-dA enhancement
[official-gcc.git] / gcc / gimple.c
blob96dacf81b0bf87b56e479c5d89d688c9a919b3d6
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
53 /* Global type comparison cache. This is by TYPE_UID for space efficiency
54 and thus cannot use and does not need GC. */
55 static htab_t gtc_visited;
56 static struct obstack gtc_ob;
58 /* All the tuples have their operand vector (if present) at the very bottom
59 of the structure. Therefore, the offset required to find the
60 operands vector the size of the structure minus the size of the 1
61 element tree array at the end (see gimple_ops). */
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
63 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
64 EXPORTED_CONST size_t gimple_ops_offset_[] = {
65 #include "gsstruct.def"
67 #undef DEFGSSTRUCT
69 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
70 static const size_t gsstruct_code_size[] = {
71 #include "gsstruct.def"
73 #undef DEFGSSTRUCT
75 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
76 const char *const gimple_code_name[] = {
77 #include "gimple.def"
79 #undef DEFGSCODE
81 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
82 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
83 #include "gimple.def"
85 #undef DEFGSCODE
87 #ifdef GATHER_STATISTICS
88 /* Gimple stats. */
90 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
91 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
93 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
94 static const char * const gimple_alloc_kind_names[] = {
95 "assignments",
96 "phi nodes",
97 "conditionals",
98 "sequences",
99 "everything else"
102 #endif /* GATHER_STATISTICS */
104 /* A cache of gimple_seq objects. Sequences are created and destroyed
105 fairly often during gimplification. */
106 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
108 /* Private API manipulation functions shared only with some
109 other files. */
110 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
111 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
113 /* Gimple tuple constructors.
114 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
115 be passed a NULL to start with an empty sequence. */
117 /* Set the code for statement G to CODE. */
119 static inline void
120 gimple_set_code (gimple g, enum gimple_code code)
122 g->gsbase.code = code;
125 /* Return the number of bytes needed to hold a GIMPLE statement with
126 code CODE. */
128 static inline size_t
129 gimple_size (enum gimple_code code)
131 return gsstruct_code_size[gss_for_code (code)];
134 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
135 operands. */
137 gimple
138 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
140 size_t size;
141 gimple stmt;
143 size = gimple_size (code);
144 if (num_ops > 0)
145 size += sizeof (tree) * (num_ops - 1);
147 #ifdef GATHER_STATISTICS
149 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
150 gimple_alloc_counts[(int) kind]++;
151 gimple_alloc_sizes[(int) kind] += size;
153 #endif
155 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
156 gimple_set_code (stmt, code);
157 gimple_set_num_ops (stmt, num_ops);
159 /* Do not call gimple_set_modified here as it has other side
160 effects and this tuple is still not completely built. */
161 stmt->gsbase.modified = 1;
163 return stmt;
166 /* Set SUBCODE to be the code of the expression computed by statement G. */
168 static inline void
169 gimple_set_subcode (gimple g, unsigned subcode)
171 /* We only have 16 bits for the RHS code. Assert that we are not
172 overflowing it. */
173 gcc_assert (subcode < (1 << 16));
174 g->gsbase.subcode = subcode;
179 /* Build a tuple with operands. CODE is the statement to build (which
180 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
181 for the new tuple. NUM_OPS is the number of operands to allocate. */
183 #define gimple_build_with_ops(c, s, n) \
184 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
186 static gimple
187 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
188 unsigned num_ops MEM_STAT_DECL)
190 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
191 gimple_set_subcode (s, subcode);
193 return s;
197 /* Build a GIMPLE_RETURN statement returning RETVAL. */
199 gimple
200 gimple_build_return (tree retval)
202 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
203 if (retval)
204 gimple_return_set_retval (s, retval);
205 return s;
208 /* Reset alias information on call S. */
210 void
211 gimple_call_reset_alias_info (gimple s)
213 if (gimple_call_flags (s) & ECF_CONST)
214 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
215 else
216 pt_solution_reset (gimple_call_use_set (s));
217 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
218 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
219 else
220 pt_solution_reset (gimple_call_clobber_set (s));
223 /* Helper for gimple_build_call, gimple_build_call_vec and
224 gimple_build_call_from_tree. Build the basic components of a
225 GIMPLE_CALL statement to function FN with NARGS arguments. */
227 static inline gimple
228 gimple_build_call_1 (tree fn, unsigned nargs)
230 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_reset_alias_info (s);
235 return s;
239 /* Build a GIMPLE_CALL statement to function FN with the arguments
240 specified in vector ARGS. */
242 gimple
243 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
245 unsigned i;
246 unsigned nargs = VEC_length (tree, args);
247 gimple call = gimple_build_call_1 (fn, nargs);
249 for (i = 0; i < nargs; i++)
250 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
252 return call;
256 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
257 arguments. The ... are the arguments. */
259 gimple
260 gimple_build_call (tree fn, unsigned nargs, ...)
262 va_list ap;
263 gimple call;
264 unsigned i;
266 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
268 call = gimple_build_call_1 (fn, nargs);
270 va_start (ap, nargs);
271 for (i = 0; i < nargs; i++)
272 gimple_call_set_arg (call, i, va_arg (ap, tree));
273 va_end (ap);
275 return call;
279 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
280 assumed to be in GIMPLE form already. Minimal checking is done of
281 this fact. */
283 gimple
284 gimple_build_call_from_tree (tree t)
286 unsigned i, nargs;
287 gimple call;
288 tree fndecl = get_callee_fndecl (t);
290 gcc_assert (TREE_CODE (t) == CALL_EXPR);
292 nargs = call_expr_nargs (t);
293 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
295 for (i = 0; i < nargs; i++)
296 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
298 gimple_set_block (call, TREE_BLOCK (t));
300 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
301 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
302 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
303 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
304 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
305 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
306 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
307 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
308 gimple_set_no_warning (call, TREE_NO_WARNING (t));
310 return call;
314 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
315 *OP1_P, *OP2_P and *OP3_P respectively. */
317 void
318 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
319 tree *op2_p, tree *op3_p)
321 enum gimple_rhs_class grhs_class;
323 *subcode_p = TREE_CODE (expr);
324 grhs_class = get_gimple_rhs_class (*subcode_p);
326 if (grhs_class == GIMPLE_TERNARY_RHS)
328 *op1_p = TREE_OPERAND (expr, 0);
329 *op2_p = TREE_OPERAND (expr, 1);
330 *op3_p = TREE_OPERAND (expr, 2);
332 else if (grhs_class == GIMPLE_BINARY_RHS)
334 *op1_p = TREE_OPERAND (expr, 0);
335 *op2_p = TREE_OPERAND (expr, 1);
336 *op3_p = NULL_TREE;
338 else if (grhs_class == GIMPLE_UNARY_RHS)
340 *op1_p = TREE_OPERAND (expr, 0);
341 *op2_p = NULL_TREE;
342 *op3_p = NULL_TREE;
344 else if (grhs_class == GIMPLE_SINGLE_RHS)
346 *op1_p = expr;
347 *op2_p = NULL_TREE;
348 *op3_p = NULL_TREE;
350 else
351 gcc_unreachable ();
355 /* Build a GIMPLE_ASSIGN statement.
357 LHS of the assignment.
358 RHS of the assignment which can be unary or binary. */
360 gimple
361 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
363 enum tree_code subcode;
364 tree op1, op2, op3;
366 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
367 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
368 PASS_MEM_STAT);
372 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
373 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
374 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
376 gimple
377 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
378 tree op2, tree op3 MEM_STAT_DECL)
380 unsigned num_ops;
381 gimple p;
383 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
384 code). */
385 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
387 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
388 PASS_MEM_STAT);
389 gimple_assign_set_lhs (p, lhs);
390 gimple_assign_set_rhs1 (p, op1);
391 if (op2)
393 gcc_assert (num_ops > 2);
394 gimple_assign_set_rhs2 (p, op2);
397 if (op3)
399 gcc_assert (num_ops > 3);
400 gimple_assign_set_rhs3 (p, op3);
403 return p;
407 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
409 DST/SRC are the destination and source respectively. You can pass
410 ungimplified trees in DST or SRC, in which case they will be
411 converted to a gimple operand if necessary.
413 This function returns the newly created GIMPLE_ASSIGN tuple. */
415 gimple
416 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
418 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
419 gimplify_and_add (t, seq_p);
420 ggc_free (t);
421 return gimple_seq_last_stmt (*seq_p);
425 /* Build a GIMPLE_COND statement.
427 PRED is the condition used to compare LHS and the RHS.
428 T_LABEL is the label to jump to if the condition is true.
429 F_LABEL is the label to jump to otherwise. */
431 gimple
432 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
433 tree t_label, tree f_label)
435 gimple p;
437 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
438 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
439 gimple_cond_set_lhs (p, lhs);
440 gimple_cond_set_rhs (p, rhs);
441 gimple_cond_set_true_label (p, t_label);
442 gimple_cond_set_false_label (p, f_label);
443 return p;
447 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
449 void
450 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
451 tree *lhs_p, tree *rhs_p)
453 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
454 || TREE_CODE (cond) == TRUTH_NOT_EXPR
455 || is_gimple_min_invariant (cond)
456 || SSA_VAR_P (cond));
458 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
460 /* Canonicalize conditionals of the form 'if (!VAL)'. */
461 if (*code_p == TRUTH_NOT_EXPR)
463 *code_p = EQ_EXPR;
464 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
465 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
467 /* Canonicalize conditionals of the form 'if (VAL)' */
468 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
470 *code_p = NE_EXPR;
471 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
472 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
477 /* Build a GIMPLE_COND statement from the conditional expression tree
478 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
480 gimple
481 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
483 enum tree_code code;
484 tree lhs, rhs;
486 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
487 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
490 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
491 boolean expression tree COND. */
493 void
494 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
496 enum tree_code code;
497 tree lhs, rhs;
499 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
500 gimple_cond_set_condition (stmt, code, lhs, rhs);
503 /* Build a GIMPLE_LABEL statement for LABEL. */
505 gimple
506 gimple_build_label (tree label)
508 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
509 gimple_label_set_label (p, label);
510 return p;
513 /* Build a GIMPLE_GOTO statement to label DEST. */
515 gimple
516 gimple_build_goto (tree dest)
518 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
519 gimple_goto_set_dest (p, dest);
520 return p;
524 /* Build a GIMPLE_NOP statement. */
526 gimple
527 gimple_build_nop (void)
529 return gimple_alloc (GIMPLE_NOP, 0);
533 /* Build a GIMPLE_BIND statement.
534 VARS are the variables in BODY.
535 BLOCK is the containing block. */
537 gimple
538 gimple_build_bind (tree vars, gimple_seq body, tree block)
540 gimple p = gimple_alloc (GIMPLE_BIND, 0);
541 gimple_bind_set_vars (p, vars);
542 if (body)
543 gimple_bind_set_body (p, body);
544 if (block)
545 gimple_bind_set_block (p, block);
546 return p;
549 /* Helper function to set the simple fields of a asm stmt.
551 STRING is a pointer to a string that is the asm blocks assembly code.
552 NINPUT is the number of register inputs.
553 NOUTPUT is the number of register outputs.
554 NCLOBBERS is the number of clobbered registers.
557 static inline gimple
558 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
559 unsigned nclobbers, unsigned nlabels)
561 gimple p;
562 int size = strlen (string);
564 /* ASMs with labels cannot have outputs. This should have been
565 enforced by the front end. */
566 gcc_assert (nlabels == 0 || noutputs == 0);
568 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
569 ninputs + noutputs + nclobbers + nlabels);
571 p->gimple_asm.ni = ninputs;
572 p->gimple_asm.no = noutputs;
573 p->gimple_asm.nc = nclobbers;
574 p->gimple_asm.nl = nlabels;
575 p->gimple_asm.string = ggc_alloc_string (string, size);
577 #ifdef GATHER_STATISTICS
578 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
579 #endif
581 return p;
584 /* Build a GIMPLE_ASM statement.
586 STRING is the assembly code.
587 NINPUT is the number of register inputs.
588 NOUTPUT is the number of register outputs.
589 NCLOBBERS is the number of clobbered registers.
590 INPUTS is a vector of the input register parameters.
591 OUTPUTS is a vector of the output register parameters.
592 CLOBBERS is a vector of the clobbered register parameters.
593 LABELS is a vector of destination labels. */
595 gimple
596 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
597 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
598 VEC(tree,gc)* labels)
600 gimple p;
601 unsigned i;
603 p = gimple_build_asm_1 (string,
604 VEC_length (tree, inputs),
605 VEC_length (tree, outputs),
606 VEC_length (tree, clobbers),
607 VEC_length (tree, labels));
609 for (i = 0; i < VEC_length (tree, inputs); i++)
610 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
612 for (i = 0; i < VEC_length (tree, outputs); i++)
613 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
615 for (i = 0; i < VEC_length (tree, clobbers); i++)
616 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
618 for (i = 0; i < VEC_length (tree, labels); i++)
619 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
621 return p;
624 /* Build a GIMPLE_CATCH statement.
626 TYPES are the catch types.
627 HANDLER is the exception handler. */
629 gimple
630 gimple_build_catch (tree types, gimple_seq handler)
632 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
633 gimple_catch_set_types (p, types);
634 if (handler)
635 gimple_catch_set_handler (p, handler);
637 return p;
640 /* Build a GIMPLE_EH_FILTER statement.
642 TYPES are the filter's types.
643 FAILURE is the filter's failure action. */
645 gimple
646 gimple_build_eh_filter (tree types, gimple_seq failure)
648 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
649 gimple_eh_filter_set_types (p, types);
650 if (failure)
651 gimple_eh_filter_set_failure (p, failure);
653 return p;
656 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
658 gimple
659 gimple_build_eh_must_not_throw (tree decl)
661 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
663 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
664 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
665 gimple_eh_must_not_throw_set_fndecl (p, decl);
667 return p;
670 /* Build a GIMPLE_TRY statement.
672 EVAL is the expression to evaluate.
673 CLEANUP is the cleanup expression.
674 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
675 whether this is a try/catch or a try/finally respectively. */
677 gimple
678 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
679 enum gimple_try_flags kind)
681 gimple p;
683 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
684 p = gimple_alloc (GIMPLE_TRY, 0);
685 gimple_set_subcode (p, kind);
686 if (eval)
687 gimple_try_set_eval (p, eval);
688 if (cleanup)
689 gimple_try_set_cleanup (p, cleanup);
691 return p;
694 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
696 CLEANUP is the cleanup expression. */
698 gimple
699 gimple_build_wce (gimple_seq cleanup)
701 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
702 if (cleanup)
703 gimple_wce_set_cleanup (p, cleanup);
705 return p;
709 /* Build a GIMPLE_RESX statement. */
711 gimple
712 gimple_build_resx (int region)
714 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
715 p->gimple_eh_ctrl.region = region;
716 return p;
720 /* The helper for constructing a gimple switch statement.
721 INDEX is the switch's index.
722 NLABELS is the number of labels in the switch excluding the default.
723 DEFAULT_LABEL is the default label for the switch statement. */
725 gimple
726 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
728 /* nlabels + 1 default label + 1 index. */
729 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
730 1 + (default_label != NULL) + nlabels);
731 gimple_switch_set_index (p, index);
732 if (default_label)
733 gimple_switch_set_default_label (p, default_label);
734 return p;
738 /* Build a GIMPLE_SWITCH statement.
740 INDEX is the switch's index.
741 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
742 ... are the labels excluding the default. */
744 gimple
745 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
747 va_list al;
748 unsigned i, offset;
749 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
751 /* Store the rest of the labels. */
752 va_start (al, default_label);
753 offset = (default_label != NULL);
754 for (i = 0; i < nlabels; i++)
755 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
756 va_end (al);
758 return p;
762 /* Build a GIMPLE_SWITCH statement.
764 INDEX is the switch's index.
765 DEFAULT_LABEL is the default label
766 ARGS is a vector of labels excluding the default. */
768 gimple
769 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
771 unsigned i, offset, nlabels = VEC_length (tree, args);
772 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
774 /* Copy the labels from the vector to the switch statement. */
775 offset = (default_label != NULL);
776 for (i = 0; i < nlabels; i++)
777 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
779 return p;
782 /* Build a GIMPLE_EH_DISPATCH statement. */
784 gimple
785 gimple_build_eh_dispatch (int region)
787 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
788 p->gimple_eh_ctrl.region = region;
789 return p;
792 /* Build a new GIMPLE_DEBUG_BIND statement.
794 VAR is bound to VALUE; block and location are taken from STMT. */
796 gimple
797 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
799 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
800 (unsigned)GIMPLE_DEBUG_BIND, 2
801 PASS_MEM_STAT);
803 gimple_debug_bind_set_var (p, var);
804 gimple_debug_bind_set_value (p, value);
805 if (stmt)
807 gimple_set_block (p, gimple_block (stmt));
808 gimple_set_location (p, gimple_location (stmt));
811 return p;
815 /* Build a GIMPLE_OMP_CRITICAL statement.
817 BODY is the sequence of statements for which only one thread can execute.
818 NAME is optional identifier for this critical block. */
820 gimple
821 gimple_build_omp_critical (gimple_seq body, tree name)
823 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
824 gimple_omp_critical_set_name (p, name);
825 if (body)
826 gimple_omp_set_body (p, body);
828 return p;
831 /* Build a GIMPLE_OMP_FOR statement.
833 BODY is sequence of statements inside the for loop.
834 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
835 lastprivate, reductions, ordered, schedule, and nowait.
836 COLLAPSE is the collapse count.
837 PRE_BODY is the sequence of statements that are loop invariant. */
839 gimple
840 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
841 gimple_seq pre_body)
843 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
844 if (body)
845 gimple_omp_set_body (p, body);
846 gimple_omp_for_set_clauses (p, clauses);
847 p->gimple_omp_for.collapse = collapse;
848 p->gimple_omp_for.iter
849 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
850 if (pre_body)
851 gimple_omp_for_set_pre_body (p, pre_body);
853 return p;
857 /* Build a GIMPLE_OMP_PARALLEL statement.
859 BODY is sequence of statements which are executed in parallel.
860 CLAUSES, are the OMP parallel construct's clauses.
861 CHILD_FN is the function created for the parallel threads to execute.
862 DATA_ARG are the shared data argument(s). */
864 gimple
865 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
866 tree data_arg)
868 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
869 if (body)
870 gimple_omp_set_body (p, body);
871 gimple_omp_parallel_set_clauses (p, clauses);
872 gimple_omp_parallel_set_child_fn (p, child_fn);
873 gimple_omp_parallel_set_data_arg (p, data_arg);
875 return p;
879 /* Build a GIMPLE_OMP_TASK statement.
881 BODY is sequence of statements which are executed by the explicit task.
882 CLAUSES, are the OMP parallel construct's clauses.
883 CHILD_FN is the function created for the parallel threads to execute.
884 DATA_ARG are the shared data argument(s).
885 COPY_FN is the optional function for firstprivate initialization.
886 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
888 gimple
889 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
890 tree data_arg, tree copy_fn, tree arg_size,
891 tree arg_align)
893 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
894 if (body)
895 gimple_omp_set_body (p, body);
896 gimple_omp_task_set_clauses (p, clauses);
897 gimple_omp_task_set_child_fn (p, child_fn);
898 gimple_omp_task_set_data_arg (p, data_arg);
899 gimple_omp_task_set_copy_fn (p, copy_fn);
900 gimple_omp_task_set_arg_size (p, arg_size);
901 gimple_omp_task_set_arg_align (p, arg_align);
903 return p;
907 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
909 BODY is the sequence of statements in the section. */
911 gimple
912 gimple_build_omp_section (gimple_seq body)
914 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
915 if (body)
916 gimple_omp_set_body (p, body);
918 return p;
922 /* Build a GIMPLE_OMP_MASTER statement.
924 BODY is the sequence of statements to be executed by just the master. */
926 gimple
927 gimple_build_omp_master (gimple_seq body)
929 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
930 if (body)
931 gimple_omp_set_body (p, body);
933 return p;
937 /* Build a GIMPLE_OMP_CONTINUE statement.
939 CONTROL_DEF is the definition of the control variable.
940 CONTROL_USE is the use of the control variable. */
942 gimple
943 gimple_build_omp_continue (tree control_def, tree control_use)
945 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
946 gimple_omp_continue_set_control_def (p, control_def);
947 gimple_omp_continue_set_control_use (p, control_use);
948 return p;
951 /* Build a GIMPLE_OMP_ORDERED statement.
953 BODY is the sequence of statements inside a loop that will executed in
954 sequence. */
956 gimple
957 gimple_build_omp_ordered (gimple_seq body)
959 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
960 if (body)
961 gimple_omp_set_body (p, body);
963 return p;
967 /* Build a GIMPLE_OMP_RETURN statement.
968 WAIT_P is true if this is a non-waiting return. */
970 gimple
971 gimple_build_omp_return (bool wait_p)
973 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
974 if (wait_p)
975 gimple_omp_return_set_nowait (p);
977 return p;
981 /* Build a GIMPLE_OMP_SECTIONS statement.
983 BODY is a sequence of section statements.
984 CLAUSES are any of the OMP sections contsruct's clauses: private,
985 firstprivate, lastprivate, reduction, and nowait. */
987 gimple
988 gimple_build_omp_sections (gimple_seq body, tree clauses)
990 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
991 if (body)
992 gimple_omp_set_body (p, body);
993 gimple_omp_sections_set_clauses (p, clauses);
995 return p;
999 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1001 gimple
1002 gimple_build_omp_sections_switch (void)
1004 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1008 /* Build a GIMPLE_OMP_SINGLE statement.
1010 BODY is the sequence of statements that will be executed once.
1011 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1012 copyprivate, nowait. */
1014 gimple
1015 gimple_build_omp_single (gimple_seq body, tree clauses)
1017 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1018 if (body)
1019 gimple_omp_set_body (p, body);
1020 gimple_omp_single_set_clauses (p, clauses);
1022 return p;
1026 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1028 gimple
1029 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1031 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1032 gimple_omp_atomic_load_set_lhs (p, lhs);
1033 gimple_omp_atomic_load_set_rhs (p, rhs);
1034 return p;
1037 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1039 VAL is the value we are storing. */
1041 gimple
1042 gimple_build_omp_atomic_store (tree val)
1044 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1045 gimple_omp_atomic_store_set_val (p, val);
1046 return p;
1049 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1050 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1052 gimple
1053 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1055 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1056 /* Ensure all the predictors fit into the lower bits of the subcode. */
1057 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1058 gimple_predict_set_predictor (p, predictor);
1059 gimple_predict_set_outcome (p, outcome);
1060 return p;
1063 #if defined ENABLE_GIMPLE_CHECKING
1064 /* Complain of a gimple type mismatch and die. */
1066 void
1067 gimple_check_failed (const_gimple gs, const char *file, int line,
1068 const char *function, enum gimple_code code,
1069 enum tree_code subcode)
1071 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1072 gimple_code_name[code],
1073 tree_code_name[subcode],
1074 gimple_code_name[gimple_code (gs)],
1075 gs->gsbase.subcode > 0
1076 ? tree_code_name[gs->gsbase.subcode]
1077 : "",
1078 function, trim_filename (file), line);
1080 #endif /* ENABLE_GIMPLE_CHECKING */
1083 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1084 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1085 instead. */
1087 gimple_seq
1088 gimple_seq_alloc (void)
1090 gimple_seq seq = gimple_seq_cache;
1091 if (seq)
1093 gimple_seq_cache = gimple_seq_cache->next_free;
1094 gcc_assert (gimple_seq_cache != seq);
1095 memset (seq, 0, sizeof (*seq));
1097 else
1099 seq = ggc_alloc_cleared_gimple_seq_d ();
1100 #ifdef GATHER_STATISTICS
1101 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1102 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1103 #endif
1106 return seq;
1109 /* Return SEQ to the free pool of GIMPLE sequences. */
1111 void
1112 gimple_seq_free (gimple_seq seq)
1114 if (seq == NULL)
1115 return;
1117 gcc_assert (gimple_seq_first (seq) == NULL);
1118 gcc_assert (gimple_seq_last (seq) == NULL);
1120 /* If this triggers, it's a sign that the same list is being freed
1121 twice. */
1122 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1124 /* Add SEQ to the pool of free sequences. */
1125 seq->next_free = gimple_seq_cache;
1126 gimple_seq_cache = seq;
1130 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1131 *SEQ_P is NULL, a new sequence is allocated. */
1133 void
1134 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1136 gimple_stmt_iterator si;
1138 if (gs == NULL)
1139 return;
1141 if (*seq_p == NULL)
1142 *seq_p = gimple_seq_alloc ();
1144 si = gsi_last (*seq_p);
1145 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1149 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1150 NULL, a new sequence is allocated. */
1152 void
1153 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1155 gimple_stmt_iterator si;
1157 if (src == NULL)
1158 return;
1160 if (*dst_p == NULL)
1161 *dst_p = gimple_seq_alloc ();
1163 si = gsi_last (*dst_p);
1164 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1168 /* Helper function of empty_body_p. Return true if STMT is an empty
1169 statement. */
1171 static bool
1172 empty_stmt_p (gimple stmt)
1174 if (gimple_code (stmt) == GIMPLE_NOP)
1175 return true;
1176 if (gimple_code (stmt) == GIMPLE_BIND)
1177 return empty_body_p (gimple_bind_body (stmt));
1178 return false;
1182 /* Return true if BODY contains nothing but empty statements. */
1184 bool
1185 empty_body_p (gimple_seq body)
1187 gimple_stmt_iterator i;
1189 if (gimple_seq_empty_p (body))
1190 return true;
1191 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1192 if (!empty_stmt_p (gsi_stmt (i))
1193 && !is_gimple_debug (gsi_stmt (i)))
1194 return false;
1196 return true;
1200 /* Perform a deep copy of sequence SRC and return the result. */
1202 gimple_seq
1203 gimple_seq_copy (gimple_seq src)
1205 gimple_stmt_iterator gsi;
1206 gimple_seq new_seq = gimple_seq_alloc ();
1207 gimple stmt;
1209 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1211 stmt = gimple_copy (gsi_stmt (gsi));
1212 gimple_seq_add_stmt (&new_seq, stmt);
1215 return new_seq;
1219 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1220 on each one. WI is as in walk_gimple_stmt.
1222 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1223 value is stored in WI->CALLBACK_RESULT and the statement that
1224 produced the value is returned.
1226 Otherwise, all the statements are walked and NULL returned. */
1228 gimple
1229 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1230 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1232 gimple_stmt_iterator gsi;
1234 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1236 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1237 if (ret)
1239 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1240 to hold it. */
1241 gcc_assert (wi);
1242 wi->callback_result = ret;
1243 return gsi_stmt (gsi);
1247 if (wi)
1248 wi->callback_result = NULL_TREE;
1250 return NULL;
1254 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1256 static tree
1257 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1258 struct walk_stmt_info *wi)
1260 tree ret, op;
1261 unsigned noutputs;
1262 const char **oconstraints;
1263 unsigned i, n;
1264 const char *constraint;
1265 bool allows_mem, allows_reg, is_inout;
1267 noutputs = gimple_asm_noutputs (stmt);
1268 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1270 if (wi)
1271 wi->is_lhs = true;
1273 for (i = 0; i < noutputs; i++)
1275 op = gimple_asm_output_op (stmt, i);
1276 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1277 oconstraints[i] = constraint;
1278 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1279 &is_inout);
1280 if (wi)
1281 wi->val_only = (allows_reg || !allows_mem);
1282 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1283 if (ret)
1284 return ret;
1287 n = gimple_asm_ninputs (stmt);
1288 for (i = 0; i < n; i++)
1290 op = gimple_asm_input_op (stmt, i);
1291 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1292 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1293 oconstraints, &allows_mem, &allows_reg);
1294 if (wi)
1296 wi->val_only = (allows_reg || !allows_mem);
1297 /* Although input "m" is not really a LHS, we need a lvalue. */
1298 wi->is_lhs = !wi->val_only;
1300 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1301 if (ret)
1302 return ret;
1305 if (wi)
1307 wi->is_lhs = false;
1308 wi->val_only = true;
1311 n = gimple_asm_nlabels (stmt);
1312 for (i = 0; i < n; i++)
1314 op = gimple_asm_label_op (stmt, i);
1315 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1316 if (ret)
1317 return ret;
1320 return NULL_TREE;
1324 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1325 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1327 CALLBACK_OP is called on each operand of STMT via walk_tree.
1328 Additional parameters to walk_tree must be stored in WI. For each operand
1329 OP, walk_tree is called as:
1331 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1333 If CALLBACK_OP returns non-NULL for an operand, the remaining
1334 operands are not scanned.
1336 The return value is that returned by the last call to walk_tree, or
1337 NULL_TREE if no CALLBACK_OP is specified. */
1339 tree
1340 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1341 struct walk_stmt_info *wi)
1343 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1344 unsigned i;
1345 tree ret = NULL_TREE;
1347 switch (gimple_code (stmt))
1349 case GIMPLE_ASSIGN:
1350 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1351 is a register variable, we may use a COMPONENT_REF on the RHS. */
1352 if (wi)
1354 tree lhs = gimple_assign_lhs (stmt);
1355 wi->val_only
1356 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1357 || !gimple_assign_single_p (stmt);
1360 for (i = 1; i < gimple_num_ops (stmt); i++)
1362 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1363 pset);
1364 if (ret)
1365 return ret;
1368 /* Walk the LHS. If the RHS is appropriate for a memory, we
1369 may use a COMPONENT_REF on the LHS. */
1370 if (wi)
1372 /* If the RHS has more than 1 operand, it is not appropriate
1373 for the memory. */
1374 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1375 || !gimple_assign_single_p (stmt);
1376 wi->is_lhs = true;
1379 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1380 if (ret)
1381 return ret;
1383 if (wi)
1385 wi->val_only = true;
1386 wi->is_lhs = false;
1388 break;
1390 case GIMPLE_CALL:
1391 if (wi)
1393 wi->is_lhs = false;
1394 wi->val_only = true;
1397 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1398 if (ret)
1399 return ret;
1401 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1402 if (ret)
1403 return ret;
1405 for (i = 0; i < gimple_call_num_args (stmt); i++)
1407 if (wi)
1408 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1409 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1410 pset);
1411 if (ret)
1412 return ret;
1415 if (gimple_call_lhs (stmt))
1417 if (wi)
1419 wi->is_lhs = true;
1420 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1423 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1424 if (ret)
1425 return ret;
1428 if (wi)
1430 wi->is_lhs = false;
1431 wi->val_only = true;
1433 break;
1435 case GIMPLE_CATCH:
1436 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1437 pset);
1438 if (ret)
1439 return ret;
1440 break;
1442 case GIMPLE_EH_FILTER:
1443 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1444 pset);
1445 if (ret)
1446 return ret;
1447 break;
1449 case GIMPLE_ASM:
1450 ret = walk_gimple_asm (stmt, callback_op, wi);
1451 if (ret)
1452 return ret;
1453 break;
1455 case GIMPLE_OMP_CONTINUE:
1456 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1457 callback_op, wi, pset);
1458 if (ret)
1459 return ret;
1461 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1462 callback_op, wi, pset);
1463 if (ret)
1464 return ret;
1465 break;
1467 case GIMPLE_OMP_CRITICAL:
1468 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1469 pset);
1470 if (ret)
1471 return ret;
1472 break;
1474 case GIMPLE_OMP_FOR:
1475 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1476 pset);
1477 if (ret)
1478 return ret;
1479 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1481 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1482 wi, pset);
1483 if (ret)
1484 return ret;
1485 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1486 wi, pset);
1487 if (ret)
1488 return ret;
1489 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1490 wi, pset);
1491 if (ret)
1492 return ret;
1493 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1494 wi, pset);
1496 if (ret)
1497 return ret;
1498 break;
1500 case GIMPLE_OMP_PARALLEL:
1501 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1502 wi, pset);
1503 if (ret)
1504 return ret;
1505 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1506 wi, pset);
1507 if (ret)
1508 return ret;
1509 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1510 wi, pset);
1511 if (ret)
1512 return ret;
1513 break;
1515 case GIMPLE_OMP_TASK:
1516 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1517 wi, pset);
1518 if (ret)
1519 return ret;
1520 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1521 wi, pset);
1522 if (ret)
1523 return ret;
1524 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1525 wi, pset);
1526 if (ret)
1527 return ret;
1528 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1529 wi, pset);
1530 if (ret)
1531 return ret;
1532 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1533 wi, pset);
1534 if (ret)
1535 return ret;
1536 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1537 wi, pset);
1538 if (ret)
1539 return ret;
1540 break;
1542 case GIMPLE_OMP_SECTIONS:
1543 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1544 wi, pset);
1545 if (ret)
1546 return ret;
1548 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1549 wi, pset);
1550 if (ret)
1551 return ret;
1553 break;
1555 case GIMPLE_OMP_SINGLE:
1556 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1557 pset);
1558 if (ret)
1559 return ret;
1560 break;
1562 case GIMPLE_OMP_ATOMIC_LOAD:
1563 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1564 pset);
1565 if (ret)
1566 return ret;
1568 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1569 pset);
1570 if (ret)
1571 return ret;
1572 break;
1574 case GIMPLE_OMP_ATOMIC_STORE:
1575 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1576 wi, pset);
1577 if (ret)
1578 return ret;
1579 break;
1581 /* Tuples that do not have operands. */
1582 case GIMPLE_NOP:
1583 case GIMPLE_RESX:
1584 case GIMPLE_OMP_RETURN:
1585 case GIMPLE_PREDICT:
1586 break;
1588 default:
1590 enum gimple_statement_structure_enum gss;
1591 gss = gimple_statement_structure (stmt);
1592 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1593 for (i = 0; i < gimple_num_ops (stmt); i++)
1595 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1596 if (ret)
1597 return ret;
1600 break;
1603 return NULL_TREE;
1607 /* Walk the current statement in GSI (optionally using traversal state
1608 stored in WI). If WI is NULL, no state is kept during traversal.
1609 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1610 that it has handled all the operands of the statement, its return
1611 value is returned. Otherwise, the return value from CALLBACK_STMT
1612 is discarded and its operands are scanned.
1614 If CALLBACK_STMT is NULL or it didn't handle the operands,
1615 CALLBACK_OP is called on each operand of the statement via
1616 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1617 operand, the remaining operands are not scanned. In this case, the
1618 return value from CALLBACK_OP is returned.
1620 In any other case, NULL_TREE is returned. */
1622 tree
1623 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1624 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1626 gimple ret;
1627 tree tree_ret;
1628 gimple stmt = gsi_stmt (*gsi);
1630 if (wi)
1631 wi->gsi = *gsi;
1633 if (wi && wi->want_locations && gimple_has_location (stmt))
1634 input_location = gimple_location (stmt);
1636 ret = NULL;
1638 /* Invoke the statement callback. Return if the callback handled
1639 all of STMT operands by itself. */
1640 if (callback_stmt)
1642 bool handled_ops = false;
1643 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1644 if (handled_ops)
1645 return tree_ret;
1647 /* If CALLBACK_STMT did not handle operands, it should not have
1648 a value to return. */
1649 gcc_assert (tree_ret == NULL);
1651 /* Re-read stmt in case the callback changed it. */
1652 stmt = gsi_stmt (*gsi);
1655 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1656 if (callback_op)
1658 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1659 if (tree_ret)
1660 return tree_ret;
1663 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1664 switch (gimple_code (stmt))
1666 case GIMPLE_BIND:
1667 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1668 callback_op, wi);
1669 if (ret)
1670 return wi->callback_result;
1671 break;
1673 case GIMPLE_CATCH:
1674 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1675 callback_op, wi);
1676 if (ret)
1677 return wi->callback_result;
1678 break;
1680 case GIMPLE_EH_FILTER:
1681 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1682 callback_op, wi);
1683 if (ret)
1684 return wi->callback_result;
1685 break;
1687 case GIMPLE_TRY:
1688 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1689 wi);
1690 if (ret)
1691 return wi->callback_result;
1693 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1694 callback_op, wi);
1695 if (ret)
1696 return wi->callback_result;
1697 break;
1699 case GIMPLE_OMP_FOR:
1700 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1701 callback_op, wi);
1702 if (ret)
1703 return wi->callback_result;
1705 /* FALL THROUGH. */
1706 case GIMPLE_OMP_CRITICAL:
1707 case GIMPLE_OMP_MASTER:
1708 case GIMPLE_OMP_ORDERED:
1709 case GIMPLE_OMP_SECTION:
1710 case GIMPLE_OMP_PARALLEL:
1711 case GIMPLE_OMP_TASK:
1712 case GIMPLE_OMP_SECTIONS:
1713 case GIMPLE_OMP_SINGLE:
1714 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1715 wi);
1716 if (ret)
1717 return wi->callback_result;
1718 break;
1720 case GIMPLE_WITH_CLEANUP_EXPR:
1721 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1722 callback_op, wi);
1723 if (ret)
1724 return wi->callback_result;
1725 break;
1727 default:
1728 gcc_assert (!gimple_has_substatements (stmt));
1729 break;
1732 return NULL;
1736 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1738 void
1739 gimple_set_body (tree fndecl, gimple_seq seq)
1741 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1742 if (fn == NULL)
1744 /* If FNDECL still does not have a function structure associated
1745 with it, then it does not make sense for it to receive a
1746 GIMPLE body. */
1747 gcc_assert (seq == NULL);
1749 else
1750 fn->gimple_body = seq;
1754 /* Return the body of GIMPLE statements for function FN. After the
1755 CFG pass, the function body doesn't exist anymore because it has
1756 been split up into basic blocks. In this case, it returns
1757 NULL. */
1759 gimple_seq
1760 gimple_body (tree fndecl)
1762 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1763 return fn ? fn->gimple_body : NULL;
1766 /* Return true when FNDECL has Gimple body either in unlowered
1767 or CFG form. */
1768 bool
1769 gimple_has_body_p (tree fndecl)
1771 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1772 return (gimple_body (fndecl) || (fn && fn->cfg));
1775 /* Detect flags from a GIMPLE_CALL. This is just like
1776 call_expr_flags, but for gimple tuples. */
1779 gimple_call_flags (const_gimple stmt)
1781 int flags;
1782 tree decl = gimple_call_fndecl (stmt);
1784 if (decl)
1785 flags = flags_from_decl_or_type (decl);
1786 else
1787 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1789 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1790 flags |= ECF_NOTHROW;
1792 return flags;
1795 /* Detects argument flags for argument number ARG on call STMT. */
1798 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1800 tree type = gimple_call_fntype (stmt);
1801 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1802 if (!attr)
1803 return 0;
1805 attr = TREE_VALUE (TREE_VALUE (attr));
1806 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1807 return 0;
1809 switch (TREE_STRING_POINTER (attr)[1 + arg])
1811 case 'x':
1812 case 'X':
1813 return EAF_UNUSED;
1815 case 'R':
1816 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1818 case 'r':
1819 return EAF_NOCLOBBER | EAF_NOESCAPE;
1821 case 'W':
1822 return EAF_DIRECT | EAF_NOESCAPE;
1824 case 'w':
1825 return EAF_NOESCAPE;
1827 case '.':
1828 default:
1829 return 0;
1833 /* Detects return flags for the call STMT. */
1836 gimple_call_return_flags (const_gimple stmt)
1838 tree type;
1839 tree attr = NULL_TREE;
1841 if (gimple_call_flags (stmt) & ECF_MALLOC)
1842 return ERF_NOALIAS;
1844 type = gimple_call_fntype (stmt);
1845 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1846 if (!attr)
1847 return 0;
1849 attr = TREE_VALUE (TREE_VALUE (attr));
1850 if (TREE_STRING_LENGTH (attr) < 1)
1851 return 0;
1853 switch (TREE_STRING_POINTER (attr)[0])
1855 case '1':
1856 case '2':
1857 case '3':
1858 case '4':
1859 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1861 case 'm':
1862 return ERF_NOALIAS;
1864 case '.':
1865 default:
1866 return 0;
1871 /* Return true if GS is a copy assignment. */
1873 bool
1874 gimple_assign_copy_p (gimple gs)
1876 return (gimple_assign_single_p (gs)
1877 && is_gimple_val (gimple_op (gs, 1)));
1881 /* Return true if GS is a SSA_NAME copy assignment. */
1883 bool
1884 gimple_assign_ssa_name_copy_p (gimple gs)
1886 return (gimple_assign_single_p (gs)
1887 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1888 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1892 /* Return true if GS is an assignment with a unary RHS, but the
1893 operator has no effect on the assigned value. The logic is adapted
1894 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1895 instances in which STRIP_NOPS was previously applied to the RHS of
1896 an assignment.
1898 NOTE: In the use cases that led to the creation of this function
1899 and of gimple_assign_single_p, it is typical to test for either
1900 condition and to proceed in the same manner. In each case, the
1901 assigned value is represented by the single RHS operand of the
1902 assignment. I suspect there may be cases where gimple_assign_copy_p,
1903 gimple_assign_single_p, or equivalent logic is used where a similar
1904 treatment of unary NOPs is appropriate. */
1906 bool
1907 gimple_assign_unary_nop_p (gimple gs)
1909 return (is_gimple_assign (gs)
1910 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1911 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1912 && gimple_assign_rhs1 (gs) != error_mark_node
1913 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1914 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1917 /* Set BB to be the basic block holding G. */
1919 void
1920 gimple_set_bb (gimple stmt, basic_block bb)
1922 stmt->gsbase.bb = bb;
1924 /* If the statement is a label, add the label to block-to-labels map
1925 so that we can speed up edge creation for GIMPLE_GOTOs. */
1926 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1928 tree t;
1929 int uid;
1931 t = gimple_label_label (stmt);
1932 uid = LABEL_DECL_UID (t);
1933 if (uid == -1)
1935 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1936 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1937 if (old_len <= (unsigned) uid)
1939 unsigned new_len = 3 * uid / 2 + 1;
1941 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1942 new_len);
1946 VEC_replace (basic_block, label_to_block_map, uid, bb);
1951 /* Modify the RHS of the assignment pointed-to by GSI using the
1952 operands in the expression tree EXPR.
1954 NOTE: The statement pointed-to by GSI may be reallocated if it
1955 did not have enough operand slots.
1957 This function is useful to convert an existing tree expression into
1958 the flat representation used for the RHS of a GIMPLE assignment.
1959 It will reallocate memory as needed to expand or shrink the number
1960 of operand slots needed to represent EXPR.
1962 NOTE: If you find yourself building a tree and then calling this
1963 function, you are most certainly doing it the slow way. It is much
1964 better to build a new assignment or to use the function
1965 gimple_assign_set_rhs_with_ops, which does not require an
1966 expression tree to be built. */
1968 void
1969 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1971 enum tree_code subcode;
1972 tree op1, op2, op3;
1974 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1975 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1979 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1980 operands OP1, OP2 and OP3.
1982 NOTE: The statement pointed-to by GSI may be reallocated if it
1983 did not have enough operand slots. */
1985 void
1986 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
1987 tree op1, tree op2, tree op3)
1989 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1990 gimple stmt = gsi_stmt (*gsi);
1992 /* If the new CODE needs more operands, allocate a new statement. */
1993 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1995 tree lhs = gimple_assign_lhs (stmt);
1996 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1997 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1998 gsi_replace (gsi, new_stmt, true);
1999 stmt = new_stmt;
2001 /* The LHS needs to be reset as this also changes the SSA name
2002 on the LHS. */
2003 gimple_assign_set_lhs (stmt, lhs);
2006 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2007 gimple_set_subcode (stmt, code);
2008 gimple_assign_set_rhs1 (stmt, op1);
2009 if (new_rhs_ops > 1)
2010 gimple_assign_set_rhs2 (stmt, op2);
2011 if (new_rhs_ops > 2)
2012 gimple_assign_set_rhs3 (stmt, op3);
2016 /* Return the LHS of a statement that performs an assignment,
2017 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2018 for a call to a function that returns no value, or for a
2019 statement other than an assignment or a call. */
2021 tree
2022 gimple_get_lhs (const_gimple stmt)
2024 enum gimple_code code = gimple_code (stmt);
2026 if (code == GIMPLE_ASSIGN)
2027 return gimple_assign_lhs (stmt);
2028 else if (code == GIMPLE_CALL)
2029 return gimple_call_lhs (stmt);
2030 else
2031 return NULL_TREE;
2035 /* Set the LHS of a statement that performs an assignment,
2036 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2038 void
2039 gimple_set_lhs (gimple stmt, tree lhs)
2041 enum gimple_code code = gimple_code (stmt);
2043 if (code == GIMPLE_ASSIGN)
2044 gimple_assign_set_lhs (stmt, lhs);
2045 else if (code == GIMPLE_CALL)
2046 gimple_call_set_lhs (stmt, lhs);
2047 else
2048 gcc_unreachable();
2051 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2052 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2053 expression with a different value.
2055 This will update any annotations (say debug bind stmts) referring
2056 to the original LHS, so that they use the RHS instead. This is
2057 done even if NLHS and LHS are the same, for it is understood that
2058 the RHS will be modified afterwards, and NLHS will not be assigned
2059 an equivalent value.
2061 Adjusting any non-annotation uses of the LHS, if needed, is a
2062 responsibility of the caller.
2064 The effect of this call should be pretty much the same as that of
2065 inserting a copy of STMT before STMT, and then removing the
2066 original stmt, at which time gsi_remove() would have update
2067 annotations, but using this function saves all the inserting,
2068 copying and removing. */
2070 void
2071 gimple_replace_lhs (gimple stmt, tree nlhs)
2073 if (MAY_HAVE_DEBUG_STMTS)
2075 tree lhs = gimple_get_lhs (stmt);
2077 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2079 insert_debug_temp_for_var_def (NULL, lhs);
2082 gimple_set_lhs (stmt, nlhs);
2085 /* Return a deep copy of statement STMT. All the operands from STMT
2086 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2087 and VUSE operand arrays are set to empty in the new copy. */
2089 gimple
2090 gimple_copy (gimple stmt)
2092 enum gimple_code code = gimple_code (stmt);
2093 unsigned num_ops = gimple_num_ops (stmt);
2094 gimple copy = gimple_alloc (code, num_ops);
2095 unsigned i;
2097 /* Shallow copy all the fields from STMT. */
2098 memcpy (copy, stmt, gimple_size (code));
2100 /* If STMT has sub-statements, deep-copy them as well. */
2101 if (gimple_has_substatements (stmt))
2103 gimple_seq new_seq;
2104 tree t;
2106 switch (gimple_code (stmt))
2108 case GIMPLE_BIND:
2109 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2110 gimple_bind_set_body (copy, new_seq);
2111 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2112 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2113 break;
2115 case GIMPLE_CATCH:
2116 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2117 gimple_catch_set_handler (copy, new_seq);
2118 t = unshare_expr (gimple_catch_types (stmt));
2119 gimple_catch_set_types (copy, t);
2120 break;
2122 case GIMPLE_EH_FILTER:
2123 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2124 gimple_eh_filter_set_failure (copy, new_seq);
2125 t = unshare_expr (gimple_eh_filter_types (stmt));
2126 gimple_eh_filter_set_types (copy, t);
2127 break;
2129 case GIMPLE_TRY:
2130 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2131 gimple_try_set_eval (copy, new_seq);
2132 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2133 gimple_try_set_cleanup (copy, new_seq);
2134 break;
2136 case GIMPLE_OMP_FOR:
2137 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2138 gimple_omp_for_set_pre_body (copy, new_seq);
2139 t = unshare_expr (gimple_omp_for_clauses (stmt));
2140 gimple_omp_for_set_clauses (copy, t);
2141 copy->gimple_omp_for.iter
2142 = ggc_alloc_vec_gimple_omp_for_iter
2143 (gimple_omp_for_collapse (stmt));
2144 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2146 gimple_omp_for_set_cond (copy, i,
2147 gimple_omp_for_cond (stmt, i));
2148 gimple_omp_for_set_index (copy, i,
2149 gimple_omp_for_index (stmt, i));
2150 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2151 gimple_omp_for_set_initial (copy, i, t);
2152 t = unshare_expr (gimple_omp_for_final (stmt, i));
2153 gimple_omp_for_set_final (copy, i, t);
2154 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2155 gimple_omp_for_set_incr (copy, i, t);
2157 goto copy_omp_body;
2159 case GIMPLE_OMP_PARALLEL:
2160 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2161 gimple_omp_parallel_set_clauses (copy, t);
2162 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2163 gimple_omp_parallel_set_child_fn (copy, t);
2164 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2165 gimple_omp_parallel_set_data_arg (copy, t);
2166 goto copy_omp_body;
2168 case GIMPLE_OMP_TASK:
2169 t = unshare_expr (gimple_omp_task_clauses (stmt));
2170 gimple_omp_task_set_clauses (copy, t);
2171 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2172 gimple_omp_task_set_child_fn (copy, t);
2173 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2174 gimple_omp_task_set_data_arg (copy, t);
2175 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2176 gimple_omp_task_set_copy_fn (copy, t);
2177 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2178 gimple_omp_task_set_arg_size (copy, t);
2179 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2180 gimple_omp_task_set_arg_align (copy, t);
2181 goto copy_omp_body;
2183 case GIMPLE_OMP_CRITICAL:
2184 t = unshare_expr (gimple_omp_critical_name (stmt));
2185 gimple_omp_critical_set_name (copy, t);
2186 goto copy_omp_body;
2188 case GIMPLE_OMP_SECTIONS:
2189 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2190 gimple_omp_sections_set_clauses (copy, t);
2191 t = unshare_expr (gimple_omp_sections_control (stmt));
2192 gimple_omp_sections_set_control (copy, t);
2193 /* FALLTHRU */
2195 case GIMPLE_OMP_SINGLE:
2196 case GIMPLE_OMP_SECTION:
2197 case GIMPLE_OMP_MASTER:
2198 case GIMPLE_OMP_ORDERED:
2199 copy_omp_body:
2200 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2201 gimple_omp_set_body (copy, new_seq);
2202 break;
2204 case GIMPLE_WITH_CLEANUP_EXPR:
2205 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2206 gimple_wce_set_cleanup (copy, new_seq);
2207 break;
2209 default:
2210 gcc_unreachable ();
2214 /* Make copy of operands. */
2215 if (num_ops > 0)
2217 for (i = 0; i < num_ops; i++)
2218 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2220 /* Clear out SSA operand vectors on COPY. */
2221 if (gimple_has_ops (stmt))
2223 gimple_set_def_ops (copy, NULL);
2224 gimple_set_use_ops (copy, NULL);
2227 if (gimple_has_mem_ops (stmt))
2229 gimple_set_vdef (copy, gimple_vdef (stmt));
2230 gimple_set_vuse (copy, gimple_vuse (stmt));
2233 /* SSA operands need to be updated. */
2234 gimple_set_modified (copy, true);
2237 return copy;
2241 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2242 a MODIFIED field. */
2244 void
2245 gimple_set_modified (gimple s, bool modifiedp)
2247 if (gimple_has_ops (s))
2248 s->gsbase.modified = (unsigned) modifiedp;
2252 /* Return true if statement S has side-effects. We consider a
2253 statement to have side effects if:
2255 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2256 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2258 bool
2259 gimple_has_side_effects (const_gimple s)
2261 unsigned i;
2263 if (is_gimple_debug (s))
2264 return false;
2266 /* We don't have to scan the arguments to check for
2267 volatile arguments, though, at present, we still
2268 do a scan to check for TREE_SIDE_EFFECTS. */
2269 if (gimple_has_volatile_ops (s))
2270 return true;
2272 if (is_gimple_call (s))
2274 unsigned nargs = gimple_call_num_args (s);
2276 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2277 return true;
2278 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2279 /* An infinite loop is considered a side effect. */
2280 return true;
2282 if (gimple_call_lhs (s)
2283 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2285 gcc_assert (gimple_has_volatile_ops (s));
2286 return true;
2289 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2290 return true;
2292 for (i = 0; i < nargs; i++)
2293 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2295 gcc_assert (gimple_has_volatile_ops (s));
2296 return true;
2299 return false;
2301 else
2303 for (i = 0; i < gimple_num_ops (s); i++)
2304 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2306 gcc_assert (gimple_has_volatile_ops (s));
2307 return true;
2311 return false;
2314 /* Return true if the RHS of statement S has side effects.
2315 We may use it to determine if it is admissable to replace
2316 an assignment or call with a copy of a previously-computed
2317 value. In such cases, side-effects due the the LHS are
2318 preserved. */
2320 bool
2321 gimple_rhs_has_side_effects (const_gimple s)
2323 unsigned i;
2325 if (is_gimple_call (s))
2327 unsigned nargs = gimple_call_num_args (s);
2329 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2330 return true;
2332 /* We cannot use gimple_has_volatile_ops here,
2333 because we must ignore a volatile LHS. */
2334 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2335 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2337 gcc_assert (gimple_has_volatile_ops (s));
2338 return true;
2341 for (i = 0; i < nargs; i++)
2342 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2343 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2344 return true;
2346 return false;
2348 else if (is_gimple_assign (s))
2350 /* Skip the first operand, the LHS. */
2351 for (i = 1; i < gimple_num_ops (s); i++)
2352 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2353 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2355 gcc_assert (gimple_has_volatile_ops (s));
2356 return true;
2359 else if (is_gimple_debug (s))
2360 return false;
2361 else
2363 /* For statements without an LHS, examine all arguments. */
2364 for (i = 0; i < gimple_num_ops (s); i++)
2365 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2366 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2368 gcc_assert (gimple_has_volatile_ops (s));
2369 return true;
2373 return false;
2376 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2377 Return true if S can trap. When INCLUDE_MEM is true, check whether
2378 the memory operations could trap. When INCLUDE_STORES is true and
2379 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2381 bool
2382 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2384 tree t, div = NULL_TREE;
2385 enum tree_code op;
2387 if (include_mem)
2389 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2391 for (i = start; i < gimple_num_ops (s); i++)
2392 if (tree_could_trap_p (gimple_op (s, i)))
2393 return true;
2396 switch (gimple_code (s))
2398 case GIMPLE_ASM:
2399 return gimple_asm_volatile_p (s);
2401 case GIMPLE_CALL:
2402 t = gimple_call_fndecl (s);
2403 /* Assume that calls to weak functions may trap. */
2404 if (!t || !DECL_P (t) || DECL_WEAK (t))
2405 return true;
2406 return false;
2408 case GIMPLE_ASSIGN:
2409 t = gimple_expr_type (s);
2410 op = gimple_assign_rhs_code (s);
2411 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2412 div = gimple_assign_rhs2 (s);
2413 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2414 (INTEGRAL_TYPE_P (t)
2415 && TYPE_OVERFLOW_TRAPS (t)),
2416 div));
2418 default:
2419 break;
2422 return false;
2425 /* Return true if statement S can trap. */
2427 bool
2428 gimple_could_trap_p (gimple s)
2430 return gimple_could_trap_p_1 (s, true, true);
2433 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2435 bool
2436 gimple_assign_rhs_could_trap_p (gimple s)
2438 gcc_assert (is_gimple_assign (s));
2439 return gimple_could_trap_p_1 (s, true, false);
2443 /* Print debugging information for gimple stmts generated. */
2445 void
2446 dump_gimple_statistics (void)
2448 #ifdef GATHER_STATISTICS
2449 int i, total_tuples = 0, total_bytes = 0;
2451 fprintf (stderr, "\nGIMPLE statements\n");
2452 fprintf (stderr, "Kind Stmts Bytes\n");
2453 fprintf (stderr, "---------------------------------------\n");
2454 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2456 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2457 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2458 total_tuples += gimple_alloc_counts[i];
2459 total_bytes += gimple_alloc_sizes[i];
2461 fprintf (stderr, "---------------------------------------\n");
2462 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2463 fprintf (stderr, "---------------------------------------\n");
2464 #else
2465 fprintf (stderr, "No gimple statistics\n");
2466 #endif
2470 /* Return the number of operands needed on the RHS of a GIMPLE
2471 assignment for an expression with tree code CODE. */
2473 unsigned
2474 get_gimple_rhs_num_ops (enum tree_code code)
2476 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2478 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2479 return 1;
2480 else if (rhs_class == GIMPLE_BINARY_RHS)
2481 return 2;
2482 else if (rhs_class == GIMPLE_TERNARY_RHS)
2483 return 3;
2484 else
2485 gcc_unreachable ();
2488 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2489 (unsigned char) \
2490 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2491 : ((TYPE) == tcc_binary \
2492 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2493 : ((TYPE) == tcc_constant \
2494 || (TYPE) == tcc_declaration \
2495 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2496 : ((SYM) == TRUTH_AND_EXPR \
2497 || (SYM) == TRUTH_OR_EXPR \
2498 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2499 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2500 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2501 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2502 || (SYM) == DOT_PROD_EXPR \
2503 || (SYM) == REALIGN_LOAD_EXPR \
2504 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2505 : ((SYM) == COND_EXPR \
2506 || (SYM) == CONSTRUCTOR \
2507 || (SYM) == OBJ_TYPE_REF \
2508 || (SYM) == ASSERT_EXPR \
2509 || (SYM) == ADDR_EXPR \
2510 || (SYM) == WITH_SIZE_EXPR \
2511 || (SYM) == SSA_NAME \
2512 || (SYM) == VEC_COND_EXPR) ? GIMPLE_SINGLE_RHS \
2513 : GIMPLE_INVALID_RHS),
2514 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2516 const unsigned char gimple_rhs_class_table[] = {
2517 #include "all-tree.def"
2520 #undef DEFTREECODE
2521 #undef END_OF_BASE_TREE_CODES
2523 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2525 /* Validation of GIMPLE expressions. */
2527 /* Returns true iff T is a valid RHS for an assignment to a renamed
2528 user -- or front-end generated artificial -- variable. */
2530 bool
2531 is_gimple_reg_rhs (tree t)
2533 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2536 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2537 LHS, or for a call argument. */
2539 bool
2540 is_gimple_mem_rhs (tree t)
2542 /* If we're dealing with a renamable type, either source or dest must be
2543 a renamed variable. */
2544 if (is_gimple_reg_type (TREE_TYPE (t)))
2545 return is_gimple_val (t);
2546 else
2547 return is_gimple_val (t) || is_gimple_lvalue (t);
2550 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2552 bool
2553 is_gimple_lvalue (tree t)
2555 return (is_gimple_addressable (t)
2556 || TREE_CODE (t) == WITH_SIZE_EXPR
2557 /* These are complex lvalues, but don't have addresses, so they
2558 go here. */
2559 || TREE_CODE (t) == BIT_FIELD_REF);
2562 /* Return true if T is a GIMPLE condition. */
2564 bool
2565 is_gimple_condexpr (tree t)
2567 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2568 && !tree_could_throw_p (t)
2569 && is_gimple_val (TREE_OPERAND (t, 0))
2570 && is_gimple_val (TREE_OPERAND (t, 1))));
2573 /* Return true if T is something whose address can be taken. */
2575 bool
2576 is_gimple_addressable (tree t)
2578 return (is_gimple_id (t) || handled_component_p (t)
2579 || TREE_CODE (t) == MEM_REF);
2582 /* Return true if T is a valid gimple constant. */
2584 bool
2585 is_gimple_constant (const_tree t)
2587 switch (TREE_CODE (t))
2589 case INTEGER_CST:
2590 case REAL_CST:
2591 case FIXED_CST:
2592 case STRING_CST:
2593 case COMPLEX_CST:
2594 case VECTOR_CST:
2595 return true;
2597 /* Vector constant constructors are gimple invariant. */
2598 case CONSTRUCTOR:
2599 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2600 return TREE_CONSTANT (t);
2601 else
2602 return false;
2604 default:
2605 return false;
2609 /* Return true if T is a gimple address. */
2611 bool
2612 is_gimple_address (const_tree t)
2614 tree op;
2616 if (TREE_CODE (t) != ADDR_EXPR)
2617 return false;
2619 op = TREE_OPERAND (t, 0);
2620 while (handled_component_p (op))
2622 if ((TREE_CODE (op) == ARRAY_REF
2623 || TREE_CODE (op) == ARRAY_RANGE_REF)
2624 && !is_gimple_val (TREE_OPERAND (op, 1)))
2625 return false;
2627 op = TREE_OPERAND (op, 0);
2630 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2631 return true;
2633 switch (TREE_CODE (op))
2635 case PARM_DECL:
2636 case RESULT_DECL:
2637 case LABEL_DECL:
2638 case FUNCTION_DECL:
2639 case VAR_DECL:
2640 case CONST_DECL:
2641 return true;
2643 default:
2644 return false;
2648 /* Strip out all handled components that produce invariant
2649 offsets. */
2651 static const_tree
2652 strip_invariant_refs (const_tree op)
2654 while (handled_component_p (op))
2656 switch (TREE_CODE (op))
2658 case ARRAY_REF:
2659 case ARRAY_RANGE_REF:
2660 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2661 || TREE_OPERAND (op, 2) != NULL_TREE
2662 || TREE_OPERAND (op, 3) != NULL_TREE)
2663 return NULL;
2664 break;
2666 case COMPONENT_REF:
2667 if (TREE_OPERAND (op, 2) != NULL_TREE)
2668 return NULL;
2669 break;
2671 default:;
2673 op = TREE_OPERAND (op, 0);
2676 return op;
2679 /* Return true if T is a gimple invariant address. */
2681 bool
2682 is_gimple_invariant_address (const_tree t)
2684 const_tree op;
2686 if (TREE_CODE (t) != ADDR_EXPR)
2687 return false;
2689 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2690 if (!op)
2691 return false;
2693 if (TREE_CODE (op) == MEM_REF)
2695 const_tree op0 = TREE_OPERAND (op, 0);
2696 return (TREE_CODE (op0) == ADDR_EXPR
2697 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2698 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2701 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2704 /* Return true if T is a gimple invariant address at IPA level
2705 (so addresses of variables on stack are not allowed). */
2707 bool
2708 is_gimple_ip_invariant_address (const_tree t)
2710 const_tree op;
2712 if (TREE_CODE (t) != ADDR_EXPR)
2713 return false;
2715 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2717 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2720 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2721 form of function invariant. */
2723 bool
2724 is_gimple_min_invariant (const_tree t)
2726 if (TREE_CODE (t) == ADDR_EXPR)
2727 return is_gimple_invariant_address (t);
2729 return is_gimple_constant (t);
2732 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2733 form of gimple minimal invariant. */
2735 bool
2736 is_gimple_ip_invariant (const_tree t)
2738 if (TREE_CODE (t) == ADDR_EXPR)
2739 return is_gimple_ip_invariant_address (t);
2741 return is_gimple_constant (t);
2744 /* Return true if T looks like a valid GIMPLE statement. */
2746 bool
2747 is_gimple_stmt (tree t)
2749 const enum tree_code code = TREE_CODE (t);
2751 switch (code)
2753 case NOP_EXPR:
2754 /* The only valid NOP_EXPR is the empty statement. */
2755 return IS_EMPTY_STMT (t);
2757 case BIND_EXPR:
2758 case COND_EXPR:
2759 /* These are only valid if they're void. */
2760 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2762 case SWITCH_EXPR:
2763 case GOTO_EXPR:
2764 case RETURN_EXPR:
2765 case LABEL_EXPR:
2766 case CASE_LABEL_EXPR:
2767 case TRY_CATCH_EXPR:
2768 case TRY_FINALLY_EXPR:
2769 case EH_FILTER_EXPR:
2770 case CATCH_EXPR:
2771 case ASM_EXPR:
2772 case STATEMENT_LIST:
2773 case OMP_PARALLEL:
2774 case OMP_FOR:
2775 case OMP_SECTIONS:
2776 case OMP_SECTION:
2777 case OMP_SINGLE:
2778 case OMP_MASTER:
2779 case OMP_ORDERED:
2780 case OMP_CRITICAL:
2781 case OMP_TASK:
2782 /* These are always void. */
2783 return true;
2785 case CALL_EXPR:
2786 case MODIFY_EXPR:
2787 case PREDICT_EXPR:
2788 /* These are valid regardless of their type. */
2789 return true;
2791 default:
2792 return false;
2796 /* Return true if T is a variable. */
2798 bool
2799 is_gimple_variable (tree t)
2801 return (TREE_CODE (t) == VAR_DECL
2802 || TREE_CODE (t) == PARM_DECL
2803 || TREE_CODE (t) == RESULT_DECL
2804 || TREE_CODE (t) == SSA_NAME);
2807 /* Return true if T is a GIMPLE identifier (something with an address). */
2809 bool
2810 is_gimple_id (tree t)
2812 return (is_gimple_variable (t)
2813 || TREE_CODE (t) == FUNCTION_DECL
2814 || TREE_CODE (t) == LABEL_DECL
2815 || TREE_CODE (t) == CONST_DECL
2816 /* Allow string constants, since they are addressable. */
2817 || TREE_CODE (t) == STRING_CST);
2820 /* Return true if TYPE is a suitable type for a scalar register variable. */
2822 bool
2823 is_gimple_reg_type (tree type)
2825 return !AGGREGATE_TYPE_P (type);
2828 /* Return true if T is a non-aggregate register variable. */
2830 bool
2831 is_gimple_reg (tree t)
2833 if (TREE_CODE (t) == SSA_NAME)
2834 t = SSA_NAME_VAR (t);
2836 if (!is_gimple_variable (t))
2837 return false;
2839 if (!is_gimple_reg_type (TREE_TYPE (t)))
2840 return false;
2842 /* A volatile decl is not acceptable because we can't reuse it as
2843 needed. We need to copy it into a temp first. */
2844 if (TREE_THIS_VOLATILE (t))
2845 return false;
2847 /* We define "registers" as things that can be renamed as needed,
2848 which with our infrastructure does not apply to memory. */
2849 if (needs_to_live_in_memory (t))
2850 return false;
2852 /* Hard register variables are an interesting case. For those that
2853 are call-clobbered, we don't know where all the calls are, since
2854 we don't (want to) take into account which operations will turn
2855 into libcalls at the rtl level. For those that are call-saved,
2856 we don't currently model the fact that calls may in fact change
2857 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2858 level, and so miss variable changes that might imply. All around,
2859 it seems safest to not do too much optimization with these at the
2860 tree level at all. We'll have to rely on the rtl optimizers to
2861 clean this up, as there we've got all the appropriate bits exposed. */
2862 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2863 return false;
2865 /* Complex and vector values must have been put into SSA-like form.
2866 That is, no assignments to the individual components. */
2867 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2868 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2869 return DECL_GIMPLE_REG_P (t);
2871 return true;
2875 /* Return true if T is a GIMPLE variable whose address is not needed. */
2877 bool
2878 is_gimple_non_addressable (tree t)
2880 if (TREE_CODE (t) == SSA_NAME)
2881 t = SSA_NAME_VAR (t);
2883 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2886 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2888 bool
2889 is_gimple_val (tree t)
2891 /* Make loads from volatiles and memory vars explicit. */
2892 if (is_gimple_variable (t)
2893 && is_gimple_reg_type (TREE_TYPE (t))
2894 && !is_gimple_reg (t))
2895 return false;
2897 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2900 /* Similarly, but accept hard registers as inputs to asm statements. */
2902 bool
2903 is_gimple_asm_val (tree t)
2905 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2906 return true;
2908 return is_gimple_val (t);
2911 /* Return true if T is a GIMPLE minimal lvalue. */
2913 bool
2914 is_gimple_min_lval (tree t)
2916 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2917 return false;
2918 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2921 /* Return true if T is a valid function operand of a CALL_EXPR. */
2923 bool
2924 is_gimple_call_addr (tree t)
2926 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2929 /* Return true if T is a valid address operand of a MEM_REF. */
2931 bool
2932 is_gimple_mem_ref_addr (tree t)
2934 return (is_gimple_reg (t)
2935 || TREE_CODE (t) == INTEGER_CST
2936 || (TREE_CODE (t) == ADDR_EXPR
2937 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2938 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2941 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2942 Otherwise, return NULL_TREE. */
2944 tree
2945 get_call_expr_in (tree t)
2947 if (TREE_CODE (t) == MODIFY_EXPR)
2948 t = TREE_OPERAND (t, 1);
2949 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2950 t = TREE_OPERAND (t, 0);
2951 if (TREE_CODE (t) == CALL_EXPR)
2952 return t;
2953 return NULL_TREE;
2957 /* Given a memory reference expression T, return its base address.
2958 The base address of a memory reference expression is the main
2959 object being referenced. For instance, the base address for
2960 'array[i].fld[j]' is 'array'. You can think of this as stripping
2961 away the offset part from a memory address.
2963 This function calls handled_component_p to strip away all the inner
2964 parts of the memory reference until it reaches the base object. */
2966 tree
2967 get_base_address (tree t)
2969 while (handled_component_p (t))
2970 t = TREE_OPERAND (t, 0);
2972 if ((TREE_CODE (t) == MEM_REF
2973 || TREE_CODE (t) == TARGET_MEM_REF)
2974 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
2975 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
2977 if (TREE_CODE (t) == SSA_NAME
2978 || DECL_P (t)
2979 || TREE_CODE (t) == STRING_CST
2980 || TREE_CODE (t) == CONSTRUCTOR
2981 || INDIRECT_REF_P (t)
2982 || TREE_CODE (t) == MEM_REF
2983 || TREE_CODE (t) == TARGET_MEM_REF)
2984 return t;
2985 else
2986 return NULL_TREE;
2989 void
2990 recalculate_side_effects (tree t)
2992 enum tree_code code = TREE_CODE (t);
2993 int len = TREE_OPERAND_LENGTH (t);
2994 int i;
2996 switch (TREE_CODE_CLASS (code))
2998 case tcc_expression:
2999 switch (code)
3001 case INIT_EXPR:
3002 case MODIFY_EXPR:
3003 case VA_ARG_EXPR:
3004 case PREDECREMENT_EXPR:
3005 case PREINCREMENT_EXPR:
3006 case POSTDECREMENT_EXPR:
3007 case POSTINCREMENT_EXPR:
3008 /* All of these have side-effects, no matter what their
3009 operands are. */
3010 return;
3012 default:
3013 break;
3015 /* Fall through. */
3017 case tcc_comparison: /* a comparison expression */
3018 case tcc_unary: /* a unary arithmetic expression */
3019 case tcc_binary: /* a binary arithmetic expression */
3020 case tcc_reference: /* a reference */
3021 case tcc_vl_exp: /* a function call */
3022 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3023 for (i = 0; i < len; ++i)
3025 tree op = TREE_OPERAND (t, i);
3026 if (op && TREE_SIDE_EFFECTS (op))
3027 TREE_SIDE_EFFECTS (t) = 1;
3029 break;
3031 case tcc_constant:
3032 /* No side-effects. */
3033 return;
3035 default:
3036 gcc_unreachable ();
3040 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3041 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3042 we failed to create one. */
3044 tree
3045 canonicalize_cond_expr_cond (tree t)
3047 /* Strip conversions around boolean operations. */
3048 if (CONVERT_EXPR_P (t)
3049 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3050 t = TREE_OPERAND (t, 0);
3052 /* For (bool)x use x != 0. */
3053 if (CONVERT_EXPR_P (t)
3054 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3056 tree top0 = TREE_OPERAND (t, 0);
3057 t = build2 (NE_EXPR, TREE_TYPE (t),
3058 top0, build_int_cst (TREE_TYPE (top0), 0));
3060 /* For !x use x == 0. */
3061 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3063 tree top0 = TREE_OPERAND (t, 0);
3064 t = build2 (EQ_EXPR, TREE_TYPE (t),
3065 top0, build_int_cst (TREE_TYPE (top0), 0));
3067 /* For cmp ? 1 : 0 use cmp. */
3068 else if (TREE_CODE (t) == COND_EXPR
3069 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3070 && integer_onep (TREE_OPERAND (t, 1))
3071 && integer_zerop (TREE_OPERAND (t, 2)))
3073 tree top0 = TREE_OPERAND (t, 0);
3074 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3075 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3078 if (is_gimple_condexpr (t))
3079 return t;
3081 return NULL_TREE;
3084 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3085 the positions marked by the set ARGS_TO_SKIP. */
3087 gimple
3088 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3090 int i;
3091 tree fn = gimple_call_fn (stmt);
3092 int nargs = gimple_call_num_args (stmt);
3093 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3094 gimple new_stmt;
3096 for (i = 0; i < nargs; i++)
3097 if (!bitmap_bit_p (args_to_skip, i))
3098 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3100 new_stmt = gimple_build_call_vec (fn, vargs);
3101 VEC_free (tree, heap, vargs);
3102 if (gimple_call_lhs (stmt))
3103 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3105 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3106 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3108 gimple_set_block (new_stmt, gimple_block (stmt));
3109 if (gimple_has_location (stmt))
3110 gimple_set_location (new_stmt, gimple_location (stmt));
3111 gimple_call_copy_flags (new_stmt, stmt);
3112 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3114 gimple_set_modified (new_stmt, true);
3116 return new_stmt;
3120 static hashval_t gimple_type_hash_1 (const void *, enum gtc_mode);
3122 /* Structure used to maintain a cache of some type pairs compared by
3123 gimple_types_compatible_p when comparing aggregate types. There are
3124 three possible values for SAME_P:
3126 -2: The pair (T1, T2) has just been inserted in the table.
3127 0: T1 and T2 are different types.
3128 1: T1 and T2 are the same type.
3130 The two elements in the SAME_P array are indexed by the comparison
3131 mode gtc_mode. */
3133 struct type_pair_d
3135 unsigned int uid1;
3136 unsigned int uid2;
3137 signed char same_p[2];
3139 typedef struct type_pair_d *type_pair_t;
3141 DEF_VEC_P(type_pair_t);
3142 DEF_VEC_ALLOC_P(type_pair_t,heap);
3144 /* Return a hash value for the type pair pointed-to by P. */
3146 static hashval_t
3147 type_pair_hash (const void *p)
3149 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3150 hashval_t val1 = pair->uid1;
3151 hashval_t val2 = pair->uid2;
3152 return (iterative_hash_hashval_t (val2, val1)
3153 ^ iterative_hash_hashval_t (val1, val2));
3156 /* Compare two type pairs pointed-to by P1 and P2. */
3158 static int
3159 type_pair_eq (const void *p1, const void *p2)
3161 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3162 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3163 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3164 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3167 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3168 entry if none existed. */
3170 static type_pair_t
3171 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3173 struct type_pair_d pair;
3174 type_pair_t p;
3175 void **slot;
3177 if (*visited_p == NULL)
3179 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3180 gcc_obstack_init (ob_p);
3183 pair.uid1 = TYPE_UID (t1);
3184 pair.uid2 = TYPE_UID (t2);
3185 slot = htab_find_slot (*visited_p, &pair, INSERT);
3187 if (*slot)
3188 p = *((type_pair_t *) slot);
3189 else
3191 p = XOBNEW (ob_p, struct type_pair_d);
3192 p->uid1 = TYPE_UID (t1);
3193 p->uid2 = TYPE_UID (t2);
3194 p->same_p[0] = -2;
3195 p->same_p[1] = -2;
3196 *slot = (void *) p;
3199 return p;
3202 /* Per pointer state for the SCC finding. The on_sccstack flag
3203 is not strictly required, it is true when there is no hash value
3204 recorded for the type and false otherwise. But querying that
3205 is slower. */
3207 struct sccs
3209 unsigned int dfsnum;
3210 unsigned int low;
3211 bool on_sccstack;
3212 union {
3213 hashval_t hash;
3214 signed char same_p;
3215 } u;
3218 static unsigned int next_dfs_num;
3219 static unsigned int gtc_next_dfs_num;
3222 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3224 typedef struct GTY(()) gimple_type_leader_entry_s {
3225 tree type;
3226 tree leader;
3227 } gimple_type_leader_entry;
3229 #define GIMPLE_TYPE_LEADER_SIZE 16381
3230 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3231 gimple_type_leader_entry *gimple_type_leader;
3233 /* Lookup an existing leader for T and return it or NULL_TREE, if
3234 there is none in the cache. */
3236 static tree
3237 gimple_lookup_type_leader (tree t)
3239 gimple_type_leader_entry *leader;
3241 if (!gimple_type_leader)
3242 return NULL_TREE;
3244 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3245 if (leader->type != t)
3246 return NULL_TREE;
3248 return leader->leader;
3251 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3252 true then if any type has no name return false, otherwise return
3253 true if both types have no names. */
3255 static bool
3256 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3258 tree name1 = TYPE_NAME (t1);
3259 tree name2 = TYPE_NAME (t2);
3261 /* Consider anonymous types all unique for completion. */
3262 if (for_completion_p
3263 && (!name1 || !name2))
3264 return false;
3266 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3268 name1 = DECL_NAME (name1);
3269 if (for_completion_p
3270 && !name1)
3271 return false;
3273 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3275 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3277 name2 = DECL_NAME (name2);
3278 if (for_completion_p
3279 && !name2)
3280 return false;
3282 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3284 /* Identifiers can be compared with pointer equality rather
3285 than a string comparison. */
3286 if (name1 == name2)
3287 return true;
3289 return false;
3292 /* Return true if the field decls F1 and F2 are at the same offset.
3294 This is intended to be used on GIMPLE types only. */
3296 bool
3297 gimple_compare_field_offset (tree f1, tree f2)
3299 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3301 tree offset1 = DECL_FIELD_OFFSET (f1);
3302 tree offset2 = DECL_FIELD_OFFSET (f2);
3303 return ((offset1 == offset2
3304 /* Once gimplification is done, self-referential offsets are
3305 instantiated as operand #2 of the COMPONENT_REF built for
3306 each access and reset. Therefore, they are not relevant
3307 anymore and fields are interchangeable provided that they
3308 represent the same access. */
3309 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3310 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3311 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3312 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3313 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3314 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3315 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3316 || operand_equal_p (offset1, offset2, 0))
3317 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3318 DECL_FIELD_BIT_OFFSET (f2)));
3321 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3322 should be, so handle differing ones specially by decomposing
3323 the offset into a byte and bit offset manually. */
3324 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3325 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3327 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3328 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3329 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3330 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3331 + bit_offset1 / BITS_PER_UNIT);
3332 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3333 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3334 + bit_offset2 / BITS_PER_UNIT);
3335 if (byte_offset1 != byte_offset2)
3336 return false;
3337 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3340 return false;
3343 /* If the type T1 and the type T2 are a complete and an incomplete
3344 variant of the same type return true. */
3346 static bool
3347 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3349 /* If one pointer points to an incomplete type variant of
3350 the other pointed-to type they are the same. */
3351 if (TREE_CODE (t1) == TREE_CODE (t2)
3352 && RECORD_OR_UNION_TYPE_P (t1)
3353 && (!COMPLETE_TYPE_P (t1)
3354 || !COMPLETE_TYPE_P (t2))
3355 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3356 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3357 TYPE_MAIN_VARIANT (t2), true))
3358 return true;
3359 return false;
3362 static bool
3363 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3364 VEC(type_pair_t, heap) **,
3365 struct pointer_map_t *, struct obstack *);
3367 /* DFS visit the edge from the callers type pair with state *STATE to
3368 the pair T1, T2 while operating in FOR_MERGING_P mode.
3369 Update the merging status if it is not part of the SCC containing the
3370 callers pair and return it.
3371 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3373 static bool
3374 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3375 struct sccs *state,
3376 VEC(type_pair_t, heap) **sccstack,
3377 struct pointer_map_t *sccstate,
3378 struct obstack *sccstate_obstack)
3380 struct sccs *cstate = NULL;
3381 type_pair_t p;
3382 void **slot;
3384 /* Check first for the obvious case of pointer identity. */
3385 if (t1 == t2)
3386 return true;
3388 /* Check that we have two types to compare. */
3389 if (t1 == NULL_TREE || t2 == NULL_TREE)
3390 return false;
3392 /* If the types have been previously registered and found equal
3393 they still are. */
3394 if (mode == GTC_MERGE)
3396 tree leader1 = gimple_lookup_type_leader (t1);
3397 tree leader2 = gimple_lookup_type_leader (t2);
3398 if (leader1 == t2
3399 || t1 == leader2
3400 || (leader1 && leader1 == leader2))
3401 return true;
3403 else if (mode == GTC_DIAG)
3405 if (TYPE_CANONICAL (t1)
3406 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3407 return true;
3410 /* Can't be the same type if the types don't have the same code. */
3411 if (TREE_CODE (t1) != TREE_CODE (t2))
3412 return false;
3414 /* Can't be the same type if they have different CV qualifiers. */
3415 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3416 return false;
3418 /* Void types are always the same. */
3419 if (TREE_CODE (t1) == VOID_TYPE)
3420 return true;
3422 /* Do some simple checks before doing three hashtable queries. */
3423 if (INTEGRAL_TYPE_P (t1)
3424 || SCALAR_FLOAT_TYPE_P (t1)
3425 || FIXED_POINT_TYPE_P (t1)
3426 || TREE_CODE (t1) == VECTOR_TYPE
3427 || TREE_CODE (t1) == COMPLEX_TYPE
3428 || TREE_CODE (t1) == OFFSET_TYPE)
3430 /* Can't be the same type if they have different alignment,
3431 sign, precision or mode. */
3432 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3433 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3434 || TYPE_MODE (t1) != TYPE_MODE (t2)
3435 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3436 return false;
3438 if (TREE_CODE (t1) == INTEGER_TYPE
3439 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3440 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3441 return false;
3443 /* That's all we need to check for float and fixed-point types. */
3444 if (SCALAR_FLOAT_TYPE_P (t1)
3445 || FIXED_POINT_TYPE_P (t1))
3446 return true;
3448 /* For integral types fall thru to more complex checks. */
3451 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3453 /* Can't be the same type if they have different alignment or mode. */
3454 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3455 || TYPE_MODE (t1) != TYPE_MODE (t2))
3456 return false;
3459 /* If the hash values of t1 and t2 are different the types can't
3460 possibly be the same. This helps keeping the type-pair hashtable
3461 small, only tracking comparisons for hash collisions. */
3462 if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode))
3463 return false;
3465 /* Allocate a new cache entry for this comparison. */
3466 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3467 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3469 /* We have already decided whether T1 and T2 are the
3470 same, return the cached result. */
3471 return p->same_p[mode] == 1;
3474 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3475 cstate = (struct sccs *)*slot;
3476 /* Not yet visited. DFS recurse. */
3477 if (!cstate)
3479 gimple_types_compatible_p_1 (t1, t2, mode, p,
3480 sccstack, sccstate, sccstate_obstack);
3481 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3482 state->low = MIN (state->low, cstate->low);
3484 /* If the type is still on the SCC stack adjust the parents low. */
3485 if (cstate->dfsnum < state->dfsnum
3486 && cstate->on_sccstack)
3487 state->low = MIN (cstate->dfsnum, state->low);
3489 /* Return the current lattice value. We start with an equality
3490 assumption so types part of a SCC will be optimistically
3491 treated equal unless proven otherwise. */
3492 return cstate->u.same_p;
3495 /* Worker for gimple_types_compatible.
3496 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3498 static bool
3499 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3500 type_pair_t p,
3501 VEC(type_pair_t, heap) **sccstack,
3502 struct pointer_map_t *sccstate,
3503 struct obstack *sccstate_obstack)
3505 struct sccs *state;
3507 gcc_assert (p->same_p[mode] == -2);
3509 state = XOBNEW (sccstate_obstack, struct sccs);
3510 *pointer_map_insert (sccstate, p) = state;
3512 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3513 state->dfsnum = gtc_next_dfs_num++;
3514 state->low = state->dfsnum;
3515 state->on_sccstack = true;
3516 /* Start with an equality assumption. As we DFS recurse into child
3517 SCCs this assumption may get revisited. */
3518 state->u.same_p = 1;
3520 /* If their attributes are not the same they can't be the same type. */
3521 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3522 goto different_types;
3524 /* Do type-specific comparisons. */
3525 switch (TREE_CODE (t1))
3527 case VECTOR_TYPE:
3528 case COMPLEX_TYPE:
3529 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3530 state, sccstack, sccstate, sccstate_obstack))
3531 goto different_types;
3532 goto same_types;
3534 case ARRAY_TYPE:
3535 /* Array types are the same if the element types are the same and
3536 the number of elements are the same. */
3537 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3538 state, sccstack, sccstate, sccstate_obstack)
3539 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3540 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3541 goto different_types;
3542 else
3544 tree i1 = TYPE_DOMAIN (t1);
3545 tree i2 = TYPE_DOMAIN (t2);
3547 /* For an incomplete external array, the type domain can be
3548 NULL_TREE. Check this condition also. */
3549 if (i1 == NULL_TREE && i2 == NULL_TREE)
3550 goto same_types;
3551 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3552 goto different_types;
3553 /* If for a complete array type the possibly gimplified sizes
3554 are different the types are different. */
3555 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3556 || (TYPE_SIZE (i1)
3557 && TYPE_SIZE (i2)
3558 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3559 goto different_types;
3560 else
3562 tree min1 = TYPE_MIN_VALUE (i1);
3563 tree min2 = TYPE_MIN_VALUE (i2);
3564 tree max1 = TYPE_MAX_VALUE (i1);
3565 tree max2 = TYPE_MAX_VALUE (i2);
3567 /* The minimum/maximum values have to be the same. */
3568 if ((min1 == min2
3569 || (min1 && min2
3570 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3571 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3572 || operand_equal_p (min1, min2, 0))))
3573 && (max1 == max2
3574 || (max1 && max2
3575 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3576 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3577 || operand_equal_p (max1, max2, 0)))))
3578 goto same_types;
3579 else
3580 goto different_types;
3584 case METHOD_TYPE:
3585 /* Method types should belong to the same class. */
3586 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3587 mode, state, sccstack, sccstate, sccstate_obstack))
3588 goto different_types;
3590 /* Fallthru */
3592 case FUNCTION_TYPE:
3593 /* Function types are the same if the return type and arguments types
3594 are the same. */
3595 if ((mode != GTC_DIAG
3596 || !gimple_compatible_complete_and_incomplete_subtype_p
3597 (TREE_TYPE (t1), TREE_TYPE (t2)))
3598 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3599 state, sccstack, sccstate, sccstate_obstack))
3600 goto different_types;
3602 if (!comp_type_attributes (t1, t2))
3603 goto different_types;
3605 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3606 goto same_types;
3607 else
3609 tree parms1, parms2;
3611 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3612 parms1 && parms2;
3613 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3615 if ((mode == GTC_MERGE
3616 || !gimple_compatible_complete_and_incomplete_subtype_p
3617 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3618 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3619 state, sccstack, sccstate, sccstate_obstack))
3620 goto different_types;
3623 if (parms1 || parms2)
3624 goto different_types;
3626 goto same_types;
3629 case OFFSET_TYPE:
3631 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3632 state, sccstack, sccstate, sccstate_obstack)
3633 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3634 TYPE_OFFSET_BASETYPE (t2), mode,
3635 state, sccstack, sccstate, sccstate_obstack))
3636 goto different_types;
3638 goto same_types;
3641 case POINTER_TYPE:
3642 case REFERENCE_TYPE:
3644 /* If the two pointers have different ref-all attributes,
3645 they can't be the same type. */
3646 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3647 goto different_types;
3649 /* If one pointer points to an incomplete type variant of
3650 the other pointed-to type they are the same. */
3651 if (mode == GTC_DIAG
3652 && gimple_compatible_complete_and_incomplete_subtype_p
3653 (TREE_TYPE (t1), TREE_TYPE (t2)))
3654 goto same_types;
3656 /* Otherwise, pointer and reference types are the same if the
3657 pointed-to types are the same. */
3658 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3659 state, sccstack, sccstate, sccstate_obstack))
3660 goto same_types;
3662 goto different_types;
3665 case NULLPTR_TYPE:
3666 /* There is only one decltype(nullptr). */
3667 goto same_types;
3669 case INTEGER_TYPE:
3670 case BOOLEAN_TYPE:
3672 tree min1 = TYPE_MIN_VALUE (t1);
3673 tree max1 = TYPE_MAX_VALUE (t1);
3674 tree min2 = TYPE_MIN_VALUE (t2);
3675 tree max2 = TYPE_MAX_VALUE (t2);
3676 bool min_equal_p = false;
3677 bool max_equal_p = false;
3679 /* If either type has a minimum value, the other type must
3680 have the same. */
3681 if (min1 == NULL_TREE && min2 == NULL_TREE)
3682 min_equal_p = true;
3683 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3684 min_equal_p = true;
3686 /* Likewise, if either type has a maximum value, the other
3687 type must have the same. */
3688 if (max1 == NULL_TREE && max2 == NULL_TREE)
3689 max_equal_p = true;
3690 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3691 max_equal_p = true;
3693 if (!min_equal_p || !max_equal_p)
3694 goto different_types;
3696 goto same_types;
3699 case ENUMERAL_TYPE:
3701 /* FIXME lto, we cannot check bounds on enumeral types because
3702 different front ends will produce different values.
3703 In C, enumeral types are integers, while in C++ each element
3704 will have its own symbolic value. We should decide how enums
3705 are to be represented in GIMPLE and have each front end lower
3706 to that. */
3707 tree v1, v2;
3709 /* For enumeral types, all the values must be the same. */
3710 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3711 goto same_types;
3713 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3714 v1 && v2;
3715 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3717 tree c1 = TREE_VALUE (v1);
3718 tree c2 = TREE_VALUE (v2);
3720 if (TREE_CODE (c1) == CONST_DECL)
3721 c1 = DECL_INITIAL (c1);
3723 if (TREE_CODE (c2) == CONST_DECL)
3724 c2 = DECL_INITIAL (c2);
3726 if (tree_int_cst_equal (c1, c2) != 1)
3727 goto different_types;
3730 /* If one enumeration has more values than the other, they
3731 are not the same. */
3732 if (v1 || v2)
3733 goto different_types;
3735 goto same_types;
3738 case RECORD_TYPE:
3739 case UNION_TYPE:
3740 case QUAL_UNION_TYPE:
3742 tree f1, f2;
3744 /* The struct tags shall compare equal. */
3745 if (mode == GTC_MERGE
3746 && !compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3747 TYPE_MAIN_VARIANT (t2), false))
3748 goto different_types;
3750 /* For aggregate types, all the fields must be the same. */
3751 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3752 f1 && f2;
3753 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3755 /* The fields must have the same name, offset and type. */
3756 if ((mode == GTC_MERGE
3757 && DECL_NAME (f1) != DECL_NAME (f2))
3758 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3759 || !gimple_compare_field_offset (f1, f2)
3760 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3761 state, sccstack, sccstate, sccstate_obstack))
3762 goto different_types;
3765 /* If one aggregate has more fields than the other, they
3766 are not the same. */
3767 if (f1 || f2)
3768 goto different_types;
3770 goto same_types;
3773 default:
3774 gcc_unreachable ();
3777 /* Common exit path for types that are not compatible. */
3778 different_types:
3779 state->u.same_p = 0;
3780 goto pop;
3782 /* Common exit path for types that are compatible. */
3783 same_types:
3784 gcc_assert (state->u.same_p == 1);
3786 pop:
3787 if (state->low == state->dfsnum)
3789 type_pair_t x;
3791 /* Pop off the SCC and set its cache values to the final
3792 comparison result. */
3795 struct sccs *cstate;
3796 x = VEC_pop (type_pair_t, *sccstack);
3797 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3798 cstate->on_sccstack = false;
3799 x->same_p[mode] = state->u.same_p;
3801 while (x != p);
3804 return state->u.same_p;
3807 /* Return true iff T1 and T2 are structurally identical. When
3808 FOR_MERGING_P is true the an incomplete type and a complete type
3809 are considered different, otherwise they are considered compatible. */
3811 bool
3812 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3814 VEC(type_pair_t, heap) *sccstack = NULL;
3815 struct pointer_map_t *sccstate;
3816 struct obstack sccstate_obstack;
3817 type_pair_t p = NULL;
3818 bool res;
3820 /* Before starting to set up the SCC machinery handle simple cases. */
3822 /* Check first for the obvious case of pointer identity. */
3823 if (t1 == t2)
3824 return true;
3826 /* Check that we have two types to compare. */
3827 if (t1 == NULL_TREE || t2 == NULL_TREE)
3828 return false;
3830 /* If the types have been previously registered and found equal
3831 they still are. */
3832 if (mode == GTC_MERGE)
3834 tree leader1 = gimple_lookup_type_leader (t1);
3835 tree leader2 = gimple_lookup_type_leader (t2);
3836 if (leader1 == t2
3837 || t1 == leader2
3838 || (leader1 && leader1 == leader2))
3839 return true;
3841 else if (mode == GTC_DIAG)
3843 if (TYPE_CANONICAL (t1)
3844 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3845 return true;
3848 /* Can't be the same type if the types don't have the same code. */
3849 if (TREE_CODE (t1) != TREE_CODE (t2))
3850 return false;
3852 /* Can't be the same type if they have different CV qualifiers. */
3853 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3854 return false;
3856 /* Void types are always the same. */
3857 if (TREE_CODE (t1) == VOID_TYPE)
3858 return true;
3860 /* Do some simple checks before doing three hashtable queries. */
3861 if (INTEGRAL_TYPE_P (t1)
3862 || SCALAR_FLOAT_TYPE_P (t1)
3863 || FIXED_POINT_TYPE_P (t1)
3864 || TREE_CODE (t1) == VECTOR_TYPE
3865 || TREE_CODE (t1) == COMPLEX_TYPE
3866 || TREE_CODE (t1) == OFFSET_TYPE)
3868 /* Can't be the same type if they have different alignment,
3869 sign, precision or mode. */
3870 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3871 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3872 || TYPE_MODE (t1) != TYPE_MODE (t2)
3873 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3874 return false;
3876 if (TREE_CODE (t1) == INTEGER_TYPE
3877 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3878 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3879 return false;
3881 /* That's all we need to check for float and fixed-point types. */
3882 if (SCALAR_FLOAT_TYPE_P (t1)
3883 || FIXED_POINT_TYPE_P (t1))
3884 return true;
3886 /* For integral types fall thru to more complex checks. */
3889 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3891 /* Can't be the same type if they have different alignment or mode. */
3892 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3893 || TYPE_MODE (t1) != TYPE_MODE (t2))
3894 return false;
3897 /* If the hash values of t1 and t2 are different the types can't
3898 possibly be the same. This helps keeping the type-pair hashtable
3899 small, only tracking comparisons for hash collisions. */
3900 if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode))
3901 return false;
3903 /* If we've visited this type pair before (in the case of aggregates
3904 with self-referential types), and we made a decision, return it. */
3905 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3906 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3908 /* We have already decided whether T1 and T2 are the
3909 same, return the cached result. */
3910 return p->same_p[mode] == 1;
3913 /* Now set up the SCC machinery for the comparison. */
3914 gtc_next_dfs_num = 1;
3915 sccstate = pointer_map_create ();
3916 gcc_obstack_init (&sccstate_obstack);
3917 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3918 &sccstack, sccstate, &sccstate_obstack);
3919 VEC_free (type_pair_t, heap, sccstack);
3920 pointer_map_destroy (sccstate);
3921 obstack_free (&sccstate_obstack, NULL);
3923 return res;
3927 static hashval_t
3928 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3929 struct pointer_map_t *, struct obstack *,
3930 enum gtc_mode);
3932 /* DFS visit the edge from the callers type with state *STATE to T.
3933 Update the callers type hash V with the hash for T if it is not part
3934 of the SCC containing the callers type and return it.
3935 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3937 static hashval_t
3938 visit (tree t, struct sccs *state, hashval_t v,
3939 VEC (tree, heap) **sccstack,
3940 struct pointer_map_t *sccstate,
3941 struct obstack *sccstate_obstack, enum gtc_mode mode)
3943 struct sccs *cstate = NULL;
3944 struct tree_int_map m;
3945 void **slot;
3947 /* If there is a hash value recorded for this type then it can't
3948 possibly be part of our parent SCC. Simply mix in its hash. */
3949 m.base.from = t;
3950 if ((slot = htab_find_slot (mode == GTC_MERGE
3951 ? type_hash_cache : canonical_type_hash_cache,
3952 &m, NO_INSERT))
3953 && *slot)
3954 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3956 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3957 cstate = (struct sccs *)*slot;
3958 if (!cstate)
3960 hashval_t tem;
3961 /* Not yet visited. DFS recurse. */
3962 tem = iterative_hash_gimple_type (t, v,
3963 sccstack, sccstate, sccstate_obstack,
3964 mode);
3965 if (!cstate)
3966 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3967 state->low = MIN (state->low, cstate->low);
3968 /* If the type is no longer on the SCC stack and thus is not part
3969 of the parents SCC mix in its hash value. Otherwise we will
3970 ignore the type for hashing purposes and return the unaltered
3971 hash value. */
3972 if (!cstate->on_sccstack)
3973 return tem;
3975 if (cstate->dfsnum < state->dfsnum
3976 && cstate->on_sccstack)
3977 state->low = MIN (cstate->dfsnum, state->low);
3979 /* We are part of our parents SCC, skip this type during hashing
3980 and return the unaltered hash value. */
3981 return v;
3984 /* Hash NAME with the previous hash value V and return it. */
3986 static hashval_t
3987 iterative_hash_name (tree name, hashval_t v)
3989 if (!name)
3990 return v;
3991 if (TREE_CODE (name) == TYPE_DECL)
3992 name = DECL_NAME (name);
3993 if (!name)
3994 return v;
3995 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3996 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3999 /* Returning a hash value for gimple type TYPE combined with VAL.
4000 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4002 To hash a type we end up hashing in types that are reachable.
4003 Through pointers we can end up with cycles which messes up the
4004 required property that we need to compute the same hash value
4005 for structurally equivalent types. To avoid this we have to
4006 hash all types in a cycle (the SCC) in a commutative way. The
4007 easiest way is to not mix in the hashes of the SCC members at
4008 all. To make this work we have to delay setting the hash
4009 values of the SCC until it is complete. */
4011 static hashval_t
4012 iterative_hash_gimple_type (tree type, hashval_t val,
4013 VEC(tree, heap) **sccstack,
4014 struct pointer_map_t *sccstate,
4015 struct obstack *sccstate_obstack,
4016 enum gtc_mode mode)
4018 hashval_t v;
4019 void **slot;
4020 struct sccs *state;
4022 /* Not visited during this DFS walk. */
4023 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4024 state = XOBNEW (sccstate_obstack, struct sccs);
4025 *pointer_map_insert (sccstate, type) = state;
4027 VEC_safe_push (tree, heap, *sccstack, type);
4028 state->dfsnum = next_dfs_num++;
4029 state->low = state->dfsnum;
4030 state->on_sccstack = true;
4032 /* Combine a few common features of types so that types are grouped into
4033 smaller sets; when searching for existing matching types to merge,
4034 only existing types having the same features as the new type will be
4035 checked. */
4036 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4037 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4038 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4040 /* Do not hash the types size as this will cause differences in
4041 hash values for the complete vs. the incomplete type variant. */
4043 /* Incorporate common features of numerical types. */
4044 if (INTEGRAL_TYPE_P (type)
4045 || SCALAR_FLOAT_TYPE_P (type)
4046 || FIXED_POINT_TYPE_P (type))
4048 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4049 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4050 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4053 /* For pointer and reference types, fold in information about the type
4054 pointed to but do not recurse into possibly incomplete types to
4055 avoid hash differences for complete vs. incomplete types. */
4056 if (POINTER_TYPE_P (type))
4058 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4060 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4061 v = iterative_hash_name
4062 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4064 else
4065 v = visit (TREE_TYPE (type), state, v,
4066 sccstack, sccstate, sccstate_obstack, mode);
4069 /* For integer types hash the types min/max values and the string flag. */
4070 if (TREE_CODE (type) == INTEGER_TYPE)
4072 /* OMP lowering can introduce error_mark_node in place of
4073 random local decls in types. */
4074 if (TYPE_MIN_VALUE (type) != error_mark_node)
4075 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4076 if (TYPE_MAX_VALUE (type) != error_mark_node)
4077 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4078 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4081 /* For array types hash their domain and the string flag. */
4082 if (TREE_CODE (type) == ARRAY_TYPE
4083 && TYPE_DOMAIN (type))
4085 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4086 v = visit (TYPE_DOMAIN (type), state, v,
4087 sccstack, sccstate, sccstate_obstack, mode);
4090 /* Recurse for aggregates with a single element type. */
4091 if (TREE_CODE (type) == ARRAY_TYPE
4092 || TREE_CODE (type) == COMPLEX_TYPE
4093 || TREE_CODE (type) == VECTOR_TYPE)
4094 v = visit (TREE_TYPE (type), state, v,
4095 sccstack, sccstate, sccstate_obstack, mode);
4097 /* Incorporate function return and argument types. */
4098 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4100 unsigned na;
4101 tree p;
4103 /* For method types also incorporate their parent class. */
4104 if (TREE_CODE (type) == METHOD_TYPE)
4105 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4106 sccstack, sccstate, sccstate_obstack, mode);
4108 /* For result types allow mismatch in completeness. */
4109 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4111 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4112 v = iterative_hash_name
4113 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4115 else
4116 v = visit (TREE_TYPE (type), state, v,
4117 sccstack, sccstate, sccstate_obstack, mode);
4119 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4121 /* For argument types allow mismatch in completeness. */
4122 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4124 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4125 v = iterative_hash_name
4126 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4128 else
4129 v = visit (TREE_VALUE (p), state, v,
4130 sccstack, sccstate, sccstate_obstack, mode);
4131 na++;
4134 v = iterative_hash_hashval_t (na, v);
4137 if (TREE_CODE (type) == RECORD_TYPE
4138 || TREE_CODE (type) == UNION_TYPE
4139 || TREE_CODE (type) == QUAL_UNION_TYPE)
4141 unsigned nf;
4142 tree f;
4144 if (mode == GTC_MERGE)
4145 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4147 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4149 if (mode == GTC_MERGE)
4150 v = iterative_hash_name (DECL_NAME (f), v);
4151 v = visit (TREE_TYPE (f), state, v,
4152 sccstack, sccstate, sccstate_obstack, mode);
4153 nf++;
4156 v = iterative_hash_hashval_t (nf, v);
4159 /* Record hash for us. */
4160 state->u.hash = v;
4162 /* See if we found an SCC. */
4163 if (state->low == state->dfsnum)
4165 tree x;
4167 /* Pop off the SCC and set its hash values. */
4170 struct sccs *cstate;
4171 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4172 x = VEC_pop (tree, *sccstack);
4173 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4174 cstate->on_sccstack = false;
4175 m->base.from = x;
4176 m->to = cstate->u.hash;
4177 slot = htab_find_slot (mode == GTC_MERGE
4178 ? type_hash_cache : canonical_type_hash_cache,
4179 m, INSERT);
4180 gcc_assert (!*slot);
4181 *slot = (void *) m;
4183 while (x != type);
4186 return iterative_hash_hashval_t (v, val);
4190 /* Returns a hash value for P (assumed to be a type). The hash value
4191 is computed using some distinguishing features of the type. Note
4192 that we cannot use pointer hashing here as we may be dealing with
4193 two distinct instances of the same type.
4195 This function should produce the same hash value for two compatible
4196 types according to gimple_types_compatible_p. */
4198 static hashval_t
4199 gimple_type_hash_1 (const void *p, enum gtc_mode mode)
4201 const_tree t = (const_tree) p;
4202 VEC(tree, heap) *sccstack = NULL;
4203 struct pointer_map_t *sccstate;
4204 struct obstack sccstate_obstack;
4205 hashval_t val;
4206 void **slot;
4207 struct tree_int_map m;
4209 if (mode == GTC_MERGE
4210 && type_hash_cache == NULL)
4211 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4212 tree_int_map_eq, NULL);
4213 else if (mode == GTC_DIAG
4214 && canonical_type_hash_cache == NULL)
4215 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4216 tree_int_map_eq, NULL);
4218 m.base.from = CONST_CAST_TREE (t);
4219 if ((slot = htab_find_slot (mode == GTC_MERGE
4220 ? type_hash_cache : canonical_type_hash_cache,
4221 &m, NO_INSERT))
4222 && *slot)
4223 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4225 /* Perform a DFS walk and pre-hash all reachable types. */
4226 next_dfs_num = 1;
4227 sccstate = pointer_map_create ();
4228 gcc_obstack_init (&sccstate_obstack);
4229 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4230 &sccstack, sccstate, &sccstate_obstack,
4231 mode);
4232 VEC_free (tree, heap, sccstack);
4233 pointer_map_destroy (sccstate);
4234 obstack_free (&sccstate_obstack, NULL);
4236 return val;
4239 static hashval_t
4240 gimple_type_hash (const void *p)
4242 return gimple_type_hash_1 (p, GTC_MERGE);
4245 static hashval_t
4246 gimple_canonical_type_hash (const void *p)
4248 return gimple_type_hash_1 (p, GTC_DIAG);
4252 /* Returns nonzero if P1 and P2 are equal. */
4254 static int
4255 gimple_type_eq (const void *p1, const void *p2)
4257 const_tree t1 = (const_tree) p1;
4258 const_tree t2 = (const_tree) p2;
4259 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4260 CONST_CAST_TREE (t2), GTC_MERGE);
4264 /* Register type T in the global type table gimple_types.
4265 If another type T', compatible with T, already existed in
4266 gimple_types then return T', otherwise return T. This is used by
4267 LTO to merge identical types read from different TUs. */
4269 tree
4270 gimple_register_type (tree t)
4272 void **slot;
4273 gimple_type_leader_entry *leader;
4274 tree mv_leader = NULL_TREE;
4276 gcc_assert (TYPE_P (t));
4278 if (!gimple_type_leader)
4279 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4280 (GIMPLE_TYPE_LEADER_SIZE);
4281 /* If we registered this type before return the cached result. */
4282 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4283 if (leader->type == t)
4284 return leader->leader;
4286 /* Always register the main variant first. This is important so we
4287 pick up the non-typedef variants as canonical, otherwise we'll end
4288 up taking typedef ids for structure tags during comparison. */
4289 if (TYPE_MAIN_VARIANT (t) != t)
4290 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4292 if (gimple_types == NULL)
4293 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4295 slot = htab_find_slot (gimple_types, t, INSERT);
4296 if (*slot
4297 && *(tree *)slot != t)
4299 tree new_type = (tree) *((tree *) slot);
4301 /* Do not merge types with different addressability. */
4302 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4304 /* If t is not its main variant then make t unreachable from its
4305 main variant list. Otherwise we'd queue up a lot of duplicates
4306 there. */
4307 if (t != TYPE_MAIN_VARIANT (t))
4309 tree tem = TYPE_MAIN_VARIANT (t);
4310 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4311 tem = TYPE_NEXT_VARIANT (tem);
4312 if (tem)
4313 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4314 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4317 /* If we are a pointer then remove us from the pointer-to or
4318 reference-to chain. Otherwise we'd queue up a lot of duplicates
4319 there. */
4320 if (TREE_CODE (t) == POINTER_TYPE)
4322 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4323 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4324 else
4326 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4327 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4328 tem = TYPE_NEXT_PTR_TO (tem);
4329 if (tem)
4330 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4332 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4334 else if (TREE_CODE (t) == REFERENCE_TYPE)
4336 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4337 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4338 else
4340 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4341 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4342 tem = TYPE_NEXT_REF_TO (tem);
4343 if (tem)
4344 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4346 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4349 leader->type = t;
4350 leader->leader = new_type;
4351 t = new_type;
4353 else
4355 leader->type = t;
4356 leader->leader = t;
4357 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4358 if (TYPE_MAIN_VARIANT (t) != t
4359 && TYPE_MAIN_VARIANT (t) != mv_leader)
4361 /* Remove us from our main variant list as we are not the variant
4362 leader and the variant leader will change. */
4363 tree tem = TYPE_MAIN_VARIANT (t);
4364 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4365 tem = TYPE_NEXT_VARIANT (tem);
4366 if (tem)
4367 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4368 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4369 /* Adjust our main variant. Linking us into its variant list
4370 will happen at fixup time. */
4371 TYPE_MAIN_VARIANT (t) = mv_leader;
4373 *slot = (void *) t;
4376 return t;
4380 /* Returns nonzero if P1 and P2 are equal. */
4382 static int
4383 gimple_canonical_type_eq (const void *p1, const void *p2)
4385 const_tree t1 = (const_tree) p1;
4386 const_tree t2 = (const_tree) p2;
4387 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4388 CONST_CAST_TREE (t2), GTC_DIAG);
4391 /* Register type T in the global type table gimple_types.
4392 If another type T', compatible with T, already existed in
4393 gimple_types then return T', otherwise return T. This is used by
4394 LTO to merge identical types read from different TUs. */
4396 tree
4397 gimple_register_canonical_type (tree t)
4399 void **slot;
4400 tree orig_t = t;
4402 gcc_assert (TYPE_P (t));
4404 if (TYPE_CANONICAL (t))
4405 return TYPE_CANONICAL (t);
4407 /* Always register the type itself first so that if it turns out
4408 to be the canonical type it will be the one we merge to as well. */
4409 t = gimple_register_type (t);
4411 /* Always register the main variant first. This is important so we
4412 pick up the non-typedef variants as canonical, otherwise we'll end
4413 up taking typedef ids for structure tags during comparison. */
4414 if (TYPE_MAIN_VARIANT (t) != t)
4415 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4417 if (gimple_canonical_types == NULL)
4418 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4419 gimple_canonical_type_eq, 0);
4421 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4422 if (*slot
4423 && *(tree *)slot != t)
4425 tree new_type = (tree) *((tree *) slot);
4427 TYPE_CANONICAL (t) = new_type;
4428 t = new_type;
4430 else
4432 TYPE_CANONICAL (t) = t;
4433 *slot = (void *) t;
4436 /* Also cache the canonical type in the non-leaders. */
4437 TYPE_CANONICAL (orig_t) = t;
4439 return t;
4443 /* Show statistics on references to the global type table gimple_types. */
4445 void
4446 print_gimple_types_stats (void)
4448 if (gimple_types)
4449 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4450 "%ld searches, %ld collisions (ratio: %f)\n",
4451 (long) htab_size (gimple_types),
4452 (long) htab_elements (gimple_types),
4453 (long) gimple_types->searches,
4454 (long) gimple_types->collisions,
4455 htab_collisions (gimple_types));
4456 else
4457 fprintf (stderr, "GIMPLE type table is empty\n");
4458 if (type_hash_cache)
4459 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4460 "%ld searches, %ld collisions (ratio: %f)\n",
4461 (long) htab_size (type_hash_cache),
4462 (long) htab_elements (type_hash_cache),
4463 (long) type_hash_cache->searches,
4464 (long) type_hash_cache->collisions,
4465 htab_collisions (type_hash_cache));
4466 else
4467 fprintf (stderr, "GIMPLE type hash table is empty\n");
4468 if (gimple_canonical_types)
4469 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4470 "%ld searches, %ld collisions (ratio: %f)\n",
4471 (long) htab_size (gimple_canonical_types),
4472 (long) htab_elements (gimple_canonical_types),
4473 (long) gimple_canonical_types->searches,
4474 (long) gimple_canonical_types->collisions,
4475 htab_collisions (gimple_canonical_types));
4476 else
4477 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4478 if (canonical_type_hash_cache)
4479 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4480 "%ld searches, %ld collisions (ratio: %f)\n",
4481 (long) htab_size (canonical_type_hash_cache),
4482 (long) htab_elements (canonical_type_hash_cache),
4483 (long) canonical_type_hash_cache->searches,
4484 (long) canonical_type_hash_cache->collisions,
4485 htab_collisions (canonical_type_hash_cache));
4486 else
4487 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4488 if (gtc_visited)
4489 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4490 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4491 (long) htab_size (gtc_visited),
4492 (long) htab_elements (gtc_visited),
4493 (long) gtc_visited->searches,
4494 (long) gtc_visited->collisions,
4495 htab_collisions (gtc_visited));
4496 else
4497 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4500 /* Free the gimple type hashtables used for LTO type merging. */
4502 void
4503 free_gimple_type_tables (void)
4505 /* Last chance to print stats for the tables. */
4506 if (flag_lto_report)
4507 print_gimple_types_stats ();
4509 if (gimple_types)
4511 htab_delete (gimple_types);
4512 gimple_types = NULL;
4514 if (gimple_canonical_types)
4516 htab_delete (gimple_canonical_types);
4517 gimple_canonical_types = NULL;
4519 if (type_hash_cache)
4521 htab_delete (type_hash_cache);
4522 type_hash_cache = NULL;
4524 if (canonical_type_hash_cache)
4526 htab_delete (canonical_type_hash_cache);
4527 canonical_type_hash_cache = NULL;
4529 if (gtc_visited)
4531 htab_delete (gtc_visited);
4532 obstack_free (&gtc_ob, NULL);
4533 gtc_visited = NULL;
4535 gimple_type_leader = NULL;
4539 /* Return a type the same as TYPE except unsigned or
4540 signed according to UNSIGNEDP. */
4542 static tree
4543 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4545 tree type1;
4547 type1 = TYPE_MAIN_VARIANT (type);
4548 if (type1 == signed_char_type_node
4549 || type1 == char_type_node
4550 || type1 == unsigned_char_type_node)
4551 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4552 if (type1 == integer_type_node || type1 == unsigned_type_node)
4553 return unsignedp ? unsigned_type_node : integer_type_node;
4554 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4555 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4556 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4557 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4558 if (type1 == long_long_integer_type_node
4559 || type1 == long_long_unsigned_type_node)
4560 return unsignedp
4561 ? long_long_unsigned_type_node
4562 : long_long_integer_type_node;
4563 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4564 return unsignedp
4565 ? int128_unsigned_type_node
4566 : int128_integer_type_node;
4567 #if HOST_BITS_PER_WIDE_INT >= 64
4568 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4569 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4570 #endif
4571 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4572 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4573 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4574 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4575 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4576 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4577 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4578 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4580 #define GIMPLE_FIXED_TYPES(NAME) \
4581 if (type1 == short_ ## NAME ## _type_node \
4582 || type1 == unsigned_short_ ## NAME ## _type_node) \
4583 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4584 : short_ ## NAME ## _type_node; \
4585 if (type1 == NAME ## _type_node \
4586 || type1 == unsigned_ ## NAME ## _type_node) \
4587 return unsignedp ? unsigned_ ## NAME ## _type_node \
4588 : NAME ## _type_node; \
4589 if (type1 == long_ ## NAME ## _type_node \
4590 || type1 == unsigned_long_ ## NAME ## _type_node) \
4591 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4592 : long_ ## NAME ## _type_node; \
4593 if (type1 == long_long_ ## NAME ## _type_node \
4594 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4595 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4596 : long_long_ ## NAME ## _type_node;
4598 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4599 if (type1 == NAME ## _type_node \
4600 || type1 == u ## NAME ## _type_node) \
4601 return unsignedp ? u ## NAME ## _type_node \
4602 : NAME ## _type_node;
4604 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4605 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4606 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4607 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4608 : sat_ ## short_ ## NAME ## _type_node; \
4609 if (type1 == sat_ ## NAME ## _type_node \
4610 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4611 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4612 : sat_ ## NAME ## _type_node; \
4613 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4614 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4615 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4616 : sat_ ## long_ ## NAME ## _type_node; \
4617 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4618 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4619 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4620 : sat_ ## long_long_ ## NAME ## _type_node;
4622 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4623 if (type1 == sat_ ## NAME ## _type_node \
4624 || type1 == sat_ ## u ## NAME ## _type_node) \
4625 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4626 : sat_ ## NAME ## _type_node;
4628 GIMPLE_FIXED_TYPES (fract);
4629 GIMPLE_FIXED_TYPES_SAT (fract);
4630 GIMPLE_FIXED_TYPES (accum);
4631 GIMPLE_FIXED_TYPES_SAT (accum);
4633 GIMPLE_FIXED_MODE_TYPES (qq);
4634 GIMPLE_FIXED_MODE_TYPES (hq);
4635 GIMPLE_FIXED_MODE_TYPES (sq);
4636 GIMPLE_FIXED_MODE_TYPES (dq);
4637 GIMPLE_FIXED_MODE_TYPES (tq);
4638 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4639 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4640 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4641 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4642 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4643 GIMPLE_FIXED_MODE_TYPES (ha);
4644 GIMPLE_FIXED_MODE_TYPES (sa);
4645 GIMPLE_FIXED_MODE_TYPES (da);
4646 GIMPLE_FIXED_MODE_TYPES (ta);
4647 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4648 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4649 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4650 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4652 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4653 the precision; they have precision set to match their range, but
4654 may use a wider mode to match an ABI. If we change modes, we may
4655 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4656 the precision as well, so as to yield correct results for
4657 bit-field types. C++ does not have these separate bit-field
4658 types, and producing a signed or unsigned variant of an
4659 ENUMERAL_TYPE may cause other problems as well. */
4660 if (!INTEGRAL_TYPE_P (type)
4661 || TYPE_UNSIGNED (type) == unsignedp)
4662 return type;
4664 #define TYPE_OK(node) \
4665 (TYPE_MODE (type) == TYPE_MODE (node) \
4666 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4667 if (TYPE_OK (signed_char_type_node))
4668 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4669 if (TYPE_OK (integer_type_node))
4670 return unsignedp ? unsigned_type_node : integer_type_node;
4671 if (TYPE_OK (short_integer_type_node))
4672 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4673 if (TYPE_OK (long_integer_type_node))
4674 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4675 if (TYPE_OK (long_long_integer_type_node))
4676 return (unsignedp
4677 ? long_long_unsigned_type_node
4678 : long_long_integer_type_node);
4679 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4680 return (unsignedp
4681 ? int128_unsigned_type_node
4682 : int128_integer_type_node);
4684 #if HOST_BITS_PER_WIDE_INT >= 64
4685 if (TYPE_OK (intTI_type_node))
4686 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4687 #endif
4688 if (TYPE_OK (intDI_type_node))
4689 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4690 if (TYPE_OK (intSI_type_node))
4691 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4692 if (TYPE_OK (intHI_type_node))
4693 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4694 if (TYPE_OK (intQI_type_node))
4695 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4697 #undef GIMPLE_FIXED_TYPES
4698 #undef GIMPLE_FIXED_MODE_TYPES
4699 #undef GIMPLE_FIXED_TYPES_SAT
4700 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4701 #undef TYPE_OK
4703 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4707 /* Return an unsigned type the same as TYPE in other respects. */
4709 tree
4710 gimple_unsigned_type (tree type)
4712 return gimple_signed_or_unsigned_type (true, type);
4716 /* Return a signed type the same as TYPE in other respects. */
4718 tree
4719 gimple_signed_type (tree type)
4721 return gimple_signed_or_unsigned_type (false, type);
4725 /* Return the typed-based alias set for T, which may be an expression
4726 or a type. Return -1 if we don't do anything special. */
4728 alias_set_type
4729 gimple_get_alias_set (tree t)
4731 tree u;
4733 /* Permit type-punning when accessing a union, provided the access
4734 is directly through the union. For example, this code does not
4735 permit taking the address of a union member and then storing
4736 through it. Even the type-punning allowed here is a GCC
4737 extension, albeit a common and useful one; the C standard says
4738 that such accesses have implementation-defined behavior. */
4739 for (u = t;
4740 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4741 u = TREE_OPERAND (u, 0))
4742 if (TREE_CODE (u) == COMPONENT_REF
4743 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4744 return 0;
4746 /* That's all the expressions we handle specially. */
4747 if (!TYPE_P (t))
4748 return -1;
4750 /* For convenience, follow the C standard when dealing with
4751 character types. Any object may be accessed via an lvalue that
4752 has character type. */
4753 if (t == char_type_node
4754 || t == signed_char_type_node
4755 || t == unsigned_char_type_node)
4756 return 0;
4758 /* Allow aliasing between signed and unsigned variants of the same
4759 type. We treat the signed variant as canonical. */
4760 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4762 tree t1 = gimple_signed_type (t);
4764 /* t1 == t can happen for boolean nodes which are always unsigned. */
4765 if (t1 != t)
4766 return get_alias_set (t1);
4769 return -1;
4773 /* Data structure used to count the number of dereferences to PTR
4774 inside an expression. */
4775 struct count_ptr_d
4777 tree ptr;
4778 unsigned num_stores;
4779 unsigned num_loads;
4782 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4783 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4785 static tree
4786 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4788 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4789 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4791 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4792 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4793 the address of 'fld' as 'ptr + offsetof(fld)'. */
4794 if (TREE_CODE (*tp) == ADDR_EXPR)
4796 *walk_subtrees = 0;
4797 return NULL_TREE;
4800 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4802 if (wi_p->is_lhs)
4803 count_p->num_stores++;
4804 else
4805 count_p->num_loads++;
4808 return NULL_TREE;
4811 /* Count the number of direct and indirect uses for pointer PTR in
4812 statement STMT. The number of direct uses is stored in
4813 *NUM_USES_P. Indirect references are counted separately depending
4814 on whether they are store or load operations. The counts are
4815 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4817 void
4818 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4819 unsigned *num_loads_p, unsigned *num_stores_p)
4821 ssa_op_iter i;
4822 tree use;
4824 *num_uses_p = 0;
4825 *num_loads_p = 0;
4826 *num_stores_p = 0;
4828 /* Find out the total number of uses of PTR in STMT. */
4829 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4830 if (use == ptr)
4831 (*num_uses_p)++;
4833 /* Now count the number of indirect references to PTR. This is
4834 truly awful, but we don't have much choice. There are no parent
4835 pointers inside INDIRECT_REFs, so an expression like
4836 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4837 find all the indirect and direct uses of x_1 inside. The only
4838 shortcut we can take is the fact that GIMPLE only allows
4839 INDIRECT_REFs inside the expressions below. */
4840 if (is_gimple_assign (stmt)
4841 || gimple_code (stmt) == GIMPLE_RETURN
4842 || gimple_code (stmt) == GIMPLE_ASM
4843 || is_gimple_call (stmt))
4845 struct walk_stmt_info wi;
4846 struct count_ptr_d count;
4848 count.ptr = ptr;
4849 count.num_stores = 0;
4850 count.num_loads = 0;
4852 memset (&wi, 0, sizeof (wi));
4853 wi.info = &count;
4854 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4856 *num_stores_p = count.num_stores;
4857 *num_loads_p = count.num_loads;
4860 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4863 /* From a tree operand OP return the base of a load or store operation
4864 or NULL_TREE if OP is not a load or a store. */
4866 static tree
4867 get_base_loadstore (tree op)
4869 while (handled_component_p (op))
4870 op = TREE_OPERAND (op, 0);
4871 if (DECL_P (op)
4872 || INDIRECT_REF_P (op)
4873 || TREE_CODE (op) == MEM_REF
4874 || TREE_CODE (op) == TARGET_MEM_REF)
4875 return op;
4876 return NULL_TREE;
4879 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4880 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4881 passing the STMT, the base of the operand and DATA to it. The base
4882 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4883 or the argument of an address expression.
4884 Returns the results of these callbacks or'ed. */
4886 bool
4887 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4888 bool (*visit_load)(gimple, tree, void *),
4889 bool (*visit_store)(gimple, tree, void *),
4890 bool (*visit_addr)(gimple, tree, void *))
4892 bool ret = false;
4893 unsigned i;
4894 if (gimple_assign_single_p (stmt))
4896 tree lhs, rhs;
4897 if (visit_store)
4899 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4900 if (lhs)
4901 ret |= visit_store (stmt, lhs, data);
4903 rhs = gimple_assign_rhs1 (stmt);
4904 while (handled_component_p (rhs))
4905 rhs = TREE_OPERAND (rhs, 0);
4906 if (visit_addr)
4908 if (TREE_CODE (rhs) == ADDR_EXPR)
4909 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4910 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4911 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4912 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4913 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4914 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4915 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4916 0), data);
4917 lhs = gimple_assign_lhs (stmt);
4918 if (TREE_CODE (lhs) == TARGET_MEM_REF
4919 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4920 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4922 if (visit_load)
4924 rhs = get_base_loadstore (rhs);
4925 if (rhs)
4926 ret |= visit_load (stmt, rhs, data);
4929 else if (visit_addr
4930 && (is_gimple_assign (stmt)
4931 || gimple_code (stmt) == GIMPLE_COND))
4933 for (i = 0; i < gimple_num_ops (stmt); ++i)
4934 if (gimple_op (stmt, i)
4935 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4936 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4938 else if (is_gimple_call (stmt))
4940 if (visit_store)
4942 tree lhs = gimple_call_lhs (stmt);
4943 if (lhs)
4945 lhs = get_base_loadstore (lhs);
4946 if (lhs)
4947 ret |= visit_store (stmt, lhs, data);
4950 if (visit_load || visit_addr)
4951 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4953 tree rhs = gimple_call_arg (stmt, i);
4954 if (visit_addr
4955 && TREE_CODE (rhs) == ADDR_EXPR)
4956 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4957 else if (visit_load)
4959 rhs = get_base_loadstore (rhs);
4960 if (rhs)
4961 ret |= visit_load (stmt, rhs, data);
4964 if (visit_addr
4965 && gimple_call_chain (stmt)
4966 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4967 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4968 data);
4969 if (visit_addr
4970 && gimple_call_return_slot_opt_p (stmt)
4971 && gimple_call_lhs (stmt) != NULL_TREE
4972 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4973 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4975 else if (gimple_code (stmt) == GIMPLE_ASM)
4977 unsigned noutputs;
4978 const char *constraint;
4979 const char **oconstraints;
4980 bool allows_mem, allows_reg, is_inout;
4981 noutputs = gimple_asm_noutputs (stmt);
4982 oconstraints = XALLOCAVEC (const char *, noutputs);
4983 if (visit_store || visit_addr)
4984 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4986 tree link = gimple_asm_output_op (stmt, i);
4987 tree op = get_base_loadstore (TREE_VALUE (link));
4988 if (op && visit_store)
4989 ret |= visit_store (stmt, op, data);
4990 if (visit_addr)
4992 constraint = TREE_STRING_POINTER
4993 (TREE_VALUE (TREE_PURPOSE (link)));
4994 oconstraints[i] = constraint;
4995 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4996 &allows_reg, &is_inout);
4997 if (op && !allows_reg && allows_mem)
4998 ret |= visit_addr (stmt, op, data);
5001 if (visit_load || visit_addr)
5002 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5004 tree link = gimple_asm_input_op (stmt, i);
5005 tree op = TREE_VALUE (link);
5006 if (visit_addr
5007 && TREE_CODE (op) == ADDR_EXPR)
5008 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5009 else if (visit_load || visit_addr)
5011 op = get_base_loadstore (op);
5012 if (op)
5014 if (visit_load)
5015 ret |= visit_load (stmt, op, data);
5016 if (visit_addr)
5018 constraint = TREE_STRING_POINTER
5019 (TREE_VALUE (TREE_PURPOSE (link)));
5020 parse_input_constraint (&constraint, 0, 0, noutputs,
5021 0, oconstraints,
5022 &allows_mem, &allows_reg);
5023 if (!allows_reg && allows_mem)
5024 ret |= visit_addr (stmt, op, data);
5030 else if (gimple_code (stmt) == GIMPLE_RETURN)
5032 tree op = gimple_return_retval (stmt);
5033 if (op)
5035 if (visit_addr
5036 && TREE_CODE (op) == ADDR_EXPR)
5037 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5038 else if (visit_load)
5040 op = get_base_loadstore (op);
5041 if (op)
5042 ret |= visit_load (stmt, op, data);
5046 else if (visit_addr
5047 && gimple_code (stmt) == GIMPLE_PHI)
5049 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5051 tree op = PHI_ARG_DEF (stmt, i);
5052 if (TREE_CODE (op) == ADDR_EXPR)
5053 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5057 return ret;
5060 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5061 should make a faster clone for this case. */
5063 bool
5064 walk_stmt_load_store_ops (gimple stmt, void *data,
5065 bool (*visit_load)(gimple, tree, void *),
5066 bool (*visit_store)(gimple, tree, void *))
5068 return walk_stmt_load_store_addr_ops (stmt, data,
5069 visit_load, visit_store, NULL);
5072 /* Helper for gimple_ior_addresses_taken_1. */
5074 static bool
5075 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5076 tree addr, void *data)
5078 bitmap addresses_taken = (bitmap)data;
5079 addr = get_base_address (addr);
5080 if (addr
5081 && DECL_P (addr))
5083 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5084 return true;
5086 return false;
5089 /* Set the bit for the uid of all decls that have their address taken
5090 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5091 were any in this stmt. */
5093 bool
5094 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5096 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5097 gimple_ior_addresses_taken_1);
5101 /* Return a printable name for symbol DECL. */
5103 const char *
5104 gimple_decl_printable_name (tree decl, int verbosity)
5106 if (!DECL_NAME (decl))
5107 return NULL;
5109 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5111 const char *str, *mangled_str;
5112 int dmgl_opts = DMGL_NO_OPTS;
5114 if (verbosity >= 2)
5116 dmgl_opts = DMGL_VERBOSE
5117 | DMGL_ANSI
5118 | DMGL_GNU_V3
5119 | DMGL_RET_POSTFIX;
5120 if (TREE_CODE (decl) == FUNCTION_DECL)
5121 dmgl_opts |= DMGL_PARAMS;
5124 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5125 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5126 return (str) ? str : mangled_str;
5129 return IDENTIFIER_POINTER (DECL_NAME (decl));
5132 /* Return true when STMT is builtins call to CODE. */
5134 bool
5135 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5137 tree fndecl;
5138 return (is_gimple_call (stmt)
5139 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5140 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5141 && DECL_FUNCTION_CODE (fndecl) == code);
5144 #include "gt-gimple.h"