2009-07-17 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob009af960a24d35a5270c5eceff42f457f368726b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib.Xref; use Lib.Xref;
43 with Layout; use Layout;
44 with Namet; use Namet;
45 with Lib; use Lib;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch5; use Sem_Ch5;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch12; use Sem_Ch12;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Util; use Sem_Util;
70 with Sem_Type; use Sem_Type;
71 with Sem_Warn; use Sem_Warn;
72 with Sinput; use Sinput;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stringt; use Stringt;
78 with Style;
79 with Stylesw; use Stylesw;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83 with Validsw; use Validsw;
85 package body Sem_Ch6 is
87 May_Hide_Profile : Boolean := False;
88 -- This flag is used to indicate that two formals in two subprograms being
89 -- checked for conformance differ only in that one is an access parameter
90 -- while the other is of a general access type with the same designated
91 -- type. In this case, if the rest of the signatures match, a call to
92 -- either subprogram may be ambiguous, which is worth a warning. The flag
93 -- is set in Compatible_Types, and the warning emitted in
94 -- New_Overloaded_Entity.
96 -----------------------
97 -- Local Subprograms --
98 -----------------------
100 procedure Analyze_Return_Statement (N : Node_Id);
101 -- Common processing for simple_ and extended_return_statements
103 procedure Analyze_Function_Return (N : Node_Id);
104 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
105 -- applies to a [generic] function.
107 procedure Analyze_Return_Type (N : Node_Id);
108 -- Subsidiary to Process_Formals: analyze subtype mark in function
109 -- specification, in a context where the formals are visible and hide
110 -- outer homographs.
112 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
113 -- Does all the real work of Analyze_Subprogram_Body
115 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
116 -- Analyze a generic subprogram body. N is the body to be analyzed, and
117 -- Gen_Id is the defining entity Id for the corresponding spec.
119 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
120 -- If a subprogram has pragma Inline and inlining is active, use generic
121 -- machinery to build an unexpanded body for the subprogram. This body is
122 -- subsequently used for inline expansions at call sites. If subprogram can
123 -- be inlined (depending on size and nature of local declarations) this
124 -- function returns true. Otherwise subprogram body is treated normally.
125 -- If proper warnings are enabled and the subprogram contains a construct
126 -- that cannot be inlined, the offending construct is flagged accordingly.
128 procedure Check_Conformance
129 (New_Id : Entity_Id;
130 Old_Id : Entity_Id;
131 Ctype : Conformance_Type;
132 Errmsg : Boolean;
133 Conforms : out Boolean;
134 Err_Loc : Node_Id := Empty;
135 Get_Inst : Boolean := False;
136 Skip_Controlling_Formals : Boolean := False);
137 -- Given two entities, this procedure checks that the profiles associated
138 -- with these entities meet the conformance criterion given by the third
139 -- parameter. If they conform, Conforms is set True and control returns
140 -- to the caller. If they do not conform, Conforms is set to False, and
141 -- in addition, if Errmsg is True on the call, proper messages are output
142 -- to complain about the conformance failure. If Err_Loc is non_Empty
143 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
144 -- error messages are placed on the appropriate part of the construct
145 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
146 -- against a formal access-to-subprogram type so Get_Instance_Of must
147 -- be called.
149 procedure Check_Subprogram_Order (N : Node_Id);
150 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
151 -- the alpha ordering rule for N if this ordering requirement applicable.
153 procedure Check_Returns
154 (HSS : Node_Id;
155 Mode : Character;
156 Err : out Boolean;
157 Proc : Entity_Id := Empty);
158 -- Called to check for missing return statements in a function body, or for
159 -- returns present in a procedure body which has No_Return set. HSS is the
160 -- handled statement sequence for the subprogram body. This procedure
161 -- checks all flow paths to make sure they either have return (Mode = 'F',
162 -- used for functions) or do not have a return (Mode = 'P', used for
163 -- No_Return procedures). The flag Err is set if there are any control
164 -- paths not explicitly terminated by a return in the function case, and is
165 -- True otherwise. Proc is the entity for the procedure case and is used
166 -- in posting the warning message.
168 procedure Enter_Overloaded_Entity (S : Entity_Id);
169 -- This procedure makes S, a new overloaded entity, into the first visible
170 -- entity with that name.
172 procedure Install_Entity (E : Entity_Id);
173 -- Make single entity visible. Used for generic formals as well
175 function Is_Non_Overriding_Operation
176 (Prev_E : Entity_Id;
177 New_E : Entity_Id) return Boolean;
178 -- Enforce the rule given in 12.3(18): a private operation in an instance
179 -- overrides an inherited operation only if the corresponding operation
180 -- was overriding in the generic. This can happen for primitive operations
181 -- of types derived (in the generic unit) from formal private or formal
182 -- derived types.
184 procedure Make_Inequality_Operator (S : Entity_Id);
185 -- Create the declaration for an inequality operator that is implicitly
186 -- created by a user-defined equality operator that yields a boolean.
188 procedure May_Need_Actuals (Fun : Entity_Id);
189 -- Flag functions that can be called without parameters, i.e. those that
190 -- have no parameters, or those for which defaults exist for all parameters
192 procedure Process_PPCs
193 (N : Node_Id;
194 Spec_Id : Entity_Id;
195 Body_Id : Entity_Id);
196 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
197 -- conditions for the body and assembling and inserting the _postconditions
198 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
199 -- the entities for the body and separate spec (if there is no separate
200 -- spec, Spec_Id is Empty).
202 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
203 -- Formal_Id is an formal parameter entity. This procedure deals with
204 -- setting the proper validity status for this entity, which depends on
205 -- the kind of parameter and the validity checking mode.
207 ------------------------------
208 -- Analyze_Return_Statement --
209 ------------------------------
211 procedure Analyze_Return_Statement (N : Node_Id) is
213 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
214 N_Extended_Return_Statement));
216 Returns_Object : constant Boolean :=
217 Nkind (N) = N_Extended_Return_Statement
218 or else
219 (Nkind (N) = N_Simple_Return_Statement
220 and then Present (Expression (N)));
221 -- True if we're returning something; that is, "return <expression>;"
222 -- or "return Result : T [:= ...]". False for "return;". Used for error
223 -- checking: If Returns_Object is True, N should apply to a function
224 -- body; otherwise N should apply to a procedure body, entry body,
225 -- accept statement, or extended return statement.
227 function Find_What_It_Applies_To return Entity_Id;
228 -- Find the entity representing the innermost enclosing body, accept
229 -- statement, or extended return statement. If the result is a callable
230 -- construct or extended return statement, then this will be the value
231 -- of the Return_Applies_To attribute. Otherwise, the program is
232 -- illegal. See RM-6.5(4/2).
234 -----------------------------
235 -- Find_What_It_Applies_To --
236 -----------------------------
238 function Find_What_It_Applies_To return Entity_Id is
239 Result : Entity_Id := Empty;
241 begin
242 -- Loop outward through the Scope_Stack, skipping blocks and loops
244 for J in reverse 0 .. Scope_Stack.Last loop
245 Result := Scope_Stack.Table (J).Entity;
246 exit when Ekind (Result) /= E_Block and then
247 Ekind (Result) /= E_Loop;
248 end loop;
250 pragma Assert (Present (Result));
251 return Result;
252 end Find_What_It_Applies_To;
254 -- Local declarations
256 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
257 Kind : constant Entity_Kind := Ekind (Scope_Id);
258 Loc : constant Source_Ptr := Sloc (N);
259 Stm_Entity : constant Entity_Id :=
260 New_Internal_Entity
261 (E_Return_Statement, Current_Scope, Loc, 'R');
263 -- Start of processing for Analyze_Return_Statement
265 begin
266 Set_Return_Statement_Entity (N, Stm_Entity);
268 Set_Etype (Stm_Entity, Standard_Void_Type);
269 Set_Return_Applies_To (Stm_Entity, Scope_Id);
271 -- Place Return entity on scope stack, to simplify enforcement of 6.5
272 -- (4/2): an inner return statement will apply to this extended return.
274 if Nkind (N) = N_Extended_Return_Statement then
275 Push_Scope (Stm_Entity);
276 end if;
278 -- Check that pragma No_Return is obeyed. Don't complain about the
279 -- implicitly-generated return that is placed at the end.
281 if No_Return (Scope_Id) and then Comes_From_Source (N) then
282 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
283 end if;
285 -- Warn on any unassigned OUT parameters if in procedure
287 if Ekind (Scope_Id) = E_Procedure then
288 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
289 end if;
291 -- Check that functions return objects, and other things do not
293 if Kind = E_Function or else Kind = E_Generic_Function then
294 if not Returns_Object then
295 Error_Msg_N ("missing expression in return from function", N);
296 end if;
298 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
299 if Returns_Object then
300 Error_Msg_N ("procedure cannot return value (use function)", N);
301 end if;
303 elsif Kind = E_Entry or else Kind = E_Entry_Family then
304 if Returns_Object then
305 if Is_Protected_Type (Scope (Scope_Id)) then
306 Error_Msg_N ("entry body cannot return value", N);
307 else
308 Error_Msg_N ("accept statement cannot return value", N);
309 end if;
310 end if;
312 elsif Kind = E_Return_Statement then
314 -- We are nested within another return statement, which must be an
315 -- extended_return_statement.
317 if Returns_Object then
318 Error_Msg_N
319 ("extended_return_statement cannot return value; " &
320 "use `""RETURN;""`", N);
321 end if;
323 else
324 Error_Msg_N ("illegal context for return statement", N);
325 end if;
327 if Kind = E_Function or else Kind = E_Generic_Function then
328 Analyze_Function_Return (N);
329 end if;
331 if Nkind (N) = N_Extended_Return_Statement then
332 End_Scope;
333 end if;
335 Kill_Current_Values (Last_Assignment_Only => True);
336 Check_Unreachable_Code (N);
337 end Analyze_Return_Statement;
339 ---------------------------------------------
340 -- Analyze_Abstract_Subprogram_Declaration --
341 ---------------------------------------------
343 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
344 Designator : constant Entity_Id :=
345 Analyze_Subprogram_Specification (Specification (N));
346 Scop : constant Entity_Id := Current_Scope;
348 begin
349 Generate_Definition (Designator);
350 Set_Is_Abstract_Subprogram (Designator);
351 New_Overloaded_Entity (Designator);
352 Check_Delayed_Subprogram (Designator);
354 Set_Categorization_From_Scope (Designator, Scop);
356 if Ekind (Scope (Designator)) = E_Protected_Type then
357 Error_Msg_N
358 ("abstract subprogram not allowed in protected type", N);
360 -- Issue a warning if the abstract subprogram is neither a dispatching
361 -- operation nor an operation that overrides an inherited subprogram or
362 -- predefined operator, since this most likely indicates a mistake.
364 elsif Warn_On_Redundant_Constructs
365 and then not Is_Dispatching_Operation (Designator)
366 and then not Is_Overriding_Operation (Designator)
367 and then (not Is_Operator_Symbol_Name (Chars (Designator))
368 or else Scop /= Scope (Etype (First_Formal (Designator))))
369 then
370 Error_Msg_N
371 ("?abstract subprogram is not dispatching or overriding", N);
372 end if;
374 Generate_Reference_To_Formals (Designator);
375 Check_Eliminated (Designator);
376 end Analyze_Abstract_Subprogram_Declaration;
378 ----------------------------------------
379 -- Analyze_Extended_Return_Statement --
380 ----------------------------------------
382 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
383 begin
384 Analyze_Return_Statement (N);
385 end Analyze_Extended_Return_Statement;
387 ----------------------------
388 -- Analyze_Function_Call --
389 ----------------------------
391 procedure Analyze_Function_Call (N : Node_Id) is
392 P : constant Node_Id := Name (N);
393 L : constant List_Id := Parameter_Associations (N);
394 Actual : Node_Id;
396 begin
397 Analyze (P);
399 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
400 -- as B (A, X). If the rewriting is successful, the call has been
401 -- analyzed and we just return.
403 if Nkind (P) = N_Selected_Component
404 and then Name (N) /= P
405 and then Is_Rewrite_Substitution (N)
406 and then Present (Etype (N))
407 then
408 return;
409 end if;
411 -- If error analyzing name, then set Any_Type as result type and return
413 if Etype (P) = Any_Type then
414 Set_Etype (N, Any_Type);
415 return;
416 end if;
418 -- Otherwise analyze the parameters
420 if Present (L) then
421 Actual := First (L);
422 while Present (Actual) loop
423 Analyze (Actual);
424 Check_Parameterless_Call (Actual);
425 Next (Actual);
426 end loop;
427 end if;
429 Analyze_Call (N);
430 end Analyze_Function_Call;
432 -----------------------------
433 -- Analyze_Function_Return --
434 -----------------------------
436 procedure Analyze_Function_Return (N : Node_Id) is
437 Loc : constant Source_Ptr := Sloc (N);
438 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
439 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
441 R_Type : constant Entity_Id := Etype (Scope_Id);
442 -- Function result subtype
444 procedure Check_Limited_Return (Expr : Node_Id);
445 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
446 -- limited types. Used only for simple return statements.
447 -- Expr is the expression returned.
449 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
450 -- Check that the return_subtype_indication properly matches the result
451 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
453 --------------------------
454 -- Check_Limited_Return --
455 --------------------------
457 procedure Check_Limited_Return (Expr : Node_Id) is
458 begin
459 -- Ada 2005 (AI-318-02): Return-by-reference types have been
460 -- removed and replaced by anonymous access results. This is an
461 -- incompatibility with Ada 95. Not clear whether this should be
462 -- enforced yet or perhaps controllable with special switch. ???
464 if Is_Limited_Type (R_Type)
465 and then Comes_From_Source (N)
466 and then not In_Instance_Body
467 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
468 then
469 -- Error in Ada 2005
471 if Ada_Version >= Ada_05
472 and then not Debug_Flag_Dot_L
473 and then not GNAT_Mode
474 then
475 Error_Msg_N
476 ("(Ada 2005) cannot copy object of a limited type " &
477 "(RM-2005 6.5(5.5/2))", Expr);
478 if Is_Inherently_Limited_Type (R_Type) then
479 Error_Msg_N
480 ("\return by reference not permitted in Ada 2005", Expr);
481 end if;
483 -- Warn in Ada 95 mode, to give folks a heads up about this
484 -- incompatibility.
486 -- In GNAT mode, this is just a warning, to allow it to be
487 -- evilly turned off. Otherwise it is a real error.
489 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
490 if Is_Inherently_Limited_Type (R_Type) then
491 Error_Msg_N
492 ("return by reference not permitted in Ada 2005 " &
493 "(RM-2005 6.5(5.5/2))?", Expr);
494 else
495 Error_Msg_N
496 ("cannot copy object of a limited type in Ada 2005 " &
497 "(RM-2005 6.5(5.5/2))?", Expr);
498 end if;
500 -- Ada 95 mode, compatibility warnings disabled
502 else
503 return; -- skip continuation messages below
504 end if;
506 Error_Msg_N
507 ("\consider switching to return of access type", Expr);
508 Explain_Limited_Type (R_Type, Expr);
509 end if;
510 end Check_Limited_Return;
512 -------------------------------------
513 -- Check_Return_Subtype_Indication --
514 -------------------------------------
516 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
517 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
518 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
519 -- Subtype given in the extended return statement;
520 -- this must match R_Type.
522 Subtype_Ind : constant Node_Id :=
523 Object_Definition (Original_Node (Obj_Decl));
525 R_Type_Is_Anon_Access :
526 constant Boolean :=
527 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
528 or else
529 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
530 or else
531 Ekind (R_Type) = E_Anonymous_Access_Type;
532 -- True if return type of the function is an anonymous access type
533 -- Can't we make Is_Anonymous_Access_Type in einfo ???
535 R_Stm_Type_Is_Anon_Access :
536 constant Boolean :=
537 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
538 or else
539 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
540 or else
541 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
542 -- True if type of the return object is an anonymous access type
544 begin
545 -- First, avoid cascade errors:
547 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
548 return;
549 end if;
551 -- "return access T" case; check that the return statement also has
552 -- "access T", and that the subtypes statically match:
553 -- if this is an access to subprogram the signatures must match.
555 if R_Type_Is_Anon_Access then
556 if R_Stm_Type_Is_Anon_Access then
558 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
559 then
560 if Base_Type (Designated_Type (R_Stm_Type)) /=
561 Base_Type (Designated_Type (R_Type))
562 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
563 then
564 Error_Msg_N
565 ("subtype must statically match function result subtype",
566 Subtype_Mark (Subtype_Ind));
567 end if;
569 else
570 -- For two anonymous access to subprogram types, the
571 -- types themselves must be type conformant.
573 if not Conforming_Types
574 (R_Stm_Type, R_Type, Fully_Conformant)
575 then
576 Error_Msg_N
577 ("subtype must statically match function result subtype",
578 Subtype_Ind);
579 end if;
580 end if;
582 else
583 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
584 end if;
586 -- Subtype indication case: check that the types are the same, and
587 -- statically match if appropriate. Also handle record types with
588 -- unknown discriminants for which we have built the underlying
589 -- record view.
591 elsif Base_Type (R_Stm_Type) = Base_Type (R_Type)
592 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
593 and then Underlying_Record_View (Base_Type (R_Stm_Type))
594 = Base_Type (R_Type))
595 then
596 -- A null exclusion may be present on the return type, on the
597 -- function specification, on the object declaration or on the
598 -- subtype itself.
600 if Is_Access_Type (R_Type)
601 and then
602 (Can_Never_Be_Null (R_Type)
603 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
604 Can_Never_Be_Null (R_Stm_Type)
605 then
606 Error_Msg_N
607 ("subtype must statically match function result subtype",
608 Subtype_Ind);
609 end if;
611 if Is_Constrained (R_Type) then
612 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
613 Error_Msg_N
614 ("subtype must statically match function result subtype",
615 Subtype_Ind);
616 end if;
617 end if;
619 -- If the function's result type doesn't match the return object
620 -- entity's type, then we check for the case where the result type
621 -- is class-wide, and allow the declaration if the type of the object
622 -- definition matches the class-wide type. This prevents rejection
623 -- in the case where the object declaration is initialized by a call
624 -- to a build-in-place function with a specific result type and the
625 -- object entity had its type changed to that specific type. This is
626 -- also allowed in the case where Obj_Decl does not come from source,
627 -- which can occur for an expansion of a simple return statement of
628 -- a build-in-place class-wide function when the result expression
629 -- has a specific type, because a return object with a specific type
630 -- is created. (Note that the ARG believes that return objects should
631 -- be allowed to have a type covered by a class-wide result type in
632 -- any case, so once that relaxation is made (see AI05-32), the above
633 -- check for type compatibility should be changed to test Covers
634 -- rather than equality, and the following special test will no
635 -- longer be needed. ???)
637 elsif Is_Class_Wide_Type (R_Type)
638 and then
639 (R_Type = Etype (Object_Definition (Original_Node (Obj_Decl)))
640 or else not Comes_From_Source (Obj_Decl))
641 then
642 null;
644 else
645 Error_Msg_N
646 ("wrong type for return_subtype_indication", Subtype_Ind);
647 end if;
648 end Check_Return_Subtype_Indication;
650 ---------------------
651 -- Local Variables --
652 ---------------------
654 Expr : Node_Id;
656 -- Start of processing for Analyze_Function_Return
658 begin
659 Set_Return_Present (Scope_Id);
661 if Nkind (N) = N_Simple_Return_Statement then
662 Expr := Expression (N);
663 Analyze_And_Resolve (Expr, R_Type);
664 Check_Limited_Return (Expr);
666 else
667 -- Analyze parts specific to extended_return_statement:
669 declare
670 Obj_Decl : constant Node_Id :=
671 Last (Return_Object_Declarations (N));
673 HSS : constant Node_Id := Handled_Statement_Sequence (N);
675 begin
676 Expr := Expression (Obj_Decl);
678 -- Note: The check for OK_For_Limited_Init will happen in
679 -- Analyze_Object_Declaration; we treat it as a normal
680 -- object declaration.
682 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
683 Analyze (Obj_Decl);
685 Check_Return_Subtype_Indication (Obj_Decl);
687 if Present (HSS) then
688 Analyze (HSS);
690 if Present (Exception_Handlers (HSS)) then
692 -- ???Has_Nested_Block_With_Handler needs to be set.
693 -- Probably by creating an actual N_Block_Statement.
694 -- Probably in Expand.
696 null;
697 end if;
698 end if;
700 Check_References (Stm_Entity);
701 end;
702 end if;
704 -- Case of Expr present
706 if Present (Expr)
708 -- Defend against previous errors
710 and then Nkind (Expr) /= N_Empty
711 and then Present (Etype (Expr))
712 then
713 -- Apply constraint check. Note that this is done before the implicit
714 -- conversion of the expression done for anonymous access types to
715 -- ensure correct generation of the null-excluding check associated
716 -- with null-excluding expressions found in return statements.
718 Apply_Constraint_Check (Expr, R_Type);
720 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
721 -- type, apply an implicit conversion of the expression to that type
722 -- to force appropriate static and run-time accessibility checks.
724 if Ada_Version >= Ada_05
725 and then Ekind (R_Type) = E_Anonymous_Access_Type
726 then
727 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
728 Analyze_And_Resolve (Expr, R_Type);
729 end if;
731 -- If the result type is class-wide, then check that the return
732 -- expression's type is not declared at a deeper level than the
733 -- function (RM05-6.5(5.6/2)).
735 if Ada_Version >= Ada_05
736 and then Is_Class_Wide_Type (R_Type)
737 then
738 if Type_Access_Level (Etype (Expr)) >
739 Subprogram_Access_Level (Scope_Id)
740 then
741 Error_Msg_N
742 ("level of return expression type is deeper than " &
743 "class-wide function!", Expr);
744 end if;
745 end if;
747 if (Is_Class_Wide_Type (Etype (Expr))
748 or else Is_Dynamically_Tagged (Expr))
749 and then not Is_Class_Wide_Type (R_Type)
750 then
751 Error_Msg_N
752 ("dynamically tagged expression not allowed!", Expr);
753 end if;
755 -- ??? A real run-time accessibility check is needed in cases
756 -- involving dereferences of access parameters. For now we just
757 -- check the static cases.
759 if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
760 and then Is_Inherently_Limited_Type (Etype (Scope_Id))
761 and then Object_Access_Level (Expr) >
762 Subprogram_Access_Level (Scope_Id)
763 then
764 Rewrite (N,
765 Make_Raise_Program_Error (Loc,
766 Reason => PE_Accessibility_Check_Failed));
767 Analyze (N);
769 Error_Msg_N
770 ("cannot return a local value by reference?", N);
771 Error_Msg_NE
772 ("\& will be raised at run time?",
773 N, Standard_Program_Error);
774 end if;
776 if Known_Null (Expr)
777 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
778 and then Null_Exclusion_Present (Parent (Scope_Id))
779 then
780 Apply_Compile_Time_Constraint_Error
781 (N => Expr,
782 Msg => "(Ada 2005) null not allowed for "
783 & "null-excluding return?",
784 Reason => CE_Null_Not_Allowed);
785 end if;
786 end if;
787 end Analyze_Function_Return;
789 -------------------------------------
790 -- Analyze_Generic_Subprogram_Body --
791 -------------------------------------
793 procedure Analyze_Generic_Subprogram_Body
794 (N : Node_Id;
795 Gen_Id : Entity_Id)
797 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
798 Kind : constant Entity_Kind := Ekind (Gen_Id);
799 Body_Id : Entity_Id;
800 New_N : Node_Id;
801 Spec : Node_Id;
803 begin
804 -- Copy body and disable expansion while analyzing the generic For a
805 -- stub, do not copy the stub (which would load the proper body), this
806 -- will be done when the proper body is analyzed.
808 if Nkind (N) /= N_Subprogram_Body_Stub then
809 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
810 Rewrite (N, New_N);
811 Start_Generic;
812 end if;
814 Spec := Specification (N);
816 -- Within the body of the generic, the subprogram is callable, and
817 -- behaves like the corresponding non-generic unit.
819 Body_Id := Defining_Entity (Spec);
821 if Kind = E_Generic_Procedure
822 and then Nkind (Spec) /= N_Procedure_Specification
823 then
824 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
825 return;
827 elsif Kind = E_Generic_Function
828 and then Nkind (Spec) /= N_Function_Specification
829 then
830 Error_Msg_N ("invalid body for generic function ", Body_Id);
831 return;
832 end if;
834 Set_Corresponding_Body (Gen_Decl, Body_Id);
836 if Has_Completion (Gen_Id)
837 and then Nkind (Parent (N)) /= N_Subunit
838 then
839 Error_Msg_N ("duplicate generic body", N);
840 return;
841 else
842 Set_Has_Completion (Gen_Id);
843 end if;
845 if Nkind (N) = N_Subprogram_Body_Stub then
846 Set_Ekind (Defining_Entity (Specification (N)), Kind);
847 else
848 Set_Corresponding_Spec (N, Gen_Id);
849 end if;
851 if Nkind (Parent (N)) = N_Compilation_Unit then
852 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
853 end if;
855 -- Make generic parameters immediately visible in the body. They are
856 -- needed to process the formals declarations. Then make the formals
857 -- visible in a separate step.
859 Push_Scope (Gen_Id);
861 declare
862 E : Entity_Id;
863 First_Ent : Entity_Id;
865 begin
866 First_Ent := First_Entity (Gen_Id);
868 E := First_Ent;
869 while Present (E) and then not Is_Formal (E) loop
870 Install_Entity (E);
871 Next_Entity (E);
872 end loop;
874 Set_Use (Generic_Formal_Declarations (Gen_Decl));
876 -- Now generic formals are visible, and the specification can be
877 -- analyzed, for subsequent conformance check.
879 Body_Id := Analyze_Subprogram_Specification (Spec);
881 -- Make formal parameters visible
883 if Present (E) then
885 -- E is the first formal parameter, we loop through the formals
886 -- installing them so that they will be visible.
888 Set_First_Entity (Gen_Id, E);
889 while Present (E) loop
890 Install_Entity (E);
891 Next_Formal (E);
892 end loop;
893 end if;
895 -- Visible generic entity is callable within its own body
897 Set_Ekind (Gen_Id, Ekind (Body_Id));
898 Set_Ekind (Body_Id, E_Subprogram_Body);
899 Set_Convention (Body_Id, Convention (Gen_Id));
900 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
901 Set_Scope (Body_Id, Scope (Gen_Id));
902 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
904 if Nkind (N) = N_Subprogram_Body_Stub then
906 -- No body to analyze, so restore state of generic unit
908 Set_Ekind (Gen_Id, Kind);
909 Set_Ekind (Body_Id, Kind);
911 if Present (First_Ent) then
912 Set_First_Entity (Gen_Id, First_Ent);
913 end if;
915 End_Scope;
916 return;
917 end if;
919 -- If this is a compilation unit, it must be made visible explicitly,
920 -- because the compilation of the declaration, unlike other library
921 -- unit declarations, does not. If it is not a unit, the following
922 -- is redundant but harmless.
924 Set_Is_Immediately_Visible (Gen_Id);
925 Reference_Body_Formals (Gen_Id, Body_Id);
927 if Is_Child_Unit (Gen_Id) then
928 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
929 end if;
931 Set_Actual_Subtypes (N, Current_Scope);
932 Process_PPCs (N, Gen_Id, Body_Id);
934 -- If the generic unit carries pre- or post-conditions, copy them
935 -- to the original generic tree, so that they are properly added
936 -- to any instantiation.
938 declare
939 Orig : constant Node_Id := Original_Node (N);
940 Cond : Node_Id;
942 begin
943 Cond := First (Declarations (N));
944 while Present (Cond) loop
945 if Nkind (Cond) = N_Pragma
946 and then Pragma_Name (Cond) = Name_Check
947 then
948 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
950 elsif Nkind (Cond) = N_Pragma
951 and then Pragma_Name (Cond) = Name_Postcondition
952 then
953 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
954 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
955 else
956 exit;
957 end if;
959 Next (Cond);
960 end loop;
961 end;
963 Analyze_Declarations (Declarations (N));
964 Check_Completion;
965 Analyze (Handled_Statement_Sequence (N));
967 Save_Global_References (Original_Node (N));
969 -- Prior to exiting the scope, include generic formals again (if any
970 -- are present) in the set of local entities.
972 if Present (First_Ent) then
973 Set_First_Entity (Gen_Id, First_Ent);
974 end if;
976 Check_References (Gen_Id);
977 end;
979 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
980 End_Scope;
981 Check_Subprogram_Order (N);
983 -- Outside of its body, unit is generic again
985 Set_Ekind (Gen_Id, Kind);
986 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
988 if Style_Check then
989 Style.Check_Identifier (Body_Id, Gen_Id);
990 end if;
991 End_Generic;
992 end Analyze_Generic_Subprogram_Body;
994 -----------------------------
995 -- Analyze_Operator_Symbol --
996 -----------------------------
998 -- An operator symbol such as "+" or "and" may appear in context where the
999 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1000 -- is just a string, as in (conjunction = "or"). In these cases the parser
1001 -- generates this node, and the semantics does the disambiguation. Other
1002 -- such case are actuals in an instantiation, the generic unit in an
1003 -- instantiation, and pragma arguments.
1005 procedure Analyze_Operator_Symbol (N : Node_Id) is
1006 Par : constant Node_Id := Parent (N);
1008 begin
1009 if (Nkind (Par) = N_Function_Call
1010 and then N = Name (Par))
1011 or else Nkind (Par) = N_Function_Instantiation
1012 or else (Nkind (Par) = N_Indexed_Component
1013 and then N = Prefix (Par))
1014 or else (Nkind (Par) = N_Pragma_Argument_Association
1015 and then not Is_Pragma_String_Literal (Par))
1016 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1017 or else (Nkind (Par) = N_Attribute_Reference
1018 and then Attribute_Name (Par) /= Name_Value)
1019 then
1020 Find_Direct_Name (N);
1022 else
1023 Change_Operator_Symbol_To_String_Literal (N);
1024 Analyze (N);
1025 end if;
1026 end Analyze_Operator_Symbol;
1028 -----------------------------------
1029 -- Analyze_Parameter_Association --
1030 -----------------------------------
1032 procedure Analyze_Parameter_Association (N : Node_Id) is
1033 begin
1034 Analyze (Explicit_Actual_Parameter (N));
1035 end Analyze_Parameter_Association;
1037 ----------------------------
1038 -- Analyze_Procedure_Call --
1039 ----------------------------
1041 procedure Analyze_Procedure_Call (N : Node_Id) is
1042 Loc : constant Source_Ptr := Sloc (N);
1043 P : constant Node_Id := Name (N);
1044 Actuals : constant List_Id := Parameter_Associations (N);
1045 Actual : Node_Id;
1046 New_N : Node_Id;
1048 procedure Analyze_Call_And_Resolve;
1049 -- Do Analyze and Resolve calls for procedure call
1051 ------------------------------
1052 -- Analyze_Call_And_Resolve --
1053 ------------------------------
1055 procedure Analyze_Call_And_Resolve is
1056 begin
1057 if Nkind (N) = N_Procedure_Call_Statement then
1058 Analyze_Call (N);
1059 Resolve (N, Standard_Void_Type);
1060 else
1061 Analyze (N);
1062 end if;
1063 end Analyze_Call_And_Resolve;
1065 -- Start of processing for Analyze_Procedure_Call
1067 begin
1068 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1069 -- a procedure call or an entry call. The prefix may denote an access
1070 -- to subprogram type, in which case an implicit dereference applies.
1071 -- If the prefix is an indexed component (without implicit dereference)
1072 -- then the construct denotes a call to a member of an entire family.
1073 -- If the prefix is a simple name, it may still denote a call to a
1074 -- parameterless member of an entry family. Resolution of these various
1075 -- interpretations is delicate.
1077 Analyze (P);
1079 -- If this is a call of the form Obj.Op, the call may have been
1080 -- analyzed and possibly rewritten into a block, in which case
1081 -- we are done.
1083 if Analyzed (N) then
1084 return;
1085 end if;
1087 -- If error analyzing prefix, then set Any_Type as result and return
1089 if Etype (P) = Any_Type then
1090 Set_Etype (N, Any_Type);
1091 return;
1092 end if;
1094 -- Otherwise analyze the parameters
1096 if Present (Actuals) then
1097 Actual := First (Actuals);
1099 while Present (Actual) loop
1100 Analyze (Actual);
1101 Check_Parameterless_Call (Actual);
1102 Next (Actual);
1103 end loop;
1104 end if;
1106 -- Special processing for Elab_Spec and Elab_Body calls
1108 if Nkind (P) = N_Attribute_Reference
1109 and then (Attribute_Name (P) = Name_Elab_Spec
1110 or else Attribute_Name (P) = Name_Elab_Body)
1111 then
1112 if Present (Actuals) then
1113 Error_Msg_N
1114 ("no parameters allowed for this call", First (Actuals));
1115 return;
1116 end if;
1118 Set_Etype (N, Standard_Void_Type);
1119 Set_Analyzed (N);
1121 elsif Is_Entity_Name (P)
1122 and then Is_Record_Type (Etype (Entity (P)))
1123 and then Remote_AST_I_Dereference (P)
1124 then
1125 return;
1127 elsif Is_Entity_Name (P)
1128 and then Ekind (Entity (P)) /= E_Entry_Family
1129 then
1130 if Is_Access_Type (Etype (P))
1131 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1132 and then No (Actuals)
1133 and then Comes_From_Source (N)
1134 then
1135 Error_Msg_N ("missing explicit dereference in call", N);
1136 end if;
1138 Analyze_Call_And_Resolve;
1140 -- If the prefix is the simple name of an entry family, this is
1141 -- a parameterless call from within the task body itself.
1143 elsif Is_Entity_Name (P)
1144 and then Nkind (P) = N_Identifier
1145 and then Ekind (Entity (P)) = E_Entry_Family
1146 and then Present (Actuals)
1147 and then No (Next (First (Actuals)))
1148 then
1149 -- Can be call to parameterless entry family. What appears to be the
1150 -- sole argument is in fact the entry index. Rewrite prefix of node
1151 -- accordingly. Source representation is unchanged by this
1152 -- transformation.
1154 New_N :=
1155 Make_Indexed_Component (Loc,
1156 Prefix =>
1157 Make_Selected_Component (Loc,
1158 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1159 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1160 Expressions => Actuals);
1161 Set_Name (N, New_N);
1162 Set_Etype (New_N, Standard_Void_Type);
1163 Set_Parameter_Associations (N, No_List);
1164 Analyze_Call_And_Resolve;
1166 elsif Nkind (P) = N_Explicit_Dereference then
1167 if Ekind (Etype (P)) = E_Subprogram_Type then
1168 Analyze_Call_And_Resolve;
1169 else
1170 Error_Msg_N ("expect access to procedure in call", P);
1171 end if;
1173 -- The name can be a selected component or an indexed component that
1174 -- yields an access to subprogram. Such a prefix is legal if the call
1175 -- has parameter associations.
1177 elsif Is_Access_Type (Etype (P))
1178 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1179 then
1180 if Present (Actuals) then
1181 Analyze_Call_And_Resolve;
1182 else
1183 Error_Msg_N ("missing explicit dereference in call ", N);
1184 end if;
1186 -- If not an access to subprogram, then the prefix must resolve to the
1187 -- name of an entry, entry family, or protected operation.
1189 -- For the case of a simple entry call, P is a selected component where
1190 -- the prefix is the task and the selector name is the entry. A call to
1191 -- a protected procedure will have the same syntax. If the protected
1192 -- object contains overloaded operations, the entity may appear as a
1193 -- function, the context will select the operation whose type is Void.
1195 elsif Nkind (P) = N_Selected_Component
1196 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1197 or else
1198 Ekind (Entity (Selector_Name (P))) = E_Procedure
1199 or else
1200 Ekind (Entity (Selector_Name (P))) = E_Function)
1201 then
1202 Analyze_Call_And_Resolve;
1204 elsif Nkind (P) = N_Selected_Component
1205 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1206 and then Present (Actuals)
1207 and then No (Next (First (Actuals)))
1208 then
1209 -- Can be call to parameterless entry family. What appears to be the
1210 -- sole argument is in fact the entry index. Rewrite prefix of node
1211 -- accordingly. Source representation is unchanged by this
1212 -- transformation.
1214 New_N :=
1215 Make_Indexed_Component (Loc,
1216 Prefix => New_Copy (P),
1217 Expressions => Actuals);
1218 Set_Name (N, New_N);
1219 Set_Etype (New_N, Standard_Void_Type);
1220 Set_Parameter_Associations (N, No_List);
1221 Analyze_Call_And_Resolve;
1223 -- For the case of a reference to an element of an entry family, P is
1224 -- an indexed component whose prefix is a selected component (task and
1225 -- entry family), and whose index is the entry family index.
1227 elsif Nkind (P) = N_Indexed_Component
1228 and then Nkind (Prefix (P)) = N_Selected_Component
1229 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1230 then
1231 Analyze_Call_And_Resolve;
1233 -- If the prefix is the name of an entry family, it is a call from
1234 -- within the task body itself.
1236 elsif Nkind (P) = N_Indexed_Component
1237 and then Nkind (Prefix (P)) = N_Identifier
1238 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1239 then
1240 New_N :=
1241 Make_Selected_Component (Loc,
1242 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1243 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1244 Rewrite (Prefix (P), New_N);
1245 Analyze (P);
1246 Analyze_Call_And_Resolve;
1248 -- Anything else is an error
1250 else
1251 Error_Msg_N ("invalid procedure or entry call", N);
1252 end if;
1253 end Analyze_Procedure_Call;
1255 -------------------------------------
1256 -- Analyze_Simple_Return_Statement --
1257 -------------------------------------
1259 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1260 begin
1261 if Present (Expression (N)) then
1262 Mark_Coextensions (N, Expression (N));
1263 end if;
1265 Analyze_Return_Statement (N);
1266 end Analyze_Simple_Return_Statement;
1268 -------------------------
1269 -- Analyze_Return_Type --
1270 -------------------------
1272 procedure Analyze_Return_Type (N : Node_Id) is
1273 Designator : constant Entity_Id := Defining_Entity (N);
1274 Typ : Entity_Id := Empty;
1276 begin
1277 -- Normal case where result definition does not indicate an error
1279 if Result_Definition (N) /= Error then
1280 if Nkind (Result_Definition (N)) = N_Access_Definition then
1282 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1284 declare
1285 AD : constant Node_Id :=
1286 Access_To_Subprogram_Definition (Result_Definition (N));
1287 begin
1288 if Present (AD) and then Protected_Present (AD) then
1289 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1290 else
1291 Typ := Access_Definition (N, Result_Definition (N));
1292 end if;
1293 end;
1295 Set_Parent (Typ, Result_Definition (N));
1296 Set_Is_Local_Anonymous_Access (Typ);
1297 Set_Etype (Designator, Typ);
1299 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1301 Null_Exclusion_Static_Checks (N);
1303 -- Subtype_Mark case
1305 else
1306 Find_Type (Result_Definition (N));
1307 Typ := Entity (Result_Definition (N));
1308 Set_Etype (Designator, Typ);
1310 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1312 Null_Exclusion_Static_Checks (N);
1314 -- If a null exclusion is imposed on the result type, then create
1315 -- a null-excluding itype (an access subtype) and use it as the
1316 -- function's Etype. Note that the null exclusion checks are done
1317 -- right before this, because they don't get applied to types that
1318 -- do not come from source.
1320 if Is_Access_Type (Typ)
1321 and then Null_Exclusion_Present (N)
1322 then
1323 Set_Etype (Designator,
1324 Create_Null_Excluding_Itype
1325 (T => Typ,
1326 Related_Nod => N,
1327 Scope_Id => Scope (Current_Scope)));
1328 else
1329 Set_Etype (Designator, Typ);
1330 end if;
1332 if Ekind (Typ) = E_Incomplete_Type
1333 and then Is_Value_Type (Typ)
1334 then
1335 null;
1337 elsif Ekind (Typ) = E_Incomplete_Type
1338 or else (Is_Class_Wide_Type (Typ)
1339 and then
1340 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1341 then
1342 Error_Msg_NE
1343 ("invalid use of incomplete type&", Designator, Typ);
1344 end if;
1345 end if;
1347 -- Case where result definition does indicate an error
1349 else
1350 Set_Etype (Designator, Any_Type);
1351 end if;
1352 end Analyze_Return_Type;
1354 -----------------------------
1355 -- Analyze_Subprogram_Body --
1356 -----------------------------
1358 procedure Analyze_Subprogram_Body (N : Node_Id) is
1359 Loc : constant Source_Ptr := Sloc (N);
1360 Body_Spec : constant Node_Id := Specification (N);
1361 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1363 begin
1364 if Debug_Flag_C then
1365 Write_Str ("==> subprogram body ");
1366 Write_Name (Chars (Body_Id));
1367 Write_Str (" from ");
1368 Write_Location (Loc);
1369 Write_Eol;
1370 Indent;
1371 end if;
1373 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1375 -- The real work is split out into the helper, so it can do "return;"
1376 -- without skipping the debug output:
1378 Analyze_Subprogram_Body_Helper (N);
1380 if Debug_Flag_C then
1381 Outdent;
1382 Write_Str ("<== subprogram body ");
1383 Write_Name (Chars (Body_Id));
1384 Write_Str (" from ");
1385 Write_Location (Loc);
1386 Write_Eol;
1387 end if;
1388 end Analyze_Subprogram_Body;
1390 ------------------------------------
1391 -- Analyze_Subprogram_Body_Helper --
1392 ------------------------------------
1394 -- This procedure is called for regular subprogram bodies, generic bodies,
1395 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1396 -- specification matters, and is used to create a proper declaration for
1397 -- the subprogram, or to perform conformance checks.
1399 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1400 Loc : constant Source_Ptr := Sloc (N);
1401 Body_Deleted : constant Boolean := False;
1402 Body_Spec : constant Node_Id := Specification (N);
1403 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1404 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1405 Conformant : Boolean;
1406 HSS : Node_Id;
1407 Missing_Ret : Boolean;
1408 P_Ent : Entity_Id;
1409 Prot_Typ : Entity_Id := Empty;
1410 Spec_Id : Entity_Id;
1411 Spec_Decl : Node_Id := Empty;
1413 Last_Real_Spec_Entity : Entity_Id := Empty;
1414 -- When we analyze a separate spec, the entity chain ends up containing
1415 -- the formals, as well as any itypes generated during analysis of the
1416 -- default expressions for parameters, or the arguments of associated
1417 -- precondition/postcondition pragmas (which are analyzed in the context
1418 -- of the spec since they have visibility on formals).
1420 -- These entities belong with the spec and not the body. However we do
1421 -- the analysis of the body in the context of the spec (again to obtain
1422 -- visibility to the formals), and all the entities generated during
1423 -- this analysis end up also chained to the entity chain of the spec.
1424 -- But they really belong to the body, and there is circuitry to move
1425 -- them from the spec to the body.
1427 -- However, when we do this move, we don't want to move the real spec
1428 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1429 -- variable points to the last real spec entity, so we only move those
1430 -- chained beyond that point. It is initialized to Empty to deal with
1431 -- the case where there is no separate spec.
1433 procedure Check_Anonymous_Return;
1434 -- Ada 2005: if a function returns an access type that denotes a task,
1435 -- or a type that contains tasks, we must create a master entity for
1436 -- the anonymous type, which typically will be used in an allocator
1437 -- in the body of the function.
1439 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1440 -- Look ahead to recognize a pragma that may appear after the body.
1441 -- If there is a previous spec, check that it appears in the same
1442 -- declarative part. If the pragma is Inline_Always, perform inlining
1443 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1444 -- If the body acts as a spec, and inlining is required, we create a
1445 -- subprogram declaration for it, in order to attach the body to inline.
1446 -- If pragma does not appear after the body, check whether there is
1447 -- an inline pragma before any local declarations.
1449 function Disambiguate_Spec return Entity_Id;
1450 -- When a primitive is declared between the private view and the full
1451 -- view of a concurrent type which implements an interface, a special
1452 -- mechanism is used to find the corresponding spec of the primitive
1453 -- body.
1455 function Is_Private_Concurrent_Primitive
1456 (Subp_Id : Entity_Id) return Boolean;
1457 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1458 -- type that implements an interface and has a private view.
1460 procedure Set_Trivial_Subprogram (N : Node_Id);
1461 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1462 -- subprogram whose body is being analyzed. N is the statement node
1463 -- causing the flag to be set, if the following statement is a return
1464 -- of an entity, we mark the entity as set in source to suppress any
1465 -- warning on the stylized use of function stubs with a dummy return.
1467 procedure Verify_Overriding_Indicator;
1468 -- If there was a previous spec, the entity has been entered in the
1469 -- current scope previously. If the body itself carries an overriding
1470 -- indicator, check that it is consistent with the known status of the
1471 -- entity.
1473 ----------------------------
1474 -- Check_Anonymous_Return --
1475 ----------------------------
1477 procedure Check_Anonymous_Return is
1478 Decl : Node_Id;
1479 Par : Node_Id;
1480 Scop : Entity_Id;
1482 begin
1483 if Present (Spec_Id) then
1484 Scop := Spec_Id;
1485 else
1486 Scop := Body_Id;
1487 end if;
1489 if Ekind (Scop) = E_Function
1490 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1491 and then not Is_Thunk (Scop)
1492 and then (Has_Task (Designated_Type (Etype (Scop)))
1493 or else
1494 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1495 and then
1496 Is_Limited_Record (Designated_Type (Etype (Scop)))))
1497 and then Expander_Active
1499 -- Avoid cases with no tasking support
1501 and then RTE_Available (RE_Current_Master)
1502 and then not Restriction_Active (No_Task_Hierarchy)
1503 then
1504 Decl :=
1505 Make_Object_Declaration (Loc,
1506 Defining_Identifier =>
1507 Make_Defining_Identifier (Loc, Name_uMaster),
1508 Constant_Present => True,
1509 Object_Definition =>
1510 New_Reference_To (RTE (RE_Master_Id), Loc),
1511 Expression =>
1512 Make_Explicit_Dereference (Loc,
1513 New_Reference_To (RTE (RE_Current_Master), Loc)));
1515 if Present (Declarations (N)) then
1516 Prepend (Decl, Declarations (N));
1517 else
1518 Set_Declarations (N, New_List (Decl));
1519 end if;
1521 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1522 Set_Has_Master_Entity (Scop);
1524 -- Now mark the containing scope as a task master
1526 Par := N;
1527 while Nkind (Par) /= N_Compilation_Unit loop
1528 Par := Parent (Par);
1529 pragma Assert (Present (Par));
1531 -- If we fall off the top, we are at the outer level, and
1532 -- the environment task is our effective master, so nothing
1533 -- to mark.
1535 if Nkind_In
1536 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1537 then
1538 Set_Is_Task_Master (Par, True);
1539 exit;
1540 end if;
1541 end loop;
1542 end if;
1543 end Check_Anonymous_Return;
1545 -------------------------
1546 -- Check_Inline_Pragma --
1547 -------------------------
1549 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1550 Prag : Node_Id;
1551 Plist : List_Id;
1553 function Is_Inline_Pragma (N : Node_Id) return Boolean;
1554 -- True when N is a pragma Inline or Inline_Always that applies
1555 -- to this subprogram.
1557 -----------------------
1558 -- Is_Inline_Pragma --
1559 -----------------------
1561 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1562 begin
1563 return
1564 Nkind (N) = N_Pragma
1565 and then
1566 (Pragma_Name (N) = Name_Inline_Always
1567 or else
1568 (Front_End_Inlining
1569 and then Pragma_Name (N) = Name_Inline))
1570 and then
1571 Chars
1572 (Expression (First (Pragma_Argument_Associations (N))))
1573 = Chars (Body_Id);
1574 end Is_Inline_Pragma;
1576 -- Start of processing for Check_Inline_Pragma
1578 begin
1579 if not Expander_Active then
1580 return;
1581 end if;
1583 if Is_List_Member (N)
1584 and then Present (Next (N))
1585 and then Is_Inline_Pragma (Next (N))
1586 then
1587 Prag := Next (N);
1589 elsif Nkind (N) /= N_Subprogram_Body_Stub
1590 and then Present (Declarations (N))
1591 and then Is_Inline_Pragma (First (Declarations (N)))
1592 then
1593 Prag := First (Declarations (N));
1595 else
1596 Prag := Empty;
1597 end if;
1599 if Present (Prag) then
1600 if Present (Spec_Id) then
1601 if List_Containing (N) =
1602 List_Containing (Unit_Declaration_Node (Spec_Id))
1603 then
1604 Analyze (Prag);
1605 end if;
1607 else
1608 -- Create a subprogram declaration, to make treatment uniform
1610 declare
1611 Subp : constant Entity_Id :=
1612 Make_Defining_Identifier (Loc, Chars (Body_Id));
1613 Decl : constant Node_Id :=
1614 Make_Subprogram_Declaration (Loc,
1615 Specification => New_Copy_Tree (Specification (N)));
1616 begin
1617 Set_Defining_Unit_Name (Specification (Decl), Subp);
1619 if Present (First_Formal (Body_Id)) then
1620 Plist := Copy_Parameter_List (Body_Id);
1621 Set_Parameter_Specifications
1622 (Specification (Decl), Plist);
1623 end if;
1625 Insert_Before (N, Decl);
1626 Analyze (Decl);
1627 Analyze (Prag);
1628 Set_Has_Pragma_Inline (Subp);
1630 if Pragma_Name (Prag) = Name_Inline_Always then
1631 Set_Is_Inlined (Subp);
1632 Set_Has_Pragma_Inline_Always (Subp);
1633 end if;
1635 Spec := Subp;
1636 end;
1637 end if;
1638 end if;
1639 end Check_Inline_Pragma;
1641 -----------------------
1642 -- Disambiguate_Spec --
1643 -----------------------
1645 function Disambiguate_Spec return Entity_Id is
1646 Priv_Spec : Entity_Id;
1647 Spec_N : Entity_Id;
1649 procedure Replace_Types (To_Corresponding : Boolean);
1650 -- Depending on the flag, replace the type of formal parameters of
1651 -- Body_Id if it is a concurrent type implementing interfaces with
1652 -- the corresponding record type or the other way around.
1654 procedure Replace_Types (To_Corresponding : Boolean) is
1655 Formal : Entity_Id;
1656 Formal_Typ : Entity_Id;
1658 begin
1659 Formal := First_Formal (Body_Id);
1660 while Present (Formal) loop
1661 Formal_Typ := Etype (Formal);
1663 -- From concurrent type to corresponding record
1665 if To_Corresponding then
1666 if Is_Concurrent_Type (Formal_Typ)
1667 and then Present (Corresponding_Record_Type (Formal_Typ))
1668 and then Present (Interfaces (
1669 Corresponding_Record_Type (Formal_Typ)))
1670 then
1671 Set_Etype (Formal,
1672 Corresponding_Record_Type (Formal_Typ));
1673 end if;
1675 -- From corresponding record to concurrent type
1677 else
1678 if Is_Concurrent_Record_Type (Formal_Typ)
1679 and then Present (Interfaces (Formal_Typ))
1680 then
1681 Set_Etype (Formal,
1682 Corresponding_Concurrent_Type (Formal_Typ));
1683 end if;
1684 end if;
1686 Next_Formal (Formal);
1687 end loop;
1688 end Replace_Types;
1690 -- Start of processing for Disambiguate_Spec
1692 begin
1693 -- Try to retrieve the specification of the body as is. All error
1694 -- messages are suppressed because the body may not have a spec in
1695 -- its current state.
1697 Spec_N := Find_Corresponding_Spec (N, False);
1699 -- It is possible that this is the body of a primitive declared
1700 -- between a private and a full view of a concurrent type. The
1701 -- controlling parameter of the spec carries the concurrent type,
1702 -- not the corresponding record type as transformed by Analyze_
1703 -- Subprogram_Specification. In such cases, we undo the change
1704 -- made by the analysis of the specification and try to find the
1705 -- spec again.
1707 -- Note that wrappers already have their corresponding specs and
1708 -- bodies set during their creation, so if the candidate spec is
1709 -- a wrapper, then we definitely need to swap all types to their
1710 -- original concurrent status.
1712 if No (Spec_N)
1713 or else Is_Primitive_Wrapper (Spec_N)
1714 then
1715 -- Restore all references of corresponding record types to the
1716 -- original concurrent types.
1718 Replace_Types (To_Corresponding => False);
1719 Priv_Spec := Find_Corresponding_Spec (N, False);
1721 -- The current body truly belongs to a primitive declared between
1722 -- a private and a full view. We leave the modified body as is,
1723 -- and return the true spec.
1725 if Present (Priv_Spec)
1726 and then Is_Private_Primitive (Priv_Spec)
1727 then
1728 return Priv_Spec;
1729 end if;
1731 -- In case that this is some sort of error, restore the original
1732 -- state of the body.
1734 Replace_Types (To_Corresponding => True);
1735 end if;
1737 return Spec_N;
1738 end Disambiguate_Spec;
1740 -------------------------------------
1741 -- Is_Private_Concurrent_Primitive --
1742 -------------------------------------
1744 function Is_Private_Concurrent_Primitive
1745 (Subp_Id : Entity_Id) return Boolean
1747 Formal_Typ : Entity_Id;
1749 begin
1750 if Present (First_Formal (Subp_Id)) then
1751 Formal_Typ := Etype (First_Formal (Subp_Id));
1753 if Is_Concurrent_Record_Type (Formal_Typ) then
1754 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
1755 end if;
1757 -- The type of the first formal is a concurrent tagged type with
1758 -- a private view.
1760 return
1761 Is_Concurrent_Type (Formal_Typ)
1762 and then Is_Tagged_Type (Formal_Typ)
1763 and then Has_Private_Declaration (Formal_Typ);
1764 end if;
1766 return False;
1767 end Is_Private_Concurrent_Primitive;
1769 ----------------------------
1770 -- Set_Trivial_Subprogram --
1771 ----------------------------
1773 procedure Set_Trivial_Subprogram (N : Node_Id) is
1774 Nxt : constant Node_Id := Next (N);
1776 begin
1777 Set_Is_Trivial_Subprogram (Body_Id);
1779 if Present (Spec_Id) then
1780 Set_Is_Trivial_Subprogram (Spec_Id);
1781 end if;
1783 if Present (Nxt)
1784 and then Nkind (Nxt) = N_Simple_Return_Statement
1785 and then No (Next (Nxt))
1786 and then Present (Expression (Nxt))
1787 and then Is_Entity_Name (Expression (Nxt))
1788 then
1789 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1790 end if;
1791 end Set_Trivial_Subprogram;
1793 ---------------------------------
1794 -- Verify_Overriding_Indicator --
1795 ---------------------------------
1797 procedure Verify_Overriding_Indicator is
1798 begin
1799 if Must_Override (Body_Spec) then
1800 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
1801 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1802 then
1803 null;
1805 elsif not Is_Overriding_Operation (Spec_Id) then
1806 Error_Msg_NE
1807 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1808 end if;
1810 elsif Must_Not_Override (Body_Spec) then
1811 if Is_Overriding_Operation (Spec_Id) then
1812 Error_Msg_NE
1813 ("subprogram& overrides inherited operation",
1814 Body_Spec, Spec_Id);
1816 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
1817 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1818 then
1819 Error_Msg_NE
1820 ("subprogram & overrides predefined operator ",
1821 Body_Spec, Spec_Id);
1823 -- If this is not a primitive operation or protected subprogram,
1824 -- then the overriding indicator is altogether illegal.
1826 elsif not Is_Primitive (Spec_Id)
1827 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
1828 then
1829 Error_Msg_N ("overriding indicator only allowed " &
1830 "if subprogram is primitive",
1831 Body_Spec);
1832 end if;
1834 elsif Style_Check -- ??? incorrect use of Style_Check!
1835 and then Is_Overriding_Operation (Spec_Id)
1836 then
1837 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
1838 Style.Missing_Overriding (N, Body_Id);
1839 end if;
1840 end Verify_Overriding_Indicator;
1842 -- Start of processing for Analyze_Subprogram_Body_Helper
1844 begin
1845 -- Generic subprograms are handled separately. They always have a
1846 -- generic specification. Determine whether current scope has a
1847 -- previous declaration.
1849 -- If the subprogram body is defined within an instance of the same
1850 -- name, the instance appears as a package renaming, and will be hidden
1851 -- within the subprogram.
1853 if Present (Prev_Id)
1854 and then not Is_Overloadable (Prev_Id)
1855 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1856 or else Comes_From_Source (Prev_Id))
1857 then
1858 if Is_Generic_Subprogram (Prev_Id) then
1859 Spec_Id := Prev_Id;
1860 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1861 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1863 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1864 return;
1866 else
1867 -- Previous entity conflicts with subprogram name. Attempting to
1868 -- enter name will post error.
1870 Enter_Name (Body_Id);
1871 return;
1872 end if;
1874 -- Non-generic case, find the subprogram declaration, if one was seen,
1875 -- or enter new overloaded entity in the current scope. If the
1876 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1877 -- part of the context of one of its subunits. No need to redo the
1878 -- analysis.
1880 elsif Prev_Id = Body_Id
1881 and then Has_Completion (Body_Id)
1882 then
1883 return;
1885 else
1886 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
1888 if Nkind (N) = N_Subprogram_Body_Stub
1889 or else No (Corresponding_Spec (N))
1890 then
1891 if Is_Private_Concurrent_Primitive (Body_Id) then
1892 Spec_Id := Disambiguate_Spec;
1893 else
1894 Spec_Id := Find_Corresponding_Spec (N);
1895 end if;
1897 -- If this is a duplicate body, no point in analyzing it
1899 if Error_Posted (N) then
1900 return;
1901 end if;
1903 -- A subprogram body should cause freezing of its own declaration,
1904 -- but if there was no previous explicit declaration, then the
1905 -- subprogram will get frozen too late (there may be code within
1906 -- the body that depends on the subprogram having been frozen,
1907 -- such as uses of extra formals), so we force it to be frozen
1908 -- here. Same holds if the body and spec are compilation units.
1909 -- Finally, if the return type is an anonymous access to protected
1910 -- subprogram, it must be frozen before the body because its
1911 -- expansion has generated an equivalent type that is used when
1912 -- elaborating the body.
1914 if No (Spec_Id) then
1915 Freeze_Before (N, Body_Id);
1917 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1918 Freeze_Before (N, Spec_Id);
1920 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
1921 Freeze_Before (N, Etype (Body_Id));
1922 end if;
1924 else
1925 Spec_Id := Corresponding_Spec (N);
1926 end if;
1927 end if;
1929 -- Do not inline any subprogram that contains nested subprograms, since
1930 -- the backend inlining circuit seems to generate uninitialized
1931 -- references in this case. We know this happens in the case of front
1932 -- end ZCX support, but it also appears it can happen in other cases as
1933 -- well. The backend often rejects attempts to inline in the case of
1934 -- nested procedures anyway, so little if anything is lost by this.
1935 -- Note that this is test is for the benefit of the back-end. There is
1936 -- a separate test for front-end inlining that also rejects nested
1937 -- subprograms.
1939 -- Do not do this test if errors have been detected, because in some
1940 -- error cases, this code blows up, and we don't need it anyway if
1941 -- there have been errors, since we won't get to the linker anyway.
1943 if Comes_From_Source (Body_Id)
1944 and then Serious_Errors_Detected = 0
1945 then
1946 P_Ent := Body_Id;
1947 loop
1948 P_Ent := Scope (P_Ent);
1949 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1951 if Is_Subprogram (P_Ent) then
1952 Set_Is_Inlined (P_Ent, False);
1954 if Comes_From_Source (P_Ent)
1955 and then Has_Pragma_Inline (P_Ent)
1956 then
1957 Cannot_Inline
1958 ("cannot inline& (nested subprogram)?",
1959 N, P_Ent);
1960 end if;
1961 end if;
1962 end loop;
1963 end if;
1965 Check_Inline_Pragma (Spec_Id);
1967 -- Deal with special case of a fully private operation in the body of
1968 -- the protected type. We must create a declaration for the subprogram,
1969 -- in order to attach the protected subprogram that will be used in
1970 -- internal calls. We exclude compiler generated bodies from the
1971 -- expander since the issue does not arise for those cases.
1973 if No (Spec_Id)
1974 and then Comes_From_Source (N)
1975 and then Is_Protected_Type (Current_Scope)
1976 then
1977 declare
1978 Decl : Node_Id;
1979 Plist : List_Id;
1980 Formal : Entity_Id;
1981 New_Spec : Node_Id;
1983 begin
1984 Formal := First_Formal (Body_Id);
1986 -- The protected operation always has at least one formal, namely
1987 -- the object itself, but it is only placed in the parameter list
1988 -- if expansion is enabled.
1990 if Present (Formal)
1991 or else Expander_Active
1992 then
1993 Plist := Copy_Parameter_List (Body_Id);
1994 else
1995 Plist := No_List;
1996 end if;
1998 if Nkind (Body_Spec) = N_Procedure_Specification then
1999 New_Spec :=
2000 Make_Procedure_Specification (Loc,
2001 Defining_Unit_Name =>
2002 Make_Defining_Identifier (Sloc (Body_Id),
2003 Chars => Chars (Body_Id)),
2004 Parameter_Specifications => Plist);
2005 else
2006 New_Spec :=
2007 Make_Function_Specification (Loc,
2008 Defining_Unit_Name =>
2009 Make_Defining_Identifier (Sloc (Body_Id),
2010 Chars => Chars (Body_Id)),
2011 Parameter_Specifications => Plist,
2012 Result_Definition =>
2013 New_Occurrence_Of (Etype (Body_Id), Loc));
2014 end if;
2016 Decl :=
2017 Make_Subprogram_Declaration (Loc,
2018 Specification => New_Spec);
2019 Insert_Before (N, Decl);
2020 Spec_Id := Defining_Unit_Name (New_Spec);
2022 -- Indicate that the entity comes from source, to ensure that
2023 -- cross-reference information is properly generated. The body
2024 -- itself is rewritten during expansion, and the body entity will
2025 -- not appear in calls to the operation.
2027 Set_Comes_From_Source (Spec_Id, True);
2028 Analyze (Decl);
2029 Set_Has_Completion (Spec_Id);
2030 Set_Convention (Spec_Id, Convention_Protected);
2031 end;
2032 end if;
2034 -- If a separate spec is present, then deal with freezing issues
2036 if Present (Spec_Id) then
2037 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2038 Verify_Overriding_Indicator;
2040 -- In general, the spec will be frozen when we start analyzing the
2041 -- body. However, for internally generated operations, such as
2042 -- wrapper functions for inherited operations with controlling
2043 -- results, the spec may not have been frozen by the time we
2044 -- expand the freeze actions that include the bodies. In particular,
2045 -- extra formals for accessibility or for return-in-place may need
2046 -- to be generated. Freeze nodes, if any, are inserted before the
2047 -- current body.
2049 if not Is_Frozen (Spec_Id)
2050 and then Expander_Active
2051 then
2052 -- Force the generation of its freezing node to ensure proper
2053 -- management of access types in the backend.
2055 -- This is definitely needed for some cases, but it is not clear
2056 -- why, to be investigated further???
2058 Set_Has_Delayed_Freeze (Spec_Id);
2059 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
2060 end if;
2061 end if;
2063 -- Mark presence of postcondition proc in current scope
2065 if Chars (Body_Id) = Name_uPostconditions then
2066 Set_Has_Postconditions (Current_Scope);
2067 end if;
2069 -- Place subprogram on scope stack, and make formals visible. If there
2070 -- is a spec, the visible entity remains that of the spec.
2072 if Present (Spec_Id) then
2073 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2075 if Is_Child_Unit (Spec_Id) then
2076 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2077 end if;
2079 if Style_Check then
2080 Style.Check_Identifier (Body_Id, Spec_Id);
2081 end if;
2083 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2084 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2086 if Is_Abstract_Subprogram (Spec_Id) then
2087 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2088 return;
2090 else
2091 Set_Convention (Body_Id, Convention (Spec_Id));
2092 Set_Has_Completion (Spec_Id);
2094 if Is_Protected_Type (Scope (Spec_Id)) then
2095 Prot_Typ := Scope (Spec_Id);
2096 end if;
2098 -- If this is a body generated for a renaming, do not check for
2099 -- full conformance. The check is redundant, because the spec of
2100 -- the body is a copy of the spec in the renaming declaration,
2101 -- and the test can lead to spurious errors on nested defaults.
2103 if Present (Spec_Decl)
2104 and then not Comes_From_Source (N)
2105 and then
2106 (Nkind (Original_Node (Spec_Decl)) =
2107 N_Subprogram_Renaming_Declaration
2108 or else (Present (Corresponding_Body (Spec_Decl))
2109 and then
2110 Nkind (Unit_Declaration_Node
2111 (Corresponding_Body (Spec_Decl))) =
2112 N_Subprogram_Renaming_Declaration))
2113 then
2114 Conformant := True;
2116 else
2117 Check_Conformance
2118 (Body_Id, Spec_Id,
2119 Fully_Conformant, True, Conformant, Body_Id);
2120 end if;
2122 -- If the body is not fully conformant, we have to decide if we
2123 -- should analyze it or not. If it has a really messed up profile
2124 -- then we probably should not analyze it, since we will get too
2125 -- many bogus messages.
2127 -- Our decision is to go ahead in the non-fully conformant case
2128 -- only if it is at least mode conformant with the spec. Note
2129 -- that the call to Check_Fully_Conformant has issued the proper
2130 -- error messages to complain about the lack of conformance.
2132 if not Conformant
2133 and then not Mode_Conformant (Body_Id, Spec_Id)
2134 then
2135 return;
2136 end if;
2137 end if;
2139 if Spec_Id /= Body_Id then
2140 Reference_Body_Formals (Spec_Id, Body_Id);
2141 end if;
2143 if Nkind (N) /= N_Subprogram_Body_Stub then
2144 Set_Corresponding_Spec (N, Spec_Id);
2146 -- Ada 2005 (AI-345): If the operation is a primitive operation
2147 -- of a concurrent type, the type of the first parameter has been
2148 -- replaced with the corresponding record, which is the proper
2149 -- run-time structure to use. However, within the body there may
2150 -- be uses of the formals that depend on primitive operations
2151 -- of the type (in particular calls in prefixed form) for which
2152 -- we need the original concurrent type. The operation may have
2153 -- several controlling formals, so the replacement must be done
2154 -- for all of them.
2156 if Comes_From_Source (Spec_Id)
2157 and then Present (First_Entity (Spec_Id))
2158 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2159 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2160 and then
2161 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2162 and then
2163 Present
2164 (Corresponding_Concurrent_Type
2165 (Etype (First_Entity (Spec_Id))))
2166 then
2167 declare
2168 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2169 Form : Entity_Id;
2171 begin
2172 Form := First_Formal (Spec_Id);
2173 while Present (Form) loop
2174 if Etype (Form) = Typ then
2175 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2176 end if;
2178 Next_Formal (Form);
2179 end loop;
2180 end;
2181 end if;
2183 -- Make the formals visible, and place subprogram on scope stack.
2184 -- This is also the point at which we set Last_Real_Spec_Entity
2185 -- to mark the entities which will not be moved to the body.
2187 Install_Formals (Spec_Id);
2188 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2189 Push_Scope (Spec_Id);
2191 -- Make sure that the subprogram is immediately visible. For
2192 -- child units that have no separate spec this is indispensable.
2193 -- Otherwise it is safe albeit redundant.
2195 Set_Is_Immediately_Visible (Spec_Id);
2196 end if;
2198 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2199 Set_Ekind (Body_Id, E_Subprogram_Body);
2200 Set_Scope (Body_Id, Scope (Spec_Id));
2201 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2203 -- Case of subprogram body with no previous spec
2205 else
2206 if Style_Check
2207 and then Comes_From_Source (Body_Id)
2208 and then not Suppress_Style_Checks (Body_Id)
2209 and then not In_Instance
2210 then
2211 Style.Body_With_No_Spec (N);
2212 end if;
2214 New_Overloaded_Entity (Body_Id);
2216 if Nkind (N) /= N_Subprogram_Body_Stub then
2217 Set_Acts_As_Spec (N);
2218 Generate_Definition (Body_Id);
2219 Generate_Reference
2220 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2221 Generate_Reference_To_Formals (Body_Id);
2222 Install_Formals (Body_Id);
2223 Push_Scope (Body_Id);
2224 end if;
2225 end if;
2227 -- If the return type is an anonymous access type whose designated type
2228 -- is the limited view of a class-wide type and the non-limited view is
2229 -- available, update the return type accordingly.
2231 if Ada_Version >= Ada_05
2232 and then Comes_From_Source (N)
2233 then
2234 declare
2235 Etyp : Entity_Id;
2236 Rtyp : Entity_Id;
2238 begin
2239 Rtyp := Etype (Current_Scope);
2241 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2242 Etyp := Directly_Designated_Type (Rtyp);
2244 if Is_Class_Wide_Type (Etyp)
2245 and then From_With_Type (Etyp)
2246 then
2247 Set_Directly_Designated_Type
2248 (Etype (Current_Scope), Available_View (Etyp));
2249 end if;
2250 end if;
2251 end;
2252 end if;
2254 -- If this is the proper body of a stub, we must verify that the stub
2255 -- conforms to the body, and to the previous spec if one was present.
2256 -- we know already that the body conforms to that spec. This test is
2257 -- only required for subprograms that come from source.
2259 if Nkind (Parent (N)) = N_Subunit
2260 and then Comes_From_Source (N)
2261 and then not Error_Posted (Body_Id)
2262 and then Nkind (Corresponding_Stub (Parent (N))) =
2263 N_Subprogram_Body_Stub
2264 then
2265 declare
2266 Old_Id : constant Entity_Id :=
2267 Defining_Entity
2268 (Specification (Corresponding_Stub (Parent (N))));
2270 Conformant : Boolean := False;
2272 begin
2273 if No (Spec_Id) then
2274 Check_Fully_Conformant (Body_Id, Old_Id);
2276 else
2277 Check_Conformance
2278 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2280 if not Conformant then
2282 -- The stub was taken to be a new declaration. Indicate
2283 -- that it lacks a body.
2285 Set_Has_Completion (Old_Id, False);
2286 end if;
2287 end if;
2288 end;
2289 end if;
2291 Set_Has_Completion (Body_Id);
2292 Check_Eliminated (Body_Id);
2294 if Nkind (N) = N_Subprogram_Body_Stub then
2295 return;
2297 elsif Present (Spec_Id)
2298 and then Expander_Active
2299 and then
2300 (Has_Pragma_Inline_Always (Spec_Id)
2301 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2302 then
2303 Build_Body_To_Inline (N, Spec_Id);
2304 end if;
2306 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2307 -- if its specification we have to install the private withed units.
2308 -- This holds for child units as well.
2310 if Is_Compilation_Unit (Body_Id)
2311 or else Nkind (Parent (N)) = N_Compilation_Unit
2312 then
2313 Install_Private_With_Clauses (Body_Id);
2314 end if;
2316 Check_Anonymous_Return;
2318 -- Set the Protected_Formal field of each extra formal of the protected
2319 -- subprogram to reference the corresponding extra formal of the
2320 -- subprogram that implements it. For regular formals this occurs when
2321 -- the protected subprogram's declaration is expanded, but the extra
2322 -- formals don't get created until the subprogram is frozen. We need to
2323 -- do this before analyzing the protected subprogram's body so that any
2324 -- references to the original subprogram's extra formals will be changed
2325 -- refer to the implementing subprogram's formals (see Expand_Formal).
2327 if Present (Spec_Id)
2328 and then Is_Protected_Type (Scope (Spec_Id))
2329 and then Present (Protected_Body_Subprogram (Spec_Id))
2330 then
2331 declare
2332 Impl_Subp : constant Entity_Id :=
2333 Protected_Body_Subprogram (Spec_Id);
2334 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2335 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2336 begin
2337 while Present (Prot_Ext_Formal) loop
2338 pragma Assert (Present (Impl_Ext_Formal));
2339 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2340 Next_Formal_With_Extras (Prot_Ext_Formal);
2341 Next_Formal_With_Extras (Impl_Ext_Formal);
2342 end loop;
2343 end;
2344 end if;
2346 -- Now we can go on to analyze the body
2348 HSS := Handled_Statement_Sequence (N);
2349 Set_Actual_Subtypes (N, Current_Scope);
2351 -- Deal with preconditions and postconditions
2353 Process_PPCs (N, Spec_Id, Body_Id);
2355 -- Add a declaration for the Protection object, renaming declarations
2356 -- for discriminals and privals and finally a declaration for the entry
2357 -- family index (if applicable). This form of early expansion is done
2358 -- when the Expander is active because Install_Private_Data_Declarations
2359 -- references entities which were created during regular expansion.
2361 if Expander_Active
2362 and then Comes_From_Source (N)
2363 and then Present (Prot_Typ)
2364 and then Present (Spec_Id)
2365 and then not Is_Eliminated (Spec_Id)
2366 then
2367 Install_Private_Data_Declarations
2368 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2369 end if;
2371 -- Analyze the declarations (this call will analyze the precondition
2372 -- Check pragmas we prepended to the list, as well as the declaration
2373 -- of the _Postconditions procedure).
2375 Analyze_Declarations (Declarations (N));
2377 -- Check completion, and analyze the statements
2379 Check_Completion;
2380 Inspect_Deferred_Constant_Completion (Declarations (N));
2381 Analyze (HSS);
2383 -- Deal with end of scope processing for the body
2385 Process_End_Label (HSS, 't', Current_Scope);
2386 End_Scope;
2387 Check_Subprogram_Order (N);
2388 Set_Analyzed (Body_Id);
2390 -- If we have a separate spec, then the analysis of the declarations
2391 -- caused the entities in the body to be chained to the spec id, but
2392 -- we want them chained to the body id. Only the formal parameters
2393 -- end up chained to the spec id in this case.
2395 if Present (Spec_Id) then
2397 -- We must conform to the categorization of our spec
2399 Validate_Categorization_Dependency (N, Spec_Id);
2401 -- And if this is a child unit, the parent units must conform
2403 if Is_Child_Unit (Spec_Id) then
2404 Validate_Categorization_Dependency
2405 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2406 end if;
2408 -- Here is where we move entities from the spec to the body
2410 -- Case where there are entities that stay with the spec
2412 if Present (Last_Real_Spec_Entity) then
2414 -- No body entities (happens when the only real spec entities
2415 -- come from precondition and postcondition pragmas)
2417 if No (Last_Entity (Body_Id)) then
2418 Set_First_Entity
2419 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2421 -- Body entities present (formals), so chain stuff past them
2423 else
2424 Set_Next_Entity
2425 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2426 end if;
2428 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2429 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2430 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2432 -- Case where there are no spec entities, in this case there can
2433 -- be no body entities either, so just move everything.
2435 else
2436 pragma Assert (No (Last_Entity (Body_Id)));
2437 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2438 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2439 Set_First_Entity (Spec_Id, Empty);
2440 Set_Last_Entity (Spec_Id, Empty);
2441 end if;
2442 end if;
2444 -- If function, check return statements
2446 if Nkind (Body_Spec) = N_Function_Specification then
2447 declare
2448 Id : Entity_Id;
2450 begin
2451 if Present (Spec_Id) then
2452 Id := Spec_Id;
2453 else
2454 Id := Body_Id;
2455 end if;
2457 if Return_Present (Id) then
2458 Check_Returns (HSS, 'F', Missing_Ret);
2460 if Missing_Ret then
2461 Set_Has_Missing_Return (Id);
2462 end if;
2464 elsif not Is_Machine_Code_Subprogram (Id)
2465 and then not Body_Deleted
2466 then
2467 Error_Msg_N ("missing RETURN statement in function body", N);
2468 end if;
2469 end;
2471 -- If procedure with No_Return, check returns
2473 elsif Nkind (Body_Spec) = N_Procedure_Specification
2474 and then Present (Spec_Id)
2475 and then No_Return (Spec_Id)
2476 then
2477 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2478 end if;
2480 -- Now we are going to check for variables that are never modified in
2481 -- the body of the procedure. But first we deal with a special case
2482 -- where we want to modify this check. If the body of the subprogram
2483 -- starts with a raise statement or its equivalent, or if the body
2484 -- consists entirely of a null statement, then it is pretty obvious
2485 -- that it is OK to not reference the parameters. For example, this
2486 -- might be the following common idiom for a stubbed function:
2487 -- statement of the procedure raises an exception. In particular this
2488 -- deals with the common idiom of a stubbed function, which might
2489 -- appear as something like
2491 -- function F (A : Integer) return Some_Type;
2492 -- X : Some_Type;
2493 -- begin
2494 -- raise Program_Error;
2495 -- return X;
2496 -- end F;
2498 -- Here the purpose of X is simply to satisfy the annoying requirement
2499 -- in Ada that there be at least one return, and we certainly do not
2500 -- want to go posting warnings on X that it is not initialized! On
2501 -- the other hand, if X is entirely unreferenced that should still
2502 -- get a warning.
2504 -- What we do is to detect these cases, and if we find them, flag the
2505 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2506 -- suppress unwanted warnings. For the case of the function stub above
2507 -- we have a special test to set X as apparently assigned to suppress
2508 -- the warning.
2510 declare
2511 Stm : Node_Id;
2513 begin
2514 -- Skip initial labels (for one thing this occurs when we are in
2515 -- front end ZCX mode, but in any case it is irrelevant), and also
2516 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2518 Stm := First (Statements (HSS));
2519 while Nkind (Stm) = N_Label
2520 or else Nkind (Stm) in N_Push_xxx_Label
2521 loop
2522 Next (Stm);
2523 end loop;
2525 -- Do the test on the original statement before expansion
2527 declare
2528 Ostm : constant Node_Id := Original_Node (Stm);
2530 begin
2531 -- If explicit raise statement, turn on flag
2533 if Nkind (Ostm) = N_Raise_Statement then
2534 Set_Trivial_Subprogram (Stm);
2536 -- If null statement, and no following statements, turn on flag
2538 elsif Nkind (Stm) = N_Null_Statement
2539 and then Comes_From_Source (Stm)
2540 and then No (Next (Stm))
2541 then
2542 Set_Trivial_Subprogram (Stm);
2544 -- Check for explicit call cases which likely raise an exception
2546 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2547 if Is_Entity_Name (Name (Ostm)) then
2548 declare
2549 Ent : constant Entity_Id := Entity (Name (Ostm));
2551 begin
2552 -- If the procedure is marked No_Return, then likely it
2553 -- raises an exception, but in any case it is not coming
2554 -- back here, so turn on the flag.
2556 if Ekind (Ent) = E_Procedure
2557 and then No_Return (Ent)
2558 then
2559 Set_Trivial_Subprogram (Stm);
2560 end if;
2561 end;
2562 end if;
2563 end if;
2564 end;
2565 end;
2567 -- Check for variables that are never modified
2569 declare
2570 E1, E2 : Entity_Id;
2572 begin
2573 -- If there is a separate spec, then transfer Never_Set_In_Source
2574 -- flags from out parameters to the corresponding entities in the
2575 -- body. The reason we do that is we want to post error flags on
2576 -- the body entities, not the spec entities.
2578 if Present (Spec_Id) then
2579 E1 := First_Entity (Spec_Id);
2580 while Present (E1) loop
2581 if Ekind (E1) = E_Out_Parameter then
2582 E2 := First_Entity (Body_Id);
2583 while Present (E2) loop
2584 exit when Chars (E1) = Chars (E2);
2585 Next_Entity (E2);
2586 end loop;
2588 if Present (E2) then
2589 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2590 end if;
2591 end if;
2593 Next_Entity (E1);
2594 end loop;
2595 end if;
2597 -- Check references in body unless it was deleted. Note that the
2598 -- check of Body_Deleted here is not just for efficiency, it is
2599 -- necessary to avoid junk warnings on formal parameters.
2601 if not Body_Deleted then
2602 Check_References (Body_Id);
2603 end if;
2604 end;
2605 end Analyze_Subprogram_Body_Helper;
2607 ------------------------------------
2608 -- Analyze_Subprogram_Declaration --
2609 ------------------------------------
2611 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2612 Loc : constant Source_Ptr := Sloc (N);
2613 Designator : Entity_Id;
2614 Form : Node_Id;
2615 Scop : constant Entity_Id := Current_Scope;
2616 Null_Body : Node_Id := Empty;
2618 -- Start of processing for Analyze_Subprogram_Declaration
2620 begin
2621 -- For a null procedure, capture the profile before analysis, for
2622 -- expansion at the freeze point and at each point of call.
2623 -- The body will only be used if the procedure has preconditions.
2624 -- In that case the body is analyzed at the freeze point.
2626 if Nkind (Specification (N)) = N_Procedure_Specification
2627 and then Null_Present (Specification (N))
2628 and then Expander_Active
2629 then
2630 Null_Body :=
2631 Make_Subprogram_Body (Loc,
2632 Specification =>
2633 New_Copy_Tree (Specification (N)),
2634 Declarations =>
2635 New_List,
2636 Handled_Statement_Sequence =>
2637 Make_Handled_Sequence_Of_Statements (Loc,
2638 Statements => New_List (Make_Null_Statement (Loc))));
2640 -- Create new entities for body and formals
2642 Set_Defining_Unit_Name (Specification (Null_Body),
2643 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
2644 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2646 Form := First (Parameter_Specifications (Specification (Null_Body)));
2647 while Present (Form) loop
2648 Set_Defining_Identifier (Form,
2649 Make_Defining_Identifier (Loc,
2650 Chars (Defining_Identifier (Form))));
2651 Next (Form);
2652 end loop;
2654 if Is_Protected_Type (Current_Scope) then
2655 Error_Msg_N
2656 ("protected operation cannot be a null procedure", N);
2657 end if;
2658 end if;
2660 Designator := Analyze_Subprogram_Specification (Specification (N));
2661 Generate_Definition (Designator);
2663 if Debug_Flag_C then
2664 Write_Str ("==> subprogram spec ");
2665 Write_Name (Chars (Designator));
2666 Write_Str (" from ");
2667 Write_Location (Sloc (N));
2668 Write_Eol;
2669 Indent;
2670 end if;
2672 if Nkind (Specification (N)) = N_Procedure_Specification
2673 and then Null_Present (Specification (N))
2674 then
2675 Set_Has_Completion (Designator);
2677 if Present (Null_Body) then
2678 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2679 Set_Body_To_Inline (N, Null_Body);
2680 Set_Is_Inlined (Designator);
2681 end if;
2682 end if;
2684 Validate_RCI_Subprogram_Declaration (N);
2685 New_Overloaded_Entity (Designator);
2686 Check_Delayed_Subprogram (Designator);
2688 -- If the type of the first formal of the current subprogram is a
2689 -- nongeneric tagged private type, mark the subprogram as being a
2690 -- private primitive. Ditto if this is a function with controlling
2691 -- result, and the return type is currently private.
2693 if Has_Controlling_Result (Designator)
2694 and then Is_Private_Type (Etype (Designator))
2695 and then not Is_Generic_Actual_Type (Etype (Designator))
2696 then
2697 Set_Is_Private_Primitive (Designator);
2699 elsif Present (First_Formal (Designator)) then
2700 declare
2701 Formal_Typ : constant Entity_Id :=
2702 Etype (First_Formal (Designator));
2703 begin
2704 Set_Is_Private_Primitive (Designator,
2705 Is_Tagged_Type (Formal_Typ)
2706 and then Is_Private_Type (Formal_Typ)
2707 and then not Is_Generic_Actual_Type (Formal_Typ));
2708 end;
2709 end if;
2711 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2712 -- or null.
2714 if Ada_Version >= Ada_05
2715 and then Comes_From_Source (N)
2716 and then Is_Dispatching_Operation (Designator)
2717 then
2718 declare
2719 E : Entity_Id;
2720 Etyp : Entity_Id;
2722 begin
2723 if Has_Controlling_Result (Designator) then
2724 Etyp := Etype (Designator);
2726 else
2727 E := First_Entity (Designator);
2728 while Present (E)
2729 and then Is_Formal (E)
2730 and then not Is_Controlling_Formal (E)
2731 loop
2732 Next_Entity (E);
2733 end loop;
2735 Etyp := Etype (E);
2736 end if;
2738 if Is_Access_Type (Etyp) then
2739 Etyp := Directly_Designated_Type (Etyp);
2740 end if;
2742 if Is_Interface (Etyp)
2743 and then not Is_Abstract_Subprogram (Designator)
2744 and then not (Ekind (Designator) = E_Procedure
2745 and then Null_Present (Specification (N)))
2746 then
2747 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2748 Error_Msg_N
2749 ("(Ada 2005) interface subprogram % must be abstract or null",
2751 end if;
2752 end;
2753 end if;
2755 -- What is the following code for, it used to be
2757 -- ??? Set_Suppress_Elaboration_Checks
2758 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2760 -- The following seems equivalent, but a bit dubious
2762 if Elaboration_Checks_Suppressed (Designator) then
2763 Set_Kill_Elaboration_Checks (Designator);
2764 end if;
2766 if Scop /= Standard_Standard
2767 and then not Is_Child_Unit (Designator)
2768 then
2769 Set_Categorization_From_Scope (Designator, Scop);
2770 else
2771 -- For a compilation unit, check for library-unit pragmas
2773 Push_Scope (Designator);
2774 Set_Categorization_From_Pragmas (N);
2775 Validate_Categorization_Dependency (N, Designator);
2776 Pop_Scope;
2777 end if;
2779 -- For a compilation unit, set body required. This flag will only be
2780 -- reset if a valid Import or Interface pragma is processed later on.
2782 if Nkind (Parent (N)) = N_Compilation_Unit then
2783 Set_Body_Required (Parent (N), True);
2785 if Ada_Version >= Ada_05
2786 and then Nkind (Specification (N)) = N_Procedure_Specification
2787 and then Null_Present (Specification (N))
2788 then
2789 Error_Msg_N
2790 ("null procedure cannot be declared at library level", N);
2791 end if;
2792 end if;
2794 Generate_Reference_To_Formals (Designator);
2795 Check_Eliminated (Designator);
2797 if Debug_Flag_C then
2798 Outdent;
2799 Write_Str ("<== subprogram spec ");
2800 Write_Name (Chars (Designator));
2801 Write_Str (" from ");
2802 Write_Location (Sloc (N));
2803 Write_Eol;
2804 end if;
2805 end Analyze_Subprogram_Declaration;
2807 --------------------------------------
2808 -- Analyze_Subprogram_Specification --
2809 --------------------------------------
2811 -- Reminder: N here really is a subprogram specification (not a subprogram
2812 -- declaration). This procedure is called to analyze the specification in
2813 -- both subprogram bodies and subprogram declarations (specs).
2815 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2816 Designator : constant Entity_Id := Defining_Entity (N);
2817 Formals : constant List_Id := Parameter_Specifications (N);
2819 -- Start of processing for Analyze_Subprogram_Specification
2821 begin
2822 Generate_Definition (Designator);
2824 if Nkind (N) = N_Function_Specification then
2825 Set_Ekind (Designator, E_Function);
2826 Set_Mechanism (Designator, Default_Mechanism);
2828 else
2829 Set_Ekind (Designator, E_Procedure);
2830 Set_Etype (Designator, Standard_Void_Type);
2831 end if;
2833 -- Introduce new scope for analysis of the formals and the return type
2835 Set_Scope (Designator, Current_Scope);
2837 if Present (Formals) then
2838 Push_Scope (Designator);
2839 Process_Formals (Formals, N);
2841 -- Ada 2005 (AI-345): If this is an overriding operation of an
2842 -- inherited interface operation, and the controlling type is
2843 -- a synchronized type, replace the type with its corresponding
2844 -- record, to match the proper signature of an overriding operation.
2845 -- Same processing for an access parameter whose designated type is
2846 -- derived from a synchronized interface.
2848 if Ada_Version >= Ada_05 then
2849 declare
2850 Formal : Entity_Id;
2851 Formal_Typ : Entity_Id;
2852 Rec_Typ : Entity_Id;
2853 Desig_Typ : Entity_Id;
2855 begin
2856 Formal := First_Formal (Designator);
2857 while Present (Formal) loop
2858 Formal_Typ := Etype (Formal);
2860 if Is_Concurrent_Type (Formal_Typ)
2861 and then Present (Corresponding_Record_Type (Formal_Typ))
2862 then
2863 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
2865 if Present (Interfaces (Rec_Typ)) then
2866 Set_Etype (Formal, Rec_Typ);
2867 end if;
2869 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
2870 Desig_Typ := Designated_Type (Formal_Typ);
2872 if Is_Concurrent_Type (Desig_Typ)
2873 and then Present (Corresponding_Record_Type (Desig_Typ))
2874 then
2875 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
2877 if Present (Interfaces (Rec_Typ)) then
2878 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
2879 end if;
2880 end if;
2881 end if;
2883 Next_Formal (Formal);
2884 end loop;
2885 end;
2886 end if;
2888 End_Scope;
2890 -- The subprogram scope is pushed and popped around the processing of
2891 -- the return type for consistency with call above to Process_Formals
2892 -- (which itself can call Analyze_Return_Type), and to ensure that any
2893 -- itype created for the return type will be associated with the proper
2894 -- scope.
2896 elsif Nkind (N) = N_Function_Specification then
2897 Push_Scope (Designator);
2899 Analyze_Return_Type (N);
2901 End_Scope;
2902 end if;
2904 if Nkind (N) = N_Function_Specification then
2905 if Nkind (Designator) = N_Defining_Operator_Symbol then
2906 Valid_Operator_Definition (Designator);
2907 end if;
2909 May_Need_Actuals (Designator);
2911 -- Ada 2005 (AI-251): If the return type is abstract, verify that
2912 -- the subprogram is abstract also. This does not apply to renaming
2913 -- declarations, where abstractness is inherited.
2914 -- In case of primitives associated with abstract interface types
2915 -- the check is applied later (see Analyze_Subprogram_Declaration).
2917 if Is_Abstract_Type (Etype (Designator))
2918 and then not Is_Interface (Etype (Designator))
2919 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2920 and then Nkind (Parent (N)) /=
2921 N_Abstract_Subprogram_Declaration
2922 and then
2923 (Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
2924 then
2925 Error_Msg_N
2926 ("function that returns abstract type must be abstract", N);
2927 end if;
2928 end if;
2930 return Designator;
2931 end Analyze_Subprogram_Specification;
2933 --------------------------
2934 -- Build_Body_To_Inline --
2935 --------------------------
2937 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
2938 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
2939 Original_Body : Node_Id;
2940 Body_To_Analyze : Node_Id;
2941 Max_Size : constant := 10;
2942 Stat_Count : Integer := 0;
2944 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
2945 -- Check for declarations that make inlining not worthwhile
2947 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
2948 -- Check for statements that make inlining not worthwhile: any tasking
2949 -- statement, nested at any level. Keep track of total number of
2950 -- elementary statements, as a measure of acceptable size.
2952 function Has_Pending_Instantiation return Boolean;
2953 -- If some enclosing body contains instantiations that appear before the
2954 -- corresponding generic body, the enclosing body has a freeze node so
2955 -- that it can be elaborated after the generic itself. This might
2956 -- conflict with subsequent inlinings, so that it is unsafe to try to
2957 -- inline in such a case.
2959 function Has_Single_Return return Boolean;
2960 -- In general we cannot inline functions that return unconstrained type.
2961 -- However, we can handle such functions if all return statements return
2962 -- a local variable that is the only declaration in the body of the
2963 -- function. In that case the call can be replaced by that local
2964 -- variable as is done for other inlined calls.
2966 procedure Remove_Pragmas;
2967 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
2968 -- parameter has no meaning when the body is inlined and the formals
2969 -- are rewritten. Remove it from body to inline. The analysis of the
2970 -- non-inlined body will handle the pragma properly.
2972 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
2973 -- If the body of the subprogram includes a call that returns an
2974 -- unconstrained type, the secondary stack is involved, and it
2975 -- is not worth inlining.
2977 ------------------------------
2978 -- Has_Excluded_Declaration --
2979 ------------------------------
2981 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
2982 D : Node_Id;
2984 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
2985 -- Nested subprograms make a given body ineligible for inlining, but
2986 -- we make an exception for instantiations of unchecked conversion.
2987 -- The body has not been analyzed yet, so check the name, and verify
2988 -- that the visible entity with that name is the predefined unit.
2990 -----------------------------
2991 -- Is_Unchecked_Conversion --
2992 -----------------------------
2994 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
2995 Id : constant Node_Id := Name (D);
2996 Conv : Entity_Id;
2998 begin
2999 if Nkind (Id) = N_Identifier
3000 and then Chars (Id) = Name_Unchecked_Conversion
3001 then
3002 Conv := Current_Entity (Id);
3004 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3005 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3006 then
3007 Conv := Current_Entity (Selector_Name (Id));
3008 else
3009 return False;
3010 end if;
3012 return Present (Conv)
3013 and then Is_Predefined_File_Name
3014 (Unit_File_Name (Get_Source_Unit (Conv)))
3015 and then Is_Intrinsic_Subprogram (Conv);
3016 end Is_Unchecked_Conversion;
3018 -- Start of processing for Has_Excluded_Declaration
3020 begin
3021 D := First (Decls);
3022 while Present (D) loop
3023 if (Nkind (D) = N_Function_Instantiation
3024 and then not Is_Unchecked_Conversion (D))
3025 or else Nkind_In (D, N_Protected_Type_Declaration,
3026 N_Package_Declaration,
3027 N_Package_Instantiation,
3028 N_Subprogram_Body,
3029 N_Procedure_Instantiation,
3030 N_Task_Type_Declaration)
3031 then
3032 Cannot_Inline
3033 ("cannot inline & (non-allowed declaration)?", D, Subp);
3034 return True;
3035 end if;
3037 Next (D);
3038 end loop;
3040 return False;
3041 end Has_Excluded_Declaration;
3043 ----------------------------
3044 -- Has_Excluded_Statement --
3045 ----------------------------
3047 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3048 S : Node_Id;
3049 E : Node_Id;
3051 begin
3052 S := First (Stats);
3053 while Present (S) loop
3054 Stat_Count := Stat_Count + 1;
3056 if Nkind_In (S, N_Abort_Statement,
3057 N_Asynchronous_Select,
3058 N_Conditional_Entry_Call,
3059 N_Delay_Relative_Statement,
3060 N_Delay_Until_Statement,
3061 N_Selective_Accept,
3062 N_Timed_Entry_Call)
3063 then
3064 Cannot_Inline
3065 ("cannot inline & (non-allowed statement)?", S, Subp);
3066 return True;
3068 elsif Nkind (S) = N_Block_Statement then
3069 if Present (Declarations (S))
3070 and then Has_Excluded_Declaration (Declarations (S))
3071 then
3072 return True;
3074 elsif Present (Handled_Statement_Sequence (S))
3075 and then
3076 (Present
3077 (Exception_Handlers (Handled_Statement_Sequence (S)))
3078 or else
3079 Has_Excluded_Statement
3080 (Statements (Handled_Statement_Sequence (S))))
3081 then
3082 return True;
3083 end if;
3085 elsif Nkind (S) = N_Case_Statement then
3086 E := First (Alternatives (S));
3087 while Present (E) loop
3088 if Has_Excluded_Statement (Statements (E)) then
3089 return True;
3090 end if;
3092 Next (E);
3093 end loop;
3095 elsif Nkind (S) = N_If_Statement then
3096 if Has_Excluded_Statement (Then_Statements (S)) then
3097 return True;
3098 end if;
3100 if Present (Elsif_Parts (S)) then
3101 E := First (Elsif_Parts (S));
3102 while Present (E) loop
3103 if Has_Excluded_Statement (Then_Statements (E)) then
3104 return True;
3105 end if;
3106 Next (E);
3107 end loop;
3108 end if;
3110 if Present (Else_Statements (S))
3111 and then Has_Excluded_Statement (Else_Statements (S))
3112 then
3113 return True;
3114 end if;
3116 elsif Nkind (S) = N_Loop_Statement
3117 and then Has_Excluded_Statement (Statements (S))
3118 then
3119 return True;
3120 end if;
3122 Next (S);
3123 end loop;
3125 return False;
3126 end Has_Excluded_Statement;
3128 -------------------------------
3129 -- Has_Pending_Instantiation --
3130 -------------------------------
3132 function Has_Pending_Instantiation return Boolean is
3133 S : Entity_Id;
3135 begin
3136 S := Current_Scope;
3137 while Present (S) loop
3138 if Is_Compilation_Unit (S)
3139 or else Is_Child_Unit (S)
3140 then
3141 return False;
3142 elsif Ekind (S) = E_Package
3143 and then Has_Forward_Instantiation (S)
3144 then
3145 return True;
3146 end if;
3148 S := Scope (S);
3149 end loop;
3151 return False;
3152 end Has_Pending_Instantiation;
3154 ------------------------
3155 -- Has_Single_Return --
3156 ------------------------
3158 function Has_Single_Return return Boolean is
3159 Return_Statement : Node_Id := Empty;
3161 function Check_Return (N : Node_Id) return Traverse_Result;
3163 ------------------
3164 -- Check_Return --
3165 ------------------
3167 function Check_Return (N : Node_Id) return Traverse_Result is
3168 begin
3169 if Nkind (N) = N_Simple_Return_Statement then
3170 if Present (Expression (N))
3171 and then Is_Entity_Name (Expression (N))
3172 then
3173 if No (Return_Statement) then
3174 Return_Statement := N;
3175 return OK;
3177 elsif Chars (Expression (N)) =
3178 Chars (Expression (Return_Statement))
3179 then
3180 return OK;
3182 else
3183 return Abandon;
3184 end if;
3186 else
3187 -- Expression has wrong form
3189 return Abandon;
3190 end if;
3192 else
3193 return OK;
3194 end if;
3195 end Check_Return;
3197 function Check_All_Returns is new Traverse_Func (Check_Return);
3199 -- Start of processing for Has_Single_Return
3201 begin
3202 return Check_All_Returns (N) = OK
3203 and then Present (Declarations (N))
3204 and then Present (First (Declarations (N)))
3205 and then Chars (Expression (Return_Statement)) =
3206 Chars (Defining_Identifier (First (Declarations (N))));
3207 end Has_Single_Return;
3209 --------------------
3210 -- Remove_Pragmas --
3211 --------------------
3213 procedure Remove_Pragmas is
3214 Decl : Node_Id;
3215 Nxt : Node_Id;
3217 begin
3218 Decl := First (Declarations (Body_To_Analyze));
3219 while Present (Decl) loop
3220 Nxt := Next (Decl);
3222 if Nkind (Decl) = N_Pragma
3223 and then (Pragma_Name (Decl) = Name_Unreferenced
3224 or else
3225 Pragma_Name (Decl) = Name_Unmodified)
3226 then
3227 Remove (Decl);
3228 end if;
3230 Decl := Nxt;
3231 end loop;
3232 end Remove_Pragmas;
3234 --------------------------
3235 -- Uses_Secondary_Stack --
3236 --------------------------
3238 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3239 function Check_Call (N : Node_Id) return Traverse_Result;
3240 -- Look for function calls that return an unconstrained type
3242 ----------------
3243 -- Check_Call --
3244 ----------------
3246 function Check_Call (N : Node_Id) return Traverse_Result is
3247 begin
3248 if Nkind (N) = N_Function_Call
3249 and then Is_Entity_Name (Name (N))
3250 and then Is_Composite_Type (Etype (Entity (Name (N))))
3251 and then not Is_Constrained (Etype (Entity (Name (N))))
3252 then
3253 Cannot_Inline
3254 ("cannot inline & (call returns unconstrained type)?",
3255 N, Subp);
3256 return Abandon;
3257 else
3258 return OK;
3259 end if;
3260 end Check_Call;
3262 function Check_Calls is new Traverse_Func (Check_Call);
3264 begin
3265 return Check_Calls (Bod) = Abandon;
3266 end Uses_Secondary_Stack;
3268 -- Start of processing for Build_Body_To_Inline
3270 begin
3271 -- Return immediately if done already
3273 if Nkind (Decl) = N_Subprogram_Declaration
3274 and then Present (Body_To_Inline (Decl))
3275 then
3276 return;
3278 -- Functions that return unconstrained composite types require
3279 -- secondary stack handling, and cannot currently be inlined, unless
3280 -- all return statements return a local variable that is the first
3281 -- local declaration in the body.
3283 elsif Ekind (Subp) = E_Function
3284 and then not Is_Scalar_Type (Etype (Subp))
3285 and then not Is_Access_Type (Etype (Subp))
3286 and then not Is_Constrained (Etype (Subp))
3287 then
3288 if not Has_Single_Return then
3289 Cannot_Inline
3290 ("cannot inline & (unconstrained return type)?", N, Subp);
3291 return;
3292 end if;
3294 -- Ditto for functions that return controlled types, where controlled
3295 -- actions interfere in complex ways with inlining.
3297 elsif Ekind (Subp) = E_Function
3298 and then Needs_Finalization (Etype (Subp))
3299 then
3300 Cannot_Inline
3301 ("cannot inline & (controlled return type)?", N, Subp);
3302 return;
3303 end if;
3305 if Present (Declarations (N))
3306 and then Has_Excluded_Declaration (Declarations (N))
3307 then
3308 return;
3309 end if;
3311 if Present (Handled_Statement_Sequence (N)) then
3312 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3313 Cannot_Inline
3314 ("cannot inline& (exception handler)?",
3315 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3316 Subp);
3317 return;
3318 elsif
3319 Has_Excluded_Statement
3320 (Statements (Handled_Statement_Sequence (N)))
3321 then
3322 return;
3323 end if;
3324 end if;
3326 -- We do not inline a subprogram that is too large, unless it is
3327 -- marked Inline_Always. This pragma does not suppress the other
3328 -- checks on inlining (forbidden declarations, handlers, etc).
3330 if Stat_Count > Max_Size
3331 and then not Has_Pragma_Inline_Always (Subp)
3332 then
3333 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
3334 return;
3335 end if;
3337 if Has_Pending_Instantiation then
3338 Cannot_Inline
3339 ("cannot inline& (forward instance within enclosing body)?",
3340 N, Subp);
3341 return;
3342 end if;
3344 -- Within an instance, the body to inline must be treated as a nested
3345 -- generic, so that the proper global references are preserved.
3347 -- Note that we do not do this at the library level, because it is not
3348 -- needed, and furthermore this causes trouble if front end inlining
3349 -- is activated (-gnatN).
3351 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3352 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3353 Original_Body := Copy_Generic_Node (N, Empty, True);
3354 else
3355 Original_Body := Copy_Separate_Tree (N);
3356 end if;
3358 -- We need to capture references to the formals in order to substitute
3359 -- the actuals at the point of inlining, i.e. instantiation. To treat
3360 -- the formals as globals to the body to inline, we nest it within
3361 -- a dummy parameterless subprogram, declared within the real one.
3362 -- To avoid generating an internal name (which is never public, and
3363 -- which affects serial numbers of other generated names), we use
3364 -- an internal symbol that cannot conflict with user declarations.
3366 Set_Parameter_Specifications (Specification (Original_Body), No_List);
3367 Set_Defining_Unit_Name
3368 (Specification (Original_Body),
3369 Make_Defining_Identifier (Sloc (N), Name_uParent));
3370 Set_Corresponding_Spec (Original_Body, Empty);
3372 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3374 -- Set return type of function, which is also global and does not need
3375 -- to be resolved.
3377 if Ekind (Subp) = E_Function then
3378 Set_Result_Definition (Specification (Body_To_Analyze),
3379 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3380 end if;
3382 if No (Declarations (N)) then
3383 Set_Declarations (N, New_List (Body_To_Analyze));
3384 else
3385 Append (Body_To_Analyze, Declarations (N));
3386 end if;
3388 Expander_Mode_Save_And_Set (False);
3389 Remove_Pragmas;
3391 Analyze (Body_To_Analyze);
3392 Push_Scope (Defining_Entity (Body_To_Analyze));
3393 Save_Global_References (Original_Body);
3394 End_Scope;
3395 Remove (Body_To_Analyze);
3397 Expander_Mode_Restore;
3399 -- Restore environment if previously saved
3401 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3402 Restore_Env;
3403 end if;
3405 -- If secondary stk used there is no point in inlining. We have
3406 -- already issued the warning in this case, so nothing to do.
3408 if Uses_Secondary_Stack (Body_To_Analyze) then
3409 return;
3410 end if;
3412 Set_Body_To_Inline (Decl, Original_Body);
3413 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3414 Set_Is_Inlined (Subp);
3415 end Build_Body_To_Inline;
3417 -------------------
3418 -- Cannot_Inline --
3419 -------------------
3421 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3422 begin
3423 -- Do not emit warning if this is a predefined unit which is not
3424 -- the main unit. With validity checks enabled, some predefined
3425 -- subprograms may contain nested subprograms and become ineligible
3426 -- for inlining.
3428 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3429 and then not In_Extended_Main_Source_Unit (Subp)
3430 then
3431 null;
3433 elsif Has_Pragma_Inline_Always (Subp) then
3435 -- Remove last character (question mark) to make this into an error,
3436 -- because the Inline_Always pragma cannot be obeyed.
3438 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
3440 elsif Ineffective_Inline_Warnings then
3441 Error_Msg_NE (Msg, N, Subp);
3442 end if;
3443 end Cannot_Inline;
3445 -----------------------
3446 -- Check_Conformance --
3447 -----------------------
3449 procedure Check_Conformance
3450 (New_Id : Entity_Id;
3451 Old_Id : Entity_Id;
3452 Ctype : Conformance_Type;
3453 Errmsg : Boolean;
3454 Conforms : out Boolean;
3455 Err_Loc : Node_Id := Empty;
3456 Get_Inst : Boolean := False;
3457 Skip_Controlling_Formals : Boolean := False)
3459 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
3460 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3461 -- If Errmsg is True, then processing continues to post an error message
3462 -- for conformance error on given node. Two messages are output. The
3463 -- first message points to the previous declaration with a general "no
3464 -- conformance" message. The second is the detailed reason, supplied as
3465 -- Msg. The parameter N provide information for a possible & insertion
3466 -- in the message, and also provides the location for posting the
3467 -- message in the absence of a specified Err_Loc location.
3469 -----------------------
3470 -- Conformance_Error --
3471 -----------------------
3473 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3474 Enode : Node_Id;
3476 begin
3477 Conforms := False;
3479 if Errmsg then
3480 if No (Err_Loc) then
3481 Enode := N;
3482 else
3483 Enode := Err_Loc;
3484 end if;
3486 Error_Msg_Sloc := Sloc (Old_Id);
3488 case Ctype is
3489 when Type_Conformant =>
3490 Error_Msg_N -- CODEFIX
3491 ("not type conformant with declaration#!", Enode);
3493 when Mode_Conformant =>
3494 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3495 Error_Msg_N -- CODEFIX???
3496 ("not mode conformant with operation inherited#!",
3497 Enode);
3498 else
3499 Error_Msg_N -- CODEFIX???
3500 ("not mode conformant with declaration#!", Enode);
3501 end if;
3503 when Subtype_Conformant =>
3504 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3505 Error_Msg_N -- CODEFIX???
3506 ("not subtype conformant with operation inherited#!",
3507 Enode);
3508 else
3509 Error_Msg_N -- CODEFIX???
3510 ("not subtype conformant with declaration#!", Enode);
3511 end if;
3513 when Fully_Conformant =>
3514 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3515 Error_Msg_N -- CODEFIX
3516 ("not fully conformant with operation inherited#!",
3517 Enode);
3518 else
3519 Error_Msg_N -- CODEFIX
3520 ("not fully conformant with declaration#!", Enode);
3521 end if;
3522 end case;
3524 Error_Msg_NE (Msg, Enode, N);
3525 end if;
3526 end Conformance_Error;
3528 -- Local Variables
3530 Old_Type : constant Entity_Id := Etype (Old_Id);
3531 New_Type : constant Entity_Id := Etype (New_Id);
3532 Old_Formal : Entity_Id;
3533 New_Formal : Entity_Id;
3534 Access_Types_Match : Boolean;
3535 Old_Formal_Base : Entity_Id;
3536 New_Formal_Base : Entity_Id;
3538 -- Start of processing for Check_Conformance
3540 begin
3541 Conforms := True;
3543 -- We need a special case for operators, since they don't appear
3544 -- explicitly.
3546 if Ctype = Type_Conformant then
3547 if Ekind (New_Id) = E_Operator
3548 and then Operator_Matches_Spec (New_Id, Old_Id)
3549 then
3550 return;
3551 end if;
3552 end if;
3554 -- If both are functions/operators, check return types conform
3556 if Old_Type /= Standard_Void_Type
3557 and then New_Type /= Standard_Void_Type
3558 then
3560 -- If we are checking interface conformance we omit controlling
3561 -- arguments and result, because we are only checking the conformance
3562 -- of the remaining parameters.
3564 if Has_Controlling_Result (Old_Id)
3565 and then Has_Controlling_Result (New_Id)
3566 and then Skip_Controlling_Formals
3567 then
3568 null;
3570 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3571 Conformance_Error ("\return type does not match!", New_Id);
3572 return;
3573 end if;
3575 -- Ada 2005 (AI-231): In case of anonymous access types check the
3576 -- null-exclusion and access-to-constant attributes match.
3578 if Ada_Version >= Ada_05
3579 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3580 and then
3581 (Can_Never_Be_Null (Old_Type)
3582 /= Can_Never_Be_Null (New_Type)
3583 or else Is_Access_Constant (Etype (Old_Type))
3584 /= Is_Access_Constant (Etype (New_Type)))
3585 then
3586 Conformance_Error ("\return type does not match!", New_Id);
3587 return;
3588 end if;
3590 -- If either is a function/operator and the other isn't, error
3592 elsif Old_Type /= Standard_Void_Type
3593 or else New_Type /= Standard_Void_Type
3594 then
3595 Conformance_Error ("\functions can only match functions!", New_Id);
3596 return;
3597 end if;
3599 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3600 -- If this is a renaming as body, refine error message to indicate that
3601 -- the conflict is with the original declaration. If the entity is not
3602 -- frozen, the conventions don't have to match, the one of the renamed
3603 -- entity is inherited.
3605 if Ctype >= Subtype_Conformant then
3606 if Convention (Old_Id) /= Convention (New_Id) then
3608 if not Is_Frozen (New_Id) then
3609 null;
3611 elsif Present (Err_Loc)
3612 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3613 and then Present (Corresponding_Spec (Err_Loc))
3614 then
3615 Error_Msg_Name_1 := Chars (New_Id);
3616 Error_Msg_Name_2 :=
3617 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3619 Conformance_Error ("\prior declaration for% has convention %!");
3621 else
3622 Conformance_Error ("\calling conventions do not match!");
3623 end if;
3625 return;
3627 elsif Is_Formal_Subprogram (Old_Id)
3628 or else Is_Formal_Subprogram (New_Id)
3629 then
3630 Conformance_Error ("\formal subprograms not allowed!");
3631 return;
3632 end if;
3633 end if;
3635 -- Deal with parameters
3637 -- Note: we use the entity information, rather than going directly
3638 -- to the specification in the tree. This is not only simpler, but
3639 -- absolutely necessary for some cases of conformance tests between
3640 -- operators, where the declaration tree simply does not exist!
3642 Old_Formal := First_Formal (Old_Id);
3643 New_Formal := First_Formal (New_Id);
3644 while Present (Old_Formal) and then Present (New_Formal) loop
3645 if Is_Controlling_Formal (Old_Formal)
3646 and then Is_Controlling_Formal (New_Formal)
3647 and then Skip_Controlling_Formals
3648 then
3649 -- The controlling formals will have different types when
3650 -- comparing an interface operation with its match, but both
3651 -- or neither must be access parameters.
3653 if Is_Access_Type (Etype (Old_Formal))
3655 Is_Access_Type (Etype (New_Formal))
3656 then
3657 goto Skip_Controlling_Formal;
3658 else
3659 Conformance_Error
3660 ("\access parameter does not match!", New_Formal);
3661 end if;
3662 end if;
3664 if Ctype = Fully_Conformant then
3666 -- Names must match. Error message is more accurate if we do
3667 -- this before checking that the types of the formals match.
3669 if Chars (Old_Formal) /= Chars (New_Formal) then
3670 Conformance_Error ("\name & does not match!", New_Formal);
3672 -- Set error posted flag on new formal as well to stop
3673 -- junk cascaded messages in some cases.
3675 Set_Error_Posted (New_Formal);
3676 return;
3677 end if;
3678 end if;
3680 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3681 -- case occurs whenever a subprogram is being renamed and one of its
3682 -- parameters imposes a null exclusion. For example:
3684 -- type T is null record;
3685 -- type Acc_T is access T;
3686 -- subtype Acc_T_Sub is Acc_T;
3688 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3689 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3690 -- renames P;
3692 Old_Formal_Base := Etype (Old_Formal);
3693 New_Formal_Base := Etype (New_Formal);
3695 if Get_Inst then
3696 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3697 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3698 end if;
3700 Access_Types_Match := Ada_Version >= Ada_05
3702 -- Ensure that this rule is only applied when New_Id is a
3703 -- renaming of Old_Id.
3705 and then Nkind (Parent (Parent (New_Id))) =
3706 N_Subprogram_Renaming_Declaration
3707 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3708 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3709 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3711 -- Now handle the allowed access-type case
3713 and then Is_Access_Type (Old_Formal_Base)
3714 and then Is_Access_Type (New_Formal_Base)
3716 -- The type kinds must match. The only exception occurs with
3717 -- multiple generics of the form:
3719 -- generic generic
3720 -- type F is private; type A is private;
3721 -- type F_Ptr is access F; type A_Ptr is access A;
3722 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3723 -- package F_Pack is ... package A_Pack is
3724 -- package F_Inst is
3725 -- new F_Pack (A, A_Ptr, A_P);
3727 -- When checking for conformance between the parameters of A_P
3728 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3729 -- because the compiler has transformed A_Ptr into a subtype of
3730 -- F_Ptr. We catch this case in the code below.
3732 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3733 or else
3734 (Is_Generic_Type (Old_Formal_Base)
3735 and then Is_Generic_Type (New_Formal_Base)
3736 and then Is_Internal (New_Formal_Base)
3737 and then Etype (Etype (New_Formal_Base)) =
3738 Old_Formal_Base))
3739 and then Directly_Designated_Type (Old_Formal_Base) =
3740 Directly_Designated_Type (New_Formal_Base)
3741 and then ((Is_Itype (Old_Formal_Base)
3742 and then Can_Never_Be_Null (Old_Formal_Base))
3743 or else
3744 (Is_Itype (New_Formal_Base)
3745 and then Can_Never_Be_Null (New_Formal_Base)));
3747 -- Types must always match. In the visible part of an instance,
3748 -- usual overloading rules for dispatching operations apply, and
3749 -- we check base types (not the actual subtypes).
3751 if In_Instance_Visible_Part
3752 and then Is_Dispatching_Operation (New_Id)
3753 then
3754 if not Conforming_Types
3755 (T1 => Base_Type (Etype (Old_Formal)),
3756 T2 => Base_Type (Etype (New_Formal)),
3757 Ctype => Ctype,
3758 Get_Inst => Get_Inst)
3759 and then not Access_Types_Match
3760 then
3761 Conformance_Error ("\type of & does not match!", New_Formal);
3762 return;
3763 end if;
3765 elsif not Conforming_Types
3766 (T1 => Old_Formal_Base,
3767 T2 => New_Formal_Base,
3768 Ctype => Ctype,
3769 Get_Inst => Get_Inst)
3770 and then not Access_Types_Match
3771 then
3772 -- Don't give error message if old type is Any_Type. This test
3773 -- avoids some cascaded errors, e.g. in case of a bad spec.
3775 if Errmsg and then Old_Formal_Base = Any_Type then
3776 Conforms := False;
3777 else
3778 Conformance_Error ("\type of & does not match!", New_Formal);
3779 end if;
3781 return;
3782 end if;
3784 -- For mode conformance, mode must match
3786 if Ctype >= Mode_Conformant then
3787 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3788 Conformance_Error ("\mode of & does not match!", New_Formal);
3789 return;
3791 -- Part of mode conformance for access types is having the same
3792 -- constant modifier.
3794 elsif Access_Types_Match
3795 and then Is_Access_Constant (Old_Formal_Base) /=
3796 Is_Access_Constant (New_Formal_Base)
3797 then
3798 Conformance_Error
3799 ("\constant modifier does not match!", New_Formal);
3800 return;
3801 end if;
3802 end if;
3804 if Ctype >= Subtype_Conformant then
3806 -- Ada 2005 (AI-231): In case of anonymous access types check
3807 -- the null-exclusion and access-to-constant attributes must
3808 -- match.
3810 if Ada_Version >= Ada_05
3811 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3812 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3813 and then
3814 (Can_Never_Be_Null (Old_Formal) /=
3815 Can_Never_Be_Null (New_Formal)
3816 or else
3817 Is_Access_Constant (Etype (Old_Formal)) /=
3818 Is_Access_Constant (Etype (New_Formal)))
3819 then
3820 -- It is allowed to omit the null-exclusion in case of stream
3821 -- attribute subprograms. We recognize stream subprograms
3822 -- through their TSS-generated suffix.
3824 declare
3825 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3826 begin
3827 if TSS_Name /= TSS_Stream_Read
3828 and then TSS_Name /= TSS_Stream_Write
3829 and then TSS_Name /= TSS_Stream_Input
3830 and then TSS_Name /= TSS_Stream_Output
3831 then
3832 Conformance_Error
3833 ("\type of & does not match!", New_Formal);
3834 return;
3835 end if;
3836 end;
3837 end if;
3838 end if;
3840 -- Full conformance checks
3842 if Ctype = Fully_Conformant then
3844 -- We have checked already that names match
3846 if Parameter_Mode (Old_Formal) = E_In_Parameter then
3848 -- Check default expressions for in parameters
3850 declare
3851 NewD : constant Boolean :=
3852 Present (Default_Value (New_Formal));
3853 OldD : constant Boolean :=
3854 Present (Default_Value (Old_Formal));
3855 begin
3856 if NewD or OldD then
3858 -- The old default value has been analyzed because the
3859 -- current full declaration will have frozen everything
3860 -- before. The new default value has not been analyzed,
3861 -- so analyze it now before we check for conformance.
3863 if NewD then
3864 Push_Scope (New_Id);
3865 Preanalyze_Spec_Expression
3866 (Default_Value (New_Formal), Etype (New_Formal));
3867 End_Scope;
3868 end if;
3870 if not (NewD and OldD)
3871 or else not Fully_Conformant_Expressions
3872 (Default_Value (Old_Formal),
3873 Default_Value (New_Formal))
3874 then
3875 Conformance_Error
3876 ("\default expression for & does not match!",
3877 New_Formal);
3878 return;
3879 end if;
3880 end if;
3881 end;
3882 end if;
3883 end if;
3885 -- A couple of special checks for Ada 83 mode. These checks are
3886 -- skipped if either entity is an operator in package Standard,
3887 -- or if either old or new instance is not from the source program.
3889 if Ada_Version = Ada_83
3890 and then Sloc (Old_Id) > Standard_Location
3891 and then Sloc (New_Id) > Standard_Location
3892 and then Comes_From_Source (Old_Id)
3893 and then Comes_From_Source (New_Id)
3894 then
3895 declare
3896 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
3897 New_Param : constant Node_Id := Declaration_Node (New_Formal);
3899 begin
3900 -- Explicit IN must be present or absent in both cases. This
3901 -- test is required only in the full conformance case.
3903 if In_Present (Old_Param) /= In_Present (New_Param)
3904 and then Ctype = Fully_Conformant
3905 then
3906 Conformance_Error
3907 ("\(Ada 83) IN must appear in both declarations",
3908 New_Formal);
3909 return;
3910 end if;
3912 -- Grouping (use of comma in param lists) must be the same
3913 -- This is where we catch a misconformance like:
3915 -- A, B : Integer
3916 -- A : Integer; B : Integer
3918 -- which are represented identically in the tree except
3919 -- for the setting of the flags More_Ids and Prev_Ids.
3921 if More_Ids (Old_Param) /= More_Ids (New_Param)
3922 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
3923 then
3924 Conformance_Error
3925 ("\grouping of & does not match!", New_Formal);
3926 return;
3927 end if;
3928 end;
3929 end if;
3931 -- This label is required when skipping controlling formals
3933 <<Skip_Controlling_Formal>>
3935 Next_Formal (Old_Formal);
3936 Next_Formal (New_Formal);
3937 end loop;
3939 if Present (Old_Formal) then
3940 Conformance_Error ("\too few parameters!");
3941 return;
3943 elsif Present (New_Formal) then
3944 Conformance_Error ("\too many parameters!", New_Formal);
3945 return;
3946 end if;
3947 end Check_Conformance;
3949 -----------------------
3950 -- Check_Conventions --
3951 -----------------------
3953 procedure Check_Conventions (Typ : Entity_Id) is
3954 Ifaces_List : Elist_Id;
3956 procedure Check_Convention (Op : Entity_Id);
3957 -- Verify that the convention of inherited dispatching operation Op is
3958 -- consistent among all subprograms it overrides. In order to minimize
3959 -- the search, Search_From is utilized to designate a specific point in
3960 -- the list rather than iterating over the whole list once more.
3962 ----------------------
3963 -- Check_Convention --
3964 ----------------------
3966 procedure Check_Convention (Op : Entity_Id) is
3967 Iface_Elmt : Elmt_Id;
3968 Iface_Prim_Elmt : Elmt_Id;
3969 Iface_Prim : Entity_Id;
3971 begin
3972 Iface_Elmt := First_Elmt (Ifaces_List);
3973 while Present (Iface_Elmt) loop
3974 Iface_Prim_Elmt :=
3975 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
3976 while Present (Iface_Prim_Elmt) loop
3977 Iface_Prim := Node (Iface_Prim_Elmt);
3979 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
3980 and then Convention (Iface_Prim) /= Convention (Op)
3981 then
3982 Error_Msg_N
3983 ("inconsistent conventions in primitive operations", Typ);
3985 Error_Msg_Name_1 := Chars (Op);
3986 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
3987 Error_Msg_Sloc := Sloc (Op);
3989 if Comes_From_Source (Op) then
3990 if not Is_Overriding_Operation (Op) then
3991 Error_Msg_N ("\\primitive % defined #", Typ);
3992 else
3993 Error_Msg_N ("\\overriding operation % with " &
3994 "convention % defined #", Typ);
3995 end if;
3997 else pragma Assert (Present (Alias (Op)));
3998 Error_Msg_Sloc := Sloc (Alias (Op));
3999 Error_Msg_N ("\\inherited operation % with " &
4000 "convention % defined #", Typ);
4001 end if;
4003 Error_Msg_Name_1 := Chars (Op);
4004 Error_Msg_Name_2 :=
4005 Get_Convention_Name (Convention (Iface_Prim));
4006 Error_Msg_Sloc := Sloc (Iface_Prim);
4007 Error_Msg_N ("\\overridden operation % with " &
4008 "convention % defined #", Typ);
4010 -- Avoid cascading errors
4012 return;
4013 end if;
4015 Next_Elmt (Iface_Prim_Elmt);
4016 end loop;
4018 Next_Elmt (Iface_Elmt);
4019 end loop;
4020 end Check_Convention;
4022 -- Local variables
4024 Prim_Op : Entity_Id;
4025 Prim_Op_Elmt : Elmt_Id;
4027 -- Start of processing for Check_Conventions
4029 begin
4030 if not Has_Interfaces (Typ) then
4031 return;
4032 end if;
4034 Collect_Interfaces (Typ, Ifaces_List);
4036 -- The algorithm checks every overriding dispatching operation against
4037 -- all the corresponding overridden dispatching operations, detecting
4038 -- differences in conventions.
4040 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4041 while Present (Prim_Op_Elmt) loop
4042 Prim_Op := Node (Prim_Op_Elmt);
4044 -- A small optimization: skip the predefined dispatching operations
4045 -- since they always have the same convention.
4047 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4048 Check_Convention (Prim_Op);
4049 end if;
4051 Next_Elmt (Prim_Op_Elmt);
4052 end loop;
4053 end Check_Conventions;
4055 ------------------------------
4056 -- Check_Delayed_Subprogram --
4057 ------------------------------
4059 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4060 F : Entity_Id;
4062 procedure Possible_Freeze (T : Entity_Id);
4063 -- T is the type of either a formal parameter or of the return type.
4064 -- If T is not yet frozen and needs a delayed freeze, then the
4065 -- subprogram itself must be delayed. If T is the limited view of an
4066 -- incomplete type the subprogram must be frozen as well, because
4067 -- T may depend on local types that have not been frozen yet.
4069 ---------------------
4070 -- Possible_Freeze --
4071 ---------------------
4073 procedure Possible_Freeze (T : Entity_Id) is
4074 begin
4075 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
4076 Set_Has_Delayed_Freeze (Designator);
4078 elsif Is_Access_Type (T)
4079 and then Has_Delayed_Freeze (Designated_Type (T))
4080 and then not Is_Frozen (Designated_Type (T))
4081 then
4082 Set_Has_Delayed_Freeze (Designator);
4084 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
4085 Set_Has_Delayed_Freeze (Designator);
4086 end if;
4088 end Possible_Freeze;
4090 -- Start of processing for Check_Delayed_Subprogram
4092 begin
4093 -- Never need to freeze abstract subprogram
4095 if Ekind (Designator) /= E_Subprogram_Type
4096 and then Is_Abstract_Subprogram (Designator)
4097 then
4098 null;
4099 else
4100 -- Need delayed freeze if return type itself needs a delayed
4101 -- freeze and is not yet frozen.
4103 Possible_Freeze (Etype (Designator));
4104 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
4106 -- Need delayed freeze if any of the formal types themselves need
4107 -- a delayed freeze and are not yet frozen.
4109 F := First_Formal (Designator);
4110 while Present (F) loop
4111 Possible_Freeze (Etype (F));
4112 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4113 Next_Formal (F);
4114 end loop;
4115 end if;
4117 -- Mark functions that return by reference. Note that it cannot be
4118 -- done for delayed_freeze subprograms because the underlying
4119 -- returned type may not be known yet (for private types)
4121 if not Has_Delayed_Freeze (Designator)
4122 and then Expander_Active
4123 then
4124 declare
4125 Typ : constant Entity_Id := Etype (Designator);
4126 Utyp : constant Entity_Id := Underlying_Type (Typ);
4128 begin
4129 if Is_Inherently_Limited_Type (Typ) then
4130 Set_Returns_By_Ref (Designator);
4132 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4133 Set_Returns_By_Ref (Designator);
4134 end if;
4135 end;
4136 end if;
4137 end Check_Delayed_Subprogram;
4139 ------------------------------------
4140 -- Check_Discriminant_Conformance --
4141 ------------------------------------
4143 procedure Check_Discriminant_Conformance
4144 (N : Node_Id;
4145 Prev : Entity_Id;
4146 Prev_Loc : Node_Id)
4148 Old_Discr : Entity_Id := First_Discriminant (Prev);
4149 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4150 New_Discr_Id : Entity_Id;
4151 New_Discr_Type : Entity_Id;
4153 procedure Conformance_Error (Msg : String; N : Node_Id);
4154 -- Post error message for conformance error on given node. Two messages
4155 -- are output. The first points to the previous declaration with a
4156 -- general "no conformance" message. The second is the detailed reason,
4157 -- supplied as Msg. The parameter N provide information for a possible
4158 -- & insertion in the message.
4160 -----------------------
4161 -- Conformance_Error --
4162 -----------------------
4164 procedure Conformance_Error (Msg : String; N : Node_Id) is
4165 begin
4166 Error_Msg_Sloc := Sloc (Prev_Loc);
4167 Error_Msg_N -- CODEFIX
4168 ("not fully conformant with declaration#!", N);
4169 Error_Msg_NE (Msg, N, N);
4170 end Conformance_Error;
4172 -- Start of processing for Check_Discriminant_Conformance
4174 begin
4175 while Present (Old_Discr) and then Present (New_Discr) loop
4177 New_Discr_Id := Defining_Identifier (New_Discr);
4179 -- The subtype mark of the discriminant on the full type has not
4180 -- been analyzed so we do it here. For an access discriminant a new
4181 -- type is created.
4183 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4184 New_Discr_Type :=
4185 Access_Definition (N, Discriminant_Type (New_Discr));
4187 else
4188 Analyze (Discriminant_Type (New_Discr));
4189 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
4191 -- Ada 2005: if the discriminant definition carries a null
4192 -- exclusion, create an itype to check properly for consistency
4193 -- with partial declaration.
4195 if Is_Access_Type (New_Discr_Type)
4196 and then Null_Exclusion_Present (New_Discr)
4197 then
4198 New_Discr_Type :=
4199 Create_Null_Excluding_Itype
4200 (T => New_Discr_Type,
4201 Related_Nod => New_Discr,
4202 Scope_Id => Current_Scope);
4203 end if;
4204 end if;
4206 if not Conforming_Types
4207 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4208 then
4209 Conformance_Error ("type of & does not match!", New_Discr_Id);
4210 return;
4211 else
4212 -- Treat the new discriminant as an occurrence of the old one,
4213 -- for navigation purposes, and fill in some semantic
4214 -- information, for completeness.
4216 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4217 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4218 Set_Scope (New_Discr_Id, Scope (Old_Discr));
4219 end if;
4221 -- Names must match
4223 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4224 Conformance_Error ("name & does not match!", New_Discr_Id);
4225 return;
4226 end if;
4228 -- Default expressions must match
4230 declare
4231 NewD : constant Boolean :=
4232 Present (Expression (New_Discr));
4233 OldD : constant Boolean :=
4234 Present (Expression (Parent (Old_Discr)));
4236 begin
4237 if NewD or OldD then
4239 -- The old default value has been analyzed and expanded,
4240 -- because the current full declaration will have frozen
4241 -- everything before. The new default values have not been
4242 -- expanded, so expand now to check conformance.
4244 if NewD then
4245 Preanalyze_Spec_Expression
4246 (Expression (New_Discr), New_Discr_Type);
4247 end if;
4249 if not (NewD and OldD)
4250 or else not Fully_Conformant_Expressions
4251 (Expression (Parent (Old_Discr)),
4252 Expression (New_Discr))
4254 then
4255 Conformance_Error
4256 ("default expression for & does not match!",
4257 New_Discr_Id);
4258 return;
4259 end if;
4260 end if;
4261 end;
4263 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4265 if Ada_Version = Ada_83 then
4266 declare
4267 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4269 begin
4270 -- Grouping (use of comma in param lists) must be the same
4271 -- This is where we catch a misconformance like:
4273 -- A,B : Integer
4274 -- A : Integer; B : Integer
4276 -- which are represented identically in the tree except
4277 -- for the setting of the flags More_Ids and Prev_Ids.
4279 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4280 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4281 then
4282 Conformance_Error
4283 ("grouping of & does not match!", New_Discr_Id);
4284 return;
4285 end if;
4286 end;
4287 end if;
4289 Next_Discriminant (Old_Discr);
4290 Next (New_Discr);
4291 end loop;
4293 if Present (Old_Discr) then
4294 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4295 return;
4297 elsif Present (New_Discr) then
4298 Conformance_Error
4299 ("too many discriminants!", Defining_Identifier (New_Discr));
4300 return;
4301 end if;
4302 end Check_Discriminant_Conformance;
4304 ----------------------------
4305 -- Check_Fully_Conformant --
4306 ----------------------------
4308 procedure Check_Fully_Conformant
4309 (New_Id : Entity_Id;
4310 Old_Id : Entity_Id;
4311 Err_Loc : Node_Id := Empty)
4313 Result : Boolean;
4314 pragma Warnings (Off, Result);
4315 begin
4316 Check_Conformance
4317 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4318 end Check_Fully_Conformant;
4320 ---------------------------
4321 -- Check_Mode_Conformant --
4322 ---------------------------
4324 procedure Check_Mode_Conformant
4325 (New_Id : Entity_Id;
4326 Old_Id : Entity_Id;
4327 Err_Loc : Node_Id := Empty;
4328 Get_Inst : Boolean := False)
4330 Result : Boolean;
4331 pragma Warnings (Off, Result);
4332 begin
4333 Check_Conformance
4334 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4335 end Check_Mode_Conformant;
4337 --------------------------------
4338 -- Check_Overriding_Indicator --
4339 --------------------------------
4341 procedure Check_Overriding_Indicator
4342 (Subp : Entity_Id;
4343 Overridden_Subp : Entity_Id;
4344 Is_Primitive : Boolean)
4346 Decl : Node_Id;
4347 Spec : Node_Id;
4349 begin
4350 -- No overriding indicator for literals
4352 if Ekind (Subp) = E_Enumeration_Literal then
4353 return;
4355 elsif Ekind (Subp) = E_Entry then
4356 Decl := Parent (Subp);
4358 else
4359 Decl := Unit_Declaration_Node (Subp);
4360 end if;
4362 if Nkind_In (Decl, N_Subprogram_Body,
4363 N_Subprogram_Body_Stub,
4364 N_Subprogram_Declaration,
4365 N_Abstract_Subprogram_Declaration,
4366 N_Subprogram_Renaming_Declaration)
4367 then
4368 Spec := Specification (Decl);
4370 elsif Nkind (Decl) = N_Entry_Declaration then
4371 Spec := Decl;
4373 else
4374 return;
4375 end if;
4377 -- The overriding operation is type conformant with the overridden one,
4378 -- but the names of the formals are not required to match. If the names
4379 -- appear permuted in the overriding operation, this is a possible
4380 -- source of confusion that is worth diagnosing. Controlling formals
4381 -- often carry names that reflect the type, and it is not worthwhile
4382 -- requiring that their names match.
4384 if Present (Overridden_Subp)
4385 and then Nkind (Subp) /= N_Defining_Operator_Symbol
4386 then
4387 declare
4388 Form1 : Entity_Id;
4389 Form2 : Entity_Id;
4391 begin
4392 Form1 := First_Formal (Subp);
4393 Form2 := First_Formal (Overridden_Subp);
4395 -- If the overriding operation is a synchronized operation, skip
4396 -- the first parameter of the overridden operation, which is
4397 -- implicit in the new one. If the operation is declared in the
4398 -- body it is not primitive and all formals must match.
4400 if Is_Concurrent_Type (Scope (Subp))
4401 and then Is_Tagged_Type (Scope (Subp))
4402 and then not Has_Completion (Scope (Subp))
4403 then
4404 Form2 := Next_Formal (Form2);
4405 end if;
4407 if Present (Form1) then
4408 Form1 := Next_Formal (Form1);
4409 Form2 := Next_Formal (Form2);
4410 end if;
4412 while Present (Form1) loop
4413 if not Is_Controlling_Formal (Form1)
4414 and then Present (Next_Formal (Form2))
4415 and then Chars (Form1) = Chars (Next_Formal (Form2))
4416 then
4417 Error_Msg_Node_2 := Alias (Overridden_Subp);
4418 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
4419 Error_Msg_NE ("& does not match corresponding formal of&#",
4420 Form1, Form1);
4421 exit;
4422 end if;
4424 Next_Formal (Form1);
4425 Next_Formal (Form2);
4426 end loop;
4427 end;
4428 end if;
4430 if Present (Overridden_Subp) then
4431 if Must_Not_Override (Spec) then
4432 Error_Msg_Sloc := Sloc (Overridden_Subp);
4434 if Ekind (Subp) = E_Entry then
4435 Error_Msg_NE
4436 ("entry & overrides inherited operation #", Spec, Subp);
4437 else
4438 Error_Msg_NE
4439 ("subprogram & overrides inherited operation #", Spec, Subp);
4440 end if;
4442 elsif Is_Subprogram (Subp) then
4443 Set_Is_Overriding_Operation (Subp);
4444 end if;
4446 -- If primitive flag is set or this is a protected operation, then
4447 -- the operation is overriding at the point of its declaration, so
4448 -- warn if necessary. Otherwise it may have been declared before the
4449 -- operation it overrides and no check is required.
4451 if Style_Check
4452 and then not Must_Override (Spec)
4453 and then (Is_Primitive
4454 or else Ekind (Scope (Subp)) = E_Protected_Type)
4455 then
4456 Style.Missing_Overriding (Decl, Subp);
4457 end if;
4459 -- If Subp is an operator, it may override a predefined operation.
4460 -- In that case overridden_subp is empty because of our implicit
4461 -- representation for predefined operators. We have to check whether the
4462 -- signature of Subp matches that of a predefined operator. Note that
4463 -- first argument provides the name of the operator, and the second
4464 -- argument the signature that may match that of a standard operation.
4465 -- If the indicator is overriding, then the operator must match a
4466 -- predefined signature, because we know already that there is no
4467 -- explicit overridden operation.
4469 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
4471 if Must_Not_Override (Spec) then
4473 -- If this is not a primitive operation or protected subprogram,
4474 -- then "not overriding" is illegal.
4476 if not Is_Primitive
4477 and then Ekind (Scope (Subp)) /= E_Protected_Type
4478 then
4479 Error_Msg_N
4480 ("overriding indicator only allowed "
4481 & "if subprogram is primitive", Subp);
4483 elsif Operator_Matches_Spec (Subp, Subp) then
4484 Error_Msg_NE
4485 ("subprogram & overrides predefined operator ", Spec, Subp);
4486 end if;
4488 elsif Must_Override (Spec) then
4489 if Is_Overriding_Operation (Subp) then
4490 Set_Is_Overriding_Operation (Subp);
4492 elsif not Operator_Matches_Spec (Subp, Subp) then
4493 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4494 end if;
4496 elsif not Error_Posted (Subp)
4497 and then Style_Check
4498 and then Operator_Matches_Spec (Subp, Subp)
4499 and then
4500 not Is_Predefined_File_Name
4501 (Unit_File_Name (Get_Source_Unit (Subp)))
4502 then
4503 Set_Is_Overriding_Operation (Subp);
4505 -- If style checks are enabled, indicate that the indicator is
4506 -- missing. However, at the point of declaration, the type of
4507 -- which this is a primitive operation may be private, in which
4508 -- case the indicator would be premature.
4510 if Has_Private_Declaration (Etype (Subp))
4511 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
4512 then
4513 null;
4514 else
4515 Style.Missing_Overriding (Decl, Subp);
4516 end if;
4517 end if;
4519 elsif Must_Override (Spec) then
4520 if Ekind (Subp) = E_Entry then
4521 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
4522 else
4523 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4524 end if;
4526 -- If the operation is marked "not overriding" and it's not primitive
4527 -- then an error is issued, unless this is an operation of a task or
4528 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4529 -- has been specified have already been checked above.
4531 elsif Must_Not_Override (Spec)
4532 and then not Is_Primitive
4533 and then Ekind (Subp) /= E_Entry
4534 and then Ekind (Scope (Subp)) /= E_Protected_Type
4535 then
4536 Error_Msg_N
4537 ("overriding indicator only allowed if subprogram is primitive",
4538 Subp);
4539 return;
4540 end if;
4541 end Check_Overriding_Indicator;
4543 -------------------
4544 -- Check_Returns --
4545 -------------------
4547 -- Note: this procedure needs to know far too much about how the expander
4548 -- messes with exceptions. The use of the flag Exception_Junk and the
4549 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4550 -- works, but is not very clean. It would be better if the expansion
4551 -- routines would leave Original_Node working nicely, and we could use
4552 -- Original_Node here to ignore all the peculiar expander messing ???
4554 procedure Check_Returns
4555 (HSS : Node_Id;
4556 Mode : Character;
4557 Err : out Boolean;
4558 Proc : Entity_Id := Empty)
4560 Handler : Node_Id;
4562 procedure Check_Statement_Sequence (L : List_Id);
4563 -- Internal recursive procedure to check a list of statements for proper
4564 -- termination by a return statement (or a transfer of control or a
4565 -- compound statement that is itself internally properly terminated).
4567 ------------------------------
4568 -- Check_Statement_Sequence --
4569 ------------------------------
4571 procedure Check_Statement_Sequence (L : List_Id) is
4572 Last_Stm : Node_Id;
4573 Stm : Node_Id;
4574 Kind : Node_Kind;
4576 Raise_Exception_Call : Boolean;
4577 -- Set True if statement sequence terminated by Raise_Exception call
4578 -- or a Reraise_Occurrence call.
4580 begin
4581 Raise_Exception_Call := False;
4583 -- Get last real statement
4585 Last_Stm := Last (L);
4587 -- Deal with digging out exception handler statement sequences that
4588 -- have been transformed by the local raise to goto optimization.
4589 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4590 -- optimization has occurred, we are looking at something like:
4592 -- begin
4593 -- original stmts in block
4595 -- exception \
4596 -- when excep1 => |
4597 -- goto L1; | omitted if No_Exception_Propagation
4598 -- when excep2 => |
4599 -- goto L2; /
4600 -- end;
4602 -- goto L3; -- skip handler when exception not raised
4604 -- <<L1>> -- target label for local exception
4605 -- begin
4606 -- estmts1
4607 -- end;
4609 -- goto L3;
4611 -- <<L2>>
4612 -- begin
4613 -- estmts2
4614 -- end;
4616 -- <<L3>>
4618 -- and what we have to do is to dig out the estmts1 and estmts2
4619 -- sequences (which were the original sequences of statements in
4620 -- the exception handlers) and check them.
4622 if Nkind (Last_Stm) = N_Label
4623 and then Exception_Junk (Last_Stm)
4624 then
4625 Stm := Last_Stm;
4626 loop
4627 Prev (Stm);
4628 exit when No (Stm);
4629 exit when Nkind (Stm) /= N_Block_Statement;
4630 exit when not Exception_Junk (Stm);
4631 Prev (Stm);
4632 exit when No (Stm);
4633 exit when Nkind (Stm) /= N_Label;
4634 exit when not Exception_Junk (Stm);
4635 Check_Statement_Sequence
4636 (Statements (Handled_Statement_Sequence (Next (Stm))));
4638 Prev (Stm);
4639 Last_Stm := Stm;
4640 exit when No (Stm);
4641 exit when Nkind (Stm) /= N_Goto_Statement;
4642 exit when not Exception_Junk (Stm);
4643 end loop;
4644 end if;
4646 -- Don't count pragmas
4648 while Nkind (Last_Stm) = N_Pragma
4650 -- Don't count call to SS_Release (can happen after Raise_Exception)
4652 or else
4653 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4654 and then
4655 Nkind (Name (Last_Stm)) = N_Identifier
4656 and then
4657 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4659 -- Don't count exception junk
4661 or else
4662 (Nkind_In (Last_Stm, N_Goto_Statement,
4663 N_Label,
4664 N_Object_Declaration)
4665 and then Exception_Junk (Last_Stm))
4666 or else Nkind (Last_Stm) in N_Push_xxx_Label
4667 or else Nkind (Last_Stm) in N_Pop_xxx_Label
4668 loop
4669 Prev (Last_Stm);
4670 end loop;
4672 -- Here we have the "real" last statement
4674 Kind := Nkind (Last_Stm);
4676 -- Transfer of control, OK. Note that in the No_Return procedure
4677 -- case, we already diagnosed any explicit return statements, so
4678 -- we can treat them as OK in this context.
4680 if Is_Transfer (Last_Stm) then
4681 return;
4683 -- Check cases of explicit non-indirect procedure calls
4685 elsif Kind = N_Procedure_Call_Statement
4686 and then Is_Entity_Name (Name (Last_Stm))
4687 then
4688 -- Check call to Raise_Exception procedure which is treated
4689 -- specially, as is a call to Reraise_Occurrence.
4691 -- We suppress the warning in these cases since it is likely that
4692 -- the programmer really does not expect to deal with the case
4693 -- of Null_Occurrence, and thus would find a warning about a
4694 -- missing return curious, and raising Program_Error does not
4695 -- seem such a bad behavior if this does occur.
4697 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4698 -- behavior will be to raise Constraint_Error (see AI-329).
4700 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4701 or else
4702 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4703 then
4704 Raise_Exception_Call := True;
4706 -- For Raise_Exception call, test first argument, if it is
4707 -- an attribute reference for a 'Identity call, then we know
4708 -- that the call cannot possibly return.
4710 declare
4711 Arg : constant Node_Id :=
4712 Original_Node (First_Actual (Last_Stm));
4713 begin
4714 if Nkind (Arg) = N_Attribute_Reference
4715 and then Attribute_Name (Arg) = Name_Identity
4716 then
4717 return;
4718 end if;
4719 end;
4720 end if;
4722 -- If statement, need to look inside if there is an else and check
4723 -- each constituent statement sequence for proper termination.
4725 elsif Kind = N_If_Statement
4726 and then Present (Else_Statements (Last_Stm))
4727 then
4728 Check_Statement_Sequence (Then_Statements (Last_Stm));
4729 Check_Statement_Sequence (Else_Statements (Last_Stm));
4731 if Present (Elsif_Parts (Last_Stm)) then
4732 declare
4733 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4735 begin
4736 while Present (Elsif_Part) loop
4737 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4738 Next (Elsif_Part);
4739 end loop;
4740 end;
4741 end if;
4743 return;
4745 -- Case statement, check each case for proper termination
4747 elsif Kind = N_Case_Statement then
4748 declare
4749 Case_Alt : Node_Id;
4750 begin
4751 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4752 while Present (Case_Alt) loop
4753 Check_Statement_Sequence (Statements (Case_Alt));
4754 Next_Non_Pragma (Case_Alt);
4755 end loop;
4756 end;
4758 return;
4760 -- Block statement, check its handled sequence of statements
4762 elsif Kind = N_Block_Statement then
4763 declare
4764 Err1 : Boolean;
4766 begin
4767 Check_Returns
4768 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4770 if Err1 then
4771 Err := True;
4772 end if;
4774 return;
4775 end;
4777 -- Loop statement. If there is an iteration scheme, we can definitely
4778 -- fall out of the loop. Similarly if there is an exit statement, we
4779 -- can fall out. In either case we need a following return.
4781 elsif Kind = N_Loop_Statement then
4782 if Present (Iteration_Scheme (Last_Stm))
4783 or else Has_Exit (Entity (Identifier (Last_Stm)))
4784 then
4785 null;
4787 -- A loop with no exit statement or iteration scheme is either
4788 -- an infinite loop, or it has some other exit (raise/return).
4789 -- In either case, no warning is required.
4791 else
4792 return;
4793 end if;
4795 -- Timed entry call, check entry call and delay alternatives
4797 -- Note: in expanded code, the timed entry call has been converted
4798 -- to a set of expanded statements on which the check will work
4799 -- correctly in any case.
4801 elsif Kind = N_Timed_Entry_Call then
4802 declare
4803 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4804 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
4806 begin
4807 -- If statement sequence of entry call alternative is missing,
4808 -- then we can definitely fall through, and we post the error
4809 -- message on the entry call alternative itself.
4811 if No (Statements (ECA)) then
4812 Last_Stm := ECA;
4814 -- If statement sequence of delay alternative is missing, then
4815 -- we can definitely fall through, and we post the error
4816 -- message on the delay alternative itself.
4818 -- Note: if both ECA and DCA are missing the return, then we
4819 -- post only one message, should be enough to fix the bugs.
4820 -- If not we will get a message next time on the DCA when the
4821 -- ECA is fixed!
4823 elsif No (Statements (DCA)) then
4824 Last_Stm := DCA;
4826 -- Else check both statement sequences
4828 else
4829 Check_Statement_Sequence (Statements (ECA));
4830 Check_Statement_Sequence (Statements (DCA));
4831 return;
4832 end if;
4833 end;
4835 -- Conditional entry call, check entry call and else part
4837 -- Note: in expanded code, the conditional entry call has been
4838 -- converted to a set of expanded statements on which the check
4839 -- will work correctly in any case.
4841 elsif Kind = N_Conditional_Entry_Call then
4842 declare
4843 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4845 begin
4846 -- If statement sequence of entry call alternative is missing,
4847 -- then we can definitely fall through, and we post the error
4848 -- message on the entry call alternative itself.
4850 if No (Statements (ECA)) then
4851 Last_Stm := ECA;
4853 -- Else check statement sequence and else part
4855 else
4856 Check_Statement_Sequence (Statements (ECA));
4857 Check_Statement_Sequence (Else_Statements (Last_Stm));
4858 return;
4859 end if;
4860 end;
4861 end if;
4863 -- If we fall through, issue appropriate message
4865 if Mode = 'F' then
4866 if not Raise_Exception_Call then
4867 Error_Msg_N
4868 ("?RETURN statement missing following this statement!",
4869 Last_Stm);
4870 Error_Msg_N
4871 ("\?Program_Error may be raised at run time!",
4872 Last_Stm);
4873 end if;
4875 -- Note: we set Err even though we have not issued a warning
4876 -- because we still have a case of a missing return. This is
4877 -- an extremely marginal case, probably will never be noticed
4878 -- but we might as well get it right.
4880 Err := True;
4882 -- Otherwise we have the case of a procedure marked No_Return
4884 else
4885 if not Raise_Exception_Call then
4886 Error_Msg_N
4887 ("?implied return after this statement " &
4888 "will raise Program_Error",
4889 Last_Stm);
4890 Error_Msg_NE
4891 ("\?procedure & is marked as No_Return!",
4892 Last_Stm, Proc);
4893 end if;
4895 declare
4896 RE : constant Node_Id :=
4897 Make_Raise_Program_Error (Sloc (Last_Stm),
4898 Reason => PE_Implicit_Return);
4899 begin
4900 Insert_After (Last_Stm, RE);
4901 Analyze (RE);
4902 end;
4903 end if;
4904 end Check_Statement_Sequence;
4906 -- Start of processing for Check_Returns
4908 begin
4909 Err := False;
4910 Check_Statement_Sequence (Statements (HSS));
4912 if Present (Exception_Handlers (HSS)) then
4913 Handler := First_Non_Pragma (Exception_Handlers (HSS));
4914 while Present (Handler) loop
4915 Check_Statement_Sequence (Statements (Handler));
4916 Next_Non_Pragma (Handler);
4917 end loop;
4918 end if;
4919 end Check_Returns;
4921 ----------------------------
4922 -- Check_Subprogram_Order --
4923 ----------------------------
4925 procedure Check_Subprogram_Order (N : Node_Id) is
4927 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
4928 -- This is used to check if S1 > S2 in the sense required by this
4929 -- test, for example nameab < namec, but name2 < name10.
4931 -----------------------------
4932 -- Subprogram_Name_Greater --
4933 -----------------------------
4935 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
4936 L1, L2 : Positive;
4937 N1, N2 : Natural;
4939 begin
4940 -- Remove trailing numeric parts
4942 L1 := S1'Last;
4943 while S1 (L1) in '0' .. '9' loop
4944 L1 := L1 - 1;
4945 end loop;
4947 L2 := S2'Last;
4948 while S2 (L2) in '0' .. '9' loop
4949 L2 := L2 - 1;
4950 end loop;
4952 -- If non-numeric parts non-equal, that's decisive
4954 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
4955 return False;
4957 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
4958 return True;
4960 -- If non-numeric parts equal, compare suffixed numeric parts. Note
4961 -- that a missing suffix is treated as numeric zero in this test.
4963 else
4964 N1 := 0;
4965 while L1 < S1'Last loop
4966 L1 := L1 + 1;
4967 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
4968 end loop;
4970 N2 := 0;
4971 while L2 < S2'Last loop
4972 L2 := L2 + 1;
4973 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
4974 end loop;
4976 return N1 > N2;
4977 end if;
4978 end Subprogram_Name_Greater;
4980 -- Start of processing for Check_Subprogram_Order
4982 begin
4983 -- Check body in alpha order if this is option
4985 if Style_Check
4986 and then Style_Check_Order_Subprograms
4987 and then Nkind (N) = N_Subprogram_Body
4988 and then Comes_From_Source (N)
4989 and then In_Extended_Main_Source_Unit (N)
4990 then
4991 declare
4992 LSN : String_Ptr
4993 renames Scope_Stack.Table
4994 (Scope_Stack.Last).Last_Subprogram_Name;
4996 Body_Id : constant Entity_Id :=
4997 Defining_Entity (Specification (N));
4999 begin
5000 Get_Decoded_Name_String (Chars (Body_Id));
5002 if LSN /= null then
5003 if Subprogram_Name_Greater
5004 (LSN.all, Name_Buffer (1 .. Name_Len))
5005 then
5006 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5007 end if;
5009 Free (LSN);
5010 end if;
5012 LSN := new String'(Name_Buffer (1 .. Name_Len));
5013 end;
5014 end if;
5015 end Check_Subprogram_Order;
5017 ------------------------------
5018 -- Check_Subtype_Conformant --
5019 ------------------------------
5021 procedure Check_Subtype_Conformant
5022 (New_Id : Entity_Id;
5023 Old_Id : Entity_Id;
5024 Err_Loc : Node_Id := Empty;
5025 Skip_Controlling_Formals : Boolean := False)
5027 Result : Boolean;
5028 pragma Warnings (Off, Result);
5029 begin
5030 Check_Conformance
5031 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5032 Skip_Controlling_Formals => Skip_Controlling_Formals);
5033 end Check_Subtype_Conformant;
5035 ---------------------------
5036 -- Check_Type_Conformant --
5037 ---------------------------
5039 procedure Check_Type_Conformant
5040 (New_Id : Entity_Id;
5041 Old_Id : Entity_Id;
5042 Err_Loc : Node_Id := Empty)
5044 Result : Boolean;
5045 pragma Warnings (Off, Result);
5046 begin
5047 Check_Conformance
5048 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5049 end Check_Type_Conformant;
5051 ----------------------
5052 -- Conforming_Types --
5053 ----------------------
5055 function Conforming_Types
5056 (T1 : Entity_Id;
5057 T2 : Entity_Id;
5058 Ctype : Conformance_Type;
5059 Get_Inst : Boolean := False) return Boolean
5061 Type_1 : Entity_Id := T1;
5062 Type_2 : Entity_Id := T2;
5063 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
5065 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
5066 -- If neither T1 nor T2 are generic actual types, or if they are in
5067 -- different scopes (e.g. parent and child instances), then verify that
5068 -- the base types are equal. Otherwise T1 and T2 must be on the same
5069 -- subtype chain. The whole purpose of this procedure is to prevent
5070 -- spurious ambiguities in an instantiation that may arise if two
5071 -- distinct generic types are instantiated with the same actual.
5073 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5074 -- An access parameter can designate an incomplete type. If the
5075 -- incomplete type is the limited view of a type from a limited_
5076 -- with_clause, check whether the non-limited view is available. If
5077 -- it is a (non-limited) incomplete type, get the full view.
5079 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5080 -- Returns True if and only if either T1 denotes a limited view of T2
5081 -- or T2 denotes a limited view of T1. This can arise when the limited
5082 -- with view of a type is used in a subprogram declaration and the
5083 -- subprogram body is in the scope of a regular with clause for the
5084 -- same unit. In such a case, the two type entities can be considered
5085 -- identical for purposes of conformance checking.
5087 ----------------------
5088 -- Base_Types_Match --
5089 ----------------------
5091 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5092 begin
5093 if T1 = T2 then
5094 return True;
5096 elsif Base_Type (T1) = Base_Type (T2) then
5098 -- The following is too permissive. A more precise test should
5099 -- check that the generic actual is an ancestor subtype of the
5100 -- other ???.
5102 return not Is_Generic_Actual_Type (T1)
5103 or else not Is_Generic_Actual_Type (T2)
5104 or else Scope (T1) /= Scope (T2);
5106 else
5107 return False;
5108 end if;
5109 end Base_Types_Match;
5111 --------------------------
5112 -- Find_Designated_Type --
5113 --------------------------
5115 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5116 Desig : Entity_Id;
5118 begin
5119 Desig := Directly_Designated_Type (T);
5121 if Ekind (Desig) = E_Incomplete_Type then
5123 -- If regular incomplete type, get full view if available
5125 if Present (Full_View (Desig)) then
5126 Desig := Full_View (Desig);
5128 -- If limited view of a type, get non-limited view if available,
5129 -- and check again for a regular incomplete type.
5131 elsif Present (Non_Limited_View (Desig)) then
5132 Desig := Get_Full_View (Non_Limited_View (Desig));
5133 end if;
5134 end if;
5136 return Desig;
5137 end Find_Designated_Type;
5139 -------------------------------
5140 -- Matches_Limited_With_View --
5141 -------------------------------
5143 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5144 begin
5145 -- In some cases a type imported through a limited_with clause, and
5146 -- its nonlimited view are both visible, for example in an anonymous
5147 -- access-to-class-wide type in a formal. Both entities designate the
5148 -- same type.
5150 if From_With_Type (T1)
5151 and then T2 = Available_View (T1)
5152 then
5153 return True;
5155 elsif From_With_Type (T2)
5156 and then T1 = Available_View (T2)
5157 then
5158 return True;
5160 else
5161 return False;
5162 end if;
5163 end Matches_Limited_With_View;
5165 -- Start of processing for Conforming_Types
5167 begin
5168 -- The context is an instance association for a formal
5169 -- access-to-subprogram type; the formal parameter types require
5170 -- mapping because they may denote other formal parameters of the
5171 -- generic unit.
5173 if Get_Inst then
5174 Type_1 := Get_Instance_Of (T1);
5175 Type_2 := Get_Instance_Of (T2);
5176 end if;
5178 -- If one of the types is a view of the other introduced by a limited
5179 -- with clause, treat these as conforming for all purposes.
5181 if Matches_Limited_With_View (T1, T2) then
5182 return True;
5184 elsif Base_Types_Match (Type_1, Type_2) then
5185 return Ctype <= Mode_Conformant
5186 or else Subtypes_Statically_Match (Type_1, Type_2);
5188 elsif Is_Incomplete_Or_Private_Type (Type_1)
5189 and then Present (Full_View (Type_1))
5190 and then Base_Types_Match (Full_View (Type_1), Type_2)
5191 then
5192 return Ctype <= Mode_Conformant
5193 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5195 elsif Ekind (Type_2) = E_Incomplete_Type
5196 and then Present (Full_View (Type_2))
5197 and then Base_Types_Match (Type_1, Full_View (Type_2))
5198 then
5199 return Ctype <= Mode_Conformant
5200 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5202 elsif Is_Private_Type (Type_2)
5203 and then In_Instance
5204 and then Present (Full_View (Type_2))
5205 and then Base_Types_Match (Type_1, Full_View (Type_2))
5206 then
5207 return Ctype <= Mode_Conformant
5208 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5209 end if;
5211 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
5212 -- treated recursively because they carry a signature.
5214 Are_Anonymous_Access_To_Subprogram_Types :=
5215 Ekind (Type_1) = Ekind (Type_2)
5216 and then
5217 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
5218 or else
5219 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
5221 -- Test anonymous access type case. For this case, static subtype
5222 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5223 -- the base types because we may have built internal subtype entities
5224 -- to handle null-excluding types (see Process_Formals).
5226 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5227 and then
5228 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
5229 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
5230 then
5231 declare
5232 Desig_1 : Entity_Id;
5233 Desig_2 : Entity_Id;
5235 begin
5236 -- In Ada2005, access constant indicators must match for
5237 -- subtype conformance.
5239 if Ada_Version >= Ada_05
5240 and then Ctype >= Subtype_Conformant
5241 and then
5242 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5243 then
5244 return False;
5245 end if;
5247 Desig_1 := Find_Designated_Type (Type_1);
5249 Desig_2 := Find_Designated_Type (Type_2);
5251 -- If the context is an instance association for a formal
5252 -- access-to-subprogram type; formal access parameter designated
5253 -- types require mapping because they may denote other formal
5254 -- parameters of the generic unit.
5256 if Get_Inst then
5257 Desig_1 := Get_Instance_Of (Desig_1);
5258 Desig_2 := Get_Instance_Of (Desig_2);
5259 end if;
5261 -- It is possible for a Class_Wide_Type to be introduced for an
5262 -- incomplete type, in which case there is a separate class_ wide
5263 -- type for the full view. The types conform if their Etypes
5264 -- conform, i.e. one may be the full view of the other. This can
5265 -- only happen in the context of an access parameter, other uses
5266 -- of an incomplete Class_Wide_Type are illegal.
5268 if Is_Class_Wide_Type (Desig_1)
5269 and then Is_Class_Wide_Type (Desig_2)
5270 then
5271 return
5272 Conforming_Types
5273 (Etype (Base_Type (Desig_1)),
5274 Etype (Base_Type (Desig_2)), Ctype);
5276 elsif Are_Anonymous_Access_To_Subprogram_Types then
5277 if Ada_Version < Ada_05 then
5278 return Ctype = Type_Conformant
5279 or else
5280 Subtypes_Statically_Match (Desig_1, Desig_2);
5282 -- We must check the conformance of the signatures themselves
5284 else
5285 declare
5286 Conformant : Boolean;
5287 begin
5288 Check_Conformance
5289 (Desig_1, Desig_2, Ctype, False, Conformant);
5290 return Conformant;
5291 end;
5292 end if;
5294 else
5295 return Base_Type (Desig_1) = Base_Type (Desig_2)
5296 and then (Ctype = Type_Conformant
5297 or else
5298 Subtypes_Statically_Match (Desig_1, Desig_2));
5299 end if;
5300 end;
5302 -- Otherwise definitely no match
5304 else
5305 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5306 and then Is_Access_Type (Type_2))
5307 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5308 and then Is_Access_Type (Type_1)))
5309 and then
5310 Conforming_Types
5311 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5312 then
5313 May_Hide_Profile := True;
5314 end if;
5316 return False;
5317 end if;
5318 end Conforming_Types;
5320 --------------------------
5321 -- Create_Extra_Formals --
5322 --------------------------
5324 procedure Create_Extra_Formals (E : Entity_Id) is
5325 Formal : Entity_Id;
5326 First_Extra : Entity_Id := Empty;
5327 Last_Extra : Entity_Id;
5328 Formal_Type : Entity_Id;
5329 P_Formal : Entity_Id := Empty;
5331 function Add_Extra_Formal
5332 (Assoc_Entity : Entity_Id;
5333 Typ : Entity_Id;
5334 Scope : Entity_Id;
5335 Suffix : String) return Entity_Id;
5336 -- Add an extra formal to the current list of formals and extra formals.
5337 -- The extra formal is added to the end of the list of extra formals,
5338 -- and also returned as the result. These formals are always of mode IN.
5339 -- The new formal has the type Typ, is declared in Scope, and its name
5340 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5342 ----------------------
5343 -- Add_Extra_Formal --
5344 ----------------------
5346 function Add_Extra_Formal
5347 (Assoc_Entity : Entity_Id;
5348 Typ : Entity_Id;
5349 Scope : Entity_Id;
5350 Suffix : String) return Entity_Id
5352 EF : constant Entity_Id :=
5353 Make_Defining_Identifier (Sloc (Assoc_Entity),
5354 Chars => New_External_Name (Chars (Assoc_Entity),
5355 Suffix => Suffix));
5357 begin
5358 -- A little optimization. Never generate an extra formal for the
5359 -- _init operand of an initialization procedure, since it could
5360 -- never be used.
5362 if Chars (Formal) = Name_uInit then
5363 return Empty;
5364 end if;
5366 Set_Ekind (EF, E_In_Parameter);
5367 Set_Actual_Subtype (EF, Typ);
5368 Set_Etype (EF, Typ);
5369 Set_Scope (EF, Scope);
5370 Set_Mechanism (EF, Default_Mechanism);
5371 Set_Formal_Validity (EF);
5373 if No (First_Extra) then
5374 First_Extra := EF;
5375 Set_Extra_Formals (Scope, First_Extra);
5376 end if;
5378 if Present (Last_Extra) then
5379 Set_Extra_Formal (Last_Extra, EF);
5380 end if;
5382 Last_Extra := EF;
5384 return EF;
5385 end Add_Extra_Formal;
5387 -- Start of processing for Create_Extra_Formals
5389 begin
5390 -- We never generate extra formals if expansion is not active
5391 -- because we don't need them unless we are generating code.
5393 if not Expander_Active then
5394 return;
5395 end if;
5397 -- If this is a derived subprogram then the subtypes of the parent
5398 -- subprogram's formal parameters will be used to determine the need
5399 -- for extra formals.
5401 if Is_Overloadable (E) and then Present (Alias (E)) then
5402 P_Formal := First_Formal (Alias (E));
5403 end if;
5405 Last_Extra := Empty;
5406 Formal := First_Formal (E);
5407 while Present (Formal) loop
5408 Last_Extra := Formal;
5409 Next_Formal (Formal);
5410 end loop;
5412 -- If Extra_formals were already created, don't do it again. This
5413 -- situation may arise for subprogram types created as part of
5414 -- dispatching calls (see Expand_Dispatching_Call)
5416 if Present (Last_Extra) and then
5417 Present (Extra_Formal (Last_Extra))
5418 then
5419 return;
5420 end if;
5422 -- If the subprogram is a predefined dispatching subprogram then don't
5423 -- generate any extra constrained or accessibility level formals. In
5424 -- general we suppress these for internal subprograms (by not calling
5425 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5426 -- generated stream attributes do get passed through because extra
5427 -- build-in-place formals are needed in some cases (limited 'Input).
5429 if Is_Predefined_Dispatching_Operation (E) then
5430 goto Test_For_BIP_Extras;
5431 end if;
5433 Formal := First_Formal (E);
5434 while Present (Formal) loop
5436 -- Create extra formal for supporting the attribute 'Constrained.
5437 -- The case of a private type view without discriminants also
5438 -- requires the extra formal if the underlying type has defaulted
5439 -- discriminants.
5441 if Ekind (Formal) /= E_In_Parameter then
5442 if Present (P_Formal) then
5443 Formal_Type := Etype (P_Formal);
5444 else
5445 Formal_Type := Etype (Formal);
5446 end if;
5448 -- Do not produce extra formals for Unchecked_Union parameters.
5449 -- Jump directly to the end of the loop.
5451 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5452 goto Skip_Extra_Formal_Generation;
5453 end if;
5455 if not Has_Discriminants (Formal_Type)
5456 and then Ekind (Formal_Type) in Private_Kind
5457 and then Present (Underlying_Type (Formal_Type))
5458 then
5459 Formal_Type := Underlying_Type (Formal_Type);
5460 end if;
5462 if Has_Discriminants (Formal_Type)
5463 and then not Is_Constrained (Formal_Type)
5464 and then not Is_Indefinite_Subtype (Formal_Type)
5465 then
5466 Set_Extra_Constrained
5467 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
5468 end if;
5469 end if;
5471 -- Create extra formal for supporting accessibility checking. This
5472 -- is done for both anonymous access formals and formals of named
5473 -- access types that are marked as controlling formals. The latter
5474 -- case can occur when Expand_Dispatching_Call creates a subprogram
5475 -- type and substitutes the types of access-to-class-wide actuals
5476 -- for the anonymous access-to-specific-type of controlling formals.
5477 -- Base_Type is applied because in cases where there is a null
5478 -- exclusion the formal may have an access subtype.
5480 -- This is suppressed if we specifically suppress accessibility
5481 -- checks at the package level for either the subprogram, or the
5482 -- package in which it resides. However, we do not suppress it
5483 -- simply if the scope has accessibility checks suppressed, since
5484 -- this could cause trouble when clients are compiled with a
5485 -- different suppression setting. The explicit checks at the
5486 -- package level are safe from this point of view.
5488 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
5489 or else (Is_Controlling_Formal (Formal)
5490 and then Is_Access_Type (Base_Type (Etype (Formal)))))
5491 and then not
5492 (Explicit_Suppress (E, Accessibility_Check)
5493 or else
5494 Explicit_Suppress (Scope (E), Accessibility_Check))
5495 and then
5496 (No (P_Formal)
5497 or else Present (Extra_Accessibility (P_Formal)))
5498 then
5499 Set_Extra_Accessibility
5500 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
5501 end if;
5503 -- This label is required when skipping extra formal generation for
5504 -- Unchecked_Union parameters.
5506 <<Skip_Extra_Formal_Generation>>
5508 if Present (P_Formal) then
5509 Next_Formal (P_Formal);
5510 end if;
5512 Next_Formal (Formal);
5513 end loop;
5515 <<Test_For_BIP_Extras>>
5517 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
5518 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5520 if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
5521 declare
5522 Result_Subt : constant Entity_Id := Etype (E);
5524 Discard : Entity_Id;
5525 pragma Warnings (Off, Discard);
5527 begin
5528 -- In the case of functions with unconstrained result subtypes,
5529 -- add a 3-state formal indicating whether the return object is
5530 -- allocated by the caller (0), or should be allocated by the
5531 -- callee on the secondary stack (1) or in the global heap (2).
5532 -- For the moment we just use Natural for the type of this formal.
5533 -- Note that this formal isn't usually needed in the case where
5534 -- the result subtype is constrained, but it is needed when the
5535 -- function has a tagged result, because generally such functions
5536 -- can be called in a dispatching context and such calls must be
5537 -- handled like calls to a class-wide function.
5539 if not Is_Constrained (Underlying_Type (Result_Subt))
5540 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5541 then
5542 Discard :=
5543 Add_Extra_Formal
5544 (E, Standard_Natural,
5545 E, BIP_Formal_Suffix (BIP_Alloc_Form));
5546 end if;
5548 -- In the case of functions whose result type has controlled
5549 -- parts, we have an extra formal of type
5550 -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
5551 -- is, we are passing a pointer to a finalization list (which is
5552 -- itself a pointer). This extra formal is then passed along to
5553 -- Move_Final_List in case of successful completion of a return
5554 -- statement. We cannot pass an 'in out' parameter, because we
5555 -- need to update the finalization list during an abort-deferred
5556 -- region, rather than using copy-back after the function
5557 -- returns. This is true even if we are able to get away with
5558 -- having 'in out' parameters, which are normally illegal for
5559 -- functions. This formal is also needed when the function has
5560 -- a tagged result.
5562 if Needs_BIP_Final_List (E) then
5563 Discard :=
5564 Add_Extra_Formal
5565 (E, RTE (RE_Finalizable_Ptr_Ptr),
5566 E, BIP_Formal_Suffix (BIP_Final_List));
5567 end if;
5569 -- If the result type contains tasks, we have two extra formals:
5570 -- the master of the tasks to be created, and the caller's
5571 -- activation chain.
5573 if Has_Task (Result_Subt) then
5574 Discard :=
5575 Add_Extra_Formal
5576 (E, RTE (RE_Master_Id),
5577 E, BIP_Formal_Suffix (BIP_Master));
5578 Discard :=
5579 Add_Extra_Formal
5580 (E, RTE (RE_Activation_Chain_Access),
5581 E, BIP_Formal_Suffix (BIP_Activation_Chain));
5582 end if;
5584 -- All build-in-place functions get an extra formal that will be
5585 -- passed the address of the return object within the caller.
5587 declare
5588 Formal_Type : constant Entity_Id :=
5589 Create_Itype
5590 (E_Anonymous_Access_Type, E,
5591 Scope_Id => Scope (E));
5592 begin
5593 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
5594 Set_Etype (Formal_Type, Formal_Type);
5595 Set_Depends_On_Private
5596 (Formal_Type, Has_Private_Component (Formal_Type));
5597 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
5598 Set_Is_Access_Constant (Formal_Type, False);
5600 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5601 -- the designated type comes from the limited view (for
5602 -- back-end purposes).
5604 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
5606 Layout_Type (Formal_Type);
5608 Discard :=
5609 Add_Extra_Formal
5610 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
5611 end;
5612 end;
5613 end if;
5614 end Create_Extra_Formals;
5616 -----------------------------
5617 -- Enter_Overloaded_Entity --
5618 -----------------------------
5620 procedure Enter_Overloaded_Entity (S : Entity_Id) is
5621 E : Entity_Id := Current_Entity_In_Scope (S);
5622 C_E : Entity_Id := Current_Entity (S);
5624 begin
5625 if Present (E) then
5626 Set_Has_Homonym (E);
5627 Set_Has_Homonym (S);
5628 end if;
5630 Set_Is_Immediately_Visible (S);
5631 Set_Scope (S, Current_Scope);
5633 -- Chain new entity if front of homonym in current scope, so that
5634 -- homonyms are contiguous.
5636 if Present (E)
5637 and then E /= C_E
5638 then
5639 while Homonym (C_E) /= E loop
5640 C_E := Homonym (C_E);
5641 end loop;
5643 Set_Homonym (C_E, S);
5645 else
5646 E := C_E;
5647 Set_Current_Entity (S);
5648 end if;
5650 Set_Homonym (S, E);
5652 Append_Entity (S, Current_Scope);
5653 Set_Public_Status (S);
5655 if Debug_Flag_E then
5656 Write_Str ("New overloaded entity chain: ");
5657 Write_Name (Chars (S));
5659 E := S;
5660 while Present (E) loop
5661 Write_Str (" "); Write_Int (Int (E));
5662 E := Homonym (E);
5663 end loop;
5665 Write_Eol;
5666 end if;
5668 -- Generate warning for hiding
5670 if Warn_On_Hiding
5671 and then Comes_From_Source (S)
5672 and then In_Extended_Main_Source_Unit (S)
5673 then
5674 E := S;
5675 loop
5676 E := Homonym (E);
5677 exit when No (E);
5679 -- Warn unless genuine overloading
5681 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5682 and then (Is_Immediately_Visible (E)
5683 or else
5684 Is_Potentially_Use_Visible (S))
5685 then
5686 Error_Msg_Sloc := Sloc (E);
5687 Error_Msg_N ("declaration of & hides one#?", S);
5688 end if;
5689 end loop;
5690 end if;
5691 end Enter_Overloaded_Entity;
5693 -----------------------------
5694 -- Find_Corresponding_Spec --
5695 -----------------------------
5697 function Find_Corresponding_Spec
5698 (N : Node_Id;
5699 Post_Error : Boolean := True) return Entity_Id
5701 Spec : constant Node_Id := Specification (N);
5702 Designator : constant Entity_Id := Defining_Entity (Spec);
5704 E : Entity_Id;
5706 begin
5707 E := Current_Entity (Designator);
5708 while Present (E) loop
5710 -- We are looking for a matching spec. It must have the same scope,
5711 -- and the same name, and either be type conformant, or be the case
5712 -- of a library procedure spec and its body (which belong to one
5713 -- another regardless of whether they are type conformant or not).
5715 if Scope (E) = Current_Scope then
5716 if Current_Scope = Standard_Standard
5717 or else (Ekind (E) = Ekind (Designator)
5718 and then Type_Conformant (E, Designator))
5719 then
5720 -- Within an instantiation, we know that spec and body are
5721 -- subtype conformant, because they were subtype conformant
5722 -- in the generic. We choose the subtype-conformant entity
5723 -- here as well, to resolve spurious ambiguities in the
5724 -- instance that were not present in the generic (i.e. when
5725 -- two different types are given the same actual). If we are
5726 -- looking for a spec to match a body, full conformance is
5727 -- expected.
5729 if In_Instance then
5730 Set_Convention (Designator, Convention (E));
5732 if Nkind (N) = N_Subprogram_Body
5733 and then Present (Homonym (E))
5734 and then not Fully_Conformant (E, Designator)
5735 then
5736 goto Next_Entity;
5738 elsif not Subtype_Conformant (E, Designator) then
5739 goto Next_Entity;
5740 end if;
5741 end if;
5743 if not Has_Completion (E) then
5744 if Nkind (N) /= N_Subprogram_Body_Stub then
5745 Set_Corresponding_Spec (N, E);
5746 end if;
5748 Set_Has_Completion (E);
5749 return E;
5751 elsif Nkind (Parent (N)) = N_Subunit then
5753 -- If this is the proper body of a subunit, the completion
5754 -- flag is set when analyzing the stub.
5756 return E;
5758 -- If E is an internal function with a controlling result
5759 -- that was created for an operation inherited by a null
5760 -- extension, it may be overridden by a body without a previous
5761 -- spec (one more reason why these should be shunned). In that
5762 -- case remove the generated body, because the current one is
5763 -- the explicit overriding.
5765 elsif Ekind (E) = E_Function
5766 and then Ada_Version >= Ada_05
5767 and then not Comes_From_Source (E)
5768 and then Has_Controlling_Result (E)
5769 and then Is_Null_Extension (Etype (E))
5770 and then Comes_From_Source (Spec)
5771 then
5772 Set_Has_Completion (E, False);
5774 if Expander_Active then
5775 Remove
5776 (Unit_Declaration_Node
5777 (Corresponding_Body (Unit_Declaration_Node (E))));
5778 return E;
5780 -- If expansion is disabled, the wrapper function has not
5781 -- been generated, and this is the standard case of a late
5782 -- body overriding an inherited operation.
5784 else
5785 return Empty;
5786 end if;
5788 -- If the body already exists, then this is an error unless
5789 -- the previous declaration is the implicit declaration of a
5790 -- derived subprogram, or this is a spurious overloading in an
5791 -- instance.
5793 elsif No (Alias (E))
5794 and then not Is_Intrinsic_Subprogram (E)
5795 and then not In_Instance
5796 and then Post_Error
5797 then
5798 Error_Msg_Sloc := Sloc (E);
5800 if Is_Imported (E) then
5801 Error_Msg_NE
5802 ("body not allowed for imported subprogram & declared#",
5803 N, E);
5804 else
5805 Error_Msg_NE ("duplicate body for & declared#", N, E);
5806 end if;
5807 end if;
5809 -- Child units cannot be overloaded, so a conformance mismatch
5810 -- between body and a previous spec is an error.
5812 elsif Is_Child_Unit (E)
5813 and then
5814 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
5815 and then
5816 Nkind (Parent (Unit_Declaration_Node (Designator))) =
5817 N_Compilation_Unit
5818 and then Post_Error
5819 then
5820 Error_Msg_N
5821 ("body of child unit does not match previous declaration", N);
5822 end if;
5823 end if;
5825 <<Next_Entity>>
5826 E := Homonym (E);
5827 end loop;
5829 -- On exit, we know that no previous declaration of subprogram exists
5831 return Empty;
5832 end Find_Corresponding_Spec;
5834 ----------------------
5835 -- Fully_Conformant --
5836 ----------------------
5838 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5839 Result : Boolean;
5840 begin
5841 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
5842 return Result;
5843 end Fully_Conformant;
5845 ----------------------------------
5846 -- Fully_Conformant_Expressions --
5847 ----------------------------------
5849 function Fully_Conformant_Expressions
5850 (Given_E1 : Node_Id;
5851 Given_E2 : Node_Id) return Boolean
5853 E1 : constant Node_Id := Original_Node (Given_E1);
5854 E2 : constant Node_Id := Original_Node (Given_E2);
5855 -- We always test conformance on original nodes, since it is possible
5856 -- for analysis and/or expansion to make things look as though they
5857 -- conform when they do not, e.g. by converting 1+2 into 3.
5859 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
5860 renames Fully_Conformant_Expressions;
5862 function FCL (L1, L2 : List_Id) return Boolean;
5863 -- Compare elements of two lists for conformance. Elements have to
5864 -- be conformant, and actuals inserted as default parameters do not
5865 -- match explicit actuals with the same value.
5867 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
5868 -- Compare an operator node with a function call
5870 ---------
5871 -- FCL --
5872 ---------
5874 function FCL (L1, L2 : List_Id) return Boolean is
5875 N1, N2 : Node_Id;
5877 begin
5878 if L1 = No_List then
5879 N1 := Empty;
5880 else
5881 N1 := First (L1);
5882 end if;
5884 if L2 = No_List then
5885 N2 := Empty;
5886 else
5887 N2 := First (L2);
5888 end if;
5890 -- Compare two lists, skipping rewrite insertions (we want to
5891 -- compare the original trees, not the expanded versions!)
5893 loop
5894 if Is_Rewrite_Insertion (N1) then
5895 Next (N1);
5896 elsif Is_Rewrite_Insertion (N2) then
5897 Next (N2);
5898 elsif No (N1) then
5899 return No (N2);
5900 elsif No (N2) then
5901 return False;
5902 elsif not FCE (N1, N2) then
5903 return False;
5904 else
5905 Next (N1);
5906 Next (N2);
5907 end if;
5908 end loop;
5909 end FCL;
5911 ---------
5912 -- FCO --
5913 ---------
5915 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
5916 Actuals : constant List_Id := Parameter_Associations (Call_Node);
5917 Act : Node_Id;
5919 begin
5920 if No (Actuals)
5921 or else Entity (Op_Node) /= Entity (Name (Call_Node))
5922 then
5923 return False;
5925 else
5926 Act := First (Actuals);
5928 if Nkind (Op_Node) in N_Binary_Op then
5929 if not FCE (Left_Opnd (Op_Node), Act) then
5930 return False;
5931 end if;
5933 Next (Act);
5934 end if;
5936 return Present (Act)
5937 and then FCE (Right_Opnd (Op_Node), Act)
5938 and then No (Next (Act));
5939 end if;
5940 end FCO;
5942 -- Start of processing for Fully_Conformant_Expressions
5944 begin
5945 -- Non-conformant if paren count does not match. Note: if some idiot
5946 -- complains that we don't do this right for more than 3 levels of
5947 -- parentheses, they will be treated with the respect they deserve!
5949 if Paren_Count (E1) /= Paren_Count (E2) then
5950 return False;
5952 -- If same entities are referenced, then they are conformant even if
5953 -- they have different forms (RM 8.3.1(19-20)).
5955 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
5956 if Present (Entity (E1)) then
5957 return Entity (E1) = Entity (E2)
5958 or else (Chars (Entity (E1)) = Chars (Entity (E2))
5959 and then Ekind (Entity (E1)) = E_Discriminant
5960 and then Ekind (Entity (E2)) = E_In_Parameter);
5962 elsif Nkind (E1) = N_Expanded_Name
5963 and then Nkind (E2) = N_Expanded_Name
5964 and then Nkind (Selector_Name (E1)) = N_Character_Literal
5965 and then Nkind (Selector_Name (E2)) = N_Character_Literal
5966 then
5967 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
5969 else
5970 -- Identifiers in component associations don't always have
5971 -- entities, but their names must conform.
5973 return Nkind (E1) = N_Identifier
5974 and then Nkind (E2) = N_Identifier
5975 and then Chars (E1) = Chars (E2);
5976 end if;
5978 elsif Nkind (E1) = N_Character_Literal
5979 and then Nkind (E2) = N_Expanded_Name
5980 then
5981 return Nkind (Selector_Name (E2)) = N_Character_Literal
5982 and then Chars (E1) = Chars (Selector_Name (E2));
5984 elsif Nkind (E2) = N_Character_Literal
5985 and then Nkind (E1) = N_Expanded_Name
5986 then
5987 return Nkind (Selector_Name (E1)) = N_Character_Literal
5988 and then Chars (E2) = Chars (Selector_Name (E1));
5990 elsif Nkind (E1) in N_Op
5991 and then Nkind (E2) = N_Function_Call
5992 then
5993 return FCO (E1, E2);
5995 elsif Nkind (E2) in N_Op
5996 and then Nkind (E1) = N_Function_Call
5997 then
5998 return FCO (E2, E1);
6000 -- Otherwise we must have the same syntactic entity
6002 elsif Nkind (E1) /= Nkind (E2) then
6003 return False;
6005 -- At this point, we specialize by node type
6007 else
6008 case Nkind (E1) is
6010 when N_Aggregate =>
6011 return
6012 FCL (Expressions (E1), Expressions (E2))
6013 and then FCL (Component_Associations (E1),
6014 Component_Associations (E2));
6016 when N_Allocator =>
6017 if Nkind (Expression (E1)) = N_Qualified_Expression
6018 or else
6019 Nkind (Expression (E2)) = N_Qualified_Expression
6020 then
6021 return FCE (Expression (E1), Expression (E2));
6023 -- Check that the subtype marks and any constraints
6024 -- are conformant
6026 else
6027 declare
6028 Indic1 : constant Node_Id := Expression (E1);
6029 Indic2 : constant Node_Id := Expression (E2);
6030 Elt1 : Node_Id;
6031 Elt2 : Node_Id;
6033 begin
6034 if Nkind (Indic1) /= N_Subtype_Indication then
6035 return
6036 Nkind (Indic2) /= N_Subtype_Indication
6037 and then Entity (Indic1) = Entity (Indic2);
6039 elsif Nkind (Indic2) /= N_Subtype_Indication then
6040 return
6041 Nkind (Indic1) /= N_Subtype_Indication
6042 and then Entity (Indic1) = Entity (Indic2);
6044 else
6045 if Entity (Subtype_Mark (Indic1)) /=
6046 Entity (Subtype_Mark (Indic2))
6047 then
6048 return False;
6049 end if;
6051 Elt1 := First (Constraints (Constraint (Indic1)));
6052 Elt2 := First (Constraints (Constraint (Indic2)));
6053 while Present (Elt1) and then Present (Elt2) loop
6054 if not FCE (Elt1, Elt2) then
6055 return False;
6056 end if;
6058 Next (Elt1);
6059 Next (Elt2);
6060 end loop;
6062 return True;
6063 end if;
6064 end;
6065 end if;
6067 when N_Attribute_Reference =>
6068 return
6069 Attribute_Name (E1) = Attribute_Name (E2)
6070 and then FCL (Expressions (E1), Expressions (E2));
6072 when N_Binary_Op =>
6073 return
6074 Entity (E1) = Entity (E2)
6075 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
6076 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6078 when N_Short_Circuit | N_Membership_Test =>
6079 return
6080 FCE (Left_Opnd (E1), Left_Opnd (E2))
6081 and then
6082 FCE (Right_Opnd (E1), Right_Opnd (E2));
6084 when N_Character_Literal =>
6085 return
6086 Char_Literal_Value (E1) = Char_Literal_Value (E2);
6088 when N_Component_Association =>
6089 return
6090 FCL (Choices (E1), Choices (E2))
6091 and then FCE (Expression (E1), Expression (E2));
6093 when N_Conditional_Expression =>
6094 return
6095 FCL (Expressions (E1), Expressions (E2));
6097 when N_Explicit_Dereference =>
6098 return
6099 FCE (Prefix (E1), Prefix (E2));
6101 when N_Extension_Aggregate =>
6102 return
6103 FCL (Expressions (E1), Expressions (E2))
6104 and then Null_Record_Present (E1) =
6105 Null_Record_Present (E2)
6106 and then FCL (Component_Associations (E1),
6107 Component_Associations (E2));
6109 when N_Function_Call =>
6110 return
6111 FCE (Name (E1), Name (E2))
6112 and then FCL (Parameter_Associations (E1),
6113 Parameter_Associations (E2));
6115 when N_Indexed_Component =>
6116 return
6117 FCE (Prefix (E1), Prefix (E2))
6118 and then FCL (Expressions (E1), Expressions (E2));
6120 when N_Integer_Literal =>
6121 return (Intval (E1) = Intval (E2));
6123 when N_Null =>
6124 return True;
6126 when N_Operator_Symbol =>
6127 return
6128 Chars (E1) = Chars (E2);
6130 when N_Others_Choice =>
6131 return True;
6133 when N_Parameter_Association =>
6134 return
6135 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
6136 and then FCE (Explicit_Actual_Parameter (E1),
6137 Explicit_Actual_Parameter (E2));
6139 when N_Qualified_Expression =>
6140 return
6141 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6142 and then FCE (Expression (E1), Expression (E2));
6144 when N_Range =>
6145 return
6146 FCE (Low_Bound (E1), Low_Bound (E2))
6147 and then FCE (High_Bound (E1), High_Bound (E2));
6149 when N_Real_Literal =>
6150 return (Realval (E1) = Realval (E2));
6152 when N_Selected_Component =>
6153 return
6154 FCE (Prefix (E1), Prefix (E2))
6155 and then FCE (Selector_Name (E1), Selector_Name (E2));
6157 when N_Slice =>
6158 return
6159 FCE (Prefix (E1), Prefix (E2))
6160 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
6162 when N_String_Literal =>
6163 declare
6164 S1 : constant String_Id := Strval (E1);
6165 S2 : constant String_Id := Strval (E2);
6166 L1 : constant Nat := String_Length (S1);
6167 L2 : constant Nat := String_Length (S2);
6169 begin
6170 if L1 /= L2 then
6171 return False;
6173 else
6174 for J in 1 .. L1 loop
6175 if Get_String_Char (S1, J) /=
6176 Get_String_Char (S2, J)
6177 then
6178 return False;
6179 end if;
6180 end loop;
6182 return True;
6183 end if;
6184 end;
6186 when N_Type_Conversion =>
6187 return
6188 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6189 and then FCE (Expression (E1), Expression (E2));
6191 when N_Unary_Op =>
6192 return
6193 Entity (E1) = Entity (E2)
6194 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6196 when N_Unchecked_Type_Conversion =>
6197 return
6198 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6199 and then FCE (Expression (E1), Expression (E2));
6201 -- All other node types cannot appear in this context. Strictly
6202 -- we should raise a fatal internal error. Instead we just ignore
6203 -- the nodes. This means that if anyone makes a mistake in the
6204 -- expander and mucks an expression tree irretrievably, the
6205 -- result will be a failure to detect a (probably very obscure)
6206 -- case of non-conformance, which is better than bombing on some
6207 -- case where two expressions do in fact conform.
6209 when others =>
6210 return True;
6212 end case;
6213 end if;
6214 end Fully_Conformant_Expressions;
6216 ----------------------------------------
6217 -- Fully_Conformant_Discrete_Subtypes --
6218 ----------------------------------------
6220 function Fully_Conformant_Discrete_Subtypes
6221 (Given_S1 : Node_Id;
6222 Given_S2 : Node_Id) return Boolean
6224 S1 : constant Node_Id := Original_Node (Given_S1);
6225 S2 : constant Node_Id := Original_Node (Given_S2);
6227 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
6228 -- Special-case for a bound given by a discriminant, which in the body
6229 -- is replaced with the discriminal of the enclosing type.
6231 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
6232 -- Check both bounds
6234 -----------------------
6235 -- Conforming_Bounds --
6236 -----------------------
6238 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
6239 begin
6240 if Is_Entity_Name (B1)
6241 and then Is_Entity_Name (B2)
6242 and then Ekind (Entity (B1)) = E_Discriminant
6243 then
6244 return Chars (B1) = Chars (B2);
6246 else
6247 return Fully_Conformant_Expressions (B1, B2);
6248 end if;
6249 end Conforming_Bounds;
6251 -----------------------
6252 -- Conforming_Ranges --
6253 -----------------------
6255 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
6256 begin
6257 return
6258 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
6259 and then
6260 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
6261 end Conforming_Ranges;
6263 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6265 begin
6266 if Nkind (S1) /= Nkind (S2) then
6267 return False;
6269 elsif Is_Entity_Name (S1) then
6270 return Entity (S1) = Entity (S2);
6272 elsif Nkind (S1) = N_Range then
6273 return Conforming_Ranges (S1, S2);
6275 elsif Nkind (S1) = N_Subtype_Indication then
6276 return
6277 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
6278 and then
6279 Conforming_Ranges
6280 (Range_Expression (Constraint (S1)),
6281 Range_Expression (Constraint (S2)));
6282 else
6283 return True;
6284 end if;
6285 end Fully_Conformant_Discrete_Subtypes;
6287 --------------------
6288 -- Install_Entity --
6289 --------------------
6291 procedure Install_Entity (E : Entity_Id) is
6292 Prev : constant Entity_Id := Current_Entity (E);
6293 begin
6294 Set_Is_Immediately_Visible (E);
6295 Set_Current_Entity (E);
6296 Set_Homonym (E, Prev);
6297 end Install_Entity;
6299 ---------------------
6300 -- Install_Formals --
6301 ---------------------
6303 procedure Install_Formals (Id : Entity_Id) is
6304 F : Entity_Id;
6305 begin
6306 F := First_Formal (Id);
6307 while Present (F) loop
6308 Install_Entity (F);
6309 Next_Formal (F);
6310 end loop;
6311 end Install_Formals;
6313 -----------------------------
6314 -- Is_Interface_Conformant --
6315 -----------------------------
6317 function Is_Interface_Conformant
6318 (Tagged_Type : Entity_Id;
6319 Iface_Prim : Entity_Id;
6320 Prim : Entity_Id) return Boolean
6322 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
6323 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
6325 begin
6326 pragma Assert (Is_Subprogram (Iface_Prim)
6327 and then Is_Subprogram (Prim)
6328 and then Is_Dispatching_Operation (Iface_Prim)
6329 and then Is_Dispatching_Operation (Prim));
6331 pragma Assert (Is_Interface (Iface)
6332 or else (Present (Alias (Iface_Prim))
6333 and then
6334 Is_Interface
6335 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
6337 if Prim = Iface_Prim
6338 or else not Is_Subprogram (Prim)
6339 or else Ekind (Prim) /= Ekind (Iface_Prim)
6340 or else not Is_Dispatching_Operation (Prim)
6341 or else Scope (Prim) /= Scope (Tagged_Type)
6342 or else No (Typ)
6343 or else Base_Type (Typ) /= Tagged_Type
6344 or else not Primitive_Names_Match (Iface_Prim, Prim)
6345 then
6346 return False;
6348 -- Case of a procedure, or a function that does not have a controlling
6349 -- result (I or access I).
6351 elsif Ekind (Iface_Prim) = E_Procedure
6352 or else Etype (Prim) = Etype (Iface_Prim)
6353 or else not Has_Controlling_Result (Prim)
6354 then
6355 return Type_Conformant (Prim, Iface_Prim,
6356 Skip_Controlling_Formals => True);
6358 -- Case of a function returning an interface, or an access to one.
6359 -- Check that the return types correspond.
6361 elsif Implements_Interface (Typ, Iface) then
6362 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
6364 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
6365 then
6366 return False;
6367 else
6368 return
6369 Type_Conformant (Prim, Iface_Prim,
6370 Skip_Controlling_Formals => True);
6371 end if;
6373 else
6374 return False;
6375 end if;
6376 end Is_Interface_Conformant;
6378 ---------------------------------
6379 -- Is_Non_Overriding_Operation --
6380 ---------------------------------
6382 function Is_Non_Overriding_Operation
6383 (Prev_E : Entity_Id;
6384 New_E : Entity_Id) return Boolean
6386 Formal : Entity_Id;
6387 F_Typ : Entity_Id;
6388 G_Typ : Entity_Id := Empty;
6390 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
6391 -- If F_Type is a derived type associated with a generic actual subtype,
6392 -- then return its Generic_Parent_Type attribute, else return Empty.
6394 function Types_Correspond
6395 (P_Type : Entity_Id;
6396 N_Type : Entity_Id) return Boolean;
6397 -- Returns true if and only if the types (or designated types in the
6398 -- case of anonymous access types) are the same or N_Type is derived
6399 -- directly or indirectly from P_Type.
6401 -----------------------------
6402 -- Get_Generic_Parent_Type --
6403 -----------------------------
6405 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
6406 G_Typ : Entity_Id;
6407 Indic : Node_Id;
6409 begin
6410 if Is_Derived_Type (F_Typ)
6411 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
6412 then
6413 -- The tree must be traversed to determine the parent subtype in
6414 -- the generic unit, which unfortunately isn't always available
6415 -- via semantic attributes. ??? (Note: The use of Original_Node
6416 -- is needed for cases where a full derived type has been
6417 -- rewritten.)
6419 Indic := Subtype_Indication
6420 (Type_Definition (Original_Node (Parent (F_Typ))));
6422 if Nkind (Indic) = N_Subtype_Indication then
6423 G_Typ := Entity (Subtype_Mark (Indic));
6424 else
6425 G_Typ := Entity (Indic);
6426 end if;
6428 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
6429 and then Present (Generic_Parent_Type (Parent (G_Typ)))
6430 then
6431 return Generic_Parent_Type (Parent (G_Typ));
6432 end if;
6433 end if;
6435 return Empty;
6436 end Get_Generic_Parent_Type;
6438 ----------------------
6439 -- Types_Correspond --
6440 ----------------------
6442 function Types_Correspond
6443 (P_Type : Entity_Id;
6444 N_Type : Entity_Id) return Boolean
6446 Prev_Type : Entity_Id := Base_Type (P_Type);
6447 New_Type : Entity_Id := Base_Type (N_Type);
6449 begin
6450 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
6451 Prev_Type := Designated_Type (Prev_Type);
6452 end if;
6454 if Ekind (New_Type) = E_Anonymous_Access_Type then
6455 New_Type := Designated_Type (New_Type);
6456 end if;
6458 if Prev_Type = New_Type then
6459 return True;
6461 elsif not Is_Class_Wide_Type (New_Type) then
6462 while Etype (New_Type) /= New_Type loop
6463 New_Type := Etype (New_Type);
6464 if New_Type = Prev_Type then
6465 return True;
6466 end if;
6467 end loop;
6468 end if;
6469 return False;
6470 end Types_Correspond;
6472 -- Start of processing for Is_Non_Overriding_Operation
6474 begin
6475 -- In the case where both operations are implicit derived subprograms
6476 -- then neither overrides the other. This can only occur in certain
6477 -- obscure cases (e.g., derivation from homographs created in a generic
6478 -- instantiation).
6480 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
6481 return True;
6483 elsif Ekind (Current_Scope) = E_Package
6484 and then Is_Generic_Instance (Current_Scope)
6485 and then In_Private_Part (Current_Scope)
6486 and then Comes_From_Source (New_E)
6487 then
6488 -- We examine the formals and result subtype of the inherited
6489 -- operation, to determine whether their type is derived from (the
6490 -- instance of) a generic type.
6492 Formal := First_Formal (Prev_E);
6494 while Present (Formal) loop
6495 F_Typ := Base_Type (Etype (Formal));
6497 if Ekind (F_Typ) = E_Anonymous_Access_Type then
6498 F_Typ := Designated_Type (F_Typ);
6499 end if;
6501 G_Typ := Get_Generic_Parent_Type (F_Typ);
6503 Next_Formal (Formal);
6504 end loop;
6506 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
6507 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
6508 end if;
6510 if No (G_Typ) then
6511 return False;
6512 end if;
6514 -- If the generic type is a private type, then the original operation
6515 -- was not overriding in the generic, because there was no primitive
6516 -- operation to override.
6518 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
6519 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
6520 N_Formal_Private_Type_Definition
6521 then
6522 return True;
6524 -- The generic parent type is the ancestor of a formal derived
6525 -- type declaration. We need to check whether it has a primitive
6526 -- operation that should be overridden by New_E in the generic.
6528 else
6529 declare
6530 P_Formal : Entity_Id;
6531 N_Formal : Entity_Id;
6532 P_Typ : Entity_Id;
6533 N_Typ : Entity_Id;
6534 P_Prim : Entity_Id;
6535 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
6537 begin
6538 while Present (Prim_Elt) loop
6539 P_Prim := Node (Prim_Elt);
6541 if Chars (P_Prim) = Chars (New_E)
6542 and then Ekind (P_Prim) = Ekind (New_E)
6543 then
6544 P_Formal := First_Formal (P_Prim);
6545 N_Formal := First_Formal (New_E);
6546 while Present (P_Formal) and then Present (N_Formal) loop
6547 P_Typ := Etype (P_Formal);
6548 N_Typ := Etype (N_Formal);
6550 if not Types_Correspond (P_Typ, N_Typ) then
6551 exit;
6552 end if;
6554 Next_Entity (P_Formal);
6555 Next_Entity (N_Formal);
6556 end loop;
6558 -- Found a matching primitive operation belonging to the
6559 -- formal ancestor type, so the new subprogram is
6560 -- overriding.
6562 if No (P_Formal)
6563 and then No (N_Formal)
6564 and then (Ekind (New_E) /= E_Function
6565 or else
6566 Types_Correspond
6567 (Etype (P_Prim), Etype (New_E)))
6568 then
6569 return False;
6570 end if;
6571 end if;
6573 Next_Elmt (Prim_Elt);
6574 end loop;
6576 -- If no match found, then the new subprogram does not
6577 -- override in the generic (nor in the instance).
6579 return True;
6580 end;
6581 end if;
6582 else
6583 return False;
6584 end if;
6585 end Is_Non_Overriding_Operation;
6587 ------------------------------
6588 -- Make_Inequality_Operator --
6589 ------------------------------
6591 -- S is the defining identifier of an equality operator. We build a
6592 -- subprogram declaration with the right signature. This operation is
6593 -- intrinsic, because it is always expanded as the negation of the
6594 -- call to the equality function.
6596 procedure Make_Inequality_Operator (S : Entity_Id) is
6597 Loc : constant Source_Ptr := Sloc (S);
6598 Decl : Node_Id;
6599 Formals : List_Id;
6600 Op_Name : Entity_Id;
6602 FF : constant Entity_Id := First_Formal (S);
6603 NF : constant Entity_Id := Next_Formal (FF);
6605 begin
6606 -- Check that equality was properly defined, ignore call if not
6608 if No (NF) then
6609 return;
6610 end if;
6612 declare
6613 A : constant Entity_Id :=
6614 Make_Defining_Identifier (Sloc (FF),
6615 Chars => Chars (FF));
6617 B : constant Entity_Id :=
6618 Make_Defining_Identifier (Sloc (NF),
6619 Chars => Chars (NF));
6621 begin
6622 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
6624 Formals := New_List (
6625 Make_Parameter_Specification (Loc,
6626 Defining_Identifier => A,
6627 Parameter_Type =>
6628 New_Reference_To (Etype (First_Formal (S)),
6629 Sloc (Etype (First_Formal (S))))),
6631 Make_Parameter_Specification (Loc,
6632 Defining_Identifier => B,
6633 Parameter_Type =>
6634 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
6635 Sloc (Etype (Next_Formal (First_Formal (S)))))));
6637 Decl :=
6638 Make_Subprogram_Declaration (Loc,
6639 Specification =>
6640 Make_Function_Specification (Loc,
6641 Defining_Unit_Name => Op_Name,
6642 Parameter_Specifications => Formals,
6643 Result_Definition =>
6644 New_Reference_To (Standard_Boolean, Loc)));
6646 -- Insert inequality right after equality if it is explicit or after
6647 -- the derived type when implicit. These entities are created only
6648 -- for visibility purposes, and eventually replaced in the course of
6649 -- expansion, so they do not need to be attached to the tree and seen
6650 -- by the back-end. Keeping them internal also avoids spurious
6651 -- freezing problems. The declaration is inserted in the tree for
6652 -- analysis, and removed afterwards. If the equality operator comes
6653 -- from an explicit declaration, attach the inequality immediately
6654 -- after. Else the equality is inherited from a derived type
6655 -- declaration, so insert inequality after that declaration.
6657 if No (Alias (S)) then
6658 Insert_After (Unit_Declaration_Node (S), Decl);
6659 elsif Is_List_Member (Parent (S)) then
6660 Insert_After (Parent (S), Decl);
6661 else
6662 Insert_After (Parent (Etype (First_Formal (S))), Decl);
6663 end if;
6665 Mark_Rewrite_Insertion (Decl);
6666 Set_Is_Intrinsic_Subprogram (Op_Name);
6667 Analyze (Decl);
6668 Remove (Decl);
6669 Set_Has_Completion (Op_Name);
6670 Set_Corresponding_Equality (Op_Name, S);
6671 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
6672 end;
6673 end Make_Inequality_Operator;
6675 ----------------------
6676 -- May_Need_Actuals --
6677 ----------------------
6679 procedure May_Need_Actuals (Fun : Entity_Id) is
6680 F : Entity_Id;
6681 B : Boolean;
6683 begin
6684 F := First_Formal (Fun);
6685 B := True;
6686 while Present (F) loop
6687 if No (Default_Value (F)) then
6688 B := False;
6689 exit;
6690 end if;
6692 Next_Formal (F);
6693 end loop;
6695 Set_Needs_No_Actuals (Fun, B);
6696 end May_Need_Actuals;
6698 ---------------------
6699 -- Mode_Conformant --
6700 ---------------------
6702 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6703 Result : Boolean;
6704 begin
6705 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
6706 return Result;
6707 end Mode_Conformant;
6709 ---------------------------
6710 -- New_Overloaded_Entity --
6711 ---------------------------
6713 procedure New_Overloaded_Entity
6714 (S : Entity_Id;
6715 Derived_Type : Entity_Id := Empty)
6717 Overridden_Subp : Entity_Id := Empty;
6718 -- Set if the current scope has an operation that is type-conformant
6719 -- with S, and becomes hidden by S.
6721 Is_Primitive_Subp : Boolean;
6722 -- Set to True if the new subprogram is primitive
6724 E : Entity_Id;
6725 -- Entity that S overrides
6727 Prev_Vis : Entity_Id := Empty;
6728 -- Predecessor of E in Homonym chain
6730 procedure Check_For_Primitive_Subprogram
6731 (Is_Primitive : out Boolean;
6732 Is_Overriding : Boolean := False);
6733 -- If the subprogram being analyzed is a primitive operation of the type
6734 -- of a formal or result, set the Has_Primitive_Operations flag on the
6735 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6736 -- corresponding flag on the entity itself for later use.
6738 procedure Check_Synchronized_Overriding
6739 (Def_Id : Entity_Id;
6740 Overridden_Subp : out Entity_Id);
6741 -- First determine if Def_Id is an entry or a subprogram either defined
6742 -- in the scope of a task or protected type, or is a primitive of such
6743 -- a type. Check whether Def_Id overrides a subprogram of an interface
6744 -- implemented by the synchronized type, return the overridden entity
6745 -- or Empty.
6747 function Is_Private_Declaration (E : Entity_Id) return Boolean;
6748 -- Check that E is declared in the private part of the current package,
6749 -- or in the package body, where it may hide a previous declaration.
6750 -- We can't use In_Private_Part by itself because this flag is also
6751 -- set when freezing entities, so we must examine the place of the
6752 -- declaration in the tree, and recognize wrapper packages as well.
6754 function Is_Overriding_Alias
6755 (Old_E : Entity_Id;
6756 New_E : Entity_Id) return Boolean;
6757 -- Check whether new subprogram and old subprogram are both inherited
6758 -- from subprograms that have distinct dispatch table entries. This can
6759 -- occur with derivations from instances with accidental homonyms.
6760 -- The function is conservative given that the converse is only true
6761 -- within instances that contain accidental overloadings.
6763 ------------------------------------
6764 -- Check_For_Primitive_Subprogram --
6765 ------------------------------------
6767 procedure Check_For_Primitive_Subprogram
6768 (Is_Primitive : out Boolean;
6769 Is_Overriding : Boolean := False)
6771 Formal : Entity_Id;
6772 F_Typ : Entity_Id;
6773 B_Typ : Entity_Id;
6775 function Visible_Part_Type (T : Entity_Id) return Boolean;
6776 -- Returns true if T is declared in the visible part of the current
6777 -- package scope; otherwise returns false. Assumes that T is declared
6778 -- in a package.
6780 procedure Check_Private_Overriding (T : Entity_Id);
6781 -- Checks that if a primitive abstract subprogram of a visible
6782 -- abstract type is declared in a private part, then it must override
6783 -- an abstract subprogram declared in the visible part. Also checks
6784 -- that if a primitive function with a controlling result is declared
6785 -- in a private part, then it must override a function declared in
6786 -- the visible part.
6788 ------------------------------
6789 -- Check_Private_Overriding --
6790 ------------------------------
6792 procedure Check_Private_Overriding (T : Entity_Id) is
6793 begin
6794 if Is_Package_Or_Generic_Package (Current_Scope)
6795 and then In_Private_Part (Current_Scope)
6796 and then Visible_Part_Type (T)
6797 and then not In_Instance
6798 then
6799 if Is_Abstract_Type (T)
6800 and then Is_Abstract_Subprogram (S)
6801 and then (not Is_Overriding
6802 or else not Is_Abstract_Subprogram (E))
6803 then
6804 Error_Msg_N ("abstract subprograms must be visible "
6805 & "(RM 3.9.3(10))!", S);
6807 elsif Ekind (S) = E_Function
6808 and then Is_Tagged_Type (T)
6809 and then T = Base_Type (Etype (S))
6810 and then not Is_Overriding
6811 then
6812 Error_Msg_N
6813 ("private function with tagged result must"
6814 & " override visible-part function", S);
6815 Error_Msg_N
6816 ("\move subprogram to the visible part"
6817 & " (RM 3.9.3(10))", S);
6818 end if;
6819 end if;
6820 end Check_Private_Overriding;
6822 -----------------------
6823 -- Visible_Part_Type --
6824 -----------------------
6826 function Visible_Part_Type (T : Entity_Id) return Boolean is
6827 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
6828 N : Node_Id;
6830 begin
6831 -- If the entity is a private type, then it must be declared in a
6832 -- visible part.
6834 if Ekind (T) in Private_Kind then
6835 return True;
6836 end if;
6838 -- Otherwise, we traverse the visible part looking for its
6839 -- corresponding declaration. We cannot use the declaration
6840 -- node directly because in the private part the entity of a
6841 -- private type is the one in the full view, which does not
6842 -- indicate that it is the completion of something visible.
6844 N := First (Visible_Declarations (Specification (P)));
6845 while Present (N) loop
6846 if Nkind (N) = N_Full_Type_Declaration
6847 and then Present (Defining_Identifier (N))
6848 and then T = Defining_Identifier (N)
6849 then
6850 return True;
6852 elsif Nkind_In (N, N_Private_Type_Declaration,
6853 N_Private_Extension_Declaration)
6854 and then Present (Defining_Identifier (N))
6855 and then T = Full_View (Defining_Identifier (N))
6856 then
6857 return True;
6858 end if;
6860 Next (N);
6861 end loop;
6863 return False;
6864 end Visible_Part_Type;
6866 -- Start of processing for Check_For_Primitive_Subprogram
6868 begin
6869 Is_Primitive := False;
6871 if not Comes_From_Source (S) then
6872 null;
6874 -- If subprogram is at library level, it is not primitive operation
6876 elsif Current_Scope = Standard_Standard then
6877 null;
6879 elsif (Is_Package_Or_Generic_Package (Current_Scope)
6880 and then not In_Package_Body (Current_Scope))
6881 or else Is_Overriding
6882 then
6883 -- For function, check return type
6885 if Ekind (S) = E_Function then
6886 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
6887 F_Typ := Designated_Type (Etype (S));
6888 else
6889 F_Typ := Etype (S);
6890 end if;
6892 B_Typ := Base_Type (F_Typ);
6894 if Scope (B_Typ) = Current_Scope
6895 and then not Is_Class_Wide_Type (B_Typ)
6896 and then not Is_Generic_Type (B_Typ)
6897 then
6898 Is_Primitive := True;
6899 Set_Has_Primitive_Operations (B_Typ);
6900 Set_Is_Primitive (S);
6901 Check_Private_Overriding (B_Typ);
6902 end if;
6903 end if;
6905 -- For all subprograms, check formals
6907 Formal := First_Formal (S);
6908 while Present (Formal) loop
6909 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
6910 F_Typ := Designated_Type (Etype (Formal));
6911 else
6912 F_Typ := Etype (Formal);
6913 end if;
6915 B_Typ := Base_Type (F_Typ);
6917 if Ekind (B_Typ) = E_Access_Subtype then
6918 B_Typ := Base_Type (B_Typ);
6919 end if;
6921 if Scope (B_Typ) = Current_Scope
6922 and then not Is_Class_Wide_Type (B_Typ)
6923 and then not Is_Generic_Type (B_Typ)
6924 then
6925 Is_Primitive := True;
6926 Set_Is_Primitive (S);
6927 Set_Has_Primitive_Operations (B_Typ);
6928 Check_Private_Overriding (B_Typ);
6929 end if;
6931 Next_Formal (Formal);
6932 end loop;
6933 end if;
6934 end Check_For_Primitive_Subprogram;
6936 -----------------------------------
6937 -- Check_Synchronized_Overriding --
6938 -----------------------------------
6940 procedure Check_Synchronized_Overriding
6941 (Def_Id : Entity_Id;
6942 Overridden_Subp : out Entity_Id)
6944 Ifaces_List : Elist_Id;
6945 In_Scope : Boolean;
6946 Typ : Entity_Id;
6948 function Matches_Prefixed_View_Profile
6949 (Prim_Params : List_Id;
6950 Iface_Params : List_Id) return Boolean;
6951 -- Determine whether a subprogram's parameter profile Prim_Params
6952 -- matches that of a potentially overridden interface subprogram
6953 -- Iface_Params. Also determine if the type of first parameter of
6954 -- Iface_Params is an implemented interface.
6956 -----------------------------------
6957 -- Matches_Prefixed_View_Profile --
6958 -----------------------------------
6960 function Matches_Prefixed_View_Profile
6961 (Prim_Params : List_Id;
6962 Iface_Params : List_Id) return Boolean
6964 Iface_Id : Entity_Id;
6965 Iface_Param : Node_Id;
6966 Iface_Typ : Entity_Id;
6967 Prim_Id : Entity_Id;
6968 Prim_Param : Node_Id;
6969 Prim_Typ : Entity_Id;
6971 function Is_Implemented
6972 (Ifaces_List : Elist_Id;
6973 Iface : Entity_Id) return Boolean;
6974 -- Determine if Iface is implemented by the current task or
6975 -- protected type.
6977 --------------------
6978 -- Is_Implemented --
6979 --------------------
6981 function Is_Implemented
6982 (Ifaces_List : Elist_Id;
6983 Iface : Entity_Id) return Boolean
6985 Iface_Elmt : Elmt_Id;
6987 begin
6988 Iface_Elmt := First_Elmt (Ifaces_List);
6989 while Present (Iface_Elmt) loop
6990 if Node (Iface_Elmt) = Iface then
6991 return True;
6992 end if;
6994 Next_Elmt (Iface_Elmt);
6995 end loop;
6997 return False;
6998 end Is_Implemented;
7000 -- Start of processing for Matches_Prefixed_View_Profile
7002 begin
7003 Iface_Param := First (Iface_Params);
7004 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7006 if Is_Access_Type (Iface_Typ) then
7007 Iface_Typ := Designated_Type (Iface_Typ);
7008 end if;
7010 Prim_Param := First (Prim_Params);
7012 -- The first parameter of the potentially overridden subprogram
7013 -- must be an interface implemented by Prim.
7015 if not Is_Interface (Iface_Typ)
7016 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7017 then
7018 return False;
7019 end if;
7021 -- The checks on the object parameters are done, move onto the
7022 -- rest of the parameters.
7024 if not In_Scope then
7025 Prim_Param := Next (Prim_Param);
7026 end if;
7028 Iface_Param := Next (Iface_Param);
7029 while Present (Iface_Param) and then Present (Prim_Param) loop
7030 Iface_Id := Defining_Identifier (Iface_Param);
7031 Iface_Typ := Find_Parameter_Type (Iface_Param);
7033 Prim_Id := Defining_Identifier (Prim_Param);
7034 Prim_Typ := Find_Parameter_Type (Prim_Param);
7036 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7037 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7038 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7039 then
7040 Iface_Typ := Designated_Type (Iface_Typ);
7041 Prim_Typ := Designated_Type (Prim_Typ);
7042 end if;
7044 -- Case of multiple interface types inside a parameter profile
7046 -- (Obj_Param : in out Iface; ...; Param : Iface)
7048 -- If the interface type is implemented, then the matching type
7049 -- in the primitive should be the implementing record type.
7051 if Ekind (Iface_Typ) = E_Record_Type
7052 and then Is_Interface (Iface_Typ)
7053 and then Is_Implemented (Ifaces_List, Iface_Typ)
7054 then
7055 if Prim_Typ /= Typ then
7056 return False;
7057 end if;
7059 -- The two parameters must be both mode and subtype conformant
7061 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7062 or else not
7063 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7064 then
7065 return False;
7066 end if;
7068 Next (Iface_Param);
7069 Next (Prim_Param);
7070 end loop;
7072 -- One of the two lists contains more parameters than the other
7074 if Present (Iface_Param) or else Present (Prim_Param) then
7075 return False;
7076 end if;
7078 return True;
7079 end Matches_Prefixed_View_Profile;
7081 -- Start of processing for Check_Synchronized_Overriding
7083 begin
7084 Overridden_Subp := Empty;
7086 -- Def_Id must be an entry or a subprogram. We should skip predefined
7087 -- primitives internally generated by the frontend; however at this
7088 -- stage predefined primitives are still not fully decorated. As a
7089 -- minor optimization we skip here internally generated subprograms.
7091 if (Ekind (Def_Id) /= E_Entry
7092 and then Ekind (Def_Id) /= E_Function
7093 and then Ekind (Def_Id) /= E_Procedure)
7094 or else not Comes_From_Source (Def_Id)
7095 then
7096 return;
7097 end if;
7099 -- Search for the concurrent declaration since it contains the list
7100 -- of all implemented interfaces. In this case, the subprogram is
7101 -- declared within the scope of a protected or a task type.
7103 if Present (Scope (Def_Id))
7104 and then Is_Concurrent_Type (Scope (Def_Id))
7105 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7106 then
7107 Typ := Scope (Def_Id);
7108 In_Scope := True;
7110 -- The enclosing scope is not a synchronized type and the subprogram
7111 -- has no formals
7113 elsif No (First_Formal (Def_Id)) then
7114 return;
7116 -- The subprogram has formals and hence it may be a primitive of a
7117 -- concurrent type
7119 else
7120 Typ := Etype (First_Formal (Def_Id));
7122 if Is_Access_Type (Typ) then
7123 Typ := Directly_Designated_Type (Typ);
7124 end if;
7126 if Is_Concurrent_Type (Typ)
7127 and then not Is_Generic_Actual_Type (Typ)
7128 then
7129 In_Scope := False;
7131 -- This case occurs when the concurrent type is declared within
7132 -- a generic unit. As a result the corresponding record has been
7133 -- built and used as the type of the first formal, we just have
7134 -- to retrieve the corresponding concurrent type.
7136 elsif Is_Concurrent_Record_Type (Typ)
7137 and then Present (Corresponding_Concurrent_Type (Typ))
7138 then
7139 Typ := Corresponding_Concurrent_Type (Typ);
7140 In_Scope := False;
7142 else
7143 return;
7144 end if;
7145 end if;
7147 -- There is no overriding to check if is an inherited operation in a
7148 -- type derivation on for a generic actual.
7150 Collect_Interfaces (Typ, Ifaces_List);
7152 if Is_Empty_Elmt_List (Ifaces_List) then
7153 return;
7154 end if;
7156 -- Determine whether entry or subprogram Def_Id overrides a primitive
7157 -- operation that belongs to one of the interfaces in Ifaces_List.
7159 declare
7160 Candidate : Entity_Id := Empty;
7161 Hom : Entity_Id := Empty;
7162 Iface_Typ : Entity_Id;
7163 Subp : Entity_Id := Empty;
7165 begin
7166 -- Traverse the homonym chain, looking at a potentially
7167 -- overridden subprogram that belongs to an implemented
7168 -- interface.
7170 Hom := Current_Entity_In_Scope (Def_Id);
7171 while Present (Hom) loop
7172 Subp := Hom;
7174 if Subp = Def_Id
7175 or else not Is_Overloadable (Subp)
7176 or else not Is_Primitive (Subp)
7177 or else not Is_Dispatching_Operation (Subp)
7178 or else not Present (Find_Dispatching_Type (Subp))
7179 or else not Is_Interface (Find_Dispatching_Type (Subp))
7180 then
7181 null;
7183 -- Entries and procedures can override abstract or null
7184 -- interface procedures
7186 elsif (Ekind (Def_Id) = E_Procedure
7187 or else Ekind (Def_Id) = E_Entry)
7188 and then Ekind (Subp) = E_Procedure
7189 and then Matches_Prefixed_View_Profile
7190 (Parameter_Specifications (Parent (Def_Id)),
7191 Parameter_Specifications (Parent (Subp)))
7192 then
7193 Candidate := Subp;
7195 -- For an overridden subprogram Subp, check whether the mode
7196 -- of its first parameter is correct depending on the kind
7197 -- of synchronized type.
7199 declare
7200 Formal : constant Node_Id := First_Formal (Candidate);
7202 begin
7203 -- In order for an entry or a protected procedure to
7204 -- override, the first parameter of the overridden
7205 -- routine must be of mode "out", "in out" or
7206 -- access-to-variable.
7208 if (Ekind (Candidate) = E_Entry
7209 or else Ekind (Candidate) = E_Procedure)
7210 and then Is_Protected_Type (Typ)
7211 and then Ekind (Formal) /= E_In_Out_Parameter
7212 and then Ekind (Formal) /= E_Out_Parameter
7213 and then Nkind (Parameter_Type (Parent (Formal)))
7214 /= N_Access_Definition
7215 then
7216 null;
7218 -- All other cases are OK since a task entry or routine
7219 -- does not have a restriction on the mode of the first
7220 -- parameter of the overridden interface routine.
7222 else
7223 Overridden_Subp := Candidate;
7224 return;
7225 end if;
7226 end;
7228 -- Functions can override abstract interface functions
7230 elsif Ekind (Def_Id) = E_Function
7231 and then Ekind (Subp) = E_Function
7232 and then Matches_Prefixed_View_Profile
7233 (Parameter_Specifications (Parent (Def_Id)),
7234 Parameter_Specifications (Parent (Subp)))
7235 and then Etype (Result_Definition (Parent (Def_Id))) =
7236 Etype (Result_Definition (Parent (Subp)))
7237 then
7238 Overridden_Subp := Subp;
7239 return;
7240 end if;
7242 Hom := Homonym (Hom);
7243 end loop;
7245 -- After examining all candidates for overriding, we are
7246 -- left with the best match which is a mode incompatible
7247 -- interface routine. Do not emit an error if the Expander
7248 -- is active since this error will be detected later on
7249 -- after all concurrent types are expanded and all wrappers
7250 -- are built. This check is meant for spec-only
7251 -- compilations.
7253 if Present (Candidate)
7254 and then not Expander_Active
7255 then
7256 Iface_Typ :=
7257 Find_Parameter_Type (Parent (First_Formal (Candidate)));
7259 -- Def_Id is primitive of a protected type, declared
7260 -- inside the type, and the candidate is primitive of a
7261 -- limited or synchronized interface.
7263 if In_Scope
7264 and then Is_Protected_Type (Typ)
7265 and then
7266 (Is_Limited_Interface (Iface_Typ)
7267 or else Is_Protected_Interface (Iface_Typ)
7268 or else Is_Synchronized_Interface (Iface_Typ)
7269 or else Is_Task_Interface (Iface_Typ))
7270 then
7271 -- Must reword this message, comma before to in -gnatj
7272 -- mode ???
7274 Error_Msg_NE
7275 ("first formal of & must be of mode `OUT`, `IN OUT`"
7276 & " or access-to-variable", Typ, Candidate);
7277 Error_Msg_N
7278 ("\to be overridden by protected procedure or entry "
7279 & "(RM 9.4(11.9/2))", Typ);
7280 end if;
7281 end if;
7283 Overridden_Subp := Candidate;
7284 return;
7285 end;
7286 end Check_Synchronized_Overriding;
7288 ----------------------------
7289 -- Is_Private_Declaration --
7290 ----------------------------
7292 function Is_Private_Declaration (E : Entity_Id) return Boolean is
7293 Priv_Decls : List_Id;
7294 Decl : constant Node_Id := Unit_Declaration_Node (E);
7296 begin
7297 if Is_Package_Or_Generic_Package (Current_Scope)
7298 and then In_Private_Part (Current_Scope)
7299 then
7300 Priv_Decls :=
7301 Private_Declarations (
7302 Specification (Unit_Declaration_Node (Current_Scope)));
7304 return In_Package_Body (Current_Scope)
7305 or else
7306 (Is_List_Member (Decl)
7307 and then List_Containing (Decl) = Priv_Decls)
7308 or else (Nkind (Parent (Decl)) = N_Package_Specification
7309 and then not
7310 Is_Compilation_Unit
7311 (Defining_Entity (Parent (Decl)))
7312 and then List_Containing (Parent (Parent (Decl)))
7313 = Priv_Decls);
7314 else
7315 return False;
7316 end if;
7317 end Is_Private_Declaration;
7319 --------------------------
7320 -- Is_Overriding_Alias --
7321 --------------------------
7323 function Is_Overriding_Alias
7324 (Old_E : Entity_Id;
7325 New_E : Entity_Id) return Boolean
7327 AO : constant Entity_Id := Alias (Old_E);
7328 AN : constant Entity_Id := Alias (New_E);
7330 begin
7331 return Scope (AO) /= Scope (AN)
7332 or else No (DTC_Entity (AO))
7333 or else No (DTC_Entity (AN))
7334 or else DT_Position (AO) = DT_Position (AN);
7335 end Is_Overriding_Alias;
7337 -- Start of processing for New_Overloaded_Entity
7339 begin
7340 -- We need to look for an entity that S may override. This must be a
7341 -- homonym in the current scope, so we look for the first homonym of
7342 -- S in the current scope as the starting point for the search.
7344 E := Current_Entity_In_Scope (S);
7346 -- If there is no homonym then this is definitely not overriding
7348 if No (E) then
7349 Enter_Overloaded_Entity (S);
7350 Check_Dispatching_Operation (S, Empty);
7351 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7353 -- If subprogram has an explicit declaration, check whether it
7354 -- has an overriding indicator.
7356 if Comes_From_Source (S) then
7357 Check_Synchronized_Overriding (S, Overridden_Subp);
7358 Check_Overriding_Indicator
7359 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7360 end if;
7362 -- If there is a homonym that is not overloadable, then we have an
7363 -- error, except for the special cases checked explicitly below.
7365 elsif not Is_Overloadable (E) then
7367 -- Check for spurious conflict produced by a subprogram that has the
7368 -- same name as that of the enclosing generic package. The conflict
7369 -- occurs within an instance, between the subprogram and the renaming
7370 -- declaration for the package. After the subprogram, the package
7371 -- renaming declaration becomes hidden.
7373 if Ekind (E) = E_Package
7374 and then Present (Renamed_Object (E))
7375 and then Renamed_Object (E) = Current_Scope
7376 and then Nkind (Parent (Renamed_Object (E))) =
7377 N_Package_Specification
7378 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
7379 then
7380 Set_Is_Hidden (E);
7381 Set_Is_Immediately_Visible (E, False);
7382 Enter_Overloaded_Entity (S);
7383 Set_Homonym (S, Homonym (E));
7384 Check_Dispatching_Operation (S, Empty);
7385 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
7387 -- If the subprogram is implicit it is hidden by the previous
7388 -- declaration. However if it is dispatching, it must appear in the
7389 -- dispatch table anyway, because it can be dispatched to even if it
7390 -- cannot be called directly.
7392 elsif Present (Alias (S))
7393 and then not Comes_From_Source (S)
7394 then
7395 Set_Scope (S, Current_Scope);
7397 if Is_Dispatching_Operation (Alias (S)) then
7398 Check_Dispatching_Operation (S, Empty);
7399 end if;
7401 return;
7403 else
7404 Error_Msg_Sloc := Sloc (E);
7406 -- Generate message, with useful additional warning if in generic
7408 if Is_Generic_Unit (E) then
7409 Error_Msg_N ("previous generic unit cannot be overloaded", S);
7410 Error_Msg_N ("\& conflicts with declaration#", S);
7411 else
7412 Error_Msg_N ("& conflicts with declaration#", S);
7413 end if;
7415 return;
7416 end if;
7418 -- E exists and is overloadable
7420 else
7421 -- Ada 2005 (AI-251): Derivation of abstract interface primitives
7422 -- need no check against the homonym chain. They are directly added
7423 -- to the list of primitive operations of Derived_Type.
7425 if Ada_Version >= Ada_05
7426 and then Present (Derived_Type)
7427 and then Is_Dispatching_Operation (Alias (S))
7428 and then Present (Find_Dispatching_Type (Alias (S)))
7429 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
7430 then
7431 goto Add_New_Entity;
7432 end if;
7434 Check_Synchronized_Overriding (S, Overridden_Subp);
7436 -- Loop through E and its homonyms to determine if any of them is
7437 -- the candidate for overriding by S.
7439 while Present (E) loop
7441 -- Definitely not interesting if not in the current scope
7443 if Scope (E) /= Current_Scope then
7444 null;
7446 -- Check if we have type conformance
7448 elsif Type_Conformant (E, S) then
7450 -- If the old and new entities have the same profile and one
7451 -- is not the body of the other, then this is an error, unless
7452 -- one of them is implicitly declared.
7454 -- There are some cases when both can be implicit, for example
7455 -- when both a literal and a function that overrides it are
7456 -- inherited in a derivation, or when an inherited operation
7457 -- of a tagged full type overrides the inherited operation of
7458 -- a private extension. Ada 83 had a special rule for the
7459 -- literal case. In Ada95, the later implicit operation hides
7460 -- the former, and the literal is always the former. In the
7461 -- odd case where both are derived operations declared at the
7462 -- same point, both operations should be declared, and in that
7463 -- case we bypass the following test and proceed to the next
7464 -- part. This can only occur for certain obscure cases in
7465 -- instances, when an operation on a type derived from a formal
7466 -- private type does not override a homograph inherited from
7467 -- the actual. In subsequent derivations of such a type, the
7468 -- DT positions of these operations remain distinct, if they
7469 -- have been set.
7471 if Present (Alias (S))
7472 and then (No (Alias (E))
7473 or else Comes_From_Source (E)
7474 or else Is_Abstract_Subprogram (S)
7475 or else
7476 (Is_Dispatching_Operation (E)
7477 and then Is_Overriding_Alias (E, S)))
7478 and then Ekind (E) /= E_Enumeration_Literal
7479 then
7480 -- When an derived operation is overloaded it may be due to
7481 -- the fact that the full view of a private extension
7482 -- re-inherits. It has to be dealt with.
7484 if Is_Package_Or_Generic_Package (Current_Scope)
7485 and then In_Private_Part (Current_Scope)
7486 then
7487 Check_Operation_From_Private_View (S, E);
7488 end if;
7490 -- In any case the implicit operation remains hidden by
7491 -- the existing declaration, which is overriding.
7493 Set_Is_Overriding_Operation (E);
7495 if Comes_From_Source (E) then
7496 Check_Overriding_Indicator (E, S, Is_Primitive => False);
7498 -- Indicate that E overrides the operation from which
7499 -- S is inherited.
7501 if Present (Alias (S)) then
7502 Set_Overridden_Operation (E, Alias (S));
7503 else
7504 Set_Overridden_Operation (E, S);
7505 end if;
7506 end if;
7508 return;
7510 -- Within an instance, the renaming declarations for actual
7511 -- subprograms may become ambiguous, but they do not hide each
7512 -- other.
7514 elsif Ekind (E) /= E_Entry
7515 and then not Comes_From_Source (E)
7516 and then not Is_Generic_Instance (E)
7517 and then (Present (Alias (E))
7518 or else Is_Intrinsic_Subprogram (E))
7519 and then (not In_Instance
7520 or else No (Parent (E))
7521 or else Nkind (Unit_Declaration_Node (E)) /=
7522 N_Subprogram_Renaming_Declaration)
7523 then
7524 -- A subprogram child unit is not allowed to override an
7525 -- inherited subprogram (10.1.1(20)).
7527 if Is_Child_Unit (S) then
7528 Error_Msg_N
7529 ("child unit overrides inherited subprogram in parent",
7531 return;
7532 end if;
7534 if Is_Non_Overriding_Operation (E, S) then
7535 Enter_Overloaded_Entity (S);
7537 if No (Derived_Type)
7538 or else Is_Tagged_Type (Derived_Type)
7539 then
7540 Check_Dispatching_Operation (S, Empty);
7541 end if;
7543 return;
7544 end if;
7546 -- E is a derived operation or an internal operator which
7547 -- is being overridden. Remove E from further visibility.
7548 -- Furthermore, if E is a dispatching operation, it must be
7549 -- replaced in the list of primitive operations of its type
7550 -- (see Override_Dispatching_Operation).
7552 Overridden_Subp := E;
7554 declare
7555 Prev : Entity_Id;
7557 begin
7558 Prev := First_Entity (Current_Scope);
7559 while Present (Prev)
7560 and then Next_Entity (Prev) /= E
7561 loop
7562 Next_Entity (Prev);
7563 end loop;
7565 -- It is possible for E to be in the current scope and
7566 -- yet not in the entity chain. This can only occur in a
7567 -- generic context where E is an implicit concatenation
7568 -- in the formal part, because in a generic body the
7569 -- entity chain starts with the formals.
7571 pragma Assert
7572 (Present (Prev) or else Chars (E) = Name_Op_Concat);
7574 -- E must be removed both from the entity_list of the
7575 -- current scope, and from the visibility chain
7577 if Debug_Flag_E then
7578 Write_Str ("Override implicit operation ");
7579 Write_Int (Int (E));
7580 Write_Eol;
7581 end if;
7583 -- If E is a predefined concatenation, it stands for four
7584 -- different operations. As a result, a single explicit
7585 -- declaration does not hide it. In a possible ambiguous
7586 -- situation, Disambiguate chooses the user-defined op,
7587 -- so it is correct to retain the previous internal one.
7589 if Chars (E) /= Name_Op_Concat
7590 or else Ekind (E) /= E_Operator
7591 then
7592 -- For nondispatching derived operations that are
7593 -- overridden by a subprogram declared in the private
7594 -- part of a package, we retain the derived subprogram
7595 -- but mark it as not immediately visible. If the
7596 -- derived operation was declared in the visible part
7597 -- then this ensures that it will still be visible
7598 -- outside the package with the proper signature
7599 -- (calls from outside must also be directed to this
7600 -- version rather than the overriding one, unlike the
7601 -- dispatching case). Calls from inside the package
7602 -- will still resolve to the overriding subprogram
7603 -- since the derived one is marked as not visible
7604 -- within the package.
7606 -- If the private operation is dispatching, we achieve
7607 -- the overriding by keeping the implicit operation
7608 -- but setting its alias to be the overriding one. In
7609 -- this fashion the proper body is executed in all
7610 -- cases, but the original signature is used outside
7611 -- of the package.
7613 -- If the overriding is not in the private part, we
7614 -- remove the implicit operation altogether.
7616 if Is_Private_Declaration (S) then
7617 if not Is_Dispatching_Operation (E) then
7618 Set_Is_Immediately_Visible (E, False);
7619 else
7620 -- Work done in Override_Dispatching_Operation,
7621 -- so nothing else need to be done here.
7623 null;
7624 end if;
7626 else
7627 -- Find predecessor of E in Homonym chain
7629 if E = Current_Entity (E) then
7630 Prev_Vis := Empty;
7631 else
7632 Prev_Vis := Current_Entity (E);
7633 while Homonym (Prev_Vis) /= E loop
7634 Prev_Vis := Homonym (Prev_Vis);
7635 end loop;
7636 end if;
7638 if Prev_Vis /= Empty then
7640 -- Skip E in the visibility chain
7642 Set_Homonym (Prev_Vis, Homonym (E));
7644 else
7645 Set_Name_Entity_Id (Chars (E), Homonym (E));
7646 end if;
7648 Set_Next_Entity (Prev, Next_Entity (E));
7650 if No (Next_Entity (Prev)) then
7651 Set_Last_Entity (Current_Scope, Prev);
7652 end if;
7654 end if;
7655 end if;
7657 Enter_Overloaded_Entity (S);
7658 Set_Is_Overriding_Operation (S);
7659 Check_Overriding_Indicator (S, E, Is_Primitive => True);
7661 -- Indicate that S overrides the operation from which
7662 -- E is inherited.
7664 if Comes_From_Source (S) then
7665 if Present (Alias (E)) then
7666 Set_Overridden_Operation (S, Alias (E));
7667 else
7668 Set_Overridden_Operation (S, E);
7669 end if;
7670 end if;
7672 if Is_Dispatching_Operation (E) then
7674 -- An overriding dispatching subprogram inherits the
7675 -- convention of the overridden subprogram (by
7676 -- AI-117).
7678 Set_Convention (S, Convention (E));
7679 Check_Dispatching_Operation (S, E);
7681 else
7682 Check_Dispatching_Operation (S, Empty);
7683 end if;
7685 Check_For_Primitive_Subprogram
7686 (Is_Primitive_Subp, Is_Overriding => True);
7687 goto Check_Inequality;
7688 end;
7690 -- Apparent redeclarations in instances can occur when two
7691 -- formal types get the same actual type. The subprograms in
7692 -- in the instance are legal, even if not callable from the
7693 -- outside. Calls from within are disambiguated elsewhere.
7694 -- For dispatching operations in the visible part, the usual
7695 -- rules apply, and operations with the same profile are not
7696 -- legal (B830001).
7698 elsif (In_Instance_Visible_Part
7699 and then not Is_Dispatching_Operation (E))
7700 or else In_Instance_Not_Visible
7701 then
7702 null;
7704 -- Here we have a real error (identical profile)
7706 else
7707 Error_Msg_Sloc := Sloc (E);
7709 -- Avoid cascaded errors if the entity appears in
7710 -- subsequent calls.
7712 Set_Scope (S, Current_Scope);
7714 -- Generate error, with extra useful warning for the case
7715 -- of a generic instance with no completion.
7717 if Is_Generic_Instance (S)
7718 and then not Has_Completion (E)
7719 then
7720 Error_Msg_N
7721 ("instantiation cannot provide body for&", S);
7722 Error_Msg_N ("\& conflicts with declaration#", S);
7723 else
7724 Error_Msg_N ("& conflicts with declaration#", S);
7725 end if;
7727 return;
7728 end if;
7730 else
7731 -- If one subprogram has an access parameter and the other
7732 -- a parameter of an access type, calls to either might be
7733 -- ambiguous. Verify that parameters match except for the
7734 -- access parameter.
7736 if May_Hide_Profile then
7737 declare
7738 F1 : Entity_Id;
7739 F2 : Entity_Id;
7741 begin
7742 F1 := First_Formal (S);
7743 F2 := First_Formal (E);
7744 while Present (F1) and then Present (F2) loop
7745 if Is_Access_Type (Etype (F1)) then
7746 if not Is_Access_Type (Etype (F2))
7747 or else not Conforming_Types
7748 (Designated_Type (Etype (F1)),
7749 Designated_Type (Etype (F2)),
7750 Type_Conformant)
7751 then
7752 May_Hide_Profile := False;
7753 end if;
7755 elsif
7756 not Conforming_Types
7757 (Etype (F1), Etype (F2), Type_Conformant)
7758 then
7759 May_Hide_Profile := False;
7760 end if;
7762 Next_Formal (F1);
7763 Next_Formal (F2);
7764 end loop;
7766 if May_Hide_Profile
7767 and then No (F1)
7768 and then No (F2)
7769 then
7770 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
7771 end if;
7772 end;
7773 end if;
7774 end if;
7776 E := Homonym (E);
7777 end loop;
7779 <<Add_New_Entity>>
7781 -- On exit, we know that S is a new entity
7783 Enter_Overloaded_Entity (S);
7784 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7785 Check_Overriding_Indicator
7786 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7788 -- If S is a derived operation for an untagged type then by
7789 -- definition it's not a dispatching operation (even if the parent
7790 -- operation was dispatching), so we don't call
7791 -- Check_Dispatching_Operation in that case.
7793 if No (Derived_Type)
7794 or else Is_Tagged_Type (Derived_Type)
7795 then
7796 Check_Dispatching_Operation (S, Empty);
7797 end if;
7798 end if;
7800 -- If this is a user-defined equality operator that is not a derived
7801 -- subprogram, create the corresponding inequality. If the operation is
7802 -- dispatching, the expansion is done elsewhere, and we do not create
7803 -- an explicit inequality operation.
7805 <<Check_Inequality>>
7806 if Chars (S) = Name_Op_Eq
7807 and then Etype (S) = Standard_Boolean
7808 and then Present (Parent (S))
7809 and then not Is_Dispatching_Operation (S)
7810 then
7811 Make_Inequality_Operator (S);
7812 end if;
7813 end New_Overloaded_Entity;
7815 ---------------------
7816 -- Process_Formals --
7817 ---------------------
7819 procedure Process_Formals
7820 (T : List_Id;
7821 Related_Nod : Node_Id)
7823 Param_Spec : Node_Id;
7824 Formal : Entity_Id;
7825 Formal_Type : Entity_Id;
7826 Default : Node_Id;
7827 Ptype : Entity_Id;
7829 Num_Out_Params : Nat := 0;
7830 First_Out_Param : Entity_Id := Empty;
7831 -- Used for setting Is_Only_Out_Parameter
7833 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
7834 -- Determine whether an access type designates a type coming from a
7835 -- limited view.
7837 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
7838 -- Check whether the default has a class-wide type. After analysis the
7839 -- default has the type of the formal, so we must also check explicitly
7840 -- for an access attribute.
7842 -------------------------------
7843 -- Designates_From_With_Type --
7844 -------------------------------
7846 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
7847 Desig : Entity_Id := Typ;
7849 begin
7850 if Is_Access_Type (Desig) then
7851 Desig := Directly_Designated_Type (Desig);
7852 end if;
7854 if Is_Class_Wide_Type (Desig) then
7855 Desig := Root_Type (Desig);
7856 end if;
7858 return
7859 Ekind (Desig) = E_Incomplete_Type
7860 and then From_With_Type (Desig);
7861 end Designates_From_With_Type;
7863 ---------------------------
7864 -- Is_Class_Wide_Default --
7865 ---------------------------
7867 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
7868 begin
7869 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
7870 or else (Nkind (D) = N_Attribute_Reference
7871 and then Attribute_Name (D) = Name_Access
7872 and then Is_Class_Wide_Type (Etype (Prefix (D))));
7873 end Is_Class_Wide_Default;
7875 -- Start of processing for Process_Formals
7877 begin
7878 -- In order to prevent premature use of the formals in the same formal
7879 -- part, the Ekind is left undefined until all default expressions are
7880 -- analyzed. The Ekind is established in a separate loop at the end.
7882 Param_Spec := First (T);
7883 while Present (Param_Spec) loop
7884 Formal := Defining_Identifier (Param_Spec);
7885 Set_Never_Set_In_Source (Formal, True);
7886 Enter_Name (Formal);
7888 -- Case of ordinary parameters
7890 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
7891 Find_Type (Parameter_Type (Param_Spec));
7892 Ptype := Parameter_Type (Param_Spec);
7894 if Ptype = Error then
7895 goto Continue;
7896 end if;
7898 Formal_Type := Entity (Ptype);
7900 if Is_Incomplete_Type (Formal_Type)
7901 or else
7902 (Is_Class_Wide_Type (Formal_Type)
7903 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
7904 then
7905 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
7906 -- primitive operations, as long as their completion is
7907 -- in the same declarative part. If in the private part
7908 -- this means that the type cannot be a Taft-amendment type.
7909 -- Check is done on package exit. For access to subprograms,
7910 -- the use is legal for Taft-amendment types.
7912 if Is_Tagged_Type (Formal_Type) then
7913 if Ekind (Scope (Current_Scope)) = E_Package
7914 and then In_Private_Part (Scope (Current_Scope))
7915 and then not From_With_Type (Formal_Type)
7916 and then not Is_Class_Wide_Type (Formal_Type)
7917 then
7918 if not Nkind_In
7919 (Parent (T), N_Access_Function_Definition,
7920 N_Access_Procedure_Definition)
7921 then
7922 Append_Elmt
7923 (Current_Scope,
7924 Private_Dependents (Base_Type (Formal_Type)));
7925 end if;
7926 end if;
7928 -- Special handling of Value_Type for CIL case
7930 elsif Is_Value_Type (Formal_Type) then
7931 null;
7933 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
7934 N_Access_Procedure_Definition)
7935 then
7936 Error_Msg_NE
7937 ("invalid use of incomplete type&",
7938 Param_Spec, Formal_Type);
7940 -- Further checks on the legality of incomplete types
7941 -- in formal parts must be delayed until the freeze point
7942 -- of the enclosing subprogram or access to subprogram.
7943 end if;
7945 elsif Ekind (Formal_Type) = E_Void then
7946 Error_Msg_NE ("premature use of&",
7947 Parameter_Type (Param_Spec), Formal_Type);
7948 end if;
7950 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7951 -- declaration corresponding to the null-excluding type of the
7952 -- formal in the enclosing scope. Finally, replace the parameter
7953 -- type of the formal with the internal subtype.
7955 if Ada_Version >= Ada_05
7956 and then Null_Exclusion_Present (Param_Spec)
7957 then
7958 if not Is_Access_Type (Formal_Type) then
7959 Error_Msg_N
7960 ("`NOT NULL` allowed only for an access type", Param_Spec);
7962 else
7963 if Can_Never_Be_Null (Formal_Type)
7964 and then Comes_From_Source (Related_Nod)
7965 then
7966 Error_Msg_NE
7967 ("`NOT NULL` not allowed (& already excludes null)",
7968 Param_Spec,
7969 Formal_Type);
7970 end if;
7972 Formal_Type :=
7973 Create_Null_Excluding_Itype
7974 (T => Formal_Type,
7975 Related_Nod => Related_Nod,
7976 Scope_Id => Scope (Current_Scope));
7978 -- If the designated type of the itype is an itype we
7979 -- decorate it with the Has_Delayed_Freeze attribute to
7980 -- avoid problems with the backend.
7982 -- Example:
7983 -- type T is access procedure;
7984 -- procedure Op (O : not null T);
7986 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
7987 Set_Has_Delayed_Freeze (Formal_Type);
7988 end if;
7989 end if;
7990 end if;
7992 -- An access formal type
7994 else
7995 Formal_Type :=
7996 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7998 -- No need to continue if we already notified errors
8000 if not Present (Formal_Type) then
8001 return;
8002 end if;
8004 -- Ada 2005 (AI-254)
8006 declare
8007 AD : constant Node_Id :=
8008 Access_To_Subprogram_Definition
8009 (Parameter_Type (Param_Spec));
8010 begin
8011 if Present (AD) and then Protected_Present (AD) then
8012 Formal_Type :=
8013 Replace_Anonymous_Access_To_Protected_Subprogram
8014 (Param_Spec);
8015 end if;
8016 end;
8017 end if;
8019 Set_Etype (Formal, Formal_Type);
8020 Default := Expression (Param_Spec);
8022 if Present (Default) then
8023 if Out_Present (Param_Spec) then
8024 Error_Msg_N
8025 ("default initialization only allowed for IN parameters",
8026 Param_Spec);
8027 end if;
8029 -- Do the special preanalysis of the expression (see section on
8030 -- "Handling of Default Expressions" in the spec of package Sem).
8032 Preanalyze_Spec_Expression (Default, Formal_Type);
8034 -- An access to constant cannot be the default for
8035 -- an access parameter that is an access to variable.
8037 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8038 and then not Is_Access_Constant (Formal_Type)
8039 and then Is_Access_Type (Etype (Default))
8040 and then Is_Access_Constant (Etype (Default))
8041 then
8042 Error_Msg_N
8043 ("formal that is access to variable cannot be initialized " &
8044 "with an access-to-constant expression", Default);
8045 end if;
8047 -- Check that the designated type of an access parameter's default
8048 -- is not a class-wide type unless the parameter's designated type
8049 -- is also class-wide.
8051 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8052 and then not Designates_From_With_Type (Formal_Type)
8053 and then Is_Class_Wide_Default (Default)
8054 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
8055 then
8056 Error_Msg_N
8057 ("access to class-wide expression not allowed here", Default);
8058 end if;
8059 end if;
8061 -- Ada 2005 (AI-231): Static checks
8063 if Ada_Version >= Ada_05
8064 and then Is_Access_Type (Etype (Formal))
8065 and then Can_Never_Be_Null (Etype (Formal))
8066 then
8067 Null_Exclusion_Static_Checks (Param_Spec);
8068 end if;
8070 <<Continue>>
8071 Next (Param_Spec);
8072 end loop;
8074 -- If this is the formal part of a function specification, analyze the
8075 -- subtype mark in the context where the formals are visible but not
8076 -- yet usable, and may hide outer homographs.
8078 if Nkind (Related_Nod) = N_Function_Specification then
8079 Analyze_Return_Type (Related_Nod);
8080 end if;
8082 -- Now set the kind (mode) of each formal
8084 Param_Spec := First (T);
8086 while Present (Param_Spec) loop
8087 Formal := Defining_Identifier (Param_Spec);
8088 Set_Formal_Mode (Formal);
8090 if Ekind (Formal) = E_In_Parameter then
8091 Set_Default_Value (Formal, Expression (Param_Spec));
8093 if Present (Expression (Param_Spec)) then
8094 Default := Expression (Param_Spec);
8096 if Is_Scalar_Type (Etype (Default)) then
8097 if Nkind
8098 (Parameter_Type (Param_Spec)) /= N_Access_Definition
8099 then
8100 Formal_Type := Entity (Parameter_Type (Param_Spec));
8102 else
8103 Formal_Type := Access_Definition
8104 (Related_Nod, Parameter_Type (Param_Spec));
8105 end if;
8107 Apply_Scalar_Range_Check (Default, Formal_Type);
8108 end if;
8109 end if;
8111 elsif Ekind (Formal) = E_Out_Parameter then
8112 Num_Out_Params := Num_Out_Params + 1;
8114 if Num_Out_Params = 1 then
8115 First_Out_Param := Formal;
8116 end if;
8118 elsif Ekind (Formal) = E_In_Out_Parameter then
8119 Num_Out_Params := Num_Out_Params + 1;
8120 end if;
8122 Next (Param_Spec);
8123 end loop;
8125 if Present (First_Out_Param) and then Num_Out_Params = 1 then
8126 Set_Is_Only_Out_Parameter (First_Out_Param);
8127 end if;
8128 end Process_Formals;
8130 ------------------
8131 -- Process_PPCs --
8132 ------------------
8134 procedure Process_PPCs
8135 (N : Node_Id;
8136 Spec_Id : Entity_Id;
8137 Body_Id : Entity_Id)
8139 Loc : constant Source_Ptr := Sloc (N);
8140 Prag : Node_Id;
8141 Plist : List_Id := No_List;
8142 Subp : Entity_Id;
8143 Parms : List_Id;
8145 function Grab_PPC (Nam : Name_Id) return Node_Id;
8146 -- Prag contains an analyzed precondition or postcondition pragma.
8147 -- This function copies the pragma, changes it to the corresponding
8148 -- Check pragma and returns the Check pragma as the result. The
8149 -- argument Nam is either Name_Precondition or Name_Postcondition.
8151 --------------
8152 -- Grab_PPC --
8153 --------------
8155 function Grab_PPC (Nam : Name_Id) return Node_Id is
8156 CP : constant Node_Id := New_Copy_Tree (Prag);
8158 begin
8159 -- Set Analyzed to false, since we want to reanalyze the check
8160 -- procedure. Note that it is only at the outer level that we
8161 -- do this fiddling, for the spec cases, the already preanalyzed
8162 -- parameters are not affected.
8164 -- For a postcondition pragma within a generic, preserve the pragma
8165 -- for later expansion.
8167 Set_Analyzed (CP, False);
8169 if Nam = Name_Postcondition
8170 and then not Expander_Active
8171 then
8172 return CP;
8173 end if;
8175 -- Change pragma into corresponding pragma Check
8177 Prepend_To (Pragma_Argument_Associations (CP),
8178 Make_Pragma_Argument_Association (Sloc (Prag),
8179 Expression =>
8180 Make_Identifier (Loc,
8181 Chars => Nam)));
8182 Set_Pragma_Identifier (CP,
8183 Make_Identifier (Sloc (Prag),
8184 Chars => Name_Check));
8186 return CP;
8187 end Grab_PPC;
8189 -- Start of processing for Process_PPCs
8191 begin
8192 -- Nothing to do if we are not generating code
8194 if Operating_Mode /= Generate_Code then
8195 return;
8196 end if;
8198 -- Grab preconditions from spec
8200 if Present (Spec_Id) then
8202 -- Loop through PPC pragmas from spec. Note that preconditions from
8203 -- the body will be analyzed and converted when we scan the body
8204 -- declarations below.
8206 Prag := Spec_PPC_List (Spec_Id);
8207 while Present (Prag) loop
8208 if Pragma_Name (Prag) = Name_Precondition
8209 and then PPC_Enabled (Prag)
8210 then
8211 -- Add pragma Check at the start of the declarations of N.
8212 -- Note that this processing reverses the order of the list,
8213 -- which is what we want since new entries were chained to
8214 -- the head of the list.
8216 Prepend (Grab_PPC (Name_Precondition), Declarations (N));
8217 end if;
8219 Prag := Next_Pragma (Prag);
8220 end loop;
8221 end if;
8223 -- Build postconditions procedure if needed and prepend the following
8224 -- declaration to the start of the declarations for the subprogram.
8226 -- procedure _postconditions [(_Result : resulttype)] is
8227 -- begin
8228 -- pragma Check (Postcondition, condition [,message]);
8229 -- pragma Check (Postcondition, condition [,message]);
8230 -- ...
8231 -- end;
8233 -- First we deal with the postconditions in the body
8235 if Is_Non_Empty_List (Declarations (N)) then
8237 -- Loop through declarations
8239 Prag := First (Declarations (N));
8240 while Present (Prag) loop
8241 if Nkind (Prag) = N_Pragma then
8243 -- If pragma, capture if enabled postcondition, else ignore
8245 if Pragma_Name (Prag) = Name_Postcondition
8246 and then Check_Enabled (Name_Postcondition)
8247 then
8248 if Plist = No_List then
8249 Plist := Empty_List;
8250 end if;
8252 Analyze (Prag);
8254 -- If expansion is disabled, as in a generic unit,
8255 -- save pragma for later expansion.
8257 if not Expander_Active then
8258 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8259 else
8260 Append (Grab_PPC (Name_Postcondition), Plist);
8261 end if;
8262 end if;
8264 Next (Prag);
8266 -- Not a pragma, if comes from source, then end scan
8268 elsif Comes_From_Source (Prag) then
8269 exit;
8271 -- Skip stuff not coming from source
8273 else
8274 Next (Prag);
8275 end if;
8276 end loop;
8277 end if;
8279 -- Now deal with any postconditions from the spec
8281 if Present (Spec_Id) then
8283 -- Loop through PPC pragmas from spec
8285 Prag := Spec_PPC_List (Spec_Id);
8286 while Present (Prag) loop
8287 if Pragma_Name (Prag) = Name_Postcondition
8288 and then PPC_Enabled (Prag)
8289 then
8290 if Plist = No_List then
8291 Plist := Empty_List;
8292 end if;
8294 if not Expander_Active then
8295 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8296 else
8297 Append (Grab_PPC (Name_Postcondition), Plist);
8298 end if;
8299 end if;
8301 Prag := Next_Pragma (Prag);
8302 end loop;
8303 end if;
8305 -- If we had any postconditions and expansion is enabled, build
8306 -- the _Postconditions procedure.
8308 if Present (Plist)
8309 and then Expander_Active
8310 then
8311 Subp := Defining_Entity (N);
8313 if Etype (Subp) /= Standard_Void_Type then
8314 Parms := New_List (
8315 Make_Parameter_Specification (Loc,
8316 Defining_Identifier =>
8317 Make_Defining_Identifier (Loc,
8318 Chars => Name_uResult),
8319 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
8320 else
8321 Parms := No_List;
8322 end if;
8324 declare
8325 Post_Proc : constant Entity_Id :=
8326 Make_Defining_Identifier (Loc,
8327 Chars => Name_uPostconditions);
8328 -- The entity for the _Postconditions procedure
8329 begin
8330 Prepend_To (Declarations (N),
8331 Make_Subprogram_Body (Loc,
8332 Specification =>
8333 Make_Procedure_Specification (Loc,
8334 Defining_Unit_Name => Post_Proc,
8335 Parameter_Specifications => Parms),
8337 Declarations => Empty_List,
8339 Handled_Statement_Sequence =>
8340 Make_Handled_Sequence_Of_Statements (Loc,
8341 Statements => Plist)));
8343 -- If this is a procedure, set the Postcondition_Proc attribute
8345 if Etype (Subp) = Standard_Void_Type then
8346 Set_Postcondition_Proc (Spec_Id, Post_Proc);
8347 end if;
8348 end;
8350 if Present (Spec_Id) then
8351 Set_Has_Postconditions (Spec_Id);
8352 else
8353 Set_Has_Postconditions (Body_Id);
8354 end if;
8355 end if;
8356 end Process_PPCs;
8358 ----------------------------
8359 -- Reference_Body_Formals --
8360 ----------------------------
8362 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
8363 Fs : Entity_Id;
8364 Fb : Entity_Id;
8366 begin
8367 if Error_Posted (Spec) then
8368 return;
8369 end if;
8371 -- Iterate over both lists. They may be of different lengths if the two
8372 -- specs are not conformant.
8374 Fs := First_Formal (Spec);
8375 Fb := First_Formal (Bod);
8376 while Present (Fs) and then Present (Fb) loop
8377 Generate_Reference (Fs, Fb, 'b');
8379 if Style_Check then
8380 Style.Check_Identifier (Fb, Fs);
8381 end if;
8383 Set_Spec_Entity (Fb, Fs);
8384 Set_Referenced (Fs, False);
8385 Next_Formal (Fs);
8386 Next_Formal (Fb);
8387 end loop;
8388 end Reference_Body_Formals;
8390 -------------------------
8391 -- Set_Actual_Subtypes --
8392 -------------------------
8394 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
8395 Loc : constant Source_Ptr := Sloc (N);
8396 Decl : Node_Id;
8397 Formal : Entity_Id;
8398 T : Entity_Id;
8399 First_Stmt : Node_Id := Empty;
8400 AS_Needed : Boolean;
8402 begin
8403 -- If this is an empty initialization procedure, no need to create
8404 -- actual subtypes (small optimization).
8406 if Ekind (Subp) = E_Procedure
8407 and then Is_Null_Init_Proc (Subp)
8408 then
8409 return;
8410 end if;
8412 Formal := First_Formal (Subp);
8413 while Present (Formal) loop
8414 T := Etype (Formal);
8416 -- We never need an actual subtype for a constrained formal
8418 if Is_Constrained (T) then
8419 AS_Needed := False;
8421 -- If we have unknown discriminants, then we do not need an actual
8422 -- subtype, or more accurately we cannot figure it out! Note that
8423 -- all class-wide types have unknown discriminants.
8425 elsif Has_Unknown_Discriminants (T) then
8426 AS_Needed := False;
8428 -- At this stage we have an unconstrained type that may need an
8429 -- actual subtype. For sure the actual subtype is needed if we have
8430 -- an unconstrained array type.
8432 elsif Is_Array_Type (T) then
8433 AS_Needed := True;
8435 -- The only other case needing an actual subtype is an unconstrained
8436 -- record type which is an IN parameter (we cannot generate actual
8437 -- subtypes for the OUT or IN OUT case, since an assignment can
8438 -- change the discriminant values. However we exclude the case of
8439 -- initialization procedures, since discriminants are handled very
8440 -- specially in this context, see the section entitled "Handling of
8441 -- Discriminants" in Einfo.
8443 -- We also exclude the case of Discrim_SO_Functions (functions used
8444 -- in front end layout mode for size/offset values), since in such
8445 -- functions only discriminants are referenced, and not only are such
8446 -- subtypes not needed, but they cannot always be generated, because
8447 -- of order of elaboration issues.
8449 elsif Is_Record_Type (T)
8450 and then Ekind (Formal) = E_In_Parameter
8451 and then Chars (Formal) /= Name_uInit
8452 and then not Is_Unchecked_Union (T)
8453 and then not Is_Discrim_SO_Function (Subp)
8454 then
8455 AS_Needed := True;
8457 -- All other cases do not need an actual subtype
8459 else
8460 AS_Needed := False;
8461 end if;
8463 -- Generate actual subtypes for unconstrained arrays and
8464 -- unconstrained discriminated records.
8466 if AS_Needed then
8467 if Nkind (N) = N_Accept_Statement then
8469 -- If expansion is active, The formal is replaced by a local
8470 -- variable that renames the corresponding entry of the
8471 -- parameter block, and it is this local variable that may
8472 -- require an actual subtype.
8474 if Expander_Active then
8475 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
8476 else
8477 Decl := Build_Actual_Subtype (T, Formal);
8478 end if;
8480 if Present (Handled_Statement_Sequence (N)) then
8481 First_Stmt :=
8482 First (Statements (Handled_Statement_Sequence (N)));
8483 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
8484 Mark_Rewrite_Insertion (Decl);
8485 else
8486 -- If the accept statement has no body, there will be no
8487 -- reference to the actuals, so no need to compute actual
8488 -- subtypes.
8490 return;
8491 end if;
8493 else
8494 Decl := Build_Actual_Subtype (T, Formal);
8495 Prepend (Decl, Declarations (N));
8496 Mark_Rewrite_Insertion (Decl);
8497 end if;
8499 -- The declaration uses the bounds of an existing object, and
8500 -- therefore needs no constraint checks.
8502 Analyze (Decl, Suppress => All_Checks);
8504 -- We need to freeze manually the generated type when it is
8505 -- inserted anywhere else than in a declarative part.
8507 if Present (First_Stmt) then
8508 Insert_List_Before_And_Analyze (First_Stmt,
8509 Freeze_Entity (Defining_Identifier (Decl), Loc));
8510 end if;
8512 if Nkind (N) = N_Accept_Statement
8513 and then Expander_Active
8514 then
8515 Set_Actual_Subtype (Renamed_Object (Formal),
8516 Defining_Identifier (Decl));
8517 else
8518 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
8519 end if;
8520 end if;
8522 Next_Formal (Formal);
8523 end loop;
8524 end Set_Actual_Subtypes;
8526 ---------------------
8527 -- Set_Formal_Mode --
8528 ---------------------
8530 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
8531 Spec : constant Node_Id := Parent (Formal_Id);
8533 begin
8534 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
8535 -- since we ensure that corresponding actuals are always valid at the
8536 -- point of the call.
8538 if Out_Present (Spec) then
8539 if Ekind (Scope (Formal_Id)) = E_Function
8540 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
8541 then
8542 Error_Msg_N ("functions can only have IN parameters", Spec);
8543 Set_Ekind (Formal_Id, E_In_Parameter);
8545 elsif In_Present (Spec) then
8546 Set_Ekind (Formal_Id, E_In_Out_Parameter);
8548 else
8549 Set_Ekind (Formal_Id, E_Out_Parameter);
8550 Set_Never_Set_In_Source (Formal_Id, True);
8551 Set_Is_True_Constant (Formal_Id, False);
8552 Set_Current_Value (Formal_Id, Empty);
8553 end if;
8555 else
8556 Set_Ekind (Formal_Id, E_In_Parameter);
8557 end if;
8559 -- Set Is_Known_Non_Null for access parameters since the language
8560 -- guarantees that access parameters are always non-null. We also set
8561 -- Can_Never_Be_Null, since there is no way to change the value.
8563 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
8565 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
8566 -- null; In Ada 2005, only if then null_exclusion is explicit.
8568 if Ada_Version < Ada_05
8569 or else Can_Never_Be_Null (Etype (Formal_Id))
8570 then
8571 Set_Is_Known_Non_Null (Formal_Id);
8572 Set_Can_Never_Be_Null (Formal_Id);
8573 end if;
8575 -- Ada 2005 (AI-231): Null-exclusion access subtype
8577 elsif Is_Access_Type (Etype (Formal_Id))
8578 and then Can_Never_Be_Null (Etype (Formal_Id))
8579 then
8580 Set_Is_Known_Non_Null (Formal_Id);
8581 end if;
8583 Set_Mechanism (Formal_Id, Default_Mechanism);
8584 Set_Formal_Validity (Formal_Id);
8585 end Set_Formal_Mode;
8587 -------------------------
8588 -- Set_Formal_Validity --
8589 -------------------------
8591 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
8592 begin
8593 -- If no validity checking, then we cannot assume anything about the
8594 -- validity of parameters, since we do not know there is any checking
8595 -- of the validity on the call side.
8597 if not Validity_Checks_On then
8598 return;
8600 -- If validity checking for parameters is enabled, this means we are
8601 -- not supposed to make any assumptions about argument values.
8603 elsif Validity_Check_Parameters then
8604 return;
8606 -- If we are checking in parameters, we will assume that the caller is
8607 -- also checking parameters, so we can assume the parameter is valid.
8609 elsif Ekind (Formal_Id) = E_In_Parameter
8610 and then Validity_Check_In_Params
8611 then
8612 Set_Is_Known_Valid (Formal_Id, True);
8614 -- Similar treatment for IN OUT parameters
8616 elsif Ekind (Formal_Id) = E_In_Out_Parameter
8617 and then Validity_Check_In_Out_Params
8618 then
8619 Set_Is_Known_Valid (Formal_Id, True);
8620 end if;
8621 end Set_Formal_Validity;
8623 ------------------------
8624 -- Subtype_Conformant --
8625 ------------------------
8627 function Subtype_Conformant
8628 (New_Id : Entity_Id;
8629 Old_Id : Entity_Id;
8630 Skip_Controlling_Formals : Boolean := False) return Boolean
8632 Result : Boolean;
8633 begin
8634 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
8635 Skip_Controlling_Formals => Skip_Controlling_Formals);
8636 return Result;
8637 end Subtype_Conformant;
8639 ---------------------
8640 -- Type_Conformant --
8641 ---------------------
8643 function Type_Conformant
8644 (New_Id : Entity_Id;
8645 Old_Id : Entity_Id;
8646 Skip_Controlling_Formals : Boolean := False) return Boolean
8648 Result : Boolean;
8649 begin
8650 May_Hide_Profile := False;
8652 Check_Conformance
8653 (New_Id, Old_Id, Type_Conformant, False, Result,
8654 Skip_Controlling_Formals => Skip_Controlling_Formals);
8655 return Result;
8656 end Type_Conformant;
8658 -------------------------------
8659 -- Valid_Operator_Definition --
8660 -------------------------------
8662 procedure Valid_Operator_Definition (Designator : Entity_Id) is
8663 N : Integer := 0;
8664 F : Entity_Id;
8665 Id : constant Name_Id := Chars (Designator);
8666 N_OK : Boolean;
8668 begin
8669 F := First_Formal (Designator);
8670 while Present (F) loop
8671 N := N + 1;
8673 if Present (Default_Value (F)) then
8674 Error_Msg_N
8675 ("default values not allowed for operator parameters",
8676 Parent (F));
8677 end if;
8679 Next_Formal (F);
8680 end loop;
8682 -- Verify that user-defined operators have proper number of arguments
8683 -- First case of operators which can only be unary
8685 if Id = Name_Op_Not
8686 or else Id = Name_Op_Abs
8687 then
8688 N_OK := (N = 1);
8690 -- Case of operators which can be unary or binary
8692 elsif Id = Name_Op_Add
8693 or Id = Name_Op_Subtract
8694 then
8695 N_OK := (N in 1 .. 2);
8697 -- All other operators can only be binary
8699 else
8700 N_OK := (N = 2);
8701 end if;
8703 if not N_OK then
8704 Error_Msg_N
8705 ("incorrect number of arguments for operator", Designator);
8706 end if;
8708 if Id = Name_Op_Ne
8709 and then Base_Type (Etype (Designator)) = Standard_Boolean
8710 and then not Is_Intrinsic_Subprogram (Designator)
8711 then
8712 Error_Msg_N
8713 ("explicit definition of inequality not allowed", Designator);
8714 end if;
8715 end Valid_Operator_Definition;
8717 end Sem_Ch6;