2009-07-17 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / libffi / src / dlmalloc.c
blob783c5c2a6f978852200a8a9d307c11b40761d579
1 /*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
7 * Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
13 * Quickstart
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
35 * Vital statistics:
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
130 * Overview of algorithms
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
171 * MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
202 ------------------------- Compile-time options ---------------------------
204 Be careful in setting #define values for numerical constants of type
205 size_t. On some systems, literal values are not automatically extended
206 to size_t precision unless they are explicitly casted.
208 WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
212 MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
219 MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
223 ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
226 USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
231 FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
236 INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
239 USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
244 ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
255 PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
266 DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
277 ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
284 MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
288 HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
291 MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
304 MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
312 MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
318 HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
328 HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
332 MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
336 USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
344 malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
351 USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
355 NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
360 MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
365 REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
371 LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372 LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373 LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
377 DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
392 DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
415 DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
441 #ifndef WIN32
442 #ifdef _WIN32
443 #define WIN32 1
444 #endif /* _WIN32 */
445 #endif /* WIN32 */
446 #ifdef WIN32
447 #define WIN32_LEAN_AND_MEAN
448 #include <windows.h>
449 #define HAVE_MMAP 1
450 #define HAVE_MORECORE 0
451 #define LACKS_UNISTD_H
452 #define LACKS_SYS_PARAM_H
453 #define LACKS_SYS_MMAN_H
454 #define LACKS_STRING_H
455 #define LACKS_STRINGS_H
456 #define LACKS_SYS_TYPES_H
457 #define LACKS_ERRNO_H
458 #define MALLOC_FAILURE_ACTION
459 #define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
460 #endif /* WIN32 */
462 #if defined(DARWIN) || defined(_DARWIN)
463 /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
464 #ifndef HAVE_MORECORE
465 #define HAVE_MORECORE 0
466 #define HAVE_MMAP 1
467 #endif /* HAVE_MORECORE */
468 #endif /* DARWIN */
470 #ifndef LACKS_SYS_TYPES_H
471 #include <sys/types.h> /* For size_t */
472 #endif /* LACKS_SYS_TYPES_H */
474 /* The maximum possible size_t value has all bits set */
475 #define MAX_SIZE_T (~(size_t)0)
477 #ifndef ONLY_MSPACES
478 #define ONLY_MSPACES 0
479 #endif /* ONLY_MSPACES */
480 #ifndef MSPACES
481 #if ONLY_MSPACES
482 #define MSPACES 1
483 #else /* ONLY_MSPACES */
484 #define MSPACES 0
485 #endif /* ONLY_MSPACES */
486 #endif /* MSPACES */
487 #ifndef MALLOC_ALIGNMENT
488 #define MALLOC_ALIGNMENT ((size_t)8U)
489 #endif /* MALLOC_ALIGNMENT */
490 #ifndef FOOTERS
491 #define FOOTERS 0
492 #endif /* FOOTERS */
493 #ifndef ABORT
494 #define ABORT abort()
495 #endif /* ABORT */
496 #ifndef ABORT_ON_ASSERT_FAILURE
497 #define ABORT_ON_ASSERT_FAILURE 1
498 #endif /* ABORT_ON_ASSERT_FAILURE */
499 #ifndef PROCEED_ON_ERROR
500 #define PROCEED_ON_ERROR 0
501 #endif /* PROCEED_ON_ERROR */
502 #ifndef USE_LOCKS
503 #define USE_LOCKS 0
504 #endif /* USE_LOCKS */
505 #ifndef INSECURE
506 #define INSECURE 0
507 #endif /* INSECURE */
508 #ifndef HAVE_MMAP
509 #define HAVE_MMAP 1
510 #endif /* HAVE_MMAP */
511 #ifndef MMAP_CLEARS
512 #define MMAP_CLEARS 1
513 #endif /* MMAP_CLEARS */
514 #ifndef HAVE_MREMAP
515 #ifdef linux
516 #define HAVE_MREMAP 1
517 #else /* linux */
518 #define HAVE_MREMAP 0
519 #endif /* linux */
520 #endif /* HAVE_MREMAP */
521 #ifndef MALLOC_FAILURE_ACTION
522 #define MALLOC_FAILURE_ACTION errno = ENOMEM;
523 #endif /* MALLOC_FAILURE_ACTION */
524 #ifndef HAVE_MORECORE
525 #if ONLY_MSPACES
526 #define HAVE_MORECORE 0
527 #else /* ONLY_MSPACES */
528 #define HAVE_MORECORE 1
529 #endif /* ONLY_MSPACES */
530 #endif /* HAVE_MORECORE */
531 #if !HAVE_MORECORE
532 #define MORECORE_CONTIGUOUS 0
533 #else /* !HAVE_MORECORE */
534 #ifndef MORECORE
535 #define MORECORE sbrk
536 #endif /* MORECORE */
537 #ifndef MORECORE_CONTIGUOUS
538 #define MORECORE_CONTIGUOUS 1
539 #endif /* MORECORE_CONTIGUOUS */
540 #endif /* HAVE_MORECORE */
541 #ifndef DEFAULT_GRANULARITY
542 #if MORECORE_CONTIGUOUS
543 #define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
544 #else /* MORECORE_CONTIGUOUS */
545 #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
546 #endif /* MORECORE_CONTIGUOUS */
547 #endif /* DEFAULT_GRANULARITY */
548 #ifndef DEFAULT_TRIM_THRESHOLD
549 #ifndef MORECORE_CANNOT_TRIM
550 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
551 #else /* MORECORE_CANNOT_TRIM */
552 #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
553 #endif /* MORECORE_CANNOT_TRIM */
554 #endif /* DEFAULT_TRIM_THRESHOLD */
555 #ifndef DEFAULT_MMAP_THRESHOLD
556 #if HAVE_MMAP
557 #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
558 #else /* HAVE_MMAP */
559 #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
560 #endif /* HAVE_MMAP */
561 #endif /* DEFAULT_MMAP_THRESHOLD */
562 #ifndef USE_BUILTIN_FFS
563 #define USE_BUILTIN_FFS 0
564 #endif /* USE_BUILTIN_FFS */
565 #ifndef USE_DEV_RANDOM
566 #define USE_DEV_RANDOM 0
567 #endif /* USE_DEV_RANDOM */
568 #ifndef NO_MALLINFO
569 #define NO_MALLINFO 0
570 #endif /* NO_MALLINFO */
571 #ifndef MALLINFO_FIELD_TYPE
572 #define MALLINFO_FIELD_TYPE size_t
573 #endif /* MALLINFO_FIELD_TYPE */
576 mallopt tuning options. SVID/XPG defines four standard parameter
577 numbers for mallopt, normally defined in malloc.h. None of these
578 are used in this malloc, so setting them has no effect. But this
579 malloc does support the following options.
582 #define M_TRIM_THRESHOLD (-1)
583 #define M_GRANULARITY (-2)
584 #define M_MMAP_THRESHOLD (-3)
586 /* ------------------------ Mallinfo declarations ------------------------ */
588 #if !NO_MALLINFO
590 This version of malloc supports the standard SVID/XPG mallinfo
591 routine that returns a struct containing usage properties and
592 statistics. It should work on any system that has a
593 /usr/include/malloc.h defining struct mallinfo. The main
594 declaration needed is the mallinfo struct that is returned (by-copy)
595 by mallinfo(). The malloinfo struct contains a bunch of fields that
596 are not even meaningful in this version of malloc. These fields are
597 are instead filled by mallinfo() with other numbers that might be of
598 interest.
600 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
601 /usr/include/malloc.h file that includes a declaration of struct
602 mallinfo. If so, it is included; else a compliant version is
603 declared below. These must be precisely the same for mallinfo() to
604 work. The original SVID version of this struct, defined on most
605 systems with mallinfo, declares all fields as ints. But some others
606 define as unsigned long. If your system defines the fields using a
607 type of different width than listed here, you MUST #include your
608 system version and #define HAVE_USR_INCLUDE_MALLOC_H.
611 /* #define HAVE_USR_INCLUDE_MALLOC_H */
613 #ifdef HAVE_USR_INCLUDE_MALLOC_H
614 #include "/usr/include/malloc.h"
615 #else /* HAVE_USR_INCLUDE_MALLOC_H */
617 struct mallinfo {
618 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
619 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
620 MALLINFO_FIELD_TYPE smblks; /* always 0 */
621 MALLINFO_FIELD_TYPE hblks; /* always 0 */
622 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
623 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
624 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
625 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
626 MALLINFO_FIELD_TYPE fordblks; /* total free space */
627 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
630 #endif /* HAVE_USR_INCLUDE_MALLOC_H */
631 #endif /* NO_MALLINFO */
633 #ifdef __cplusplus
634 extern "C" {
635 #endif /* __cplusplus */
637 #if !ONLY_MSPACES
639 /* ------------------- Declarations of public routines ------------------- */
641 #ifndef USE_DL_PREFIX
642 #define dlcalloc calloc
643 #define dlfree free
644 #define dlmalloc malloc
645 #define dlmemalign memalign
646 #define dlrealloc realloc
647 #define dlvalloc valloc
648 #define dlpvalloc pvalloc
649 #define dlmallinfo mallinfo
650 #define dlmallopt mallopt
651 #define dlmalloc_trim malloc_trim
652 #define dlmalloc_stats malloc_stats
653 #define dlmalloc_usable_size malloc_usable_size
654 #define dlmalloc_footprint malloc_footprint
655 #define dlmalloc_max_footprint malloc_max_footprint
656 #define dlindependent_calloc independent_calloc
657 #define dlindependent_comalloc independent_comalloc
658 #endif /* USE_DL_PREFIX */
662 malloc(size_t n)
663 Returns a pointer to a newly allocated chunk of at least n bytes, or
664 null if no space is available, in which case errno is set to ENOMEM
665 on ANSI C systems.
667 If n is zero, malloc returns a minimum-sized chunk. (The minimum
668 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
669 systems.) Note that size_t is an unsigned type, so calls with
670 arguments that would be negative if signed are interpreted as
671 requests for huge amounts of space, which will often fail. The
672 maximum supported value of n differs across systems, but is in all
673 cases less than the maximum representable value of a size_t.
675 void* dlmalloc(size_t);
678 free(void* p)
679 Releases the chunk of memory pointed to by p, that had been previously
680 allocated using malloc or a related routine such as realloc.
681 It has no effect if p is null. If p was not malloced or already
682 freed, free(p) will by default cause the current program to abort.
684 void dlfree(void*);
687 calloc(size_t n_elements, size_t element_size);
688 Returns a pointer to n_elements * element_size bytes, with all locations
689 set to zero.
691 void* dlcalloc(size_t, size_t);
694 realloc(void* p, size_t n)
695 Returns a pointer to a chunk of size n that contains the same data
696 as does chunk p up to the minimum of (n, p's size) bytes, or null
697 if no space is available.
699 The returned pointer may or may not be the same as p. The algorithm
700 prefers extending p in most cases when possible, otherwise it
701 employs the equivalent of a malloc-copy-free sequence.
703 If p is null, realloc is equivalent to malloc.
705 If space is not available, realloc returns null, errno is set (if on
706 ANSI) and p is NOT freed.
708 if n is for fewer bytes than already held by p, the newly unused
709 space is lopped off and freed if possible. realloc with a size
710 argument of zero (re)allocates a minimum-sized chunk.
712 The old unix realloc convention of allowing the last-free'd chunk
713 to be used as an argument to realloc is not supported.
716 void* dlrealloc(void*, size_t);
719 memalign(size_t alignment, size_t n);
720 Returns a pointer to a newly allocated chunk of n bytes, aligned
721 in accord with the alignment argument.
723 The alignment argument should be a power of two. If the argument is
724 not a power of two, the nearest greater power is used.
725 8-byte alignment is guaranteed by normal malloc calls, so don't
726 bother calling memalign with an argument of 8 or less.
728 Overreliance on memalign is a sure way to fragment space.
730 void* dlmemalign(size_t, size_t);
733 valloc(size_t n);
734 Equivalent to memalign(pagesize, n), where pagesize is the page
735 size of the system. If the pagesize is unknown, 4096 is used.
737 void* dlvalloc(size_t);
740 mallopt(int parameter_number, int parameter_value)
741 Sets tunable parameters The format is to provide a
742 (parameter-number, parameter-value) pair. mallopt then sets the
743 corresponding parameter to the argument value if it can (i.e., so
744 long as the value is meaningful), and returns 1 if successful else
745 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
746 normally defined in malloc.h. None of these are use in this malloc,
747 so setting them has no effect. But this malloc also supports other
748 options in mallopt. See below for details. Briefly, supported
749 parameters are as follows (listed defaults are for "typical"
750 configurations).
752 Symbol param # default allowed param values
753 M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
754 M_GRANULARITY -2 page size any power of 2 >= page size
755 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
757 int dlmallopt(int, int);
760 malloc_footprint();
761 Returns the number of bytes obtained from the system. The total
762 number of bytes allocated by malloc, realloc etc., is less than this
763 value. Unlike mallinfo, this function returns only a precomputed
764 result, so can be called frequently to monitor memory consumption.
765 Even if locks are otherwise defined, this function does not use them,
766 so results might not be up to date.
768 size_t dlmalloc_footprint(void);
771 malloc_max_footprint();
772 Returns the maximum number of bytes obtained from the system. This
773 value will be greater than current footprint if deallocated space
774 has been reclaimed by the system. The peak number of bytes allocated
775 by malloc, realloc etc., is less than this value. Unlike mallinfo,
776 this function returns only a precomputed result, so can be called
777 frequently to monitor memory consumption. Even if locks are
778 otherwise defined, this function does not use them, so results might
779 not be up to date.
781 size_t dlmalloc_max_footprint(void);
783 #if !NO_MALLINFO
785 mallinfo()
786 Returns (by copy) a struct containing various summary statistics:
788 arena: current total non-mmapped bytes allocated from system
789 ordblks: the number of free chunks
790 smblks: always zero.
791 hblks: current number of mmapped regions
792 hblkhd: total bytes held in mmapped regions
793 usmblks: the maximum total allocated space. This will be greater
794 than current total if trimming has occurred.
795 fsmblks: always zero
796 uordblks: current total allocated space (normal or mmapped)
797 fordblks: total free space
798 keepcost: the maximum number of bytes that could ideally be released
799 back to system via malloc_trim. ("ideally" means that
800 it ignores page restrictions etc.)
802 Because these fields are ints, but internal bookkeeping may
803 be kept as longs, the reported values may wrap around zero and
804 thus be inaccurate.
806 struct mallinfo dlmallinfo(void);
807 #endif /* NO_MALLINFO */
810 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
812 independent_calloc is similar to calloc, but instead of returning a
813 single cleared space, it returns an array of pointers to n_elements
814 independent elements that can hold contents of size elem_size, each
815 of which starts out cleared, and can be independently freed,
816 realloc'ed etc. The elements are guaranteed to be adjacently
817 allocated (this is not guaranteed to occur with multiple callocs or
818 mallocs), which may also improve cache locality in some
819 applications.
821 The "chunks" argument is optional (i.e., may be null, which is
822 probably the most typical usage). If it is null, the returned array
823 is itself dynamically allocated and should also be freed when it is
824 no longer needed. Otherwise, the chunks array must be of at least
825 n_elements in length. It is filled in with the pointers to the
826 chunks.
828 In either case, independent_calloc returns this pointer array, or
829 null if the allocation failed. If n_elements is zero and "chunks"
830 is null, it returns a chunk representing an array with zero elements
831 (which should be freed if not wanted).
833 Each element must be individually freed when it is no longer
834 needed. If you'd like to instead be able to free all at once, you
835 should instead use regular calloc and assign pointers into this
836 space to represent elements. (In this case though, you cannot
837 independently free elements.)
839 independent_calloc simplifies and speeds up implementations of many
840 kinds of pools. It may also be useful when constructing large data
841 structures that initially have a fixed number of fixed-sized nodes,
842 but the number is not known at compile time, and some of the nodes
843 may later need to be freed. For example:
845 struct Node { int item; struct Node* next; };
847 struct Node* build_list() {
848 struct Node** pool;
849 int n = read_number_of_nodes_needed();
850 if (n <= 0) return 0;
851 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
852 if (pool == 0) die();
853 // organize into a linked list...
854 struct Node* first = pool[0];
855 for (i = 0; i < n-1; ++i)
856 pool[i]->next = pool[i+1];
857 free(pool); // Can now free the array (or not, if it is needed later)
858 return first;
861 void** dlindependent_calloc(size_t, size_t, void**);
864 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
866 independent_comalloc allocates, all at once, a set of n_elements
867 chunks with sizes indicated in the "sizes" array. It returns
868 an array of pointers to these elements, each of which can be
869 independently freed, realloc'ed etc. The elements are guaranteed to
870 be adjacently allocated (this is not guaranteed to occur with
871 multiple callocs or mallocs), which may also improve cache locality
872 in some applications.
874 The "chunks" argument is optional (i.e., may be null). If it is null
875 the returned array is itself dynamically allocated and should also
876 be freed when it is no longer needed. Otherwise, the chunks array
877 must be of at least n_elements in length. It is filled in with the
878 pointers to the chunks.
880 In either case, independent_comalloc returns this pointer array, or
881 null if the allocation failed. If n_elements is zero and chunks is
882 null, it returns a chunk representing an array with zero elements
883 (which should be freed if not wanted).
885 Each element must be individually freed when it is no longer
886 needed. If you'd like to instead be able to free all at once, you
887 should instead use a single regular malloc, and assign pointers at
888 particular offsets in the aggregate space. (In this case though, you
889 cannot independently free elements.)
891 independent_comallac differs from independent_calloc in that each
892 element may have a different size, and also that it does not
893 automatically clear elements.
895 independent_comalloc can be used to speed up allocation in cases
896 where several structs or objects must always be allocated at the
897 same time. For example:
899 struct Head { ... }
900 struct Foot { ... }
902 void send_message(char* msg) {
903 int msglen = strlen(msg);
904 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
905 void* chunks[3];
906 if (independent_comalloc(3, sizes, chunks) == 0)
907 die();
908 struct Head* head = (struct Head*)(chunks[0]);
909 char* body = (char*)(chunks[1]);
910 struct Foot* foot = (struct Foot*)(chunks[2]);
911 // ...
914 In general though, independent_comalloc is worth using only for
915 larger values of n_elements. For small values, you probably won't
916 detect enough difference from series of malloc calls to bother.
918 Overuse of independent_comalloc can increase overall memory usage,
919 since it cannot reuse existing noncontiguous small chunks that
920 might be available for some of the elements.
922 void** dlindependent_comalloc(size_t, size_t*, void**);
926 pvalloc(size_t n);
927 Equivalent to valloc(minimum-page-that-holds(n)), that is,
928 round up n to nearest pagesize.
930 void* dlpvalloc(size_t);
933 malloc_trim(size_t pad);
935 If possible, gives memory back to the system (via negative arguments
936 to sbrk) if there is unused memory at the `high' end of the malloc
937 pool or in unused MMAP segments. You can call this after freeing
938 large blocks of memory to potentially reduce the system-level memory
939 requirements of a program. However, it cannot guarantee to reduce
940 memory. Under some allocation patterns, some large free blocks of
941 memory will be locked between two used chunks, so they cannot be
942 given back to the system.
944 The `pad' argument to malloc_trim represents the amount of free
945 trailing space to leave untrimmed. If this argument is zero, only
946 the minimum amount of memory to maintain internal data structures
947 will be left. Non-zero arguments can be supplied to maintain enough
948 trailing space to service future expected allocations without having
949 to re-obtain memory from the system.
951 Malloc_trim returns 1 if it actually released any memory, else 0.
953 int dlmalloc_trim(size_t);
956 malloc_usable_size(void* p);
958 Returns the number of bytes you can actually use in
959 an allocated chunk, which may be more than you requested (although
960 often not) due to alignment and minimum size constraints.
961 You can use this many bytes without worrying about
962 overwriting other allocated objects. This is not a particularly great
963 programming practice. malloc_usable_size can be more useful in
964 debugging and assertions, for example:
966 p = malloc(n);
967 assert(malloc_usable_size(p) >= 256);
969 size_t dlmalloc_usable_size(void*);
972 malloc_stats();
973 Prints on stderr the amount of space obtained from the system (both
974 via sbrk and mmap), the maximum amount (which may be more than
975 current if malloc_trim and/or munmap got called), and the current
976 number of bytes allocated via malloc (or realloc, etc) but not yet
977 freed. Note that this is the number of bytes allocated, not the
978 number requested. It will be larger than the number requested
979 because of alignment and bookkeeping overhead. Because it includes
980 alignment wastage as being in use, this figure may be greater than
981 zero even when no user-level chunks are allocated.
983 The reported current and maximum system memory can be inaccurate if
984 a program makes other calls to system memory allocation functions
985 (normally sbrk) outside of malloc.
987 malloc_stats prints only the most commonly interesting statistics.
988 More information can be obtained by calling mallinfo.
990 void dlmalloc_stats(void);
992 #endif /* ONLY_MSPACES */
994 #if MSPACES
997 mspace is an opaque type representing an independent
998 region of space that supports mspace_malloc, etc.
1000 typedef void* mspace;
1003 create_mspace creates and returns a new independent space with the
1004 given initial capacity, or, if 0, the default granularity size. It
1005 returns null if there is no system memory available to create the
1006 space. If argument locked is non-zero, the space uses a separate
1007 lock to control access. The capacity of the space will grow
1008 dynamically as needed to service mspace_malloc requests. You can
1009 control the sizes of incremental increases of this space by
1010 compiling with a different DEFAULT_GRANULARITY or dynamically
1011 setting with mallopt(M_GRANULARITY, value).
1013 mspace create_mspace(size_t capacity, int locked);
1016 destroy_mspace destroys the given space, and attempts to return all
1017 of its memory back to the system, returning the total number of
1018 bytes freed. After destruction, the results of access to all memory
1019 used by the space become undefined.
1021 size_t destroy_mspace(mspace msp);
1024 create_mspace_with_base uses the memory supplied as the initial base
1025 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1026 space is used for bookkeeping, so the capacity must be at least this
1027 large. (Otherwise 0 is returned.) When this initial space is
1028 exhausted, additional memory will be obtained from the system.
1029 Destroying this space will deallocate all additionally allocated
1030 space (if possible) but not the initial base.
1032 mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1035 mspace_malloc behaves as malloc, but operates within
1036 the given space.
1038 void* mspace_malloc(mspace msp, size_t bytes);
1041 mspace_free behaves as free, but operates within
1042 the given space.
1044 If compiled with FOOTERS==1, mspace_free is not actually needed.
1045 free may be called instead of mspace_free because freed chunks from
1046 any space are handled by their originating spaces.
1048 void mspace_free(mspace msp, void* mem);
1051 mspace_realloc behaves as realloc, but operates within
1052 the given space.
1054 If compiled with FOOTERS==1, mspace_realloc is not actually
1055 needed. realloc may be called instead of mspace_realloc because
1056 realloced chunks from any space are handled by their originating
1057 spaces.
1059 void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1062 mspace_calloc behaves as calloc, but operates within
1063 the given space.
1065 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1068 mspace_memalign behaves as memalign, but operates within
1069 the given space.
1071 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1074 mspace_independent_calloc behaves as independent_calloc, but
1075 operates within the given space.
1077 void** mspace_independent_calloc(mspace msp, size_t n_elements,
1078 size_t elem_size, void* chunks[]);
1081 mspace_independent_comalloc behaves as independent_comalloc, but
1082 operates within the given space.
1084 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1085 size_t sizes[], void* chunks[]);
1088 mspace_footprint() returns the number of bytes obtained from the
1089 system for this space.
1091 size_t mspace_footprint(mspace msp);
1094 mspace_max_footprint() returns the peak number of bytes obtained from the
1095 system for this space.
1097 size_t mspace_max_footprint(mspace msp);
1100 #if !NO_MALLINFO
1102 mspace_mallinfo behaves as mallinfo, but reports properties of
1103 the given space.
1105 struct mallinfo mspace_mallinfo(mspace msp);
1106 #endif /* NO_MALLINFO */
1109 mspace_malloc_stats behaves as malloc_stats, but reports
1110 properties of the given space.
1112 void mspace_malloc_stats(mspace msp);
1115 mspace_trim behaves as malloc_trim, but
1116 operates within the given space.
1118 int mspace_trim(mspace msp, size_t pad);
1121 An alias for mallopt.
1123 int mspace_mallopt(int, int);
1125 #endif /* MSPACES */
1127 #ifdef __cplusplus
1128 }; /* end of extern "C" */
1129 #endif /* __cplusplus */
1132 ========================================================================
1133 To make a fully customizable malloc.h header file, cut everything
1134 above this line, put into file malloc.h, edit to suit, and #include it
1135 on the next line, as well as in programs that use this malloc.
1136 ========================================================================
1139 /* #include "malloc.h" */
1141 /*------------------------------ internal #includes ---------------------- */
1143 #ifdef _MSC_VER
1144 #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1145 #endif /* _MSC_VER */
1147 #include <stdio.h> /* for printing in malloc_stats */
1149 #ifndef LACKS_ERRNO_H
1150 #include <errno.h> /* for MALLOC_FAILURE_ACTION */
1151 #endif /* LACKS_ERRNO_H */
1152 #if FOOTERS
1153 #include <time.h> /* for magic initialization */
1154 #endif /* FOOTERS */
1155 #ifndef LACKS_STDLIB_H
1156 #include <stdlib.h> /* for abort() */
1157 #endif /* LACKS_STDLIB_H */
1158 #ifdef DEBUG
1159 #if ABORT_ON_ASSERT_FAILURE
1160 #define assert(x) if(!(x)) ABORT
1161 #else /* ABORT_ON_ASSERT_FAILURE */
1162 #include <assert.h>
1163 #endif /* ABORT_ON_ASSERT_FAILURE */
1164 #else /* DEBUG */
1165 #define assert(x)
1166 #endif /* DEBUG */
1167 #ifndef LACKS_STRING_H
1168 #include <string.h> /* for memset etc */
1169 #endif /* LACKS_STRING_H */
1170 #if USE_BUILTIN_FFS
1171 #ifndef LACKS_STRINGS_H
1172 #include <strings.h> /* for ffs */
1173 #endif /* LACKS_STRINGS_H */
1174 #endif /* USE_BUILTIN_FFS */
1175 #if HAVE_MMAP
1176 #ifndef LACKS_SYS_MMAN_H
1177 #include <sys/mman.h> /* for mmap */
1178 #endif /* LACKS_SYS_MMAN_H */
1179 #ifndef LACKS_FCNTL_H
1180 #include <fcntl.h>
1181 #endif /* LACKS_FCNTL_H */
1182 #endif /* HAVE_MMAP */
1183 #if HAVE_MORECORE
1184 #ifndef LACKS_UNISTD_H
1185 #include <unistd.h> /* for sbrk */
1186 #else /* LACKS_UNISTD_H */
1187 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1188 extern void* sbrk(ptrdiff_t);
1189 #endif /* FreeBSD etc */
1190 #endif /* LACKS_UNISTD_H */
1191 #endif /* HAVE_MMAP */
1193 #ifndef WIN32
1194 #ifndef malloc_getpagesize
1195 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1196 # ifndef _SC_PAGE_SIZE
1197 # define _SC_PAGE_SIZE _SC_PAGESIZE
1198 # endif
1199 # endif
1200 # ifdef _SC_PAGE_SIZE
1201 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1202 # else
1203 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1204 extern size_t getpagesize();
1205 # define malloc_getpagesize getpagesize()
1206 # else
1207 # ifdef WIN32 /* use supplied emulation of getpagesize */
1208 # define malloc_getpagesize getpagesize()
1209 # else
1210 # ifndef LACKS_SYS_PARAM_H
1211 # include <sys/param.h>
1212 # endif
1213 # ifdef EXEC_PAGESIZE
1214 # define malloc_getpagesize EXEC_PAGESIZE
1215 # else
1216 # ifdef NBPG
1217 # ifndef CLSIZE
1218 # define malloc_getpagesize NBPG
1219 # else
1220 # define malloc_getpagesize (NBPG * CLSIZE)
1221 # endif
1222 # else
1223 # ifdef NBPC
1224 # define malloc_getpagesize NBPC
1225 # else
1226 # ifdef PAGESIZE
1227 # define malloc_getpagesize PAGESIZE
1228 # else /* just guess */
1229 # define malloc_getpagesize ((size_t)4096U)
1230 # endif
1231 # endif
1232 # endif
1233 # endif
1234 # endif
1235 # endif
1236 # endif
1237 #endif
1238 #endif
1240 /* ------------------- size_t and alignment properties -------------------- */
1242 /* The byte and bit size of a size_t */
1243 #define SIZE_T_SIZE (sizeof(size_t))
1244 #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1246 /* Some constants coerced to size_t */
1247 /* Annoying but necessary to avoid errors on some plaftorms */
1248 #define SIZE_T_ZERO ((size_t)0)
1249 #define SIZE_T_ONE ((size_t)1)
1250 #define SIZE_T_TWO ((size_t)2)
1251 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1252 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1253 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1254 #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1256 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
1257 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1259 /* True if address a has acceptable alignment */
1260 #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1262 /* the number of bytes to offset an address to align it */
1263 #define align_offset(A)\
1264 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1265 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1267 /* -------------------------- MMAP preliminaries ------------------------- */
1270 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1271 checks to fail so compiler optimizer can delete code rather than
1272 using so many "#if"s.
1276 /* MORECORE and MMAP must return MFAIL on failure */
1277 #define MFAIL ((void*)(MAX_SIZE_T))
1278 #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1280 #if !HAVE_MMAP
1281 #define IS_MMAPPED_BIT (SIZE_T_ZERO)
1282 #define USE_MMAP_BIT (SIZE_T_ZERO)
1283 #define CALL_MMAP(s) MFAIL
1284 #define CALL_MUNMAP(a, s) (-1)
1285 #define DIRECT_MMAP(s) MFAIL
1287 #else /* HAVE_MMAP */
1288 #define IS_MMAPPED_BIT (SIZE_T_ONE)
1289 #define USE_MMAP_BIT (SIZE_T_ONE)
1291 #ifndef WIN32
1292 #define CALL_MUNMAP(a, s) munmap((a), (s))
1293 #define MMAP_PROT (PROT_READ|PROT_WRITE)
1294 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1295 #define MAP_ANONYMOUS MAP_ANON
1296 #endif /* MAP_ANON */
1297 #ifdef MAP_ANONYMOUS
1298 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1299 #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1300 #else /* MAP_ANONYMOUS */
1302 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1303 is unlikely to be needed, but is supplied just in case.
1305 #define MMAP_FLAGS (MAP_PRIVATE)
1306 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1307 #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
1308 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1309 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1310 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1311 #endif /* MAP_ANONYMOUS */
1313 #define DIRECT_MMAP(s) CALL_MMAP(s)
1314 #else /* WIN32 */
1316 /* Win32 MMAP via VirtualAlloc */
1317 static void* win32mmap(size_t size) {
1318 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE);
1319 return (ptr != 0)? ptr: MFAIL;
1322 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1323 static void* win32direct_mmap(size_t size) {
1324 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1325 PAGE_EXECUTE_READWRITE);
1326 return (ptr != 0)? ptr: MFAIL;
1329 /* This function supports releasing coalesed segments */
1330 static int win32munmap(void* ptr, size_t size) {
1331 MEMORY_BASIC_INFORMATION minfo;
1332 char* cptr = ptr;
1333 while (size) {
1334 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1335 return -1;
1336 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1337 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1338 return -1;
1339 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1340 return -1;
1341 cptr += minfo.RegionSize;
1342 size -= minfo.RegionSize;
1344 return 0;
1347 #define CALL_MMAP(s) win32mmap(s)
1348 #define CALL_MUNMAP(a, s) win32munmap((a), (s))
1349 #define DIRECT_MMAP(s) win32direct_mmap(s)
1350 #endif /* WIN32 */
1351 #endif /* HAVE_MMAP */
1353 #if HAVE_MMAP && HAVE_MREMAP
1354 #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1355 #else /* HAVE_MMAP && HAVE_MREMAP */
1356 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1357 #endif /* HAVE_MMAP && HAVE_MREMAP */
1359 #if HAVE_MORECORE
1360 #define CALL_MORECORE(S) MORECORE(S)
1361 #else /* HAVE_MORECORE */
1362 #define CALL_MORECORE(S) MFAIL
1363 #endif /* HAVE_MORECORE */
1365 /* mstate bit set if continguous morecore disabled or failed */
1366 #define USE_NONCONTIGUOUS_BIT (4U)
1368 /* segment bit set in create_mspace_with_base */
1369 #define EXTERN_BIT (8U)
1372 /* --------------------------- Lock preliminaries ------------------------ */
1374 #if USE_LOCKS
1377 When locks are defined, there are up to two global locks:
1379 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
1380 MORECORE. In many cases sys_alloc requires two calls, that should
1381 not be interleaved with calls by other threads. This does not
1382 protect against direct calls to MORECORE by other threads not
1383 using this lock, so there is still code to cope the best we can on
1384 interference.
1386 * magic_init_mutex ensures that mparams.magic and other
1387 unique mparams values are initialized only once.
1390 #ifndef WIN32
1391 /* By default use posix locks */
1392 #include <pthread.h>
1393 #define MLOCK_T pthread_mutex_t
1394 #define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
1395 #define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
1396 #define RELEASE_LOCK(l) pthread_mutex_unlock(l)
1398 #if HAVE_MORECORE
1399 static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
1400 #endif /* HAVE_MORECORE */
1402 static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
1404 #else /* WIN32 */
1406 Because lock-protected regions have bounded times, and there
1407 are no recursive lock calls, we can use simple spinlocks.
1410 #define MLOCK_T long
1411 static int win32_acquire_lock (MLOCK_T *sl) {
1412 for (;;) {
1413 #ifdef InterlockedCompareExchangePointer
1414 if (!InterlockedCompareExchange(sl, 1, 0))
1415 return 0;
1416 #else /* Use older void* version */
1417 if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
1418 return 0;
1419 #endif /* InterlockedCompareExchangePointer */
1420 Sleep (0);
1424 static void win32_release_lock (MLOCK_T *sl) {
1425 InterlockedExchange (sl, 0);
1428 #define INITIAL_LOCK(l) *(l)=0
1429 #define ACQUIRE_LOCK(l) win32_acquire_lock(l)
1430 #define RELEASE_LOCK(l) win32_release_lock(l)
1431 #if HAVE_MORECORE
1432 static MLOCK_T morecore_mutex;
1433 #endif /* HAVE_MORECORE */
1434 static MLOCK_T magic_init_mutex;
1435 #endif /* WIN32 */
1437 #define USE_LOCK_BIT (2U)
1438 #else /* USE_LOCKS */
1439 #define USE_LOCK_BIT (0U)
1440 #define INITIAL_LOCK(l)
1441 #endif /* USE_LOCKS */
1443 #if USE_LOCKS && HAVE_MORECORE
1444 #define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
1445 #define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
1446 #else /* USE_LOCKS && HAVE_MORECORE */
1447 #define ACQUIRE_MORECORE_LOCK()
1448 #define RELEASE_MORECORE_LOCK()
1449 #endif /* USE_LOCKS && HAVE_MORECORE */
1451 #if USE_LOCKS
1452 #define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
1453 #define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
1454 #else /* USE_LOCKS */
1455 #define ACQUIRE_MAGIC_INIT_LOCK()
1456 #define RELEASE_MAGIC_INIT_LOCK()
1457 #endif /* USE_LOCKS */
1460 /* ----------------------- Chunk representations ------------------------ */
1463 (The following includes lightly edited explanations by Colin Plumb.)
1465 The malloc_chunk declaration below is misleading (but accurate and
1466 necessary). It declares a "view" into memory allowing access to
1467 necessary fields at known offsets from a given base.
1469 Chunks of memory are maintained using a `boundary tag' method as
1470 originally described by Knuth. (See the paper by Paul Wilson
1471 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
1472 techniques.) Sizes of free chunks are stored both in the front of
1473 each chunk and at the end. This makes consolidating fragmented
1474 chunks into bigger chunks fast. The head fields also hold bits
1475 representing whether chunks are free or in use.
1477 Here are some pictures to make it clearer. They are "exploded" to
1478 show that the state of a chunk can be thought of as extending from
1479 the high 31 bits of the head field of its header through the
1480 prev_foot and PINUSE_BIT bit of the following chunk header.
1482 A chunk that's in use looks like:
1484 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1485 | Size of previous chunk (if P = 1) |
1486 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1488 | Size of this chunk 1| +-+
1489 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1491 +- -+
1493 +- -+
1495 +- size - sizeof(size_t) available payload bytes -+
1497 chunk-> +- -+
1499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
1501 | Size of next chunk (may or may not be in use) | +-+
1502 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1504 And if it's free, it looks like this:
1506 chunk-> +- -+
1507 | User payload (must be in use, or we would have merged!) |
1508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1510 | Size of this chunk 0| +-+
1511 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1512 | Next pointer |
1513 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1514 | Prev pointer |
1515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1517 +- size - sizeof(struct chunk) unused bytes -+
1519 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1520 | Size of this chunk |
1521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
1523 | Size of next chunk (must be in use, or we would have merged)| +-+
1524 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1526 +- User payload -+
1528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1531 Note that since we always merge adjacent free chunks, the chunks
1532 adjacent to a free chunk must be in use.
1534 Given a pointer to a chunk (which can be derived trivially from the
1535 payload pointer) we can, in O(1) time, find out whether the adjacent
1536 chunks are free, and if so, unlink them from the lists that they
1537 are on and merge them with the current chunk.
1539 Chunks always begin on even word boundaries, so the mem portion
1540 (which is returned to the user) is also on an even word boundary, and
1541 thus at least double-word aligned.
1543 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
1544 chunk size (which is always a multiple of two words), is an in-use
1545 bit for the *previous* chunk. If that bit is *clear*, then the
1546 word before the current chunk size contains the previous chunk
1547 size, and can be used to find the front of the previous chunk.
1548 The very first chunk allocated always has this bit set, preventing
1549 access to non-existent (or non-owned) memory. If pinuse is set for
1550 any given chunk, then you CANNOT determine the size of the
1551 previous chunk, and might even get a memory addressing fault when
1552 trying to do so.
1554 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
1555 the chunk size redundantly records whether the current chunk is
1556 inuse. This redundancy enables usage checks within free and realloc,
1557 and reduces indirection when freeing and consolidating chunks.
1559 Each freshly allocated chunk must have both cinuse and pinuse set.
1560 That is, each allocated chunk borders either a previously allocated
1561 and still in-use chunk, or the base of its memory arena. This is
1562 ensured by making all allocations from the the `lowest' part of any
1563 found chunk. Further, no free chunk physically borders another one,
1564 so each free chunk is known to be preceded and followed by either
1565 inuse chunks or the ends of memory.
1567 Note that the `foot' of the current chunk is actually represented
1568 as the prev_foot of the NEXT chunk. This makes it easier to
1569 deal with alignments etc but can be very confusing when trying
1570 to extend or adapt this code.
1572 The exceptions to all this are
1574 1. The special chunk `top' is the top-most available chunk (i.e.,
1575 the one bordering the end of available memory). It is treated
1576 specially. Top is never included in any bin, is used only if
1577 no other chunk is available, and is released back to the
1578 system if it is very large (see M_TRIM_THRESHOLD). In effect,
1579 the top chunk is treated as larger (and thus less well
1580 fitting) than any other available chunk. The top chunk
1581 doesn't update its trailing size field since there is no next
1582 contiguous chunk that would have to index off it. However,
1583 space is still allocated for it (TOP_FOOT_SIZE) to enable
1584 separation or merging when space is extended.
1586 3. Chunks allocated via mmap, which have the lowest-order bit
1587 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
1588 PINUSE_BIT in their head fields. Because they are allocated
1589 one-by-one, each must carry its own prev_foot field, which is
1590 also used to hold the offset this chunk has within its mmapped
1591 region, which is needed to preserve alignment. Each mmapped
1592 chunk is trailed by the first two fields of a fake next-chunk
1593 for sake of usage checks.
1597 struct malloc_chunk {
1598 size_t prev_foot; /* Size of previous chunk (if free). */
1599 size_t head; /* Size and inuse bits. */
1600 struct malloc_chunk* fd; /* double links -- used only if free. */
1601 struct malloc_chunk* bk;
1604 typedef struct malloc_chunk mchunk;
1605 typedef struct malloc_chunk* mchunkptr;
1606 typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
1607 typedef unsigned int bindex_t; /* Described below */
1608 typedef unsigned int binmap_t; /* Described below */
1609 typedef unsigned int flag_t; /* The type of various bit flag sets */
1611 /* ------------------- Chunks sizes and alignments ----------------------- */
1613 #define MCHUNK_SIZE (sizeof(mchunk))
1615 #if FOOTERS
1616 #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1617 #else /* FOOTERS */
1618 #define CHUNK_OVERHEAD (SIZE_T_SIZE)
1619 #endif /* FOOTERS */
1621 /* MMapped chunks need a second word of overhead ... */
1622 #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1623 /* ... and additional padding for fake next-chunk at foot */
1624 #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
1626 /* The smallest size we can malloc is an aligned minimal chunk */
1627 #define MIN_CHUNK_SIZE\
1628 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1630 /* conversion from malloc headers to user pointers, and back */
1631 #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
1632 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1633 /* chunk associated with aligned address A */
1634 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
1636 /* Bounds on request (not chunk) sizes. */
1637 #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
1638 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1640 /* pad request bytes into a usable size */
1641 #define pad_request(req) \
1642 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1644 /* pad request, checking for minimum (but not maximum) */
1645 #define request2size(req) \
1646 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1649 /* ------------------ Operations on head and foot fields ----------------- */
1652 The head field of a chunk is or'ed with PINUSE_BIT when previous
1653 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1654 use. If the chunk was obtained with mmap, the prev_foot field has
1655 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1656 mmapped region to the base of the chunk.
1659 #define PINUSE_BIT (SIZE_T_ONE)
1660 #define CINUSE_BIT (SIZE_T_TWO)
1661 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1663 /* Head value for fenceposts */
1664 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1666 /* extraction of fields from head words */
1667 #define cinuse(p) ((p)->head & CINUSE_BIT)
1668 #define pinuse(p) ((p)->head & PINUSE_BIT)
1669 #define chunksize(p) ((p)->head & ~(INUSE_BITS))
1671 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1672 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1674 /* Treat space at ptr +/- offset as a chunk */
1675 #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1676 #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1678 /* Ptr to next or previous physical malloc_chunk. */
1679 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1680 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1682 /* extract next chunk's pinuse bit */
1683 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1685 /* Get/set size at footer */
1686 #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1687 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1689 /* Set size, pinuse bit, and foot */
1690 #define set_size_and_pinuse_of_free_chunk(p, s)\
1691 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1693 /* Set size, pinuse bit, foot, and clear next pinuse */
1694 #define set_free_with_pinuse(p, s, n)\
1695 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1697 #define is_mmapped(p)\
1698 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1700 /* Get the internal overhead associated with chunk p */
1701 #define overhead_for(p)\
1702 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1704 /* Return true if malloced space is not necessarily cleared */
1705 #if MMAP_CLEARS
1706 #define calloc_must_clear(p) (!is_mmapped(p))
1707 #else /* MMAP_CLEARS */
1708 #define calloc_must_clear(p) (1)
1709 #endif /* MMAP_CLEARS */
1711 /* ---------------------- Overlaid data structures ----------------------- */
1714 When chunks are not in use, they are treated as nodes of either
1715 lists or trees.
1717 "Small" chunks are stored in circular doubly-linked lists, and look
1718 like this:
1720 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1721 | Size of previous chunk |
1722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1723 `head:' | Size of chunk, in bytes |P|
1724 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1725 | Forward pointer to next chunk in list |
1726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1727 | Back pointer to previous chunk in list |
1728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1729 | Unused space (may be 0 bytes long) .
1732 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1733 `foot:' | Size of chunk, in bytes |
1734 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1736 Larger chunks are kept in a form of bitwise digital trees (aka
1737 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1738 free chunks greater than 256 bytes, their size doesn't impose any
1739 constraints on user chunk sizes. Each node looks like:
1741 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1742 | Size of previous chunk |
1743 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1744 `head:' | Size of chunk, in bytes |P|
1745 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1746 | Forward pointer to next chunk of same size |
1747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1748 | Back pointer to previous chunk of same size |
1749 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1750 | Pointer to left child (child[0]) |
1751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1752 | Pointer to right child (child[1]) |
1753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1754 | Pointer to parent |
1755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1756 | bin index of this chunk |
1757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1758 | Unused space .
1760 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1761 `foot:' | Size of chunk, in bytes |
1762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1764 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1765 of the same size are arranged in a circularly-linked list, with only
1766 the oldest chunk (the next to be used, in our FIFO ordering)
1767 actually in the tree. (Tree members are distinguished by a non-null
1768 parent pointer.) If a chunk with the same size an an existing node
1769 is inserted, it is linked off the existing node using pointers that
1770 work in the same way as fd/bk pointers of small chunks.
1772 Each tree contains a power of 2 sized range of chunk sizes (the
1773 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1774 tree level, with the chunks in the smaller half of the range (0x100
1775 <= x < 0x140 for the top nose) in the left subtree and the larger
1776 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1777 done by inspecting individual bits.
1779 Using these rules, each node's left subtree contains all smaller
1780 sizes than its right subtree. However, the node at the root of each
1781 subtree has no particular ordering relationship to either. (The
1782 dividing line between the subtree sizes is based on trie relation.)
1783 If we remove the last chunk of a given size from the interior of the
1784 tree, we need to replace it with a leaf node. The tree ordering
1785 rules permit a node to be replaced by any leaf below it.
1787 The smallest chunk in a tree (a common operation in a best-fit
1788 allocator) can be found by walking a path to the leftmost leaf in
1789 the tree. Unlike a usual binary tree, where we follow left child
1790 pointers until we reach a null, here we follow the right child
1791 pointer any time the left one is null, until we reach a leaf with
1792 both child pointers null. The smallest chunk in the tree will be
1793 somewhere along that path.
1795 The worst case number of steps to add, find, or remove a node is
1796 bounded by the number of bits differentiating chunks within
1797 bins. Under current bin calculations, this ranges from 6 up to 21
1798 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1799 is of course much better.
1802 struct malloc_tree_chunk {
1803 /* The first four fields must be compatible with malloc_chunk */
1804 size_t prev_foot;
1805 size_t head;
1806 struct malloc_tree_chunk* fd;
1807 struct malloc_tree_chunk* bk;
1809 struct malloc_tree_chunk* child[2];
1810 struct malloc_tree_chunk* parent;
1811 bindex_t index;
1814 typedef struct malloc_tree_chunk tchunk;
1815 typedef struct malloc_tree_chunk* tchunkptr;
1816 typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1818 /* A little helper macro for trees */
1819 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1821 /* ----------------------------- Segments -------------------------------- */
1824 Each malloc space may include non-contiguous segments, held in a
1825 list headed by an embedded malloc_segment record representing the
1826 top-most space. Segments also include flags holding properties of
1827 the space. Large chunks that are directly allocated by mmap are not
1828 included in this list. They are instead independently created and
1829 destroyed without otherwise keeping track of them.
1831 Segment management mainly comes into play for spaces allocated by
1832 MMAP. Any call to MMAP might or might not return memory that is
1833 adjacent to an existing segment. MORECORE normally contiguously
1834 extends the current space, so this space is almost always adjacent,
1835 which is simpler and faster to deal with. (This is why MORECORE is
1836 used preferentially to MMAP when both are available -- see
1837 sys_alloc.) When allocating using MMAP, we don't use any of the
1838 hinting mechanisms (inconsistently) supported in various
1839 implementations of unix mmap, or distinguish reserving from
1840 committing memory. Instead, we just ask for space, and exploit
1841 contiguity when we get it. It is probably possible to do
1842 better than this on some systems, but no general scheme seems
1843 to be significantly better.
1845 Management entails a simpler variant of the consolidation scheme
1846 used for chunks to reduce fragmentation -- new adjacent memory is
1847 normally prepended or appended to an existing segment. However,
1848 there are limitations compared to chunk consolidation that mostly
1849 reflect the fact that segment processing is relatively infrequent
1850 (occurring only when getting memory from system) and that we
1851 don't expect to have huge numbers of segments:
1853 * Segments are not indexed, so traversal requires linear scans. (It
1854 would be possible to index these, but is not worth the extra
1855 overhead and complexity for most programs on most platforms.)
1856 * New segments are only appended to old ones when holding top-most
1857 memory; if they cannot be prepended to others, they are held in
1858 different segments.
1860 Except for the top-most segment of an mstate, each segment record
1861 is kept at the tail of its segment. Segments are added by pushing
1862 segment records onto the list headed by &mstate.seg for the
1863 containing mstate.
1865 Segment flags control allocation/merge/deallocation policies:
1866 * If EXTERN_BIT set, then we did not allocate this segment,
1867 and so should not try to deallocate or merge with others.
1868 (This currently holds only for the initial segment passed
1869 into create_mspace_with_base.)
1870 * If IS_MMAPPED_BIT set, the segment may be merged with
1871 other surrounding mmapped segments and trimmed/de-allocated
1872 using munmap.
1873 * If neither bit is set, then the segment was obtained using
1874 MORECORE so can be merged with surrounding MORECORE'd segments
1875 and deallocated/trimmed using MORECORE with negative arguments.
1878 struct malloc_segment {
1879 char* base; /* base address */
1880 size_t size; /* allocated size */
1881 struct malloc_segment* next; /* ptr to next segment */
1882 #if FFI_MMAP_EXEC_WRIT
1883 /* The mmap magic is supposed to store the address of the executable
1884 segment at the very end of the requested block. */
1886 # define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t)))
1888 /* We can only merge segments if their corresponding executable
1889 segments are at identical offsets. */
1890 # define check_segment_merge(S,b,s) \
1891 (mmap_exec_offset((b),(s)) == (S)->exec_offset)
1893 # define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset)
1894 # define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset)
1896 /* The removal of sflags only works with HAVE_MORECORE == 0. */
1898 # define get_segment_flags(S) (IS_MMAPPED_BIT)
1899 # define set_segment_flags(S,v) \
1900 (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) : \
1901 (((S)->exec_offset = \
1902 mmap_exec_offset((S)->base, (S)->size)), \
1903 (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) != \
1904 (S)->exec_offset) ? (ABORT, (v)) : \
1905 (mmap_exec_offset((S)->base, (S)->size) = 0), (v)))
1907 /* We use an offset here, instead of a pointer, because then, when
1908 base changes, we don't have to modify this. On architectures
1909 with segmented addresses, this might not work. */
1910 ptrdiff_t exec_offset;
1911 #else
1913 # define get_segment_flags(S) ((S)->sflags)
1914 # define set_segment_flags(S,v) ((S)->sflags = (v))
1915 # define check_segment_merge(S,b,s) (1)
1917 flag_t sflags; /* mmap and extern flag */
1918 #endif
1921 #define is_mmapped_segment(S) (get_segment_flags(S) & IS_MMAPPED_BIT)
1922 #define is_extern_segment(S) (get_segment_flags(S) & EXTERN_BIT)
1924 typedef struct malloc_segment msegment;
1925 typedef struct malloc_segment* msegmentptr;
1927 /* ---------------------------- malloc_state ----------------------------- */
1930 A malloc_state holds all of the bookkeeping for a space.
1931 The main fields are:
1934 The topmost chunk of the currently active segment. Its size is
1935 cached in topsize. The actual size of topmost space is
1936 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1937 fenceposts and segment records if necessary when getting more
1938 space from the system. The size at which to autotrim top is
1939 cached from mparams in trim_check, except that it is disabled if
1940 an autotrim fails.
1942 Designated victim (dv)
1943 This is the preferred chunk for servicing small requests that
1944 don't have exact fits. It is normally the chunk split off most
1945 recently to service another small request. Its size is cached in
1946 dvsize. The link fields of this chunk are not maintained since it
1947 is not kept in a bin.
1949 SmallBins
1950 An array of bin headers for free chunks. These bins hold chunks
1951 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1952 chunks of all the same size, spaced 8 bytes apart. To simplify
1953 use in double-linked lists, each bin header acts as a malloc_chunk
1954 pointing to the real first node, if it exists (else pointing to
1955 itself). This avoids special-casing for headers. But to avoid
1956 waste, we allocate only the fd/bk pointers of bins, and then use
1957 repositioning tricks to treat these as the fields of a chunk.
1959 TreeBins
1960 Treebins are pointers to the roots of trees holding a range of
1961 sizes. There are 2 equally spaced treebins for each power of two
1962 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1963 larger.
1965 Bin maps
1966 There is one bit map for small bins ("smallmap") and one for
1967 treebins ("treemap). Each bin sets its bit when non-empty, and
1968 clears the bit when empty. Bit operations are then used to avoid
1969 bin-by-bin searching -- nearly all "search" is done without ever
1970 looking at bins that won't be selected. The bit maps
1971 conservatively use 32 bits per map word, even if on 64bit system.
1972 For a good description of some of the bit-based techniques used
1973 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1974 supplement at http://hackersdelight.org/). Many of these are
1975 intended to reduce the branchiness of paths through malloc etc, as
1976 well as to reduce the number of memory locations read or written.
1978 Segments
1979 A list of segments headed by an embedded malloc_segment record
1980 representing the initial space.
1982 Address check support
1983 The least_addr field is the least address ever obtained from
1984 MORECORE or MMAP. Attempted frees and reallocs of any address less
1985 than this are trapped (unless INSECURE is defined).
1987 Magic tag
1988 A cross-check field that should always hold same value as mparams.magic.
1990 Flags
1991 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1993 Statistics
1994 Each space keeps track of current and maximum system memory
1995 obtained via MORECORE or MMAP.
1997 Locking
1998 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1999 around every public call using this mspace.
2002 /* Bin types, widths and sizes */
2003 #define NSMALLBINS (32U)
2004 #define NTREEBINS (32U)
2005 #define SMALLBIN_SHIFT (3U)
2006 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
2007 #define TREEBIN_SHIFT (8U)
2008 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
2009 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
2010 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2012 struct malloc_state {
2013 binmap_t smallmap;
2014 binmap_t treemap;
2015 size_t dvsize;
2016 size_t topsize;
2017 char* least_addr;
2018 mchunkptr dv;
2019 mchunkptr top;
2020 size_t trim_check;
2021 size_t magic;
2022 mchunkptr smallbins[(NSMALLBINS+1)*2];
2023 tbinptr treebins[NTREEBINS];
2024 size_t footprint;
2025 size_t max_footprint;
2026 flag_t mflags;
2027 #if USE_LOCKS
2028 MLOCK_T mutex; /* locate lock among fields that rarely change */
2029 #endif /* USE_LOCKS */
2030 msegment seg;
2033 typedef struct malloc_state* mstate;
2035 /* ------------- Global malloc_state and malloc_params ------------------- */
2038 malloc_params holds global properties, including those that can be
2039 dynamically set using mallopt. There is a single instance, mparams,
2040 initialized in init_mparams.
2043 struct malloc_params {
2044 size_t magic;
2045 size_t page_size;
2046 size_t granularity;
2047 size_t mmap_threshold;
2048 size_t trim_threshold;
2049 flag_t default_mflags;
2052 static struct malloc_params mparams;
2054 /* The global malloc_state used for all non-"mspace" calls */
2055 static struct malloc_state _gm_;
2056 #define gm (&_gm_)
2057 #define is_global(M) ((M) == &_gm_)
2058 #define is_initialized(M) ((M)->top != 0)
2060 /* -------------------------- system alloc setup ------------------------- */
2062 /* Operations on mflags */
2064 #define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2065 #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2066 #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2068 #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2069 #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2070 #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2072 #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2073 #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2075 #define set_lock(M,L)\
2076 ((M)->mflags = (L)?\
2077 ((M)->mflags | USE_LOCK_BIT) :\
2078 ((M)->mflags & ~USE_LOCK_BIT))
2080 /* page-align a size */
2081 #define page_align(S)\
2082 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
2084 /* granularity-align a size */
2085 #define granularity_align(S)\
2086 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
2088 #define is_page_aligned(S)\
2089 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2090 #define is_granularity_aligned(S)\
2091 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2093 /* True if segment S holds address A */
2094 #define segment_holds(S, A)\
2095 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2097 /* Return segment holding given address */
2098 static msegmentptr segment_holding(mstate m, char* addr) {
2099 msegmentptr sp = &m->seg;
2100 for (;;) {
2101 if (addr >= sp->base && addr < sp->base + sp->size)
2102 return sp;
2103 if ((sp = sp->next) == 0)
2104 return 0;
2108 /* Return true if segment contains a segment link */
2109 static int has_segment_link(mstate m, msegmentptr ss) {
2110 msegmentptr sp = &m->seg;
2111 for (;;) {
2112 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2113 return 1;
2114 if ((sp = sp->next) == 0)
2115 return 0;
2119 #ifndef MORECORE_CANNOT_TRIM
2120 #define should_trim(M,s) ((s) > (M)->trim_check)
2121 #else /* MORECORE_CANNOT_TRIM */
2122 #define should_trim(M,s) (0)
2123 #endif /* MORECORE_CANNOT_TRIM */
2126 TOP_FOOT_SIZE is padding at the end of a segment, including space
2127 that may be needed to place segment records and fenceposts when new
2128 noncontiguous segments are added.
2130 #define TOP_FOOT_SIZE\
2131 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2134 /* ------------------------------- Hooks -------------------------------- */
2137 PREACTION should be defined to return 0 on success, and nonzero on
2138 failure. If you are not using locking, you can redefine these to do
2139 anything you like.
2142 #if USE_LOCKS
2144 /* Ensure locks are initialized */
2145 #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
2147 #define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2148 #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2149 #else /* USE_LOCKS */
2151 #ifndef PREACTION
2152 #define PREACTION(M) (0)
2153 #endif /* PREACTION */
2155 #ifndef POSTACTION
2156 #define POSTACTION(M)
2157 #endif /* POSTACTION */
2159 #endif /* USE_LOCKS */
2162 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2163 USAGE_ERROR_ACTION is triggered on detected bad frees and
2164 reallocs. The argument p is an address that might have triggered the
2165 fault. It is ignored by the two predefined actions, but might be
2166 useful in custom actions that try to help diagnose errors.
2169 #if PROCEED_ON_ERROR
2171 /* A count of the number of corruption errors causing resets */
2172 int malloc_corruption_error_count;
2174 /* default corruption action */
2175 static void reset_on_error(mstate m);
2177 #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2178 #define USAGE_ERROR_ACTION(m, p)
2180 #else /* PROCEED_ON_ERROR */
2182 #ifndef CORRUPTION_ERROR_ACTION
2183 #define CORRUPTION_ERROR_ACTION(m) ABORT
2184 #endif /* CORRUPTION_ERROR_ACTION */
2186 #ifndef USAGE_ERROR_ACTION
2187 #define USAGE_ERROR_ACTION(m,p) ABORT
2188 #endif /* USAGE_ERROR_ACTION */
2190 #endif /* PROCEED_ON_ERROR */
2192 /* -------------------------- Debugging setup ---------------------------- */
2194 #if ! DEBUG
2196 #define check_free_chunk(M,P)
2197 #define check_inuse_chunk(M,P)
2198 #define check_malloced_chunk(M,P,N)
2199 #define check_mmapped_chunk(M,P)
2200 #define check_malloc_state(M)
2201 #define check_top_chunk(M,P)
2203 #else /* DEBUG */
2204 #define check_free_chunk(M,P) do_check_free_chunk(M,P)
2205 #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2206 #define check_top_chunk(M,P) do_check_top_chunk(M,P)
2207 #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2208 #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2209 #define check_malloc_state(M) do_check_malloc_state(M)
2211 static void do_check_any_chunk(mstate m, mchunkptr p);
2212 static void do_check_top_chunk(mstate m, mchunkptr p);
2213 static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2214 static void do_check_inuse_chunk(mstate m, mchunkptr p);
2215 static void do_check_free_chunk(mstate m, mchunkptr p);
2216 static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2217 static void do_check_tree(mstate m, tchunkptr t);
2218 static void do_check_treebin(mstate m, bindex_t i);
2219 static void do_check_smallbin(mstate m, bindex_t i);
2220 static void do_check_malloc_state(mstate m);
2221 static int bin_find(mstate m, mchunkptr x);
2222 static size_t traverse_and_check(mstate m);
2223 #endif /* DEBUG */
2225 /* ---------------------------- Indexing Bins ---------------------------- */
2227 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2228 #define small_index(s) ((s) >> SMALLBIN_SHIFT)
2229 #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2230 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2232 /* addressing by index. See above about smallbin repositioning */
2233 #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2234 #define treebin_at(M,i) (&((M)->treebins[i]))
2236 /* assign tree index for size S to variable I */
2237 #if defined(__GNUC__) && defined(i386)
2238 #define compute_tree_index(S, I)\
2240 size_t X = S >> TREEBIN_SHIFT;\
2241 if (X == 0)\
2242 I = 0;\
2243 else if (X > 0xFFFF)\
2244 I = NTREEBINS-1;\
2245 else {\
2246 unsigned int K;\
2247 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
2248 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2251 #else /* GNUC */
2252 #define compute_tree_index(S, I)\
2254 size_t X = S >> TREEBIN_SHIFT;\
2255 if (X == 0)\
2256 I = 0;\
2257 else if (X > 0xFFFF)\
2258 I = NTREEBINS-1;\
2259 else {\
2260 unsigned int Y = (unsigned int)X;\
2261 unsigned int N = ((Y - 0x100) >> 16) & 8;\
2262 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2263 N += K;\
2264 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2265 K = 14 - N + ((Y <<= K) >> 15);\
2266 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2269 #endif /* GNUC */
2271 /* Bit representing maximum resolved size in a treebin at i */
2272 #define bit_for_tree_index(i) \
2273 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2275 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
2276 #define leftshift_for_tree_index(i) \
2277 ((i == NTREEBINS-1)? 0 : \
2278 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2280 /* The size of the smallest chunk held in bin with index i */
2281 #define minsize_for_tree_index(i) \
2282 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2283 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2286 /* ------------------------ Operations on bin maps ----------------------- */
2288 /* bit corresponding to given index */
2289 #define idx2bit(i) ((binmap_t)(1) << (i))
2291 /* Mark/Clear bits with given index */
2292 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2293 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2294 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2296 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2297 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2298 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2300 /* index corresponding to given bit */
2302 #if defined(__GNUC__) && defined(i386)
2303 #define compute_bit2idx(X, I)\
2305 unsigned int J;\
2306 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
2307 I = (bindex_t)J;\
2310 #else /* GNUC */
2311 #if USE_BUILTIN_FFS
2312 #define compute_bit2idx(X, I) I = ffs(X)-1
2314 #else /* USE_BUILTIN_FFS */
2315 #define compute_bit2idx(X, I)\
2317 unsigned int Y = X - 1;\
2318 unsigned int K = Y >> (16-4) & 16;\
2319 unsigned int N = K; Y >>= K;\
2320 N += K = Y >> (8-3) & 8; Y >>= K;\
2321 N += K = Y >> (4-2) & 4; Y >>= K;\
2322 N += K = Y >> (2-1) & 2; Y >>= K;\
2323 N += K = Y >> (1-0) & 1; Y >>= K;\
2324 I = (bindex_t)(N + Y);\
2326 #endif /* USE_BUILTIN_FFS */
2327 #endif /* GNUC */
2329 /* isolate the least set bit of a bitmap */
2330 #define least_bit(x) ((x) & -(x))
2332 /* mask with all bits to left of least bit of x on */
2333 #define left_bits(x) ((x<<1) | -(x<<1))
2335 /* mask with all bits to left of or equal to least bit of x on */
2336 #define same_or_left_bits(x) ((x) | -(x))
2339 /* ----------------------- Runtime Check Support ------------------------- */
2342 For security, the main invariant is that malloc/free/etc never
2343 writes to a static address other than malloc_state, unless static
2344 malloc_state itself has been corrupted, which cannot occur via
2345 malloc (because of these checks). In essence this means that we
2346 believe all pointers, sizes, maps etc held in malloc_state, but
2347 check all of those linked or offsetted from other embedded data
2348 structures. These checks are interspersed with main code in a way
2349 that tends to minimize their run-time cost.
2351 When FOOTERS is defined, in addition to range checking, we also
2352 verify footer fields of inuse chunks, which can be used guarantee
2353 that the mstate controlling malloc/free is intact. This is a
2354 streamlined version of the approach described by William Robertson
2355 et al in "Run-time Detection of Heap-based Overflows" LISA'03
2356 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2357 of an inuse chunk holds the xor of its mstate and a random seed,
2358 that is checked upon calls to free() and realloc(). This is
2359 (probablistically) unguessable from outside the program, but can be
2360 computed by any code successfully malloc'ing any chunk, so does not
2361 itself provide protection against code that has already broken
2362 security through some other means. Unlike Robertson et al, we
2363 always dynamically check addresses of all offset chunks (previous,
2364 next, etc). This turns out to be cheaper than relying on hashes.
2367 #if !INSECURE
2368 /* Check if address a is at least as high as any from MORECORE or MMAP */
2369 #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
2370 /* Check if address of next chunk n is higher than base chunk p */
2371 #define ok_next(p, n) ((char*)(p) < (char*)(n))
2372 /* Check if p has its cinuse bit on */
2373 #define ok_cinuse(p) cinuse(p)
2374 /* Check if p has its pinuse bit on */
2375 #define ok_pinuse(p) pinuse(p)
2377 #else /* !INSECURE */
2378 #define ok_address(M, a) (1)
2379 #define ok_next(b, n) (1)
2380 #define ok_cinuse(p) (1)
2381 #define ok_pinuse(p) (1)
2382 #endif /* !INSECURE */
2384 #if (FOOTERS && !INSECURE)
2385 /* Check if (alleged) mstate m has expected magic field */
2386 #define ok_magic(M) ((M)->magic == mparams.magic)
2387 #else /* (FOOTERS && !INSECURE) */
2388 #define ok_magic(M) (1)
2389 #endif /* (FOOTERS && !INSECURE) */
2392 /* In gcc, use __builtin_expect to minimize impact of checks */
2393 #if !INSECURE
2394 #if defined(__GNUC__) && __GNUC__ >= 3
2395 #define RTCHECK(e) __builtin_expect(e, 1)
2396 #else /* GNUC */
2397 #define RTCHECK(e) (e)
2398 #endif /* GNUC */
2399 #else /* !INSECURE */
2400 #define RTCHECK(e) (1)
2401 #endif /* !INSECURE */
2403 /* macros to set up inuse chunks with or without footers */
2405 #if !FOOTERS
2407 #define mark_inuse_foot(M,p,s)
2409 /* Set cinuse bit and pinuse bit of next chunk */
2410 #define set_inuse(M,p,s)\
2411 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2412 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2414 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
2415 #define set_inuse_and_pinuse(M,p,s)\
2416 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2417 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2419 /* Set size, cinuse and pinuse bit of this chunk */
2420 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2421 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
2423 #else /* FOOTERS */
2425 /* Set foot of inuse chunk to be xor of mstate and seed */
2426 #define mark_inuse_foot(M,p,s)\
2427 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
2429 #define get_mstate_for(p)\
2430 ((mstate)(((mchunkptr)((char*)(p) +\
2431 (chunksize(p))))->prev_foot ^ mparams.magic))
2433 #define set_inuse(M,p,s)\
2434 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2435 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
2436 mark_inuse_foot(M,p,s))
2438 #define set_inuse_and_pinuse(M,p,s)\
2439 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2440 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
2441 mark_inuse_foot(M,p,s))
2443 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2444 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2445 mark_inuse_foot(M, p, s))
2447 #endif /* !FOOTERS */
2449 /* ---------------------------- setting mparams -------------------------- */
2451 /* Initialize mparams */
2452 static int init_mparams(void) {
2453 if (mparams.page_size == 0) {
2454 size_t s;
2456 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
2457 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
2458 #if MORECORE_CONTIGUOUS
2459 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
2460 #else /* MORECORE_CONTIGUOUS */
2461 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
2462 #endif /* MORECORE_CONTIGUOUS */
2464 #if (FOOTERS && !INSECURE)
2466 #if USE_DEV_RANDOM
2467 int fd;
2468 unsigned char buf[sizeof(size_t)];
2469 /* Try to use /dev/urandom, else fall back on using time */
2470 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
2471 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
2472 s = *((size_t *) buf);
2473 close(fd);
2475 else
2476 #endif /* USE_DEV_RANDOM */
2477 s = (size_t)(time(0) ^ (size_t)0x55555555U);
2479 s |= (size_t)8U; /* ensure nonzero */
2480 s &= ~(size_t)7U; /* improve chances of fault for bad values */
2483 #else /* (FOOTERS && !INSECURE) */
2484 s = (size_t)0x58585858U;
2485 #endif /* (FOOTERS && !INSECURE) */
2486 ACQUIRE_MAGIC_INIT_LOCK();
2487 if (mparams.magic == 0) {
2488 mparams.magic = s;
2489 /* Set up lock for main malloc area */
2490 INITIAL_LOCK(&gm->mutex);
2491 gm->mflags = mparams.default_mflags;
2493 RELEASE_MAGIC_INIT_LOCK();
2495 #ifndef WIN32
2496 mparams.page_size = malloc_getpagesize;
2497 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
2498 DEFAULT_GRANULARITY : mparams.page_size);
2499 #else /* WIN32 */
2501 SYSTEM_INFO system_info;
2502 GetSystemInfo(&system_info);
2503 mparams.page_size = system_info.dwPageSize;
2504 mparams.granularity = system_info.dwAllocationGranularity;
2506 #endif /* WIN32 */
2508 /* Sanity-check configuration:
2509 size_t must be unsigned and as wide as pointer type.
2510 ints must be at least 4 bytes.
2511 alignment must be at least 8.
2512 Alignment, min chunk size, and page size must all be powers of 2.
2514 if ((sizeof(size_t) != sizeof(char*)) ||
2515 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
2516 (sizeof(int) < 4) ||
2517 (MALLOC_ALIGNMENT < (size_t)8U) ||
2518 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
2519 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
2520 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
2521 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
2522 ABORT;
2524 return 0;
2527 /* support for mallopt */
2528 static int change_mparam(int param_number, int value) {
2529 size_t val = (size_t)value;
2530 init_mparams();
2531 switch(param_number) {
2532 case M_TRIM_THRESHOLD:
2533 mparams.trim_threshold = val;
2534 return 1;
2535 case M_GRANULARITY:
2536 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
2537 mparams.granularity = val;
2538 return 1;
2540 else
2541 return 0;
2542 case M_MMAP_THRESHOLD:
2543 mparams.mmap_threshold = val;
2544 return 1;
2545 default:
2546 return 0;
2550 #if DEBUG
2551 /* ------------------------- Debugging Support --------------------------- */
2553 /* Check properties of any chunk, whether free, inuse, mmapped etc */
2554 static void do_check_any_chunk(mstate m, mchunkptr p) {
2555 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2556 assert(ok_address(m, p));
2559 /* Check properties of top chunk */
2560 static void do_check_top_chunk(mstate m, mchunkptr p) {
2561 msegmentptr sp = segment_holding(m, (char*)p);
2562 size_t sz = chunksize(p);
2563 assert(sp != 0);
2564 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2565 assert(ok_address(m, p));
2566 assert(sz == m->topsize);
2567 assert(sz > 0);
2568 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
2569 assert(pinuse(p));
2570 assert(!next_pinuse(p));
2573 /* Check properties of (inuse) mmapped chunks */
2574 static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
2575 size_t sz = chunksize(p);
2576 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
2577 assert(is_mmapped(p));
2578 assert(use_mmap(m));
2579 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2580 assert(ok_address(m, p));
2581 assert(!is_small(sz));
2582 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
2583 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
2584 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
2587 /* Check properties of inuse chunks */
2588 static void do_check_inuse_chunk(mstate m, mchunkptr p) {
2589 do_check_any_chunk(m, p);
2590 assert(cinuse(p));
2591 assert(next_pinuse(p));
2592 /* If not pinuse and not mmapped, previous chunk has OK offset */
2593 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
2594 if (is_mmapped(p))
2595 do_check_mmapped_chunk(m, p);
2598 /* Check properties of free chunks */
2599 static void do_check_free_chunk(mstate m, mchunkptr p) {
2600 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2601 mchunkptr next = chunk_plus_offset(p, sz);
2602 do_check_any_chunk(m, p);
2603 assert(!cinuse(p));
2604 assert(!next_pinuse(p));
2605 assert (!is_mmapped(p));
2606 if (p != m->dv && p != m->top) {
2607 if (sz >= MIN_CHUNK_SIZE) {
2608 assert((sz & CHUNK_ALIGN_MASK) == 0);
2609 assert(is_aligned(chunk2mem(p)));
2610 assert(next->prev_foot == sz);
2611 assert(pinuse(p));
2612 assert (next == m->top || cinuse(next));
2613 assert(p->fd->bk == p);
2614 assert(p->bk->fd == p);
2616 else /* markers are always of size SIZE_T_SIZE */
2617 assert(sz == SIZE_T_SIZE);
2621 /* Check properties of malloced chunks at the point they are malloced */
2622 static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
2623 if (mem != 0) {
2624 mchunkptr p = mem2chunk(mem);
2625 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2626 do_check_inuse_chunk(m, p);
2627 assert((sz & CHUNK_ALIGN_MASK) == 0);
2628 assert(sz >= MIN_CHUNK_SIZE);
2629 assert(sz >= s);
2630 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
2631 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
2635 /* Check a tree and its subtrees. */
2636 static void do_check_tree(mstate m, tchunkptr t) {
2637 tchunkptr head = 0;
2638 tchunkptr u = t;
2639 bindex_t tindex = t->index;
2640 size_t tsize = chunksize(t);
2641 bindex_t idx;
2642 compute_tree_index(tsize, idx);
2643 assert(tindex == idx);
2644 assert(tsize >= MIN_LARGE_SIZE);
2645 assert(tsize >= minsize_for_tree_index(idx));
2646 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
2648 do { /* traverse through chain of same-sized nodes */
2649 do_check_any_chunk(m, ((mchunkptr)u));
2650 assert(u->index == tindex);
2651 assert(chunksize(u) == tsize);
2652 assert(!cinuse(u));
2653 assert(!next_pinuse(u));
2654 assert(u->fd->bk == u);
2655 assert(u->bk->fd == u);
2656 if (u->parent == 0) {
2657 assert(u->child[0] == 0);
2658 assert(u->child[1] == 0);
2660 else {
2661 assert(head == 0); /* only one node on chain has parent */
2662 head = u;
2663 assert(u->parent != u);
2664 assert (u->parent->child[0] == u ||
2665 u->parent->child[1] == u ||
2666 *((tbinptr*)(u->parent)) == u);
2667 if (u->child[0] != 0) {
2668 assert(u->child[0]->parent == u);
2669 assert(u->child[0] != u);
2670 do_check_tree(m, u->child[0]);
2672 if (u->child[1] != 0) {
2673 assert(u->child[1]->parent == u);
2674 assert(u->child[1] != u);
2675 do_check_tree(m, u->child[1]);
2677 if (u->child[0] != 0 && u->child[1] != 0) {
2678 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2681 u = u->fd;
2682 } while (u != t);
2683 assert(head != 0);
2686 /* Check all the chunks in a treebin. */
2687 static void do_check_treebin(mstate m, bindex_t i) {
2688 tbinptr* tb = treebin_at(m, i);
2689 tchunkptr t = *tb;
2690 int empty = (m->treemap & (1U << i)) == 0;
2691 if (t == 0)
2692 assert(empty);
2693 if (!empty)
2694 do_check_tree(m, t);
2697 /* Check all the chunks in a smallbin. */
2698 static void do_check_smallbin(mstate m, bindex_t i) {
2699 sbinptr b = smallbin_at(m, i);
2700 mchunkptr p = b->bk;
2701 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2702 if (p == b)
2703 assert(empty);
2704 if (!empty) {
2705 for (; p != b; p = p->bk) {
2706 size_t size = chunksize(p);
2707 mchunkptr q;
2708 /* each chunk claims to be free */
2709 do_check_free_chunk(m, p);
2710 /* chunk belongs in bin */
2711 assert(small_index(size) == i);
2712 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2713 /* chunk is followed by an inuse chunk */
2714 q = next_chunk(p);
2715 if (q->head != FENCEPOST_HEAD)
2716 do_check_inuse_chunk(m, q);
2721 /* Find x in a bin. Used in other check functions. */
2722 static int bin_find(mstate m, mchunkptr x) {
2723 size_t size = chunksize(x);
2724 if (is_small(size)) {
2725 bindex_t sidx = small_index(size);
2726 sbinptr b = smallbin_at(m, sidx);
2727 if (smallmap_is_marked(m, sidx)) {
2728 mchunkptr p = b;
2729 do {
2730 if (p == x)
2731 return 1;
2732 } while ((p = p->fd) != b);
2735 else {
2736 bindex_t tidx;
2737 compute_tree_index(size, tidx);
2738 if (treemap_is_marked(m, tidx)) {
2739 tchunkptr t = *treebin_at(m, tidx);
2740 size_t sizebits = size << leftshift_for_tree_index(tidx);
2741 while (t != 0 && chunksize(t) != size) {
2742 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2743 sizebits <<= 1;
2745 if (t != 0) {
2746 tchunkptr u = t;
2747 do {
2748 if (u == (tchunkptr)x)
2749 return 1;
2750 } while ((u = u->fd) != t);
2754 return 0;
2757 /* Traverse each chunk and check it; return total */
2758 static size_t traverse_and_check(mstate m) {
2759 size_t sum = 0;
2760 if (is_initialized(m)) {
2761 msegmentptr s = &m->seg;
2762 sum += m->topsize + TOP_FOOT_SIZE;
2763 while (s != 0) {
2764 mchunkptr q = align_as_chunk(s->base);
2765 mchunkptr lastq = 0;
2766 assert(pinuse(q));
2767 while (segment_holds(s, q) &&
2768 q != m->top && q->head != FENCEPOST_HEAD) {
2769 sum += chunksize(q);
2770 if (cinuse(q)) {
2771 assert(!bin_find(m, q));
2772 do_check_inuse_chunk(m, q);
2774 else {
2775 assert(q == m->dv || bin_find(m, q));
2776 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2777 do_check_free_chunk(m, q);
2779 lastq = q;
2780 q = next_chunk(q);
2782 s = s->next;
2785 return sum;
2788 /* Check all properties of malloc_state. */
2789 static void do_check_malloc_state(mstate m) {
2790 bindex_t i;
2791 size_t total;
2792 /* check bins */
2793 for (i = 0; i < NSMALLBINS; ++i)
2794 do_check_smallbin(m, i);
2795 for (i = 0; i < NTREEBINS; ++i)
2796 do_check_treebin(m, i);
2798 if (m->dvsize != 0) { /* check dv chunk */
2799 do_check_any_chunk(m, m->dv);
2800 assert(m->dvsize == chunksize(m->dv));
2801 assert(m->dvsize >= MIN_CHUNK_SIZE);
2802 assert(bin_find(m, m->dv) == 0);
2805 if (m->top != 0) { /* check top chunk */
2806 do_check_top_chunk(m, m->top);
2807 assert(m->topsize == chunksize(m->top));
2808 assert(m->topsize > 0);
2809 assert(bin_find(m, m->top) == 0);
2812 total = traverse_and_check(m);
2813 assert(total <= m->footprint);
2814 assert(m->footprint <= m->max_footprint);
2816 #endif /* DEBUG */
2818 /* ----------------------------- statistics ------------------------------ */
2820 #if !NO_MALLINFO
2821 static struct mallinfo internal_mallinfo(mstate m) {
2822 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2823 if (!PREACTION(m)) {
2824 check_malloc_state(m);
2825 if (is_initialized(m)) {
2826 size_t nfree = SIZE_T_ONE; /* top always free */
2827 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2828 size_t sum = mfree;
2829 msegmentptr s = &m->seg;
2830 while (s != 0) {
2831 mchunkptr q = align_as_chunk(s->base);
2832 while (segment_holds(s, q) &&
2833 q != m->top && q->head != FENCEPOST_HEAD) {
2834 size_t sz = chunksize(q);
2835 sum += sz;
2836 if (!cinuse(q)) {
2837 mfree += sz;
2838 ++nfree;
2840 q = next_chunk(q);
2842 s = s->next;
2845 nm.arena = sum;
2846 nm.ordblks = nfree;
2847 nm.hblkhd = m->footprint - sum;
2848 nm.usmblks = m->max_footprint;
2849 nm.uordblks = m->footprint - mfree;
2850 nm.fordblks = mfree;
2851 nm.keepcost = m->topsize;
2854 POSTACTION(m);
2856 return nm;
2858 #endif /* !NO_MALLINFO */
2860 static void internal_malloc_stats(mstate m) {
2861 if (!PREACTION(m)) {
2862 size_t maxfp = 0;
2863 size_t fp = 0;
2864 size_t used = 0;
2865 check_malloc_state(m);
2866 if (is_initialized(m)) {
2867 msegmentptr s = &m->seg;
2868 maxfp = m->max_footprint;
2869 fp = m->footprint;
2870 used = fp - (m->topsize + TOP_FOOT_SIZE);
2872 while (s != 0) {
2873 mchunkptr q = align_as_chunk(s->base);
2874 while (segment_holds(s, q) &&
2875 q != m->top && q->head != FENCEPOST_HEAD) {
2876 if (!cinuse(q))
2877 used -= chunksize(q);
2878 q = next_chunk(q);
2880 s = s->next;
2884 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2885 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2886 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2888 POSTACTION(m);
2892 /* ----------------------- Operations on smallbins ----------------------- */
2895 Various forms of linking and unlinking are defined as macros. Even
2896 the ones for trees, which are very long but have very short typical
2897 paths. This is ugly but reduces reliance on inlining support of
2898 compilers.
2901 /* Link a free chunk into a smallbin */
2902 #define insert_small_chunk(M, P, S) {\
2903 bindex_t I = small_index(S);\
2904 mchunkptr B = smallbin_at(M, I);\
2905 mchunkptr F = B;\
2906 assert(S >= MIN_CHUNK_SIZE);\
2907 if (!smallmap_is_marked(M, I))\
2908 mark_smallmap(M, I);\
2909 else if (RTCHECK(ok_address(M, B->fd)))\
2910 F = B->fd;\
2911 else {\
2912 CORRUPTION_ERROR_ACTION(M);\
2914 B->fd = P;\
2915 F->bk = P;\
2916 P->fd = F;\
2917 P->bk = B;\
2920 /* Unlink a chunk from a smallbin */
2921 #define unlink_small_chunk(M, P, S) {\
2922 mchunkptr F = P->fd;\
2923 mchunkptr B = P->bk;\
2924 bindex_t I = small_index(S);\
2925 assert(P != B);\
2926 assert(P != F);\
2927 assert(chunksize(P) == small_index2size(I));\
2928 if (F == B)\
2929 clear_smallmap(M, I);\
2930 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2931 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2932 F->bk = B;\
2933 B->fd = F;\
2935 else {\
2936 CORRUPTION_ERROR_ACTION(M);\
2940 /* Unlink the first chunk from a smallbin */
2941 #define unlink_first_small_chunk(M, B, P, I) {\
2942 mchunkptr F = P->fd;\
2943 assert(P != B);\
2944 assert(P != F);\
2945 assert(chunksize(P) == small_index2size(I));\
2946 if (B == F)\
2947 clear_smallmap(M, I);\
2948 else if (RTCHECK(ok_address(M, F))) {\
2949 B->fd = F;\
2950 F->bk = B;\
2952 else {\
2953 CORRUPTION_ERROR_ACTION(M);\
2957 /* Replace dv node, binning the old one */
2958 /* Used only when dvsize known to be small */
2959 #define replace_dv(M, P, S) {\
2960 size_t DVS = M->dvsize;\
2961 if (DVS != 0) {\
2962 mchunkptr DV = M->dv;\
2963 assert(is_small(DVS));\
2964 insert_small_chunk(M, DV, DVS);\
2966 M->dvsize = S;\
2967 M->dv = P;\
2970 /* ------------------------- Operations on trees ------------------------- */
2972 /* Insert chunk into tree */
2973 #define insert_large_chunk(M, X, S) {\
2974 tbinptr* H;\
2975 bindex_t I;\
2976 compute_tree_index(S, I);\
2977 H = treebin_at(M, I);\
2978 X->index = I;\
2979 X->child[0] = X->child[1] = 0;\
2980 if (!treemap_is_marked(M, I)) {\
2981 mark_treemap(M, I);\
2982 *H = X;\
2983 X->parent = (tchunkptr)H;\
2984 X->fd = X->bk = X;\
2986 else {\
2987 tchunkptr T = *H;\
2988 size_t K = S << leftshift_for_tree_index(I);\
2989 for (;;) {\
2990 if (chunksize(T) != S) {\
2991 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2992 K <<= 1;\
2993 if (*C != 0)\
2994 T = *C;\
2995 else if (RTCHECK(ok_address(M, C))) {\
2996 *C = X;\
2997 X->parent = T;\
2998 X->fd = X->bk = X;\
2999 break;\
3001 else {\
3002 CORRUPTION_ERROR_ACTION(M);\
3003 break;\
3006 else {\
3007 tchunkptr F = T->fd;\
3008 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3009 T->fd = F->bk = X;\
3010 X->fd = F;\
3011 X->bk = T;\
3012 X->parent = 0;\
3013 break;\
3015 else {\
3016 CORRUPTION_ERROR_ACTION(M);\
3017 break;\
3025 Unlink steps:
3027 1. If x is a chained node, unlink it from its same-sized fd/bk links
3028 and choose its bk node as its replacement.
3029 2. If x was the last node of its size, but not a leaf node, it must
3030 be replaced with a leaf node (not merely one with an open left or
3031 right), to make sure that lefts and rights of descendents
3032 correspond properly to bit masks. We use the rightmost descendent
3033 of x. We could use any other leaf, but this is easy to locate and
3034 tends to counteract removal of leftmosts elsewhere, and so keeps
3035 paths shorter than minimally guaranteed. This doesn't loop much
3036 because on average a node in a tree is near the bottom.
3037 3. If x is the base of a chain (i.e., has parent links) relink
3038 x's parent and children to x's replacement (or null if none).
3041 #define unlink_large_chunk(M, X) {\
3042 tchunkptr XP = X->parent;\
3043 tchunkptr R;\
3044 if (X->bk != X) {\
3045 tchunkptr F = X->fd;\
3046 R = X->bk;\
3047 if (RTCHECK(ok_address(M, F))) {\
3048 F->bk = R;\
3049 R->fd = F;\
3051 else {\
3052 CORRUPTION_ERROR_ACTION(M);\
3055 else {\
3056 tchunkptr* RP;\
3057 if (((R = *(RP = &(X->child[1]))) != 0) ||\
3058 ((R = *(RP = &(X->child[0]))) != 0)) {\
3059 tchunkptr* CP;\
3060 while ((*(CP = &(R->child[1])) != 0) ||\
3061 (*(CP = &(R->child[0])) != 0)) {\
3062 R = *(RP = CP);\
3064 if (RTCHECK(ok_address(M, RP)))\
3065 *RP = 0;\
3066 else {\
3067 CORRUPTION_ERROR_ACTION(M);\
3071 if (XP != 0) {\
3072 tbinptr* H = treebin_at(M, X->index);\
3073 if (X == *H) {\
3074 if ((*H = R) == 0) \
3075 clear_treemap(M, X->index);\
3077 else if (RTCHECK(ok_address(M, XP))) {\
3078 if (XP->child[0] == X) \
3079 XP->child[0] = R;\
3080 else \
3081 XP->child[1] = R;\
3083 else\
3084 CORRUPTION_ERROR_ACTION(M);\
3085 if (R != 0) {\
3086 if (RTCHECK(ok_address(M, R))) {\
3087 tchunkptr C0, C1;\
3088 R->parent = XP;\
3089 if ((C0 = X->child[0]) != 0) {\
3090 if (RTCHECK(ok_address(M, C0))) {\
3091 R->child[0] = C0;\
3092 C0->parent = R;\
3094 else\
3095 CORRUPTION_ERROR_ACTION(M);\
3097 if ((C1 = X->child[1]) != 0) {\
3098 if (RTCHECK(ok_address(M, C1))) {\
3099 R->child[1] = C1;\
3100 C1->parent = R;\
3102 else\
3103 CORRUPTION_ERROR_ACTION(M);\
3106 else\
3107 CORRUPTION_ERROR_ACTION(M);\
3112 /* Relays to large vs small bin operations */
3114 #define insert_chunk(M, P, S)\
3115 if (is_small(S)) insert_small_chunk(M, P, S)\
3116 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3118 #define unlink_chunk(M, P, S)\
3119 if (is_small(S)) unlink_small_chunk(M, P, S)\
3120 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3123 /* Relays to internal calls to malloc/free from realloc, memalign etc */
3125 #if ONLY_MSPACES
3126 #define internal_malloc(m, b) mspace_malloc(m, b)
3127 #define internal_free(m, mem) mspace_free(m,mem);
3128 #else /* ONLY_MSPACES */
3129 #if MSPACES
3130 #define internal_malloc(m, b)\
3131 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
3132 #define internal_free(m, mem)\
3133 if (m == gm) dlfree(mem); else mspace_free(m,mem);
3134 #else /* MSPACES */
3135 #define internal_malloc(m, b) dlmalloc(b)
3136 #define internal_free(m, mem) dlfree(mem)
3137 #endif /* MSPACES */
3138 #endif /* ONLY_MSPACES */
3140 /* ----------------------- Direct-mmapping chunks ----------------------- */
3143 Directly mmapped chunks are set up with an offset to the start of
3144 the mmapped region stored in the prev_foot field of the chunk. This
3145 allows reconstruction of the required argument to MUNMAP when freed,
3146 and also allows adjustment of the returned chunk to meet alignment
3147 requirements (especially in memalign). There is also enough space
3148 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
3149 the PINUSE bit so frees can be checked.
3152 /* Malloc using mmap */
3153 static void* mmap_alloc(mstate m, size_t nb) {
3154 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3155 if (mmsize > nb) { /* Check for wrap around 0 */
3156 char* mm = (char*)(DIRECT_MMAP(mmsize));
3157 if (mm != CMFAIL) {
3158 size_t offset = align_offset(chunk2mem(mm));
3159 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3160 mchunkptr p = (mchunkptr)(mm + offset);
3161 p->prev_foot = offset | IS_MMAPPED_BIT;
3162 (p)->head = (psize|CINUSE_BIT);
3163 mark_inuse_foot(m, p, psize);
3164 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3165 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3167 if (mm < m->least_addr)
3168 m->least_addr = mm;
3169 if ((m->footprint += mmsize) > m->max_footprint)
3170 m->max_footprint = m->footprint;
3171 assert(is_aligned(chunk2mem(p)));
3172 check_mmapped_chunk(m, p);
3173 return chunk2mem(p);
3176 return 0;
3179 /* Realloc using mmap */
3180 static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
3181 size_t oldsize = chunksize(oldp);
3182 if (is_small(nb)) /* Can't shrink mmap regions below small size */
3183 return 0;
3184 /* Keep old chunk if big enough but not too big */
3185 if (oldsize >= nb + SIZE_T_SIZE &&
3186 (oldsize - nb) <= (mparams.granularity << 1))
3187 return oldp;
3188 else {
3189 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
3190 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3191 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
3192 CHUNK_ALIGN_MASK);
3193 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3194 oldmmsize, newmmsize, 1);
3195 if (cp != CMFAIL) {
3196 mchunkptr newp = (mchunkptr)(cp + offset);
3197 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3198 newp->head = (psize|CINUSE_BIT);
3199 mark_inuse_foot(m, newp, psize);
3200 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3201 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3203 if (cp < m->least_addr)
3204 m->least_addr = cp;
3205 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3206 m->max_footprint = m->footprint;
3207 check_mmapped_chunk(m, newp);
3208 return newp;
3211 return 0;
3214 /* -------------------------- mspace management -------------------------- */
3216 /* Initialize top chunk and its size */
3217 static void init_top(mstate m, mchunkptr p, size_t psize) {
3218 /* Ensure alignment */
3219 size_t offset = align_offset(chunk2mem(p));
3220 p = (mchunkptr)((char*)p + offset);
3221 psize -= offset;
3223 m->top = p;
3224 m->topsize = psize;
3225 p->head = psize | PINUSE_BIT;
3226 /* set size of fake trailing chunk holding overhead space only once */
3227 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3228 m->trim_check = mparams.trim_threshold; /* reset on each update */
3231 /* Initialize bins for a new mstate that is otherwise zeroed out */
3232 static void init_bins(mstate m) {
3233 /* Establish circular links for smallbins */
3234 bindex_t i;
3235 for (i = 0; i < NSMALLBINS; ++i) {
3236 sbinptr bin = smallbin_at(m,i);
3237 bin->fd = bin->bk = bin;
3241 #if PROCEED_ON_ERROR
3243 /* default corruption action */
3244 static void reset_on_error(mstate m) {
3245 int i;
3246 ++malloc_corruption_error_count;
3247 /* Reinitialize fields to forget about all memory */
3248 m->smallbins = m->treebins = 0;
3249 m->dvsize = m->topsize = 0;
3250 m->seg.base = 0;
3251 m->seg.size = 0;
3252 m->seg.next = 0;
3253 m->top = m->dv = 0;
3254 for (i = 0; i < NTREEBINS; ++i)
3255 *treebin_at(m, i) = 0;
3256 init_bins(m);
3258 #endif /* PROCEED_ON_ERROR */
3260 /* Allocate chunk and prepend remainder with chunk in successor base. */
3261 static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3262 size_t nb) {
3263 mchunkptr p = align_as_chunk(newbase);
3264 mchunkptr oldfirst = align_as_chunk(oldbase);
3265 size_t psize = (char*)oldfirst - (char*)p;
3266 mchunkptr q = chunk_plus_offset(p, nb);
3267 size_t qsize = psize - nb;
3268 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3270 assert((char*)oldfirst > (char*)q);
3271 assert(pinuse(oldfirst));
3272 assert(qsize >= MIN_CHUNK_SIZE);
3274 /* consolidate remainder with first chunk of old base */
3275 if (oldfirst == m->top) {
3276 size_t tsize = m->topsize += qsize;
3277 m->top = q;
3278 q->head = tsize | PINUSE_BIT;
3279 check_top_chunk(m, q);
3281 else if (oldfirst == m->dv) {
3282 size_t dsize = m->dvsize += qsize;
3283 m->dv = q;
3284 set_size_and_pinuse_of_free_chunk(q, dsize);
3286 else {
3287 if (!cinuse(oldfirst)) {
3288 size_t nsize = chunksize(oldfirst);
3289 unlink_chunk(m, oldfirst, nsize);
3290 oldfirst = chunk_plus_offset(oldfirst, nsize);
3291 qsize += nsize;
3293 set_free_with_pinuse(q, qsize, oldfirst);
3294 insert_chunk(m, q, qsize);
3295 check_free_chunk(m, q);
3298 check_malloced_chunk(m, chunk2mem(p), nb);
3299 return chunk2mem(p);
3303 /* Add a segment to hold a new noncontiguous region */
3304 static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3305 /* Determine locations and sizes of segment, fenceposts, old top */
3306 char* old_top = (char*)m->top;
3307 msegmentptr oldsp = segment_holding(m, old_top);
3308 char* old_end = oldsp->base + oldsp->size;
3309 size_t ssize = pad_request(sizeof(struct malloc_segment));
3310 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3311 size_t offset = align_offset(chunk2mem(rawsp));
3312 char* asp = rawsp + offset;
3313 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3314 mchunkptr sp = (mchunkptr)csp;
3315 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3316 mchunkptr tnext = chunk_plus_offset(sp, ssize);
3317 mchunkptr p = tnext;
3318 int nfences = 0;
3320 /* reset top to new space */
3321 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3323 /* Set up segment record */
3324 assert(is_aligned(ss));
3325 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3326 *ss = m->seg; /* Push current record */
3327 m->seg.base = tbase;
3328 m->seg.size = tsize;
3329 set_segment_flags(&m->seg, mmapped);
3330 m->seg.next = ss;
3332 /* Insert trailing fenceposts */
3333 for (;;) {
3334 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
3335 p->head = FENCEPOST_HEAD;
3336 ++nfences;
3337 if ((char*)(&(nextp->head)) < old_end)
3338 p = nextp;
3339 else
3340 break;
3342 assert(nfences >= 2);
3344 /* Insert the rest of old top into a bin as an ordinary free chunk */
3345 if (csp != old_top) {
3346 mchunkptr q = (mchunkptr)old_top;
3347 size_t psize = csp - old_top;
3348 mchunkptr tn = chunk_plus_offset(q, psize);
3349 set_free_with_pinuse(q, psize, tn);
3350 insert_chunk(m, q, psize);
3353 check_top_chunk(m, m->top);
3356 /* -------------------------- System allocation -------------------------- */
3358 /* Get memory from system using MORECORE or MMAP */
3359 static void* sys_alloc(mstate m, size_t nb) {
3360 char* tbase = CMFAIL;
3361 size_t tsize = 0;
3362 flag_t mmap_flag = 0;
3364 init_mparams();
3366 /* Directly map large chunks */
3367 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
3368 void* mem = mmap_alloc(m, nb);
3369 if (mem != 0)
3370 return mem;
3374 Try getting memory in any of three ways (in most-preferred to
3375 least-preferred order):
3376 1. A call to MORECORE that can normally contiguously extend memory.
3377 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
3378 or main space is mmapped or a previous contiguous call failed)
3379 2. A call to MMAP new space (disabled if not HAVE_MMAP).
3380 Note that under the default settings, if MORECORE is unable to
3381 fulfill a request, and HAVE_MMAP is true, then mmap is
3382 used as a noncontiguous system allocator. This is a useful backup
3383 strategy for systems with holes in address spaces -- in this case
3384 sbrk cannot contiguously expand the heap, but mmap may be able to
3385 find space.
3386 3. A call to MORECORE that cannot usually contiguously extend memory.
3387 (disabled if not HAVE_MORECORE)
3390 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
3391 char* br = CMFAIL;
3392 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
3393 size_t asize = 0;
3394 ACQUIRE_MORECORE_LOCK();
3396 if (ss == 0) { /* First time through or recovery */
3397 char* base = (char*)CALL_MORECORE(0);
3398 if (base != CMFAIL) {
3399 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3400 /* Adjust to end on a page boundary */
3401 if (!is_page_aligned(base))
3402 asize += (page_align((size_t)base) - (size_t)base);
3403 /* Can't call MORECORE if size is negative when treated as signed */
3404 if (asize < HALF_MAX_SIZE_T &&
3405 (br = (char*)(CALL_MORECORE(asize))) == base) {
3406 tbase = base;
3407 tsize = asize;
3411 else {
3412 /* Subtract out existing available top space from MORECORE request. */
3413 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
3414 /* Use mem here only if it did continuously extend old space */
3415 if (asize < HALF_MAX_SIZE_T &&
3416 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
3417 tbase = br;
3418 tsize = asize;
3422 if (tbase == CMFAIL) { /* Cope with partial failure */
3423 if (br != CMFAIL) { /* Try to use/extend the space we did get */
3424 if (asize < HALF_MAX_SIZE_T &&
3425 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
3426 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
3427 if (esize < HALF_MAX_SIZE_T) {
3428 char* end = (char*)CALL_MORECORE(esize);
3429 if (end != CMFAIL)
3430 asize += esize;
3431 else { /* Can't use; try to release */
3432 (void)CALL_MORECORE(-asize);
3433 br = CMFAIL;
3438 if (br != CMFAIL) { /* Use the space we did get */
3439 tbase = br;
3440 tsize = asize;
3442 else
3443 disable_contiguous(m); /* Don't try contiguous path in the future */
3446 RELEASE_MORECORE_LOCK();
3449 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
3450 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
3451 size_t rsize = granularity_align(req);
3452 if (rsize > nb) { /* Fail if wraps around zero */
3453 char* mp = (char*)(CALL_MMAP(rsize));
3454 if (mp != CMFAIL) {
3455 tbase = mp;
3456 tsize = rsize;
3457 mmap_flag = IS_MMAPPED_BIT;
3462 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
3463 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
3464 if (asize < HALF_MAX_SIZE_T) {
3465 char* br = CMFAIL;
3466 char* end = CMFAIL;
3467 ACQUIRE_MORECORE_LOCK();
3468 br = (char*)(CALL_MORECORE(asize));
3469 end = (char*)(CALL_MORECORE(0));
3470 RELEASE_MORECORE_LOCK();
3471 if (br != CMFAIL && end != CMFAIL && br < end) {
3472 size_t ssize = end - br;
3473 if (ssize > nb + TOP_FOOT_SIZE) {
3474 tbase = br;
3475 tsize = ssize;
3481 if (tbase != CMFAIL) {
3483 if ((m->footprint += tsize) > m->max_footprint)
3484 m->max_footprint = m->footprint;
3486 if (!is_initialized(m)) { /* first-time initialization */
3487 m->seg.base = m->least_addr = tbase;
3488 m->seg.size = tsize;
3489 set_segment_flags(&m->seg, mmap_flag);
3490 m->magic = mparams.magic;
3491 init_bins(m);
3492 if (is_global(m))
3493 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3494 else {
3495 /* Offset top by embedded malloc_state */
3496 mchunkptr mn = next_chunk(mem2chunk(m));
3497 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
3501 else {
3502 /* Try to merge with an existing segment */
3503 msegmentptr sp = &m->seg;
3504 while (sp != 0 && tbase != sp->base + sp->size)
3505 sp = sp->next;
3506 if (sp != 0 &&
3507 !is_extern_segment(sp) &&
3508 check_segment_merge(sp, tbase, tsize) &&
3509 (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag &&
3510 segment_holds(sp, m->top)) { /* append */
3511 sp->size += tsize;
3512 init_top(m, m->top, m->topsize + tsize);
3514 else {
3515 if (tbase < m->least_addr)
3516 m->least_addr = tbase;
3517 sp = &m->seg;
3518 while (sp != 0 && sp->base != tbase + tsize)
3519 sp = sp->next;
3520 if (sp != 0 &&
3521 !is_extern_segment(sp) &&
3522 check_segment_merge(sp, tbase, tsize) &&
3523 (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) {
3524 char* oldbase = sp->base;
3525 sp->base = tbase;
3526 sp->size += tsize;
3527 return prepend_alloc(m, tbase, oldbase, nb);
3529 else
3530 add_segment(m, tbase, tsize, mmap_flag);
3534 if (nb < m->topsize) { /* Allocate from new or extended top space */
3535 size_t rsize = m->topsize -= nb;
3536 mchunkptr p = m->top;
3537 mchunkptr r = m->top = chunk_plus_offset(p, nb);
3538 r->head = rsize | PINUSE_BIT;
3539 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3540 check_top_chunk(m, m->top);
3541 check_malloced_chunk(m, chunk2mem(p), nb);
3542 return chunk2mem(p);
3546 MALLOC_FAILURE_ACTION;
3547 return 0;
3550 /* ----------------------- system deallocation -------------------------- */
3552 /* Unmap and unlink any mmapped segments that don't contain used chunks */
3553 static size_t release_unused_segments(mstate m) {
3554 size_t released = 0;
3555 msegmentptr pred = &m->seg;
3556 msegmentptr sp = pred->next;
3557 while (sp != 0) {
3558 char* base = sp->base;
3559 size_t size = sp->size;
3560 msegmentptr next = sp->next;
3561 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
3562 mchunkptr p = align_as_chunk(base);
3563 size_t psize = chunksize(p);
3564 /* Can unmap if first chunk holds entire segment and not pinned */
3565 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
3566 tchunkptr tp = (tchunkptr)p;
3567 assert(segment_holds(sp, (char*)sp));
3568 if (p == m->dv) {
3569 m->dv = 0;
3570 m->dvsize = 0;
3572 else {
3573 unlink_large_chunk(m, tp);
3575 if (CALL_MUNMAP(base, size) == 0) {
3576 released += size;
3577 m->footprint -= size;
3578 /* unlink obsoleted record */
3579 sp = pred;
3580 sp->next = next;
3582 else { /* back out if cannot unmap */
3583 insert_large_chunk(m, tp, psize);
3587 pred = sp;
3588 sp = next;
3590 return released;
3593 static int sys_trim(mstate m, size_t pad) {
3594 size_t released = 0;
3595 if (pad < MAX_REQUEST && is_initialized(m)) {
3596 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
3598 if (m->topsize > pad) {
3599 /* Shrink top space in granularity-size units, keeping at least one */
3600 size_t unit = mparams.granularity;
3601 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
3602 SIZE_T_ONE) * unit;
3603 msegmentptr sp = segment_holding(m, (char*)m->top);
3605 if (!is_extern_segment(sp)) {
3606 if (is_mmapped_segment(sp)) {
3607 if (HAVE_MMAP &&
3608 sp->size >= extra &&
3609 !has_segment_link(m, sp)) { /* can't shrink if pinned */
3610 size_t newsize = sp->size - extra;
3611 /* Prefer mremap, fall back to munmap */
3612 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
3613 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
3614 released = extra;
3618 else if (HAVE_MORECORE) {
3619 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
3620 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
3621 ACQUIRE_MORECORE_LOCK();
3623 /* Make sure end of memory is where we last set it. */
3624 char* old_br = (char*)(CALL_MORECORE(0));
3625 if (old_br == sp->base + sp->size) {
3626 char* rel_br = (char*)(CALL_MORECORE(-extra));
3627 char* new_br = (char*)(CALL_MORECORE(0));
3628 if (rel_br != CMFAIL && new_br < old_br)
3629 released = old_br - new_br;
3632 RELEASE_MORECORE_LOCK();
3636 if (released != 0) {
3637 sp->size -= released;
3638 m->footprint -= released;
3639 init_top(m, m->top, m->topsize - released);
3640 check_top_chunk(m, m->top);
3644 /* Unmap any unused mmapped segments */
3645 if (HAVE_MMAP)
3646 released += release_unused_segments(m);
3648 /* On failure, disable autotrim to avoid repeated failed future calls */
3649 if (released == 0)
3650 m->trim_check = MAX_SIZE_T;
3653 return (released != 0)? 1 : 0;
3656 /* ---------------------------- malloc support --------------------------- */
3658 /* allocate a large request from the best fitting chunk in a treebin */
3659 static void* tmalloc_large(mstate m, size_t nb) {
3660 tchunkptr v = 0;
3661 size_t rsize = -nb; /* Unsigned negation */
3662 tchunkptr t;
3663 bindex_t idx;
3664 compute_tree_index(nb, idx);
3666 if ((t = *treebin_at(m, idx)) != 0) {
3667 /* Traverse tree for this bin looking for node with size == nb */
3668 size_t sizebits = nb << leftshift_for_tree_index(idx);
3669 tchunkptr rst = 0; /* The deepest untaken right subtree */
3670 for (;;) {
3671 tchunkptr rt;
3672 size_t trem = chunksize(t) - nb;
3673 if (trem < rsize) {
3674 v = t;
3675 if ((rsize = trem) == 0)
3676 break;
3678 rt = t->child[1];
3679 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3680 if (rt != 0 && rt != t)
3681 rst = rt;
3682 if (t == 0) {
3683 t = rst; /* set t to least subtree holding sizes > nb */
3684 break;
3686 sizebits <<= 1;
3690 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3691 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3692 if (leftbits != 0) {
3693 bindex_t i;
3694 binmap_t leastbit = least_bit(leftbits);
3695 compute_bit2idx(leastbit, i);
3696 t = *treebin_at(m, i);
3700 while (t != 0) { /* find smallest of tree or subtree */
3701 size_t trem = chunksize(t) - nb;
3702 if (trem < rsize) {
3703 rsize = trem;
3704 v = t;
3706 t = leftmost_child(t);
3709 /* If dv is a better fit, return 0 so malloc will use it */
3710 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3711 if (RTCHECK(ok_address(m, v))) { /* split */
3712 mchunkptr r = chunk_plus_offset(v, nb);
3713 assert(chunksize(v) == rsize + nb);
3714 if (RTCHECK(ok_next(v, r))) {
3715 unlink_large_chunk(m, v);
3716 if (rsize < MIN_CHUNK_SIZE)
3717 set_inuse_and_pinuse(m, v, (rsize + nb));
3718 else {
3719 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3720 set_size_and_pinuse_of_free_chunk(r, rsize);
3721 insert_chunk(m, r, rsize);
3723 return chunk2mem(v);
3726 CORRUPTION_ERROR_ACTION(m);
3728 return 0;
3731 /* allocate a small request from the best fitting chunk in a treebin */
3732 static void* tmalloc_small(mstate m, size_t nb) {
3733 tchunkptr t, v;
3734 size_t rsize;
3735 bindex_t i;
3736 binmap_t leastbit = least_bit(m->treemap);
3737 compute_bit2idx(leastbit, i);
3739 v = t = *treebin_at(m, i);
3740 rsize = chunksize(t) - nb;
3742 while ((t = leftmost_child(t)) != 0) {
3743 size_t trem = chunksize(t) - nb;
3744 if (trem < rsize) {
3745 rsize = trem;
3746 v = t;
3750 if (RTCHECK(ok_address(m, v))) {
3751 mchunkptr r = chunk_plus_offset(v, nb);
3752 assert(chunksize(v) == rsize + nb);
3753 if (RTCHECK(ok_next(v, r))) {
3754 unlink_large_chunk(m, v);
3755 if (rsize < MIN_CHUNK_SIZE)
3756 set_inuse_and_pinuse(m, v, (rsize + nb));
3757 else {
3758 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3759 set_size_and_pinuse_of_free_chunk(r, rsize);
3760 replace_dv(m, r, rsize);
3762 return chunk2mem(v);
3766 CORRUPTION_ERROR_ACTION(m);
3767 return 0;
3770 /* --------------------------- realloc support --------------------------- */
3772 static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3773 if (bytes >= MAX_REQUEST) {
3774 MALLOC_FAILURE_ACTION;
3775 return 0;
3777 if (!PREACTION(m)) {
3778 mchunkptr oldp = mem2chunk(oldmem);
3779 size_t oldsize = chunksize(oldp);
3780 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3781 mchunkptr newp = 0;
3782 void* extra = 0;
3784 /* Try to either shrink or extend into top. Else malloc-copy-free */
3786 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3787 ok_next(oldp, next) && ok_pinuse(next))) {
3788 size_t nb = request2size(bytes);
3789 if (is_mmapped(oldp))
3790 newp = mmap_resize(m, oldp, nb);
3791 else if (oldsize >= nb) { /* already big enough */
3792 size_t rsize = oldsize - nb;
3793 newp = oldp;
3794 if (rsize >= MIN_CHUNK_SIZE) {
3795 mchunkptr remainder = chunk_plus_offset(newp, nb);
3796 set_inuse(m, newp, nb);
3797 set_inuse(m, remainder, rsize);
3798 extra = chunk2mem(remainder);
3801 else if (next == m->top && oldsize + m->topsize > nb) {
3802 /* Expand into top */
3803 size_t newsize = oldsize + m->topsize;
3804 size_t newtopsize = newsize - nb;
3805 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3806 set_inuse(m, oldp, nb);
3807 newtop->head = newtopsize |PINUSE_BIT;
3808 m->top = newtop;
3809 m->topsize = newtopsize;
3810 newp = oldp;
3813 else {
3814 USAGE_ERROR_ACTION(m, oldmem);
3815 POSTACTION(m);
3816 return 0;
3819 POSTACTION(m);
3821 if (newp != 0) {
3822 if (extra != 0) {
3823 internal_free(m, extra);
3825 check_inuse_chunk(m, newp);
3826 return chunk2mem(newp);
3828 else {
3829 void* newmem = internal_malloc(m, bytes);
3830 if (newmem != 0) {
3831 size_t oc = oldsize - overhead_for(oldp);
3832 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3833 internal_free(m, oldmem);
3835 return newmem;
3838 return 0;
3841 /* --------------------------- memalign support -------------------------- */
3843 static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3844 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3845 return internal_malloc(m, bytes);
3846 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3847 alignment = MIN_CHUNK_SIZE;
3848 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3849 size_t a = MALLOC_ALIGNMENT << 1;
3850 while (a < alignment) a <<= 1;
3851 alignment = a;
3854 if (bytes >= MAX_REQUEST - alignment) {
3855 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3856 MALLOC_FAILURE_ACTION;
3859 else {
3860 size_t nb = request2size(bytes);
3861 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3862 char* mem = (char*)internal_malloc(m, req);
3863 if (mem != 0) {
3864 void* leader = 0;
3865 void* trailer = 0;
3866 mchunkptr p = mem2chunk(mem);
3868 if (PREACTION(m)) return 0;
3869 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3871 Find an aligned spot inside chunk. Since we need to give
3872 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3873 the first calculation places us at a spot with less than
3874 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3875 We've allocated enough total room so that this is always
3876 possible.
3878 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3879 alignment -
3880 SIZE_T_ONE)) &
3881 -alignment));
3882 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3883 br : br+alignment;
3884 mchunkptr newp = (mchunkptr)pos;
3885 size_t leadsize = pos - (char*)(p);
3886 size_t newsize = chunksize(p) - leadsize;
3888 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3889 newp->prev_foot = p->prev_foot + leadsize;
3890 newp->head = (newsize|CINUSE_BIT);
3892 else { /* Otherwise, give back leader, use the rest */
3893 set_inuse(m, newp, newsize);
3894 set_inuse(m, p, leadsize);
3895 leader = chunk2mem(p);
3897 p = newp;
3900 /* Give back spare room at the end */
3901 if (!is_mmapped(p)) {
3902 size_t size = chunksize(p);
3903 if (size > nb + MIN_CHUNK_SIZE) {
3904 size_t remainder_size = size - nb;
3905 mchunkptr remainder = chunk_plus_offset(p, nb);
3906 set_inuse(m, p, nb);
3907 set_inuse(m, remainder, remainder_size);
3908 trailer = chunk2mem(remainder);
3912 assert (chunksize(p) >= nb);
3913 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3914 check_inuse_chunk(m, p);
3915 POSTACTION(m);
3916 if (leader != 0) {
3917 internal_free(m, leader);
3919 if (trailer != 0) {
3920 internal_free(m, trailer);
3922 return chunk2mem(p);
3925 return 0;
3928 /* ------------------------ comalloc/coalloc support --------------------- */
3930 static void** ialloc(mstate m,
3931 size_t n_elements,
3932 size_t* sizes,
3933 int opts,
3934 void* chunks[]) {
3936 This provides common support for independent_X routines, handling
3937 all of the combinations that can result.
3939 The opts arg has:
3940 bit 0 set if all elements are same size (using sizes[0])
3941 bit 1 set if elements should be zeroed
3944 size_t element_size; /* chunksize of each element, if all same */
3945 size_t contents_size; /* total size of elements */
3946 size_t array_size; /* request size of pointer array */
3947 void* mem; /* malloced aggregate space */
3948 mchunkptr p; /* corresponding chunk */
3949 size_t remainder_size; /* remaining bytes while splitting */
3950 void** marray; /* either "chunks" or malloced ptr array */
3951 mchunkptr array_chunk; /* chunk for malloced ptr array */
3952 flag_t was_enabled; /* to disable mmap */
3953 size_t size;
3954 size_t i;
3956 /* compute array length, if needed */
3957 if (chunks != 0) {
3958 if (n_elements == 0)
3959 return chunks; /* nothing to do */
3960 marray = chunks;
3961 array_size = 0;
3963 else {
3964 /* if empty req, must still return chunk representing empty array */
3965 if (n_elements == 0)
3966 return (void**)internal_malloc(m, 0);
3967 marray = 0;
3968 array_size = request2size(n_elements * (sizeof(void*)));
3971 /* compute total element size */
3972 if (opts & 0x1) { /* all-same-size */
3973 element_size = request2size(*sizes);
3974 contents_size = n_elements * element_size;
3976 else { /* add up all the sizes */
3977 element_size = 0;
3978 contents_size = 0;
3979 for (i = 0; i != n_elements; ++i)
3980 contents_size += request2size(sizes[i]);
3983 size = contents_size + array_size;
3986 Allocate the aggregate chunk. First disable direct-mmapping so
3987 malloc won't use it, since we would not be able to later
3988 free/realloc space internal to a segregated mmap region.
3990 was_enabled = use_mmap(m);
3991 disable_mmap(m);
3992 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3993 if (was_enabled)
3994 enable_mmap(m);
3995 if (mem == 0)
3996 return 0;
3998 if (PREACTION(m)) return 0;
3999 p = mem2chunk(mem);
4000 remainder_size = chunksize(p);
4002 assert(!is_mmapped(p));
4004 if (opts & 0x2) { /* optionally clear the elements */
4005 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
4008 /* If not provided, allocate the pointer array as final part of chunk */
4009 if (marray == 0) {
4010 size_t array_chunk_size;
4011 array_chunk = chunk_plus_offset(p, contents_size);
4012 array_chunk_size = remainder_size - contents_size;
4013 marray = (void**) (chunk2mem(array_chunk));
4014 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
4015 remainder_size = contents_size;
4018 /* split out elements */
4019 for (i = 0; ; ++i) {
4020 marray[i] = chunk2mem(p);
4021 if (i != n_elements-1) {
4022 if (element_size != 0)
4023 size = element_size;
4024 else
4025 size = request2size(sizes[i]);
4026 remainder_size -= size;
4027 set_size_and_pinuse_of_inuse_chunk(m, p, size);
4028 p = chunk_plus_offset(p, size);
4030 else { /* the final element absorbs any overallocation slop */
4031 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
4032 break;
4036 #if DEBUG
4037 if (marray != chunks) {
4038 /* final element must have exactly exhausted chunk */
4039 if (element_size != 0) {
4040 assert(remainder_size == element_size);
4042 else {
4043 assert(remainder_size == request2size(sizes[i]));
4045 check_inuse_chunk(m, mem2chunk(marray));
4047 for (i = 0; i != n_elements; ++i)
4048 check_inuse_chunk(m, mem2chunk(marray[i]));
4050 #endif /* DEBUG */
4052 POSTACTION(m);
4053 return marray;
4057 /* -------------------------- public routines ---------------------------- */
4059 #if !ONLY_MSPACES
4061 void* dlmalloc(size_t bytes) {
4063 Basic algorithm:
4064 If a small request (< 256 bytes minus per-chunk overhead):
4065 1. If one exists, use a remainderless chunk in associated smallbin.
4066 (Remainderless means that there are too few excess bytes to
4067 represent as a chunk.)
4068 2. If it is big enough, use the dv chunk, which is normally the
4069 chunk adjacent to the one used for the most recent small request.
4070 3. If one exists, split the smallest available chunk in a bin,
4071 saving remainder in dv.
4072 4. If it is big enough, use the top chunk.
4073 5. If available, get memory from system and use it
4074 Otherwise, for a large request:
4075 1. Find the smallest available binned chunk that fits, and use it
4076 if it is better fitting than dv chunk, splitting if necessary.
4077 2. If better fitting than any binned chunk, use the dv chunk.
4078 3. If it is big enough, use the top chunk.
4079 4. If request size >= mmap threshold, try to directly mmap this chunk.
4080 5. If available, get memory from system and use it
4082 The ugly goto's here ensure that postaction occurs along all paths.
4085 if (!PREACTION(gm)) {
4086 void* mem;
4087 size_t nb;
4088 if (bytes <= MAX_SMALL_REQUEST) {
4089 bindex_t idx;
4090 binmap_t smallbits;
4091 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4092 idx = small_index(nb);
4093 smallbits = gm->smallmap >> idx;
4095 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4096 mchunkptr b, p;
4097 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4098 b = smallbin_at(gm, idx);
4099 p = b->fd;
4100 assert(chunksize(p) == small_index2size(idx));
4101 unlink_first_small_chunk(gm, b, p, idx);
4102 set_inuse_and_pinuse(gm, p, small_index2size(idx));
4103 mem = chunk2mem(p);
4104 check_malloced_chunk(gm, mem, nb);
4105 goto postaction;
4108 else if (nb > gm->dvsize) {
4109 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4110 mchunkptr b, p, r;
4111 size_t rsize;
4112 bindex_t i;
4113 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4114 binmap_t leastbit = least_bit(leftbits);
4115 compute_bit2idx(leastbit, i);
4116 b = smallbin_at(gm, i);
4117 p = b->fd;
4118 assert(chunksize(p) == small_index2size(i));
4119 unlink_first_small_chunk(gm, b, p, i);
4120 rsize = small_index2size(i) - nb;
4121 /* Fit here cannot be remainderless if 4byte sizes */
4122 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4123 set_inuse_and_pinuse(gm, p, small_index2size(i));
4124 else {
4125 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4126 r = chunk_plus_offset(p, nb);
4127 set_size_and_pinuse_of_free_chunk(r, rsize);
4128 replace_dv(gm, r, rsize);
4130 mem = chunk2mem(p);
4131 check_malloced_chunk(gm, mem, nb);
4132 goto postaction;
4135 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4136 check_malloced_chunk(gm, mem, nb);
4137 goto postaction;
4141 else if (bytes >= MAX_REQUEST)
4142 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4143 else {
4144 nb = pad_request(bytes);
4145 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4146 check_malloced_chunk(gm, mem, nb);
4147 goto postaction;
4151 if (nb <= gm->dvsize) {
4152 size_t rsize = gm->dvsize - nb;
4153 mchunkptr p = gm->dv;
4154 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4155 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4156 gm->dvsize = rsize;
4157 set_size_and_pinuse_of_free_chunk(r, rsize);
4158 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4160 else { /* exhaust dv */
4161 size_t dvs = gm->dvsize;
4162 gm->dvsize = 0;
4163 gm->dv = 0;
4164 set_inuse_and_pinuse(gm, p, dvs);
4166 mem = chunk2mem(p);
4167 check_malloced_chunk(gm, mem, nb);
4168 goto postaction;
4171 else if (nb < gm->topsize) { /* Split top */
4172 size_t rsize = gm->topsize -= nb;
4173 mchunkptr p = gm->top;
4174 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4175 r->head = rsize | PINUSE_BIT;
4176 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4177 mem = chunk2mem(p);
4178 check_top_chunk(gm, gm->top);
4179 check_malloced_chunk(gm, mem, nb);
4180 goto postaction;
4183 mem = sys_alloc(gm, nb);
4185 postaction:
4186 POSTACTION(gm);
4187 return mem;
4190 return 0;
4193 void dlfree(void* mem) {
4195 Consolidate freed chunks with preceeding or succeeding bordering
4196 free chunks, if they exist, and then place in a bin. Intermixed
4197 with special cases for top, dv, mmapped chunks, and usage errors.
4200 if (mem != 0) {
4201 mchunkptr p = mem2chunk(mem);
4202 #if FOOTERS
4203 mstate fm = get_mstate_for(p);
4204 if (!ok_magic(fm)) {
4205 USAGE_ERROR_ACTION(fm, p);
4206 return;
4208 #else /* FOOTERS */
4209 #define fm gm
4210 #endif /* FOOTERS */
4211 if (!PREACTION(fm)) {
4212 check_inuse_chunk(fm, p);
4213 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4214 size_t psize = chunksize(p);
4215 mchunkptr next = chunk_plus_offset(p, psize);
4216 if (!pinuse(p)) {
4217 size_t prevsize = p->prev_foot;
4218 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4219 prevsize &= ~IS_MMAPPED_BIT;
4220 psize += prevsize + MMAP_FOOT_PAD;
4221 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4222 fm->footprint -= psize;
4223 goto postaction;
4225 else {
4226 mchunkptr prev = chunk_minus_offset(p, prevsize);
4227 psize += prevsize;
4228 p = prev;
4229 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4230 if (p != fm->dv) {
4231 unlink_chunk(fm, p, prevsize);
4233 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4234 fm->dvsize = psize;
4235 set_free_with_pinuse(p, psize, next);
4236 goto postaction;
4239 else
4240 goto erroraction;
4244 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4245 if (!cinuse(next)) { /* consolidate forward */
4246 if (next == fm->top) {
4247 size_t tsize = fm->topsize += psize;
4248 fm->top = p;
4249 p->head = tsize | PINUSE_BIT;
4250 if (p == fm->dv) {
4251 fm->dv = 0;
4252 fm->dvsize = 0;
4254 if (should_trim(fm, tsize))
4255 sys_trim(fm, 0);
4256 goto postaction;
4258 else if (next == fm->dv) {
4259 size_t dsize = fm->dvsize += psize;
4260 fm->dv = p;
4261 set_size_and_pinuse_of_free_chunk(p, dsize);
4262 goto postaction;
4264 else {
4265 size_t nsize = chunksize(next);
4266 psize += nsize;
4267 unlink_chunk(fm, next, nsize);
4268 set_size_and_pinuse_of_free_chunk(p, psize);
4269 if (p == fm->dv) {
4270 fm->dvsize = psize;
4271 goto postaction;
4275 else
4276 set_free_with_pinuse(p, psize, next);
4277 insert_chunk(fm, p, psize);
4278 check_free_chunk(fm, p);
4279 goto postaction;
4282 erroraction:
4283 USAGE_ERROR_ACTION(fm, p);
4284 postaction:
4285 POSTACTION(fm);
4288 #if !FOOTERS
4289 #undef fm
4290 #endif /* FOOTERS */
4293 void* dlcalloc(size_t n_elements, size_t elem_size) {
4294 void* mem;
4295 size_t req = 0;
4296 if (n_elements != 0) {
4297 req = n_elements * elem_size;
4298 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4299 (req / n_elements != elem_size))
4300 req = MAX_SIZE_T; /* force downstream failure on overflow */
4302 mem = dlmalloc(req);
4303 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4304 memset(mem, 0, req);
4305 return mem;
4308 void* dlrealloc(void* oldmem, size_t bytes) {
4309 if (oldmem == 0)
4310 return dlmalloc(bytes);
4311 #ifdef REALLOC_ZERO_BYTES_FREES
4312 if (bytes == 0) {
4313 dlfree(oldmem);
4314 return 0;
4316 #endif /* REALLOC_ZERO_BYTES_FREES */
4317 else {
4318 #if ! FOOTERS
4319 mstate m = gm;
4320 #else /* FOOTERS */
4321 mstate m = get_mstate_for(mem2chunk(oldmem));
4322 if (!ok_magic(m)) {
4323 USAGE_ERROR_ACTION(m, oldmem);
4324 return 0;
4326 #endif /* FOOTERS */
4327 return internal_realloc(m, oldmem, bytes);
4331 void* dlmemalign(size_t alignment, size_t bytes) {
4332 return internal_memalign(gm, alignment, bytes);
4335 void** dlindependent_calloc(size_t n_elements, size_t elem_size,
4336 void* chunks[]) {
4337 size_t sz = elem_size; /* serves as 1-element array */
4338 return ialloc(gm, n_elements, &sz, 3, chunks);
4341 void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
4342 void* chunks[]) {
4343 return ialloc(gm, n_elements, sizes, 0, chunks);
4346 void* dlvalloc(size_t bytes) {
4347 size_t pagesz;
4348 init_mparams();
4349 pagesz = mparams.page_size;
4350 return dlmemalign(pagesz, bytes);
4353 void* dlpvalloc(size_t bytes) {
4354 size_t pagesz;
4355 init_mparams();
4356 pagesz = mparams.page_size;
4357 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
4360 int dlmalloc_trim(size_t pad) {
4361 int result = 0;
4362 if (!PREACTION(gm)) {
4363 result = sys_trim(gm, pad);
4364 POSTACTION(gm);
4366 return result;
4369 size_t dlmalloc_footprint(void) {
4370 return gm->footprint;
4373 size_t dlmalloc_max_footprint(void) {
4374 return gm->max_footprint;
4377 #if !NO_MALLINFO
4378 struct mallinfo dlmallinfo(void) {
4379 return internal_mallinfo(gm);
4381 #endif /* NO_MALLINFO */
4383 void dlmalloc_stats() {
4384 internal_malloc_stats(gm);
4387 size_t dlmalloc_usable_size(void* mem) {
4388 if (mem != 0) {
4389 mchunkptr p = mem2chunk(mem);
4390 if (cinuse(p))
4391 return chunksize(p) - overhead_for(p);
4393 return 0;
4396 int dlmallopt(int param_number, int value) {
4397 return change_mparam(param_number, value);
4400 #endif /* !ONLY_MSPACES */
4402 /* ----------------------------- user mspaces ---------------------------- */
4404 #if MSPACES
4406 static mstate init_user_mstate(char* tbase, size_t tsize) {
4407 size_t msize = pad_request(sizeof(struct malloc_state));
4408 mchunkptr mn;
4409 mchunkptr msp = align_as_chunk(tbase);
4410 mstate m = (mstate)(chunk2mem(msp));
4411 memset(m, 0, msize);
4412 INITIAL_LOCK(&m->mutex);
4413 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
4414 m->seg.base = m->least_addr = tbase;
4415 m->seg.size = m->footprint = m->max_footprint = tsize;
4416 m->magic = mparams.magic;
4417 m->mflags = mparams.default_mflags;
4418 disable_contiguous(m);
4419 init_bins(m);
4420 mn = next_chunk(mem2chunk(m));
4421 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
4422 check_top_chunk(m, m->top);
4423 return m;
4426 mspace create_mspace(size_t capacity, int locked) {
4427 mstate m = 0;
4428 size_t msize = pad_request(sizeof(struct malloc_state));
4429 init_mparams(); /* Ensure pagesize etc initialized */
4431 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4432 size_t rs = ((capacity == 0)? mparams.granularity :
4433 (capacity + TOP_FOOT_SIZE + msize));
4434 size_t tsize = granularity_align(rs);
4435 char* tbase = (char*)(CALL_MMAP(tsize));
4436 if (tbase != CMFAIL) {
4437 m = init_user_mstate(tbase, tsize);
4438 set_segment_flags(&m->seg, IS_MMAPPED_BIT);
4439 set_lock(m, locked);
4442 return (mspace)m;
4445 mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
4446 mstate m = 0;
4447 size_t msize = pad_request(sizeof(struct malloc_state));
4448 init_mparams(); /* Ensure pagesize etc initialized */
4450 if (capacity > msize + TOP_FOOT_SIZE &&
4451 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4452 m = init_user_mstate((char*)base, capacity);
4453 set_segment_flags(&m->seg, EXTERN_BIT);
4454 set_lock(m, locked);
4456 return (mspace)m;
4459 size_t destroy_mspace(mspace msp) {
4460 size_t freed = 0;
4461 mstate ms = (mstate)msp;
4462 if (ok_magic(ms)) {
4463 msegmentptr sp = &ms->seg;
4464 while (sp != 0) {
4465 char* base = sp->base;
4466 size_t size = sp->size;
4467 flag_t flag = get_segment_flags(sp);
4468 sp = sp->next;
4469 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
4470 CALL_MUNMAP(base, size) == 0)
4471 freed += size;
4474 else {
4475 USAGE_ERROR_ACTION(ms,ms);
4477 return freed;
4481 mspace versions of routines are near-clones of the global
4482 versions. This is not so nice but better than the alternatives.
4486 void* mspace_malloc(mspace msp, size_t bytes) {
4487 mstate ms = (mstate)msp;
4488 if (!ok_magic(ms)) {
4489 USAGE_ERROR_ACTION(ms,ms);
4490 return 0;
4492 if (!PREACTION(ms)) {
4493 void* mem;
4494 size_t nb;
4495 if (bytes <= MAX_SMALL_REQUEST) {
4496 bindex_t idx;
4497 binmap_t smallbits;
4498 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4499 idx = small_index(nb);
4500 smallbits = ms->smallmap >> idx;
4502 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4503 mchunkptr b, p;
4504 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4505 b = smallbin_at(ms, idx);
4506 p = b->fd;
4507 assert(chunksize(p) == small_index2size(idx));
4508 unlink_first_small_chunk(ms, b, p, idx);
4509 set_inuse_and_pinuse(ms, p, small_index2size(idx));
4510 mem = chunk2mem(p);
4511 check_malloced_chunk(ms, mem, nb);
4512 goto postaction;
4515 else if (nb > ms->dvsize) {
4516 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4517 mchunkptr b, p, r;
4518 size_t rsize;
4519 bindex_t i;
4520 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4521 binmap_t leastbit = least_bit(leftbits);
4522 compute_bit2idx(leastbit, i);
4523 b = smallbin_at(ms, i);
4524 p = b->fd;
4525 assert(chunksize(p) == small_index2size(i));
4526 unlink_first_small_chunk(ms, b, p, i);
4527 rsize = small_index2size(i) - nb;
4528 /* Fit here cannot be remainderless if 4byte sizes */
4529 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4530 set_inuse_and_pinuse(ms, p, small_index2size(i));
4531 else {
4532 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4533 r = chunk_plus_offset(p, nb);
4534 set_size_and_pinuse_of_free_chunk(r, rsize);
4535 replace_dv(ms, r, rsize);
4537 mem = chunk2mem(p);
4538 check_malloced_chunk(ms, mem, nb);
4539 goto postaction;
4542 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
4543 check_malloced_chunk(ms, mem, nb);
4544 goto postaction;
4548 else if (bytes >= MAX_REQUEST)
4549 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4550 else {
4551 nb = pad_request(bytes);
4552 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
4553 check_malloced_chunk(ms, mem, nb);
4554 goto postaction;
4558 if (nb <= ms->dvsize) {
4559 size_t rsize = ms->dvsize - nb;
4560 mchunkptr p = ms->dv;
4561 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4562 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
4563 ms->dvsize = rsize;
4564 set_size_and_pinuse_of_free_chunk(r, rsize);
4565 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4567 else { /* exhaust dv */
4568 size_t dvs = ms->dvsize;
4569 ms->dvsize = 0;
4570 ms->dv = 0;
4571 set_inuse_and_pinuse(ms, p, dvs);
4573 mem = chunk2mem(p);
4574 check_malloced_chunk(ms, mem, nb);
4575 goto postaction;
4578 else if (nb < ms->topsize) { /* Split top */
4579 size_t rsize = ms->topsize -= nb;
4580 mchunkptr p = ms->top;
4581 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
4582 r->head = rsize | PINUSE_BIT;
4583 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4584 mem = chunk2mem(p);
4585 check_top_chunk(ms, ms->top);
4586 check_malloced_chunk(ms, mem, nb);
4587 goto postaction;
4590 mem = sys_alloc(ms, nb);
4592 postaction:
4593 POSTACTION(ms);
4594 return mem;
4597 return 0;
4600 void mspace_free(mspace msp, void* mem) {
4601 if (mem != 0) {
4602 mchunkptr p = mem2chunk(mem);
4603 #if FOOTERS
4604 mstate fm = get_mstate_for(p);
4605 #else /* FOOTERS */
4606 mstate fm = (mstate)msp;
4607 #endif /* FOOTERS */
4608 if (!ok_magic(fm)) {
4609 USAGE_ERROR_ACTION(fm, p);
4610 return;
4612 if (!PREACTION(fm)) {
4613 check_inuse_chunk(fm, p);
4614 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4615 size_t psize = chunksize(p);
4616 mchunkptr next = chunk_plus_offset(p, psize);
4617 if (!pinuse(p)) {
4618 size_t prevsize = p->prev_foot;
4619 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4620 prevsize &= ~IS_MMAPPED_BIT;
4621 psize += prevsize + MMAP_FOOT_PAD;
4622 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4623 fm->footprint -= psize;
4624 goto postaction;
4626 else {
4627 mchunkptr prev = chunk_minus_offset(p, prevsize);
4628 psize += prevsize;
4629 p = prev;
4630 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4631 if (p != fm->dv) {
4632 unlink_chunk(fm, p, prevsize);
4634 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4635 fm->dvsize = psize;
4636 set_free_with_pinuse(p, psize, next);
4637 goto postaction;
4640 else
4641 goto erroraction;
4645 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4646 if (!cinuse(next)) { /* consolidate forward */
4647 if (next == fm->top) {
4648 size_t tsize = fm->topsize += psize;
4649 fm->top = p;
4650 p->head = tsize | PINUSE_BIT;
4651 if (p == fm->dv) {
4652 fm->dv = 0;
4653 fm->dvsize = 0;
4655 if (should_trim(fm, tsize))
4656 sys_trim(fm, 0);
4657 goto postaction;
4659 else if (next == fm->dv) {
4660 size_t dsize = fm->dvsize += psize;
4661 fm->dv = p;
4662 set_size_and_pinuse_of_free_chunk(p, dsize);
4663 goto postaction;
4665 else {
4666 size_t nsize = chunksize(next);
4667 psize += nsize;
4668 unlink_chunk(fm, next, nsize);
4669 set_size_and_pinuse_of_free_chunk(p, psize);
4670 if (p == fm->dv) {
4671 fm->dvsize = psize;
4672 goto postaction;
4676 else
4677 set_free_with_pinuse(p, psize, next);
4678 insert_chunk(fm, p, psize);
4679 check_free_chunk(fm, p);
4680 goto postaction;
4683 erroraction:
4684 USAGE_ERROR_ACTION(fm, p);
4685 postaction:
4686 POSTACTION(fm);
4691 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4692 void* mem;
4693 size_t req = 0;
4694 mstate ms = (mstate)msp;
4695 if (!ok_magic(ms)) {
4696 USAGE_ERROR_ACTION(ms,ms);
4697 return 0;
4699 if (n_elements != 0) {
4700 req = n_elements * elem_size;
4701 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4702 (req / n_elements != elem_size))
4703 req = MAX_SIZE_T; /* force downstream failure on overflow */
4705 mem = internal_malloc(ms, req);
4706 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4707 memset(mem, 0, req);
4708 return mem;
4711 void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4712 if (oldmem == 0)
4713 return mspace_malloc(msp, bytes);
4714 #ifdef REALLOC_ZERO_BYTES_FREES
4715 if (bytes == 0) {
4716 mspace_free(msp, oldmem);
4717 return 0;
4719 #endif /* REALLOC_ZERO_BYTES_FREES */
4720 else {
4721 #if FOOTERS
4722 mchunkptr p = mem2chunk(oldmem);
4723 mstate ms = get_mstate_for(p);
4724 #else /* FOOTERS */
4725 mstate ms = (mstate)msp;
4726 #endif /* FOOTERS */
4727 if (!ok_magic(ms)) {
4728 USAGE_ERROR_ACTION(ms,ms);
4729 return 0;
4731 return internal_realloc(ms, oldmem, bytes);
4735 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4736 mstate ms = (mstate)msp;
4737 if (!ok_magic(ms)) {
4738 USAGE_ERROR_ACTION(ms,ms);
4739 return 0;
4741 return internal_memalign(ms, alignment, bytes);
4744 void** mspace_independent_calloc(mspace msp, size_t n_elements,
4745 size_t elem_size, void* chunks[]) {
4746 size_t sz = elem_size; /* serves as 1-element array */
4747 mstate ms = (mstate)msp;
4748 if (!ok_magic(ms)) {
4749 USAGE_ERROR_ACTION(ms,ms);
4750 return 0;
4752 return ialloc(ms, n_elements, &sz, 3, chunks);
4755 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4756 size_t sizes[], void* chunks[]) {
4757 mstate ms = (mstate)msp;
4758 if (!ok_magic(ms)) {
4759 USAGE_ERROR_ACTION(ms,ms);
4760 return 0;
4762 return ialloc(ms, n_elements, sizes, 0, chunks);
4765 int mspace_trim(mspace msp, size_t pad) {
4766 int result = 0;
4767 mstate ms = (mstate)msp;
4768 if (ok_magic(ms)) {
4769 if (!PREACTION(ms)) {
4770 result = sys_trim(ms, pad);
4771 POSTACTION(ms);
4774 else {
4775 USAGE_ERROR_ACTION(ms,ms);
4777 return result;
4780 void mspace_malloc_stats(mspace msp) {
4781 mstate ms = (mstate)msp;
4782 if (ok_magic(ms)) {
4783 internal_malloc_stats(ms);
4785 else {
4786 USAGE_ERROR_ACTION(ms,ms);
4790 size_t mspace_footprint(mspace msp) {
4791 size_t result;
4792 mstate ms = (mstate)msp;
4793 if (ok_magic(ms)) {
4794 result = ms->footprint;
4796 USAGE_ERROR_ACTION(ms,ms);
4797 return result;
4801 size_t mspace_max_footprint(mspace msp) {
4802 size_t result;
4803 mstate ms = (mstate)msp;
4804 if (ok_magic(ms)) {
4805 result = ms->max_footprint;
4807 USAGE_ERROR_ACTION(ms,ms);
4808 return result;
4812 #if !NO_MALLINFO
4813 struct mallinfo mspace_mallinfo(mspace msp) {
4814 mstate ms = (mstate)msp;
4815 if (!ok_magic(ms)) {
4816 USAGE_ERROR_ACTION(ms,ms);
4818 return internal_mallinfo(ms);
4820 #endif /* NO_MALLINFO */
4822 int mspace_mallopt(int param_number, int value) {
4823 return change_mparam(param_number, value);
4826 #endif /* MSPACES */
4828 /* -------------------- Alternative MORECORE functions ------------------- */
4831 Guidelines for creating a custom version of MORECORE:
4833 * For best performance, MORECORE should allocate in multiples of pagesize.
4834 * MORECORE may allocate more memory than requested. (Or even less,
4835 but this will usually result in a malloc failure.)
4836 * MORECORE must not allocate memory when given argument zero, but
4837 instead return one past the end address of memory from previous
4838 nonzero call.
4839 * For best performance, consecutive calls to MORECORE with positive
4840 arguments should return increasing addresses, indicating that
4841 space has been contiguously extended.
4842 * Even though consecutive calls to MORECORE need not return contiguous
4843 addresses, it must be OK for malloc'ed chunks to span multiple
4844 regions in those cases where they do happen to be contiguous.
4845 * MORECORE need not handle negative arguments -- it may instead
4846 just return MFAIL when given negative arguments.
4847 Negative arguments are always multiples of pagesize. MORECORE
4848 must not misinterpret negative args as large positive unsigned
4849 args. You can suppress all such calls from even occurring by defining
4850 MORECORE_CANNOT_TRIM,
4852 As an example alternative MORECORE, here is a custom allocator
4853 kindly contributed for pre-OSX macOS. It uses virtually but not
4854 necessarily physically contiguous non-paged memory (locked in,
4855 present and won't get swapped out). You can use it by uncommenting
4856 this section, adding some #includes, and setting up the appropriate
4857 defines above:
4859 #define MORECORE osMoreCore
4861 There is also a shutdown routine that should somehow be called for
4862 cleanup upon program exit.
4864 #define MAX_POOL_ENTRIES 100
4865 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4866 static int next_os_pool;
4867 void *our_os_pools[MAX_POOL_ENTRIES];
4869 void *osMoreCore(int size)
4871 void *ptr = 0;
4872 static void *sbrk_top = 0;
4874 if (size > 0)
4876 if (size < MINIMUM_MORECORE_SIZE)
4877 size = MINIMUM_MORECORE_SIZE;
4878 if (CurrentExecutionLevel() == kTaskLevel)
4879 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4880 if (ptr == 0)
4882 return (void *) MFAIL;
4884 // save ptrs so they can be freed during cleanup
4885 our_os_pools[next_os_pool] = ptr;
4886 next_os_pool++;
4887 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4888 sbrk_top = (char *) ptr + size;
4889 return ptr;
4891 else if (size < 0)
4893 // we don't currently support shrink behavior
4894 return (void *) MFAIL;
4896 else
4898 return sbrk_top;
4902 // cleanup any allocated memory pools
4903 // called as last thing before shutting down driver
4905 void osCleanupMem(void)
4907 void **ptr;
4909 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4910 if (*ptr)
4912 PoolDeallocate(*ptr);
4913 *ptr = 0;
4920 /* -----------------------------------------------------------------------
4921 History:
4922 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4923 * Add max_footprint functions
4924 * Ensure all appropriate literals are size_t
4925 * Fix conditional compilation problem for some #define settings
4926 * Avoid concatenating segments with the one provided
4927 in create_mspace_with_base
4928 * Rename some variables to avoid compiler shadowing warnings
4929 * Use explicit lock initialization.
4930 * Better handling of sbrk interference.
4931 * Simplify and fix segment insertion, trimming and mspace_destroy
4932 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4933 * Thanks especially to Dennis Flanagan for help on these.
4935 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4936 * Fix memalign brace error.
4938 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4939 * Fix improper #endif nesting in C++
4940 * Add explicit casts needed for C++
4942 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4943 * Use trees for large bins
4944 * Support mspaces
4945 * Use segments to unify sbrk-based and mmap-based system allocation,
4946 removing need for emulation on most platforms without sbrk.
4947 * Default safety checks
4948 * Optional footer checks. Thanks to William Robertson for the idea.
4949 * Internal code refactoring
4950 * Incorporate suggestions and platform-specific changes.
4951 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4952 Aaron Bachmann, Emery Berger, and others.
4953 * Speed up non-fastbin processing enough to remove fastbins.
4954 * Remove useless cfree() to avoid conflicts with other apps.
4955 * Remove internal memcpy, memset. Compilers handle builtins better.
4956 * Remove some options that no one ever used and rename others.
4958 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4959 * Fix malloc_state bitmap array misdeclaration
4961 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4962 * Allow tuning of FIRST_SORTED_BIN_SIZE
4963 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4964 * Better detection and support for non-contiguousness of MORECORE.
4965 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4966 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4967 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4968 * Raised default trim and map thresholds to 256K.
4969 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4970 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4971 * Branch-free bin calculation
4972 * Default trim and mmap thresholds now 256K.
4974 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4975 * Introduce independent_comalloc and independent_calloc.
4976 Thanks to Michael Pachos for motivation and help.
4977 * Make optional .h file available
4978 * Allow > 2GB requests on 32bit systems.
4979 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4980 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4981 and Anonymous.
4982 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4983 helping test this.)
4984 * memalign: check alignment arg
4985 * realloc: don't try to shift chunks backwards, since this
4986 leads to more fragmentation in some programs and doesn't
4987 seem to help in any others.
4988 * Collect all cases in malloc requiring system memory into sysmalloc
4989 * Use mmap as backup to sbrk
4990 * Place all internal state in malloc_state
4991 * Introduce fastbins (although similar to 2.5.1)
4992 * Many minor tunings and cosmetic improvements
4993 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4994 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4995 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4996 * Include errno.h to support default failure action.
4998 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4999 * return null for negative arguments
5000 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
5001 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
5002 (e.g. WIN32 platforms)
5003 * Cleanup header file inclusion for WIN32 platforms
5004 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
5005 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
5006 memory allocation routines
5007 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
5008 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
5009 usage of 'assert' in non-WIN32 code
5010 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
5011 avoid infinite loop
5012 * Always call 'fREe()' rather than 'free()'
5014 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
5015 * Fixed ordering problem with boundary-stamping
5017 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
5018 * Added pvalloc, as recommended by H.J. Liu
5019 * Added 64bit pointer support mainly from Wolfram Gloger
5020 * Added anonymously donated WIN32 sbrk emulation
5021 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
5022 * malloc_extend_top: fix mask error that caused wastage after
5023 foreign sbrks
5024 * Add linux mremap support code from HJ Liu
5026 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
5027 * Integrated most documentation with the code.
5028 * Add support for mmap, with help from
5029 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5030 * Use last_remainder in more cases.
5031 * Pack bins using idea from colin@nyx10.cs.du.edu
5032 * Use ordered bins instead of best-fit threshhold
5033 * Eliminate block-local decls to simplify tracing and debugging.
5034 * Support another case of realloc via move into top
5035 * Fix error occuring when initial sbrk_base not word-aligned.
5036 * Rely on page size for units instead of SBRK_UNIT to
5037 avoid surprises about sbrk alignment conventions.
5038 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
5039 (raymond@es.ele.tue.nl) for the suggestion.
5040 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
5041 * More precautions for cases where other routines call sbrk,
5042 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5043 * Added macros etc., allowing use in linux libc from
5044 H.J. Lu (hjl@gnu.ai.mit.edu)
5045 * Inverted this history list
5047 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
5048 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
5049 * Removed all preallocation code since under current scheme
5050 the work required to undo bad preallocations exceeds
5051 the work saved in good cases for most test programs.
5052 * No longer use return list or unconsolidated bins since
5053 no scheme using them consistently outperforms those that don't
5054 given above changes.
5055 * Use best fit for very large chunks to prevent some worst-cases.
5056 * Added some support for debugging
5058 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
5059 * Removed footers when chunks are in use. Thanks to
5060 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
5062 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
5063 * Added malloc_trim, with help from Wolfram Gloger
5064 (wmglo@Dent.MED.Uni-Muenchen.DE).
5066 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
5068 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
5069 * realloc: try to expand in both directions
5070 * malloc: swap order of clean-bin strategy;
5071 * realloc: only conditionally expand backwards
5072 * Try not to scavenge used bins
5073 * Use bin counts as a guide to preallocation
5074 * Occasionally bin return list chunks in first scan
5075 * Add a few optimizations from colin@nyx10.cs.du.edu
5077 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
5078 * faster bin computation & slightly different binning
5079 * merged all consolidations to one part of malloc proper
5080 (eliminating old malloc_find_space & malloc_clean_bin)
5081 * Scan 2 returns chunks (not just 1)
5082 * Propagate failure in realloc if malloc returns 0
5083 * Add stuff to allow compilation on non-ANSI compilers
5084 from kpv@research.att.com
5086 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
5087 * removed potential for odd address access in prev_chunk
5088 * removed dependency on getpagesize.h
5089 * misc cosmetics and a bit more internal documentation
5090 * anticosmetics: mangled names in macros to evade debugger strangeness
5091 * tested on sparc, hp-700, dec-mips, rs6000
5092 with gcc & native cc (hp, dec only) allowing
5093 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
5095 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
5096 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
5097 structure of old version, but most details differ.)