* jump.c: Remove prototypes for delete_computation and
[official-gcc.git] / gcc / function.c
blobb667a17756078b2d25d94d10beafe450b4765eae
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
66 #include "vecprim.h"
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 life_analysis has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
153 struct temp_slot GTY(())
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
190 /* Forward declarations. */
192 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
193 struct function *);
194 static struct temp_slot *find_temp_slot_from_address (rtx);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
198 static int all_blocks (tree, tree *);
199 static tree *get_block_vector (tree, int *);
200 extern tree debug_find_var_in_block_tree (tree, tree);
201 /* We always define `record_insns' even if it's not used so that we
202 can always export `prologue_epilogue_contains'. */
203 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
204 static int contains (rtx, VEC(int,heap) **);
205 #ifdef HAVE_return
206 static void emit_return_into_block (basic_block);
207 #endif
208 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
209 static rtx keep_stack_depressed (rtx);
210 #endif
211 static void prepare_function_start (tree);
212 static void do_clobber_return_reg (rtx, void *);
213 static void do_use_return_reg (rtx, void *);
214 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
216 /* Pointer to chain of `struct function' for containing functions. */
217 struct function *outer_function_chain;
219 /* Given a function decl for a containing function,
220 return the `struct function' for it. */
222 struct function *
223 find_function_data (tree decl)
225 struct function *p;
227 for (p = outer_function_chain; p; p = p->outer)
228 if (p->decl == decl)
229 return p;
231 gcc_unreachable ();
234 /* Save the current context for compilation of a nested function.
235 This is called from language-specific code. The caller should use
236 the enter_nested langhook to save any language-specific state,
237 since this function knows only about language-independent
238 variables. */
240 void
241 push_function_context_to (tree context ATTRIBUTE_UNUSED)
243 struct function *p;
245 if (cfun == 0)
246 init_dummy_function_start ();
247 p = cfun;
249 p->outer = outer_function_chain;
250 outer_function_chain = p;
252 lang_hooks.function.enter_nested (p);
254 cfun = 0;
257 void
258 push_function_context (void)
260 push_function_context_to (current_function_decl);
263 /* Restore the last saved context, at the end of a nested function.
264 This function is called from language-specific code. */
266 void
267 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
269 struct function *p = outer_function_chain;
271 cfun = p;
272 outer_function_chain = p->outer;
274 current_function_decl = p->decl;
276 lang_hooks.function.leave_nested (p);
278 /* Reset variables that have known state during rtx generation. */
279 virtuals_instantiated = 0;
280 generating_concat_p = 1;
283 void
284 pop_function_context (void)
286 pop_function_context_from (current_function_decl);
289 /* Clear out all parts of the state in F that can safely be discarded
290 after the function has been parsed, but not compiled, to let
291 garbage collection reclaim the memory. */
293 void
294 free_after_parsing (struct function *f)
296 /* f->expr->forced_labels is used by code generation. */
297 /* f->emit->regno_reg_rtx is used by code generation. */
298 /* f->varasm is used by code generation. */
299 /* f->eh->eh_return_stub_label is used by code generation. */
301 lang_hooks.function.final (f);
304 /* Clear out all parts of the state in F that can safely be discarded
305 after the function has been compiled, to let garbage collection
306 reclaim the memory. */
308 void
309 free_after_compilation (struct function *f)
311 VEC_free (int, heap, prologue);
312 VEC_free (int, heap, epilogue);
313 VEC_free (int, heap, sibcall_epilogue);
315 f->eh = NULL;
316 f->expr = NULL;
317 f->emit = NULL;
318 f->varasm = NULL;
319 f->machine = NULL;
320 f->cfg = NULL;
322 f->x_avail_temp_slots = NULL;
323 f->x_used_temp_slots = NULL;
324 f->arg_offset_rtx = NULL;
325 f->return_rtx = NULL;
326 f->internal_arg_pointer = NULL;
327 f->x_nonlocal_goto_handler_labels = NULL;
328 f->x_return_label = NULL;
329 f->x_naked_return_label = NULL;
330 f->x_stack_slot_list = NULL;
331 f->x_stack_check_probe_note = NULL;
332 f->x_arg_pointer_save_area = NULL;
333 f->x_parm_birth_insn = NULL;
334 f->epilogue_delay_list = NULL;
337 /* Allocate fixed slots in the stack frame of the current function. */
339 /* Return size needed for stack frame based on slots so far allocated in
340 function F.
341 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
342 the caller may have to do that. */
344 static HOST_WIDE_INT
345 get_func_frame_size (struct function *f)
347 if (FRAME_GROWS_DOWNWARD)
348 return -f->x_frame_offset;
349 else
350 return f->x_frame_offset;
353 /* Return size needed for stack frame based on slots so far allocated.
354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
355 the caller may have to do that. */
357 HOST_WIDE_INT
358 get_frame_size (void)
360 return get_func_frame_size (cfun);
363 /* Issue an error message and return TRUE if frame OFFSET overflows in
364 the signed target pointer arithmetics for function FUNC. Otherwise
365 return FALSE. */
367 bool
368 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
370 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
372 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
373 /* Leave room for the fixed part of the frame. */
374 - 64 * UNITS_PER_WORD)
376 error ("%Jtotal size of local objects too large", func);
377 return TRUE;
380 return FALSE;
383 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
384 with machine mode MODE.
386 ALIGN controls the amount of alignment for the address of the slot:
387 0 means according to MODE,
388 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
389 -2 means use BITS_PER_UNIT,
390 positive specifies alignment boundary in bits.
392 We do not round to stack_boundary here.
394 FUNCTION specifies the function to allocate in. */
396 static rtx
397 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
398 struct function *function)
400 rtx x, addr;
401 int bigend_correction = 0;
402 unsigned int alignment;
403 int frame_off, frame_alignment, frame_phase;
405 if (align == 0)
407 tree type;
409 if (mode == BLKmode)
410 alignment = BIGGEST_ALIGNMENT;
411 else
412 alignment = GET_MODE_ALIGNMENT (mode);
414 /* Allow the target to (possibly) increase the alignment of this
415 stack slot. */
416 type = lang_hooks.types.type_for_mode (mode, 0);
417 if (type)
418 alignment = LOCAL_ALIGNMENT (type, alignment);
420 alignment /= BITS_PER_UNIT;
422 else if (align == -1)
424 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
425 size = CEIL_ROUND (size, alignment);
427 else if (align == -2)
428 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
429 else
430 alignment = align / BITS_PER_UNIT;
432 if (FRAME_GROWS_DOWNWARD)
433 function->x_frame_offset -= size;
435 /* Ignore alignment we can't do with expected alignment of the boundary. */
436 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
437 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
440 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
442 /* Calculate how many bytes the start of local variables is off from
443 stack alignment. */
444 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
445 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
446 frame_phase = frame_off ? frame_alignment - frame_off : 0;
448 /* Round the frame offset to the specified alignment. The default is
449 to always honor requests to align the stack but a port may choose to
450 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
451 if (STACK_ALIGNMENT_NEEDED
452 || mode != BLKmode
453 || size != 0)
455 /* We must be careful here, since FRAME_OFFSET might be negative and
456 division with a negative dividend isn't as well defined as we might
457 like. So we instead assume that ALIGNMENT is a power of two and
458 use logical operations which are unambiguous. */
459 if (FRAME_GROWS_DOWNWARD)
460 function->x_frame_offset
461 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
462 (unsigned HOST_WIDE_INT) alignment)
463 + frame_phase);
464 else
465 function->x_frame_offset
466 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
467 (unsigned HOST_WIDE_INT) alignment)
468 + frame_phase);
471 /* On a big-endian machine, if we are allocating more space than we will use,
472 use the least significant bytes of those that are allocated. */
473 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
474 bigend_correction = size - GET_MODE_SIZE (mode);
476 /* If we have already instantiated virtual registers, return the actual
477 address relative to the frame pointer. */
478 if (function == cfun && virtuals_instantiated)
479 addr = plus_constant (frame_pointer_rtx,
480 trunc_int_for_mode
481 (frame_offset + bigend_correction
482 + STARTING_FRAME_OFFSET, Pmode));
483 else
484 addr = plus_constant (virtual_stack_vars_rtx,
485 trunc_int_for_mode
486 (function->x_frame_offset + bigend_correction,
487 Pmode));
489 if (!FRAME_GROWS_DOWNWARD)
490 function->x_frame_offset += size;
492 x = gen_rtx_MEM (mode, addr);
493 MEM_NOTRAP_P (x) = 1;
495 function->x_stack_slot_list
496 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
498 if (frame_offset_overflow (function->x_frame_offset, function->decl))
499 function->x_frame_offset = 0;
501 return x;
504 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
505 current function. */
508 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
510 return assign_stack_local_1 (mode, size, align, cfun);
514 /* Removes temporary slot TEMP from LIST. */
516 static void
517 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
519 if (temp->next)
520 temp->next->prev = temp->prev;
521 if (temp->prev)
522 temp->prev->next = temp->next;
523 else
524 *list = temp->next;
526 temp->prev = temp->next = NULL;
529 /* Inserts temporary slot TEMP to LIST. */
531 static void
532 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
534 temp->next = *list;
535 if (*list)
536 (*list)->prev = temp;
537 temp->prev = NULL;
538 *list = temp;
541 /* Returns the list of used temp slots at LEVEL. */
543 static struct temp_slot **
544 temp_slots_at_level (int level)
546 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
547 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
549 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
552 /* Returns the maximal temporary slot level. */
554 static int
555 max_slot_level (void)
557 if (!used_temp_slots)
558 return -1;
560 return VEC_length (temp_slot_p, used_temp_slots) - 1;
563 /* Moves temporary slot TEMP to LEVEL. */
565 static void
566 move_slot_to_level (struct temp_slot *temp, int level)
568 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
569 insert_slot_to_list (temp, temp_slots_at_level (level));
570 temp->level = level;
573 /* Make temporary slot TEMP available. */
575 static void
576 make_slot_available (struct temp_slot *temp)
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, &avail_temp_slots);
580 temp->in_use = 0;
581 temp->level = -1;
584 /* Allocate a temporary stack slot and record it for possible later
585 reuse.
587 MODE is the machine mode to be given to the returned rtx.
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
598 TYPE is the type that will be used for the stack slot. */
601 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
602 int keep, tree type)
604 unsigned int align;
605 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
606 rtx slot;
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size != -1);
612 /* These are now unused. */
613 gcc_assert (keep <= 1);
615 if (mode == BLKmode)
616 align = BIGGEST_ALIGNMENT;
617 else
618 align = GET_MODE_ALIGNMENT (mode);
620 if (! type)
621 type = lang_hooks.types.type_for_mode (mode, 0);
623 if (type)
624 align = LOCAL_ALIGNMENT (type, align);
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment.
630 If assign_stack_temp is called outside of the tree->rtl expansion,
631 we cannot reuse the stack slots (that may still refer to
632 VIRTUAL_STACK_VARS_REGNUM). */
633 if (!virtuals_instantiated)
635 for (p = avail_temp_slots; p; p = p->next)
637 if (p->align >= align && p->size >= size
638 && GET_MODE (p->slot) == mode
639 && objects_must_conflict_p (p->type, type)
640 && (best_p == 0 || best_p->size > p->size
641 || (best_p->size == p->size && best_p->align > p->align)))
643 if (p->align == align && p->size == size)
645 selected = p;
646 cut_slot_from_list (selected, &avail_temp_slots);
647 best_p = 0;
648 break;
650 best_p = p;
655 /* Make our best, if any, the one to use. */
656 if (best_p)
658 selected = best_p;
659 cut_slot_from_list (selected, &avail_temp_slots);
661 /* If there are enough aligned bytes left over, make them into a new
662 temp_slot so that the extra bytes don't get wasted. Do this only
663 for BLKmode slots, so that we can be sure of the alignment. */
664 if (GET_MODE (best_p->slot) == BLKmode)
666 int alignment = best_p->align / BITS_PER_UNIT;
667 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
669 if (best_p->size - rounded_size >= alignment)
671 p = ggc_alloc (sizeof (struct temp_slot));
672 p->in_use = p->addr_taken = 0;
673 p->size = best_p->size - rounded_size;
674 p->base_offset = best_p->base_offset + rounded_size;
675 p->full_size = best_p->full_size - rounded_size;
676 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
677 p->align = best_p->align;
678 p->address = 0;
679 p->type = best_p->type;
680 insert_slot_to_list (p, &avail_temp_slots);
682 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
683 stack_slot_list);
685 best_p->size = rounded_size;
686 best_p->full_size = rounded_size;
691 /* If we still didn't find one, make a new temporary. */
692 if (selected == 0)
694 HOST_WIDE_INT frame_offset_old = frame_offset;
696 p = ggc_alloc (sizeof (struct temp_slot));
698 /* We are passing an explicit alignment request to assign_stack_local.
699 One side effect of that is assign_stack_local will not round SIZE
700 to ensure the frame offset remains suitably aligned.
702 So for requests which depended on the rounding of SIZE, we go ahead
703 and round it now. We also make sure ALIGNMENT is at least
704 BIGGEST_ALIGNMENT. */
705 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
706 p->slot = assign_stack_local (mode,
707 (mode == BLKmode
708 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
709 : size),
710 align);
712 p->align = align;
714 /* The following slot size computation is necessary because we don't
715 know the actual size of the temporary slot until assign_stack_local
716 has performed all the frame alignment and size rounding for the
717 requested temporary. Note that extra space added for alignment
718 can be either above or below this stack slot depending on which
719 way the frame grows. We include the extra space if and only if it
720 is above this slot. */
721 if (FRAME_GROWS_DOWNWARD)
722 p->size = frame_offset_old - frame_offset;
723 else
724 p->size = size;
726 /* Now define the fields used by combine_temp_slots. */
727 if (FRAME_GROWS_DOWNWARD)
729 p->base_offset = frame_offset;
730 p->full_size = frame_offset_old - frame_offset;
732 else
734 p->base_offset = frame_offset_old;
735 p->full_size = frame_offset - frame_offset_old;
737 p->address = 0;
739 selected = p;
742 p = selected;
743 p->in_use = 1;
744 p->addr_taken = 0;
745 p->type = type;
746 p->level = temp_slot_level;
747 p->keep = keep;
749 pp = temp_slots_at_level (p->level);
750 insert_slot_to_list (p, pp);
752 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
753 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
754 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
756 /* If we know the alias set for the memory that will be used, use
757 it. If there's no TYPE, then we don't know anything about the
758 alias set for the memory. */
759 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
760 set_mem_align (slot, align);
762 /* If a type is specified, set the relevant flags. */
763 if (type != 0)
765 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
766 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
767 || TREE_CODE (type) == COMPLEX_TYPE));
769 MEM_NOTRAP_P (slot) = 1;
771 return slot;
774 /* Allocate a temporary stack slot and record it for possible later
775 reuse. First three arguments are same as in preceding function. */
778 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
780 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
783 /* Assign a temporary.
784 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
785 and so that should be used in error messages. In either case, we
786 allocate of the given type.
787 KEEP is as for assign_stack_temp.
788 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
789 it is 0 if a register is OK.
790 DONT_PROMOTE is 1 if we should not promote values in register
791 to wider modes. */
794 assign_temp (tree type_or_decl, int keep, int memory_required,
795 int dont_promote ATTRIBUTE_UNUSED)
797 tree type, decl;
798 enum machine_mode mode;
799 #ifdef PROMOTE_MODE
800 int unsignedp;
801 #endif
803 if (DECL_P (type_or_decl))
804 decl = type_or_decl, type = TREE_TYPE (decl);
805 else
806 decl = NULL, type = type_or_decl;
808 mode = TYPE_MODE (type);
809 #ifdef PROMOTE_MODE
810 unsignedp = TYPE_UNSIGNED (type);
811 #endif
813 if (mode == BLKmode || memory_required)
815 HOST_WIDE_INT size = int_size_in_bytes (type);
816 rtx tmp;
818 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
819 problems with allocating the stack space. */
820 if (size == 0)
821 size = 1;
823 /* Unfortunately, we don't yet know how to allocate variable-sized
824 temporaries. However, sometimes we can find a fixed upper limit on
825 the size, so try that instead. */
826 else if (size == -1)
827 size = max_int_size_in_bytes (type);
829 /* The size of the temporary may be too large to fit into an integer. */
830 /* ??? Not sure this should happen except for user silliness, so limit
831 this to things that aren't compiler-generated temporaries. The
832 rest of the time we'll die in assign_stack_temp_for_type. */
833 if (decl && size == -1
834 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
836 error ("size of variable %q+D is too large", decl);
837 size = 1;
840 tmp = assign_stack_temp_for_type (mode, size, keep, type);
841 return tmp;
844 #ifdef PROMOTE_MODE
845 if (! dont_promote)
846 mode = promote_mode (type, mode, &unsignedp, 0);
847 #endif
849 return gen_reg_rtx (mode);
852 /* Combine temporary stack slots which are adjacent on the stack.
854 This allows for better use of already allocated stack space. This is only
855 done for BLKmode slots because we can be sure that we won't have alignment
856 problems in this case. */
858 static void
859 combine_temp_slots (void)
861 struct temp_slot *p, *q, *next, *next_q;
862 int num_slots;
864 /* We can't combine slots, because the information about which slot
865 is in which alias set will be lost. */
866 if (flag_strict_aliasing)
867 return;
869 /* If there are a lot of temp slots, don't do anything unless
870 high levels of optimization. */
871 if (! flag_expensive_optimizations)
872 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
873 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
874 return;
876 for (p = avail_temp_slots; p; p = next)
878 int delete_p = 0;
880 next = p->next;
882 if (GET_MODE (p->slot) != BLKmode)
883 continue;
885 for (q = p->next; q; q = next_q)
887 int delete_q = 0;
889 next_q = q->next;
891 if (GET_MODE (q->slot) != BLKmode)
892 continue;
894 if (p->base_offset + p->full_size == q->base_offset)
896 /* Q comes after P; combine Q into P. */
897 p->size += q->size;
898 p->full_size += q->full_size;
899 delete_q = 1;
901 else if (q->base_offset + q->full_size == p->base_offset)
903 /* P comes after Q; combine P into Q. */
904 q->size += p->size;
905 q->full_size += p->full_size;
906 delete_p = 1;
907 break;
909 if (delete_q)
910 cut_slot_from_list (q, &avail_temp_slots);
913 /* Either delete P or advance past it. */
914 if (delete_p)
915 cut_slot_from_list (p, &avail_temp_slots);
919 /* Find the temp slot corresponding to the object at address X. */
921 static struct temp_slot *
922 find_temp_slot_from_address (rtx x)
924 struct temp_slot *p;
925 rtx next;
926 int i;
928 for (i = max_slot_level (); i >= 0; i--)
929 for (p = *temp_slots_at_level (i); p; p = p->next)
931 if (XEXP (p->slot, 0) == x
932 || p->address == x
933 || (GET_CODE (x) == PLUS
934 && XEXP (x, 0) == virtual_stack_vars_rtx
935 && GET_CODE (XEXP (x, 1)) == CONST_INT
936 && INTVAL (XEXP (x, 1)) >= p->base_offset
937 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
938 return p;
940 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
941 for (next = p->address; next; next = XEXP (next, 1))
942 if (XEXP (next, 0) == x)
943 return p;
946 /* If we have a sum involving a register, see if it points to a temp
947 slot. */
948 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
949 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
950 return p;
951 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
952 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
953 return p;
955 return 0;
958 /* Indicate that NEW is an alternate way of referring to the temp slot
959 that previously was known by OLD. */
961 void
962 update_temp_slot_address (rtx old, rtx new)
964 struct temp_slot *p;
966 if (rtx_equal_p (old, new))
967 return;
969 p = find_temp_slot_from_address (old);
971 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
972 is a register, see if one operand of the PLUS is a temporary
973 location. If so, NEW points into it. Otherwise, if both OLD and
974 NEW are a PLUS and if there is a register in common between them.
975 If so, try a recursive call on those values. */
976 if (p == 0)
978 if (GET_CODE (old) != PLUS)
979 return;
981 if (REG_P (new))
983 update_temp_slot_address (XEXP (old, 0), new);
984 update_temp_slot_address (XEXP (old, 1), new);
985 return;
987 else if (GET_CODE (new) != PLUS)
988 return;
990 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
991 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
992 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
995 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
996 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
999 return;
1002 /* Otherwise add an alias for the temp's address. */
1003 else if (p->address == 0)
1004 p->address = new;
1005 else
1007 if (GET_CODE (p->address) != EXPR_LIST)
1008 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1010 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1014 /* If X could be a reference to a temporary slot, mark the fact that its
1015 address was taken. */
1017 void
1018 mark_temp_addr_taken (rtx x)
1020 struct temp_slot *p;
1022 if (x == 0)
1023 return;
1025 /* If X is not in memory or is at a constant address, it cannot be in
1026 a temporary slot. */
1027 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1028 return;
1030 p = find_temp_slot_from_address (XEXP (x, 0));
1031 if (p != 0)
1032 p->addr_taken = 1;
1035 /* If X could be a reference to a temporary slot, mark that slot as
1036 belonging to the to one level higher than the current level. If X
1037 matched one of our slots, just mark that one. Otherwise, we can't
1038 easily predict which it is, so upgrade all of them. Kept slots
1039 need not be touched.
1041 This is called when an ({...}) construct occurs and a statement
1042 returns a value in memory. */
1044 void
1045 preserve_temp_slots (rtx x)
1047 struct temp_slot *p = 0, *next;
1049 /* If there is no result, we still might have some objects whose address
1050 were taken, so we need to make sure they stay around. */
1051 if (x == 0)
1053 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1055 next = p->next;
1057 if (p->addr_taken)
1058 move_slot_to_level (p, temp_slot_level - 1);
1061 return;
1064 /* If X is a register that is being used as a pointer, see if we have
1065 a temporary slot we know it points to. To be consistent with
1066 the code below, we really should preserve all non-kept slots
1067 if we can't find a match, but that seems to be much too costly. */
1068 if (REG_P (x) && REG_POINTER (x))
1069 p = find_temp_slot_from_address (x);
1071 /* If X is not in memory or is at a constant address, it cannot be in
1072 a temporary slot, but it can contain something whose address was
1073 taken. */
1074 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1076 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1078 next = p->next;
1080 if (p->addr_taken)
1081 move_slot_to_level (p, temp_slot_level - 1);
1084 return;
1087 /* First see if we can find a match. */
1088 if (p == 0)
1089 p = find_temp_slot_from_address (XEXP (x, 0));
1091 if (p != 0)
1093 /* Move everything at our level whose address was taken to our new
1094 level in case we used its address. */
1095 struct temp_slot *q;
1097 if (p->level == temp_slot_level)
1099 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1101 next = q->next;
1103 if (p != q && q->addr_taken)
1104 move_slot_to_level (q, temp_slot_level - 1);
1107 move_slot_to_level (p, temp_slot_level - 1);
1108 p->addr_taken = 0;
1110 return;
1113 /* Otherwise, preserve all non-kept slots at this level. */
1114 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1116 next = p->next;
1118 if (!p->keep)
1119 move_slot_to_level (p, temp_slot_level - 1);
1123 /* Free all temporaries used so far. This is normally called at the
1124 end of generating code for a statement. */
1126 void
1127 free_temp_slots (void)
1129 struct temp_slot *p, *next;
1131 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1133 next = p->next;
1135 if (!p->keep)
1136 make_slot_available (p);
1139 combine_temp_slots ();
1142 /* Push deeper into the nesting level for stack temporaries. */
1144 void
1145 push_temp_slots (void)
1147 temp_slot_level++;
1150 /* Pop a temporary nesting level. All slots in use in the current level
1151 are freed. */
1153 void
1154 pop_temp_slots (void)
1156 struct temp_slot *p, *next;
1158 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1160 next = p->next;
1161 make_slot_available (p);
1164 combine_temp_slots ();
1166 temp_slot_level--;
1169 /* Initialize temporary slots. */
1171 void
1172 init_temp_slots (void)
1174 /* We have not allocated any temporaries yet. */
1175 avail_temp_slots = 0;
1176 used_temp_slots = 0;
1177 temp_slot_level = 0;
1180 /* These routines are responsible for converting virtual register references
1181 to the actual hard register references once RTL generation is complete.
1183 The following four variables are used for communication between the
1184 routines. They contain the offsets of the virtual registers from their
1185 respective hard registers. */
1187 static int in_arg_offset;
1188 static int var_offset;
1189 static int dynamic_offset;
1190 static int out_arg_offset;
1191 static int cfa_offset;
1193 /* In most machines, the stack pointer register is equivalent to the bottom
1194 of the stack. */
1196 #ifndef STACK_POINTER_OFFSET
1197 #define STACK_POINTER_OFFSET 0
1198 #endif
1200 /* If not defined, pick an appropriate default for the offset of dynamically
1201 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1202 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1204 #ifndef STACK_DYNAMIC_OFFSET
1206 /* The bottom of the stack points to the actual arguments. If
1207 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1208 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1209 stack space for register parameters is not pushed by the caller, but
1210 rather part of the fixed stack areas and hence not included in
1211 `current_function_outgoing_args_size'. Nevertheless, we must allow
1212 for it when allocating stack dynamic objects. */
1214 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1215 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1216 ((ACCUMULATE_OUTGOING_ARGS \
1217 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1218 + (STACK_POINTER_OFFSET)) \
1220 #else
1221 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1222 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1223 + (STACK_POINTER_OFFSET))
1224 #endif
1225 #endif
1228 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1229 is a virtual register, return the equivalent hard register and set the
1230 offset indirectly through the pointer. Otherwise, return 0. */
1232 static rtx
1233 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1235 rtx new;
1236 HOST_WIDE_INT offset;
1238 if (x == virtual_incoming_args_rtx)
1239 new = arg_pointer_rtx, offset = in_arg_offset;
1240 else if (x == virtual_stack_vars_rtx)
1241 new = frame_pointer_rtx, offset = var_offset;
1242 else if (x == virtual_stack_dynamic_rtx)
1243 new = stack_pointer_rtx, offset = dynamic_offset;
1244 else if (x == virtual_outgoing_args_rtx)
1245 new = stack_pointer_rtx, offset = out_arg_offset;
1246 else if (x == virtual_cfa_rtx)
1248 #ifdef FRAME_POINTER_CFA_OFFSET
1249 new = frame_pointer_rtx;
1250 #else
1251 new = arg_pointer_rtx;
1252 #endif
1253 offset = cfa_offset;
1255 else
1256 return NULL_RTX;
1258 *poffset = offset;
1259 return new;
1262 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1263 Instantiate any virtual registers present inside of *LOC. The expression
1264 is simplified, as much as possible, but is not to be considered "valid"
1265 in any sense implied by the target. If any change is made, set CHANGED
1266 to true. */
1268 static int
1269 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1271 HOST_WIDE_INT offset;
1272 bool *changed = (bool *) data;
1273 rtx x, new;
1275 x = *loc;
1276 if (x == 0)
1277 return 0;
1279 switch (GET_CODE (x))
1281 case REG:
1282 new = instantiate_new_reg (x, &offset);
1283 if (new)
1285 *loc = plus_constant (new, offset);
1286 if (changed)
1287 *changed = true;
1289 return -1;
1291 case PLUS:
1292 new = instantiate_new_reg (XEXP (x, 0), &offset);
1293 if (new)
1295 new = plus_constant (new, offset);
1296 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1297 if (changed)
1298 *changed = true;
1299 return -1;
1302 /* FIXME -- from old code */
1303 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1304 we can commute the PLUS and SUBREG because pointers into the
1305 frame are well-behaved. */
1306 break;
1308 default:
1309 break;
1312 return 0;
1315 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1316 matches the predicate for insn CODE operand OPERAND. */
1318 static int
1319 safe_insn_predicate (int code, int operand, rtx x)
1321 const struct insn_operand_data *op_data;
1323 if (code < 0)
1324 return true;
1326 op_data = &insn_data[code].operand[operand];
1327 if (op_data->predicate == NULL)
1328 return true;
1330 return op_data->predicate (x, op_data->mode);
1333 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1334 registers present inside of insn. The result will be a valid insn. */
1336 static void
1337 instantiate_virtual_regs_in_insn (rtx insn)
1339 HOST_WIDE_INT offset;
1340 int insn_code, i;
1341 bool any_change = false;
1342 rtx set, new, x, seq;
1344 /* There are some special cases to be handled first. */
1345 set = single_set (insn);
1346 if (set)
1348 /* We're allowed to assign to a virtual register. This is interpreted
1349 to mean that the underlying register gets assigned the inverse
1350 transformation. This is used, for example, in the handling of
1351 non-local gotos. */
1352 new = instantiate_new_reg (SET_DEST (set), &offset);
1353 if (new)
1355 start_sequence ();
1357 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1358 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1359 GEN_INT (-offset));
1360 x = force_operand (x, new);
1361 if (x != new)
1362 emit_move_insn (new, x);
1364 seq = get_insns ();
1365 end_sequence ();
1367 emit_insn_before (seq, insn);
1368 delete_insn (insn);
1369 return;
1372 /* Handle a straight copy from a virtual register by generating a
1373 new add insn. The difference between this and falling through
1374 to the generic case is avoiding a new pseudo and eliminating a
1375 move insn in the initial rtl stream. */
1376 new = instantiate_new_reg (SET_SRC (set), &offset);
1377 if (new && offset != 0
1378 && REG_P (SET_DEST (set))
1379 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1381 start_sequence ();
1383 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1384 new, GEN_INT (offset), SET_DEST (set),
1385 1, OPTAB_LIB_WIDEN);
1386 if (x != SET_DEST (set))
1387 emit_move_insn (SET_DEST (set), x);
1389 seq = get_insns ();
1390 end_sequence ();
1392 emit_insn_before (seq, insn);
1393 delete_insn (insn);
1394 return;
1397 extract_insn (insn);
1398 insn_code = INSN_CODE (insn);
1400 /* Handle a plus involving a virtual register by determining if the
1401 operands remain valid if they're modified in place. */
1402 if (GET_CODE (SET_SRC (set)) == PLUS
1403 && recog_data.n_operands >= 3
1404 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1405 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1406 && GET_CODE (recog_data.operand[2]) == CONST_INT
1407 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1409 offset += INTVAL (recog_data.operand[2]);
1411 /* If the sum is zero, then replace with a plain move. */
1412 if (offset == 0
1413 && REG_P (SET_DEST (set))
1414 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1416 start_sequence ();
1417 emit_move_insn (SET_DEST (set), new);
1418 seq = get_insns ();
1419 end_sequence ();
1421 emit_insn_before (seq, insn);
1422 delete_insn (insn);
1423 return;
1426 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1428 /* Using validate_change and apply_change_group here leaves
1429 recog_data in an invalid state. Since we know exactly what
1430 we want to check, do those two by hand. */
1431 if (safe_insn_predicate (insn_code, 1, new)
1432 && safe_insn_predicate (insn_code, 2, x))
1434 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1435 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1436 any_change = true;
1438 /* Fall through into the regular operand fixup loop in
1439 order to take care of operands other than 1 and 2. */
1443 else
1445 extract_insn (insn);
1446 insn_code = INSN_CODE (insn);
1449 /* In the general case, we expect virtual registers to appear only in
1450 operands, and then only as either bare registers or inside memories. */
1451 for (i = 0; i < recog_data.n_operands; ++i)
1453 x = recog_data.operand[i];
1454 switch (GET_CODE (x))
1456 case MEM:
1458 rtx addr = XEXP (x, 0);
1459 bool changed = false;
1461 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1462 if (!changed)
1463 continue;
1465 start_sequence ();
1466 x = replace_equiv_address (x, addr);
1467 seq = get_insns ();
1468 end_sequence ();
1469 if (seq)
1470 emit_insn_before (seq, insn);
1472 break;
1474 case REG:
1475 new = instantiate_new_reg (x, &offset);
1476 if (new == NULL)
1477 continue;
1478 if (offset == 0)
1479 x = new;
1480 else
1482 start_sequence ();
1484 /* Careful, special mode predicates may have stuff in
1485 insn_data[insn_code].operand[i].mode that isn't useful
1486 to us for computing a new value. */
1487 /* ??? Recognize address_operand and/or "p" constraints
1488 to see if (plus new offset) is a valid before we put
1489 this through expand_simple_binop. */
1490 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1491 GEN_INT (offset), NULL_RTX,
1492 1, OPTAB_LIB_WIDEN);
1493 seq = get_insns ();
1494 end_sequence ();
1495 emit_insn_before (seq, insn);
1497 break;
1499 case SUBREG:
1500 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1501 if (new == NULL)
1502 continue;
1503 if (offset != 0)
1505 start_sequence ();
1506 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1507 GEN_INT (offset), NULL_RTX,
1508 1, OPTAB_LIB_WIDEN);
1509 seq = get_insns ();
1510 end_sequence ();
1511 emit_insn_before (seq, insn);
1513 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1514 GET_MODE (new), SUBREG_BYTE (x));
1515 break;
1517 default:
1518 continue;
1521 /* At this point, X contains the new value for the operand.
1522 Validate the new value vs the insn predicate. Note that
1523 asm insns will have insn_code -1 here. */
1524 if (!safe_insn_predicate (insn_code, i, x))
1526 start_sequence ();
1527 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1528 seq = get_insns ();
1529 end_sequence ();
1530 if (seq)
1531 emit_insn_before (seq, insn);
1534 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1535 any_change = true;
1538 if (any_change)
1540 /* Propagate operand changes into the duplicates. */
1541 for (i = 0; i < recog_data.n_dups; ++i)
1542 *recog_data.dup_loc[i]
1543 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1545 /* Force re-recognition of the instruction for validation. */
1546 INSN_CODE (insn) = -1;
1549 if (asm_noperands (PATTERN (insn)) >= 0)
1551 if (!check_asm_operands (PATTERN (insn)))
1553 error_for_asm (insn, "impossible constraint in %<asm%>");
1554 delete_insn (insn);
1557 else
1559 if (recog_memoized (insn) < 0)
1560 fatal_insn_not_found (insn);
1564 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1565 do any instantiation required. */
1567 static void
1568 instantiate_decl (rtx x)
1570 rtx addr;
1572 if (x == 0)
1573 return;
1575 /* If this is a CONCAT, recurse for the pieces. */
1576 if (GET_CODE (x) == CONCAT)
1578 instantiate_decl (XEXP (x, 0));
1579 instantiate_decl (XEXP (x, 1));
1580 return;
1583 /* If this is not a MEM, no need to do anything. Similarly if the
1584 address is a constant or a register that is not a virtual register. */
1585 if (!MEM_P (x))
1586 return;
1588 addr = XEXP (x, 0);
1589 if (CONSTANT_P (addr)
1590 || (REG_P (addr)
1591 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1592 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1593 return;
1595 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1598 /* Helper for instantiate_decls called via walk_tree: Process all decls
1599 in the given DECL_VALUE_EXPR. */
1601 static tree
1602 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1604 tree t = *tp;
1605 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1607 *walk_subtrees = 0;
1608 if (DECL_P (t) && DECL_RTL_SET_P (t))
1609 instantiate_decl (DECL_RTL (t));
1611 return NULL;
1614 /* Subroutine of instantiate_decls: Process all decls in the given
1615 BLOCK node and all its subblocks. */
1617 static void
1618 instantiate_decls_1 (tree let)
1620 tree t;
1622 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1624 if (DECL_RTL_SET_P (t))
1625 instantiate_decl (DECL_RTL (t));
1626 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1628 tree v = DECL_VALUE_EXPR (t);
1629 walk_tree (&v, instantiate_expr, NULL, NULL);
1633 /* Process all subblocks. */
1634 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1635 instantiate_decls_1 (t);
1638 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1639 all virtual registers in their DECL_RTL's. */
1641 static void
1642 instantiate_decls (tree fndecl)
1644 tree decl;
1646 /* Process all parameters of the function. */
1647 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1649 instantiate_decl (DECL_RTL (decl));
1650 instantiate_decl (DECL_INCOMING_RTL (decl));
1651 if (DECL_HAS_VALUE_EXPR_P (decl))
1653 tree v = DECL_VALUE_EXPR (decl);
1654 walk_tree (&v, instantiate_expr, NULL, NULL);
1658 /* Now process all variables defined in the function or its subblocks. */
1659 instantiate_decls_1 (DECL_INITIAL (fndecl));
1662 /* Pass through the INSNS of function FNDECL and convert virtual register
1663 references to hard register references. */
1665 static unsigned int
1666 instantiate_virtual_regs (void)
1668 rtx insn;
1670 /* Compute the offsets to use for this function. */
1671 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1672 var_offset = STARTING_FRAME_OFFSET;
1673 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1674 out_arg_offset = STACK_POINTER_OFFSET;
1675 #ifdef FRAME_POINTER_CFA_OFFSET
1676 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1677 #else
1678 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1679 #endif
1681 /* Initialize recognition, indicating that volatile is OK. */
1682 init_recog ();
1684 /* Scan through all the insns, instantiating every virtual register still
1685 present. */
1686 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1687 if (INSN_P (insn))
1689 /* These patterns in the instruction stream can never be recognized.
1690 Fortunately, they shouldn't contain virtual registers either. */
1691 if (GET_CODE (PATTERN (insn)) == USE
1692 || GET_CODE (PATTERN (insn)) == CLOBBER
1693 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1694 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1695 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1696 continue;
1698 instantiate_virtual_regs_in_insn (insn);
1700 if (INSN_DELETED_P (insn))
1701 continue;
1703 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1705 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1706 if (GET_CODE (insn) == CALL_INSN)
1707 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1708 instantiate_virtual_regs_in_rtx, NULL);
1711 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1712 instantiate_decls (current_function_decl);
1714 /* Indicate that, from now on, assign_stack_local should use
1715 frame_pointer_rtx. */
1716 virtuals_instantiated = 1;
1717 return 0;
1720 struct tree_opt_pass pass_instantiate_virtual_regs =
1722 "vregs", /* name */
1723 NULL, /* gate */
1724 instantiate_virtual_regs, /* execute */
1725 NULL, /* sub */
1726 NULL, /* next */
1727 0, /* static_pass_number */
1728 0, /* tv_id */
1729 0, /* properties_required */
1730 0, /* properties_provided */
1731 0, /* properties_destroyed */
1732 0, /* todo_flags_start */
1733 TODO_dump_func, /* todo_flags_finish */
1734 0 /* letter */
1738 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1739 This means a type for which function calls must pass an address to the
1740 function or get an address back from the function.
1741 EXP may be a type node or an expression (whose type is tested). */
1744 aggregate_value_p (tree exp, tree fntype)
1746 int i, regno, nregs;
1747 rtx reg;
1749 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1751 /* DECL node associated with FNTYPE when relevant, which we might need to
1752 check for by-invisible-reference returns, typically for CALL_EXPR input
1753 EXPressions. */
1754 tree fndecl = NULL_TREE;
1756 if (fntype)
1757 switch (TREE_CODE (fntype))
1759 case CALL_EXPR:
1760 fndecl = get_callee_fndecl (fntype);
1761 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1762 break;
1763 case FUNCTION_DECL:
1764 fndecl = fntype;
1765 fntype = TREE_TYPE (fndecl);
1766 break;
1767 case FUNCTION_TYPE:
1768 case METHOD_TYPE:
1769 break;
1770 case IDENTIFIER_NODE:
1771 fntype = 0;
1772 break;
1773 default:
1774 /* We don't expect other rtl types here. */
1775 gcc_unreachable ();
1778 if (TREE_CODE (type) == VOID_TYPE)
1779 return 0;
1781 /* If the front end has decided that this needs to be passed by
1782 reference, do so. */
1783 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1784 && DECL_BY_REFERENCE (exp))
1785 return 1;
1787 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1788 called function RESULT_DECL, meaning the function returns in memory by
1789 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1790 on the function type, which used to be the way to request such a return
1791 mechanism but might now be causing troubles at gimplification time if
1792 temporaries with the function type need to be created. */
1793 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1794 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1795 return 1;
1797 if (targetm.calls.return_in_memory (type, fntype))
1798 return 1;
1799 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1800 and thus can't be returned in registers. */
1801 if (TREE_ADDRESSABLE (type))
1802 return 1;
1803 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1804 return 1;
1805 /* Make sure we have suitable call-clobbered regs to return
1806 the value in; if not, we must return it in memory. */
1807 reg = hard_function_value (type, 0, fntype, 0);
1809 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1810 it is OK. */
1811 if (!REG_P (reg))
1812 return 0;
1814 regno = REGNO (reg);
1815 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1816 for (i = 0; i < nregs; i++)
1817 if (! call_used_regs[regno + i])
1818 return 1;
1819 return 0;
1822 /* Return true if we should assign DECL a pseudo register; false if it
1823 should live on the local stack. */
1825 bool
1826 use_register_for_decl (tree decl)
1828 /* Honor volatile. */
1829 if (TREE_SIDE_EFFECTS (decl))
1830 return false;
1832 /* Honor addressability. */
1833 if (TREE_ADDRESSABLE (decl))
1834 return false;
1836 /* Only register-like things go in registers. */
1837 if (DECL_MODE (decl) == BLKmode)
1838 return false;
1840 /* If -ffloat-store specified, don't put explicit float variables
1841 into registers. */
1842 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1843 propagates values across these stores, and it probably shouldn't. */
1844 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1845 return false;
1847 /* If we're not interested in tracking debugging information for
1848 this decl, then we can certainly put it in a register. */
1849 if (DECL_IGNORED_P (decl))
1850 return true;
1852 return (optimize || DECL_REGISTER (decl));
1855 /* Return true if TYPE should be passed by invisible reference. */
1857 bool
1858 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1859 tree type, bool named_arg)
1861 if (type)
1863 /* If this type contains non-trivial constructors, then it is
1864 forbidden for the middle-end to create any new copies. */
1865 if (TREE_ADDRESSABLE (type))
1866 return true;
1868 /* GCC post 3.4 passes *all* variable sized types by reference. */
1869 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1870 return true;
1873 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1876 /* Return true if TYPE, which is passed by reference, should be callee
1877 copied instead of caller copied. */
1879 bool
1880 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1881 tree type, bool named_arg)
1883 if (type && TREE_ADDRESSABLE (type))
1884 return false;
1885 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1888 /* Structures to communicate between the subroutines of assign_parms.
1889 The first holds data persistent across all parameters, the second
1890 is cleared out for each parameter. */
1892 struct assign_parm_data_all
1894 CUMULATIVE_ARGS args_so_far;
1895 struct args_size stack_args_size;
1896 tree function_result_decl;
1897 tree orig_fnargs;
1898 rtx conversion_insns;
1899 HOST_WIDE_INT pretend_args_size;
1900 HOST_WIDE_INT extra_pretend_bytes;
1901 int reg_parm_stack_space;
1904 struct assign_parm_data_one
1906 tree nominal_type;
1907 tree passed_type;
1908 rtx entry_parm;
1909 rtx stack_parm;
1910 enum machine_mode nominal_mode;
1911 enum machine_mode passed_mode;
1912 enum machine_mode promoted_mode;
1913 struct locate_and_pad_arg_data locate;
1914 int partial;
1915 BOOL_BITFIELD named_arg : 1;
1916 BOOL_BITFIELD passed_pointer : 1;
1917 BOOL_BITFIELD on_stack : 1;
1918 BOOL_BITFIELD loaded_in_reg : 1;
1921 /* A subroutine of assign_parms. Initialize ALL. */
1923 static void
1924 assign_parms_initialize_all (struct assign_parm_data_all *all)
1926 tree fntype;
1928 memset (all, 0, sizeof (*all));
1930 fntype = TREE_TYPE (current_function_decl);
1932 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1933 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1934 #else
1935 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1936 current_function_decl, -1);
1937 #endif
1939 #ifdef REG_PARM_STACK_SPACE
1940 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1941 #endif
1944 /* If ARGS contains entries with complex types, split the entry into two
1945 entries of the component type. Return a new list of substitutions are
1946 needed, else the old list. */
1948 static tree
1949 split_complex_args (tree args)
1951 tree p;
1953 /* Before allocating memory, check for the common case of no complex. */
1954 for (p = args; p; p = TREE_CHAIN (p))
1956 tree type = TREE_TYPE (p);
1957 if (TREE_CODE (type) == COMPLEX_TYPE
1958 && targetm.calls.split_complex_arg (type))
1959 goto found;
1961 return args;
1963 found:
1964 args = copy_list (args);
1966 for (p = args; p; p = TREE_CHAIN (p))
1968 tree type = TREE_TYPE (p);
1969 if (TREE_CODE (type) == COMPLEX_TYPE
1970 && targetm.calls.split_complex_arg (type))
1972 tree decl;
1973 tree subtype = TREE_TYPE (type);
1974 bool addressable = TREE_ADDRESSABLE (p);
1976 /* Rewrite the PARM_DECL's type with its component. */
1977 TREE_TYPE (p) = subtype;
1978 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1979 DECL_MODE (p) = VOIDmode;
1980 DECL_SIZE (p) = NULL;
1981 DECL_SIZE_UNIT (p) = NULL;
1982 /* If this arg must go in memory, put it in a pseudo here.
1983 We can't allow it to go in memory as per normal parms,
1984 because the usual place might not have the imag part
1985 adjacent to the real part. */
1986 DECL_ARTIFICIAL (p) = addressable;
1987 DECL_IGNORED_P (p) = addressable;
1988 TREE_ADDRESSABLE (p) = 0;
1989 layout_decl (p, 0);
1991 /* Build a second synthetic decl. */
1992 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1993 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1994 DECL_ARTIFICIAL (decl) = addressable;
1995 DECL_IGNORED_P (decl) = addressable;
1996 layout_decl (decl, 0);
1998 /* Splice it in; skip the new decl. */
1999 TREE_CHAIN (decl) = TREE_CHAIN (p);
2000 TREE_CHAIN (p) = decl;
2001 p = decl;
2005 return args;
2008 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2009 the hidden struct return argument, and (abi willing) complex args.
2010 Return the new parameter list. */
2012 static tree
2013 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2015 tree fndecl = current_function_decl;
2016 tree fntype = TREE_TYPE (fndecl);
2017 tree fnargs = DECL_ARGUMENTS (fndecl);
2019 /* If struct value address is treated as the first argument, make it so. */
2020 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2021 && ! current_function_returns_pcc_struct
2022 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2024 tree type = build_pointer_type (TREE_TYPE (fntype));
2025 tree decl;
2027 decl = build_decl (PARM_DECL, NULL_TREE, type);
2028 DECL_ARG_TYPE (decl) = type;
2029 DECL_ARTIFICIAL (decl) = 1;
2030 DECL_IGNORED_P (decl) = 1;
2032 TREE_CHAIN (decl) = fnargs;
2033 fnargs = decl;
2034 all->function_result_decl = decl;
2037 all->orig_fnargs = fnargs;
2039 /* If the target wants to split complex arguments into scalars, do so. */
2040 if (targetm.calls.split_complex_arg)
2041 fnargs = split_complex_args (fnargs);
2043 return fnargs;
2046 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2047 data for the parameter. Incorporate ABI specifics such as pass-by-
2048 reference and type promotion. */
2050 static void
2051 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2052 struct assign_parm_data_one *data)
2054 tree nominal_type, passed_type;
2055 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2057 memset (data, 0, sizeof (*data));
2059 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2060 if (!current_function_stdarg)
2061 data->named_arg = 1; /* No varadic parms. */
2062 else if (TREE_CHAIN (parm))
2063 data->named_arg = 1; /* Not the last non-varadic parm. */
2064 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2065 data->named_arg = 1; /* Only varadic ones are unnamed. */
2066 else
2067 data->named_arg = 0; /* Treat as varadic. */
2069 nominal_type = TREE_TYPE (parm);
2070 passed_type = DECL_ARG_TYPE (parm);
2072 /* Look out for errors propagating this far. Also, if the parameter's
2073 type is void then its value doesn't matter. */
2074 if (TREE_TYPE (parm) == error_mark_node
2075 /* This can happen after weird syntax errors
2076 or if an enum type is defined among the parms. */
2077 || TREE_CODE (parm) != PARM_DECL
2078 || passed_type == NULL
2079 || VOID_TYPE_P (nominal_type))
2081 nominal_type = passed_type = void_type_node;
2082 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2083 goto egress;
2086 /* Find mode of arg as it is passed, and mode of arg as it should be
2087 during execution of this function. */
2088 passed_mode = TYPE_MODE (passed_type);
2089 nominal_mode = TYPE_MODE (nominal_type);
2091 /* If the parm is to be passed as a transparent union, use the type of
2092 the first field for the tests below. We have already verified that
2093 the modes are the same. */
2094 if (TREE_CODE (passed_type) == UNION_TYPE
2095 && TYPE_TRANSPARENT_UNION (passed_type))
2096 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2098 /* See if this arg was passed by invisible reference. */
2099 if (pass_by_reference (&all->args_so_far, passed_mode,
2100 passed_type, data->named_arg))
2102 passed_type = nominal_type = build_pointer_type (passed_type);
2103 data->passed_pointer = true;
2104 passed_mode = nominal_mode = Pmode;
2107 /* Find mode as it is passed by the ABI. */
2108 promoted_mode = passed_mode;
2109 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2111 int unsignedp = TYPE_UNSIGNED (passed_type);
2112 promoted_mode = promote_mode (passed_type, promoted_mode,
2113 &unsignedp, 1);
2116 egress:
2117 data->nominal_type = nominal_type;
2118 data->passed_type = passed_type;
2119 data->nominal_mode = nominal_mode;
2120 data->passed_mode = passed_mode;
2121 data->promoted_mode = promoted_mode;
2124 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2126 static void
2127 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2128 struct assign_parm_data_one *data, bool no_rtl)
2130 int varargs_pretend_bytes = 0;
2132 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2133 data->promoted_mode,
2134 data->passed_type,
2135 &varargs_pretend_bytes, no_rtl);
2137 /* If the back-end has requested extra stack space, record how much is
2138 needed. Do not change pretend_args_size otherwise since it may be
2139 nonzero from an earlier partial argument. */
2140 if (varargs_pretend_bytes > 0)
2141 all->pretend_args_size = varargs_pretend_bytes;
2144 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2145 the incoming location of the current parameter. */
2147 static void
2148 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2149 struct assign_parm_data_one *data)
2151 HOST_WIDE_INT pretend_bytes = 0;
2152 rtx entry_parm;
2153 bool in_regs;
2155 if (data->promoted_mode == VOIDmode)
2157 data->entry_parm = data->stack_parm = const0_rtx;
2158 return;
2161 #ifdef FUNCTION_INCOMING_ARG
2162 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2163 data->passed_type, data->named_arg);
2164 #else
2165 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2166 data->passed_type, data->named_arg);
2167 #endif
2169 if (entry_parm == 0)
2170 data->promoted_mode = data->passed_mode;
2172 /* Determine parm's home in the stack, in case it arrives in the stack
2173 or we should pretend it did. Compute the stack position and rtx where
2174 the argument arrives and its size.
2176 There is one complexity here: If this was a parameter that would
2177 have been passed in registers, but wasn't only because it is
2178 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2179 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2180 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2181 as it was the previous time. */
2182 in_regs = entry_parm != 0;
2183 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2184 in_regs = true;
2185 #endif
2186 if (!in_regs && !data->named_arg)
2188 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2190 rtx tem;
2191 #ifdef FUNCTION_INCOMING_ARG
2192 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2193 data->passed_type, true);
2194 #else
2195 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2196 data->passed_type, true);
2197 #endif
2198 in_regs = tem != NULL;
2202 /* If this parameter was passed both in registers and in the stack, use
2203 the copy on the stack. */
2204 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2205 data->passed_type))
2206 entry_parm = 0;
2208 if (entry_parm)
2210 int partial;
2212 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2213 data->promoted_mode,
2214 data->passed_type,
2215 data->named_arg);
2216 data->partial = partial;
2218 /* The caller might already have allocated stack space for the
2219 register parameters. */
2220 if (partial != 0 && all->reg_parm_stack_space == 0)
2222 /* Part of this argument is passed in registers and part
2223 is passed on the stack. Ask the prologue code to extend
2224 the stack part so that we can recreate the full value.
2226 PRETEND_BYTES is the size of the registers we need to store.
2227 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2228 stack space that the prologue should allocate.
2230 Internally, gcc assumes that the argument pointer is aligned
2231 to STACK_BOUNDARY bits. This is used both for alignment
2232 optimizations (see init_emit) and to locate arguments that are
2233 aligned to more than PARM_BOUNDARY bits. We must preserve this
2234 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2235 a stack boundary. */
2237 /* We assume at most one partial arg, and it must be the first
2238 argument on the stack. */
2239 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2241 pretend_bytes = partial;
2242 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2244 /* We want to align relative to the actual stack pointer, so
2245 don't include this in the stack size until later. */
2246 all->extra_pretend_bytes = all->pretend_args_size;
2250 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2251 entry_parm ? data->partial : 0, current_function_decl,
2252 &all->stack_args_size, &data->locate);
2254 /* Adjust offsets to include the pretend args. */
2255 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2256 data->locate.slot_offset.constant += pretend_bytes;
2257 data->locate.offset.constant += pretend_bytes;
2259 data->entry_parm = entry_parm;
2262 /* A subroutine of assign_parms. If there is actually space on the stack
2263 for this parm, count it in stack_args_size and return true. */
2265 static bool
2266 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2267 struct assign_parm_data_one *data)
2269 /* Trivially true if we've no incoming register. */
2270 if (data->entry_parm == NULL)
2272 /* Also true if we're partially in registers and partially not,
2273 since we've arranged to drop the entire argument on the stack. */
2274 else if (data->partial != 0)
2276 /* Also true if the target says that it's passed in both registers
2277 and on the stack. */
2278 else if (GET_CODE (data->entry_parm) == PARALLEL
2279 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2281 /* Also true if the target says that there's stack allocated for
2282 all register parameters. */
2283 else if (all->reg_parm_stack_space > 0)
2285 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2286 else
2287 return false;
2289 all->stack_args_size.constant += data->locate.size.constant;
2290 if (data->locate.size.var)
2291 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2293 return true;
2296 /* A subroutine of assign_parms. Given that this parameter is allocated
2297 stack space by the ABI, find it. */
2299 static void
2300 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2302 rtx offset_rtx, stack_parm;
2303 unsigned int align, boundary;
2305 /* If we're passing this arg using a reg, make its stack home the
2306 aligned stack slot. */
2307 if (data->entry_parm)
2308 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2309 else
2310 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2312 stack_parm = current_function_internal_arg_pointer;
2313 if (offset_rtx != const0_rtx)
2314 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2315 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2317 set_mem_attributes (stack_parm, parm, 1);
2319 boundary = data->locate.boundary;
2320 align = BITS_PER_UNIT;
2322 /* If we're padding upward, we know that the alignment of the slot
2323 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2324 intentionally forcing upward padding. Otherwise we have to come
2325 up with a guess at the alignment based on OFFSET_RTX. */
2326 if (data->locate.where_pad != downward || data->entry_parm)
2327 align = boundary;
2328 else if (GET_CODE (offset_rtx) == CONST_INT)
2330 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2331 align = align & -align;
2333 set_mem_align (stack_parm, align);
2335 if (data->entry_parm)
2336 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2338 data->stack_parm = stack_parm;
2341 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2342 always valid and contiguous. */
2344 static void
2345 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2347 rtx entry_parm = data->entry_parm;
2348 rtx stack_parm = data->stack_parm;
2350 /* If this parm was passed part in regs and part in memory, pretend it
2351 arrived entirely in memory by pushing the register-part onto the stack.
2352 In the special case of a DImode or DFmode that is split, we could put
2353 it together in a pseudoreg directly, but for now that's not worth
2354 bothering with. */
2355 if (data->partial != 0)
2357 /* Handle calls that pass values in multiple non-contiguous
2358 locations. The Irix 6 ABI has examples of this. */
2359 if (GET_CODE (entry_parm) == PARALLEL)
2360 emit_group_store (validize_mem (stack_parm), entry_parm,
2361 data->passed_type,
2362 int_size_in_bytes (data->passed_type));
2363 else
2365 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2366 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2367 data->partial / UNITS_PER_WORD);
2370 entry_parm = stack_parm;
2373 /* If we didn't decide this parm came in a register, by default it came
2374 on the stack. */
2375 else if (entry_parm == NULL)
2376 entry_parm = stack_parm;
2378 /* When an argument is passed in multiple locations, we can't make use
2379 of this information, but we can save some copying if the whole argument
2380 is passed in a single register. */
2381 else if (GET_CODE (entry_parm) == PARALLEL
2382 && data->nominal_mode != BLKmode
2383 && data->passed_mode != BLKmode)
2385 size_t i, len = XVECLEN (entry_parm, 0);
2387 for (i = 0; i < len; i++)
2388 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2389 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2390 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2391 == data->passed_mode)
2392 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2394 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2395 break;
2399 data->entry_parm = entry_parm;
2402 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2403 always valid and properly aligned. */
2405 static void
2406 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2408 rtx stack_parm = data->stack_parm;
2410 /* If we can't trust the parm stack slot to be aligned enough for its
2411 ultimate type, don't use that slot after entry. We'll make another
2412 stack slot, if we need one. */
2413 if (stack_parm
2414 && ((STRICT_ALIGNMENT
2415 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2416 || (data->nominal_type
2417 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2418 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2419 stack_parm = NULL;
2421 /* If parm was passed in memory, and we need to convert it on entry,
2422 don't store it back in that same slot. */
2423 else if (data->entry_parm == stack_parm
2424 && data->nominal_mode != BLKmode
2425 && data->nominal_mode != data->passed_mode)
2426 stack_parm = NULL;
2428 /* If stack protection is in effect for this function, don't leave any
2429 pointers in their passed stack slots. */
2430 else if (cfun->stack_protect_guard
2431 && (flag_stack_protect == 2
2432 || data->passed_pointer
2433 || POINTER_TYPE_P (data->nominal_type)))
2434 stack_parm = NULL;
2436 data->stack_parm = stack_parm;
2439 /* A subroutine of assign_parms. Return true if the current parameter
2440 should be stored as a BLKmode in the current frame. */
2442 static bool
2443 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2445 if (data->nominal_mode == BLKmode)
2446 return true;
2447 if (GET_CODE (data->entry_parm) == PARALLEL)
2448 return true;
2450 #ifdef BLOCK_REG_PADDING
2451 /* Only assign_parm_setup_block knows how to deal with register arguments
2452 that are padded at the least significant end. */
2453 if (REG_P (data->entry_parm)
2454 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2455 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2456 == (BYTES_BIG_ENDIAN ? upward : downward)))
2457 return true;
2458 #endif
2460 return false;
2463 /* A subroutine of assign_parms. Arrange for the parameter to be
2464 present and valid in DATA->STACK_RTL. */
2466 static void
2467 assign_parm_setup_block (struct assign_parm_data_all *all,
2468 tree parm, struct assign_parm_data_one *data)
2470 rtx entry_parm = data->entry_parm;
2471 rtx stack_parm = data->stack_parm;
2472 HOST_WIDE_INT size;
2473 HOST_WIDE_INT size_stored;
2474 rtx orig_entry_parm = entry_parm;
2476 if (GET_CODE (entry_parm) == PARALLEL)
2477 entry_parm = emit_group_move_into_temps (entry_parm);
2479 /* If we've a non-block object that's nevertheless passed in parts,
2480 reconstitute it in register operations rather than on the stack. */
2481 if (GET_CODE (entry_parm) == PARALLEL
2482 && data->nominal_mode != BLKmode)
2484 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2486 if ((XVECLEN (entry_parm, 0) > 1
2487 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2488 && use_register_for_decl (parm))
2490 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2492 push_to_sequence (all->conversion_insns);
2494 /* For values returned in multiple registers, handle possible
2495 incompatible calls to emit_group_store.
2497 For example, the following would be invalid, and would have to
2498 be fixed by the conditional below:
2500 emit_group_store ((reg:SF), (parallel:DF))
2501 emit_group_store ((reg:SI), (parallel:DI))
2503 An example of this are doubles in e500 v2:
2504 (parallel:DF (expr_list (reg:SI) (const_int 0))
2505 (expr_list (reg:SI) (const_int 4))). */
2506 if (data->nominal_mode != data->passed_mode)
2508 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2509 emit_group_store (t, entry_parm, NULL_TREE,
2510 GET_MODE_SIZE (GET_MODE (entry_parm)));
2511 convert_move (parmreg, t, 0);
2513 else
2514 emit_group_store (parmreg, entry_parm, data->nominal_type,
2515 int_size_in_bytes (data->nominal_type));
2517 all->conversion_insns = get_insns ();
2518 end_sequence ();
2520 SET_DECL_RTL (parm, parmreg);
2521 return;
2525 size = int_size_in_bytes (data->passed_type);
2526 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2527 if (stack_parm == 0)
2529 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2530 stack_parm = assign_stack_local (BLKmode, size_stored,
2531 DECL_ALIGN (parm));
2532 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2533 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2534 set_mem_attributes (stack_parm, parm, 1);
2537 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2538 calls that pass values in multiple non-contiguous locations. */
2539 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2541 rtx mem;
2543 /* Note that we will be storing an integral number of words.
2544 So we have to be careful to ensure that we allocate an
2545 integral number of words. We do this above when we call
2546 assign_stack_local if space was not allocated in the argument
2547 list. If it was, this will not work if PARM_BOUNDARY is not
2548 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2549 if it becomes a problem. Exception is when BLKmode arrives
2550 with arguments not conforming to word_mode. */
2552 if (data->stack_parm == 0)
2554 else if (GET_CODE (entry_parm) == PARALLEL)
2556 else
2557 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2559 mem = validize_mem (stack_parm);
2561 /* Handle values in multiple non-contiguous locations. */
2562 if (GET_CODE (entry_parm) == PARALLEL)
2564 push_to_sequence (all->conversion_insns);
2565 emit_group_store (mem, entry_parm, data->passed_type, size);
2566 all->conversion_insns = get_insns ();
2567 end_sequence ();
2570 else if (size == 0)
2573 /* If SIZE is that of a mode no bigger than a word, just use
2574 that mode's store operation. */
2575 else if (size <= UNITS_PER_WORD)
2577 enum machine_mode mode
2578 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2580 if (mode != BLKmode
2581 #ifdef BLOCK_REG_PADDING
2582 && (size == UNITS_PER_WORD
2583 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2584 != (BYTES_BIG_ENDIAN ? upward : downward)))
2585 #endif
2588 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2589 emit_move_insn (change_address (mem, mode, 0), reg);
2592 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2593 machine must be aligned to the left before storing
2594 to memory. Note that the previous test doesn't
2595 handle all cases (e.g. SIZE == 3). */
2596 else if (size != UNITS_PER_WORD
2597 #ifdef BLOCK_REG_PADDING
2598 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2599 == downward)
2600 #else
2601 && BYTES_BIG_ENDIAN
2602 #endif
2605 rtx tem, x;
2606 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2607 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2609 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2610 build_int_cst (NULL_TREE, by),
2611 NULL_RTX, 1);
2612 tem = change_address (mem, word_mode, 0);
2613 emit_move_insn (tem, x);
2615 else
2616 move_block_from_reg (REGNO (entry_parm), mem,
2617 size_stored / UNITS_PER_WORD);
2619 else
2620 move_block_from_reg (REGNO (entry_parm), mem,
2621 size_stored / UNITS_PER_WORD);
2623 else if (data->stack_parm == 0)
2625 push_to_sequence (all->conversion_insns);
2626 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2627 BLOCK_OP_NORMAL);
2628 all->conversion_insns = get_insns ();
2629 end_sequence ();
2632 data->stack_parm = stack_parm;
2633 SET_DECL_RTL (parm, stack_parm);
2636 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2637 parameter. Get it there. Perform all ABI specified conversions. */
2639 static void
2640 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2641 struct assign_parm_data_one *data)
2643 rtx parmreg;
2644 enum machine_mode promoted_nominal_mode;
2645 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2646 bool did_conversion = false;
2648 /* Store the parm in a pseudoregister during the function, but we may
2649 need to do it in a wider mode. */
2651 /* This is not really promoting for a call. However we need to be
2652 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2653 promoted_nominal_mode
2654 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2656 parmreg = gen_reg_rtx (promoted_nominal_mode);
2658 if (!DECL_ARTIFICIAL (parm))
2659 mark_user_reg (parmreg);
2661 /* If this was an item that we received a pointer to,
2662 set DECL_RTL appropriately. */
2663 if (data->passed_pointer)
2665 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2666 set_mem_attributes (x, parm, 1);
2667 SET_DECL_RTL (parm, x);
2669 else
2670 SET_DECL_RTL (parm, parmreg);
2672 /* Copy the value into the register. */
2673 if (data->nominal_mode != data->passed_mode
2674 || promoted_nominal_mode != data->promoted_mode)
2676 int save_tree_used;
2678 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2679 mode, by the caller. We now have to convert it to
2680 NOMINAL_MODE, if different. However, PARMREG may be in
2681 a different mode than NOMINAL_MODE if it is being stored
2682 promoted.
2684 If ENTRY_PARM is a hard register, it might be in a register
2685 not valid for operating in its mode (e.g., an odd-numbered
2686 register for a DFmode). In that case, moves are the only
2687 thing valid, so we can't do a convert from there. This
2688 occurs when the calling sequence allow such misaligned
2689 usages.
2691 In addition, the conversion may involve a call, which could
2692 clobber parameters which haven't been copied to pseudo
2693 registers yet. Therefore, we must first copy the parm to
2694 a pseudo reg here, and save the conversion until after all
2695 parameters have been moved. */
2697 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2699 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2701 push_to_sequence (all->conversion_insns);
2702 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2704 if (GET_CODE (tempreg) == SUBREG
2705 && GET_MODE (tempreg) == data->nominal_mode
2706 && REG_P (SUBREG_REG (tempreg))
2707 && data->nominal_mode == data->passed_mode
2708 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2709 && GET_MODE_SIZE (GET_MODE (tempreg))
2710 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2712 /* The argument is already sign/zero extended, so note it
2713 into the subreg. */
2714 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2715 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2718 /* TREE_USED gets set erroneously during expand_assignment. */
2719 save_tree_used = TREE_USED (parm);
2720 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2721 TREE_USED (parm) = save_tree_used;
2722 all->conversion_insns = get_insns ();
2723 end_sequence ();
2725 did_conversion = true;
2727 else
2728 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2730 /* If we were passed a pointer but the actual value can safely live
2731 in a register, put it in one. */
2732 if (data->passed_pointer
2733 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2734 /* If by-reference argument was promoted, demote it. */
2735 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2736 || use_register_for_decl (parm)))
2738 /* We can't use nominal_mode, because it will have been set to
2739 Pmode above. We must use the actual mode of the parm. */
2740 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2741 mark_user_reg (parmreg);
2743 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2745 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2746 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2748 push_to_sequence (all->conversion_insns);
2749 emit_move_insn (tempreg, DECL_RTL (parm));
2750 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2751 emit_move_insn (parmreg, tempreg);
2752 all->conversion_insns = get_insns ();
2753 end_sequence ();
2755 did_conversion = true;
2757 else
2758 emit_move_insn (parmreg, DECL_RTL (parm));
2760 SET_DECL_RTL (parm, parmreg);
2762 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2763 now the parm. */
2764 data->stack_parm = NULL;
2767 /* Mark the register as eliminable if we did no conversion and it was
2768 copied from memory at a fixed offset, and the arg pointer was not
2769 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2770 offset formed an invalid address, such memory-equivalences as we
2771 make here would screw up life analysis for it. */
2772 if (data->nominal_mode == data->passed_mode
2773 && !did_conversion
2774 && data->stack_parm != 0
2775 && MEM_P (data->stack_parm)
2776 && data->locate.offset.var == 0
2777 && reg_mentioned_p (virtual_incoming_args_rtx,
2778 XEXP (data->stack_parm, 0)))
2780 rtx linsn = get_last_insn ();
2781 rtx sinsn, set;
2783 /* Mark complex types separately. */
2784 if (GET_CODE (parmreg) == CONCAT)
2786 enum machine_mode submode
2787 = GET_MODE_INNER (GET_MODE (parmreg));
2788 int regnor = REGNO (XEXP (parmreg, 0));
2789 int regnoi = REGNO (XEXP (parmreg, 1));
2790 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2791 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2792 GET_MODE_SIZE (submode));
2794 /* Scan backwards for the set of the real and
2795 imaginary parts. */
2796 for (sinsn = linsn; sinsn != 0;
2797 sinsn = prev_nonnote_insn (sinsn))
2799 set = single_set (sinsn);
2800 if (set == 0)
2801 continue;
2803 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2804 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2805 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2806 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2809 else if ((set = single_set (linsn)) != 0
2810 && SET_DEST (set) == parmreg)
2811 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2814 /* For pointer data type, suggest pointer register. */
2815 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2816 mark_reg_pointer (parmreg,
2817 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2820 /* A subroutine of assign_parms. Allocate stack space to hold the current
2821 parameter. Get it there. Perform all ABI specified conversions. */
2823 static void
2824 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2825 struct assign_parm_data_one *data)
2827 /* Value must be stored in the stack slot STACK_PARM during function
2828 execution. */
2829 bool to_conversion = false;
2831 if (data->promoted_mode != data->nominal_mode)
2833 /* Conversion is required. */
2834 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2836 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2838 push_to_sequence (all->conversion_insns);
2839 to_conversion = true;
2841 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2842 TYPE_UNSIGNED (TREE_TYPE (parm)));
2844 if (data->stack_parm)
2845 /* ??? This may need a big-endian conversion on sparc64. */
2846 data->stack_parm
2847 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2850 if (data->entry_parm != data->stack_parm)
2852 rtx src, dest;
2854 if (data->stack_parm == 0)
2856 data->stack_parm
2857 = assign_stack_local (GET_MODE (data->entry_parm),
2858 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2859 TYPE_ALIGN (data->passed_type));
2860 set_mem_attributes (data->stack_parm, parm, 1);
2863 dest = validize_mem (data->stack_parm);
2864 src = validize_mem (data->entry_parm);
2866 if (MEM_P (src))
2868 /* Use a block move to handle potentially misaligned entry_parm. */
2869 if (!to_conversion)
2870 push_to_sequence (all->conversion_insns);
2871 to_conversion = true;
2873 emit_block_move (dest, src,
2874 GEN_INT (int_size_in_bytes (data->passed_type)),
2875 BLOCK_OP_NORMAL);
2877 else
2878 emit_move_insn (dest, src);
2881 if (to_conversion)
2883 all->conversion_insns = get_insns ();
2884 end_sequence ();
2887 SET_DECL_RTL (parm, data->stack_parm);
2890 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2891 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2893 static void
2894 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2896 tree parm;
2897 tree orig_fnargs = all->orig_fnargs;
2899 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2901 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2902 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2904 rtx tmp, real, imag;
2905 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2907 real = DECL_RTL (fnargs);
2908 imag = DECL_RTL (TREE_CHAIN (fnargs));
2909 if (inner != GET_MODE (real))
2911 real = gen_lowpart_SUBREG (inner, real);
2912 imag = gen_lowpart_SUBREG (inner, imag);
2915 if (TREE_ADDRESSABLE (parm))
2917 rtx rmem, imem;
2918 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2920 /* split_complex_arg put the real and imag parts in
2921 pseudos. Move them to memory. */
2922 tmp = assign_stack_local (DECL_MODE (parm), size,
2923 TYPE_ALIGN (TREE_TYPE (parm)));
2924 set_mem_attributes (tmp, parm, 1);
2925 rmem = adjust_address_nv (tmp, inner, 0);
2926 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2927 push_to_sequence (all->conversion_insns);
2928 emit_move_insn (rmem, real);
2929 emit_move_insn (imem, imag);
2930 all->conversion_insns = get_insns ();
2931 end_sequence ();
2933 else
2934 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2935 SET_DECL_RTL (parm, tmp);
2937 real = DECL_INCOMING_RTL (fnargs);
2938 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2939 if (inner != GET_MODE (real))
2941 real = gen_lowpart_SUBREG (inner, real);
2942 imag = gen_lowpart_SUBREG (inner, imag);
2944 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2945 set_decl_incoming_rtl (parm, tmp);
2946 fnargs = TREE_CHAIN (fnargs);
2948 else
2950 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2951 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2953 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2954 instead of the copy of decl, i.e. FNARGS. */
2955 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2956 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2959 fnargs = TREE_CHAIN (fnargs);
2963 /* Assign RTL expressions to the function's parameters. This may involve
2964 copying them into registers and using those registers as the DECL_RTL. */
2966 static void
2967 assign_parms (tree fndecl)
2969 struct assign_parm_data_all all;
2970 tree fnargs, parm;
2972 current_function_internal_arg_pointer
2973 = targetm.calls.internal_arg_pointer ();
2975 assign_parms_initialize_all (&all);
2976 fnargs = assign_parms_augmented_arg_list (&all);
2978 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2980 struct assign_parm_data_one data;
2982 /* Extract the type of PARM; adjust it according to ABI. */
2983 assign_parm_find_data_types (&all, parm, &data);
2985 /* Early out for errors and void parameters. */
2986 if (data.passed_mode == VOIDmode)
2988 SET_DECL_RTL (parm, const0_rtx);
2989 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2990 continue;
2993 if (current_function_stdarg && !TREE_CHAIN (parm))
2994 assign_parms_setup_varargs (&all, &data, false);
2996 /* Find out where the parameter arrives in this function. */
2997 assign_parm_find_entry_rtl (&all, &data);
2999 /* Find out where stack space for this parameter might be. */
3000 if (assign_parm_is_stack_parm (&all, &data))
3002 assign_parm_find_stack_rtl (parm, &data);
3003 assign_parm_adjust_entry_rtl (&data);
3006 /* Record permanently how this parm was passed. */
3007 set_decl_incoming_rtl (parm, data.entry_parm);
3009 /* Update info on where next arg arrives in registers. */
3010 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3011 data.passed_type, data.named_arg);
3013 assign_parm_adjust_stack_rtl (&data);
3015 if (assign_parm_setup_block_p (&data))
3016 assign_parm_setup_block (&all, parm, &data);
3017 else if (data.passed_pointer || use_register_for_decl (parm))
3018 assign_parm_setup_reg (&all, parm, &data);
3019 else
3020 assign_parm_setup_stack (&all, parm, &data);
3023 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3024 assign_parms_unsplit_complex (&all, fnargs);
3026 /* Output all parameter conversion instructions (possibly including calls)
3027 now that all parameters have been copied out of hard registers. */
3028 emit_insn (all.conversion_insns);
3030 /* If we are receiving a struct value address as the first argument, set up
3031 the RTL for the function result. As this might require code to convert
3032 the transmitted address to Pmode, we do this here to ensure that possible
3033 preliminary conversions of the address have been emitted already. */
3034 if (all.function_result_decl)
3036 tree result = DECL_RESULT (current_function_decl);
3037 rtx addr = DECL_RTL (all.function_result_decl);
3038 rtx x;
3040 if (DECL_BY_REFERENCE (result))
3041 x = addr;
3042 else
3044 addr = convert_memory_address (Pmode, addr);
3045 x = gen_rtx_MEM (DECL_MODE (result), addr);
3046 set_mem_attributes (x, result, 1);
3048 SET_DECL_RTL (result, x);
3051 /* We have aligned all the args, so add space for the pretend args. */
3052 current_function_pretend_args_size = all.pretend_args_size;
3053 all.stack_args_size.constant += all.extra_pretend_bytes;
3054 current_function_args_size = all.stack_args_size.constant;
3056 /* Adjust function incoming argument size for alignment and
3057 minimum length. */
3059 #ifdef REG_PARM_STACK_SPACE
3060 current_function_args_size = MAX (current_function_args_size,
3061 REG_PARM_STACK_SPACE (fndecl));
3062 #endif
3064 current_function_args_size = CEIL_ROUND (current_function_args_size,
3065 PARM_BOUNDARY / BITS_PER_UNIT);
3067 #ifdef ARGS_GROW_DOWNWARD
3068 current_function_arg_offset_rtx
3069 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3070 : expand_expr (size_diffop (all.stack_args_size.var,
3071 size_int (-all.stack_args_size.constant)),
3072 NULL_RTX, VOIDmode, 0));
3073 #else
3074 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3075 #endif
3077 /* See how many bytes, if any, of its args a function should try to pop
3078 on return. */
3080 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3081 current_function_args_size);
3083 /* For stdarg.h function, save info about
3084 regs and stack space used by the named args. */
3086 current_function_args_info = all.args_so_far;
3088 /* Set the rtx used for the function return value. Put this in its
3089 own variable so any optimizers that need this information don't have
3090 to include tree.h. Do this here so it gets done when an inlined
3091 function gets output. */
3093 current_function_return_rtx
3094 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3095 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3097 /* If scalar return value was computed in a pseudo-reg, or was a named
3098 return value that got dumped to the stack, copy that to the hard
3099 return register. */
3100 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3102 tree decl_result = DECL_RESULT (fndecl);
3103 rtx decl_rtl = DECL_RTL (decl_result);
3105 if (REG_P (decl_rtl)
3106 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3107 : DECL_REGISTER (decl_result))
3109 rtx real_decl_rtl;
3111 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3112 fndecl, true);
3113 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3114 /* The delay slot scheduler assumes that current_function_return_rtx
3115 holds the hard register containing the return value, not a
3116 temporary pseudo. */
3117 current_function_return_rtx = real_decl_rtl;
3122 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3123 For all seen types, gimplify their sizes. */
3125 static tree
3126 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3128 tree t = *tp;
3130 *walk_subtrees = 0;
3131 if (TYPE_P (t))
3133 if (POINTER_TYPE_P (t))
3134 *walk_subtrees = 1;
3135 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3136 && !TYPE_SIZES_GIMPLIFIED (t))
3138 gimplify_type_sizes (t, (tree *) data);
3139 *walk_subtrees = 1;
3143 return NULL;
3146 /* Gimplify the parameter list for current_function_decl. This involves
3147 evaluating SAVE_EXPRs of variable sized parameters and generating code
3148 to implement callee-copies reference parameters. Returns a list of
3149 statements to add to the beginning of the function, or NULL if nothing
3150 to do. */
3152 tree
3153 gimplify_parameters (void)
3155 struct assign_parm_data_all all;
3156 tree fnargs, parm, stmts = NULL;
3158 assign_parms_initialize_all (&all);
3159 fnargs = assign_parms_augmented_arg_list (&all);
3161 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3163 struct assign_parm_data_one data;
3165 /* Extract the type of PARM; adjust it according to ABI. */
3166 assign_parm_find_data_types (&all, parm, &data);
3168 /* Early out for errors and void parameters. */
3169 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3170 continue;
3172 /* Update info on where next arg arrives in registers. */
3173 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3174 data.passed_type, data.named_arg);
3176 /* ??? Once upon a time variable_size stuffed parameter list
3177 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3178 turned out to be less than manageable in the gimple world.
3179 Now we have to hunt them down ourselves. */
3180 walk_tree_without_duplicates (&data.passed_type,
3181 gimplify_parm_type, &stmts);
3183 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3185 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3186 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3189 if (data.passed_pointer)
3191 tree type = TREE_TYPE (data.passed_type);
3192 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3193 type, data.named_arg))
3195 tree local, t;
3197 /* For constant sized objects, this is trivial; for
3198 variable-sized objects, we have to play games. */
3199 if (TREE_CONSTANT (DECL_SIZE (parm)))
3201 local = create_tmp_var (type, get_name (parm));
3202 DECL_IGNORED_P (local) = 0;
3204 else
3206 tree ptr_type, addr, args;
3208 ptr_type = build_pointer_type (type);
3209 addr = create_tmp_var (ptr_type, get_name (parm));
3210 DECL_IGNORED_P (addr) = 0;
3211 local = build_fold_indirect_ref (addr);
3213 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3214 t = built_in_decls[BUILT_IN_ALLOCA];
3215 t = build_function_call_expr (t, args);
3216 t = fold_convert (ptr_type, t);
3217 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, addr, t);
3218 gimplify_and_add (t, &stmts);
3221 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, local, parm);
3222 gimplify_and_add (t, &stmts);
3224 SET_DECL_VALUE_EXPR (parm, local);
3225 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3230 return stmts;
3233 /* Indicate whether REGNO is an incoming argument to the current function
3234 that was promoted to a wider mode. If so, return the RTX for the
3235 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3236 that REGNO is promoted from and whether the promotion was signed or
3237 unsigned. */
3240 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3242 tree arg;
3244 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3245 arg = TREE_CHAIN (arg))
3246 if (REG_P (DECL_INCOMING_RTL (arg))
3247 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3248 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3250 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3251 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3253 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3254 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3255 && mode != DECL_MODE (arg))
3257 *pmode = DECL_MODE (arg);
3258 *punsignedp = unsignedp;
3259 return DECL_INCOMING_RTL (arg);
3263 return 0;
3267 /* Compute the size and offset from the start of the stacked arguments for a
3268 parm passed in mode PASSED_MODE and with type TYPE.
3270 INITIAL_OFFSET_PTR points to the current offset into the stacked
3271 arguments.
3273 The starting offset and size for this parm are returned in
3274 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3275 nonzero, the offset is that of stack slot, which is returned in
3276 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3277 padding required from the initial offset ptr to the stack slot.
3279 IN_REGS is nonzero if the argument will be passed in registers. It will
3280 never be set if REG_PARM_STACK_SPACE is not defined.
3282 FNDECL is the function in which the argument was defined.
3284 There are two types of rounding that are done. The first, controlled by
3285 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3286 list to be aligned to the specific boundary (in bits). This rounding
3287 affects the initial and starting offsets, but not the argument size.
3289 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3290 optionally rounds the size of the parm to PARM_BOUNDARY. The
3291 initial offset is not affected by this rounding, while the size always
3292 is and the starting offset may be. */
3294 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3295 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3296 callers pass in the total size of args so far as
3297 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3299 void
3300 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3301 int partial, tree fndecl ATTRIBUTE_UNUSED,
3302 struct args_size *initial_offset_ptr,
3303 struct locate_and_pad_arg_data *locate)
3305 tree sizetree;
3306 enum direction where_pad;
3307 unsigned int boundary;
3308 int reg_parm_stack_space = 0;
3309 int part_size_in_regs;
3311 #ifdef REG_PARM_STACK_SPACE
3312 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3314 /* If we have found a stack parm before we reach the end of the
3315 area reserved for registers, skip that area. */
3316 if (! in_regs)
3318 if (reg_parm_stack_space > 0)
3320 if (initial_offset_ptr->var)
3322 initial_offset_ptr->var
3323 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3324 ssize_int (reg_parm_stack_space));
3325 initial_offset_ptr->constant = 0;
3327 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3328 initial_offset_ptr->constant = reg_parm_stack_space;
3331 #endif /* REG_PARM_STACK_SPACE */
3333 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3335 sizetree
3336 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3337 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3338 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3339 locate->where_pad = where_pad;
3340 locate->boundary = boundary;
3342 /* Remember if the outgoing parameter requires extra alignment on the
3343 calling function side. */
3344 if (boundary > PREFERRED_STACK_BOUNDARY)
3345 boundary = PREFERRED_STACK_BOUNDARY;
3346 if (cfun->stack_alignment_needed < boundary)
3347 cfun->stack_alignment_needed = boundary;
3349 #ifdef ARGS_GROW_DOWNWARD
3350 locate->slot_offset.constant = -initial_offset_ptr->constant;
3351 if (initial_offset_ptr->var)
3352 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3353 initial_offset_ptr->var);
3356 tree s2 = sizetree;
3357 if (where_pad != none
3358 && (!host_integerp (sizetree, 1)
3359 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3360 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3361 SUB_PARM_SIZE (locate->slot_offset, s2);
3364 locate->slot_offset.constant += part_size_in_regs;
3366 if (!in_regs
3367 #ifdef REG_PARM_STACK_SPACE
3368 || REG_PARM_STACK_SPACE (fndecl) > 0
3369 #endif
3371 pad_to_arg_alignment (&locate->slot_offset, boundary,
3372 &locate->alignment_pad);
3374 locate->size.constant = (-initial_offset_ptr->constant
3375 - locate->slot_offset.constant);
3376 if (initial_offset_ptr->var)
3377 locate->size.var = size_binop (MINUS_EXPR,
3378 size_binop (MINUS_EXPR,
3379 ssize_int (0),
3380 initial_offset_ptr->var),
3381 locate->slot_offset.var);
3383 /* Pad_below needs the pre-rounded size to know how much to pad
3384 below. */
3385 locate->offset = locate->slot_offset;
3386 if (where_pad == downward)
3387 pad_below (&locate->offset, passed_mode, sizetree);
3389 #else /* !ARGS_GROW_DOWNWARD */
3390 if (!in_regs
3391 #ifdef REG_PARM_STACK_SPACE
3392 || REG_PARM_STACK_SPACE (fndecl) > 0
3393 #endif
3395 pad_to_arg_alignment (initial_offset_ptr, boundary,
3396 &locate->alignment_pad);
3397 locate->slot_offset = *initial_offset_ptr;
3399 #ifdef PUSH_ROUNDING
3400 if (passed_mode != BLKmode)
3401 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3402 #endif
3404 /* Pad_below needs the pre-rounded size to know how much to pad below
3405 so this must be done before rounding up. */
3406 locate->offset = locate->slot_offset;
3407 if (where_pad == downward)
3408 pad_below (&locate->offset, passed_mode, sizetree);
3410 if (where_pad != none
3411 && (!host_integerp (sizetree, 1)
3412 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3413 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3415 ADD_PARM_SIZE (locate->size, sizetree);
3417 locate->size.constant -= part_size_in_regs;
3418 #endif /* ARGS_GROW_DOWNWARD */
3421 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3422 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3424 static void
3425 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3426 struct args_size *alignment_pad)
3428 tree save_var = NULL_TREE;
3429 HOST_WIDE_INT save_constant = 0;
3430 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3431 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3433 #ifdef SPARC_STACK_BOUNDARY_HACK
3434 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3435 the real alignment of %sp. However, when it does this, the
3436 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3437 if (SPARC_STACK_BOUNDARY_HACK)
3438 sp_offset = 0;
3439 #endif
3441 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3443 save_var = offset_ptr->var;
3444 save_constant = offset_ptr->constant;
3447 alignment_pad->var = NULL_TREE;
3448 alignment_pad->constant = 0;
3450 if (boundary > BITS_PER_UNIT)
3452 if (offset_ptr->var)
3454 tree sp_offset_tree = ssize_int (sp_offset);
3455 tree offset = size_binop (PLUS_EXPR,
3456 ARGS_SIZE_TREE (*offset_ptr),
3457 sp_offset_tree);
3458 #ifdef ARGS_GROW_DOWNWARD
3459 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3460 #else
3461 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3462 #endif
3464 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3465 /* ARGS_SIZE_TREE includes constant term. */
3466 offset_ptr->constant = 0;
3467 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3468 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3469 save_var);
3471 else
3473 offset_ptr->constant = -sp_offset +
3474 #ifdef ARGS_GROW_DOWNWARD
3475 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3476 #else
3477 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3478 #endif
3479 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3480 alignment_pad->constant = offset_ptr->constant - save_constant;
3485 static void
3486 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3488 if (passed_mode != BLKmode)
3490 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3491 offset_ptr->constant
3492 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3493 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3494 - GET_MODE_SIZE (passed_mode));
3496 else
3498 if (TREE_CODE (sizetree) != INTEGER_CST
3499 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3501 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3502 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3503 /* Add it in. */
3504 ADD_PARM_SIZE (*offset_ptr, s2);
3505 SUB_PARM_SIZE (*offset_ptr, sizetree);
3510 /* Walk the tree of blocks describing the binding levels within a function
3511 and warn about variables the might be killed by setjmp or vfork.
3512 This is done after calling flow_analysis and before global_alloc
3513 clobbers the pseudo-regs to hard regs. */
3515 void
3516 setjmp_vars_warning (tree block)
3518 tree decl, sub;
3520 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3522 if (TREE_CODE (decl) == VAR_DECL
3523 && DECL_RTL_SET_P (decl)
3524 && REG_P (DECL_RTL (decl))
3525 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3526 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3527 " %<longjmp%> or %<vfork%>", decl);
3530 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3531 setjmp_vars_warning (sub);
3534 /* Do the appropriate part of setjmp_vars_warning
3535 but for arguments instead of local variables. */
3537 void
3538 setjmp_args_warning (void)
3540 tree decl;
3541 for (decl = DECL_ARGUMENTS (current_function_decl);
3542 decl; decl = TREE_CHAIN (decl))
3543 if (DECL_RTL (decl) != 0
3544 && REG_P (DECL_RTL (decl))
3545 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3546 warning (OPT_Wclobbered,
3547 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3548 decl);
3552 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3553 and create duplicate blocks. */
3554 /* ??? Need an option to either create block fragments or to create
3555 abstract origin duplicates of a source block. It really depends
3556 on what optimization has been performed. */
3558 void
3559 reorder_blocks (void)
3561 tree block = DECL_INITIAL (current_function_decl);
3562 VEC(tree,heap) *block_stack;
3564 if (block == NULL_TREE)
3565 return;
3567 block_stack = VEC_alloc (tree, heap, 10);
3569 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3570 clear_block_marks (block);
3572 /* Prune the old trees away, so that they don't get in the way. */
3573 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3574 BLOCK_CHAIN (block) = NULL_TREE;
3576 /* Recreate the block tree from the note nesting. */
3577 reorder_blocks_1 (get_insns (), block, &block_stack);
3578 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3580 VEC_free (tree, heap, block_stack);
3583 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3585 void
3586 clear_block_marks (tree block)
3588 while (block)
3590 TREE_ASM_WRITTEN (block) = 0;
3591 clear_block_marks (BLOCK_SUBBLOCKS (block));
3592 block = BLOCK_CHAIN (block);
3596 static void
3597 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3599 rtx insn;
3601 for (insn = insns; insn; insn = NEXT_INSN (insn))
3603 if (NOTE_P (insn))
3605 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3607 tree block = NOTE_BLOCK (insn);
3608 tree origin;
3610 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3611 ? BLOCK_FRAGMENT_ORIGIN (block)
3612 : block);
3614 /* If we have seen this block before, that means it now
3615 spans multiple address regions. Create a new fragment. */
3616 if (TREE_ASM_WRITTEN (block))
3618 tree new_block = copy_node (block);
3620 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3621 BLOCK_FRAGMENT_CHAIN (new_block)
3622 = BLOCK_FRAGMENT_CHAIN (origin);
3623 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3625 NOTE_BLOCK (insn) = new_block;
3626 block = new_block;
3629 BLOCK_SUBBLOCKS (block) = 0;
3630 TREE_ASM_WRITTEN (block) = 1;
3631 /* When there's only one block for the entire function,
3632 current_block == block and we mustn't do this, it
3633 will cause infinite recursion. */
3634 if (block != current_block)
3636 if (block != origin)
3637 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3639 BLOCK_SUPERCONTEXT (block) = current_block;
3640 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3641 BLOCK_SUBBLOCKS (current_block) = block;
3642 current_block = origin;
3644 VEC_safe_push (tree, heap, *p_block_stack, block);
3646 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3648 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3649 BLOCK_SUBBLOCKS (current_block)
3650 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3651 current_block = BLOCK_SUPERCONTEXT (current_block);
3657 /* Reverse the order of elements in the chain T of blocks,
3658 and return the new head of the chain (old last element). */
3660 tree
3661 blocks_nreverse (tree t)
3663 tree prev = 0, decl, next;
3664 for (decl = t; decl; decl = next)
3666 next = BLOCK_CHAIN (decl);
3667 BLOCK_CHAIN (decl) = prev;
3668 prev = decl;
3670 return prev;
3673 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3674 non-NULL, list them all into VECTOR, in a depth-first preorder
3675 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3676 blocks. */
3678 static int
3679 all_blocks (tree block, tree *vector)
3681 int n_blocks = 0;
3683 while (block)
3685 TREE_ASM_WRITTEN (block) = 0;
3687 /* Record this block. */
3688 if (vector)
3689 vector[n_blocks] = block;
3691 ++n_blocks;
3693 /* Record the subblocks, and their subblocks... */
3694 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3695 vector ? vector + n_blocks : 0);
3696 block = BLOCK_CHAIN (block);
3699 return n_blocks;
3702 /* Return a vector containing all the blocks rooted at BLOCK. The
3703 number of elements in the vector is stored in N_BLOCKS_P. The
3704 vector is dynamically allocated; it is the caller's responsibility
3705 to call `free' on the pointer returned. */
3707 static tree *
3708 get_block_vector (tree block, int *n_blocks_p)
3710 tree *block_vector;
3712 *n_blocks_p = all_blocks (block, NULL);
3713 block_vector = XNEWVEC (tree, *n_blocks_p);
3714 all_blocks (block, block_vector);
3716 return block_vector;
3719 static GTY(()) int next_block_index = 2;
3721 /* Set BLOCK_NUMBER for all the blocks in FN. */
3723 void
3724 number_blocks (tree fn)
3726 int i;
3727 int n_blocks;
3728 tree *block_vector;
3730 /* For SDB and XCOFF debugging output, we start numbering the blocks
3731 from 1 within each function, rather than keeping a running
3732 count. */
3733 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3734 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3735 next_block_index = 1;
3736 #endif
3738 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3740 /* The top-level BLOCK isn't numbered at all. */
3741 for (i = 1; i < n_blocks; ++i)
3742 /* We number the blocks from two. */
3743 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3745 free (block_vector);
3747 return;
3750 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3752 tree
3753 debug_find_var_in_block_tree (tree var, tree block)
3755 tree t;
3757 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3758 if (t == var)
3759 return block;
3761 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3763 tree ret = debug_find_var_in_block_tree (var, t);
3764 if (ret)
3765 return ret;
3768 return NULL_TREE;
3772 /* Return value of funcdef and increase it. */
3774 get_next_funcdef_no (void)
3776 return funcdef_no++;
3779 /* Allocate a function structure for FNDECL and set its contents
3780 to the defaults. */
3782 void
3783 allocate_struct_function (tree fndecl)
3785 tree result;
3786 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3788 cfun = ggc_alloc_cleared (sizeof (struct function));
3790 cfun->stack_alignment_needed = STACK_BOUNDARY;
3791 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3793 current_function_funcdef_no = get_next_funcdef_no ();
3795 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3797 init_eh_for_function ();
3799 lang_hooks.function.init (cfun);
3800 if (init_machine_status)
3801 cfun->machine = (*init_machine_status) ();
3803 if (fndecl == NULL)
3804 return;
3806 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3807 cfun->decl = fndecl;
3809 result = DECL_RESULT (fndecl);
3810 if (aggregate_value_p (result, fndecl))
3812 #ifdef PCC_STATIC_STRUCT_RETURN
3813 current_function_returns_pcc_struct = 1;
3814 #endif
3815 current_function_returns_struct = 1;
3818 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3820 current_function_stdarg
3821 = (fntype
3822 && TYPE_ARG_TYPES (fntype) != 0
3823 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3824 != void_type_node));
3826 /* Assume all registers in stdarg functions need to be saved. */
3827 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3828 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3831 /* Reset cfun, and other non-struct-function variables to defaults as
3832 appropriate for emitting rtl at the start of a function. */
3834 static void
3835 prepare_function_start (tree fndecl)
3837 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3838 cfun = DECL_STRUCT_FUNCTION (fndecl);
3839 else
3840 allocate_struct_function (fndecl);
3841 init_emit ();
3842 init_varasm_status (cfun);
3843 init_expr ();
3845 cse_not_expected = ! optimize;
3847 /* Caller save not needed yet. */
3848 caller_save_needed = 0;
3850 /* We haven't done register allocation yet. */
3851 reg_renumber = 0;
3853 /* Indicate that we have not instantiated virtual registers yet. */
3854 virtuals_instantiated = 0;
3856 /* Indicate that we want CONCATs now. */
3857 generating_concat_p = 1;
3859 /* Indicate we have no need of a frame pointer yet. */
3860 frame_pointer_needed = 0;
3863 /* Initialize the rtl expansion mechanism so that we can do simple things
3864 like generate sequences. This is used to provide a context during global
3865 initialization of some passes. */
3866 void
3867 init_dummy_function_start (void)
3869 prepare_function_start (NULL);
3872 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3873 and initialize static variables for generating RTL for the statements
3874 of the function. */
3876 void
3877 init_function_start (tree subr)
3879 prepare_function_start (subr);
3881 /* Prevent ever trying to delete the first instruction of a
3882 function. Also tell final how to output a linenum before the
3883 function prologue. Note linenums could be missing, e.g. when
3884 compiling a Java .class file. */
3885 if (! DECL_IS_BUILTIN (subr))
3886 emit_line_note (DECL_SOURCE_LOCATION (subr));
3888 /* Make sure first insn is a note even if we don't want linenums.
3889 This makes sure the first insn will never be deleted.
3890 Also, final expects a note to appear there. */
3891 emit_note (NOTE_INSN_DELETED);
3893 /* Warn if this value is an aggregate type,
3894 regardless of which calling convention we are using for it. */
3895 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3896 warning (OPT_Waggregate_return, "function returns an aggregate");
3899 /* Make sure all values used by the optimization passes have sane
3900 defaults. */
3901 unsigned int
3902 init_function_for_compilation (void)
3904 reg_renumber = 0;
3906 /* No prologue/epilogue insns yet. Make sure that these vectors are
3907 empty. */
3908 gcc_assert (VEC_length (int, prologue) == 0);
3909 gcc_assert (VEC_length (int, epilogue) == 0);
3910 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3911 return 0;
3914 struct tree_opt_pass pass_init_function =
3916 NULL, /* name */
3917 NULL, /* gate */
3918 init_function_for_compilation, /* execute */
3919 NULL, /* sub */
3920 NULL, /* next */
3921 0, /* static_pass_number */
3922 0, /* tv_id */
3923 0, /* properties_required */
3924 0, /* properties_provided */
3925 0, /* properties_destroyed */
3926 0, /* todo_flags_start */
3927 0, /* todo_flags_finish */
3928 0 /* letter */
3932 void
3933 expand_main_function (void)
3935 #if (defined(INVOKE__main) \
3936 || (!defined(HAS_INIT_SECTION) \
3937 && !defined(INIT_SECTION_ASM_OP) \
3938 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3939 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3940 #endif
3943 /* Expand code to initialize the stack_protect_guard. This is invoked at
3944 the beginning of a function to be protected. */
3946 #ifndef HAVE_stack_protect_set
3947 # define HAVE_stack_protect_set 0
3948 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3949 #endif
3951 void
3952 stack_protect_prologue (void)
3954 tree guard_decl = targetm.stack_protect_guard ();
3955 rtx x, y;
3957 /* Avoid expand_expr here, because we don't want guard_decl pulled
3958 into registers unless absolutely necessary. And we know that
3959 cfun->stack_protect_guard is a local stack slot, so this skips
3960 all the fluff. */
3961 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3962 y = validize_mem (DECL_RTL (guard_decl));
3964 /* Allow the target to copy from Y to X without leaking Y into a
3965 register. */
3966 if (HAVE_stack_protect_set)
3968 rtx insn = gen_stack_protect_set (x, y);
3969 if (insn)
3971 emit_insn (insn);
3972 return;
3976 /* Otherwise do a straight move. */
3977 emit_move_insn (x, y);
3980 /* Expand code to verify the stack_protect_guard. This is invoked at
3981 the end of a function to be protected. */
3983 #ifndef HAVE_stack_protect_test
3984 # define HAVE_stack_protect_test 0
3985 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3986 #endif
3988 void
3989 stack_protect_epilogue (void)
3991 tree guard_decl = targetm.stack_protect_guard ();
3992 rtx label = gen_label_rtx ();
3993 rtx x, y, tmp;
3995 /* Avoid expand_expr here, because we don't want guard_decl pulled
3996 into registers unless absolutely necessary. And we know that
3997 cfun->stack_protect_guard is a local stack slot, so this skips
3998 all the fluff. */
3999 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4000 y = validize_mem (DECL_RTL (guard_decl));
4002 /* Allow the target to compare Y with X without leaking either into
4003 a register. */
4004 switch (HAVE_stack_protect_test != 0)
4006 case 1:
4007 tmp = gen_stack_protect_test (x, y, label);
4008 if (tmp)
4010 emit_insn (tmp);
4011 break;
4013 /* FALLTHRU */
4015 default:
4016 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4017 break;
4020 /* The noreturn predictor has been moved to the tree level. The rtl-level
4021 predictors estimate this branch about 20%, which isn't enough to get
4022 things moved out of line. Since this is the only extant case of adding
4023 a noreturn function at the rtl level, it doesn't seem worth doing ought
4024 except adding the prediction by hand. */
4025 tmp = get_last_insn ();
4026 if (JUMP_P (tmp))
4027 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4029 expand_expr_stmt (targetm.stack_protect_fail ());
4030 emit_label (label);
4033 /* Start the RTL for a new function, and set variables used for
4034 emitting RTL.
4035 SUBR is the FUNCTION_DECL node.
4036 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4037 the function's parameters, which must be run at any return statement. */
4039 void
4040 expand_function_start (tree subr)
4042 /* Make sure volatile mem refs aren't considered
4043 valid operands of arithmetic insns. */
4044 init_recog_no_volatile ();
4046 current_function_profile
4047 = (profile_flag
4048 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4050 current_function_limit_stack
4051 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4053 /* Make the label for return statements to jump to. Do not special
4054 case machines with special return instructions -- they will be
4055 handled later during jump, ifcvt, or epilogue creation. */
4056 return_label = gen_label_rtx ();
4058 /* Initialize rtx used to return the value. */
4059 /* Do this before assign_parms so that we copy the struct value address
4060 before any library calls that assign parms might generate. */
4062 /* Decide whether to return the value in memory or in a register. */
4063 if (aggregate_value_p (DECL_RESULT (subr), subr))
4065 /* Returning something that won't go in a register. */
4066 rtx value_address = 0;
4068 #ifdef PCC_STATIC_STRUCT_RETURN
4069 if (current_function_returns_pcc_struct)
4071 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4072 value_address = assemble_static_space (size);
4074 else
4075 #endif
4077 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4078 /* Expect to be passed the address of a place to store the value.
4079 If it is passed as an argument, assign_parms will take care of
4080 it. */
4081 if (sv)
4083 value_address = gen_reg_rtx (Pmode);
4084 emit_move_insn (value_address, sv);
4087 if (value_address)
4089 rtx x = value_address;
4090 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4092 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4093 set_mem_attributes (x, DECL_RESULT (subr), 1);
4095 SET_DECL_RTL (DECL_RESULT (subr), x);
4098 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4099 /* If return mode is void, this decl rtl should not be used. */
4100 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4101 else
4103 /* Compute the return values into a pseudo reg, which we will copy
4104 into the true return register after the cleanups are done. */
4105 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4106 if (TYPE_MODE (return_type) != BLKmode
4107 && targetm.calls.return_in_msb (return_type))
4108 /* expand_function_end will insert the appropriate padding in
4109 this case. Use the return value's natural (unpadded) mode
4110 within the function proper. */
4111 SET_DECL_RTL (DECL_RESULT (subr),
4112 gen_reg_rtx (TYPE_MODE (return_type)));
4113 else
4115 /* In order to figure out what mode to use for the pseudo, we
4116 figure out what the mode of the eventual return register will
4117 actually be, and use that. */
4118 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4120 /* Structures that are returned in registers are not
4121 aggregate_value_p, so we may see a PARALLEL or a REG. */
4122 if (REG_P (hard_reg))
4123 SET_DECL_RTL (DECL_RESULT (subr),
4124 gen_reg_rtx (GET_MODE (hard_reg)));
4125 else
4127 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4128 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4132 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4133 result to the real return register(s). */
4134 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4137 /* Initialize rtx for parameters and local variables.
4138 In some cases this requires emitting insns. */
4139 assign_parms (subr);
4141 /* If function gets a static chain arg, store it. */
4142 if (cfun->static_chain_decl)
4144 tree parm = cfun->static_chain_decl;
4145 rtx local = gen_reg_rtx (Pmode);
4147 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4148 SET_DECL_RTL (parm, local);
4149 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4151 emit_move_insn (local, static_chain_incoming_rtx);
4154 /* If the function receives a non-local goto, then store the
4155 bits we need to restore the frame pointer. */
4156 if (cfun->nonlocal_goto_save_area)
4158 tree t_save;
4159 rtx r_save;
4161 /* ??? We need to do this save early. Unfortunately here is
4162 before the frame variable gets declared. Help out... */
4163 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4165 t_save = build4 (ARRAY_REF, ptr_type_node,
4166 cfun->nonlocal_goto_save_area,
4167 integer_zero_node, NULL_TREE, NULL_TREE);
4168 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4169 r_save = convert_memory_address (Pmode, r_save);
4171 emit_move_insn (r_save, virtual_stack_vars_rtx);
4172 update_nonlocal_goto_save_area ();
4175 /* The following was moved from init_function_start.
4176 The move is supposed to make sdb output more accurate. */
4177 /* Indicate the beginning of the function body,
4178 as opposed to parm setup. */
4179 emit_note (NOTE_INSN_FUNCTION_BEG);
4181 gcc_assert (NOTE_P (get_last_insn ()));
4183 parm_birth_insn = get_last_insn ();
4185 if (current_function_profile)
4187 #ifdef PROFILE_HOOK
4188 PROFILE_HOOK (current_function_funcdef_no);
4189 #endif
4192 /* After the display initializations is where the stack checking
4193 probe should go. */
4194 if(flag_stack_check)
4195 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4197 /* Make sure there is a line number after the function entry setup code. */
4198 force_next_line_note ();
4201 /* Undo the effects of init_dummy_function_start. */
4202 void
4203 expand_dummy_function_end (void)
4205 /* End any sequences that failed to be closed due to syntax errors. */
4206 while (in_sequence_p ())
4207 end_sequence ();
4209 /* Outside function body, can't compute type's actual size
4210 until next function's body starts. */
4212 free_after_parsing (cfun);
4213 free_after_compilation (cfun);
4214 cfun = 0;
4217 /* Call DOIT for each hard register used as a return value from
4218 the current function. */
4220 void
4221 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4223 rtx outgoing = current_function_return_rtx;
4225 if (! outgoing)
4226 return;
4228 if (REG_P (outgoing))
4229 (*doit) (outgoing, arg);
4230 else if (GET_CODE (outgoing) == PARALLEL)
4232 int i;
4234 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4236 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4238 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4239 (*doit) (x, arg);
4244 static void
4245 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4247 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4250 void
4251 clobber_return_register (void)
4253 diddle_return_value (do_clobber_return_reg, NULL);
4255 /* In case we do use pseudo to return value, clobber it too. */
4256 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4258 tree decl_result = DECL_RESULT (current_function_decl);
4259 rtx decl_rtl = DECL_RTL (decl_result);
4260 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4262 do_clobber_return_reg (decl_rtl, NULL);
4267 static void
4268 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4270 emit_insn (gen_rtx_USE (VOIDmode, reg));
4273 static void
4274 use_return_register (void)
4276 diddle_return_value (do_use_return_reg, NULL);
4279 /* Possibly warn about unused parameters. */
4280 void
4281 do_warn_unused_parameter (tree fn)
4283 tree decl;
4285 for (decl = DECL_ARGUMENTS (fn);
4286 decl; decl = TREE_CHAIN (decl))
4287 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4288 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4289 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4292 static GTY(()) rtx initial_trampoline;
4294 /* Generate RTL for the end of the current function. */
4296 void
4297 expand_function_end (void)
4299 rtx clobber_after;
4301 /* If arg_pointer_save_area was referenced only from a nested
4302 function, we will not have initialized it yet. Do that now. */
4303 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4304 get_arg_pointer_save_area (cfun);
4306 /* If we are doing stack checking and this function makes calls,
4307 do a stack probe at the start of the function to ensure we have enough
4308 space for another stack frame. */
4309 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4311 rtx insn, seq;
4313 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4314 if (CALL_P (insn))
4316 start_sequence ();
4317 probe_stack_range (STACK_CHECK_PROTECT,
4318 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4319 seq = get_insns ();
4320 end_sequence ();
4321 emit_insn_before (seq, stack_check_probe_note);
4322 break;
4326 /* Possibly warn about unused parameters.
4327 When frontend does unit-at-a-time, the warning is already
4328 issued at finalization time. */
4329 if (warn_unused_parameter
4330 && !lang_hooks.callgraph.expand_function)
4331 do_warn_unused_parameter (current_function_decl);
4333 /* End any sequences that failed to be closed due to syntax errors. */
4334 while (in_sequence_p ())
4335 end_sequence ();
4337 clear_pending_stack_adjust ();
4338 do_pending_stack_adjust ();
4340 /* Output a linenumber for the end of the function.
4341 SDB depends on this. */
4342 force_next_line_note ();
4343 emit_line_note (input_location);
4345 /* Before the return label (if any), clobber the return
4346 registers so that they are not propagated live to the rest of
4347 the function. This can only happen with functions that drop
4348 through; if there had been a return statement, there would
4349 have either been a return rtx, or a jump to the return label.
4351 We delay actual code generation after the current_function_value_rtx
4352 is computed. */
4353 clobber_after = get_last_insn ();
4355 /* Output the label for the actual return from the function. */
4356 emit_label (return_label);
4358 if (USING_SJLJ_EXCEPTIONS)
4360 /* Let except.c know where it should emit the call to unregister
4361 the function context for sjlj exceptions. */
4362 if (flag_exceptions)
4363 sjlj_emit_function_exit_after (get_last_insn ());
4365 else
4367 /* @@@ This is a kludge. We want to ensure that instructions that
4368 may trap are not moved into the epilogue by scheduling, because
4369 we don't always emit unwind information for the epilogue.
4370 However, not all machine descriptions define a blockage insn, so
4371 emit an ASM_INPUT to act as one. */
4372 if (flag_non_call_exceptions)
4373 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4376 /* If this is an implementation of throw, do what's necessary to
4377 communicate between __builtin_eh_return and the epilogue. */
4378 expand_eh_return ();
4380 /* If scalar return value was computed in a pseudo-reg, or was a named
4381 return value that got dumped to the stack, copy that to the hard
4382 return register. */
4383 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4385 tree decl_result = DECL_RESULT (current_function_decl);
4386 rtx decl_rtl = DECL_RTL (decl_result);
4388 if (REG_P (decl_rtl)
4389 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4390 : DECL_REGISTER (decl_result))
4392 rtx real_decl_rtl = current_function_return_rtx;
4394 /* This should be set in assign_parms. */
4395 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4397 /* If this is a BLKmode structure being returned in registers,
4398 then use the mode computed in expand_return. Note that if
4399 decl_rtl is memory, then its mode may have been changed,
4400 but that current_function_return_rtx has not. */
4401 if (GET_MODE (real_decl_rtl) == BLKmode)
4402 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4404 /* If a non-BLKmode return value should be padded at the least
4405 significant end of the register, shift it left by the appropriate
4406 amount. BLKmode results are handled using the group load/store
4407 machinery. */
4408 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4409 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4411 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4412 REGNO (real_decl_rtl)),
4413 decl_rtl);
4414 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4416 /* If a named return value dumped decl_return to memory, then
4417 we may need to re-do the PROMOTE_MODE signed/unsigned
4418 extension. */
4419 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4421 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4423 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4424 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4425 &unsignedp, 1);
4427 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4429 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4431 /* If expand_function_start has created a PARALLEL for decl_rtl,
4432 move the result to the real return registers. Otherwise, do
4433 a group load from decl_rtl for a named return. */
4434 if (GET_CODE (decl_rtl) == PARALLEL)
4435 emit_group_move (real_decl_rtl, decl_rtl);
4436 else
4437 emit_group_load (real_decl_rtl, decl_rtl,
4438 TREE_TYPE (decl_result),
4439 int_size_in_bytes (TREE_TYPE (decl_result)));
4441 /* In the case of complex integer modes smaller than a word, we'll
4442 need to generate some non-trivial bitfield insertions. Do that
4443 on a pseudo and not the hard register. */
4444 else if (GET_CODE (decl_rtl) == CONCAT
4445 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4446 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4448 int old_generating_concat_p;
4449 rtx tmp;
4451 old_generating_concat_p = generating_concat_p;
4452 generating_concat_p = 0;
4453 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4454 generating_concat_p = old_generating_concat_p;
4456 emit_move_insn (tmp, decl_rtl);
4457 emit_move_insn (real_decl_rtl, tmp);
4459 else
4460 emit_move_insn (real_decl_rtl, decl_rtl);
4464 /* If returning a structure, arrange to return the address of the value
4465 in a place where debuggers expect to find it.
4467 If returning a structure PCC style,
4468 the caller also depends on this value.
4469 And current_function_returns_pcc_struct is not necessarily set. */
4470 if (current_function_returns_struct
4471 || current_function_returns_pcc_struct)
4473 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4474 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4475 rtx outgoing;
4477 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4478 type = TREE_TYPE (type);
4479 else
4480 value_address = XEXP (value_address, 0);
4482 outgoing = targetm.calls.function_value (build_pointer_type (type),
4483 current_function_decl, true);
4485 /* Mark this as a function return value so integrate will delete the
4486 assignment and USE below when inlining this function. */
4487 REG_FUNCTION_VALUE_P (outgoing) = 1;
4489 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4490 value_address = convert_memory_address (GET_MODE (outgoing),
4491 value_address);
4493 emit_move_insn (outgoing, value_address);
4495 /* Show return register used to hold result (in this case the address
4496 of the result. */
4497 current_function_return_rtx = outgoing;
4500 /* Emit the actual code to clobber return register. */
4502 rtx seq;
4504 start_sequence ();
4505 clobber_return_register ();
4506 expand_naked_return ();
4507 seq = get_insns ();
4508 end_sequence ();
4510 emit_insn_after (seq, clobber_after);
4513 /* Output the label for the naked return from the function. */
4514 emit_label (naked_return_label);
4516 /* If stack protection is enabled for this function, check the guard. */
4517 if (cfun->stack_protect_guard)
4518 stack_protect_epilogue ();
4520 /* If we had calls to alloca, and this machine needs
4521 an accurate stack pointer to exit the function,
4522 insert some code to save and restore the stack pointer. */
4523 if (! EXIT_IGNORE_STACK
4524 && current_function_calls_alloca)
4526 rtx tem = 0;
4528 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4529 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4532 /* ??? This should no longer be necessary since stupid is no longer with
4533 us, but there are some parts of the compiler (eg reload_combine, and
4534 sh mach_dep_reorg) that still try and compute their own lifetime info
4535 instead of using the general framework. */
4536 use_return_register ();
4540 get_arg_pointer_save_area (struct function *f)
4542 rtx ret = f->x_arg_pointer_save_area;
4544 if (! ret)
4546 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4547 f->x_arg_pointer_save_area = ret;
4550 if (f == cfun && ! f->arg_pointer_save_area_init)
4552 rtx seq;
4554 /* Save the arg pointer at the beginning of the function. The
4555 generated stack slot may not be a valid memory address, so we
4556 have to check it and fix it if necessary. */
4557 start_sequence ();
4558 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4559 seq = get_insns ();
4560 end_sequence ();
4562 push_topmost_sequence ();
4563 emit_insn_after (seq, entry_of_function ());
4564 pop_topmost_sequence ();
4567 return ret;
4570 /* Extend a vector that records the INSN_UIDs of INSNS
4571 (a list of one or more insns). */
4573 static void
4574 record_insns (rtx insns, VEC(int,heap) **vecp)
4576 rtx tmp;
4578 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4579 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4582 /* Set the locator of the insn chain starting at INSN to LOC. */
4583 static void
4584 set_insn_locators (rtx insn, int loc)
4586 while (insn != NULL_RTX)
4588 if (INSN_P (insn))
4589 INSN_LOCATOR (insn) = loc;
4590 insn = NEXT_INSN (insn);
4594 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4595 be running after reorg, SEQUENCE rtl is possible. */
4597 static int
4598 contains (rtx insn, VEC(int,heap) **vec)
4600 int i, j;
4602 if (NONJUMP_INSN_P (insn)
4603 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4605 int count = 0;
4606 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4607 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4608 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4609 == VEC_index (int, *vec, j))
4610 count++;
4611 return count;
4613 else
4615 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4616 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4617 return 1;
4619 return 0;
4623 prologue_epilogue_contains (rtx insn)
4625 if (contains (insn, &prologue))
4626 return 1;
4627 if (contains (insn, &epilogue))
4628 return 1;
4629 return 0;
4633 sibcall_epilogue_contains (rtx insn)
4635 if (sibcall_epilogue)
4636 return contains (insn, &sibcall_epilogue);
4637 return 0;
4640 #ifdef HAVE_return
4641 /* Insert gen_return at the end of block BB. This also means updating
4642 block_for_insn appropriately. */
4644 static void
4645 emit_return_into_block (basic_block bb)
4647 emit_jump_insn_after (gen_return (), BB_END (bb));
4649 #endif /* HAVE_return */
4651 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4653 /* These functions convert the epilogue into a variant that does not
4654 modify the stack pointer. This is used in cases where a function
4655 returns an object whose size is not known until it is computed.
4656 The called function leaves the object on the stack, leaves the
4657 stack depressed, and returns a pointer to the object.
4659 What we need to do is track all modifications and references to the
4660 stack pointer, deleting the modifications and changing the
4661 references to point to the location the stack pointer would have
4662 pointed to had the modifications taken place.
4664 These functions need to be portable so we need to make as few
4665 assumptions about the epilogue as we can. However, the epilogue
4666 basically contains three things: instructions to reset the stack
4667 pointer, instructions to reload registers, possibly including the
4668 frame pointer, and an instruction to return to the caller.
4670 We must be sure of what a relevant epilogue insn is doing. We also
4671 make no attempt to validate the insns we make since if they are
4672 invalid, we probably can't do anything valid. The intent is that
4673 these routines get "smarter" as more and more machines start to use
4674 them and they try operating on different epilogues.
4676 We use the following structure to track what the part of the
4677 epilogue that we've already processed has done. We keep two copies
4678 of the SP equivalence, one for use during the insn we are
4679 processing and one for use in the next insn. The difference is
4680 because one part of a PARALLEL may adjust SP and the other may use
4681 it. */
4683 struct epi_info
4685 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4686 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4687 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4688 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4689 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4690 should be set to once we no longer need
4691 its value. */
4692 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4693 for registers. */
4696 static void handle_epilogue_set (rtx, struct epi_info *);
4697 static void update_epilogue_consts (rtx, rtx, void *);
4698 static void emit_equiv_load (struct epi_info *);
4700 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4701 no modifications to the stack pointer. Return the new list of insns. */
4703 static rtx
4704 keep_stack_depressed (rtx insns)
4706 int j;
4707 struct epi_info info;
4708 rtx insn, next;
4710 /* If the epilogue is just a single instruction, it must be OK as is. */
4711 if (NEXT_INSN (insns) == NULL_RTX)
4712 return insns;
4714 /* Otherwise, start a sequence, initialize the information we have, and
4715 process all the insns we were given. */
4716 start_sequence ();
4718 info.sp_equiv_reg = stack_pointer_rtx;
4719 info.sp_offset = 0;
4720 info.equiv_reg_src = 0;
4722 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4723 info.const_equiv[j] = 0;
4725 insn = insns;
4726 next = NULL_RTX;
4727 while (insn != NULL_RTX)
4729 next = NEXT_INSN (insn);
4731 if (!INSN_P (insn))
4733 add_insn (insn);
4734 insn = next;
4735 continue;
4738 /* If this insn references the register that SP is equivalent to and
4739 we have a pending load to that register, we must force out the load
4740 first and then indicate we no longer know what SP's equivalent is. */
4741 if (info.equiv_reg_src != 0
4742 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4744 emit_equiv_load (&info);
4745 info.sp_equiv_reg = 0;
4748 info.new_sp_equiv_reg = info.sp_equiv_reg;
4749 info.new_sp_offset = info.sp_offset;
4751 /* If this is a (RETURN) and the return address is on the stack,
4752 update the address and change to an indirect jump. */
4753 if (GET_CODE (PATTERN (insn)) == RETURN
4754 || (GET_CODE (PATTERN (insn)) == PARALLEL
4755 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4757 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4758 rtx base = 0;
4759 HOST_WIDE_INT offset = 0;
4760 rtx jump_insn, jump_set;
4762 /* If the return address is in a register, we can emit the insn
4763 unchanged. Otherwise, it must be a MEM and we see what the
4764 base register and offset are. In any case, we have to emit any
4765 pending load to the equivalent reg of SP, if any. */
4766 if (REG_P (retaddr))
4768 emit_equiv_load (&info);
4769 add_insn (insn);
4770 insn = next;
4771 continue;
4773 else
4775 rtx ret_ptr;
4776 gcc_assert (MEM_P (retaddr));
4778 ret_ptr = XEXP (retaddr, 0);
4780 if (REG_P (ret_ptr))
4782 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4783 offset = 0;
4785 else
4787 gcc_assert (GET_CODE (ret_ptr) == PLUS
4788 && REG_P (XEXP (ret_ptr, 0))
4789 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4790 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4791 offset = INTVAL (XEXP (ret_ptr, 1));
4795 /* If the base of the location containing the return pointer
4796 is SP, we must update it with the replacement address. Otherwise,
4797 just build the necessary MEM. */
4798 retaddr = plus_constant (base, offset);
4799 if (base == stack_pointer_rtx)
4800 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4801 plus_constant (info.sp_equiv_reg,
4802 info.sp_offset));
4804 retaddr = gen_rtx_MEM (Pmode, retaddr);
4805 MEM_NOTRAP_P (retaddr) = 1;
4807 /* If there is a pending load to the equivalent register for SP
4808 and we reference that register, we must load our address into
4809 a scratch register and then do that load. */
4810 if (info.equiv_reg_src
4811 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4813 unsigned int regno;
4814 rtx reg;
4816 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4817 if (HARD_REGNO_MODE_OK (regno, Pmode)
4818 && !fixed_regs[regno]
4819 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4820 && !REGNO_REG_SET_P
4821 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4822 && !refers_to_regno_p (regno,
4823 regno + hard_regno_nregs[regno]
4824 [Pmode],
4825 info.equiv_reg_src, NULL)
4826 && info.const_equiv[regno] == 0)
4827 break;
4829 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4831 reg = gen_rtx_REG (Pmode, regno);
4832 emit_move_insn (reg, retaddr);
4833 retaddr = reg;
4836 emit_equiv_load (&info);
4837 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4839 /* Show the SET in the above insn is a RETURN. */
4840 jump_set = single_set (jump_insn);
4841 gcc_assert (jump_set);
4842 SET_IS_RETURN_P (jump_set) = 1;
4845 /* If SP is not mentioned in the pattern and its equivalent register, if
4846 any, is not modified, just emit it. Otherwise, if neither is set,
4847 replace the reference to SP and emit the insn. If none of those are
4848 true, handle each SET individually. */
4849 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4850 && (info.sp_equiv_reg == stack_pointer_rtx
4851 || !reg_set_p (info.sp_equiv_reg, insn)))
4852 add_insn (insn);
4853 else if (! reg_set_p (stack_pointer_rtx, insn)
4854 && (info.sp_equiv_reg == stack_pointer_rtx
4855 || !reg_set_p (info.sp_equiv_reg, insn)))
4857 int changed;
4859 changed = validate_replace_rtx (stack_pointer_rtx,
4860 plus_constant (info.sp_equiv_reg,
4861 info.sp_offset),
4862 insn);
4863 gcc_assert (changed);
4865 add_insn (insn);
4867 else if (GET_CODE (PATTERN (insn)) == SET)
4868 handle_epilogue_set (PATTERN (insn), &info);
4869 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4871 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4872 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4873 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4875 else
4876 add_insn (insn);
4878 info.sp_equiv_reg = info.new_sp_equiv_reg;
4879 info.sp_offset = info.new_sp_offset;
4881 /* Now update any constants this insn sets. */
4882 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4883 insn = next;
4886 insns = get_insns ();
4887 end_sequence ();
4888 return insns;
4891 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4892 structure that contains information about what we've seen so far. We
4893 process this SET by either updating that data or by emitting one or
4894 more insns. */
4896 static void
4897 handle_epilogue_set (rtx set, struct epi_info *p)
4899 /* First handle the case where we are setting SP. Record what it is being
4900 set from, which we must be able to determine */
4901 if (reg_set_p (stack_pointer_rtx, set))
4903 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4905 if (GET_CODE (SET_SRC (set)) == PLUS)
4907 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4908 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4909 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4910 else
4912 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4913 && (REGNO (XEXP (SET_SRC (set), 1))
4914 < FIRST_PSEUDO_REGISTER)
4915 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4916 p->new_sp_offset
4917 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4920 else
4921 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4923 /* If we are adjusting SP, we adjust from the old data. */
4924 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4926 p->new_sp_equiv_reg = p->sp_equiv_reg;
4927 p->new_sp_offset += p->sp_offset;
4930 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4932 return;
4935 /* Next handle the case where we are setting SP's equivalent
4936 register. We must not already have a value to set it to. We
4937 could update, but there seems little point in handling that case.
4938 Note that we have to allow for the case where we are setting the
4939 register set in the previous part of a PARALLEL inside a single
4940 insn. But use the old offset for any updates within this insn.
4941 We must allow for the case where the register is being set in a
4942 different (usually wider) mode than Pmode). */
4943 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4945 gcc_assert (!p->equiv_reg_src
4946 && REG_P (p->new_sp_equiv_reg)
4947 && REG_P (SET_DEST (set))
4948 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4949 <= BITS_PER_WORD)
4950 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4951 p->equiv_reg_src
4952 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4953 plus_constant (p->sp_equiv_reg,
4954 p->sp_offset));
4957 /* Otherwise, replace any references to SP in the insn to its new value
4958 and emit the insn. */
4959 else
4961 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4962 plus_constant (p->sp_equiv_reg,
4963 p->sp_offset));
4964 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4965 plus_constant (p->sp_equiv_reg,
4966 p->sp_offset));
4967 emit_insn (set);
4971 /* Update the tracking information for registers set to constants. */
4973 static void
4974 update_epilogue_consts (rtx dest, rtx x, void *data)
4976 struct epi_info *p = (struct epi_info *) data;
4977 rtx new;
4979 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4980 return;
4982 /* If we are either clobbering a register or doing a partial set,
4983 show we don't know the value. */
4984 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4985 p->const_equiv[REGNO (dest)] = 0;
4987 /* If we are setting it to a constant, record that constant. */
4988 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4989 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4991 /* If this is a binary operation between a register we have been tracking
4992 and a constant, see if we can compute a new constant value. */
4993 else if (ARITHMETIC_P (SET_SRC (x))
4994 && REG_P (XEXP (SET_SRC (x), 0))
4995 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4996 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4997 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4998 && 0 != (new = simplify_binary_operation
4999 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5000 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5001 XEXP (SET_SRC (x), 1)))
5002 && GET_CODE (new) == CONST_INT)
5003 p->const_equiv[REGNO (dest)] = new;
5005 /* Otherwise, we can't do anything with this value. */
5006 else
5007 p->const_equiv[REGNO (dest)] = 0;
5010 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5012 static void
5013 emit_equiv_load (struct epi_info *p)
5015 if (p->equiv_reg_src != 0)
5017 rtx dest = p->sp_equiv_reg;
5019 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5020 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5021 REGNO (p->sp_equiv_reg));
5023 emit_move_insn (dest, p->equiv_reg_src);
5024 p->equiv_reg_src = 0;
5027 #endif
5029 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5030 this into place with notes indicating where the prologue ends and where
5031 the epilogue begins. Update the basic block information when possible. */
5033 void
5034 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5036 int inserted = 0;
5037 edge e;
5038 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5039 rtx seq;
5040 #endif
5041 #ifdef HAVE_prologue
5042 rtx prologue_end = NULL_RTX;
5043 #endif
5044 #if defined (HAVE_epilogue) || defined(HAVE_return)
5045 rtx epilogue_end = NULL_RTX;
5046 #endif
5047 edge_iterator ei;
5049 #ifdef HAVE_prologue
5050 if (HAVE_prologue)
5052 start_sequence ();
5053 seq = gen_prologue ();
5054 emit_insn (seq);
5056 /* Retain a map of the prologue insns. */
5057 record_insns (seq, &prologue);
5058 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5060 seq = get_insns ();
5061 end_sequence ();
5062 set_insn_locators (seq, prologue_locator);
5064 /* Can't deal with multiple successors of the entry block
5065 at the moment. Function should always have at least one
5066 entry point. */
5067 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5069 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5070 inserted = 1;
5072 #endif
5074 /* If the exit block has no non-fake predecessors, we don't need
5075 an epilogue. */
5076 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5077 if ((e->flags & EDGE_FAKE) == 0)
5078 break;
5079 if (e == NULL)
5080 goto epilogue_done;
5082 #ifdef HAVE_return
5083 if (optimize && HAVE_return)
5085 /* If we're allowed to generate a simple return instruction,
5086 then by definition we don't need a full epilogue. Examine
5087 the block that falls through to EXIT. If it does not
5088 contain any code, examine its predecessors and try to
5089 emit (conditional) return instructions. */
5091 basic_block last;
5092 rtx label;
5094 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5095 if (e->flags & EDGE_FALLTHRU)
5096 break;
5097 if (e == NULL)
5098 goto epilogue_done;
5099 last = e->src;
5101 /* Verify that there are no active instructions in the last block. */
5102 label = BB_END (last);
5103 while (label && !LABEL_P (label))
5105 if (active_insn_p (label))
5106 break;
5107 label = PREV_INSN (label);
5110 if (BB_HEAD (last) == label && LABEL_P (label))
5112 edge_iterator ei2;
5114 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5116 basic_block bb = e->src;
5117 rtx jump;
5119 if (bb == ENTRY_BLOCK_PTR)
5121 ei_next (&ei2);
5122 continue;
5125 jump = BB_END (bb);
5126 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5128 ei_next (&ei2);
5129 continue;
5132 /* If we have an unconditional jump, we can replace that
5133 with a simple return instruction. */
5134 if (simplejump_p (jump))
5136 emit_return_into_block (bb);
5137 delete_insn (jump);
5140 /* If we have a conditional jump, we can try to replace
5141 that with a conditional return instruction. */
5142 else if (condjump_p (jump))
5144 if (! redirect_jump (jump, 0, 0))
5146 ei_next (&ei2);
5147 continue;
5150 /* If this block has only one successor, it both jumps
5151 and falls through to the fallthru block, so we can't
5152 delete the edge. */
5153 if (single_succ_p (bb))
5155 ei_next (&ei2);
5156 continue;
5159 else
5161 ei_next (&ei2);
5162 continue;
5165 /* Fix up the CFG for the successful change we just made. */
5166 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5169 /* Emit a return insn for the exit fallthru block. Whether
5170 this is still reachable will be determined later. */
5172 emit_barrier_after (BB_END (last));
5173 emit_return_into_block (last);
5174 epilogue_end = BB_END (last);
5175 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5176 goto epilogue_done;
5179 #endif
5180 /* Find the edge that falls through to EXIT. Other edges may exist
5181 due to RETURN instructions, but those don't need epilogues.
5182 There really shouldn't be a mixture -- either all should have
5183 been converted or none, however... */
5185 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5186 if (e->flags & EDGE_FALLTHRU)
5187 break;
5188 if (e == NULL)
5189 goto epilogue_done;
5191 #ifdef HAVE_epilogue
5192 if (HAVE_epilogue)
5194 start_sequence ();
5195 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5197 seq = gen_epilogue ();
5199 #ifdef INCOMING_RETURN_ADDR_RTX
5200 /* If this function returns with the stack depressed and we can support
5201 it, massage the epilogue to actually do that. */
5202 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5203 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5204 seq = keep_stack_depressed (seq);
5205 #endif
5207 emit_jump_insn (seq);
5209 /* Retain a map of the epilogue insns. */
5210 record_insns (seq, &epilogue);
5211 set_insn_locators (seq, epilogue_locator);
5213 seq = get_insns ();
5214 end_sequence ();
5216 insert_insn_on_edge (seq, e);
5217 inserted = 1;
5219 else
5220 #endif
5222 basic_block cur_bb;
5224 if (! next_active_insn (BB_END (e->src)))
5225 goto epilogue_done;
5226 /* We have a fall-through edge to the exit block, the source is not
5227 at the end of the function, and there will be an assembler epilogue
5228 at the end of the function.
5229 We can't use force_nonfallthru here, because that would try to
5230 use return. Inserting a jump 'by hand' is extremely messy, so
5231 we take advantage of cfg_layout_finalize using
5232 fixup_fallthru_exit_predecessor. */
5233 cfg_layout_initialize (0);
5234 FOR_EACH_BB (cur_bb)
5235 if (cur_bb->index >= NUM_FIXED_BLOCKS
5236 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5237 cur_bb->aux = cur_bb->next_bb;
5238 cfg_layout_finalize ();
5240 epilogue_done:
5242 if (inserted)
5243 commit_edge_insertions ();
5245 #ifdef HAVE_sibcall_epilogue
5246 /* Emit sibling epilogues before any sibling call sites. */
5247 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5249 basic_block bb = e->src;
5250 rtx insn = BB_END (bb);
5252 if (!CALL_P (insn)
5253 || ! SIBLING_CALL_P (insn))
5255 ei_next (&ei);
5256 continue;
5259 start_sequence ();
5260 emit_insn (gen_sibcall_epilogue ());
5261 seq = get_insns ();
5262 end_sequence ();
5264 /* Retain a map of the epilogue insns. Used in life analysis to
5265 avoid getting rid of sibcall epilogue insns. Do this before we
5266 actually emit the sequence. */
5267 record_insns (seq, &sibcall_epilogue);
5268 set_insn_locators (seq, epilogue_locator);
5270 emit_insn_before (seq, insn);
5271 ei_next (&ei);
5273 #endif
5275 #ifdef HAVE_epilogue
5276 if (epilogue_end)
5278 rtx insn, next;
5280 /* Similarly, move any line notes that appear after the epilogue.
5281 There is no need, however, to be quite so anal about the existence
5282 of such a note. Also possibly move
5283 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5284 info generation. */
5285 for (insn = epilogue_end; insn; insn = next)
5287 next = NEXT_INSN (insn);
5288 if (NOTE_P (insn)
5289 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG))
5290 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5293 #endif
5296 /* Reposition the prologue-end and epilogue-begin notes after instruction
5297 scheduling and delayed branch scheduling. */
5299 void
5300 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5302 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5303 rtx insn, last, note;
5304 int len;
5306 if ((len = VEC_length (int, prologue)) > 0)
5308 last = 0, note = 0;
5310 /* Scan from the beginning until we reach the last prologue insn.
5311 We apparently can't depend on basic_block_{head,end} after
5312 reorg has run. */
5313 for (insn = f; insn; insn = NEXT_INSN (insn))
5315 if (NOTE_P (insn))
5317 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5318 note = insn;
5320 else if (contains (insn, &prologue))
5322 last = insn;
5323 if (--len == 0)
5324 break;
5328 if (last)
5330 /* Find the prologue-end note if we haven't already, and
5331 move it to just after the last prologue insn. */
5332 if (note == 0)
5334 for (note = last; (note = NEXT_INSN (note));)
5335 if (NOTE_P (note)
5336 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5337 break;
5340 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5341 if (LABEL_P (last))
5342 last = NEXT_INSN (last);
5343 reorder_insns (note, note, last);
5347 if ((len = VEC_length (int, epilogue)) > 0)
5349 last = 0, note = 0;
5351 /* Scan from the end until we reach the first epilogue insn.
5352 We apparently can't depend on basic_block_{head,end} after
5353 reorg has run. */
5354 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5356 if (NOTE_P (insn))
5358 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5359 note = insn;
5361 else if (contains (insn, &epilogue))
5363 last = insn;
5364 if (--len == 0)
5365 break;
5369 if (last)
5371 /* Find the epilogue-begin note if we haven't already, and
5372 move it to just before the first epilogue insn. */
5373 if (note == 0)
5375 for (note = insn; (note = PREV_INSN (note));)
5376 if (NOTE_P (note)
5377 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5378 break;
5381 if (PREV_INSN (last) != note)
5382 reorder_insns (note, note, PREV_INSN (last));
5385 #endif /* HAVE_prologue or HAVE_epilogue */
5388 /* Resets insn_block_boundaries array. */
5390 void
5391 reset_block_changes (void)
5393 cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
5394 VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
5397 /* Record the boundary for BLOCK. */
5398 void
5399 record_block_change (tree block)
5401 int i, n;
5402 tree last_block;
5404 if (!block)
5405 return;
5407 if(!cfun->ib_boundaries_block)
5408 return;
5410 last_block = VEC_pop (tree, cfun->ib_boundaries_block);
5411 n = get_max_uid ();
5412 for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
5413 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
5415 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
5418 /* Finishes record of boundaries. */
5419 void
5420 finalize_block_changes (void)
5422 record_block_change (DECL_INITIAL (current_function_decl));
5425 /* For INSN return the BLOCK it belongs to. */
5426 void
5427 check_block_change (rtx insn, tree *block)
5429 unsigned uid = INSN_UID (insn);
5431 if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
5432 return;
5434 *block = VEC_index (tree, cfun->ib_boundaries_block, uid);
5437 /* Releases the ib_boundaries_block records. */
5438 void
5439 free_block_changes (void)
5441 VEC_free (tree, gc, cfun->ib_boundaries_block);
5444 /* Returns the name of the current function. */
5445 const char *
5446 current_function_name (void)
5448 return lang_hooks.decl_printable_name (cfun->decl, 2);
5452 static unsigned int
5453 rest_of_handle_check_leaf_regs (void)
5455 #ifdef LEAF_REGISTERS
5456 current_function_uses_only_leaf_regs
5457 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5458 #endif
5459 return 0;
5462 /* Insert a TYPE into the used types hash table of CFUN. */
5463 static void
5464 used_types_insert_helper (tree type, struct function *func)
5466 if (type != NULL && func != NULL)
5468 void **slot;
5470 if (func->used_types_hash == NULL)
5471 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5472 htab_eq_pointer, NULL);
5473 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5474 if (*slot == NULL)
5475 *slot = type;
5479 /* Given a type, insert it into the used hash table in cfun. */
5480 void
5481 used_types_insert (tree t)
5483 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5484 t = TREE_TYPE (t);
5485 t = TYPE_MAIN_VARIANT (t);
5486 if (debug_info_level > DINFO_LEVEL_NONE)
5487 used_types_insert_helper (t, cfun);
5490 struct tree_opt_pass pass_leaf_regs =
5492 NULL, /* name */
5493 NULL, /* gate */
5494 rest_of_handle_check_leaf_regs, /* execute */
5495 NULL, /* sub */
5496 NULL, /* next */
5497 0, /* static_pass_number */
5498 0, /* tv_id */
5499 0, /* properties_required */
5500 0, /* properties_provided */
5501 0, /* properties_destroyed */
5502 0, /* todo_flags_start */
5503 0, /* todo_flags_finish */
5504 0 /* letter */
5508 #include "gt-function.h"