MODE (op0) == VOIDmode)
9058 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9059 op0);
9060 expand_float (target, op0,
9061 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9062 return target;
9064 case NEGATE_EXPR:
9065 op0 = expand_expr (treeop0, subtarget,
9066 VOIDmode, EXPAND_NORMAL);
9067 if (modifier == EXPAND_STACK_PARM)
9068 target = 0;
9069 temp = expand_unop (mode,
9070 optab_for_tree_code (NEGATE_EXPR, type,
9071 optab_default),
9072 op0, target, 0);
9073 gcc_assert (temp);
9074 return REDUCE_BIT_FIELD (temp);
9076 case ABS_EXPR:
9077 op0 = expand_expr (treeop0, subtarget,
9078 VOIDmode, EXPAND_NORMAL);
9079 if (modifier == EXPAND_STACK_PARM)
9080 target = 0;
9082 /* ABS_EXPR is not valid for complex arguments. */
9083 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9084 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9086 /* Unsigned abs is simply the operand. Testing here means we don't
9087 risk generating incorrect code below. */
9088 if (TYPE_UNSIGNED (type))
9089 return op0;
9091 return expand_abs (mode, op0, target, unsignedp,
9092 safe_from_p (target, treeop0, 1));
9094 case MAX_EXPR:
9095 case MIN_EXPR:
9096 target = original_target;
9097 if (target == 0
9098 || modifier == EXPAND_STACK_PARM
9099 || (MEM_P (target) && MEM_VOLATILE_P (target))
9100 || GET_MODE (target) != mode
9101 || (REG_P (target)
9102 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9103 target = gen_reg_rtx (mode);
9104 expand_operands (treeop0, treeop1,
9105 target, &op0, &op1, EXPAND_NORMAL);
9107 /* First try to do it with a special MIN or MAX instruction.
9108 If that does not win, use a conditional jump to select the proper
9109 value. */
9110 this_optab = optab_for_tree_code (code, type, optab_default);
9111 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9112 OPTAB_WIDEN);
9113 if (temp != 0)
9114 return temp;
9116 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9117 and similarly for MAX <x, y>. */
9118 if (VECTOR_TYPE_P (type))
9120 tree t0 = make_tree (type, op0);
9121 tree t1 = make_tree (type, op1);
9122 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9123 type, t0, t1);
9124 return expand_vec_cond_expr (type, comparison, t0, t1,
9125 original_target);
9128 /* At this point, a MEM target is no longer useful; we will get better
9129 code without it. */
9131 if (! REG_P (target))
9132 target = gen_reg_rtx (mode);
9134 /* If op1 was placed in target, swap op0 and op1. */
9135 if (target != op0 && target == op1)
9136 std::swap (op0, op1);
9138 /* We generate better code and avoid problems with op1 mentioning
9139 target by forcing op1 into a pseudo if it isn't a constant. */
9140 if (! CONSTANT_P (op1))
9141 op1 = force_reg (mode, op1);
9144 enum rtx_code comparison_code;
9145 rtx cmpop1 = op1;
9147 if (code == MAX_EXPR)
9148 comparison_code = unsignedp ? GEU : GE;
9149 else
9150 comparison_code = unsignedp ? LEU : LE;
9152 /* Canonicalize to comparisons against 0. */
9153 if (op1 == const1_rtx)
9155 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9156 or (a != 0 ? a : 1) for unsigned.
9157 For MIN we are safe converting (a <= 1 ? a : 1)
9158 into (a <= 0 ? a : 1) */
9159 cmpop1 = const0_rtx;
9160 if (code == MAX_EXPR)
9161 comparison_code = unsignedp ? NE : GT;
9163 if (op1 == constm1_rtx && !unsignedp)
9165 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9166 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9167 cmpop1 = const0_rtx;
9168 if (code == MIN_EXPR)
9169 comparison_code = LT;
9172 /* Use a conditional move if possible. */
9173 if (can_conditionally_move_p (mode))
9175 rtx insn;
9177 start_sequence ();
9179 /* Try to emit the conditional move. */
9180 insn = emit_conditional_move (target, comparison_code,
9181 op0, cmpop1, mode,
9182 op0, op1, mode,
9183 unsignedp);
9185 /* If we could do the conditional move, emit the sequence,
9186 and return. */
9187 if (insn)
9189 rtx_insn *seq = get_insns ();
9190 end_sequence ();
9191 emit_insn (seq);
9192 return target;
9195 /* Otherwise discard the sequence and fall back to code with
9196 branches. */
9197 end_sequence ();
9200 if (target != op0)
9201 emit_move_insn (target, op0);
9203 lab = gen_label_rtx ();
9204 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9205 unsignedp, mode, NULL_RTX, NULL, lab,
9206 profile_probability::uninitialized ());
9208 emit_move_insn (target, op1);
9209 emit_label (lab);
9210 return target;
9212 case BIT_NOT_EXPR:
9213 op0 = expand_expr (treeop0, subtarget,
9214 VOIDmode, EXPAND_NORMAL);
9215 if (modifier == EXPAND_STACK_PARM)
9216 target = 0;
9217 /* In case we have to reduce the result to bitfield precision
9218 for unsigned bitfield expand this as XOR with a proper constant
9219 instead. */
9220 if (reduce_bit_field && TYPE_UNSIGNED (type))
9222 int_mode = SCALAR_INT_TYPE_MODE (type);
9223 wide_int mask = wi::mask (TYPE_PRECISION (type),
9224 false, GET_MODE_PRECISION (int_mode));
9226 temp = expand_binop (int_mode, xor_optab, op0,
9227 immed_wide_int_const (mask, int_mode),
9228 target, 1, OPTAB_LIB_WIDEN);
9230 else
9231 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9232 gcc_assert (temp);
9233 return temp;
9235 /* ??? Can optimize bitwise operations with one arg constant.
9236 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9237 and (a bitwise1 b) bitwise2 b (etc)
9238 but that is probably not worth while. */
9240 case BIT_AND_EXPR:
9241 case BIT_IOR_EXPR:
9242 case BIT_XOR_EXPR:
9243 goto binop;
9245 case LROTATE_EXPR:
9246 case RROTATE_EXPR:
9247 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9248 || type_has_mode_precision_p (type));
9249 /* fall through */
9251 case LSHIFT_EXPR:
9252 case RSHIFT_EXPR:
9254 /* If this is a fixed-point operation, then we cannot use the code
9255 below because "expand_shift" doesn't support sat/no-sat fixed-point
9256 shifts. */
9257 if (ALL_FIXED_POINT_MODE_P (mode))
9258 goto binop;
9260 if (! safe_from_p (subtarget, treeop1, 1))
9261 subtarget = 0;
9262 if (modifier == EXPAND_STACK_PARM)
9263 target = 0;
9264 op0 = expand_expr (treeop0, subtarget,
9265 VOIDmode, EXPAND_NORMAL);
9267 /* Left shift optimization when shifting across word_size boundary.
9269 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9270 there isn't native instruction to support this wide mode
9271 left shift. Given below scenario:
9273 Type A = (Type) B << C
9275 |< T >|
9276 | dest_high | dest_low |
9278 | word_size |
9280 If the shift amount C caused we shift B to across the word
9281 size boundary, i.e part of B shifted into high half of
9282 destination register, and part of B remains in the low
9283 half, then GCC will use the following left shift expand
9284 logic:
9286 1. Initialize dest_low to B.
9287 2. Initialize every bit of dest_high to the sign bit of B.
9288 3. Logic left shift dest_low by C bit to finalize dest_low.
9289 The value of dest_low before this shift is kept in a temp D.
9290 4. Logic left shift dest_high by C.
9291 5. Logic right shift D by (word_size - C).
9292 6. Or the result of 4 and 5 to finalize dest_high.
9294 While, by checking gimple statements, if operand B is
9295 coming from signed extension, then we can simplify above
9296 expand logic into:
9298 1. dest_high = src_low >> (word_size - C).
9299 2. dest_low = src_low << C.
9301 We can use one arithmetic right shift to finish all the
9302 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9303 needed from 6 into 2.
9305 The case is similar for zero extension, except that we
9306 initialize dest_high to zero rather than copies of the sign
9307 bit from B. Furthermore, we need to use a logical right shift
9308 in this case.
9310 The choice of sign-extension versus zero-extension is
9311 determined entirely by whether or not B is signed and is
9312 independent of the current setting of unsignedp. */
9314 temp = NULL_RTX;
9315 if (code == LSHIFT_EXPR
9316 && target
9317 && REG_P (target)
9318 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9319 && mode == int_mode
9320 && TREE_CONSTANT (treeop1)
9321 && TREE_CODE (treeop0) == SSA_NAME)
9323 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9324 if (is_gimple_assign (def)
9325 && gimple_assign_rhs_code (def) == NOP_EXPR)
9327 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9328 (TREE_TYPE (gimple_assign_rhs1 (def)));
9330 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9331 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9332 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9333 >= GET_MODE_BITSIZE (word_mode)))
9335 rtx_insn *seq, *seq_old;
9336 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9337 int_mode);
9338 bool extend_unsigned
9339 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9340 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9341 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9342 rtx dest_high = simplify_gen_subreg (word_mode, target,
9343 int_mode, high_off);
9344 HOST_WIDE_INT ramount = (BITS_PER_WORD
9345 - TREE_INT_CST_LOW (treeop1));
9346 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9348 start_sequence ();
9349 /* dest_high = src_low >> (word_size - C). */
9350 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9351 rshift, dest_high,
9352 extend_unsigned);
9353 if (temp != dest_high)
9354 emit_move_insn (dest_high, temp);
9356 /* dest_low = src_low << C. */
9357 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9358 treeop1, dest_low, unsignedp);
9359 if (temp != dest_low)
9360 emit_move_insn (dest_low, temp);
9362 seq = get_insns ();
9363 end_sequence ();
9364 temp = target ;
9366 if (have_insn_for (ASHIFT, int_mode))
9368 bool speed_p = optimize_insn_for_speed_p ();
9369 start_sequence ();
9370 rtx ret_old = expand_variable_shift (code, int_mode,
9371 op0, treeop1,
9372 target,
9373 unsignedp);
9375 seq_old = get_insns ();
9376 end_sequence ();
9377 if (seq_cost (seq, speed_p)
9378 >= seq_cost (seq_old, speed_p))
9380 seq = seq_old;
9381 temp = ret_old;
9384 emit_insn (seq);
9389 if (temp == NULL_RTX)
9390 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9391 unsignedp);
9392 if (code == LSHIFT_EXPR)
9393 temp = REDUCE_BIT_FIELD (temp);
9394 return temp;
9397 /* Could determine the answer when only additive constants differ. Also,
9398 the addition of one can be handled by changing the condition. */
9399 case LT_EXPR:
9400 case LE_EXPR:
9401 case GT_EXPR:
9402 case GE_EXPR:
9403 case EQ_EXPR:
9404 case NE_EXPR:
9405 case UNORDERED_EXPR:
9406 case ORDERED_EXPR:
9407 case UNLT_EXPR:
9408 case UNLE_EXPR:
9409 case UNGT_EXPR:
9410 case UNGE_EXPR:
9411 case UNEQ_EXPR:
9412 case LTGT_EXPR:
9414 temp = do_store_flag (ops,
9415 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9416 tmode != VOIDmode ? tmode : mode);
9417 if (temp)
9418 return temp;
9420 /* Use a compare and a jump for BLKmode comparisons, or for function
9421 type comparisons is have_canonicalize_funcptr_for_compare. */
9423 if ((target == 0
9424 || modifier == EXPAND_STACK_PARM
9425 || ! safe_from_p (target, treeop0, 1)
9426 || ! safe_from_p (target, treeop1, 1)
9427 /* Make sure we don't have a hard reg (such as function's return
9428 value) live across basic blocks, if not optimizing. */
9429 || (!optimize && REG_P (target)
9430 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9431 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9433 emit_move_insn (target, const0_rtx);
9435 rtx_code_label *lab1 = gen_label_rtx ();
9436 jumpifnot_1 (code, treeop0, treeop1, lab1,
9437 profile_probability::uninitialized ());
9439 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9440 emit_move_insn (target, constm1_rtx);
9441 else
9442 emit_move_insn (target, const1_rtx);
9444 emit_label (lab1);
9445 return target;
9447 case COMPLEX_EXPR:
9448 /* Get the rtx code of the operands. */
9449 op0 = expand_normal (treeop0);
9450 op1 = expand_normal (treeop1);
9452 if (!target)
9453 target = gen_reg_rtx (TYPE_MODE (type));
9454 else
9455 /* If target overlaps with op1, then either we need to force
9456 op1 into a pseudo (if target also overlaps with op0),
9457 or write the complex parts in reverse order. */
9458 switch (GET_CODE (target))
9460 case CONCAT:
9461 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9463 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9465 complex_expr_force_op1:
9466 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9467 emit_move_insn (temp, op1);
9468 op1 = temp;
9469 break;
9471 complex_expr_swap_order:
9472 /* Move the imaginary (op1) and real (op0) parts to their
9473 location. */
9474 write_complex_part (target, op1, true);
9475 write_complex_part (target, op0, false);
9477 return target;
9479 break;
9480 case MEM:
9481 temp = adjust_address_nv (target,
9482 GET_MODE_INNER (GET_MODE (target)), 0);
9483 if (reg_overlap_mentioned_p (temp, op1))
9485 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9486 temp = adjust_address_nv (target, imode,
9487 GET_MODE_SIZE (imode));
9488 if (reg_overlap_mentioned_p (temp, op0))
9489 goto complex_expr_force_op1;
9490 goto complex_expr_swap_order;
9492 break;
9493 default:
9494 if (reg_overlap_mentioned_p (target, op1))
9496 if (reg_overlap_mentioned_p (target, op0))
9497 goto complex_expr_force_op1;
9498 goto complex_expr_swap_order;
9500 break;
9503 /* Move the real (op0) and imaginary (op1) parts to their location. */
9504 write_complex_part (target, op0, false);
9505 write_complex_part (target, op1, true);
9507 return target;
9509 case WIDEN_SUM_EXPR:
9511 tree oprnd0 = treeop0;
9512 tree oprnd1 = treeop1;
9514 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9515 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9516 target, unsignedp);
9517 return target;
9520 case VEC_UNPACK_HI_EXPR:
9521 case VEC_UNPACK_LO_EXPR:
9523 op0 = expand_normal (treeop0);
9524 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9525 target, unsignedp);
9526 gcc_assert (temp);
9527 return temp;
9530 case VEC_UNPACK_FLOAT_HI_EXPR:
9531 case VEC_UNPACK_FLOAT_LO_EXPR:
9533 op0 = expand_normal (treeop0);
9534 /* The signedness is determined from input operand. */
9535 temp = expand_widen_pattern_expr
9536 (ops, op0, NULL_RTX, NULL_RTX,
9537 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9539 gcc_assert (temp);
9540 return temp;
9543 case VEC_WIDEN_MULT_HI_EXPR:
9544 case VEC_WIDEN_MULT_LO_EXPR:
9545 case VEC_WIDEN_MULT_EVEN_EXPR:
9546 case VEC_WIDEN_MULT_ODD_EXPR:
9547 case VEC_WIDEN_LSHIFT_HI_EXPR:
9548 case VEC_WIDEN_LSHIFT_LO_EXPR:
9549 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9550 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9551 target, unsignedp);
9552 gcc_assert (target);
9553 return target;
9555 case VEC_PACK_TRUNC_EXPR:
9556 case VEC_PACK_SAT_EXPR:
9557 case VEC_PACK_FIX_TRUNC_EXPR:
9558 mode = TYPE_MODE (TREE_TYPE (treeop0));
9559 goto binop;
9561 case VEC_PERM_EXPR:
9563 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9564 vec_perm_builder sel;
9565 if (TREE_CODE (treeop2) == VECTOR_CST
9566 && tree_to_vec_perm_builder (&sel, treeop2))
9568 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9569 temp = expand_vec_perm_const (mode, op0, op1, sel,
9570 sel_mode, target);
9572 else
9574 op2 = expand_normal (treeop2);
9575 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9577 gcc_assert (temp);
9578 return temp;
9581 case DOT_PROD_EXPR:
9583 tree oprnd0 = treeop0;
9584 tree oprnd1 = treeop1;
9585 tree oprnd2 = treeop2;
9586 rtx op2;
9588 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9589 op2 = expand_normal (oprnd2);
9590 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9591 target, unsignedp);
9592 return target;
9595 case SAD_EXPR:
9597 tree oprnd0 = treeop0;
9598 tree oprnd1 = treeop1;
9599 tree oprnd2 = treeop2;
9600 rtx op2;
9602 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9603 op2 = expand_normal (oprnd2);
9604 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9605 target, unsignedp);
9606 return target;
9609 case REALIGN_LOAD_EXPR:
9611 tree oprnd0 = treeop0;
9612 tree oprnd1 = treeop1;
9613 tree oprnd2 = treeop2;
9614 rtx op2;
9616 this_optab = optab_for_tree_code (code, type, optab_default);
9617 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9618 op2 = expand_normal (oprnd2);
9619 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9620 target, unsignedp);
9621 gcc_assert (temp);
9622 return temp;
9625 case COND_EXPR:
9627 /* A COND_EXPR with its type being VOID_TYPE represents a
9628 conditional jump and is handled in
9629 expand_gimple_cond_expr. */
9630 gcc_assert (!VOID_TYPE_P (type));
9632 /* Note that COND_EXPRs whose type is a structure or union
9633 are required to be constructed to contain assignments of
9634 a temporary variable, so that we can evaluate them here
9635 for side effect only. If type is void, we must do likewise. */
9637 gcc_assert (!TREE_ADDRESSABLE (type)
9638 && !ignore
9639 && TREE_TYPE (treeop1) != void_type_node
9640 && TREE_TYPE (treeop2) != void_type_node);
9642 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9643 if (temp)
9644 return temp;
9646 /* If we are not to produce a result, we have no target. Otherwise,
9647 if a target was specified use it; it will not be used as an
9648 intermediate target unless it is safe. If no target, use a
9649 temporary. */
9651 if (modifier != EXPAND_STACK_PARM
9652 && original_target
9653 && safe_from_p (original_target, treeop0, 1)
9654 && GET_MODE (original_target) == mode
9655 && !MEM_P (original_target))
9656 temp = original_target;
9657 else
9658 temp = assign_temp (type, 0, 1);
9660 do_pending_stack_adjust ();
9661 NO_DEFER_POP;
9662 rtx_code_label *lab0 = gen_label_rtx ();
9663 rtx_code_label *lab1 = gen_label_rtx ();
9664 jumpifnot (treeop0, lab0,
9665 profile_probability::uninitialized ());
9666 store_expr (treeop1, temp,
9667 modifier == EXPAND_STACK_PARM,
9668 false, false);
9670 emit_jump_insn (targetm.gen_jump (lab1));
9671 emit_barrier ();
9672 emit_label (lab0);
9673 store_expr (treeop2, temp,
9674 modifier == EXPAND_STACK_PARM,
9675 false, false);
9677 emit_label (lab1);
9678 OK_DEFER_POP;
9679 return temp;
9682 case VEC_COND_EXPR:
9683 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9684 return target;
9686 case VEC_DUPLICATE_EXPR:
9687 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9688 target = expand_vector_broadcast (mode, op0);
9689 gcc_assert (target);
9690 return target;
9692 case VEC_SERIES_EXPR:
9693 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9694 return expand_vec_series_expr (mode, op0, op1, target);
9696 case BIT_INSERT_EXPR:
9698 unsigned bitpos = tree_to_uhwi (treeop2);
9699 unsigned bitsize;
9700 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9701 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9702 else
9703 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9704 rtx op0 = expand_normal (treeop0);
9705 rtx op1 = expand_normal (treeop1);
9706 rtx dst = gen_reg_rtx (mode);
9707 emit_move_insn (dst, op0);
9708 store_bit_field (dst, bitsize, bitpos, 0, 0,
9709 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9710 return dst;
9713 default:
9714 gcc_unreachable ();
9717 /* Here to do an ordinary binary operator. */
9718 binop:
9719 expand_operands (treeop0, treeop1,
9720 subtarget, &op0, &op1, EXPAND_NORMAL);
9721 binop2:
9722 this_optab = optab_for_tree_code (code, type, optab_default);
9723 binop3:
9724 if (modifier == EXPAND_STACK_PARM)
9725 target = 0;
9726 temp = expand_binop (mode, this_optab, op0, op1, target,
9727 unsignedp, OPTAB_LIB_WIDEN);
9728 gcc_assert (temp);
9729 /* Bitwise operations do not need bitfield reduction as we expect their
9730 operands being properly truncated. */
9731 if (code == BIT_XOR_EXPR
9732 || code == BIT_AND_EXPR
9733 || code == BIT_IOR_EXPR)
9734 return temp;
9735 return REDUCE_BIT_FIELD (temp);
9737 #undef REDUCE_BIT_FIELD
9740 /* Return TRUE if expression STMT is suitable for replacement.
9741 Never consider memory loads as replaceable, because those don't ever lead
9742 into constant expressions. */
9744 static bool
9745 stmt_is_replaceable_p (gimple *stmt)
9747 if (ssa_is_replaceable_p (stmt))
9749 /* Don't move around loads. */
9750 if (!gimple_assign_single_p (stmt)
9751 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9752 return true;
9754 return false;
9758 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9759 enum expand_modifier modifier, rtx *alt_rtl,
9760 bool inner_reference_p)
9762 rtx op0, op1, temp, decl_rtl;
9763 tree type;
9764 int unsignedp;
9765 machine_mode mode, dmode;
9766 enum tree_code code = TREE_CODE (exp);
9767 rtx subtarget, original_target;
9768 int ignore;
9769 tree context;
9770 bool reduce_bit_field;
9771 location_t loc = EXPR_LOCATION (exp);
9772 struct separate_ops ops;
9773 tree treeop0, treeop1, treeop2;
9774 tree ssa_name = NULL_TREE;
9775 gimple *g;
9777 type = TREE_TYPE (exp);
9778 mode = TYPE_MODE (type);
9779 unsignedp = TYPE_UNSIGNED (type);
9781 treeop0 = treeop1 = treeop2 = NULL_TREE;
9782 if (!VL_EXP_CLASS_P (exp))
9783 switch (TREE_CODE_LENGTH (code))
9785 default:
9786 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9787 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9788 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9789 case 0: break;
9791 ops.code = code;
9792 ops.type = type;
9793 ops.op0 = treeop0;
9794 ops.op1 = treeop1;
9795 ops.op2 = treeop2;
9796 ops.location = loc;
9798 ignore = (target == const0_rtx
9799 || ((CONVERT_EXPR_CODE_P (code)
9800 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9801 && TREE_CODE (type) == VOID_TYPE));
9803 /* An operation in what may be a bit-field type needs the
9804 result to be reduced to the precision of the bit-field type,
9805 which is narrower than that of the type's mode. */
9806 reduce_bit_field = (!ignore
9807 && INTEGRAL_TYPE_P (type)
9808 && !type_has_mode_precision_p (type));
9810 /* If we are going to ignore this result, we need only do something
9811 if there is a side-effect somewhere in the expression. If there
9812 is, short-circuit the most common cases here. Note that we must
9813 not call expand_expr with anything but const0_rtx in case this
9814 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9816 if (ignore)
9818 if (! TREE_SIDE_EFFECTS (exp))
9819 return const0_rtx;
9821 /* Ensure we reference a volatile object even if value is ignored, but
9822 don't do this if all we are doing is taking its address. */
9823 if (TREE_THIS_VOLATILE (exp)
9824 && TREE_CODE (exp) != FUNCTION_DECL
9825 && mode != VOIDmode && mode != BLKmode
9826 && modifier != EXPAND_CONST_ADDRESS)
9828 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9829 if (MEM_P (temp))
9830 copy_to_reg (temp);
9831 return const0_rtx;
9834 if (TREE_CODE_CLASS (code) == tcc_unary
9835 || code == BIT_FIELD_REF
9836 || code == COMPONENT_REF
9837 || code == INDIRECT_REF)
9838 return expand_expr (treeop0, const0_rtx, VOIDmode,
9839 modifier);
9841 else if (TREE_CODE_CLASS (code) == tcc_binary
9842 || TREE_CODE_CLASS (code) == tcc_comparison
9843 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9845 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9846 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9847 return const0_rtx;
9850 target = 0;
9853 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9854 target = 0;
9856 /* Use subtarget as the target for operand 0 of a binary operation. */
9857 subtarget = get_subtarget (target);
9858 original_target = target;
9860 switch (code)
9862 case LABEL_DECL:
9864 tree function = decl_function_context (exp);
9866 temp = label_rtx (exp);
9867 temp = gen_rtx_LABEL_REF (Pmode, temp);
9869 if (function != current_function_decl
9870 && function != 0)
9871 LABEL_REF_NONLOCAL_P (temp) = 1;
9873 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9874 return temp;
9877 case SSA_NAME:
9878 /* ??? ivopts calls expander, without any preparation from
9879 out-of-ssa. So fake instructions as if this was an access to the
9880 base variable. This unnecessarily allocates a pseudo, see how we can
9881 reuse it, if partition base vars have it set already. */
9882 if (!currently_expanding_to_rtl)
9884 tree var = SSA_NAME_VAR (exp);
9885 if (var && DECL_RTL_SET_P (var))
9886 return DECL_RTL (var);
9887 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9888 LAST_VIRTUAL_REGISTER + 1);
9891 g = get_gimple_for_ssa_name (exp);
9892 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9893 if (g == NULL
9894 && modifier == EXPAND_INITIALIZER
9895 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9896 && (optimize || !SSA_NAME_VAR (exp)
9897 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9898 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9899 g = SSA_NAME_DEF_STMT (exp);
9900 if (g)
9902 rtx r;
9903 location_t saved_loc = curr_insn_location ();
9904 location_t loc = gimple_location (g);
9905 if (loc != UNKNOWN_LOCATION)
9906 set_curr_insn_location (loc);
9907 ops.code = gimple_assign_rhs_code (g);
9908 switch (get_gimple_rhs_class (ops.code))
9910 case GIMPLE_TERNARY_RHS:
9911 ops.op2 = gimple_assign_rhs3 (g);
9912 /* Fallthru */
9913 case GIMPLE_BINARY_RHS:
9914 ops.op1 = gimple_assign_rhs2 (g);
9916 /* Try to expand conditonal compare. */
9917 if (targetm.gen_ccmp_first)
9919 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9920 r = expand_ccmp_expr (g, mode);
9921 if (r)
9922 break;
9924 /* Fallthru */
9925 case GIMPLE_UNARY_RHS:
9926 ops.op0 = gimple_assign_rhs1 (g);
9927 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9928 ops.location = loc;
9929 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9930 break;
9931 case GIMPLE_SINGLE_RHS:
9933 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9934 tmode, modifier, alt_rtl,
9935 inner_reference_p);
9936 break;
9938 default:
9939 gcc_unreachable ();
9941 set_curr_insn_location (saved_loc);
9942 if (REG_P (r) && !REG_EXPR (r))
9943 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9944 return r;
9947 ssa_name = exp;
9948 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9949 exp = SSA_NAME_VAR (ssa_name);
9950 goto expand_decl_rtl;
9952 case PARM_DECL:
9953 case VAR_DECL:
9954 /* If a static var's type was incomplete when the decl was written,
9955 but the type is complete now, lay out the decl now. */
9956 if (DECL_SIZE (exp) == 0
9957 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9958 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9959 layout_decl (exp, 0);
9961 /* fall through */
9963 case FUNCTION_DECL:
9964 case RESULT_DECL:
9965 decl_rtl = DECL_RTL (exp);
9966 expand_decl_rtl:
9967 gcc_assert (decl_rtl);
9969 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9970 settings for VECTOR_TYPE_P that might switch for the function. */
9971 if (currently_expanding_to_rtl
9972 && code == VAR_DECL && MEM_P (decl_rtl)
9973 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9974 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9975 else
9976 decl_rtl = copy_rtx (decl_rtl);
9978 /* Record writes to register variables. */
9979 if (modifier == EXPAND_WRITE
9980 && REG_P (decl_rtl)
9981 && HARD_REGISTER_P (decl_rtl))
9982 add_to_hard_reg_set (&crtl->asm_clobbers,
9983 GET_MODE (decl_rtl), REGNO (decl_rtl));
9985 /* Ensure variable marked as used even if it doesn't go through
9986 a parser. If it hasn't be used yet, write out an external
9987 definition. */
9988 if (exp)
9989 TREE_USED (exp) = 1;
9991 /* Show we haven't gotten RTL for this yet. */
9992 temp = 0;
9994 /* Variables inherited from containing functions should have
9995 been lowered by this point. */
9996 if (exp)
9997 context = decl_function_context (exp);
9998 gcc_assert (!exp
9999 || SCOPE_FILE_SCOPE_P (context)
10000 || context == current_function_decl
10001 || TREE_STATIC (exp)
10002 || DECL_EXTERNAL (exp)
10003 /* ??? C++ creates functions that are not TREE_STATIC. */
10004 || TREE_CODE (exp) == FUNCTION_DECL);
10006 /* This is the case of an array whose size is to be determined
10007 from its initializer, while the initializer is still being parsed.
10008 ??? We aren't parsing while expanding anymore. */
10010 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10011 temp = validize_mem (decl_rtl);
10013 /* If DECL_RTL is memory, we are in the normal case and the
10014 address is not valid, get the address into a register. */
10016 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10018 if (alt_rtl)
10019 *alt_rtl = decl_rtl;
10020 decl_rtl = use_anchored_address (decl_rtl);
10021 if (modifier != EXPAND_CONST_ADDRESS
10022 && modifier != EXPAND_SUM
10023 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10024 : GET_MODE (decl_rtl),
10025 XEXP (decl_rtl, 0),
10026 MEM_ADDR_SPACE (decl_rtl)))
10027 temp = replace_equiv_address (decl_rtl,
10028 copy_rtx (XEXP (decl_rtl, 0)));
10031 /* If we got something, return it. But first, set the alignment
10032 if the address is a register. */
10033 if (temp != 0)
10035 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10036 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10038 return temp;
10041 if (exp)
10042 dmode = DECL_MODE (exp);
10043 else
10044 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10046 /* If the mode of DECL_RTL does not match that of the decl,
10047 there are two cases: we are dealing with a BLKmode value
10048 that is returned in a register, or we are dealing with
10049 a promoted value. In the latter case, return a SUBREG
10050 of the wanted mode, but mark it so that we know that it
10051 was already extended. */
10052 if (REG_P (decl_rtl)
10053 && dmode != BLKmode
10054 && GET_MODE (decl_rtl) != dmode)
10056 machine_mode pmode;
10058 /* Get the signedness to be used for this variable. Ensure we get
10059 the same mode we got when the variable was declared. */
10060 if (code != SSA_NAME)
10061 pmode = promote_decl_mode (exp, &unsignedp);
10062 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10063 && gimple_code (g) == GIMPLE_CALL
10064 && !gimple_call_internal_p (g))
10065 pmode = promote_function_mode (type, mode, &unsignedp,
10066 gimple_call_fntype (g),
10068 else
10069 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10070 gcc_assert (GET_MODE (decl_rtl) == pmode);
10072 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10073 SUBREG_PROMOTED_VAR_P (temp) = 1;
10074 SUBREG_PROMOTED_SET (temp, unsignedp);
10075 return temp;
10078 return decl_rtl;
10080 case INTEGER_CST:
10082 /* Given that TYPE_PRECISION (type) is not always equal to
10083 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10084 the former to the latter according to the signedness of the
10085 type. */
10086 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
10087 temp = immed_wide_int_const
10088 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
10089 return temp;
10092 case VECTOR_CST:
10094 tree tmp = NULL_TREE;
10095 if (VECTOR_MODE_P (mode))
10096 return const_vector_from_tree (exp);
10097 scalar_int_mode int_mode;
10098 if (is_int_mode (mode, &int_mode))
10100 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10101 return const_scalar_mask_from_tree (int_mode, exp);
10102 else
10104 tree type_for_mode
10105 = lang_hooks.types.type_for_mode (int_mode, 1);
10106 if (type_for_mode)
10107 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10108 type_for_mode, exp);
10111 if (!tmp)
10113 vec<constructor_elt, va_gc> *v;
10114 /* Constructors need to be fixed-length. FIXME. */
10115 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10116 vec_alloc (v, nunits);
10117 for (unsigned int i = 0; i < nunits; ++i)
10118 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10119 tmp = build_constructor (type, v);
10121 return expand_expr (tmp, ignore ? const0_rtx : target,
10122 tmode, modifier);
10125 case CONST_DECL:
10126 if (modifier == EXPAND_WRITE)
10128 /* Writing into CONST_DECL is always invalid, but handle it
10129 gracefully. */
10130 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10131 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10132 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10133 EXPAND_NORMAL, as);
10134 op0 = memory_address_addr_space (mode, op0, as);
10135 temp = gen_rtx_MEM (mode, op0);
10136 set_mem_addr_space (temp, as);
10137 return temp;
10139 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10141 case REAL_CST:
10142 /* If optimized, generate immediate CONST_DOUBLE
10143 which will be turned into memory by reload if necessary.
10145 We used to force a register so that loop.c could see it. But
10146 this does not allow gen_* patterns to perform optimizations with
10147 the constants. It also produces two insns in cases like "x = 1.0;".
10148 On most machines, floating-point constants are not permitted in
10149 many insns, so we'd end up copying it to a register in any case.
10151 Now, we do the copying in expand_binop, if appropriate. */
10152 return const_double_from_real_value (TREE_REAL_CST (exp),
10153 TYPE_MODE (TREE_TYPE (exp)));
10155 case FIXED_CST:
10156 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10157 TYPE_MODE (TREE_TYPE (exp)));
10159 case COMPLEX_CST:
10160 /* Handle evaluating a complex constant in a CONCAT target. */
10161 if (original_target && GET_CODE (original_target) == CONCAT)
10163 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10164 rtx rtarg, itarg;
10166 rtarg = XEXP (original_target, 0);
10167 itarg = XEXP (original_target, 1);
10169 /* Move the real and imaginary parts separately. */
10170 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10171 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10173 if (op0 != rtarg)
10174 emit_move_insn (rtarg, op0);
10175 if (op1 != itarg)
10176 emit_move_insn (itarg, op1);
10178 return original_target;
10181 /* fall through */
10183 case STRING_CST:
10184 temp = expand_expr_constant (exp, 1, modifier);
10186 /* temp contains a constant address.
10187 On RISC machines where a constant address isn't valid,
10188 make some insns to get that address into a register. */
10189 if (modifier != EXPAND_CONST_ADDRESS
10190 && modifier != EXPAND_INITIALIZER
10191 && modifier != EXPAND_SUM
10192 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10193 MEM_ADDR_SPACE (temp)))
10194 return replace_equiv_address (temp,
10195 copy_rtx (XEXP (temp, 0)));
10196 return temp;
10198 case POLY_INT_CST:
10199 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10201 case SAVE_EXPR:
10203 tree val = treeop0;
10204 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10205 inner_reference_p);
10207 if (!SAVE_EXPR_RESOLVED_P (exp))
10209 /* We can indeed still hit this case, typically via builtin
10210 expanders calling save_expr immediately before expanding
10211 something. Assume this means that we only have to deal
10212 with non-BLKmode values. */
10213 gcc_assert (GET_MODE (ret) != BLKmode);
10215 val = build_decl (curr_insn_location (),
10216 VAR_DECL, NULL, TREE_TYPE (exp));
10217 DECL_ARTIFICIAL (val) = 1;
10218 DECL_IGNORED_P (val) = 1;
10219 treeop0 = val;
10220 TREE_OPERAND (exp, 0) = treeop0;
10221 SAVE_EXPR_RESOLVED_P (exp) = 1;
10223 if (!CONSTANT_P (ret))
10224 ret = copy_to_reg (ret);
10225 SET_DECL_RTL (val, ret);
10228 return ret;
10232 case CONSTRUCTOR:
10233 /* If we don't need the result, just ensure we evaluate any
10234 subexpressions. */
10235 if (ignore)
10237 unsigned HOST_WIDE_INT idx;
10238 tree value;
10240 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10241 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10243 return const0_rtx;
10246 return expand_constructor (exp, target, modifier, false);
10248 case TARGET_MEM_REF:
10250 addr_space_t as
10251 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10252 enum insn_code icode;
10253 unsigned int align;
10255 op0 = addr_for_mem_ref (exp, as, true);
10256 op0 = memory_address_addr_space (mode, op0, as);
10257 temp = gen_rtx_MEM (mode, op0);
10258 set_mem_attributes (temp, exp, 0);
10259 set_mem_addr_space (temp, as);
10260 align = get_object_alignment (exp);
10261 if (modifier != EXPAND_WRITE
10262 && modifier != EXPAND_MEMORY
10263 && mode != BLKmode
10264 && align < GET_MODE_ALIGNMENT (mode)
10265 /* If the target does not have special handling for unaligned
10266 loads of mode then it can use regular moves for them. */
10267 && ((icode = optab_handler (movmisalign_optab, mode))
10268 != CODE_FOR_nothing))
10270 struct expand_operand ops[2];
10272 /* We've already validated the memory, and we're creating a
10273 new pseudo destination. The predicates really can't fail,
10274 nor can the generator. */
10275 create_output_operand (&ops[0], NULL_RTX, mode);
10276 create_fixed_operand (&ops[1], temp);
10277 expand_insn (icode, 2, ops);
10278 temp = ops[0].value;
10280 return temp;
10283 case MEM_REF:
10285 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10286 addr_space_t as
10287 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10288 machine_mode address_mode;
10289 tree base = TREE_OPERAND (exp, 0);
10290 gimple *def_stmt;
10291 enum insn_code icode;
10292 unsigned align;
10293 /* Handle expansion of non-aliased memory with non-BLKmode. That
10294 might end up in a register. */
10295 if (mem_ref_refers_to_non_mem_p (exp))
10297 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10298 base = TREE_OPERAND (base, 0);
10299 if (known_eq (offset, 0)
10300 && !reverse
10301 && tree_fits_uhwi_p (TYPE_SIZE (type))
10302 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)),
10303 tree_to_uhwi (TYPE_SIZE (type))))
10304 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10305 target, tmode, modifier);
10306 if (TYPE_MODE (type) == BLKmode)
10308 temp = assign_stack_temp (DECL_MODE (base),
10309 GET_MODE_SIZE (DECL_MODE (base)));
10310 store_expr (base, temp, 0, false, false);
10311 temp = adjust_address (temp, BLKmode, offset);
10312 set_mem_size (temp, int_size_in_bytes (type));
10313 return temp;
10315 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10316 bitsize_int (offset * BITS_PER_UNIT));
10317 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10318 return expand_expr (exp, target, tmode, modifier);
10320 address_mode = targetm.addr_space.address_mode (as);
10321 base = TREE_OPERAND (exp, 0);
10322 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10324 tree mask = gimple_assign_rhs2 (def_stmt);
10325 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10326 gimple_assign_rhs1 (def_stmt), mask);
10327 TREE_OPERAND (exp, 0) = base;
10329 align = get_object_alignment (exp);
10330 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10331 op0 = memory_address_addr_space (mode, op0, as);
10332 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10334 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10335 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10336 op0 = memory_address_addr_space (mode, op0, as);
10338 temp = gen_rtx_MEM (mode, op0);
10339 set_mem_attributes (temp, exp, 0);
10340 set_mem_addr_space (temp, as);
10341 if (TREE_THIS_VOLATILE (exp))
10342 MEM_VOLATILE_P (temp) = 1;
10343 if (modifier != EXPAND_WRITE
10344 && modifier != EXPAND_MEMORY
10345 && !inner_reference_p
10346 && mode != BLKmode
10347 && align < GET_MODE_ALIGNMENT (mode))
10349 if ((icode = optab_handler (movmisalign_optab, mode))
10350 != CODE_FOR_nothing)
10352 struct expand_operand ops[2];
10354 /* We've already validated the memory, and we're creating a
10355 new pseudo destination. The predicates really can't fail,
10356 nor can the generator. */
10357 create_output_operand (&ops[0], NULL_RTX, mode);
10358 create_fixed_operand (&ops[1], temp);
10359 expand_insn (icode, 2, ops);
10360 temp = ops[0].value;
10362 else if (targetm.slow_unaligned_access (mode, align))
10363 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10364 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10365 (modifier == EXPAND_STACK_PARM
10366 ? NULL_RTX : target),
10367 mode, mode, false, alt_rtl);
10369 if (reverse
10370 && modifier != EXPAND_MEMORY
10371 && modifier != EXPAND_WRITE)
10372 temp = flip_storage_order (mode, temp);
10373 return temp;
10376 case ARRAY_REF:
10379 tree array = treeop0;
10380 tree index = treeop1;
10381 tree init;
10383 /* Fold an expression like: "foo"[2].
10384 This is not done in fold so it won't happen inside &.
10385 Don't fold if this is for wide characters since it's too
10386 difficult to do correctly and this is a very rare case. */
10388 if (modifier != EXPAND_CONST_ADDRESS
10389 && modifier != EXPAND_INITIALIZER
10390 && modifier != EXPAND_MEMORY)
10392 tree t = fold_read_from_constant_string (exp);
10394 if (t)
10395 return expand_expr (t, target, tmode, modifier);
10398 /* If this is a constant index into a constant array,
10399 just get the value from the array. Handle both the cases when
10400 we have an explicit constructor and when our operand is a variable
10401 that was declared const. */
10403 if (modifier != EXPAND_CONST_ADDRESS
10404 && modifier != EXPAND_INITIALIZER
10405 && modifier != EXPAND_MEMORY
10406 && TREE_CODE (array) == CONSTRUCTOR
10407 && ! TREE_SIDE_EFFECTS (array)
10408 && TREE_CODE (index) == INTEGER_CST)
10410 unsigned HOST_WIDE_INT ix;
10411 tree field, value;
10413 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10414 field, value)
10415 if (tree_int_cst_equal (field, index))
10417 if (!TREE_SIDE_EFFECTS (value))
10418 return expand_expr (fold (value), target, tmode, modifier);
10419 break;
10423 else if (optimize >= 1
10424 && modifier != EXPAND_CONST_ADDRESS
10425 && modifier != EXPAND_INITIALIZER
10426 && modifier != EXPAND_MEMORY
10427 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10428 && TREE_CODE (index) == INTEGER_CST
10429 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10430 && (init = ctor_for_folding (array)) != error_mark_node)
10432 if (init == NULL_TREE)
10434 tree value = build_zero_cst (type);
10435 if (TREE_CODE (value) == CONSTRUCTOR)
10437 /* If VALUE is a CONSTRUCTOR, this optimization is only
10438 useful if this doesn't store the CONSTRUCTOR into
10439 memory. If it does, it is more efficient to just
10440 load the data from the array directly. */
10441 rtx ret = expand_constructor (value, target,
10442 modifier, true);
10443 if (ret == NULL_RTX)
10444 value = NULL_TREE;
10447 if (value)
10448 return expand_expr (value, target, tmode, modifier);
10450 else if (TREE_CODE (init) == CONSTRUCTOR)
10452 unsigned HOST_WIDE_INT ix;
10453 tree field, value;
10455 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10456 field, value)
10457 if (tree_int_cst_equal (field, index))
10459 if (TREE_SIDE_EFFECTS (value))
10460 break;
10462 if (TREE_CODE (value) == CONSTRUCTOR)
10464 /* If VALUE is a CONSTRUCTOR, this
10465 optimization is only useful if
10466 this doesn't store the CONSTRUCTOR
10467 into memory. If it does, it is more
10468 efficient to just load the data from
10469 the array directly. */
10470 rtx ret = expand_constructor (value, target,
10471 modifier, true);
10472 if (ret == NULL_RTX)
10473 break;
10476 return
10477 expand_expr (fold (value), target, tmode, modifier);
10480 else if (TREE_CODE (init) == STRING_CST)
10482 tree low_bound = array_ref_low_bound (exp);
10483 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10485 /* Optimize the special case of a zero lower bound.
10487 We convert the lower bound to sizetype to avoid problems
10488 with constant folding. E.g. suppose the lower bound is
10489 1 and its mode is QI. Without the conversion
10490 (ARRAY + (INDEX - (unsigned char)1))
10491 becomes
10492 (ARRAY + (-(unsigned char)1) + INDEX)
10493 which becomes
10494 (ARRAY + 255 + INDEX). Oops! */
10495 if (!integer_zerop (low_bound))
10496 index1 = size_diffop_loc (loc, index1,
10497 fold_convert_loc (loc, sizetype,
10498 low_bound));
10500 if (tree_fits_uhwi_p (index1)
10501 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10503 tree type = TREE_TYPE (TREE_TYPE (init));
10504 scalar_int_mode mode;
10506 if (is_int_mode (TYPE_MODE (type), &mode)
10507 && GET_MODE_SIZE (mode) == 1)
10508 return gen_int_mode (TREE_STRING_POINTER (init)
10509 [TREE_INT_CST_LOW (index1)],
10510 mode);
10515 goto normal_inner_ref;
10517 case COMPONENT_REF:
10518 /* If the operand is a CONSTRUCTOR, we can just extract the
10519 appropriate field if it is present. */
10520 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10522 unsigned HOST_WIDE_INT idx;
10523 tree field, value;
10524 scalar_int_mode field_mode;
10526 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10527 idx, field, value)
10528 if (field == treeop1
10529 /* We can normally use the value of the field in the
10530 CONSTRUCTOR. However, if this is a bitfield in
10531 an integral mode that we can fit in a HOST_WIDE_INT,
10532 we must mask only the number of bits in the bitfield,
10533 since this is done implicitly by the constructor. If
10534 the bitfield does not meet either of those conditions,
10535 we can't do this optimization. */
10536 && (! DECL_BIT_FIELD (field)
10537 || (is_int_mode (DECL_MODE (field), &field_mode)
10538 && (GET_MODE_PRECISION (field_mode)
10539 <= HOST_BITS_PER_WIDE_INT))))
10541 if (DECL_BIT_FIELD (field)
10542 && modifier == EXPAND_STACK_PARM)
10543 target = 0;
10544 op0 = expand_expr (value, target, tmode, modifier);
10545 if (DECL_BIT_FIELD (field))
10547 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10548 scalar_int_mode imode
10549 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10551 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10553 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10554 imode);
10555 op0 = expand_and (imode, op0, op1, target);
10557 else
10559 int count = GET_MODE_PRECISION (imode) - bitsize;
10561 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10562 target, 0);
10563 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10564 target, 0);
10568 return op0;
10571 goto normal_inner_ref;
10573 case BIT_FIELD_REF:
10574 case ARRAY_RANGE_REF:
10575 normal_inner_ref:
10577 machine_mode mode1, mode2;
10578 poly_int64 bitsize, bitpos, bytepos;
10579 tree offset;
10580 int reversep, volatilep = 0, must_force_mem;
10581 tree tem
10582 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10583 &unsignedp, &reversep, &volatilep);
10584 rtx orig_op0, memloc;
10585 bool clear_mem_expr = false;
10587 /* If we got back the original object, something is wrong. Perhaps
10588 we are evaluating an expression too early. In any event, don't
10589 infinitely recurse. */
10590 gcc_assert (tem != exp);
10592 /* If TEM's type is a union of variable size, pass TARGET to the inner
10593 computation, since it will need a temporary and TARGET is known
10594 to have to do. This occurs in unchecked conversion in Ada. */
10595 orig_op0 = op0
10596 = expand_expr_real (tem,
10597 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10598 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10599 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10600 != INTEGER_CST)
10601 && modifier != EXPAND_STACK_PARM
10602 ? target : NULL_RTX),
10603 VOIDmode,
10604 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10605 NULL, true);
10607 /* If the field has a mode, we want to access it in the
10608 field's mode, not the computed mode.
10609 If a MEM has VOIDmode (external with incomplete type),
10610 use BLKmode for it instead. */
10611 if (MEM_P (op0))
10613 if (mode1 != VOIDmode)
10614 op0 = adjust_address (op0, mode1, 0);
10615 else if (GET_MODE (op0) == VOIDmode)
10616 op0 = adjust_address (op0, BLKmode, 0);
10619 mode2
10620 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10622 /* If we have either an offset, a BLKmode result, or a reference
10623 outside the underlying object, we must force it to memory.
10624 Such a case can occur in Ada if we have unchecked conversion
10625 of an expression from a scalar type to an aggregate type or
10626 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10627 passed a partially uninitialized object or a view-conversion
10628 to a larger size. */
10629 must_force_mem = (offset
10630 || mode1 == BLKmode
10631 || maybe_gt (bitpos + bitsize,
10632 GET_MODE_BITSIZE (mode2)));
10634 /* Handle CONCAT first. */
10635 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10637 if (known_eq (bitpos, 0)
10638 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10639 && COMPLEX_MODE_P (mode1)
10640 && COMPLEX_MODE_P (GET_MODE (op0))
10641 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10642 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10644 if (reversep)
10645 op0 = flip_storage_order (GET_MODE (op0), op0);
10646 if (mode1 != GET_MODE (op0))
10648 rtx parts[2];
10649 for (int i = 0; i < 2; i++)
10651 rtx op = read_complex_part (op0, i != 0);
10652 if (GET_CODE (op) == SUBREG)
10653 op = force_reg (GET_MODE (op), op);
10654 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10655 op);
10656 if (temp)
10657 op = temp;
10658 else
10660 if (!REG_P (op) && !MEM_P (op))
10661 op = force_reg (GET_MODE (op), op);
10662 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10664 parts[i] = op;
10666 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10668 return op0;
10670 if (known_eq (bitpos, 0)
10671 && known_eq (bitsize,
10672 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10673 && maybe_ne (bitsize, 0))
10675 op0 = XEXP (op0, 0);
10676 mode2 = GET_MODE (op0);
10678 else if (known_eq (bitpos,
10679 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10680 && known_eq (bitsize,
10681 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10682 && maybe_ne (bitpos, 0)
10683 && maybe_ne (bitsize, 0))
10685 op0 = XEXP (op0, 1);
10686 bitpos = 0;
10687 mode2 = GET_MODE (op0);
10689 else
10690 /* Otherwise force into memory. */
10691 must_force_mem = 1;
10694 /* If this is a constant, put it in a register if it is a legitimate
10695 constant and we don't need a memory reference. */
10696 if (CONSTANT_P (op0)
10697 && mode2 != BLKmode
10698 && targetm.legitimate_constant_p (mode2, op0)
10699 && !must_force_mem)
10700 op0 = force_reg (mode2, op0);
10702 /* Otherwise, if this is a constant, try to force it to the constant
10703 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10704 is a legitimate constant. */
10705 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10706 op0 = validize_mem (memloc);
10708 /* Otherwise, if this is a constant or the object is not in memory
10709 and need be, put it there. */
10710 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10712 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10713 emit_move_insn (memloc, op0);
10714 op0 = memloc;
10715 clear_mem_expr = true;
10718 if (offset)
10720 machine_mode address_mode;
10721 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10722 EXPAND_SUM);
10724 gcc_assert (MEM_P (op0));
10726 address_mode = get_address_mode (op0);
10727 if (GET_MODE (offset_rtx) != address_mode)
10729 /* We cannot be sure that the RTL in offset_rtx is valid outside
10730 of a memory address context, so force it into a register
10731 before attempting to convert it to the desired mode. */
10732 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10733 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10736 /* See the comment in expand_assignment for the rationale. */
10737 if (mode1 != VOIDmode
10738 && maybe_ne (bitpos, 0)
10739 && maybe_gt (bitsize, 0)
10740 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10741 && multiple_p (bitpos, bitsize)
10742 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10743 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10745 op0 = adjust_address (op0, mode1, bytepos);
10746 bitpos = 0;
10749 op0 = offset_address (op0, offset_rtx,
10750 highest_pow2_factor (offset));
10753 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10754 record its alignment as BIGGEST_ALIGNMENT. */
10755 if (MEM_P (op0)
10756 && known_eq (bitpos, 0)
10757 && offset != 0
10758 && is_aligning_offset (offset, tem))
10759 set_mem_align (op0, BIGGEST_ALIGNMENT);
10761 /* Don't forget about volatility even if this is a bitfield. */
10762 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10764 if (op0 == orig_op0)
10765 op0 = copy_rtx (op0);
10767 MEM_VOLATILE_P (op0) = 1;
10770 /* In cases where an aligned union has an unaligned object
10771 as a field, we might be extracting a BLKmode value from
10772 an integer-mode (e.g., SImode) object. Handle this case
10773 by doing the extract into an object as wide as the field
10774 (which we know to be the width of a basic mode), then
10775 storing into memory, and changing the mode to BLKmode. */
10776 if (mode1 == VOIDmode
10777 || REG_P (op0) || GET_CODE (op0) == SUBREG
10778 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10779 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10780 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10781 && modifier != EXPAND_CONST_ADDRESS
10782 && modifier != EXPAND_INITIALIZER
10783 && modifier != EXPAND_MEMORY)
10784 /* If the bitfield is volatile and the bitsize
10785 is narrower than the access size of the bitfield,
10786 we need to extract bitfields from the access. */
10787 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10788 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10789 && mode1 != BLKmode
10790 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
10791 /* If the field isn't aligned enough to fetch as a memref,
10792 fetch it as a bit field. */
10793 || (mode1 != BLKmode
10794 && (((MEM_P (op0)
10795 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10796 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
10797 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10798 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
10799 && modifier != EXPAND_MEMORY
10800 && ((modifier == EXPAND_CONST_ADDRESS
10801 || modifier == EXPAND_INITIALIZER)
10802 ? STRICT_ALIGNMENT
10803 : targetm.slow_unaligned_access (mode1,
10804 MEM_ALIGN (op0))))
10805 || !multiple_p (bitpos, BITS_PER_UNIT)))
10806 /* If the type and the field are a constant size and the
10807 size of the type isn't the same size as the bitfield,
10808 we must use bitfield operations. */
10809 || (known_size_p (bitsize)
10810 && TYPE_SIZE (TREE_TYPE (exp))
10811 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
10812 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
10813 bitsize)))
10815 machine_mode ext_mode = mode;
10817 if (ext_mode == BLKmode
10818 && ! (target != 0 && MEM_P (op0)
10819 && MEM_P (target)
10820 && multiple_p (bitpos, BITS_PER_UNIT)))
10821 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10823 if (ext_mode == BLKmode)
10825 if (target == 0)
10826 target = assign_temp (type, 1, 1);
10828 /* ??? Unlike the similar test a few lines below, this one is
10829 very likely obsolete. */
10830 if (known_eq (bitsize, 0))
10831 return target;
10833 /* In this case, BITPOS must start at a byte boundary and
10834 TARGET, if specified, must be a MEM. */
10835 gcc_assert (MEM_P (op0)
10836 && (!target || MEM_P (target)));
10838 bytepos = exact_div (bitpos, BITS_PER_UNIT);
10839 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
10840 emit_block_move (target,
10841 adjust_address (op0, VOIDmode, bytepos),
10842 gen_int_mode (bytesize, Pmode),
10843 (modifier == EXPAND_STACK_PARM
10844 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10846 return target;
10849 /* If we have nothing to extract, the result will be 0 for targets
10850 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10851 return 0 for the sake of consistency, as reading a zero-sized
10852 bitfield is valid in Ada and the value is fully specified. */
10853 if (known_eq (bitsize, 0))
10854 return const0_rtx;
10856 op0 = validize_mem (op0);
10858 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10859 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10861 /* If the result has a record type and the extraction is done in
10862 an integral mode, then the field may be not aligned on a byte
10863 boundary; in this case, if it has reverse storage order, it
10864 needs to be extracted as a scalar field with reverse storage
10865 order and put back into memory order afterwards. */
10866 if (TREE_CODE (type) == RECORD_TYPE
10867 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10868 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10870 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10871 (modifier == EXPAND_STACK_PARM
10872 ? NULL_RTX : target),
10873 ext_mode, ext_mode, reversep, alt_rtl);
10875 /* If the result has a record type and the mode of OP0 is an
10876 integral mode then, if BITSIZE is narrower than this mode
10877 and this is for big-endian data, we must put the field
10878 into the high-order bits. And we must also put it back
10879 into memory order if it has been previously reversed. */
10880 scalar_int_mode op0_mode;
10881 if (TREE_CODE (type) == RECORD_TYPE
10882 && is_int_mode (GET_MODE (op0), &op0_mode))
10884 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10886 gcc_checking_assert (known_le (bitsize, size));
10887 if (maybe_lt (bitsize, size)
10888 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10889 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10890 size - bitsize, op0, 1);
10892 if (reversep)
10893 op0 = flip_storage_order (op0_mode, op0);
10896 /* If the result type is BLKmode, store the data into a temporary
10897 of the appropriate type, but with the mode corresponding to the
10898 mode for the data we have (op0's mode). */
10899 if (mode == BLKmode)
10901 rtx new_rtx
10902 = assign_stack_temp_for_type (ext_mode,
10903 GET_MODE_BITSIZE (ext_mode),
10904 type);
10905 emit_move_insn (new_rtx, op0);
10906 op0 = copy_rtx (new_rtx);
10907 PUT_MODE (op0, BLKmode);
10910 return op0;
10913 /* If the result is BLKmode, use that to access the object
10914 now as well. */
10915 if (mode == BLKmode)
10916 mode1 = BLKmode;
10918 /* Get a reference to just this component. */
10919 bytepos = bits_to_bytes_round_down (bitpos);
10920 if (modifier == EXPAND_CONST_ADDRESS
10921 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10922 op0 = adjust_address_nv (op0, mode1, bytepos);
10923 else
10924 op0 = adjust_address (op0, mode1, bytepos);
10926 if (op0 == orig_op0)
10927 op0 = copy_rtx (op0);
10929 /* Don't set memory attributes if the base expression is
10930 SSA_NAME that got expanded as a MEM. In that case, we should
10931 just honor its original memory attributes. */
10932 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10933 set_mem_attributes (op0, exp, 0);
10935 if (REG_P (XEXP (op0, 0)))
10936 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10938 /* If op0 is a temporary because the original expressions was forced
10939 to memory, clear MEM_EXPR so that the original expression cannot
10940 be marked as addressable through MEM_EXPR of the temporary. */
10941 if (clear_mem_expr)
10942 set_mem_expr (op0, NULL_TREE);
10944 MEM_VOLATILE_P (op0) |= volatilep;
10946 if (reversep
10947 && modifier != EXPAND_MEMORY
10948 && modifier != EXPAND_WRITE)
10949 op0 = flip_storage_order (mode1, op0);
10951 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10952 || modifier == EXPAND_CONST_ADDRESS
10953 || modifier == EXPAND_INITIALIZER)
10954 return op0;
10956 if (target == 0)
10957 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10959 convert_move (target, op0, unsignedp);
10960 return target;
10963 case OBJ_TYPE_REF:
10964 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10966 case CALL_EXPR:
10967 /* All valid uses of __builtin_va_arg_pack () are removed during
10968 inlining. */
10969 if (CALL_EXPR_VA_ARG_PACK (exp))
10970 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10972 tree fndecl = get_callee_fndecl (exp), attr;
10974 if (fndecl
10975 /* Don't diagnose the error attribute in thunks, those are
10976 artificially created. */
10977 && !CALL_FROM_THUNK_P (exp)
10978 && (attr = lookup_attribute ("error",
10979 DECL_ATTRIBUTES (fndecl))) != NULL)
10981 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
10982 error ("%Kcall to %qs declared with attribute error: %s", exp,
10983 identifier_to_locale (ident),
10984 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10986 if (fndecl
10987 /* Don't diagnose the warning attribute in thunks, those are
10988 artificially created. */
10989 && !CALL_FROM_THUNK_P (exp)
10990 && (attr = lookup_attribute ("warning",
10991 DECL_ATTRIBUTES (fndecl))) != NULL)
10993 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
10994 warning_at (tree_nonartificial_location (exp), 0,
10995 "%Kcall to %qs declared with attribute warning: %s",
10996 exp, identifier_to_locale (ident),
10997 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11000 /* Check for a built-in function. */
11001 if (fndecl && DECL_BUILT_IN (fndecl))
11003 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11004 if (CALL_WITH_BOUNDS_P (exp))
11005 return expand_builtin_with_bounds (exp, target, subtarget,
11006 tmode, ignore);
11007 else
11008 return expand_builtin (exp, target, subtarget, tmode, ignore);
11011 return expand_call (exp, target, ignore);
11013 case VIEW_CONVERT_EXPR:
11014 op0 = NULL_RTX;
11016 /* If we are converting to BLKmode, try to avoid an intermediate
11017 temporary by fetching an inner memory reference. */
11018 if (mode == BLKmode
11019 && poly_int_tree_p (TYPE_SIZE (type))
11020 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11021 && handled_component_p (treeop0))
11023 machine_mode mode1;
11024 poly_int64 bitsize, bitpos, bytepos;
11025 tree offset;
11026 int unsignedp, reversep, volatilep = 0;
11027 tree tem
11028 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11029 &unsignedp, &reversep, &volatilep);
11030 rtx orig_op0;
11032 /* ??? We should work harder and deal with non-zero offsets. */
11033 if (!offset
11034 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11035 && !reversep
11036 && known_size_p (bitsize)
11037 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11039 /* See the normal_inner_ref case for the rationale. */
11040 orig_op0
11041 = expand_expr_real (tem,
11042 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11043 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11044 != INTEGER_CST)
11045 && modifier != EXPAND_STACK_PARM
11046 ? target : NULL_RTX),
11047 VOIDmode,
11048 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11049 NULL, true);
11051 if (MEM_P (orig_op0))
11053 op0 = orig_op0;
11055 /* Get a reference to just this component. */
11056 if (modifier == EXPAND_CONST_ADDRESS
11057 || modifier == EXPAND_SUM
11058 || modifier == EXPAND_INITIALIZER)
11059 op0 = adjust_address_nv (op0, mode, bytepos);
11060 else
11061 op0 = adjust_address (op0, mode, bytepos);
11063 if (op0 == orig_op0)
11064 op0 = copy_rtx (op0);
11066 set_mem_attributes (op0, treeop0, 0);
11067 if (REG_P (XEXP (op0, 0)))
11068 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11070 MEM_VOLATILE_P (op0) |= volatilep;
11075 if (!op0)
11076 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11077 NULL, inner_reference_p);
11079 /* If the input and output modes are both the same, we are done. */
11080 if (mode == GET_MODE (op0))
11082 /* If neither mode is BLKmode, and both modes are the same size
11083 then we can use gen_lowpart. */
11084 else if (mode != BLKmode
11085 && GET_MODE (op0) != BLKmode
11086 && known_eq (GET_MODE_PRECISION (mode),
11087 GET_MODE_PRECISION (GET_MODE (op0)))
11088 && !COMPLEX_MODE_P (GET_MODE (op0)))
11090 if (GET_CODE (op0) == SUBREG)
11091 op0 = force_reg (GET_MODE (op0), op0);
11092 temp = gen_lowpart_common (mode, op0);
11093 if (temp)
11094 op0 = temp;
11095 else
11097 if (!REG_P (op0) && !MEM_P (op0))
11098 op0 = force_reg (GET_MODE (op0), op0);
11099 op0 = gen_lowpart (mode, op0);
11102 /* If both types are integral, convert from one mode to the other. */
11103 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11104 op0 = convert_modes (mode, GET_MODE (op0), op0,
11105 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11106 /* If the output type is a bit-field type, do an extraction. */
11107 else if (reduce_bit_field)
11108 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11109 TYPE_UNSIGNED (type), NULL_RTX,
11110 mode, mode, false, NULL);
11111 /* As a last resort, spill op0 to memory, and reload it in a
11112 different mode. */
11113 else if (!MEM_P (op0))
11115 /* If the operand is not a MEM, force it into memory. Since we
11116 are going to be changing the mode of the MEM, don't call
11117 force_const_mem for constants because we don't allow pool
11118 constants to change mode. */
11119 tree inner_type = TREE_TYPE (treeop0);
11121 gcc_assert (!TREE_ADDRESSABLE (exp));
11123 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11124 target
11125 = assign_stack_temp_for_type
11126 (TYPE_MODE (inner_type),
11127 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11129 emit_move_insn (target, op0);
11130 op0 = target;
11133 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11134 output type is such that the operand is known to be aligned, indicate
11135 that it is. Otherwise, we need only be concerned about alignment for
11136 non-BLKmode results. */
11137 if (MEM_P (op0))
11139 enum insn_code icode;
11141 if (modifier != EXPAND_WRITE
11142 && modifier != EXPAND_MEMORY
11143 && !inner_reference_p
11144 && mode != BLKmode
11145 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11147 /* If the target does have special handling for unaligned
11148 loads of mode then use them. */
11149 if ((icode = optab_handler (movmisalign_optab, mode))
11150 != CODE_FOR_nothing)
11152 rtx reg;
11154 op0 = adjust_address (op0, mode, 0);
11155 /* We've already validated the memory, and we're creating a
11156 new pseudo destination. The predicates really can't
11157 fail. */
11158 reg = gen_reg_rtx (mode);
11160 /* Nor can the insn generator. */
11161 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11162 emit_insn (insn);
11163 return reg;
11165 else if (STRICT_ALIGNMENT)
11167 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11168 poly_uint64 temp_size = mode_size;
11169 if (GET_MODE (op0) != BLKmode)
11170 temp_size = upper_bound (temp_size,
11171 GET_MODE_SIZE (GET_MODE (op0)));
11172 rtx new_rtx
11173 = assign_stack_temp_for_type (mode, temp_size, type);
11174 rtx new_with_op0_mode
11175 = adjust_address (new_rtx, GET_MODE (op0), 0);
11177 gcc_assert (!TREE_ADDRESSABLE (exp));
11179 if (GET_MODE (op0) == BLKmode)
11181 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11182 emit_block_move (new_with_op0_mode, op0, size_rtx,
11183 (modifier == EXPAND_STACK_PARM
11184 ? BLOCK_OP_CALL_PARM
11185 : BLOCK_OP_NORMAL));
11187 else
11188 emit_move_insn (new_with_op0_mode, op0);
11190 op0 = new_rtx;
11194 op0 = adjust_address (op0, mode, 0);
11197 return op0;
11199 case MODIFY_EXPR:
11201 tree lhs = treeop0;
11202 tree rhs = treeop1;
11203 gcc_assert (ignore);
11205 /* Check for |= or &= of a bitfield of size one into another bitfield
11206 of size 1. In this case, (unless we need the result of the
11207 assignment) we can do this more efficiently with a
11208 test followed by an assignment, if necessary.
11210 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11211 things change so we do, this code should be enhanced to
11212 support it. */
11213 if (TREE_CODE (lhs) == COMPONENT_REF
11214 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11215 || TREE_CODE (rhs) == BIT_AND_EXPR)
11216 && TREE_OPERAND (rhs, 0) == lhs
11217 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11218 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11219 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11221 rtx_code_label *label = gen_label_rtx ();
11222 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11223 do_jump (TREE_OPERAND (rhs, 1),
11224 value ? label : 0,
11225 value ? 0 : label,
11226 profile_probability::uninitialized ());
11227 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11228 false);
11229 do_pending_stack_adjust ();
11230 emit_label (label);
11231 return const0_rtx;
11234 expand_assignment (lhs, rhs, false);
11235 return const0_rtx;
11238 case ADDR_EXPR:
11239 return expand_expr_addr_expr (exp, target, tmode, modifier);
11241 case REALPART_EXPR:
11242 op0 = expand_normal (treeop0);
11243 return read_complex_part (op0, false);
11245 case IMAGPART_EXPR:
11246 op0 = expand_normal (treeop0);
11247 return read_complex_part (op0, true);
11249 case RETURN_EXPR:
11250 case LABEL_EXPR:
11251 case GOTO_EXPR:
11252 case SWITCH_EXPR:
11253 case ASM_EXPR:
11254 /* Expanded in cfgexpand.c. */
11255 gcc_unreachable ();
11257 case TRY_CATCH_EXPR:
11258 case CATCH_EXPR:
11259 case EH_FILTER_EXPR:
11260 case TRY_FINALLY_EXPR:
11261 /* Lowered by tree-eh.c. */
11262 gcc_unreachable ();
11264 case WITH_CLEANUP_EXPR:
11265 case CLEANUP_POINT_EXPR:
11266 case TARGET_EXPR:
11267 case CASE_LABEL_EXPR:
11268 case VA_ARG_EXPR:
11269 case BIND_EXPR:
11270 case INIT_EXPR:
11271 case CONJ_EXPR:
11272 case COMPOUND_EXPR:
11273 case PREINCREMENT_EXPR:
11274 case PREDECREMENT_EXPR:
11275 case POSTINCREMENT_EXPR:
11276 case POSTDECREMENT_EXPR:
11277 case LOOP_EXPR:
11278 case EXIT_EXPR:
11279 case COMPOUND_LITERAL_EXPR:
11280 /* Lowered by gimplify.c. */
11281 gcc_unreachable ();
11283 case FDESC_EXPR:
11284 /* Function descriptors are not valid except for as
11285 initialization constants, and should not be expanded. */
11286 gcc_unreachable ();
11288 case WITH_SIZE_EXPR:
11289 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11290 have pulled out the size to use in whatever context it needed. */
11291 return expand_expr_real (treeop0, original_target, tmode,
11292 modifier, alt_rtl, inner_reference_p);
11294 default:
11295 return expand_expr_real_2 (&ops, target, tmode, modifier);
11299 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11300 signedness of TYPE), possibly returning the result in TARGET.
11301 TYPE is known to be a partial integer type. */
11302 static rtx
11303 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11305 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11306 if (target && GET_MODE (target) != GET_MODE (exp))
11307 target = 0;
11308 /* For constant values, reduce using build_int_cst_type. */
11309 if (CONST_INT_P (exp))
11311 HOST_WIDE_INT value = INTVAL (exp);
11312 tree t = build_int_cst_type (type, value);
11313 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11315 else if (TYPE_UNSIGNED (type))
11317 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11318 rtx mask = immed_wide_int_const
11319 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11320 return expand_and (mode, exp, mask, target);
11322 else
11324 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11325 int count = GET_MODE_PRECISION (mode) - prec;
11326 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11327 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11331 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11332 when applied to the address of EXP produces an address known to be
11333 aligned more than BIGGEST_ALIGNMENT. */
11335 static int
11336 is_aligning_offset (const_tree offset, const_tree exp)
11338 /* Strip off any conversions. */
11339 while (CONVERT_EXPR_P (offset))
11340 offset = TREE_OPERAND (offset, 0);
11342 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11343 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11344 if (TREE_CODE (offset) != BIT_AND_EXPR
11345 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11346 || compare_tree_int (TREE_OPERAND (offset, 1),
11347 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11348 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11349 return 0;
11351 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11352 It must be NEGATE_EXPR. Then strip any more conversions. */
11353 offset = TREE_OPERAND (offset, 0);
11354 while (CONVERT_EXPR_P (offset))
11355 offset = TREE_OPERAND (offset, 0);
11357 if (TREE_CODE (offset) != NEGATE_EXPR)
11358 return 0;
11360 offset = TREE_OPERAND (offset, 0);
11361 while (CONVERT_EXPR_P (offset))
11362 offset = TREE_OPERAND (offset, 0);
11364 /* This must now be the address of EXP. */
11365 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11368 /* Return the tree node if an ARG corresponds to a string constant or zero
11369 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11370 in bytes within the string that ARG is accessing. The type of the
11371 offset will be `sizetype'. */
11373 tree
11374 string_constant (tree arg, tree *ptr_offset)
11376 tree array, offset, lower_bound;
11377 STRIP_NOPS (arg);
11379 if (TREE_CODE (arg) == ADDR_EXPR)
11381 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11383 *ptr_offset = size_zero_node;
11384 return TREE_OPERAND (arg, 0);
11386 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11388 array = TREE_OPERAND (arg, 0);
11389 offset = size_zero_node;
11391 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11393 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11394 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11395 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11396 return 0;
11398 /* Check if the array has a nonzero lower bound. */
11399 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11400 if (!integer_zerop (lower_bound))
11402 /* If the offset and base aren't both constants, return 0. */
11403 if (TREE_CODE (lower_bound) != INTEGER_CST)
11404 return 0;
11405 if (TREE_CODE (offset) != INTEGER_CST)
11406 return 0;
11407 /* Adjust offset by the lower bound. */
11408 offset = size_diffop (fold_convert (sizetype, offset),
11409 fold_convert (sizetype, lower_bound));
11412 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11414 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11415 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11416 if (TREE_CODE (array) != ADDR_EXPR)
11417 return 0;
11418 array = TREE_OPERAND (array, 0);
11419 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11420 return 0;
11422 else
11423 return 0;
11425 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11427 tree arg0 = TREE_OPERAND (arg, 0);
11428 tree arg1 = TREE_OPERAND (arg, 1);
11430 STRIP_NOPS (arg0);
11431 STRIP_NOPS (arg1);
11433 if (TREE_CODE (arg0) == ADDR_EXPR
11434 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11435 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11437 array = TREE_OPERAND (arg0, 0);
11438 offset = arg1;
11440 else if (TREE_CODE (arg1) == ADDR_EXPR
11441 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11442 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11444 array = TREE_OPERAND (arg1, 0);
11445 offset = arg0;
11447 else
11448 return 0;
11450 else
11451 return 0;
11453 if (TREE_CODE (array) == STRING_CST)
11455 *ptr_offset = fold_convert (sizetype, offset);
11456 return array;
11458 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11460 int length;
11461 tree init = ctor_for_folding (array);
11463 /* Variables initialized to string literals can be handled too. */
11464 if (init == error_mark_node
11465 || !init
11466 || TREE_CODE (init) != STRING_CST)
11467 return 0;
11469 /* Avoid const char foo[4] = "abcde"; */
11470 if (DECL_SIZE_UNIT (array) == NULL_TREE
11471 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11472 || (length = TREE_STRING_LENGTH (init)) <= 0
11473 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11474 return 0;
11476 /* If variable is bigger than the string literal, OFFSET must be constant
11477 and inside of the bounds of the string literal. */
11478 offset = fold_convert (sizetype, offset);
11479 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11480 && (! tree_fits_uhwi_p (offset)
11481 || compare_tree_int (offset, length) >= 0))
11482 return 0;
11484 *ptr_offset = offset;
11485 return init;
11488 return 0;
11491 /* Generate code to calculate OPS, and exploded expression
11492 using a store-flag instruction and return an rtx for the result.
11493 OPS reflects a comparison.
11495 If TARGET is nonzero, store the result there if convenient.
11497 Return zero if there is no suitable set-flag instruction
11498 available on this machine.
11500 Once expand_expr has been called on the arguments of the comparison,
11501 we are committed to doing the store flag, since it is not safe to
11502 re-evaluate the expression. We emit the store-flag insn by calling
11503 emit_store_flag, but only expand the arguments if we have a reason
11504 to believe that emit_store_flag will be successful. If we think that
11505 it will, but it isn't, we have to simulate the store-flag with a
11506 set/jump/set sequence. */
11508 static rtx
11509 do_store_flag (sepops ops, rtx target, machine_mode mode)
11511 enum rtx_code code;
11512 tree arg0, arg1, type;
11513 machine_mode operand_mode;
11514 int unsignedp;
11515 rtx op0, op1;
11516 rtx subtarget = target;
11517 location_t loc = ops->location;
11519 arg0 = ops->op0;
11520 arg1 = ops->op1;
11522 /* Don't crash if the comparison was erroneous. */
11523 if (arg0 == error_mark_node || arg1 == error_mark_node)
11524 return const0_rtx;
11526 type = TREE_TYPE (arg0);
11527 operand_mode = TYPE_MODE (type);
11528 unsignedp = TYPE_UNSIGNED (type);
11530 /* We won't bother with BLKmode store-flag operations because it would mean
11531 passing a lot of information to emit_store_flag. */
11532 if (operand_mode == BLKmode)
11533 return 0;
11535 /* We won't bother with store-flag operations involving function pointers
11536 when function pointers must be canonicalized before comparisons. */
11537 if (targetm.have_canonicalize_funcptr_for_compare ()
11538 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11539 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11540 == FUNCTION_TYPE))
11541 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11542 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11543 == FUNCTION_TYPE))))
11544 return 0;
11546 STRIP_NOPS (arg0);
11547 STRIP_NOPS (arg1);
11549 /* For vector typed comparisons emit code to generate the desired
11550 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11551 expander for this. */
11552 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11554 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11555 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11556 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11557 return expand_vec_cmp_expr (ops->type, ifexp, target);
11558 else
11560 tree if_true = constant_boolean_node (true, ops->type);
11561 tree if_false = constant_boolean_node (false, ops->type);
11562 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11563 if_false, target);
11567 /* Get the rtx comparison code to use. We know that EXP is a comparison
11568 operation of some type. Some comparisons against 1 and -1 can be
11569 converted to comparisons with zero. Do so here so that the tests
11570 below will be aware that we have a comparison with zero. These
11571 tests will not catch constants in the first operand, but constants
11572 are rarely passed as the first operand. */
11574 switch (ops->code)
11576 case EQ_EXPR:
11577 code = EQ;
11578 break;
11579 case NE_EXPR:
11580 code = NE;
11581 break;
11582 case LT_EXPR:
11583 if (integer_onep (arg1))
11584 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11585 else
11586 code = unsignedp ? LTU : LT;
11587 break;
11588 case LE_EXPR:
11589 if (! unsignedp && integer_all_onesp (arg1))
11590 arg1 = integer_zero_node, code = LT;
11591 else
11592 code = unsignedp ? LEU : LE;
11593 break;
11594 case GT_EXPR:
11595 if (! unsignedp && integer_all_onesp (arg1))
11596 arg1 = integer_zero_node, code = GE;
11597 else
11598 code = unsignedp ? GTU : GT;
11599 break;
11600 case GE_EXPR:
11601 if (integer_onep (arg1))
11602 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11603 else
11604 code = unsignedp ? GEU : GE;
11605 break;
11607 case UNORDERED_EXPR:
11608 code = UNORDERED;
11609 break;
11610 case ORDERED_EXPR:
11611 code = ORDERED;
11612 break;
11613 case UNLT_EXPR:
11614 code = UNLT;
11615 break;
11616 case UNLE_EXPR:
11617 code = UNLE;
11618 break;
11619 case UNGT_EXPR:
11620 code = UNGT;
11621 break;
11622 case UNGE_EXPR:
11623 code = UNGE;
11624 break;
11625 case UNEQ_EXPR:
11626 code = UNEQ;
11627 break;
11628 case LTGT_EXPR:
11629 code = LTGT;
11630 break;
11632 default:
11633 gcc_unreachable ();
11636 /* Put a constant second. */
11637 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11638 || TREE_CODE (arg0) == FIXED_CST)
11640 std::swap (arg0, arg1);
11641 code = swap_condition (code);
11644 /* If this is an equality or inequality test of a single bit, we can
11645 do this by shifting the bit being tested to the low-order bit and
11646 masking the result with the constant 1. If the condition was EQ,
11647 we xor it with 1. This does not require an scc insn and is faster
11648 than an scc insn even if we have it.
11650 The code to make this transformation was moved into fold_single_bit_test,
11651 so we just call into the folder and expand its result. */
11653 if ((code == NE || code == EQ)
11654 && integer_zerop (arg1)
11655 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11657 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11658 if (srcstmt
11659 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11661 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11662 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11663 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11664 gimple_assign_rhs1 (srcstmt),
11665 gimple_assign_rhs2 (srcstmt));
11666 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11667 if (temp)
11668 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11672 if (! get_subtarget (target)
11673 || GET_MODE (subtarget) != operand_mode)
11674 subtarget = 0;
11676 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11678 if (target == 0)
11679 target = gen_reg_rtx (mode);
11681 /* Try a cstore if possible. */
11682 return emit_store_flag_force (target, code, op0, op1,
11683 operand_mode, unsignedp,
11684 (TYPE_PRECISION (ops->type) == 1
11685 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11688 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11689 0 otherwise (i.e. if there is no casesi instruction).
11691 DEFAULT_PROBABILITY is the probability of jumping to the default
11692 label. */
11694 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11695 rtx table_label, rtx default_label, rtx fallback_label,
11696 profile_probability default_probability)
11698 struct expand_operand ops[5];
11699 scalar_int_mode index_mode = SImode;
11700 rtx op1, op2, index;
11702 if (! targetm.have_casesi ())
11703 return 0;
11705 /* The index must be some form of integer. Convert it to SImode. */
11706 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
11707 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
11709 rtx rangertx = expand_normal (range);
11711 /* We must handle the endpoints in the original mode. */
11712 index_expr = build2 (MINUS_EXPR, index_type,
11713 index_expr, minval);
11714 minval = integer_zero_node;
11715 index = expand_normal (index_expr);
11716 if (default_label)
11717 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11718 omode, 1, default_label,
11719 default_probability);
11720 /* Now we can safely truncate. */
11721 index = convert_to_mode (index_mode, index, 0);
11723 else
11725 if (omode != index_mode)
11727 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11728 index_expr = fold_convert (index_type, index_expr);
11731 index = expand_normal (index_expr);
11734 do_pending_stack_adjust ();
11736 op1 = expand_normal (minval);
11737 op2 = expand_normal (range);
11739 create_input_operand (&ops[0], index, index_mode);
11740 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11741 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11742 create_fixed_operand (&ops[3], table_label);
11743 create_fixed_operand (&ops[4], (default_label
11744 ? default_label
11745 : fallback_label));
11746 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11747 return 1;
11750 /* Attempt to generate a tablejump instruction; same concept. */
11751 /* Subroutine of the next function.
11753 INDEX is the value being switched on, with the lowest value
11754 in the table already subtracted.
11755 MODE is its expected mode (needed if INDEX is constant).
11756 RANGE is the length of the jump table.
11757 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11759 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11760 index value is out of range.
11761 DEFAULT_PROBABILITY is the probability of jumping to
11762 the default label. */
11764 static void
11765 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11766 rtx default_label, profile_probability default_probability)
11768 rtx temp, vector;
11770 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11771 cfun->cfg->max_jumptable_ents = INTVAL (range);
11773 /* Do an unsigned comparison (in the proper mode) between the index
11774 expression and the value which represents the length of the range.
11775 Since we just finished subtracting the lower bound of the range
11776 from the index expression, this comparison allows us to simultaneously
11777 check that the original index expression value is both greater than
11778 or equal to the minimum value of the range and less than or equal to
11779 the maximum value of the range. */
11781 if (default_label)
11782 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11783 default_label, default_probability);
11786 /* If index is in range, it must fit in Pmode.
11787 Convert to Pmode so we can index with it. */
11788 if (mode != Pmode)
11789 index = convert_to_mode (Pmode, index, 1);
11791 /* Don't let a MEM slip through, because then INDEX that comes
11792 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11793 and break_out_memory_refs will go to work on it and mess it up. */
11794 #ifdef PIC_CASE_VECTOR_ADDRESS
11795 if (flag_pic && !REG_P (index))
11796 index = copy_to_mode_reg (Pmode, index);
11797 #endif
11799 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11800 GET_MODE_SIZE, because this indicates how large insns are. The other
11801 uses should all be Pmode, because they are addresses. This code
11802 could fail if addresses and insns are not the same size. */
11803 index = simplify_gen_binary (MULT, Pmode, index,
11804 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11805 Pmode));
11806 index = simplify_gen_binary (PLUS, Pmode, index,
11807 gen_rtx_LABEL_REF (Pmode, table_label));
11809 #ifdef PIC_CASE_VECTOR_ADDRESS
11810 if (flag_pic)
11811 index = PIC_CASE_VECTOR_ADDRESS (index);
11812 else
11813 #endif
11814 index = memory_address (CASE_VECTOR_MODE, index);
11815 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11816 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11817 convert_move (temp, vector, 0);
11819 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11821 /* If we are generating PIC code or if the table is PC-relative, the
11822 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11823 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11824 emit_barrier ();
11828 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11829 rtx table_label, rtx default_label,
11830 profile_probability default_probability)
11832 rtx index;
11834 if (! targetm.have_tablejump ())
11835 return 0;
11837 index_expr = fold_build2 (MINUS_EXPR, index_type,
11838 fold_convert (index_type, index_expr),
11839 fold_convert (index_type, minval));
11840 index = expand_normal (index_expr);
11841 do_pending_stack_adjust ();
11843 do_tablejump (index, TYPE_MODE (index_type),
11844 convert_modes (TYPE_MODE (index_type),
11845 TYPE_MODE (TREE_TYPE (range)),
11846 expand_normal (range),
11847 TYPE_UNSIGNED (TREE_TYPE (range))),
11848 table_label, default_label, default_probability);
11849 return 1;
11852 /* Return a CONST_VECTOR rtx representing vector mask for
11853 a VECTOR_CST of booleans. */
11854 static rtx
11855 const_vector_mask_from_tree (tree exp)
11857 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
11858 machine_mode inner = GET_MODE_INNER (mode);
11860 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
11861 VECTOR_CST_NELTS_PER_PATTERN (exp));
11862 unsigned int count = builder.encoded_nelts ();
11863 for (unsigned int i = 0; i < count; ++i)
11865 tree elt = VECTOR_CST_ELT (exp, i);
11866 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11867 if (integer_zerop (elt))
11868 builder.quick_push (CONST0_RTX (inner));
11869 else if (integer_onep (elt)
11870 || integer_minus_onep (elt))
11871 builder.quick_push (CONSTM1_RTX (inner));
11872 else
11873 gcc_unreachable ();
11875 return builder.build ();
11878 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
11879 Return a constant scalar rtx of mode MODE in which bit X is set if element
11880 X of EXP is nonzero. */
11881 static rtx
11882 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
11884 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11885 tree elt;
11887 /* The result has a fixed number of bits so the input must too. */
11888 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
11889 for (unsigned int i = 0; i < nunits; ++i)
11891 elt = VECTOR_CST_ELT (exp, i);
11892 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11893 if (integer_all_onesp (elt))
11894 res = wi::set_bit (res, i);
11895 else
11896 gcc_assert (integer_zerop (elt));
11899 return immed_wide_int_const (res, mode);
11902 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11903 static rtx
11904 const_vector_from_tree (tree exp)
11906 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
11908 if (initializer_zerop (exp))
11909 return CONST0_RTX (mode);
11911 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11912 return const_vector_mask_from_tree (exp);
11914 machine_mode inner = GET_MODE_INNER (mode);
11916 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
11917 VECTOR_CST_NELTS_PER_PATTERN (exp));
11918 unsigned int count = builder.encoded_nelts ();
11919 for (unsigned int i = 0; i < count; ++i)
11921 tree elt = VECTOR_CST_ELT (exp, i);
11922 if (TREE_CODE (elt) == REAL_CST)
11923 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
11924 inner));
11925 else if (TREE_CODE (elt) == FIXED_CST)
11926 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11927 inner));
11928 else
11929 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
11930 inner));
11932 return builder.build ();
11935 /* Build a decl for a personality function given a language prefix. */
11937 tree
11938 build_personality_function (const char *lang)
11940 const char *unwind_and_version;
11941 tree decl, type;
11942 char *name;
11944 switch (targetm_common.except_unwind_info (&global_options))
11946 case UI_NONE:
11947 return NULL;
11948 case UI_SJLJ:
11949 unwind_and_version = "_sj0";
11950 break;
11951 case UI_DWARF2:
11952 case UI_TARGET:
11953 unwind_and_version = "_v0";
11954 break;
11955 case UI_SEH:
11956 unwind_and_version = "_seh0";
11957 break;
11958 default:
11959 gcc_unreachable ();
11962 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11964 type = build_function_type_list (integer_type_node, integer_type_node,
11965 long_long_unsigned_type_node,
11966 ptr_type_node, ptr_type_node, NULL_TREE);
11967 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11968 get_identifier (name), type);
11969 DECL_ARTIFICIAL (decl) = 1;
11970 DECL_EXTERNAL (decl) = 1;
11971 TREE_PUBLIC (decl) = 1;
11973 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11974 are the flags assigned by targetm.encode_section_info. */
11975 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11977 return decl;
11980 /* Extracts the personality function of DECL and returns the corresponding
11981 libfunc. */
11984 get_personality_function (tree decl)
11986 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11987 enum eh_personality_kind pk;
11989 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11990 if (pk == eh_personality_none)
11991 return NULL;
11993 if (!personality
11994 && pk == eh_personality_any)
11995 personality = lang_hooks.eh_personality ();
11997 if (pk == eh_personality_lang)
11998 gcc_assert (personality != NULL_TREE);
12000 return XEXP (DECL_RTL (personality), 0);
12003 /* Returns a tree for the size of EXP in bytes. */
12005 static tree
12006 tree_expr_size (const_tree exp)
12008 if (DECL_P (exp)
12009 && DECL_SIZE_UNIT (exp) != 0)
12010 return DECL_SIZE_UNIT (exp);
12011 else
12012 return size_in_bytes (TREE_TYPE (exp));
12015 /* Return an rtx for the size in bytes of the value of EXP. */
12018 expr_size (tree exp)
12020 tree size;
12022 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12023 size = TREE_OPERAND (exp, 1);
12024 else
12026 size = tree_expr_size (exp);
12027 gcc_assert (size);
12028 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12031 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12034 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12035 if the size can vary or is larger than an integer. */
12037 static HOST_WIDE_INT
12038 int_expr_size (tree exp)
12040 tree size;
12042 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12043 size = TREE_OPERAND (exp, 1);
12044 else
12046 size = tree_expr_size (exp);
12047 gcc_assert (size);
12050 if (size == 0 || !tree_fits_shwi_p (size))
12051 return -1;
12053 return tree_to_shwi (size);