2009-07-17 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob8c3f71d32b6a73e3faeb85adad3349054b00ccad
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3 Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37 #include "pointer-set.h"
38 #include "domwalk.h"
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 struct pointer_set_t *);
52 static struct pointer_set_t * get_non_trapping (void);
53 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
55 /* This pass tries to replaces an if-then-else block with an
56 assignment. We have four kinds of transformations. Some of these
57 transformations are also performed by the ifcvt RTL optimizer.
59 Conditional Replacement
60 -----------------------
62 This transformation, implemented in conditional_replacement,
63 replaces
65 bb0:
66 if (cond) goto bb2; else goto bb1;
67 bb1:
68 bb2:
69 x = PHI <0 (bb1), 1 (bb0), ...>;
71 with
73 bb0:
74 x' = cond;
75 goto bb2;
76 bb2:
77 x = PHI <x' (bb0), ...>;
79 We remove bb1 as it becomes unreachable. This occurs often due to
80 gimplification of conditionals.
82 Value Replacement
83 -----------------
85 This transformation, implemented in value_replacement, replaces
87 bb0:
88 if (a != b) goto bb2; else goto bb1;
89 bb1:
90 bb2:
91 x = PHI <a (bb1), b (bb0), ...>;
93 with
95 bb0:
96 bb2:
97 x = PHI <b (bb0), ...>;
99 This opportunity can sometimes occur as a result of other
100 optimizations.
102 ABS Replacement
103 ---------------
105 This transformation, implemented in abs_replacement, replaces
107 bb0:
108 if (a >= 0) goto bb2; else goto bb1;
109 bb1:
110 x = -a;
111 bb2:
112 x = PHI <x (bb1), a (bb0), ...>;
114 with
116 bb0:
117 x' = ABS_EXPR< a >;
118 bb2:
119 x = PHI <x' (bb0), ...>;
121 MIN/MAX Replacement
122 -------------------
124 This transformation, minmax_replacement replaces
126 bb0:
127 if (a <= b) goto bb2; else goto bb1;
128 bb1:
129 bb2:
130 x = PHI <b (bb1), a (bb0), ...>;
132 with
134 bb0:
135 x' = MIN_EXPR (a, b)
136 bb2:
137 x = PHI <x' (bb0), ...>;
139 A similar transformation is done for MAX_EXPR. */
141 static unsigned int
142 tree_ssa_phiopt (void)
144 return tree_ssa_phiopt_worker (false);
147 /* This pass tries to transform conditional stores into unconditional
148 ones, enabling further simplifications with the simpler then and else
149 blocks. In particular it replaces this:
151 bb0:
152 if (cond) goto bb2; else goto bb1;
153 bb1:
154 *p = RHS
155 bb2:
157 with
159 bb0:
160 if (cond) goto bb1; else goto bb2;
161 bb1:
162 condtmp' = *p;
163 bb2:
164 condtmp = PHI <RHS, condtmp'>
165 *p = condtmp
167 This transformation can only be done under several constraints,
168 documented below. */
170 static unsigned int
171 tree_ssa_cs_elim (void)
173 return tree_ssa_phiopt_worker (true);
176 /* For conditional store replacement we need a temporary to
177 put the old contents of the memory in. */
178 static tree condstoretemp;
180 /* The core routine of conditional store replacement and normal
181 phi optimizations. Both share much of the infrastructure in how
182 to match applicable basic block patterns. DO_STORE_ELIM is true
183 when we want to do conditional store replacement, false otherwise. */
184 static unsigned int
185 tree_ssa_phiopt_worker (bool do_store_elim)
187 basic_block bb;
188 basic_block *bb_order;
189 unsigned n, i;
190 bool cfgchanged = false;
191 struct pointer_set_t *nontrap = 0;
193 if (do_store_elim)
195 condstoretemp = NULL_TREE;
196 /* Calculate the set of non-trapping memory accesses. */
197 nontrap = get_non_trapping ();
200 /* Search every basic block for COND_EXPR we may be able to optimize.
202 We walk the blocks in order that guarantees that a block with
203 a single predecessor is processed before the predecessor.
204 This ensures that we collapse inner ifs before visiting the
205 outer ones, and also that we do not try to visit a removed
206 block. */
207 bb_order = blocks_in_phiopt_order ();
208 n = n_basic_blocks - NUM_FIXED_BLOCKS;
210 for (i = 0; i < n; i++)
212 gimple cond_stmt, phi;
213 basic_block bb1, bb2;
214 edge e1, e2;
215 tree arg0, arg1;
217 bb = bb_order[i];
219 cond_stmt = last_stmt (bb);
220 /* Check to see if the last statement is a GIMPLE_COND. */
221 if (!cond_stmt
222 || gimple_code (cond_stmt) != GIMPLE_COND)
223 continue;
225 e1 = EDGE_SUCC (bb, 0);
226 bb1 = e1->dest;
227 e2 = EDGE_SUCC (bb, 1);
228 bb2 = e2->dest;
230 /* We cannot do the optimization on abnormal edges. */
231 if ((e1->flags & EDGE_ABNORMAL) != 0
232 || (e2->flags & EDGE_ABNORMAL) != 0)
233 continue;
235 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
236 if (EDGE_COUNT (bb1->succs) == 0
237 || bb2 == NULL
238 || EDGE_COUNT (bb2->succs) == 0)
239 continue;
241 /* Find the bb which is the fall through to the other. */
242 if (EDGE_SUCC (bb1, 0)->dest == bb2)
244 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
246 basic_block bb_tmp = bb1;
247 edge e_tmp = e1;
248 bb1 = bb2;
249 bb2 = bb_tmp;
250 e1 = e2;
251 e2 = e_tmp;
253 else
254 continue;
256 e1 = EDGE_SUCC (bb1, 0);
258 /* Make sure that bb1 is just a fall through. */
259 if (!single_succ_p (bb1)
260 || (e1->flags & EDGE_FALLTHRU) == 0)
261 continue;
263 /* Also make sure that bb1 only have one predecessor and that it
264 is bb. */
265 if (!single_pred_p (bb1)
266 || single_pred (bb1) != bb)
267 continue;
269 if (do_store_elim)
271 /* bb1 is the middle block, bb2 the join block, bb the split block,
272 e1 the fallthrough edge from bb1 to bb2. We can't do the
273 optimization if the join block has more than two predecessors. */
274 if (EDGE_COUNT (bb2->preds) > 2)
275 continue;
276 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
277 cfgchanged = true;
279 else
281 gimple_seq phis = phi_nodes (bb2);
283 /* Check to make sure that there is only one PHI node.
284 TODO: we could do it with more than one iff the other PHI nodes
285 have the same elements for these two edges. */
286 if (! gimple_seq_singleton_p (phis))
287 continue;
289 phi = gsi_stmt (gsi_start (phis));
290 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
291 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
293 /* Something is wrong if we cannot find the arguments in the PHI
294 node. */
295 gcc_assert (arg0 != NULL && arg1 != NULL);
297 /* Do the replacement of conditional if it can be done. */
298 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
299 cfgchanged = true;
300 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
301 cfgchanged = true;
302 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
303 cfgchanged = true;
304 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
305 cfgchanged = true;
309 free (bb_order);
311 if (do_store_elim)
312 pointer_set_destroy (nontrap);
313 /* If the CFG has changed, we should cleanup the CFG. */
314 if (cfgchanged && do_store_elim)
316 /* In cond-store replacement we have added some loads on edges
317 and new VOPS (as we moved the store, and created a load). */
318 gsi_commit_edge_inserts ();
319 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
321 else if (cfgchanged)
322 return TODO_cleanup_cfg;
323 return 0;
326 /* Returns the list of basic blocks in the function in an order that guarantees
327 that if a block X has just a single predecessor Y, then Y is after X in the
328 ordering. */
330 basic_block *
331 blocks_in_phiopt_order (void)
333 basic_block x, y;
334 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
335 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
336 unsigned np, i;
337 sbitmap visited = sbitmap_alloc (last_basic_block);
339 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
340 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
342 sbitmap_zero (visited);
344 MARK_VISITED (ENTRY_BLOCK_PTR);
345 FOR_EACH_BB (x)
347 if (VISITED_P (x))
348 continue;
350 /* Walk the predecessors of x as long as they have precisely one
351 predecessor and add them to the list, so that they get stored
352 after x. */
353 for (y = x, np = 1;
354 single_pred_p (y) && !VISITED_P (single_pred (y));
355 y = single_pred (y))
356 np++;
357 for (y = x, i = n - np;
358 single_pred_p (y) && !VISITED_P (single_pred (y));
359 y = single_pred (y), i++)
361 order[i] = y;
362 MARK_VISITED (y);
364 order[i] = y;
365 MARK_VISITED (y);
367 gcc_assert (i == n - 1);
368 n -= np;
371 sbitmap_free (visited);
372 gcc_assert (n == 0);
373 return order;
375 #undef MARK_VISITED
376 #undef VISITED_P
380 /* Return TRUE if block BB has no executable statements, otherwise return
381 FALSE. */
383 bool
384 empty_block_p (basic_block bb)
386 /* BB must have no executable statements. */
387 return gsi_end_p (gsi_after_labels (bb));
390 /* Replace PHI node element whose edge is E in block BB with variable NEW.
391 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
392 is known to have two edges, one of which must reach BB). */
394 static void
395 replace_phi_edge_with_variable (basic_block cond_block,
396 edge e, gimple phi, tree new_tree)
398 basic_block bb = gimple_bb (phi);
399 basic_block block_to_remove;
400 gimple_stmt_iterator gsi;
402 /* Change the PHI argument to new. */
403 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
405 /* Remove the empty basic block. */
406 if (EDGE_SUCC (cond_block, 0)->dest == bb)
408 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
409 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
410 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
411 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
413 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
415 else
417 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
418 EDGE_SUCC (cond_block, 1)->flags
419 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
420 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
421 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
423 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
425 delete_basic_block (block_to_remove);
427 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
428 gsi = gsi_last_bb (cond_block);
429 gsi_remove (&gsi, true);
431 if (dump_file && (dump_flags & TDF_DETAILS))
432 fprintf (dump_file,
433 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
434 cond_block->index,
435 bb->index);
438 /* The function conditional_replacement does the main work of doing the
439 conditional replacement. Return true if the replacement is done.
440 Otherwise return false.
441 BB is the basic block where the replacement is going to be done on. ARG0
442 is argument 0 from PHI. Likewise for ARG1. */
444 static bool
445 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
446 edge e0, edge e1, gimple phi,
447 tree arg0, tree arg1)
449 tree result;
450 gimple stmt, new_stmt;
451 tree cond;
452 gimple_stmt_iterator gsi;
453 edge true_edge, false_edge;
454 tree new_var, new_var2;
456 /* FIXME: Gimplification of complex type is too hard for now. */
457 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
458 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
459 return false;
461 /* The PHI arguments have the constants 0 and 1, then convert
462 it to the conditional. */
463 if ((integer_zerop (arg0) && integer_onep (arg1))
464 || (integer_zerop (arg1) && integer_onep (arg0)))
466 else
467 return false;
469 if (!empty_block_p (middle_bb))
470 return false;
472 /* At this point we know we have a GIMPLE_COND with two successors.
473 One successor is BB, the other successor is an empty block which
474 falls through into BB.
476 There is a single PHI node at the join point (BB) and its arguments
477 are constants (0, 1).
479 So, given the condition COND, and the two PHI arguments, we can
480 rewrite this PHI into non-branching code:
482 dest = (COND) or dest = COND'
484 We use the condition as-is if the argument associated with the
485 true edge has the value one or the argument associated with the
486 false edge as the value zero. Note that those conditions are not
487 the same since only one of the outgoing edges from the GIMPLE_COND
488 will directly reach BB and thus be associated with an argument. */
490 stmt = last_stmt (cond_bb);
491 result = PHI_RESULT (phi);
493 /* To handle special cases like floating point comparison, it is easier and
494 less error-prone to build a tree and gimplify it on the fly though it is
495 less efficient. */
496 cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node,
497 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
499 /* We need to know which is the true edge and which is the false
500 edge so that we know when to invert the condition below. */
501 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
502 if ((e0 == true_edge && integer_zerop (arg0))
503 || (e0 == false_edge && integer_onep (arg0))
504 || (e1 == true_edge && integer_zerop (arg1))
505 || (e1 == false_edge && integer_onep (arg1)))
506 cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
508 /* Insert our new statements at the end of conditional block before the
509 COND_STMT. */
510 gsi = gsi_for_stmt (stmt);
511 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
512 GSI_SAME_STMT);
514 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
516 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
517 add_referenced_var (new_var2);
518 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
519 new_var, NULL);
520 new_var2 = make_ssa_name (new_var2, new_stmt);
521 gimple_assign_set_lhs (new_stmt, new_var2);
522 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
523 new_var = new_var2;
526 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
528 /* Note that we optimized this PHI. */
529 return true;
532 /* The function value_replacement does the main work of doing the value
533 replacement. Return true if the replacement is done. Otherwise return
534 false.
535 BB is the basic block where the replacement is going to be done on. ARG0
536 is argument 0 from the PHI. Likewise for ARG1. */
538 static bool
539 value_replacement (basic_block cond_bb, basic_block middle_bb,
540 edge e0, edge e1, gimple phi,
541 tree arg0, tree arg1)
543 gimple cond;
544 edge true_edge, false_edge;
545 enum tree_code code;
547 /* If the type says honor signed zeros we cannot do this
548 optimization. */
549 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
550 return false;
552 if (!empty_block_p (middle_bb))
553 return false;
555 cond = last_stmt (cond_bb);
556 code = gimple_cond_code (cond);
558 /* This transformation is only valid for equality comparisons. */
559 if (code != NE_EXPR && code != EQ_EXPR)
560 return false;
562 /* We need to know which is the true edge and which is the false
563 edge so that we know if have abs or negative abs. */
564 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
566 /* At this point we know we have a COND_EXPR with two successors.
567 One successor is BB, the other successor is an empty block which
568 falls through into BB.
570 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
572 There is a single PHI node at the join point (BB) with two arguments.
574 We now need to verify that the two arguments in the PHI node match
575 the two arguments to the equality comparison. */
577 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
578 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
579 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
580 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
582 edge e;
583 tree arg;
585 /* For NE_EXPR, we want to build an assignment result = arg where
586 arg is the PHI argument associated with the true edge. For
587 EQ_EXPR we want the PHI argument associated with the false edge. */
588 e = (code == NE_EXPR ? true_edge : false_edge);
590 /* Unfortunately, E may not reach BB (it may instead have gone to
591 OTHER_BLOCK). If that is the case, then we want the single outgoing
592 edge from OTHER_BLOCK which reaches BB and represents the desired
593 path from COND_BLOCK. */
594 if (e->dest == middle_bb)
595 e = single_succ_edge (e->dest);
597 /* Now we know the incoming edge to BB that has the argument for the
598 RHS of our new assignment statement. */
599 if (e0 == e)
600 arg = arg0;
601 else
602 arg = arg1;
604 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
606 /* Note that we optimized this PHI. */
607 return true;
609 return false;
612 /* The function minmax_replacement does the main work of doing the minmax
613 replacement. Return true if the replacement is done. Otherwise return
614 false.
615 BB is the basic block where the replacement is going to be done on. ARG0
616 is argument 0 from the PHI. Likewise for ARG1. */
618 static bool
619 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
620 edge e0, edge e1, gimple phi,
621 tree arg0, tree arg1)
623 tree result, type;
624 gimple cond, new_stmt;
625 edge true_edge, false_edge;
626 enum tree_code cmp, minmax, ass_code;
627 tree smaller, larger, arg_true, arg_false;
628 gimple_stmt_iterator gsi, gsi_from;
630 type = TREE_TYPE (PHI_RESULT (phi));
632 /* The optimization may be unsafe due to NaNs. */
633 if (HONOR_NANS (TYPE_MODE (type)))
634 return false;
636 cond = last_stmt (cond_bb);
637 cmp = gimple_cond_code (cond);
638 result = PHI_RESULT (phi);
640 /* This transformation is only valid for order comparisons. Record which
641 operand is smaller/larger if the result of the comparison is true. */
642 if (cmp == LT_EXPR || cmp == LE_EXPR)
644 smaller = gimple_cond_lhs (cond);
645 larger = gimple_cond_rhs (cond);
647 else if (cmp == GT_EXPR || cmp == GE_EXPR)
649 smaller = gimple_cond_rhs (cond);
650 larger = gimple_cond_lhs (cond);
652 else
653 return false;
655 /* We need to know which is the true edge and which is the false
656 edge so that we know if have abs or negative abs. */
657 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
659 /* Forward the edges over the middle basic block. */
660 if (true_edge->dest == middle_bb)
661 true_edge = EDGE_SUCC (true_edge->dest, 0);
662 if (false_edge->dest == middle_bb)
663 false_edge = EDGE_SUCC (false_edge->dest, 0);
665 if (true_edge == e0)
667 gcc_assert (false_edge == e1);
668 arg_true = arg0;
669 arg_false = arg1;
671 else
673 gcc_assert (false_edge == e0);
674 gcc_assert (true_edge == e1);
675 arg_true = arg1;
676 arg_false = arg0;
679 if (empty_block_p (middle_bb))
681 if (operand_equal_for_phi_arg_p (arg_true, smaller)
682 && operand_equal_for_phi_arg_p (arg_false, larger))
684 /* Case
686 if (smaller < larger)
687 rslt = smaller;
688 else
689 rslt = larger; */
690 minmax = MIN_EXPR;
692 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
693 && operand_equal_for_phi_arg_p (arg_true, larger))
694 minmax = MAX_EXPR;
695 else
696 return false;
698 else
700 /* Recognize the following case, assuming d <= u:
702 if (a <= u)
703 b = MAX (a, d);
704 x = PHI <b, u>
706 This is equivalent to
708 b = MAX (a, d);
709 x = MIN (b, u); */
711 gimple assign = last_and_only_stmt (middle_bb);
712 tree lhs, op0, op1, bound;
714 if (!assign
715 || gimple_code (assign) != GIMPLE_ASSIGN)
716 return false;
718 lhs = gimple_assign_lhs (assign);
719 ass_code = gimple_assign_rhs_code (assign);
720 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
721 return false;
722 op0 = gimple_assign_rhs1 (assign);
723 op1 = gimple_assign_rhs2 (assign);
725 if (true_edge->src == middle_bb)
727 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
728 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
729 return false;
731 if (operand_equal_for_phi_arg_p (arg_false, larger))
733 /* Case
735 if (smaller < larger)
737 r' = MAX_EXPR (smaller, bound)
739 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
740 if (ass_code != MAX_EXPR)
741 return false;
743 minmax = MIN_EXPR;
744 if (operand_equal_for_phi_arg_p (op0, smaller))
745 bound = op1;
746 else if (operand_equal_for_phi_arg_p (op1, smaller))
747 bound = op0;
748 else
749 return false;
751 /* We need BOUND <= LARGER. */
752 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
753 bound, larger)))
754 return false;
756 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
758 /* Case
760 if (smaller < larger)
762 r' = MIN_EXPR (larger, bound)
764 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
765 if (ass_code != MIN_EXPR)
766 return false;
768 minmax = MAX_EXPR;
769 if (operand_equal_for_phi_arg_p (op0, larger))
770 bound = op1;
771 else if (operand_equal_for_phi_arg_p (op1, larger))
772 bound = op0;
773 else
774 return false;
776 /* We need BOUND >= SMALLER. */
777 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
778 bound, smaller)))
779 return false;
781 else
782 return false;
784 else
786 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
787 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
788 return false;
790 if (operand_equal_for_phi_arg_p (arg_true, larger))
792 /* Case
794 if (smaller > larger)
796 r' = MIN_EXPR (smaller, bound)
798 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
799 if (ass_code != MIN_EXPR)
800 return false;
802 minmax = MAX_EXPR;
803 if (operand_equal_for_phi_arg_p (op0, smaller))
804 bound = op1;
805 else if (operand_equal_for_phi_arg_p (op1, smaller))
806 bound = op0;
807 else
808 return false;
810 /* We need BOUND >= LARGER. */
811 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
812 bound, larger)))
813 return false;
815 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
817 /* Case
819 if (smaller > larger)
821 r' = MAX_EXPR (larger, bound)
823 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
824 if (ass_code != MAX_EXPR)
825 return false;
827 minmax = MIN_EXPR;
828 if (operand_equal_for_phi_arg_p (op0, larger))
829 bound = op1;
830 else if (operand_equal_for_phi_arg_p (op1, larger))
831 bound = op0;
832 else
833 return false;
835 /* We need BOUND <= SMALLER. */
836 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
837 bound, smaller)))
838 return false;
840 else
841 return false;
844 /* Move the statement from the middle block. */
845 gsi = gsi_last_bb (cond_bb);
846 gsi_from = gsi_last_bb (middle_bb);
847 gsi_move_before (&gsi_from, &gsi);
850 /* Emit the statement to compute min/max. */
851 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
852 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
853 gsi = gsi_last_bb (cond_bb);
854 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
856 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
857 return true;
860 /* The function absolute_replacement does the main work of doing the absolute
861 replacement. Return true if the replacement is done. Otherwise return
862 false.
863 bb is the basic block where the replacement is going to be done on. arg0
864 is argument 0 from the phi. Likewise for arg1. */
866 static bool
867 abs_replacement (basic_block cond_bb, basic_block middle_bb,
868 edge e0 ATTRIBUTE_UNUSED, edge e1,
869 gimple phi, tree arg0, tree arg1)
871 tree result;
872 gimple new_stmt, cond;
873 gimple_stmt_iterator gsi;
874 edge true_edge, false_edge;
875 gimple assign;
876 edge e;
877 tree rhs, lhs;
878 bool negate;
879 enum tree_code cond_code;
881 /* If the type says honor signed zeros we cannot do this
882 optimization. */
883 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
884 return false;
886 /* OTHER_BLOCK must have only one executable statement which must have the
887 form arg0 = -arg1 or arg1 = -arg0. */
889 assign = last_and_only_stmt (middle_bb);
890 /* If we did not find the proper negation assignment, then we can not
891 optimize. */
892 if (assign == NULL)
893 return false;
895 /* If we got here, then we have found the only executable statement
896 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
897 arg1 = -arg0, then we can not optimize. */
898 if (gimple_code (assign) != GIMPLE_ASSIGN)
899 return false;
901 lhs = gimple_assign_lhs (assign);
903 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
904 return false;
906 rhs = gimple_assign_rhs1 (assign);
908 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
909 if (!(lhs == arg0 && rhs == arg1)
910 && !(lhs == arg1 && rhs == arg0))
911 return false;
913 cond = last_stmt (cond_bb);
914 result = PHI_RESULT (phi);
916 /* Only relationals comparing arg[01] against zero are interesting. */
917 cond_code = gimple_cond_code (cond);
918 if (cond_code != GT_EXPR && cond_code != GE_EXPR
919 && cond_code != LT_EXPR && cond_code != LE_EXPR)
920 return false;
922 /* Make sure the conditional is arg[01] OP y. */
923 if (gimple_cond_lhs (cond) != rhs)
924 return false;
926 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
927 ? real_zerop (gimple_cond_rhs (cond))
928 : integer_zerop (gimple_cond_rhs (cond)))
930 else
931 return false;
933 /* We need to know which is the true edge and which is the false
934 edge so that we know if have abs or negative abs. */
935 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
937 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
938 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
939 the false edge goes to OTHER_BLOCK. */
940 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
941 e = true_edge;
942 else
943 e = false_edge;
945 if (e->dest == middle_bb)
946 negate = true;
947 else
948 negate = false;
950 result = duplicate_ssa_name (result, NULL);
952 if (negate)
954 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
955 add_referenced_var (tmp);
956 lhs = make_ssa_name (tmp, NULL);
958 else
959 lhs = result;
961 /* Build the modify expression with abs expression. */
962 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
964 gsi = gsi_last_bb (cond_bb);
965 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
967 if (negate)
969 /* Get the right GSI. We want to insert after the recently
970 added ABS_EXPR statement (which we know is the first statement
971 in the block. */
972 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
974 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
977 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
979 /* Note that we optimized this PHI. */
980 return true;
983 /* Auxiliary functions to determine the set of memory accesses which
984 can't trap because they are preceded by accesses to the same memory
985 portion. We do that for INDIRECT_REFs, so we only need to track
986 the SSA_NAME of the pointer indirectly referenced. The algorithm
987 simply is a walk over all instructions in dominator order. When
988 we see an INDIRECT_REF we determine if we've already seen a same
989 ref anywhere up to the root of the dominator tree. If we do the
990 current access can't trap. If we don't see any dominating access
991 the current access might trap, but might also make later accesses
992 non-trapping, so we remember it. We need to be careful with loads
993 or stores, for instance a load might not trap, while a store would,
994 so if we see a dominating read access this doesn't mean that a later
995 write access would not trap. Hence we also need to differentiate the
996 type of access(es) seen.
998 ??? We currently are very conservative and assume that a load might
999 trap even if a store doesn't (write-only memory). This probably is
1000 overly conservative. */
1002 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
1003 through it was seen, which would constitute a no-trap region for
1004 same accesses. */
1005 struct name_to_bb
1007 tree ssa_name;
1008 basic_block bb;
1009 unsigned store : 1;
1012 /* The hash table for remembering what we've seen. */
1013 static htab_t seen_ssa_names;
1015 /* The set of INDIRECT_REFs which can't trap. */
1016 static struct pointer_set_t *nontrap_set;
1018 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1019 static hashval_t
1020 name_to_bb_hash (const void *p)
1022 const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1023 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1026 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1027 it's enough to simply compare them for equality. */
1028 static int
1029 name_to_bb_eq (const void *p1, const void *p2)
1031 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1032 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1034 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1037 /* We see the expression EXP in basic block BB. If it's an interesting
1038 expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
1039 expression into the set NONTRAP or the hash table of seen expressions.
1040 STORE is true if this expression is on the LHS, otherwise it's on
1041 the RHS. */
1042 static void
1043 add_or_mark_expr (basic_block bb, tree exp,
1044 struct pointer_set_t *nontrap, bool store)
1046 if (INDIRECT_REF_P (exp)
1047 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1049 tree name = TREE_OPERAND (exp, 0);
1050 struct name_to_bb map;
1051 void **slot;
1052 struct name_to_bb *n2bb;
1053 basic_block found_bb = 0;
1055 /* Try to find the last seen INDIRECT_REF through the same
1056 SSA_NAME, which can trap. */
1057 map.ssa_name = name;
1058 map.bb = 0;
1059 map.store = store;
1060 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1061 n2bb = (struct name_to_bb *) *slot;
1062 if (n2bb)
1063 found_bb = n2bb->bb;
1065 /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
1066 (it's in a basic block on the path from us to the dominator root)
1067 then we can't trap. */
1068 if (found_bb && found_bb->aux == (void *)1)
1070 pointer_set_insert (nontrap, exp);
1072 else
1074 /* EXP might trap, so insert it into the hash table. */
1075 if (n2bb)
1077 n2bb->bb = bb;
1079 else
1081 n2bb = XNEW (struct name_to_bb);
1082 n2bb->ssa_name = name;
1083 n2bb->bb = bb;
1084 n2bb->store = store;
1085 *slot = n2bb;
1091 /* Called by walk_dominator_tree, when entering the block BB. */
1092 static void
1093 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1095 gimple_stmt_iterator gsi;
1096 /* Mark this BB as being on the path to dominator root. */
1097 bb->aux = (void*)1;
1099 /* And walk the statements in order. */
1100 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1102 gimple stmt = gsi_stmt (gsi);
1104 if (is_gimple_assign (stmt))
1106 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1107 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1108 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1109 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1110 false);
1115 /* Called by walk_dominator_tree, when basic block BB is exited. */
1116 static void
1117 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1119 /* This BB isn't on the path to dominator root anymore. */
1120 bb->aux = NULL;
1123 /* This is the entry point of gathering non trapping memory accesses.
1124 It will do a dominator walk over the whole function, and it will
1125 make use of the bb->aux pointers. It returns a set of trees
1126 (the INDIRECT_REFs itself) which can't trap. */
1127 static struct pointer_set_t *
1128 get_non_trapping (void)
1130 struct pointer_set_t *nontrap;
1131 struct dom_walk_data walk_data;
1133 nontrap = pointer_set_create ();
1134 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1135 free);
1136 /* We're going to do a dominator walk, so ensure that we have
1137 dominance information. */
1138 calculate_dominance_info (CDI_DOMINATORS);
1140 /* Setup callbacks for the generic dominator tree walker. */
1141 nontrap_set = nontrap;
1142 walk_data.dom_direction = CDI_DOMINATORS;
1143 walk_data.initialize_block_local_data = NULL;
1144 walk_data.before_dom_children = nt_init_block;
1145 walk_data.after_dom_children = nt_fini_block;
1146 walk_data.global_data = NULL;
1147 walk_data.block_local_data_size = 0;
1149 init_walk_dominator_tree (&walk_data);
1150 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1151 fini_walk_dominator_tree (&walk_data);
1152 htab_delete (seen_ssa_names);
1154 return nontrap;
1157 /* Do the main work of conditional store replacement. We already know
1158 that the recognized pattern looks like so:
1160 split:
1161 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1162 MIDDLE_BB:
1163 something
1164 fallthrough (edge E0)
1165 JOIN_BB:
1166 some more
1168 We check that MIDDLE_BB contains only one store, that that store
1169 doesn't trap (not via NOTRAP, but via checking if an access to the same
1170 memory location dominates us) and that the store has a "simple" RHS. */
1172 static bool
1173 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1174 edge e0, edge e1, struct pointer_set_t *nontrap)
1176 gimple assign = last_and_only_stmt (middle_bb);
1177 tree lhs, rhs, name;
1178 gimple newphi, new_stmt;
1179 gimple_stmt_iterator gsi;
1180 enum tree_code code;
1182 /* Check if middle_bb contains of only one store. */
1183 if (!assign
1184 || gimple_code (assign) != GIMPLE_ASSIGN)
1185 return false;
1187 lhs = gimple_assign_lhs (assign);
1188 rhs = gimple_assign_rhs1 (assign);
1189 if (!INDIRECT_REF_P (lhs))
1190 return false;
1192 /* RHS is either a single SSA_NAME or a constant. */
1193 code = gimple_assign_rhs_code (assign);
1194 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
1195 || (code != SSA_NAME && !is_gimple_min_invariant (rhs)))
1196 return false;
1197 /* Prove that we can move the store down. We could also check
1198 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1199 whose value is not available readily, which we want to avoid. */
1200 if (!pointer_set_contains (nontrap, lhs))
1201 return false;
1203 /* Now we've checked the constraints, so do the transformation:
1204 1) Remove the single store. */
1205 mark_symbols_for_renaming (assign);
1206 gsi = gsi_for_stmt (assign);
1207 gsi_remove (&gsi, true);
1209 /* 2) Create a temporary where we can store the old content
1210 of the memory touched by the store, if we need to. */
1211 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1213 condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore");
1214 get_var_ann (condstoretemp);
1215 if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
1216 || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
1217 DECL_GIMPLE_REG_P (condstoretemp) = 1;
1219 add_referenced_var (condstoretemp);
1221 /* 3) Insert a load from the memory of the store to the temporary
1222 on the edge which did not contain the store. */
1223 lhs = unshare_expr (lhs);
1224 new_stmt = gimple_build_assign (condstoretemp, lhs);
1225 name = make_ssa_name (condstoretemp, new_stmt);
1226 gimple_assign_set_lhs (new_stmt, name);
1227 mark_symbols_for_renaming (new_stmt);
1228 gsi_insert_on_edge (e1, new_stmt);
1230 /* 4) Create a PHI node at the join block, with one argument
1231 holding the old RHS, and the other holding the temporary
1232 where we stored the old memory contents. */
1233 newphi = create_phi_node (condstoretemp, join_bb);
1234 add_phi_arg (newphi, rhs, e0);
1235 add_phi_arg (newphi, name, e1);
1237 lhs = unshare_expr (lhs);
1238 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1239 mark_symbols_for_renaming (new_stmt);
1241 /* 5) Insert that PHI node. */
1242 gsi = gsi_after_labels (join_bb);
1243 if (gsi_end_p (gsi))
1245 gsi = gsi_last_bb (join_bb);
1246 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1248 else
1249 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1251 return true;
1254 /* Always do these optimizations if we have SSA
1255 trees to work on. */
1256 static bool
1257 gate_phiopt (void)
1259 return 1;
1262 struct gimple_opt_pass pass_phiopt =
1265 GIMPLE_PASS,
1266 "phiopt", /* name */
1267 gate_phiopt, /* gate */
1268 tree_ssa_phiopt, /* execute */
1269 NULL, /* sub */
1270 NULL, /* next */
1271 0, /* static_pass_number */
1272 TV_TREE_PHIOPT, /* tv_id */
1273 PROP_cfg | PROP_ssa, /* properties_required */
1274 0, /* properties_provided */
1275 0, /* properties_destroyed */
1276 0, /* todo_flags_start */
1277 TODO_dump_func
1278 | TODO_ggc_collect
1279 | TODO_verify_ssa
1280 | TODO_verify_flow
1281 | TODO_verify_stmts /* todo_flags_finish */
1285 static bool
1286 gate_cselim (void)
1288 return flag_tree_cselim;
1291 struct gimple_opt_pass pass_cselim =
1294 GIMPLE_PASS,
1295 "cselim", /* name */
1296 gate_cselim, /* gate */
1297 tree_ssa_cs_elim, /* execute */
1298 NULL, /* sub */
1299 NULL, /* next */
1300 0, /* static_pass_number */
1301 TV_TREE_PHIOPT, /* tv_id */
1302 PROP_cfg | PROP_ssa, /* properties_required */
1303 0, /* properties_provided */
1304 0, /* properties_destroyed */
1305 0, /* todo_flags_start */
1306 TODO_dump_func
1307 | TODO_ggc_collect
1308 | TODO_verify_ssa
1309 | TODO_verify_flow
1310 | TODO_verify_stmts /* todo_flags_finish */