2009-07-17 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / config / sparc / sparc.h
blob31c74095f75d3152354a95b1e579e2c087de510f
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com).
6 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7 at Cygnus Support.
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
25 #include "config/vxworks-dummy.h"
27 /* Note that some other tm.h files include this one and then override
28 whatever definitions are necessary. */
30 /* Define the specific costs for a given cpu */
32 struct processor_costs {
33 /* Integer load */
34 const int int_load;
36 /* Integer signed load */
37 const int int_sload;
39 /* Integer zeroed load */
40 const int int_zload;
42 /* Float load */
43 const int float_load;
45 /* fmov, fneg, fabs */
46 const int float_move;
48 /* fadd, fsub */
49 const int float_plusminus;
51 /* fcmp */
52 const int float_cmp;
54 /* fmov, fmovr */
55 const int float_cmove;
57 /* fmul */
58 const int float_mul;
60 /* fdivs */
61 const int float_div_sf;
63 /* fdivd */
64 const int float_div_df;
66 /* fsqrts */
67 const int float_sqrt_sf;
69 /* fsqrtd */
70 const int float_sqrt_df;
72 /* umul/smul */
73 const int int_mul;
75 /* mulX */
76 const int int_mulX;
78 /* integer multiply cost for each bit set past the most
79 significant 3, so the formula for multiply cost becomes:
81 if (rs1 < 0)
82 highest_bit = highest_clear_bit(rs1);
83 else
84 highest_bit = highest_set_bit(rs1);
85 if (highest_bit < 3)
86 highest_bit = 3;
87 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
89 A value of zero indicates that the multiply costs is fixed,
90 and not variable. */
91 const int int_mul_bit_factor;
93 /* udiv/sdiv */
94 const int int_div;
96 /* divX */
97 const int int_divX;
99 /* movcc, movr */
100 const int int_cmove;
102 /* penalty for shifts, due to scheduling rules etc. */
103 const int shift_penalty;
106 extern const struct processor_costs *sparc_costs;
108 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
109 Solaris only; otherwise just define __sparc__. Sadly the headers
110 are such a mess there is no Solaris-specific header. */
111 #define TARGET_CPU_CPP_BUILTINS() \
112 do \
114 builtin_define_std ("sparc"); \
115 if (TARGET_64BIT) \
117 builtin_assert ("cpu=sparc64"); \
118 builtin_assert ("machine=sparc64"); \
120 else \
122 builtin_assert ("cpu=sparc"); \
123 builtin_assert ("machine=sparc"); \
126 while (0)
128 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
129 /* #define SPARC_BI_ARCH */
131 /* Macro used later in this file to determine default architecture. */
132 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
134 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
135 architectures to compile for. We allow targets to choose compile time or
136 runtime selection. */
137 #ifdef IN_LIBGCC2
138 #if defined(__sparcv9) || defined(__arch64__)
139 #define TARGET_ARCH32 0
140 #else
141 #define TARGET_ARCH32 1
142 #endif /* sparc64 */
143 #else
144 #ifdef SPARC_BI_ARCH
145 #define TARGET_ARCH32 (! TARGET_64BIT)
146 #else
147 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
148 #endif /* SPARC_BI_ARCH */
149 #endif /* IN_LIBGCC2 */
150 #define TARGET_ARCH64 (! TARGET_ARCH32)
152 /* Code model selection in 64-bit environment.
154 The machine mode used for addresses is 32-bit wide:
156 TARGET_CM_32: 32-bit address space.
157 It is the code model used when generating 32-bit code.
159 The machine mode used for addresses is 64-bit wide:
161 TARGET_CM_MEDLOW: 32-bit address space.
162 The executable must be in the low 32 bits of memory.
163 This avoids generating %uhi and %ulo terms. Programs
164 can be statically or dynamically linked.
166 TARGET_CM_MEDMID: 44-bit address space.
167 The executable must be in the low 44 bits of memory,
168 and the %[hml]44 terms are used. The text and data
169 segments have a maximum size of 2GB (31-bit span).
170 The maximum offset from any instruction to the label
171 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
173 TARGET_CM_MEDANY: 64-bit address space.
174 The text and data segments have a maximum size of 2GB
175 (31-bit span) and may be located anywhere in memory.
176 The maximum offset from any instruction to the label
177 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
179 TARGET_CM_EMBMEDANY: 64-bit address space.
180 The text and data segments have a maximum size of 2GB
181 (31-bit span) and may be located anywhere in memory.
182 The global register %g4 contains the start address of
183 the data segment. Programs are statically linked and
184 PIC is not supported.
186 Different code models are not supported in 32-bit environment. */
188 enum cmodel {
189 CM_32,
190 CM_MEDLOW,
191 CM_MEDMID,
192 CM_MEDANY,
193 CM_EMBMEDANY
196 /* One of CM_FOO. */
197 extern enum cmodel sparc_cmodel;
199 /* V9 code model selection. */
200 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
201 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
202 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
203 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
205 #define SPARC_DEFAULT_CMODEL CM_32
207 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
208 which requires the following macro to be true if enabled. Prior to V9,
209 there are no instructions to even talk about memory synchronization.
210 Note that the UltraSPARC III processors don't implement RMO, unlike the
211 UltraSPARC II processors. Niagara and Niagara-2 do not implement RMO
212 either.
214 Default to false; for example, Solaris never enables RMO, only ever uses
215 total memory ordering (TMO). */
216 #define SPARC_RELAXED_ORDERING false
218 /* Do not use the .note.GNU-stack convention by default. */
219 #define NEED_INDICATE_EXEC_STACK 0
221 /* This is call-clobbered in the normal ABI, but is reserved in the
222 home grown (aka upward compatible) embedded ABI. */
223 #define EMBMEDANY_BASE_REG "%g4"
225 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
226 and specified by the user via --with-cpu=foo.
227 This specifies the cpu implementation, not the architecture size. */
228 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
229 capable cpu's. */
230 #define TARGET_CPU_sparc 0
231 #define TARGET_CPU_v7 0 /* alias for previous */
232 #define TARGET_CPU_sparclet 1
233 #define TARGET_CPU_sparclite 2
234 #define TARGET_CPU_v8 3 /* generic v8 implementation */
235 #define TARGET_CPU_supersparc 4
236 #define TARGET_CPU_hypersparc 5
237 #define TARGET_CPU_sparc86x 6
238 #define TARGET_CPU_sparclite86x 6
239 #define TARGET_CPU_v9 7 /* generic v9 implementation */
240 #define TARGET_CPU_sparcv9 7 /* alias */
241 #define TARGET_CPU_sparc64 7 /* alias */
242 #define TARGET_CPU_ultrasparc 8
243 #define TARGET_CPU_ultrasparc3 9
244 #define TARGET_CPU_niagara 10
245 #define TARGET_CPU_niagara2 11
247 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
248 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
249 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
250 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
251 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
253 #define CPP_CPU32_DEFAULT_SPEC ""
254 #define ASM_CPU32_DEFAULT_SPEC ""
256 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
257 /* ??? What does Sun's CC pass? */
258 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
259 /* ??? It's not clear how other assemblers will handle this, so by default
260 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
261 is handled in sol2.h. */
262 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
263 #endif
264 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
265 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
266 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
267 #endif
268 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
269 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
270 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
271 #endif
272 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
273 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
274 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
275 #endif
276 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
277 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
278 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
279 #endif
281 #else
283 #define CPP_CPU64_DEFAULT_SPEC ""
284 #define ASM_CPU64_DEFAULT_SPEC ""
286 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
287 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
288 #define CPP_CPU32_DEFAULT_SPEC ""
289 #define ASM_CPU32_DEFAULT_SPEC ""
290 #endif
292 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
293 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
294 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
295 #endif
297 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
298 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
299 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
300 #endif
302 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
303 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
304 #define ASM_CPU32_DEFAULT_SPEC ""
305 #endif
307 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
308 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
309 #define ASM_CPU32_DEFAULT_SPEC ""
310 #endif
312 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
313 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
314 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
315 #endif
317 #endif
319 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
320 #error Unrecognized value in TARGET_CPU_DEFAULT.
321 #endif
323 #ifdef SPARC_BI_ARCH
325 #define CPP_CPU_DEFAULT_SPEC \
326 (DEFAULT_ARCH32_P ? "\
327 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
328 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
329 " : "\
330 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
331 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
333 #define ASM_CPU_DEFAULT_SPEC \
334 (DEFAULT_ARCH32_P ? "\
335 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
336 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
337 " : "\
338 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
339 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
342 #else /* !SPARC_BI_ARCH */
344 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
345 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
347 #endif /* !SPARC_BI_ARCH */
349 /* Define macros to distinguish architectures. */
351 /* Common CPP definitions used by CPP_SPEC amongst the various targets
352 for handling -mcpu=xxx switches. */
353 #define CPP_CPU_SPEC "\
354 %{msoft-float:-D_SOFT_FLOAT} \
355 %{mcypress:} \
356 %{msparclite:-D__sparclite__} \
357 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
358 %{mv8:-D__sparc_v8__} \
359 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
360 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
361 %{mcpu=sparclite:-D__sparclite__} \
362 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
363 %{mcpu=v8:-D__sparc_v8__} \
364 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
365 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
366 %{mcpu=sparclite86x:-D__sparclite86x__} \
367 %{mcpu=v9:-D__sparc_v9__} \
368 %{mcpu=ultrasparc:-D__sparc_v9__} \
369 %{mcpu=ultrasparc3:-D__sparc_v9__} \
370 %{mcpu=niagara:-D__sparc_v9__} \
371 %{mcpu=niagara2:-D__sparc_v9__} \
372 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
374 #define CPP_ARCH32_SPEC ""
375 #define CPP_ARCH64_SPEC "-D__arch64__"
377 #define CPP_ARCH_DEFAULT_SPEC \
378 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
380 #define CPP_ARCH_SPEC "\
381 %{m32:%(cpp_arch32)} \
382 %{m64:%(cpp_arch64)} \
383 %{!m32:%{!m64:%(cpp_arch_default)}} \
386 /* Macros to distinguish endianness. */
387 #define CPP_ENDIAN_SPEC "\
388 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
389 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
391 /* Macros to distinguish the particular subtarget. */
392 #define CPP_SUBTARGET_SPEC ""
394 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
396 /* Prevent error on `-sun4' and `-target sun4' options. */
397 /* This used to translate -dalign to -malign, but that is no good
398 because it can't turn off the usual meaning of making debugging dumps. */
399 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
400 ??? Delete support for -m<cpu> for 2.9. */
402 #define CC1_SPEC "\
403 %{sun4:} %{target:} \
404 %{mcypress:-mcpu=cypress} \
405 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
406 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
409 /* Override in target specific files. */
410 #define ASM_CPU_SPEC "\
411 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
412 %{msparclite:-Asparclite} \
413 %{mf930:-Asparclite} %{mf934:-Asparclite} \
414 %{mcpu=sparclite:-Asparclite} \
415 %{mcpu=sparclite86x:-Asparclite} \
416 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
417 %{mv8plus:-Av8plus} \
418 %{mcpu=v9:-Av9} \
419 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
420 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
421 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
422 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
423 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
426 /* Word size selection, among other things.
427 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
429 #define ASM_ARCH32_SPEC "-32"
430 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
431 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
432 #else
433 #define ASM_ARCH64_SPEC "-64"
434 #endif
435 #define ASM_ARCH_DEFAULT_SPEC \
436 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
438 #define ASM_ARCH_SPEC "\
439 %{m32:%(asm_arch32)} \
440 %{m64:%(asm_arch64)} \
441 %{!m32:%{!m64:%(asm_arch_default)}} \
444 #ifdef HAVE_AS_RELAX_OPTION
445 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
446 #else
447 #define ASM_RELAX_SPEC ""
448 #endif
450 /* Special flags to the Sun-4 assembler when using pipe for input. */
452 #define ASM_SPEC "\
453 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
454 %(asm_cpu) %(asm_relax)"
456 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
458 /* This macro defines names of additional specifications to put in the specs
459 that can be used in various specifications like CC1_SPEC. Its definition
460 is an initializer with a subgrouping for each command option.
462 Each subgrouping contains a string constant, that defines the
463 specification name, and a string constant that used by the GCC driver
464 program.
466 Do not define this macro if it does not need to do anything. */
468 #define EXTRA_SPECS \
469 { "cpp_cpu", CPP_CPU_SPEC }, \
470 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
471 { "cpp_arch32", CPP_ARCH32_SPEC }, \
472 { "cpp_arch64", CPP_ARCH64_SPEC }, \
473 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
474 { "cpp_arch", CPP_ARCH_SPEC }, \
475 { "cpp_endian", CPP_ENDIAN_SPEC }, \
476 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
477 { "asm_cpu", ASM_CPU_SPEC }, \
478 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
479 { "asm_arch32", ASM_ARCH32_SPEC }, \
480 { "asm_arch64", ASM_ARCH64_SPEC }, \
481 { "asm_relax", ASM_RELAX_SPEC }, \
482 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
483 { "asm_arch", ASM_ARCH_SPEC }, \
484 SUBTARGET_EXTRA_SPECS
486 #define SUBTARGET_EXTRA_SPECS
488 /* Because libgcc can generate references back to libc (via .umul etc.) we have
489 to list libc again after the second libgcc. */
490 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
493 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
494 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
496 /* ??? This should be 32 bits for v9 but what can we do? */
497 #define WCHAR_TYPE "short unsigned int"
498 #define WCHAR_TYPE_SIZE 16
500 /* Show we can debug even without a frame pointer. */
501 #define CAN_DEBUG_WITHOUT_FP
503 /* Option handling. */
505 #define OVERRIDE_OPTIONS sparc_override_options ()
507 /* Mask of all CPU selection flags. */
508 #define MASK_ISA \
509 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
511 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
512 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
513 to get high 32 bits. False in V8+ or V9 because multiply stores
514 a 64-bit result in a register. */
516 #define TARGET_HARD_MUL32 \
517 ((TARGET_V8 || TARGET_SPARCLITE \
518 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
519 && ! TARGET_V8PLUS && TARGET_ARCH32)
521 #define TARGET_HARD_MUL \
522 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
523 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
525 /* MASK_APP_REGS must always be the default because that's what
526 FIXED_REGISTERS is set to and -ffixed- is processed before
527 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
528 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
530 /* Processor type.
531 These must match the values for the cpu attribute in sparc.md. */
532 enum processor_type {
533 PROCESSOR_V7,
534 PROCESSOR_CYPRESS,
535 PROCESSOR_V8,
536 PROCESSOR_SUPERSPARC,
537 PROCESSOR_SPARCLITE,
538 PROCESSOR_F930,
539 PROCESSOR_F934,
540 PROCESSOR_HYPERSPARC,
541 PROCESSOR_SPARCLITE86X,
542 PROCESSOR_SPARCLET,
543 PROCESSOR_TSC701,
544 PROCESSOR_V9,
545 PROCESSOR_ULTRASPARC,
546 PROCESSOR_ULTRASPARC3,
547 PROCESSOR_NIAGARA,
548 PROCESSOR_NIAGARA2
551 /* This is set from -m{cpu,tune}=xxx. */
552 extern enum processor_type sparc_cpu;
554 /* Recast the cpu class to be the cpu attribute.
555 Every file includes us, but not every file includes insn-attr.h. */
556 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
558 /* Support for a compile-time default CPU, et cetera. The rules are:
559 --with-cpu is ignored if -mcpu is specified.
560 --with-tune is ignored if -mtune is specified.
561 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
562 are specified. */
563 #define OPTION_DEFAULT_SPECS \
564 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
565 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
566 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
568 /* sparc_select[0] is reserved for the default cpu. */
569 struct sparc_cpu_select
571 const char *string;
572 const char *const name;
573 const int set_tune_p;
574 const int set_arch_p;
577 extern struct sparc_cpu_select sparc_select[];
579 /* target machine storage layout */
581 /* Define this if most significant bit is lowest numbered
582 in instructions that operate on numbered bit-fields. */
583 #define BITS_BIG_ENDIAN 1
585 /* Define this if most significant byte of a word is the lowest numbered. */
586 #define BYTES_BIG_ENDIAN 1
588 /* Define this if most significant word of a multiword number is the lowest
589 numbered. */
590 #define WORDS_BIG_ENDIAN 1
592 /* Define this to set the endianness to use in libgcc2.c, which can
593 not depend on target_flags. */
594 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
595 #define LIBGCC2_WORDS_BIG_ENDIAN 0
596 #else
597 #define LIBGCC2_WORDS_BIG_ENDIAN 1
598 #endif
600 #define MAX_BITS_PER_WORD 64
602 /* Width of a word, in units (bytes). */
603 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
604 #ifdef IN_LIBGCC2
605 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
606 #else
607 #define MIN_UNITS_PER_WORD 4
608 #endif
610 #define UNITS_PER_SIMD_WORD(MODE) (TARGET_VIS ? 8 : UNITS_PER_WORD)
612 /* Now define the sizes of the C data types. */
614 #define SHORT_TYPE_SIZE 16
615 #define INT_TYPE_SIZE 32
616 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
617 #define LONG_LONG_TYPE_SIZE 64
618 #define FLOAT_TYPE_SIZE 32
619 #define DOUBLE_TYPE_SIZE 64
621 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
622 SPARC ABI says that it is 128-bit wide. */
623 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
625 /* The widest floating-point format really supported by the hardware. */
626 #define WIDEST_HARDWARE_FP_SIZE 64
628 /* Width in bits of a pointer. This is the size of ptr_mode. */
629 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
631 /* This is the machine mode used for addresses. */
632 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
634 /* If we have to extend pointers (only when TARGET_ARCH64 and not
635 TARGET_PTR64), we want to do it unsigned. This macro does nothing
636 if ptr_mode and Pmode are the same. */
637 #define POINTERS_EXTEND_UNSIGNED 1
639 /* For TARGET_ARCH64 we need this, as we don't have instructions
640 for arithmetic operations which do zero/sign extension at the same time,
641 so without this we end up with a srl/sra after every assignment to an
642 user variable, which means very very bad code. */
643 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
644 if (TARGET_ARCH64 \
645 && GET_MODE_CLASS (MODE) == MODE_INT \
646 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
647 (MODE) = word_mode;
649 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
650 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
652 /* Boundary (in *bits*) on which stack pointer should be aligned. */
653 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
654 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
655 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
656 /* Temporary hack until the FIXME above is fixed. */
657 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
659 /* ALIGN FRAMES on double word boundaries */
661 #define SPARC_STACK_ALIGN(LOC) \
662 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
664 /* Allocation boundary (in *bits*) for the code of a function. */
665 #define FUNCTION_BOUNDARY 32
667 /* Alignment of field after `int : 0' in a structure. */
668 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
670 /* Every structure's size must be a multiple of this. */
671 #define STRUCTURE_SIZE_BOUNDARY 8
673 /* A bit-field declared as `int' forces `int' alignment for the struct. */
674 #define PCC_BITFIELD_TYPE_MATTERS 1
676 /* No data type wants to be aligned rounder than this. */
677 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
679 /* The best alignment to use in cases where we have a choice. */
680 #define FASTEST_ALIGNMENT 64
682 /* Define this macro as an expression for the alignment of a structure
683 (given by STRUCT as a tree node) if the alignment computed in the
684 usual way is COMPUTED and the alignment explicitly specified was
685 SPECIFIED.
687 The default is to use SPECIFIED if it is larger; otherwise, use
688 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
689 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
690 (TARGET_FASTER_STRUCTS ? \
691 ((TREE_CODE (STRUCT) == RECORD_TYPE \
692 || TREE_CODE (STRUCT) == UNION_TYPE \
693 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
694 && TYPE_FIELDS (STRUCT) != 0 \
695 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
696 : MAX ((COMPUTED), (SPECIFIED))) \
697 : MAX ((COMPUTED), (SPECIFIED)))
699 /* Make strings word-aligned so strcpy from constants will be faster. */
700 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
701 ((TREE_CODE (EXP) == STRING_CST \
702 && (ALIGN) < FASTEST_ALIGNMENT) \
703 ? FASTEST_ALIGNMENT : (ALIGN))
705 /* Make arrays of chars word-aligned for the same reasons. */
706 #define DATA_ALIGNMENT(TYPE, ALIGN) \
707 (TREE_CODE (TYPE) == ARRAY_TYPE \
708 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
709 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
711 /* Make local arrays of chars word-aligned for the same reasons. */
712 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
714 /* Set this nonzero if move instructions will actually fail to work
715 when given unaligned data. */
716 #define STRICT_ALIGNMENT 1
718 /* Things that must be doubleword aligned cannot go in the text section,
719 because the linker fails to align the text section enough!
720 Put them in the data section. This macro is only used in this file. */
721 #define MAX_TEXT_ALIGN 32
723 /* Standard register usage. */
725 /* Number of actual hardware registers.
726 The hardware registers are assigned numbers for the compiler
727 from 0 to just below FIRST_PSEUDO_REGISTER.
728 All registers that the compiler knows about must be given numbers,
729 even those that are not normally considered general registers.
731 SPARC has 32 integer registers and 32 floating point registers.
732 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
733 accessible. We still account for them to simplify register computations
734 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
735 32+32+32+4 == 100.
736 Register 100 is used as the integer condition code register.
737 Register 101 is used as the soft frame pointer register. */
739 #define FIRST_PSEUDO_REGISTER 102
741 #define SPARC_FIRST_FP_REG 32
742 /* Additional V9 fp regs. */
743 #define SPARC_FIRST_V9_FP_REG 64
744 #define SPARC_LAST_V9_FP_REG 95
745 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
746 #define SPARC_FIRST_V9_FCC_REG 96
747 #define SPARC_LAST_V9_FCC_REG 99
748 /* V8 fcc reg. */
749 #define SPARC_FCC_REG 96
750 /* Integer CC reg. We don't distinguish %icc from %xcc. */
751 #define SPARC_ICC_REG 100
753 /* Nonzero if REGNO is an fp reg. */
754 #define SPARC_FP_REG_P(REGNO) \
755 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
757 /* Argument passing regs. */
758 #define SPARC_OUTGOING_INT_ARG_FIRST 8
759 #define SPARC_INCOMING_INT_ARG_FIRST 24
760 #define SPARC_FP_ARG_FIRST 32
762 /* 1 for registers that have pervasive standard uses
763 and are not available for the register allocator.
765 On non-v9 systems:
766 g1 is free to use as temporary.
767 g2-g4 are reserved for applications. Gcc normally uses them as
768 temporaries, but this can be disabled via the -mno-app-regs option.
769 g5 through g7 are reserved for the operating system.
771 On v9 systems:
772 g1,g5 are free to use as temporaries, and are free to use between calls
773 if the call is to an external function via the PLT.
774 g4 is free to use as a temporary in the non-embedded case.
775 g4 is reserved in the embedded case.
776 g2-g3 are reserved for applications. Gcc normally uses them as
777 temporaries, but this can be disabled via the -mno-app-regs option.
778 g6-g7 are reserved for the operating system (or application in
779 embedded case).
780 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
781 currently be a fixed register until this pattern is rewritten.
782 Register 1 is also used when restoring call-preserved registers in large
783 stack frames.
785 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
786 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
789 #define FIXED_REGISTERS \
790 {1, 0, 2, 2, 2, 2, 1, 1, \
791 0, 0, 0, 0, 0, 0, 1, 0, \
792 0, 0, 0, 0, 0, 0, 0, 0, \
793 0, 0, 0, 0, 0, 0, 1, 1, \
795 0, 0, 0, 0, 0, 0, 0, 0, \
796 0, 0, 0, 0, 0, 0, 0, 0, \
797 0, 0, 0, 0, 0, 0, 0, 0, \
798 0, 0, 0, 0, 0, 0, 0, 0, \
800 0, 0, 0, 0, 0, 0, 0, 0, \
801 0, 0, 0, 0, 0, 0, 0, 0, \
802 0, 0, 0, 0, 0, 0, 0, 0, \
803 0, 0, 0, 0, 0, 0, 0, 0, \
805 0, 0, 0, 0, 0, 1}
807 /* 1 for registers not available across function calls.
808 These must include the FIXED_REGISTERS and also any
809 registers that can be used without being saved.
810 The latter must include the registers where values are returned
811 and the register where structure-value addresses are passed.
812 Aside from that, you can include as many other registers as you like. */
814 #define CALL_USED_REGISTERS \
815 {1, 1, 1, 1, 1, 1, 1, 1, \
816 1, 1, 1, 1, 1, 1, 1, 1, \
817 0, 0, 0, 0, 0, 0, 0, 0, \
818 0, 0, 0, 0, 0, 0, 1, 1, \
820 1, 1, 1, 1, 1, 1, 1, 1, \
821 1, 1, 1, 1, 1, 1, 1, 1, \
822 1, 1, 1, 1, 1, 1, 1, 1, \
823 1, 1, 1, 1, 1, 1, 1, 1, \
825 1, 1, 1, 1, 1, 1, 1, 1, \
826 1, 1, 1, 1, 1, 1, 1, 1, \
827 1, 1, 1, 1, 1, 1, 1, 1, \
828 1, 1, 1, 1, 1, 1, 1, 1, \
830 1, 1, 1, 1, 1, 1}
832 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
833 they won't be allocated. */
835 #define CONDITIONAL_REGISTER_USAGE \
836 do \
838 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
840 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
841 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
843 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
844 /* then honor it. */ \
845 if (TARGET_ARCH32 && fixed_regs[5]) \
846 fixed_regs[5] = 1; \
847 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
848 fixed_regs[5] = 0; \
849 if (! TARGET_V9) \
851 int regno; \
852 for (regno = SPARC_FIRST_V9_FP_REG; \
853 regno <= SPARC_LAST_V9_FP_REG; \
854 regno++) \
855 fixed_regs[regno] = 1; \
856 /* %fcc0 is used by v8 and v9. */ \
857 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
858 regno <= SPARC_LAST_V9_FCC_REG; \
859 regno++) \
860 fixed_regs[regno] = 1; \
862 if (! TARGET_FPU) \
864 int regno; \
865 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
866 fixed_regs[regno] = 1; \
868 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
869 /* then honor it. Likewise with g3 and g4. */ \
870 if (fixed_regs[2] == 2) \
871 fixed_regs[2] = ! TARGET_APP_REGS; \
872 if (fixed_regs[3] == 2) \
873 fixed_regs[3] = ! TARGET_APP_REGS; \
874 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
875 fixed_regs[4] = ! TARGET_APP_REGS; \
876 else if (TARGET_CM_EMBMEDANY) \
877 fixed_regs[4] = 1; \
878 else if (fixed_regs[4] == 2) \
879 fixed_regs[4] = 0; \
881 while (0)
883 /* Return number of consecutive hard regs needed starting at reg REGNO
884 to hold something of mode MODE.
885 This is ordinarily the length in words of a value of mode MODE
886 but can be less for certain modes in special long registers.
888 On SPARC, ordinary registers hold 32 bits worth;
889 this means both integer and floating point registers.
890 On v9, integer regs hold 64 bits worth; floating point regs hold
891 32 bits worth (this includes the new fp regs as even the odd ones are
892 included in the hard register count). */
894 #define HARD_REGNO_NREGS(REGNO, MODE) \
895 (TARGET_ARCH64 \
896 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
897 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
898 : (GET_MODE_SIZE (MODE) + 3) / 4) \
899 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
901 /* Due to the ARCH64 discrepancy above we must override this next
902 macro too. */
903 #define REGMODE_NATURAL_SIZE(MODE) \
904 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
906 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
907 See sparc.c for how we initialize this. */
908 extern const int *hard_regno_mode_classes;
909 extern int sparc_mode_class[];
911 /* ??? Because of the funny way we pass parameters we should allow certain
912 ??? types of float/complex values to be in integer registers during
913 ??? RTL generation. This only matters on arch32. */
914 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
915 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
917 /* Value is 1 if it is OK to rename a hard register FROM to another hard
918 register TO. We cannot rename %g1 as it may be used before the save
919 register window instruction in the prologue. */
920 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
922 /* Value is 1 if it is a good idea to tie two pseudo registers
923 when one has mode MODE1 and one has mode MODE2.
924 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
925 for any hard reg, then this must be 0 for correct output.
927 For V9: SFmode can't be combined with other float modes, because they can't
928 be allocated to the %d registers. Also, DFmode won't fit in odd %f
929 registers, but SFmode will. */
930 #define MODES_TIEABLE_P(MODE1, MODE2) \
931 ((MODE1) == (MODE2) \
932 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
933 && (! TARGET_V9 \
934 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
935 || (MODE1 != SFmode && MODE2 != SFmode)))))
937 /* Specify the registers used for certain standard purposes.
938 The values of these macros are register numbers. */
940 /* Register to use for pushing function arguments. */
941 #define STACK_POINTER_REGNUM 14
943 /* The stack bias (amount by which the hardware register is offset by). */
944 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
946 /* Actual top-of-stack address is 92/176 greater than the contents of the
947 stack pointer register for !v9/v9. That is:
948 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
949 address, and 6*4 bytes for the 6 register parameters.
950 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
951 parameter regs. */
952 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
954 /* Base register for access to local variables of the function. */
955 #define HARD_FRAME_POINTER_REGNUM 30
957 /* The soft frame pointer does not have the stack bias applied. */
958 #define FRAME_POINTER_REGNUM 101
960 /* Given the stack bias, the stack pointer isn't actually aligned. */
961 #define INIT_EXPANDERS \
962 do { \
963 if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
965 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
966 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
968 } while (0)
970 /* Base register for access to arguments of the function. */
971 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
973 /* Register in which static-chain is passed to a function. This must
974 not be a register used by the prologue. */
975 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
977 /* Register which holds offset table for position-independent
978 data references. */
980 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
982 /* Pick a default value we can notice from override_options:
983 !v9: Default is on.
984 v9: Default is off.
985 Originally it was -1, but later on the container of options changed to
986 unsigned byte, so we decided to pick 127 as default value, which does
987 reflect an undefined default value in case of 0/1. */
989 #define DEFAULT_PCC_STRUCT_RETURN 127
991 /* Functions which return large structures get the address
992 to place the wanted value at offset 64 from the frame.
993 Must reserve 64 bytes for the in and local registers.
994 v9: Functions which return large structures get the address to place the
995 wanted value from an invisible first argument. */
996 #define STRUCT_VALUE_OFFSET 64
998 /* Define the classes of registers for register constraints in the
999 machine description. Also define ranges of constants.
1001 One of the classes must always be named ALL_REGS and include all hard regs.
1002 If there is more than one class, another class must be named NO_REGS
1003 and contain no registers.
1005 The name GENERAL_REGS must be the name of a class (or an alias for
1006 another name such as ALL_REGS). This is the class of registers
1007 that is allowed by "g" or "r" in a register constraint.
1008 Also, registers outside this class are allocated only when
1009 instructions express preferences for them.
1011 The classes must be numbered in nondecreasing order; that is,
1012 a larger-numbered class must never be contained completely
1013 in a smaller-numbered class.
1015 For any two classes, it is very desirable that there be another
1016 class that represents their union. */
1018 /* The SPARC has various kinds of registers: general, floating point,
1019 and condition codes [well, it has others as well, but none that we
1020 care directly about].
1022 For v9 we must distinguish between the upper and lower floating point
1023 registers because the upper ones can't hold SFmode values.
1024 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1025 satisfying a group need for a class will also satisfy a single need for
1026 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1027 regs.
1029 It is important that one class contains all the general and all the standard
1030 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1031 because reg_class_record() will bias the selection in favor of fp regs,
1032 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1033 because FP_REGS > GENERAL_REGS.
1035 It is also important that one class contain all the general and all
1036 the fp regs. Otherwise when spilling a DFmode reg, it may be from
1037 EXTRA_FP_REGS but find_reloads() may use class
1038 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
1039 because the compiler thinks it doesn't have a spill reg when in
1040 fact it does.
1042 v9 also has 4 floating point condition code registers. Since we don't
1043 have a class that is the union of FPCC_REGS with either of the others,
1044 it is important that it appear first. Otherwise the compiler will die
1045 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1046 constraints.
1048 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1049 may try to use it to hold an SImode value. See register_operand.
1050 ??? Should %fcc[0123] be handled similarly?
1053 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1054 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1055 ALL_REGS, LIM_REG_CLASSES };
1057 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1059 /* Give names of register classes as strings for dump file. */
1061 #define REG_CLASS_NAMES \
1062 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1063 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1064 "ALL_REGS" }
1066 /* Define which registers fit in which classes.
1067 This is an initializer for a vector of HARD_REG_SET
1068 of length N_REG_CLASSES. */
1070 #define REG_CLASS_CONTENTS \
1071 {{0, 0, 0, 0}, /* NO_REGS */ \
1072 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1073 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1074 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1075 {0, -1, 0, 0}, /* FP_REGS */ \
1076 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1077 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1078 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1079 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1081 /* The following macro defines cover classes for Integrated Register
1082 Allocator. Cover classes is a set of non-intersected register
1083 classes covering all hard registers used for register allocation
1084 purpose. Any move between two registers of a cover class should be
1085 cheaper than load or store of the registers. The macro value is
1086 array of register classes with LIM_REG_CLASSES used as the end
1087 marker. */
1089 #define IRA_COVER_CLASSES \
1091 GENERAL_REGS, EXTRA_FP_REGS, FPCC_REGS, LIM_REG_CLASSES \
1094 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1096 SImode loads to floating-point registers are not zero-extended.
1097 The definition for LOAD_EXTEND_OP specifies that integer loads
1098 narrower than BITS_PER_WORD will be zero-extended. As a result,
1099 we inhibit changes from SImode unless they are to a mode that is
1100 identical in size. */
1102 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1103 (TARGET_ARCH64 \
1104 && (FROM) == SImode \
1105 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1106 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1108 /* The same information, inverted:
1109 Return the class number of the smallest class containing
1110 reg number REGNO. This could be a conditional expression
1111 or could index an array. */
1113 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1115 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1117 /* This is the order in which to allocate registers normally.
1119 We put %f0-%f7 last among the float registers, so as to make it more
1120 likely that a pseudo-register which dies in the float return register
1121 area will get allocated to the float return register, thus saving a move
1122 instruction at the end of the function.
1124 Similarly for integer return value registers.
1126 We know in this case that we will not end up with a leaf function.
1128 The register allocator is given the global and out registers first
1129 because these registers are call clobbered and thus less useful to
1130 global register allocation.
1132 Next we list the local and in registers. They are not call clobbered
1133 and thus very useful for global register allocation. We list the input
1134 registers before the locals so that it is more likely the incoming
1135 arguments received in those registers can just stay there and not be
1136 reloaded. */
1138 #define REG_ALLOC_ORDER \
1139 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1140 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1141 15, /* %o7 */ \
1142 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1143 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1144 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1145 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1146 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1147 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1148 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1149 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1150 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1151 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1152 96, 97, 98, 99, /* %fcc0-3 */ \
1153 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1155 /* This is the order in which to allocate registers for
1156 leaf functions. If all registers can fit in the global and
1157 output registers, then we have the possibility of having a leaf
1158 function.
1160 The macro actually mentioned the input registers first,
1161 because they get renumbered into the output registers once
1162 we know really do have a leaf function.
1164 To be more precise, this register allocation order is used
1165 when %o7 is found to not be clobbered right before register
1166 allocation. Normally, the reason %o7 would be clobbered is
1167 due to a call which could not be transformed into a sibling
1168 call.
1170 As a consequence, it is possible to use the leaf register
1171 allocation order and not end up with a leaf function. We will
1172 not get suboptimal register allocation in that case because by
1173 definition of being potentially leaf, there were no function
1174 calls. Therefore, allocation order within the local register
1175 window is not critical like it is when we do have function calls. */
1177 #define REG_LEAF_ALLOC_ORDER \
1178 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1179 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1180 15, /* %o7 */ \
1181 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1182 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1183 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1184 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1185 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1186 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1187 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1188 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1189 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1190 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1191 96, 97, 98, 99, /* %fcc0-3 */ \
1192 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1194 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1196 extern char sparc_leaf_regs[];
1197 #define LEAF_REGISTERS sparc_leaf_regs
1199 extern char leaf_reg_remap[];
1200 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1202 /* The class value for index registers, and the one for base regs. */
1203 #define INDEX_REG_CLASS GENERAL_REGS
1204 #define BASE_REG_CLASS GENERAL_REGS
1206 /* Local macro to handle the two v9 classes of FP regs. */
1207 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1209 /* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
1210 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1211 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1212 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1214 /* 10- and 11-bit immediates are only used for a few specific insns.
1215 SMALL_INT is used throughout the port so we continue to use it. */
1216 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1218 /* Predicate for constants that can be loaded with a sethi instruction.
1219 This is the general, 64-bit aware, bitwise version that ensures that
1220 only constants whose representation fits in the mask
1222 0x00000000fffffc00
1224 are accepted. It will reject, for example, negative SImode constants
1225 on 64-bit hosts, so correct handling is to mask the value beforehand
1226 according to the mode of the instruction. */
1227 #define SPARC_SETHI_P(X) \
1228 (((unsigned HOST_WIDE_INT) (X) \
1229 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1231 /* Version of the above predicate for SImode constants and below. */
1232 #define SPARC_SETHI32_P(X) \
1233 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1235 /* Given an rtx X being reloaded into a reg required to be
1236 in class CLASS, return the class of reg to actually use.
1237 In general this is just CLASS; but on some machines
1238 in some cases it is preferable to use a more restrictive class. */
1239 /* - We can't load constants into FP registers.
1240 - We can't load FP constants into integer registers when soft-float,
1241 because there is no soft-float pattern with a r/F constraint.
1242 - We can't load FP constants into integer registers for TFmode unless
1243 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1244 - Try and reload integer constants (symbolic or otherwise) back into
1245 registers directly, rather than having them dumped to memory. */
1247 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1248 (CONSTANT_P (X) \
1249 ? ((FP_REG_CLASS_P (CLASS) \
1250 || (CLASS) == GENERAL_OR_FP_REGS \
1251 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1252 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1253 && ! TARGET_FPU) \
1254 || (GET_MODE (X) == TFmode \
1255 && ! const_zero_operand (X, TFmode))) \
1256 ? NO_REGS \
1257 : (!FP_REG_CLASS_P (CLASS) \
1258 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1259 ? GENERAL_REGS \
1260 : (CLASS)) \
1261 : (CLASS))
1263 /* Return the register class of a scratch register needed to load IN into
1264 a register of class CLASS in MODE.
1266 We need a temporary when loading/storing a HImode/QImode value
1267 between memory and the FPU registers. This can happen when combine puts
1268 a paradoxical subreg in a float/fix conversion insn.
1270 We need a temporary when loading/storing a DFmode value between
1271 unaligned memory and the upper FPU registers. */
1273 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1274 ((FP_REG_CLASS_P (CLASS) \
1275 && ((MODE) == HImode || (MODE) == QImode) \
1276 && (GET_CODE (IN) == MEM \
1277 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1278 && true_regnum (IN) == -1))) \
1279 ? GENERAL_REGS \
1280 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1281 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1282 && ! mem_min_alignment ((IN), 8)) \
1283 ? FP_REGS \
1284 : (((TARGET_CM_MEDANY \
1285 && symbolic_operand ((IN), (MODE))) \
1286 || (TARGET_CM_EMBMEDANY \
1287 && text_segment_operand ((IN), (MODE)))) \
1288 && !flag_pic) \
1289 ? GENERAL_REGS \
1290 : NO_REGS)
1292 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1293 ((FP_REG_CLASS_P (CLASS) \
1294 && ((MODE) == HImode || (MODE) == QImode) \
1295 && (GET_CODE (IN) == MEM \
1296 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1297 && true_regnum (IN) == -1))) \
1298 ? GENERAL_REGS \
1299 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1300 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1301 && ! mem_min_alignment ((IN), 8)) \
1302 ? FP_REGS \
1303 : (((TARGET_CM_MEDANY \
1304 && symbolic_operand ((IN), (MODE))) \
1305 || (TARGET_CM_EMBMEDANY \
1306 && text_segment_operand ((IN), (MODE)))) \
1307 && !flag_pic) \
1308 ? GENERAL_REGS \
1309 : NO_REGS)
1311 /* On SPARC it is not possible to directly move data between
1312 GENERAL_REGS and FP_REGS. */
1313 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1314 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1316 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1317 because the movsi and movsf patterns don't handle r/f moves.
1318 For v8 we copy the default definition. */
1319 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1320 (TARGET_ARCH64 \
1321 ? (GET_MODE_BITSIZE (MODE) < 32 \
1322 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1323 : MODE) \
1324 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1325 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1326 : MODE))
1328 /* Return the maximum number of consecutive registers
1329 needed to represent mode MODE in a register of class CLASS. */
1330 /* On SPARC, this is the size of MODE in words. */
1331 #define CLASS_MAX_NREGS(CLASS, MODE) \
1332 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1333 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1335 /* Stack layout; function entry, exit and calling. */
1337 /* Define this if pushing a word on the stack
1338 makes the stack pointer a smaller address. */
1339 #define STACK_GROWS_DOWNWARD
1341 /* Define this to nonzero if the nominal address of the stack frame
1342 is at the high-address end of the local variables;
1343 that is, each additional local variable allocated
1344 goes at a more negative offset in the frame. */
1345 #define FRAME_GROWS_DOWNWARD 1
1347 /* Offset within stack frame to start allocating local variables at.
1348 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1349 first local allocated. Otherwise, it is the offset to the BEGINNING
1350 of the first local allocated. */
1351 #define STARTING_FRAME_OFFSET 0
1353 /* Offset of first parameter from the argument pointer register value.
1354 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1355 even if this function isn't going to use it.
1356 v9: This is 128 for the ins and locals. */
1357 #define FIRST_PARM_OFFSET(FNDECL) \
1358 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1360 /* Offset from the argument pointer register value to the CFA.
1361 This is different from FIRST_PARM_OFFSET because the register window
1362 comes between the CFA and the arguments. */
1363 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1365 /* When a parameter is passed in a register, stack space is still
1366 allocated for it.
1367 !v9: All 6 possible integer registers have backing store allocated.
1368 v9: Only space for the arguments passed is allocated. */
1369 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1370 meaning to the backend. Further, we need to be able to detect if a
1371 varargs/unprototyped function is called, as they may want to spill more
1372 registers than we've provided space. Ugly, ugly. So for now we retain
1373 all 6 slots even for v9. */
1374 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1376 /* Definitions for register elimination. */
1378 #define ELIMINABLE_REGS \
1379 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1380 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1382 /* The way this is structured, we can't eliminate SFP in favor of SP
1383 if the frame pointer is required: we want to use the SFP->HFP elimination
1384 in that case. But the test in update_eliminables doesn't know we are
1385 assuming below that we only do the former elimination. */
1386 #define CAN_ELIMINATE(FROM, TO) sparc_can_eliminate((FROM), (TO))
1388 /* We always pretend that this is a leaf function because if it's not,
1389 there's no point in trying to eliminate the frame pointer. If it
1390 is a leaf function, we guessed right! */
1391 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1392 do { \
1393 if ((TO) == STACK_POINTER_REGNUM) \
1394 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
1395 else \
1396 (OFFSET) = 0; \
1397 (OFFSET) += SPARC_STACK_BIAS; \
1398 } while (0)
1400 /* Keep the stack pointer constant throughout the function.
1401 This is both an optimization and a necessity: longjmp
1402 doesn't behave itself when the stack pointer moves within
1403 the function! */
1404 #define ACCUMULATE_OUTGOING_ARGS 1
1406 /* Value is the number of bytes of arguments automatically
1407 popped when returning from a subroutine call.
1408 FUNDECL is the declaration node of the function (as a tree),
1409 FUNTYPE is the data type of the function (as a tree),
1410 or for a library call it is an identifier node for the subroutine name.
1411 SIZE is the number of bytes of arguments passed on the stack. */
1413 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1415 /* Define this macro if the target machine has "register windows". This
1416 C expression returns the register number as seen by the called function
1417 corresponding to register number OUT as seen by the calling function.
1418 Return OUT if register number OUT is not an outbound register. */
1420 #define INCOMING_REGNO(OUT) \
1421 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1423 /* Define this macro if the target machine has "register windows". This
1424 C expression returns the register number as seen by the calling function
1425 corresponding to register number IN as seen by the called function.
1426 Return IN if register number IN is not an inbound register. */
1428 #define OUTGOING_REGNO(IN) \
1429 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1431 /* Define this macro if the target machine has register windows. This
1432 C expression returns true if the register is call-saved but is in the
1433 register window. */
1435 #define LOCAL_REGNO(REGNO) \
1436 ((REGNO) >= 16 && (REGNO) <= 31)
1438 /* Define how to find the value returned by a function.
1439 VALTYPE is the data type of the value (as a tree).
1440 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1441 otherwise, FUNC is 0. */
1443 /* On SPARC the value is found in the first "output" register. */
1445 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1446 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1448 /* But the called function leaves it in the first "input" register. */
1450 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1451 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1453 /* Define how to find the value returned by a library function
1454 assuming the value has mode MODE. */
1456 #define LIBCALL_VALUE(MODE) \
1457 function_value (NULL_TREE, (MODE), 1)
1459 /* 1 if N is a possible register number for a function value
1460 as seen by the caller.
1461 On SPARC, the first "output" reg is used for integer values,
1462 and the first floating point register is used for floating point values. */
1464 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1466 /* Define the size of space to allocate for the return value of an
1467 untyped_call. */
1469 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1471 /* 1 if N is a possible register number for function argument passing.
1472 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1474 #define FUNCTION_ARG_REGNO_P(N) \
1475 (TARGET_ARCH64 \
1476 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1477 : ((N) >= 8 && (N) <= 13))
1479 /* Define a data type for recording info about an argument list
1480 during the scan of that argument list. This data type should
1481 hold all necessary information about the function itself
1482 and about the args processed so far, enough to enable macros
1483 such as FUNCTION_ARG to determine where the next arg should go.
1485 On SPARC (!v9), this is a single integer, which is a number of words
1486 of arguments scanned so far (including the invisible argument,
1487 if any, which holds the structure-value-address).
1488 Thus 7 or more means all following args should go on the stack.
1490 For v9, we also need to know whether a prototype is present. */
1492 struct sparc_args {
1493 int words; /* number of words passed so far */
1494 int prototype_p; /* nonzero if a prototype is present */
1495 int libcall_p; /* nonzero if a library call */
1497 #define CUMULATIVE_ARGS struct sparc_args
1499 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1500 for a call to a function whose data type is FNTYPE.
1501 For a library call, FNTYPE is 0. */
1503 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1504 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1506 /* Update the data in CUM to advance over an argument
1507 of mode MODE and data type TYPE.
1508 TYPE is null for libcalls where that information may not be available. */
1510 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1511 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1513 /* Determine where to put an argument to a function.
1514 Value is zero to push the argument on the stack,
1515 or a hard register in which to store the argument.
1517 MODE is the argument's machine mode.
1518 TYPE is the data type of the argument (as a tree).
1519 This is null for libcalls where that information may
1520 not be available.
1521 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1522 the preceding args and about the function being called.
1523 NAMED is nonzero if this argument is a named parameter
1524 (otherwise it is an extra parameter matching an ellipsis). */
1526 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1527 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1529 /* Define where a function finds its arguments.
1530 This is different from FUNCTION_ARG because of register windows. */
1532 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1533 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1535 /* If defined, a C expression which determines whether, and in which direction,
1536 to pad out an argument with extra space. The value should be of type
1537 `enum direction': either `upward' to pad above the argument,
1538 `downward' to pad below, or `none' to inhibit padding. */
1540 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1541 function_arg_padding ((MODE), (TYPE))
1543 /* If defined, a C expression that gives the alignment boundary, in bits,
1544 of an argument with the specified mode and type. If it is not defined,
1545 PARM_BOUNDARY is used for all arguments.
1546 For sparc64, objects requiring 16 byte alignment are passed that way. */
1548 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1549 ((TARGET_ARCH64 \
1550 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1551 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1552 ? 128 : PARM_BOUNDARY)
1555 /* Generate the special assembly code needed to tell the assembler whatever
1556 it might need to know about the return value of a function.
1558 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1559 information to the assembler relating to peephole optimization (done in
1560 the assembler). */
1562 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1563 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1565 /* Output the special assembly code needed to tell the assembler some
1566 register is used as global register variable.
1568 SPARC 64bit psABI declares registers %g2 and %g3 as application
1569 registers and %g6 and %g7 as OS registers. Any object using them
1570 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1571 and how they are used (scratch or some global variable).
1572 Linker will then refuse to link together objects which use those
1573 registers incompatibly.
1575 Unless the registers are used for scratch, two different global
1576 registers cannot be declared to the same name, so in the unlikely
1577 case of a global register variable occupying more than one register
1578 we prefix the second and following registers with .gnu.part1. etc. */
1580 extern GTY(()) char sparc_hard_reg_printed[8];
1582 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1583 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1584 do { \
1585 if (TARGET_ARCH64) \
1587 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1588 int reg; \
1589 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1590 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1592 if (reg == (REGNO)) \
1593 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1594 else \
1595 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1596 reg, reg - (REGNO), (NAME)); \
1597 sparc_hard_reg_printed[reg] = 1; \
1600 } while (0)
1601 #endif
1604 /* Emit rtl for profiling. */
1605 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1607 /* All the work done in PROFILE_HOOK, but still required. */
1608 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1610 /* Set the name of the mcount function for the system. */
1611 #define MCOUNT_FUNCTION "*mcount"
1613 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1614 the stack pointer does not matter. The value is tested only in
1615 functions that have frame pointers.
1616 No definition is equivalent to always zero. */
1618 #define EXIT_IGNORE_STACK \
1619 (get_frame_size () != 0 \
1620 || cfun->calls_alloca || crtl->outgoing_args_size)
1622 /* Define registers used by the epilogue and return instruction. */
1623 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1624 || (crtl->calls_eh_return && (REGNO) == 1))
1626 /* Length in units of the trampoline for entering a nested function. */
1628 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1630 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1632 /* Emit RTL insns to initialize the variable parts of a trampoline.
1633 FNADDR is an RTX for the address of the function's pure code.
1634 CXT is an RTX for the static chain value for the function. */
1636 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1637 if (TARGET_ARCH64) \
1638 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1639 else \
1640 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1642 /* Generate RTL to flush the register windows so as to make arbitrary frames
1643 available. */
1644 #define SETUP_FRAME_ADDRESSES() \
1645 emit_insn (gen_flush_register_windows ())
1647 /* Given an rtx for the address of a frame,
1648 return an rtx for the address of the word in the frame
1649 that holds the dynamic chain--the previous frame's address. */
1650 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1651 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1653 /* Given an rtx for the frame pointer,
1654 return an rtx for the address of the frame. */
1655 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1657 /* The return address isn't on the stack, it is in a register, so we can't
1658 access it from the current frame pointer. We can access it from the
1659 previous frame pointer though by reading a value from the register window
1660 save area. */
1661 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1663 /* This is the offset of the return address to the true next instruction to be
1664 executed for the current function. */
1665 #define RETURN_ADDR_OFFSET \
1666 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1668 /* The current return address is in %i7. The return address of anything
1669 farther back is in the register window save area at [%fp+60]. */
1670 /* ??? This ignores the fact that the actual return address is +8 for normal
1671 returns, and +12 for structure returns. */
1672 #define RETURN_ADDR_RTX(count, frame) \
1673 ((count == -1) \
1674 ? gen_rtx_REG (Pmode, 31) \
1675 : gen_rtx_MEM (Pmode, \
1676 memory_address (Pmode, plus_constant (frame, \
1677 15 * UNITS_PER_WORD \
1678 + SPARC_STACK_BIAS))))
1680 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1681 +12, but always using +8 is close enough for frame unwind purposes.
1682 Actually, just using %o7 is close enough for unwinding, but %o7+8
1683 is something you can return to. */
1684 #define INCOMING_RETURN_ADDR_RTX \
1685 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1686 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1688 /* The offset from the incoming value of %sp to the top of the stack frame
1689 for the current function. On sparc64, we have to account for the stack
1690 bias if present. */
1691 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1693 /* Describe how we implement __builtin_eh_return. */
1694 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1695 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1696 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1698 /* Select a format to encode pointers in exception handling data. CODE
1699 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1700 true if the symbol may be affected by dynamic relocations.
1702 If assembler and linker properly support .uaword %r_disp32(foo),
1703 then use PC relative 32-bit relocations instead of absolute relocs
1704 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1705 for binaries, to save memory.
1707 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1708 symbol %r_disp32() is against was not local, but .hidden. In that
1709 case, we have to use DW_EH_PE_absptr for pic personality. */
1710 #ifdef HAVE_AS_SPARC_UA_PCREL
1711 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1712 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1713 (flag_pic \
1714 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1715 : ((TARGET_ARCH64 && ! GLOBAL) \
1716 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1717 : DW_EH_PE_absptr))
1718 #else
1719 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1720 (flag_pic \
1721 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1722 : ((TARGET_ARCH64 && ! GLOBAL) \
1723 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1724 : DW_EH_PE_absptr))
1725 #endif
1727 /* Emit a PC-relative relocation. */
1728 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1729 do { \
1730 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1731 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1732 assemble_name (FILE, LABEL); \
1733 fputc (')', FILE); \
1734 } while (0)
1735 #endif
1737 /* Addressing modes, and classification of registers for them. */
1739 /* Macros to check register numbers against specific register classes. */
1741 /* These assume that REGNO is a hard or pseudo reg number.
1742 They give nonzero only if REGNO is a hard reg of the suitable class
1743 or a pseudo reg currently allocated to a suitable hard reg.
1744 Since they use reg_renumber, they are safe only once reg_renumber
1745 has been allocated, which happens in local-alloc.c. */
1747 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1748 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1749 || (REGNO) == FRAME_POINTER_REGNUM \
1750 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1752 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1754 #define REGNO_OK_FOR_FP_P(REGNO) \
1755 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1756 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1757 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1758 (TARGET_V9 \
1759 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1760 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1762 /* Now macros that check whether X is a register and also,
1763 strictly, whether it is in a specified class.
1765 These macros are specific to the SPARC, and may be used only
1766 in code for printing assembler insns and in conditions for
1767 define_optimization. */
1769 /* 1 if X is an fp register. */
1771 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1773 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1774 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1776 /* Maximum number of registers that can appear in a valid memory address. */
1778 #define MAX_REGS_PER_ADDRESS 2
1780 /* Recognize any constant value that is a valid address.
1781 When PIC, we do not accept an address that would require a scratch reg
1782 to load into a register. */
1784 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1786 /* Define this, so that when PIC, reload won't try to reload invalid
1787 addresses which require two reload registers. */
1789 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1791 /* Nonzero if the constant value X is a legitimate general operand.
1792 Anything can be made to work except floating point constants.
1793 If TARGET_VIS, 0.0 can be made to work as well. */
1795 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1797 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1798 and check its validity for a certain class.
1799 We have two alternate definitions for each of them.
1800 The usual definition accepts all pseudo regs; the other rejects
1801 them unless they have been allocated suitable hard regs.
1802 The symbol REG_OK_STRICT causes the latter definition to be used.
1804 Most source files want to accept pseudo regs in the hope that
1805 they will get allocated to the class that the insn wants them to be in.
1806 Source files for reload pass need to be strict.
1807 After reload, it makes no difference, since pseudo regs have
1808 been eliminated by then. */
1810 #ifndef REG_OK_STRICT
1812 /* Nonzero if X is a hard reg that can be used as an index
1813 or if it is a pseudo reg. */
1814 #define REG_OK_FOR_INDEX_P(X) \
1815 (REGNO (X) < 32 \
1816 || REGNO (X) == FRAME_POINTER_REGNUM \
1817 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1819 /* Nonzero if X is a hard reg that can be used as a base reg
1820 or if it is a pseudo reg. */
1821 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
1823 #else
1825 /* Nonzero if X is a hard reg that can be used as an index. */
1826 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1827 /* Nonzero if X is a hard reg that can be used as a base reg. */
1828 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1830 #endif
1832 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1834 #ifdef HAVE_AS_OFFSETABLE_LO10
1835 #define USE_AS_OFFSETABLE_LO10 1
1836 #else
1837 #define USE_AS_OFFSETABLE_LO10 0
1838 #endif
1840 /* On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1841 ordinarily. This changes a bit when generating PIC. The details are
1842 in sparc.c's implementation of TARGET_LEGITIMATE_ADDRESS_P. */
1844 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
1846 #define RTX_OK_FOR_BASE_P(X) \
1847 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1848 || (GET_CODE (X) == SUBREG \
1849 && GET_CODE (SUBREG_REG (X)) == REG \
1850 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1852 #define RTX_OK_FOR_INDEX_P(X) \
1853 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1854 || (GET_CODE (X) == SUBREG \
1855 && GET_CODE (SUBREG_REG (X)) == REG \
1856 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1858 #define RTX_OK_FOR_OFFSET_P(X) \
1859 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
1861 #define RTX_OK_FOR_OLO10_P(X) \
1862 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
1864 /* Go to LABEL if ADDR (a legitimate address expression)
1865 has an effect that depends on the machine mode it is used for.
1867 In PIC mode,
1869 (mem:HI [%l7+a])
1871 is not equivalent to
1873 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
1875 because [%l7+a+1] is interpreted as the address of (a+1). */
1877 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1879 if (flag_pic == 1) \
1881 if (GET_CODE (ADDR) == PLUS) \
1883 rtx op0 = XEXP (ADDR, 0); \
1884 rtx op1 = XEXP (ADDR, 1); \
1885 if (op0 == pic_offset_table_rtx \
1886 && SYMBOLIC_CONST (op1)) \
1887 goto LABEL; \
1892 /* Try a machine-dependent way of reloading an illegitimate address
1893 operand. If we find one, push the reload and jump to WIN. This
1894 macro is used in only one place: `find_reloads_address' in reload.c.
1896 For SPARC 32, we wish to handle addresses by splitting them into
1897 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
1898 This cuts the number of extra insns by one.
1900 Do nothing when generating PIC code and the address is a
1901 symbolic operand or requires a scratch register. */
1903 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1904 do { \
1905 /* Decompose SImode constants into hi+lo_sum. We do have to \
1906 rerecognize what we produce, so be careful. */ \
1907 if (CONSTANT_P (X) \
1908 && (MODE != TFmode || TARGET_ARCH64) \
1909 && GET_MODE (X) == SImode \
1910 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
1911 && ! (flag_pic \
1912 && (symbolic_operand (X, Pmode) \
1913 || pic_address_needs_scratch (X))) \
1914 && sparc_cmodel <= CM_MEDLOW) \
1916 X = gen_rtx_LO_SUM (GET_MODE (X), \
1917 gen_rtx_HIGH (GET_MODE (X), X), X); \
1918 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1919 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1920 OPNUM, TYPE); \
1921 goto WIN; \
1923 /* ??? 64-bit reloads. */ \
1924 } while (0)
1926 /* Specify the machine mode that this machine uses
1927 for the index in the tablejump instruction. */
1928 /* If we ever implement any of the full models (such as CM_FULLANY),
1929 this has to be DImode in that case */
1930 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1931 #define CASE_VECTOR_MODE \
1932 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1933 #else
1934 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1935 we have to sign extend which slows things down. */
1936 #define CASE_VECTOR_MODE \
1937 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1938 #endif
1940 /* Define this as 1 if `char' should by default be signed; else as 0. */
1941 #define DEFAULT_SIGNED_CHAR 1
1943 /* Max number of bytes we can move from memory to memory
1944 in one reasonably fast instruction. */
1945 #define MOVE_MAX 8
1947 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1948 move-instruction pairs, we will do a movmem or libcall instead. */
1950 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1952 /* Define if operations between registers always perform the operation
1953 on the full register even if a narrower mode is specified. */
1954 #define WORD_REGISTER_OPERATIONS
1956 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1957 will either zero-extend or sign-extend. The value of this macro should
1958 be the code that says which one of the two operations is implicitly
1959 done, UNKNOWN if none. */
1960 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1962 /* Nonzero if access to memory by bytes is slow and undesirable.
1963 For RISC chips, it means that access to memory by bytes is no
1964 better than access by words when possible, so grab a whole word
1965 and maybe make use of that. */
1966 #define SLOW_BYTE_ACCESS 1
1968 /* Define this to be nonzero if shift instructions ignore all but the low-order
1969 few bits. */
1970 #define SHIFT_COUNT_TRUNCATED 1
1972 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1973 is done just by pretending it is already truncated. */
1974 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1976 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1977 return the mode to be used for the comparison. For floating-point,
1978 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
1979 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1980 processing is needed. */
1981 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1983 /* Return nonzero if MODE implies a floating point inequality can be
1984 reversed. For SPARC this is always true because we have a full
1985 compliment of ordered and unordered comparisons, but until generic
1986 code knows how to reverse it correctly we keep the old definition. */
1987 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1989 /* A function address in a call instruction for indexing purposes. */
1990 #define FUNCTION_MODE Pmode
1992 /* Define this if addresses of constant functions
1993 shouldn't be put through pseudo regs where they can be cse'd.
1994 Desirable on machines where ordinary constants are expensive
1995 but a CALL with constant address is cheap. */
1996 #define NO_FUNCTION_CSE
1998 /* alloca should avoid clobbering the old register save area. */
1999 #define SETJMP_VIA_SAVE_AREA
2001 /* The _Q_* comparison libcalls return booleans. */
2002 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2004 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2005 that the inputs are fully consumed before the output memory is clobbered. */
2007 #define TARGET_BUGGY_QP_LIB 0
2009 /* Assume by default that we do not have the Solaris-specific conversion
2010 routines nor 64-bit integer multiply and divide routines. */
2012 #define SUN_CONVERSION_LIBFUNCS 0
2013 #define DITF_CONVERSION_LIBFUNCS 0
2014 #define SUN_INTEGER_MULTIPLY_64 0
2016 /* Compute extra cost of moving data between one register class
2017 and another. */
2018 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2019 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2020 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2021 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2022 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2023 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2024 || sparc_cpu == PROCESSOR_ULTRASPARC3 \
2025 || sparc_cpu == PROCESSOR_NIAGARA \
2026 || sparc_cpu == PROCESSOR_NIAGARA2) ? 12 : 6) : 2)
2028 /* Provide the cost of a branch. For pre-v9 processors we use
2029 a value of 3 to take into account the potential annulling of
2030 the delay slot (which ends up being a bubble in the pipeline slot)
2031 plus a cycle to take into consideration the instruction cache
2032 effects.
2034 On v9 and later, which have branch prediction facilities, we set
2035 it to the depth of the pipeline as that is the cost of a
2036 mispredicted branch.
2038 On Niagara, normal branches insert 3 bubbles into the pipe
2039 and annulled branches insert 4 bubbles.
2041 On Niagara-2, a not-taken branch costs 1 cycle whereas a taken
2042 branch costs 6 cycles. */
2044 #define BRANCH_COST(speed_p, predictable_p) \
2045 ((sparc_cpu == PROCESSOR_V9 \
2046 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2047 ? 7 \
2048 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2049 ? 9 \
2050 : (sparc_cpu == PROCESSOR_NIAGARA \
2051 ? 4 \
2052 : (sparc_cpu == PROCESSOR_NIAGARA2 \
2053 ? 5 \
2054 : 3))))
2056 /* Control the assembler format that we output. */
2058 /* A C string constant describing how to begin a comment in the target
2059 assembler language. The compiler assumes that the comment will end at
2060 the end of the line. */
2062 #define ASM_COMMENT_START "!"
2064 /* Output to assembler file text saying following lines
2065 may contain character constants, extra white space, comments, etc. */
2067 #define ASM_APP_ON ""
2069 /* Output to assembler file text saying following lines
2070 no longer contain unusual constructs. */
2072 #define ASM_APP_OFF ""
2074 /* How to refer to registers in assembler output.
2075 This sequence is indexed by compiler's hard-register-number (see above). */
2077 #define REGISTER_NAMES \
2078 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2079 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2080 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2081 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2082 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2083 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2084 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2085 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2086 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2087 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2088 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2089 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2090 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2092 /* Define additional names for use in asm clobbers and asm declarations. */
2094 #define ADDITIONAL_REGISTER_NAMES \
2095 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2097 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2098 can run past this up to a continuation point. Once we used 1500, but
2099 a single entry in C++ can run more than 500 bytes, due to the length of
2100 mangled symbol names. dbxout.c should really be fixed to do
2101 continuations when they are actually needed instead of trying to
2102 guess... */
2103 #define DBX_CONTIN_LENGTH 1000
2105 /* This is how to output a command to make the user-level label named NAME
2106 defined for reference from other files. */
2108 /* Globalizing directive for a label. */
2109 #define GLOBAL_ASM_OP "\t.global "
2111 /* The prefix to add to user-visible assembler symbols. */
2113 #define USER_LABEL_PREFIX "_"
2115 /* This is how to store into the string LABEL
2116 the symbol_ref name of an internal numbered label where
2117 PREFIX is the class of label and NUM is the number within the class.
2118 This is suitable for output with `assemble_name'. */
2120 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2121 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2123 /* This is how we hook in and defer the case-vector until the end of
2124 the function. */
2125 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2126 sparc_defer_case_vector ((LAB),(VEC), 0)
2128 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2129 sparc_defer_case_vector ((LAB),(VEC), 1)
2131 /* This is how to output an element of a case-vector that is absolute. */
2133 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2134 do { \
2135 char label[30]; \
2136 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2137 if (CASE_VECTOR_MODE == SImode) \
2138 fprintf (FILE, "\t.word\t"); \
2139 else \
2140 fprintf (FILE, "\t.xword\t"); \
2141 assemble_name (FILE, label); \
2142 fputc ('\n', FILE); \
2143 } while (0)
2145 /* This is how to output an element of a case-vector that is relative.
2146 (SPARC uses such vectors only when generating PIC.) */
2148 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2149 do { \
2150 char label[30]; \
2151 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2152 if (CASE_VECTOR_MODE == SImode) \
2153 fprintf (FILE, "\t.word\t"); \
2154 else \
2155 fprintf (FILE, "\t.xword\t"); \
2156 assemble_name (FILE, label); \
2157 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2158 fputc ('-', FILE); \
2159 assemble_name (FILE, label); \
2160 fputc ('\n', FILE); \
2161 } while (0)
2163 /* This is what to output before and after case-vector (both
2164 relative and absolute). If .subsection -1 works, we put case-vectors
2165 at the beginning of the current section. */
2167 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2169 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2170 fprintf(FILE, "\t.subsection\t-1\n")
2172 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2173 fprintf(FILE, "\t.previous\n")
2175 #endif
2177 /* This is how to output an assembler line
2178 that says to advance the location counter
2179 to a multiple of 2**LOG bytes. */
2181 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2182 if ((LOG) != 0) \
2183 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2185 /* This is how to output an assembler line that says to advance
2186 the location counter to a multiple of 2**LOG bytes using the
2187 "nop" instruction as padding. */
2188 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2189 if ((LOG) != 0) \
2190 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2192 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2193 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2195 /* This says how to output an assembler line
2196 to define a global common symbol. */
2198 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2199 ( fputs ("\t.common ", (FILE)), \
2200 assemble_name ((FILE), (NAME)), \
2201 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2203 /* This says how to output an assembler line to define a local common
2204 symbol. */
2206 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2207 ( fputs ("\t.reserve ", (FILE)), \
2208 assemble_name ((FILE), (NAME)), \
2209 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
2210 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2212 /* A C statement (sans semicolon) to output to the stdio stream
2213 FILE the assembler definition of uninitialized global DECL named
2214 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2215 Try to use asm_output_aligned_bss to implement this macro. */
2217 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2218 do { \
2219 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2220 } while (0)
2222 #define IDENT_ASM_OP "\t.ident\t"
2224 /* Output #ident as a .ident. */
2226 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2227 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2229 /* Prettify the assembly. */
2231 extern int sparc_indent_opcode;
2233 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
2234 do { \
2235 if (sparc_indent_opcode) \
2237 putc (' ', FILE); \
2238 sparc_indent_opcode = 0; \
2240 } while (0)
2242 #define SPARC_SYMBOL_REF_TLS_P(RTX) \
2243 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
2245 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2246 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2247 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2249 /* Print operand X (an rtx) in assembler syntax to file FILE.
2250 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2251 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2253 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2255 /* Print a memory address as an operand to reference that memory location. */
2257 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2258 { register rtx base, index = 0; \
2259 int offset = 0; \
2260 register rtx addr = ADDR; \
2261 if (GET_CODE (addr) == REG) \
2262 fputs (reg_names[REGNO (addr)], FILE); \
2263 else if (GET_CODE (addr) == PLUS) \
2265 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2266 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2267 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2268 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2269 else \
2270 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2271 if (GET_CODE (base) == LO_SUM) \
2273 gcc_assert (USE_AS_OFFSETABLE_LO10 \
2274 && TARGET_ARCH64 \
2275 && ! TARGET_CM_MEDMID); \
2276 output_operand (XEXP (base, 0), 0); \
2277 fputs ("+%lo(", FILE); \
2278 output_address (XEXP (base, 1)); \
2279 fprintf (FILE, ")+%d", offset); \
2281 else \
2283 fputs (reg_names[REGNO (base)], FILE); \
2284 if (index == 0) \
2285 fprintf (FILE, "%+d", offset); \
2286 else if (GET_CODE (index) == REG) \
2287 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2288 else if (GET_CODE (index) == SYMBOL_REF \
2289 || GET_CODE (index) == LABEL_REF \
2290 || GET_CODE (index) == CONST) \
2291 fputc ('+', FILE), output_addr_const (FILE, index); \
2292 else gcc_unreachable (); \
2295 else if (GET_CODE (addr) == MINUS \
2296 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2298 output_addr_const (FILE, XEXP (addr, 0)); \
2299 fputs ("-(", FILE); \
2300 output_addr_const (FILE, XEXP (addr, 1)); \
2301 fputs ("-.)", FILE); \
2303 else if (GET_CODE (addr) == LO_SUM) \
2305 output_operand (XEXP (addr, 0), 0); \
2306 if (TARGET_CM_MEDMID) \
2307 fputs ("+%l44(", FILE); \
2308 else \
2309 fputs ("+%lo(", FILE); \
2310 output_address (XEXP (addr, 1)); \
2311 fputc (')', FILE); \
2313 else if (flag_pic && GET_CODE (addr) == CONST \
2314 && GET_CODE (XEXP (addr, 0)) == MINUS \
2315 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2316 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2317 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2319 addr = XEXP (addr, 0); \
2320 output_addr_const (FILE, XEXP (addr, 0)); \
2321 /* Group the args of the second CONST in parenthesis. */ \
2322 fputs ("-(", FILE); \
2323 /* Skip past the second CONST--it does nothing for us. */\
2324 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2325 /* Close the parenthesis. */ \
2326 fputc (')', FILE); \
2328 else \
2330 output_addr_const (FILE, addr); \
2334 /* TLS support defaulting to original Sun flavor. GNU extensions
2335 must be activated in separate configuration files. */
2336 #ifdef HAVE_AS_TLS
2337 #define TARGET_TLS 1
2338 #else
2339 #define TARGET_TLS 0
2340 #endif
2342 #define TARGET_SUN_TLS TARGET_TLS
2343 #define TARGET_GNU_TLS 0
2345 /* The number of Pmode words for the setjmp buffer. */
2346 #define JMP_BUF_SIZE 12
2348 /* We use gcc _mcount for profiling. */
2349 #define NO_PROFILE_COUNTERS 0