Fix PR/46316
[official-gcc.git] / gcc / postreload.c
blob1fc9bfc50f621bcb96541d004cd509efd50c9e3a
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "diagnostic-core.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "target.h"
48 #include "timevar.h"
49 #include "tree-pass.h"
50 #include "df.h"
51 #include "dbgcnt.h"
53 static int reload_cse_noop_set_p (rtx);
54 static void reload_cse_simplify (rtx, rtx);
55 static void reload_cse_regs_1 (rtx);
56 static int reload_cse_simplify_set (rtx, rtx);
57 static int reload_cse_simplify_operands (rtx, rtx);
59 static void reload_combine (void);
60 static void reload_combine_note_use (rtx *, rtx, int, rtx);
61 static void reload_combine_note_store (rtx, const_rtx, void *);
63 static bool reload_cse_move2add (rtx);
64 static void move2add_note_store (rtx, const_rtx, void *);
66 /* Call cse / combine like post-reload optimization phases.
67 FIRST is the first instruction. */
68 void
69 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
71 bool moves_converted;
72 reload_cse_regs_1 (first);
73 reload_combine ();
74 moves_converted = reload_cse_move2add (first);
75 if (flag_expensive_optimizations)
77 if (moves_converted)
78 reload_combine ();
79 reload_cse_regs_1 (first);
83 /* See whether a single set SET is a noop. */
84 static int
85 reload_cse_noop_set_p (rtx set)
87 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
88 return 0;
90 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
93 /* Try to simplify INSN. */
94 static void
95 reload_cse_simplify (rtx insn, rtx testreg)
97 rtx body = PATTERN (insn);
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && reload_cse_noop_set_p (body))
112 rtx value = SET_DEST (body);
113 if (REG_P (value)
114 && ! REG_FUNCTION_VALUE_P (value))
115 value = 0;
116 delete_insn_and_edges (insn);
117 return;
120 if (count > 0)
121 apply_change_group ();
122 else
123 reload_cse_simplify_operands (insn, testreg);
125 else if (GET_CODE (body) == PARALLEL)
127 int i;
128 int count = 0;
129 rtx value = NULL_RTX;
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body) >= 0)
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
140 cselib_invalidate_rtx (XEXP (part, 0));
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
148 rtx part = XVECEXP (body, 0, i);
149 if (GET_CODE (part) == SET)
151 if (! reload_cse_noop_set_p (part))
152 break;
153 if (REG_P (SET_DEST (part))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
156 if (value)
157 break;
158 value = SET_DEST (part);
161 else if (GET_CODE (part) != CLOBBER)
162 break;
165 if (i < 0)
167 delete_insn_and_edges (insn);
168 /* We're done with this insn. */
169 return;
172 /* It's not a no-op, but we can try to simplify it. */
173 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
175 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
177 if (count > 0)
178 apply_change_group ();
179 else
180 reload_cse_simplify_operands (insn, testreg);
184 /* Do a very simple CSE pass over the hard registers.
186 This function detects no-op moves where we happened to assign two
187 different pseudo-registers to the same hard register, and then
188 copied one to the other. Reload will generate a useless
189 instruction copying a register to itself.
191 This function also detects cases where we load a value from memory
192 into two different registers, and (if memory is more expensive than
193 registers) changes it to simply copy the first register into the
194 second register.
196 Another optimization is performed that scans the operands of each
197 instruction to see whether the value is already available in a
198 hard register. It then replaces the operand with the hard register
199 if possible, much like an optional reload would. */
201 static void
202 reload_cse_regs_1 (rtx first)
204 rtx insn;
205 rtx testreg = gen_rtx_REG (VOIDmode, -1);
207 cselib_init (CSELIB_RECORD_MEMORY);
208 init_alias_analysis ();
210 for (insn = first; insn; insn = NEXT_INSN (insn))
212 if (INSN_P (insn))
213 reload_cse_simplify (insn, testreg);
215 cselib_process_insn (insn);
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
223 /* Try to simplify a single SET instruction. SET is the set pattern.
224 INSN is the instruction it came from.
225 This function only handles one case: if we set a register to a value
226 which is not a register, we try to find that value in some other register
227 and change the set into a register copy. */
229 static int
230 reload_cse_simplify_set (rtx set, rtx insn)
232 int did_change = 0;
233 int dreg;
234 rtx src;
235 enum reg_class dclass;
236 int old_cost;
237 cselib_val *val;
238 struct elt_loc_list *l;
239 #ifdef LOAD_EXTEND_OP
240 enum rtx_code extend_op = UNKNOWN;
241 #endif
242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
252 dclass = REGNO_REG_CLASS (dreg);
254 #ifdef LOAD_EXTEND_OP
255 /* When replacing a memory with a register, we need to honor assumptions
256 that combine made wrt the contents of sign bits. We'll do this by
257 generating an extend instruction instead of a reg->reg copy. Thus
258 the destination must be a register that we can widen. */
259 if (MEM_P (src)
260 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
261 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
262 && !REG_P (SET_DEST (set)))
263 return 0;
264 #endif
266 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
267 if (! val)
268 return 0;
270 /* If memory loads are cheaper than register copies, don't change them. */
271 if (MEM_P (src))
272 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
273 else if (REG_P (src))
274 old_cost = register_move_cost (GET_MODE (src),
275 REGNO_REG_CLASS (REGNO (src)), dclass);
276 else
277 old_cost = rtx_cost (src, SET, speed);
279 for (l = val->locs; l; l = l->next)
281 rtx this_rtx = l->loc;
282 int this_cost;
284 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
286 #ifdef LOAD_EXTEND_OP
287 if (extend_op != UNKNOWN)
289 HOST_WIDE_INT this_val;
291 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
292 constants, such as SYMBOL_REF, cannot be extended. */
293 if (!CONST_INT_P (this_rtx))
294 continue;
296 this_val = INTVAL (this_rtx);
297 switch (extend_op)
299 case ZERO_EXTEND:
300 this_val &= GET_MODE_MASK (GET_MODE (src));
301 break;
302 case SIGN_EXTEND:
303 /* ??? In theory we're already extended. */
304 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
305 break;
306 default:
307 gcc_unreachable ();
309 this_rtx = GEN_INT (this_val);
311 #endif
312 this_cost = rtx_cost (this_rtx, SET, speed);
314 else if (REG_P (this_rtx))
316 #ifdef LOAD_EXTEND_OP
317 if (extend_op != UNKNOWN)
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = rtx_cost (this_rtx, SET, speed);
322 else
323 #endif
324 this_cost = register_move_cost (GET_MODE (this_rtx),
325 REGNO_REG_CLASS (REGNO (this_rtx)),
326 dclass);
328 else
329 continue;
331 /* If equal costs, prefer registers over anything else. That
332 tends to lead to smaller instructions on some machines. */
333 if (this_cost < old_cost
334 || (this_cost == old_cost
335 && REG_P (this_rtx)
336 && !REG_P (SET_SRC (set))))
338 #ifdef LOAD_EXTEND_OP
339 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
340 && extend_op != UNKNOWN
341 #ifdef CANNOT_CHANGE_MODE_CLASS
342 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
343 word_mode,
344 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
345 #endif
348 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
349 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
350 validate_change (insn, &SET_DEST (set), wide_dest, 1);
352 #endif
354 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
355 old_cost = this_cost, did_change = 1;
359 return did_change;
362 /* Try to replace operands in INSN with equivalent values that are already
363 in registers. This can be viewed as optional reloading.
365 For each non-register operand in the insn, see if any hard regs are
366 known to be equivalent to that operand. Record the alternatives which
367 can accept these hard registers. Among all alternatives, select the
368 ones which are better or equal to the one currently matching, where
369 "better" is in terms of '?' and '!' constraints. Among the remaining
370 alternatives, select the one which replaces most operands with
371 hard registers. */
373 static int
374 reload_cse_simplify_operands (rtx insn, rtx testreg)
376 int i, j;
378 /* For each operand, all registers that are equivalent to it. */
379 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
381 const char *constraints[MAX_RECOG_OPERANDS];
383 /* Vector recording how bad an alternative is. */
384 int *alternative_reject;
385 /* Vector recording how many registers can be introduced by choosing
386 this alternative. */
387 int *alternative_nregs;
388 /* Array of vectors recording, for each operand and each alternative,
389 which hard register to substitute, or -1 if the operand should be
390 left as it is. */
391 int *op_alt_regno[MAX_RECOG_OPERANDS];
392 /* Array of alternatives, sorted in order of decreasing desirability. */
393 int *alternative_order;
395 extract_insn (insn);
397 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
398 return 0;
400 /* Figure out which alternative currently matches. */
401 if (! constrain_operands (1))
402 fatal_insn_not_found (insn);
404 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
405 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
406 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
407 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
408 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
410 /* For each operand, find out which regs are equivalent. */
411 for (i = 0; i < recog_data.n_operands; i++)
413 cselib_val *v;
414 struct elt_loc_list *l;
415 rtx op;
417 CLEAR_HARD_REG_SET (equiv_regs[i]);
419 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
420 right, so avoid the problem here. Likewise if we have a constant
421 and the insn pattern doesn't tell us the mode we need. */
422 if (LABEL_P (recog_data.operand[i])
423 || (CONSTANT_P (recog_data.operand[i])
424 && recog_data.operand_mode[i] == VOIDmode))
425 continue;
427 op = recog_data.operand[i];
428 #ifdef LOAD_EXTEND_OP
429 if (MEM_P (op)
430 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
431 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
433 rtx set = single_set (insn);
435 /* We might have multiple sets, some of which do implicit
436 extension. Punt on this for now. */
437 if (! set)
438 continue;
439 /* If the destination is also a MEM or a STRICT_LOW_PART, no
440 extension applies.
441 Also, if there is an explicit extension, we don't have to
442 worry about an implicit one. */
443 else if (MEM_P (SET_DEST (set))
444 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
445 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
446 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
447 ; /* Continue ordinary processing. */
448 #ifdef CANNOT_CHANGE_MODE_CLASS
449 /* If the register cannot change mode to word_mode, it follows that
450 it cannot have been used in word_mode. */
451 else if (REG_P (SET_DEST (set))
452 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
453 word_mode,
454 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
455 ; /* Continue ordinary processing. */
456 #endif
457 /* If this is a straight load, make the extension explicit. */
458 else if (REG_P (SET_DEST (set))
459 && recog_data.n_operands == 2
460 && SET_SRC (set) == op
461 && SET_DEST (set) == recog_data.operand[1-i])
463 validate_change (insn, recog_data.operand_loc[i],
464 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
465 word_mode, op),
467 validate_change (insn, recog_data.operand_loc[1-i],
468 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
470 if (! apply_change_group ())
471 return 0;
472 return reload_cse_simplify_operands (insn, testreg);
474 else
475 /* ??? There might be arithmetic operations with memory that are
476 safe to optimize, but is it worth the trouble? */
477 continue;
479 #endif /* LOAD_EXTEND_OP */
480 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
481 if (! v)
482 continue;
484 for (l = v->locs; l; l = l->next)
485 if (REG_P (l->loc))
486 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
489 for (i = 0; i < recog_data.n_operands; i++)
491 enum machine_mode mode;
492 int regno;
493 const char *p;
495 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
496 for (j = 0; j < recog_data.n_alternatives; j++)
497 op_alt_regno[i][j] = -1;
499 p = constraints[i] = recog_data.constraints[i];
500 mode = recog_data.operand_mode[i];
502 /* Add the reject values for each alternative given by the constraints
503 for this operand. */
504 j = 0;
505 while (*p != '\0')
507 char c = *p++;
508 if (c == ',')
509 j++;
510 else if (c == '?')
511 alternative_reject[j] += 3;
512 else if (c == '!')
513 alternative_reject[j] += 300;
516 /* We won't change operands which are already registers. We
517 also don't want to modify output operands. */
518 regno = true_regnum (recog_data.operand[i]);
519 if (regno >= 0
520 || constraints[i][0] == '='
521 || constraints[i][0] == '+')
522 continue;
524 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
526 enum reg_class rclass = NO_REGS;
528 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
529 continue;
531 SET_REGNO_RAW (testreg, regno);
532 PUT_MODE (testreg, mode);
534 /* We found a register equal to this operand. Now look for all
535 alternatives that can accept this register and have not been
536 assigned a register they can use yet. */
537 j = 0;
538 p = constraints[i];
539 for (;;)
541 char c = *p;
543 switch (c)
545 case '=': case '+': case '?':
546 case '#': case '&': case '!':
547 case '*': case '%':
548 case '0': case '1': case '2': case '3': case '4':
549 case '5': case '6': case '7': case '8': case '9':
550 case '<': case '>': case 'V': case 'o':
551 case 'E': case 'F': case 'G': case 'H':
552 case 's': case 'i': case 'n':
553 case 'I': case 'J': case 'K': case 'L':
554 case 'M': case 'N': case 'O': case 'P':
555 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
556 /* These don't say anything we care about. */
557 break;
559 case 'g': case 'r':
560 rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
561 break;
563 default:
564 rclass
565 = (reg_class_subunion
566 [(int) rclass]
567 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
568 break;
570 case ',': case '\0':
571 /* See if REGNO fits this alternative, and set it up as the
572 replacement register if we don't have one for this
573 alternative yet and the operand being replaced is not
574 a cheap CONST_INT. */
575 if (op_alt_regno[i][j] == -1
576 && recog_data.alternative_enabled_p[j]
577 && reg_fits_class_p (testreg, rclass, 0, mode)
578 && (!CONST_INT_P (recog_data.operand[i])
579 || (rtx_cost (recog_data.operand[i], SET,
580 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
581 > rtx_cost (testreg, SET,
582 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))))))
584 alternative_nregs[j]++;
585 op_alt_regno[i][j] = regno;
587 j++;
588 rclass = NO_REGS;
589 break;
591 p += CONSTRAINT_LEN (c, p);
593 if (c == '\0')
594 break;
599 /* Record all alternatives which are better or equal to the currently
600 matching one in the alternative_order array. */
601 for (i = j = 0; i < recog_data.n_alternatives; i++)
602 if (alternative_reject[i] <= alternative_reject[which_alternative])
603 alternative_order[j++] = i;
604 recog_data.n_alternatives = j;
606 /* Sort it. Given a small number of alternatives, a dumb algorithm
607 won't hurt too much. */
608 for (i = 0; i < recog_data.n_alternatives - 1; i++)
610 int best = i;
611 int best_reject = alternative_reject[alternative_order[i]];
612 int best_nregs = alternative_nregs[alternative_order[i]];
613 int tmp;
615 for (j = i + 1; j < recog_data.n_alternatives; j++)
617 int this_reject = alternative_reject[alternative_order[j]];
618 int this_nregs = alternative_nregs[alternative_order[j]];
620 if (this_reject < best_reject
621 || (this_reject == best_reject && this_nregs > best_nregs))
623 best = j;
624 best_reject = this_reject;
625 best_nregs = this_nregs;
629 tmp = alternative_order[best];
630 alternative_order[best] = alternative_order[i];
631 alternative_order[i] = tmp;
634 /* Substitute the operands as determined by op_alt_regno for the best
635 alternative. */
636 j = alternative_order[0];
638 for (i = 0; i < recog_data.n_operands; i++)
640 enum machine_mode mode = recog_data.operand_mode[i];
641 if (op_alt_regno[i][j] == -1)
642 continue;
644 validate_change (insn, recog_data.operand_loc[i],
645 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
648 for (i = recog_data.n_dups - 1; i >= 0; i--)
650 int op = recog_data.dup_num[i];
651 enum machine_mode mode = recog_data.operand_mode[op];
653 if (op_alt_regno[op][j] == -1)
654 continue;
656 validate_change (insn, recog_data.dup_loc[i],
657 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
660 return apply_change_group ();
663 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
664 addressing now.
665 This code might also be useful when reload gave up on reg+reg addressing
666 because of clashes between the return register and INDEX_REG_CLASS. */
668 /* The maximum number of uses of a register we can keep track of to
669 replace them with reg+reg addressing. */
670 #define RELOAD_COMBINE_MAX_USES 16
672 /* Describes a recorded use of a register. */
673 struct reg_use
675 /* The insn where a register has been used. */
676 rtx insn;
677 /* Points to the memory reference enclosing the use, if any, NULL_RTX
678 otherwise. */
679 rtx containing_mem;
680 /* Location of the register withing INSN. */
681 rtx *usep;
682 /* The reverse uid of the insn. */
683 int ruid;
686 /* If the register is used in some unknown fashion, USE_INDEX is negative.
687 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
688 indicates where it is first set or clobbered.
689 Otherwise, USE_INDEX is the index of the last encountered use of the
690 register (which is first among these we have seen since we scan backwards).
691 USE_RUID indicates the first encountered, i.e. last, of these uses.
692 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
693 with a constant offset; OFFSET contains this constant in that case.
694 STORE_RUID is always meaningful if we only want to use a value in a
695 register in a different place: it denotes the next insn in the insn
696 stream (i.e. the last encountered) that sets or clobbers the register.
697 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
698 static struct
700 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
701 rtx offset;
702 int use_index;
703 int store_ruid;
704 int real_store_ruid;
705 int use_ruid;
706 bool all_offsets_match;
707 } reg_state[FIRST_PSEUDO_REGISTER];
709 /* Reverse linear uid. This is increased in reload_combine while scanning
710 the instructions from last to first. It is used to set last_label_ruid
711 and the store_ruid / use_ruid fields in reg_state. */
712 static int reload_combine_ruid;
714 /* The RUID of the last label we encountered in reload_combine. */
715 static int last_label_ruid;
717 /* The RUID of the last jump we encountered in reload_combine. */
718 static int last_jump_ruid;
720 /* The register numbers of the first and last index register. A value of
721 -1 in LAST_INDEX_REG indicates that we've previously computed these
722 values and found no suitable index registers. */
723 static int first_index_reg = -1;
724 static int last_index_reg;
726 #define LABEL_LIVE(LABEL) \
727 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
729 /* Subroutine of reload_combine_split_ruids, called to fix up a single
730 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
732 static inline void
733 reload_combine_split_one_ruid (int *pruid, int split_ruid)
735 if (*pruid > split_ruid)
736 (*pruid)++;
739 /* Called when we insert a new insn in a position we've already passed in
740 the scan. Examine all our state, increasing all ruids that are higher
741 than SPLIT_RUID by one in order to make room for a new insn. */
743 static void
744 reload_combine_split_ruids (int split_ruid)
746 unsigned i;
748 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
749 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
750 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
754 int j, idx = reg_state[i].use_index;
755 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
756 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
757 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
758 split_ruid);
759 if (idx < 0)
760 continue;
761 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
763 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
764 split_ruid);
769 /* Called when we are about to rescan a previously encountered insn with
770 reload_combine_note_use after modifying some part of it. This clears all
771 information about uses in that particular insn. */
773 static void
774 reload_combine_purge_insn_uses (rtx insn)
776 unsigned i;
778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
780 int j, k, idx = reg_state[i].use_index;
781 if (idx < 0)
782 continue;
783 j = k = RELOAD_COMBINE_MAX_USES;
784 while (j-- > idx)
786 if (reg_state[i].reg_use[j].insn != insn)
788 k--;
789 if (k != j)
790 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
793 reg_state[i].use_index = k;
797 /* Called when we need to forget about all uses of REGNO after an insn
798 which is identified by RUID. */
800 static void
801 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
803 int j, k, idx = reg_state[regno].use_index;
804 if (idx < 0)
805 return;
806 j = k = RELOAD_COMBINE_MAX_USES;
807 while (j-- > idx)
809 if (reg_state[regno].reg_use[j].ruid >= ruid)
811 k--;
812 if (k != j)
813 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
816 reg_state[regno].use_index = k;
819 /* Find the use of REGNO with the ruid that is highest among those
820 lower than RUID_LIMIT, and return it if it is the only use of this
821 reg in the insn. Return NULL otherwise. */
823 static struct reg_use *
824 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
826 int i, best_ruid = 0;
827 int use_idx = reg_state[regno].use_index;
828 struct reg_use *retval;
830 if (use_idx < 0)
831 return NULL;
832 retval = NULL;
833 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
835 struct reg_use *use = reg_state[regno].reg_use + i;
836 int this_ruid = use->ruid;
837 if (this_ruid >= ruid_limit)
838 continue;
839 if (this_ruid > best_ruid)
841 best_ruid = this_ruid;
842 retval = use;
844 else if (this_ruid == best_ruid)
845 retval = NULL;
847 if (last_label_ruid >= best_ruid)
848 return NULL;
849 return retval;
852 /* After we've moved an add insn, fix up any debug insns that occur
853 between the old location of the add and the new location. REG is
854 the destination register of the add insn; REPLACEMENT is the
855 SET_SRC of the add. FROM and TO specify the range in which we
856 should make this change on debug insns. */
858 static void
859 fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
861 rtx insn;
862 for (insn = from; insn != to; insn = NEXT_INSN (insn))
864 rtx t;
866 if (!DEBUG_INSN_P (insn))
867 continue;
869 t = INSN_VAR_LOCATION_LOC (insn);
870 t = simplify_replace_rtx (t, reg, replacement);
871 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
875 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
876 with SRC in the insn described by USE, taking costs into account. Return
877 true if we made the replacement. */
879 static bool
880 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
882 rtx use_insn = use->insn;
883 rtx mem = use->containing_mem;
884 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
886 if (mem != NULL_RTX)
888 addr_space_t as = MEM_ADDR_SPACE (mem);
889 rtx oldaddr = XEXP (mem, 0);
890 rtx newaddr = NULL_RTX;
891 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
892 int new_cost;
894 newaddr = simplify_replace_rtx (oldaddr, reg, src);
895 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
897 XEXP (mem, 0) = newaddr;
898 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
899 XEXP (mem, 0) = oldaddr;
900 if (new_cost <= old_cost
901 && validate_change (use_insn,
902 &XEXP (mem, 0), newaddr, 0))
903 return true;
906 else
908 rtx new_set = single_set (use_insn);
909 if (new_set
910 && REG_P (SET_DEST (new_set))
911 && GET_CODE (SET_SRC (new_set)) == PLUS
912 && REG_P (XEXP (SET_SRC (new_set), 0))
913 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
915 rtx new_src;
916 int old_cost = rtx_cost (SET_SRC (new_set), SET, speed);
918 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
919 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
921 if (rtx_cost (new_src, SET, speed) <= old_cost
922 && validate_change (use_insn, &SET_SRC (new_set),
923 new_src, 0))
924 return true;
927 return false;
930 /* Called by reload_combine when scanning INSN. This function tries to detect
931 patterns where a constant is added to a register, and the result is used
932 in an address.
933 Return true if no further processing is needed on INSN; false if it wasn't
934 recognized and should be handled normally. */
936 static bool
937 reload_combine_recognize_const_pattern (rtx insn)
939 int from_ruid = reload_combine_ruid;
940 rtx set, pat, reg, src, addreg;
941 unsigned int regno;
942 struct reg_use *use;
943 bool must_move_add;
944 rtx add_moved_after_insn = NULL_RTX;
945 int add_moved_after_ruid = 0;
946 int clobbered_regno = -1;
948 set = single_set (insn);
949 if (set == NULL_RTX)
950 return false;
952 reg = SET_DEST (set);
953 src = SET_SRC (set);
954 if (!REG_P (reg)
955 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
956 || GET_MODE (reg) != Pmode
957 || reg == stack_pointer_rtx)
958 return false;
960 regno = REGNO (reg);
962 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
963 uses of REG1 inside an address, or inside another add insn. If
964 possible and profitable, merge the addition into subsequent
965 uses. */
966 if (GET_CODE (src) != PLUS
967 || !REG_P (XEXP (src, 0))
968 || !CONSTANT_P (XEXP (src, 1)))
969 return false;
971 addreg = XEXP (src, 0);
972 must_move_add = rtx_equal_p (reg, addreg);
974 pat = PATTERN (insn);
975 if (must_move_add && set != pat)
977 /* We have to be careful when moving the add; apart from the
978 single_set there may also be clobbers. Recognize one special
979 case, that of one clobber alongside the set (likely a clobber
980 of the CC register). */
981 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
982 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
983 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
984 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
985 return false;
986 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
991 use = reload_combine_closest_single_use (regno, from_ruid);
993 if (use)
994 /* Start the search for the next use from here. */
995 from_ruid = use->ruid;
997 if (use && GET_MODE (*use->usep) == Pmode)
999 bool delete_add = false;
1000 rtx use_insn = use->insn;
1001 int use_ruid = use->ruid;
1003 /* Avoid moving the add insn past a jump. */
1004 if (must_move_add && use_ruid <= last_jump_ruid)
1005 break;
1007 /* If the add clobbers another hard reg in parallel, don't move
1008 it past a real set of this hard reg. */
1009 if (must_move_add && clobbered_regno >= 0
1010 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1011 break;
1013 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1014 /* Avoid moving a use of ADDREG past a point where it is stored. */
1015 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1016 break;
1018 /* We also must not move the addition past an insn that sets
1019 the same register, unless we can combine two add insns. */
1020 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1022 if (use->containing_mem == NULL_RTX)
1023 delete_add = true;
1024 else
1025 break;
1028 if (try_replace_in_use (use, reg, src))
1030 reload_combine_purge_insn_uses (use_insn);
1031 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1032 use_ruid, NULL_RTX);
1034 if (delete_add)
1036 fixup_debug_insns (reg, src, insn, use_insn);
1037 delete_insn (insn);
1038 return true;
1040 if (must_move_add)
1042 add_moved_after_insn = use_insn;
1043 add_moved_after_ruid = use_ruid;
1045 continue;
1048 /* If we get here, we couldn't handle this use. */
1049 if (must_move_add)
1050 break;
1052 while (use);
1054 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1055 /* Process the add normally. */
1056 return false;
1058 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1060 reorder_insns (insn, insn, add_moved_after_insn);
1061 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1062 reload_combine_split_ruids (add_moved_after_ruid - 1);
1063 reload_combine_note_use (&PATTERN (insn), insn,
1064 add_moved_after_ruid, NULL_RTX);
1065 reg_state[regno].store_ruid = add_moved_after_ruid;
1067 return true;
1070 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1071 can handle and improve. Return true if no further processing is needed on
1072 INSN; false if it wasn't recognized and should be handled normally. */
1074 static bool
1075 reload_combine_recognize_pattern (rtx insn)
1077 rtx set, reg, src;
1078 unsigned int regno;
1080 set = single_set (insn);
1081 if (set == NULL_RTX)
1082 return false;
1084 reg = SET_DEST (set);
1085 src = SET_SRC (set);
1086 if (!REG_P (reg)
1087 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1088 return false;
1090 regno = REGNO (reg);
1092 /* Look for (set (REGX) (CONST_INT))
1093 (set (REGX) (PLUS (REGX) (REGY)))
1095 ... (MEM (REGX)) ...
1096 and convert it to
1097 (set (REGZ) (CONST_INT))
1099 ... (MEM (PLUS (REGZ) (REGY)))... .
1101 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1102 and that we know all uses of REGX before it dies.
1103 Also, explicitly check that REGX != REGY; our life information
1104 does not yet show whether REGY changes in this insn. */
1106 if (GET_CODE (src) == PLUS
1107 && reg_state[regno].all_offsets_match
1108 && last_index_reg != -1
1109 && REG_P (XEXP (src, 1))
1110 && rtx_equal_p (XEXP (src, 0), reg)
1111 && !rtx_equal_p (XEXP (src, 1), reg)
1112 && reg_state[regno].use_index >= 0
1113 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1114 && last_label_ruid < reg_state[regno].use_ruid)
1116 rtx base = XEXP (src, 1);
1117 rtx prev = prev_nonnote_nondebug_insn (insn);
1118 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1119 rtx index_reg = NULL_RTX;
1120 rtx reg_sum = NULL_RTX;
1121 int i;
1123 /* Now we need to set INDEX_REG to an index register (denoted as
1124 REGZ in the illustration above) and REG_SUM to the expression
1125 register+register that we want to use to substitute uses of REG
1126 (typically in MEMs) with. First check REG and BASE for being
1127 index registers; we can use them even if they are not dead. */
1128 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1129 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1130 REGNO (base)))
1132 index_reg = reg;
1133 reg_sum = src;
1135 else
1137 /* Otherwise, look for a free index register. Since we have
1138 checked above that neither REG nor BASE are index registers,
1139 if we find anything at all, it will be different from these
1140 two registers. */
1141 for (i = first_index_reg; i <= last_index_reg; i++)
1143 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1144 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1145 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1146 && (call_used_regs[i] || df_regs_ever_live_p (i))
1147 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1148 && !fixed_regs[i] && !global_regs[i]
1149 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1150 && targetm.hard_regno_scratch_ok (i))
1152 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1153 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1154 break;
1159 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1160 (REGY), i.e. BASE, is not clobbered before the last use we'll
1161 create. */
1162 if (reg_sum
1163 && prev_set
1164 && CONST_INT_P (SET_SRC (prev_set))
1165 && rtx_equal_p (SET_DEST (prev_set), reg)
1166 && (reg_state[REGNO (base)].store_ruid
1167 <= reg_state[regno].use_ruid))
1169 /* Change destination register and, if necessary, the constant
1170 value in PREV, the constant loading instruction. */
1171 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1172 if (reg_state[regno].offset != const0_rtx)
1173 validate_change (prev,
1174 &SET_SRC (prev_set),
1175 GEN_INT (INTVAL (SET_SRC (prev_set))
1176 + INTVAL (reg_state[regno].offset)),
1179 /* Now for every use of REG that we have recorded, replace REG
1180 with REG_SUM. */
1181 for (i = reg_state[regno].use_index;
1182 i < RELOAD_COMBINE_MAX_USES; i++)
1183 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1184 reg_state[regno].reg_use[i].usep,
1185 /* Each change must have its own
1186 replacement. */
1187 reg_sum, 1);
1189 if (apply_change_group ())
1191 struct reg_use *lowest_ruid = NULL;
1193 /* For every new use of REG_SUM, we have to record the use
1194 of BASE therein, i.e. operand 1. */
1195 for (i = reg_state[regno].use_index;
1196 i < RELOAD_COMBINE_MAX_USES; i++)
1198 struct reg_use *use = reg_state[regno].reg_use + i;
1199 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1200 use->ruid, use->containing_mem);
1201 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1202 lowest_ruid = use;
1205 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1207 /* Delete the reg-reg addition. */
1208 delete_insn (insn);
1210 if (reg_state[regno].offset != const0_rtx)
1211 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1212 are now invalid. */
1213 remove_reg_equal_equiv_notes (prev);
1215 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1216 return true;
1220 return false;
1223 static void
1224 reload_combine (void)
1226 rtx insn, prev;
1227 int i;
1228 basic_block bb;
1229 unsigned int r;
1230 int min_labelno, n_labels;
1231 HARD_REG_SET ever_live_at_start, *label_live;
1233 /* To avoid wasting too much time later searching for an index register,
1234 determine the minimum and maximum index register numbers. */
1235 if (INDEX_REG_CLASS == NO_REGS)
1236 last_index_reg = -1;
1237 else if (first_index_reg == -1 && last_index_reg == 0)
1239 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1240 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1242 if (first_index_reg == -1)
1243 first_index_reg = r;
1245 last_index_reg = r;
1248 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1249 to -1 so we'll know to quit early the next time we get here. */
1250 if (first_index_reg == -1)
1252 last_index_reg = -1;
1253 return;
1257 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1258 information is a bit fuzzy immediately after reload, but it's
1259 still good enough to determine which registers are live at a jump
1260 destination. */
1261 min_labelno = get_first_label_num ();
1262 n_labels = max_label_num () - min_labelno;
1263 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1264 CLEAR_HARD_REG_SET (ever_live_at_start);
1266 FOR_EACH_BB_REVERSE (bb)
1268 insn = BB_HEAD (bb);
1269 if (LABEL_P (insn))
1271 HARD_REG_SET live;
1272 bitmap live_in = df_get_live_in (bb);
1274 REG_SET_TO_HARD_REG_SET (live, live_in);
1275 compute_use_by_pseudos (&live, live_in);
1276 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1277 IOR_HARD_REG_SET (ever_live_at_start, live);
1281 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1282 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1283 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1285 reg_state[r].store_ruid = 0;
1286 reg_state[r].real_store_ruid = 0;
1287 if (fixed_regs[r])
1288 reg_state[r].use_index = -1;
1289 else
1290 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1293 for (insn = get_last_insn (); insn; insn = prev)
1295 rtx note;
1297 prev = PREV_INSN (insn);
1299 /* We cannot do our optimization across labels. Invalidating all the use
1300 information we have would be costly, so we just note where the label
1301 is and then later disable any optimization that would cross it. */
1302 if (LABEL_P (insn))
1303 last_label_ruid = reload_combine_ruid;
1304 else if (BARRIER_P (insn))
1305 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 if (! fixed_regs[r])
1307 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1309 if (! NONDEBUG_INSN_P (insn))
1310 continue;
1312 reload_combine_ruid++;
1314 if (control_flow_insn_p (insn))
1315 last_jump_ruid = reload_combine_ruid;
1317 if (reload_combine_recognize_const_pattern (insn)
1318 || reload_combine_recognize_pattern (insn))
1319 continue;
1321 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1323 if (CALL_P (insn))
1325 rtx link;
1327 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1328 if (call_used_regs[r])
1330 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1331 reg_state[r].store_ruid = reload_combine_ruid;
1334 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1335 link = XEXP (link, 1))
1337 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
1338 if (REG_P (usage_rtx))
1340 unsigned int i;
1341 unsigned int start_reg = REGNO (usage_rtx);
1342 unsigned int num_regs =
1343 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1344 unsigned int end_reg = start_reg + num_regs - 1;
1345 for (i = start_reg; i <= end_reg; i++)
1346 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1348 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1349 reg_state[i].store_ruid = reload_combine_ruid;
1351 else
1352 reg_state[i].use_index = -1;
1357 else if (JUMP_P (insn)
1358 && GET_CODE (PATTERN (insn)) != RETURN)
1360 /* Non-spill registers might be used at the call destination in
1361 some unknown fashion, so we have to mark the unknown use. */
1362 HARD_REG_SET *live;
1364 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1365 && JUMP_LABEL (insn))
1366 live = &LABEL_LIVE (JUMP_LABEL (insn));
1367 else
1368 live = &ever_live_at_start;
1370 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
1371 if (TEST_HARD_REG_BIT (*live, i))
1372 reg_state[i].use_index = -1;
1375 reload_combine_note_use (&PATTERN (insn), insn,
1376 reload_combine_ruid, NULL_RTX);
1377 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1379 if (REG_NOTE_KIND (note) == REG_INC
1380 && REG_P (XEXP (note, 0)))
1382 int regno = REGNO (XEXP (note, 0));
1384 reg_state[regno].store_ruid = reload_combine_ruid;
1385 reg_state[regno].real_store_ruid = reload_combine_ruid;
1386 reg_state[regno].use_index = -1;
1391 free (label_live);
1394 /* Check if DST is a register or a subreg of a register; if it is,
1395 update store_ruid, real_store_ruid and use_index in the reg_state
1396 structure accordingly. Called via note_stores from reload_combine. */
1398 static void
1399 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1401 int regno = 0;
1402 int i;
1403 enum machine_mode mode = GET_MODE (dst);
1405 if (GET_CODE (dst) == SUBREG)
1407 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1408 GET_MODE (SUBREG_REG (dst)),
1409 SUBREG_BYTE (dst),
1410 GET_MODE (dst));
1411 dst = SUBREG_REG (dst);
1413 if (!REG_P (dst))
1414 return;
1415 regno += REGNO (dst);
1417 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1418 careful with registers / register parts that are not full words.
1419 Similarly for ZERO_EXTRACT. */
1420 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1421 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1423 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1425 reg_state[i].use_index = -1;
1426 reg_state[i].store_ruid = reload_combine_ruid;
1427 reg_state[i].real_store_ruid = reload_combine_ruid;
1430 else
1432 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1434 reg_state[i].store_ruid = reload_combine_ruid;
1435 if (GET_CODE (set) == SET)
1436 reg_state[i].real_store_ruid = reload_combine_ruid;
1437 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1442 /* XP points to a piece of rtl that has to be checked for any uses of
1443 registers.
1444 *XP is the pattern of INSN, or a part of it.
1445 Called from reload_combine, and recursively by itself. */
1446 static void
1447 reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
1449 rtx x = *xp;
1450 enum rtx_code code = x->code;
1451 const char *fmt;
1452 int i, j;
1453 rtx offset = const0_rtx; /* For the REG case below. */
1455 switch (code)
1457 case SET:
1458 if (REG_P (SET_DEST (x)))
1460 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1461 return;
1463 break;
1465 case USE:
1466 /* If this is the USE of a return value, we can't change it. */
1467 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1469 /* Mark the return register as used in an unknown fashion. */
1470 rtx reg = XEXP (x, 0);
1471 int regno = REGNO (reg);
1472 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1474 while (--nregs >= 0)
1475 reg_state[regno + nregs].use_index = -1;
1476 return;
1478 break;
1480 case CLOBBER:
1481 if (REG_P (SET_DEST (x)))
1483 /* No spurious CLOBBERs of pseudo registers may remain. */
1484 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1485 return;
1487 break;
1489 case PLUS:
1490 /* We are interested in (plus (reg) (const_int)) . */
1491 if (!REG_P (XEXP (x, 0))
1492 || !CONST_INT_P (XEXP (x, 1)))
1493 break;
1494 offset = XEXP (x, 1);
1495 x = XEXP (x, 0);
1496 /* Fall through. */
1497 case REG:
1499 int regno = REGNO (x);
1500 int use_index;
1501 int nregs;
1503 /* No spurious USEs of pseudo registers may remain. */
1504 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1506 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1508 /* We can't substitute into multi-hard-reg uses. */
1509 if (nregs > 1)
1511 while (--nregs >= 0)
1512 reg_state[regno + nregs].use_index = -1;
1513 return;
1516 /* We may be called to update uses in previously seen insns.
1517 Don't add uses beyond the last store we saw. */
1518 if (ruid < reg_state[regno].store_ruid)
1519 return;
1521 /* If this register is already used in some unknown fashion, we
1522 can't do anything.
1523 If we decrement the index from zero to -1, we can't store more
1524 uses, so this register becomes used in an unknown fashion. */
1525 use_index = --reg_state[regno].use_index;
1526 if (use_index < 0)
1527 return;
1529 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1531 /* This is the first use of this register we have seen since we
1532 marked it as dead. */
1533 reg_state[regno].offset = offset;
1534 reg_state[regno].all_offsets_match = true;
1535 reg_state[regno].use_ruid = ruid;
1537 else
1539 if (reg_state[regno].use_ruid > ruid)
1540 reg_state[regno].use_ruid = ruid;
1542 if (! rtx_equal_p (offset, reg_state[regno].offset))
1543 reg_state[regno].all_offsets_match = false;
1546 reg_state[regno].reg_use[use_index].insn = insn;
1547 reg_state[regno].reg_use[use_index].ruid = ruid;
1548 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1549 reg_state[regno].reg_use[use_index].usep = xp;
1550 return;
1553 case MEM:
1554 containing_mem = x;
1555 break;
1557 default:
1558 break;
1561 /* Recursively process the components of X. */
1562 fmt = GET_RTX_FORMAT (code);
1563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1565 if (fmt[i] == 'e')
1566 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1567 else if (fmt[i] == 'E')
1569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1570 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1571 containing_mem);
1576 /* See if we can reduce the cost of a constant by replacing a move
1577 with an add. We track situations in which a register is set to a
1578 constant or to a register plus a constant. */
1579 /* We cannot do our optimization across labels. Invalidating all the
1580 information about register contents we have would be costly, so we
1581 use move2add_last_label_luid to note where the label is and then
1582 later disable any optimization that would cross it.
1583 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1584 are only valid if reg_set_luid[n] is greater than
1585 move2add_last_label_luid. */
1586 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1588 /* If reg_base_reg[n] is negative, register n has been set to
1589 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1590 If reg_base_reg[n] is non-negative, register n has been set to the
1591 sum of reg_offset[n] and the value of register reg_base_reg[n]
1592 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1593 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1594 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1595 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1596 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1598 /* move2add_luid is linearly increased while scanning the instructions
1599 from first to last. It is used to set reg_set_luid in
1600 reload_cse_move2add and move2add_note_store. */
1601 static int move2add_luid;
1603 /* move2add_last_label_luid is set whenever a label is found. Labels
1604 invalidate all previously collected reg_offset data. */
1605 static int move2add_last_label_luid;
1607 /* ??? We don't know how zero / sign extension is handled, hence we
1608 can't go from a narrower to a wider mode. */
1609 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1610 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1611 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1612 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1613 GET_MODE_BITSIZE (INMODE))))
1615 /* This function is called with INSN that sets REG to (SYM + OFF),
1616 while REG is known to already have value (SYM + offset).
1617 This function tries to change INSN into an add instruction
1618 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1619 It also updates the information about REG's known value.
1620 Return true if we made a change. */
1622 static bool
1623 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
1625 rtx pat = PATTERN (insn);
1626 rtx src = SET_SRC (pat);
1627 int regno = REGNO (reg);
1628 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[regno],
1629 GET_MODE (reg));
1630 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1631 bool changed = false;
1633 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1634 use (set (reg) (reg)) instead.
1635 We don't delete this insn, nor do we convert it into a
1636 note, to avoid losing register notes or the return
1637 value flag. jump2 already knows how to get rid of
1638 no-op moves. */
1639 if (new_src == const0_rtx)
1641 /* If the constants are different, this is a
1642 truncation, that, if turned into (set (reg)
1643 (reg)), would be discarded. Maybe we should
1644 try a truncMN pattern? */
1645 if (INTVAL (off) == reg_offset [regno])
1646 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1648 else
1650 struct full_rtx_costs oldcst, newcst;
1651 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1653 get_full_rtx_cost (pat, SET, &oldcst);
1654 SET_SRC (pat) = tem;
1655 get_full_rtx_cost (pat, SET, &newcst);
1656 SET_SRC (pat) = src;
1658 if (costs_lt_p (&newcst, &oldcst, speed)
1659 && have_add2_insn (reg, new_src))
1660 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1661 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1663 enum machine_mode narrow_mode;
1664 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1665 narrow_mode != VOIDmode
1666 && narrow_mode != GET_MODE (reg);
1667 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1669 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1670 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1671 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1673 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1674 REGNO (reg));
1675 rtx narrow_src = gen_int_mode (INTVAL (off),
1676 narrow_mode);
1677 rtx new_set
1678 = gen_rtx_SET (VOIDmode,
1679 gen_rtx_STRICT_LOW_PART (VOIDmode,
1680 narrow_reg),
1681 narrow_src);
1682 changed = validate_change (insn, &PATTERN (insn),
1683 new_set, 0);
1684 if (changed)
1685 break;
1690 reg_set_luid[regno] = move2add_luid;
1691 reg_base_reg[regno] = -1;
1692 reg_mode[regno] = GET_MODE (reg);
1693 reg_symbol_ref[regno] = sym;
1694 reg_offset[regno] = INTVAL (off);
1695 return changed;
1699 /* This function is called with INSN that sets REG to (SYM + OFF),
1700 but REG doesn't have known value (SYM + offset). This function
1701 tries to find another register which is known to already have
1702 value (SYM + offset) and change INSN into an add instruction
1703 (set (REG) (plus (the found register) (OFF - offset))) if such
1704 a register is found. It also updates the information about
1705 REG's known value.
1706 Return true iff we made a change. */
1708 static bool
1709 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
1711 rtx pat = PATTERN (insn);
1712 rtx src = SET_SRC (pat);
1713 int regno = REGNO (reg);
1714 int min_regno = 0;
1715 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1716 int i;
1717 bool changed = false;
1718 struct full_rtx_costs oldcst, newcst, mincst;
1719 rtx plus_expr;
1721 init_costs_to_max (&mincst);
1722 get_full_rtx_cost (pat, SET, &oldcst);
1724 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1725 SET_SRC (pat) = plus_expr;
1727 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1728 if (reg_set_luid[i] > move2add_last_label_luid
1729 && reg_mode[i] == GET_MODE (reg)
1730 && reg_base_reg[i] < 0
1731 && reg_symbol_ref[i] != NULL_RTX
1732 && rtx_equal_p (sym, reg_symbol_ref[i]))
1734 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[i],
1735 GET_MODE (reg));
1736 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1737 use (set (reg) (reg)) instead.
1738 We don't delete this insn, nor do we convert it into a
1739 note, to avoid losing register notes or the return
1740 value flag. jump2 already knows how to get rid of
1741 no-op moves. */
1742 if (new_src == const0_rtx)
1744 init_costs_to_zero (&mincst);
1745 min_regno = i;
1746 break;
1748 else
1750 XEXP (plus_expr, 1) = new_src;
1751 get_full_rtx_cost (pat, SET, &newcst);
1753 if (costs_lt_p (&newcst, &mincst, speed))
1755 mincst = newcst;
1756 min_regno = i;
1760 SET_SRC (pat) = src;
1762 if (costs_lt_p (&mincst, &oldcst, speed))
1764 rtx tem;
1766 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1767 if (i != min_regno)
1769 rtx new_src = gen_int_mode (INTVAL (off) - reg_offset[min_regno],
1770 GET_MODE (reg));
1771 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1773 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1774 changed = true;
1776 reg_set_luid[regno] = move2add_luid;
1777 reg_base_reg[regno] = -1;
1778 reg_mode[regno] = GET_MODE (reg);
1779 reg_symbol_ref[regno] = sym;
1780 reg_offset[regno] = INTVAL (off);
1781 return changed;
1784 /* Convert move insns with constant inputs to additions if they are cheaper.
1785 Return true if any changes were made. */
1786 static bool
1787 reload_cse_move2add (rtx first)
1789 int i;
1790 rtx insn;
1791 bool changed = false;
1793 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1795 reg_set_luid[i] = 0;
1796 reg_offset[i] = 0;
1797 reg_base_reg[i] = 0;
1798 reg_symbol_ref[i] = NULL_RTX;
1799 reg_mode[i] = VOIDmode;
1802 move2add_last_label_luid = 0;
1803 move2add_luid = 2;
1804 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1806 rtx pat, note;
1808 if (LABEL_P (insn))
1810 move2add_last_label_luid = move2add_luid;
1811 /* We're going to increment move2add_luid twice after a
1812 label, so that we can use move2add_last_label_luid + 1 as
1813 the luid for constants. */
1814 move2add_luid++;
1815 continue;
1817 if (! INSN_P (insn))
1818 continue;
1819 pat = PATTERN (insn);
1820 /* For simplicity, we only perform this optimization on
1821 straightforward SETs. */
1822 if (GET_CODE (pat) == SET
1823 && REG_P (SET_DEST (pat)))
1825 rtx reg = SET_DEST (pat);
1826 int regno = REGNO (reg);
1827 rtx src = SET_SRC (pat);
1829 /* Check if we have valid information on the contents of this
1830 register in the mode of REG. */
1831 if (reg_set_luid[regno] > move2add_last_label_luid
1832 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1833 && dbg_cnt (cse2_move2add))
1835 /* Try to transform (set (REGX) (CONST_INT A))
1837 (set (REGX) (CONST_INT B))
1839 (set (REGX) (CONST_INT A))
1841 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1843 (set (REGX) (CONST_INT A))
1845 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1848 if (CONST_INT_P (src)
1849 && reg_base_reg[regno] < 0
1850 && reg_symbol_ref[regno] == NULL_RTX)
1852 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1853 continue;
1856 /* Try to transform (set (REGX) (REGY))
1857 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1859 (set (REGX) (REGY))
1860 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1862 (set (REGX) (REGY))
1863 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1865 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1866 else if (REG_P (src)
1867 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1868 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1869 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1870 reg_mode[REGNO (src)]))
1872 rtx next = next_nonnote_nondebug_insn (insn);
1873 rtx set = NULL_RTX;
1874 if (next)
1875 set = single_set (next);
1876 if (set
1877 && SET_DEST (set) == reg
1878 && GET_CODE (SET_SRC (set)) == PLUS
1879 && XEXP (SET_SRC (set), 0) == reg
1880 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1882 rtx src3 = XEXP (SET_SRC (set), 1);
1883 HOST_WIDE_INT added_offset = INTVAL (src3);
1884 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1885 HOST_WIDE_INT regno_offset = reg_offset[regno];
1886 rtx new_src =
1887 gen_int_mode (added_offset
1888 + base_offset
1889 - regno_offset,
1890 GET_MODE (reg));
1891 bool success = false;
1892 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1894 if (new_src == const0_rtx)
1895 /* See above why we create (set (reg) (reg)) here. */
1896 success
1897 = validate_change (next, &SET_SRC (set), reg, 0);
1898 else
1900 rtx old_src = SET_SRC (set);
1901 struct full_rtx_costs oldcst, newcst;
1902 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1904 get_full_rtx_cost (set, SET, &oldcst);
1905 SET_SRC (set) = tem;
1906 get_full_rtx_cost (tem, SET, &newcst);
1907 SET_SRC (set) = old_src;
1908 costs_add_n_insns (&oldcst, 1);
1910 if (costs_lt_p (&newcst, &oldcst, speed)
1911 && have_add2_insn (reg, new_src))
1913 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
1914 success
1915 = validate_change (next, &PATTERN (next),
1916 newpat, 0);
1919 if (success)
1920 delete_insn (insn);
1921 changed |= success;
1922 insn = next;
1923 reg_mode[regno] = GET_MODE (reg);
1924 reg_offset[regno] =
1925 trunc_int_for_mode (added_offset + base_offset,
1926 GET_MODE (reg));
1927 continue;
1932 /* Try to transform
1933 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1935 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1937 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1939 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1940 if ((GET_CODE (src) == SYMBOL_REF
1941 || (GET_CODE (src) == CONST
1942 && GET_CODE (XEXP (src, 0)) == PLUS
1943 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
1944 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
1945 && dbg_cnt (cse2_move2add))
1947 rtx sym, off;
1949 if (GET_CODE (src) == SYMBOL_REF)
1951 sym = src;
1952 off = const0_rtx;
1954 else
1956 sym = XEXP (XEXP (src, 0), 0);
1957 off = XEXP (XEXP (src, 0), 1);
1960 /* If the reg already contains the value which is sum of
1961 sym and some constant value, we can use an add2 insn. */
1962 if (reg_set_luid[regno] > move2add_last_label_luid
1963 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1964 && reg_base_reg[regno] < 0
1965 && reg_symbol_ref[regno] != NULL_RTX
1966 && rtx_equal_p (sym, reg_symbol_ref[regno]))
1967 changed |= move2add_use_add2_insn (reg, sym, off, insn);
1969 /* Otherwise, we have to find a register whose value is sum
1970 of sym and some constant value. */
1971 else
1972 changed |= move2add_use_add3_insn (reg, sym, off, insn);
1974 continue;
1978 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1980 if (REG_NOTE_KIND (note) == REG_INC
1981 && REG_P (XEXP (note, 0)))
1983 /* Reset the information about this register. */
1984 int regno = REGNO (XEXP (note, 0));
1985 if (regno < FIRST_PSEUDO_REGISTER)
1986 reg_set_luid[regno] = 0;
1989 note_stores (PATTERN (insn), move2add_note_store, insn);
1991 /* If INSN is a conditional branch, we try to extract an
1992 implicit set out of it. */
1993 if (any_condjump_p (insn))
1995 rtx cnd = fis_get_condition (insn);
1997 if (cnd != NULL_RTX
1998 && GET_CODE (cnd) == NE
1999 && REG_P (XEXP (cnd, 0))
2000 && !reg_set_p (XEXP (cnd, 0), insn)
2001 /* The following two checks, which are also in
2002 move2add_note_store, are intended to reduce the
2003 number of calls to gen_rtx_SET to avoid memory
2004 allocation if possible. */
2005 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2006 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2007 && CONST_INT_P (XEXP (cnd, 1)))
2009 rtx implicit_set =
2010 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2011 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2015 /* If this is a CALL_INSN, all call used registers are stored with
2016 unknown values. */
2017 if (CALL_P (insn))
2019 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2021 if (call_used_regs[i])
2022 /* Reset the information about this register. */
2023 reg_set_luid[i] = 0;
2027 return changed;
2030 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2031 contains SET.
2032 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2033 Called from reload_cse_move2add via note_stores. */
2035 static void
2036 move2add_note_store (rtx dst, const_rtx set, void *data)
2038 rtx insn = (rtx) data;
2039 unsigned int regno = 0;
2040 unsigned int nregs = 0;
2041 unsigned int i;
2042 enum machine_mode mode = GET_MODE (dst);
2044 if (GET_CODE (dst) == SUBREG)
2046 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
2047 GET_MODE (SUBREG_REG (dst)),
2048 SUBREG_BYTE (dst),
2049 GET_MODE (dst));
2050 nregs = subreg_nregs (dst);
2051 dst = SUBREG_REG (dst);
2054 /* Some targets do argument pushes without adding REG_INC notes. */
2056 if (MEM_P (dst))
2058 dst = XEXP (dst, 0);
2059 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2060 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2061 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
2062 return;
2064 if (!REG_P (dst))
2065 return;
2067 regno += REGNO (dst);
2068 if (!nregs)
2069 nregs = hard_regno_nregs[regno][mode];
2071 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2072 && nregs == 1 && GET_CODE (set) == SET)
2074 rtx note, sym = NULL_RTX;
2075 HOST_WIDE_INT off;
2077 note = find_reg_equal_equiv_note (insn);
2078 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2080 sym = XEXP (note, 0);
2081 off = 0;
2083 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2084 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2085 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2086 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2088 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2089 off = INTVAL (XEXP (XEXP (XEXP (note, 0), 0), 1));
2092 if (sym != NULL_RTX)
2094 reg_base_reg[regno] = -1;
2095 reg_symbol_ref[regno] = sym;
2096 reg_offset[regno] = off;
2097 reg_mode[regno] = mode;
2098 reg_set_luid[regno] = move2add_luid;
2099 return;
2103 if (SCALAR_INT_MODE_P (GET_MODE (dst))
2104 && nregs == 1 && GET_CODE (set) == SET
2105 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2106 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2108 rtx src = SET_SRC (set);
2109 rtx base_reg;
2110 HOST_WIDE_INT offset;
2111 int base_regno;
2112 /* This may be different from mode, if SET_DEST (set) is a
2113 SUBREG. */
2114 enum machine_mode dst_mode = GET_MODE (dst);
2116 switch (GET_CODE (src))
2118 case PLUS:
2119 if (REG_P (XEXP (src, 0)))
2121 base_reg = XEXP (src, 0);
2123 if (CONST_INT_P (XEXP (src, 1)))
2124 offset = INTVAL (XEXP (src, 1));
2125 else if (REG_P (XEXP (src, 1))
2126 && (reg_set_luid[REGNO (XEXP (src, 1))]
2127 > move2add_last_label_luid)
2128 && (MODES_OK_FOR_MOVE2ADD
2129 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
2131 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2132 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2133 offset = reg_offset[REGNO (XEXP (src, 1))];
2134 /* Maybe the first register is known to be a
2135 constant. */
2136 else if (reg_set_luid[REGNO (base_reg)]
2137 > move2add_last_label_luid
2138 && (MODES_OK_FOR_MOVE2ADD
2139 (dst_mode, reg_mode[REGNO (base_reg)]))
2140 && reg_base_reg[REGNO (base_reg)] < 0
2141 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2143 offset = reg_offset[REGNO (base_reg)];
2144 base_reg = XEXP (src, 1);
2146 else
2147 goto invalidate;
2149 else
2150 goto invalidate;
2152 break;
2155 goto invalidate;
2157 case REG:
2158 base_reg = src;
2159 offset = 0;
2160 break;
2162 case CONST_INT:
2163 /* Start tracking the register as a constant. */
2164 reg_base_reg[regno] = -1;
2165 reg_symbol_ref[regno] = NULL_RTX;
2166 reg_offset[regno] = INTVAL (SET_SRC (set));
2167 /* We assign the same luid to all registers set to constants. */
2168 reg_set_luid[regno] = move2add_last_label_luid + 1;
2169 reg_mode[regno] = mode;
2170 return;
2172 default:
2173 invalidate:
2174 /* Invalidate the contents of the register. */
2175 reg_set_luid[regno] = 0;
2176 return;
2179 base_regno = REGNO (base_reg);
2180 /* If information about the base register is not valid, set it
2181 up as a new base register, pretending its value is known
2182 starting from the current insn. */
2183 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
2185 reg_base_reg[base_regno] = base_regno;
2186 reg_symbol_ref[base_regno] = NULL_RTX;
2187 reg_offset[base_regno] = 0;
2188 reg_set_luid[base_regno] = move2add_luid;
2189 reg_mode[base_regno] = mode;
2191 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
2192 reg_mode[base_regno]))
2193 goto invalidate;
2195 reg_mode[regno] = mode;
2197 /* Copy base information from our base register. */
2198 reg_set_luid[regno] = reg_set_luid[base_regno];
2199 reg_base_reg[regno] = reg_base_reg[base_regno];
2200 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2202 /* Compute the sum of the offsets or constants. */
2203 reg_offset[regno] = trunc_int_for_mode (offset
2204 + reg_offset[base_regno],
2205 dst_mode);
2207 else
2209 unsigned int endregno = regno + nregs;
2211 for (i = regno; i < endregno; i++)
2212 /* Reset the information about this register. */
2213 reg_set_luid[i] = 0;
2217 static bool
2218 gate_handle_postreload (void)
2220 return (optimize > 0 && reload_completed);
2224 static unsigned int
2225 rest_of_handle_postreload (void)
2227 if (!dbg_cnt (postreload_cse))
2228 return 0;
2230 /* Do a very simple CSE pass over just the hard registers. */
2231 reload_cse_regs (get_insns ());
2232 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2233 Remove any EH edges associated with them. */
2234 if (cfun->can_throw_non_call_exceptions)
2235 purge_all_dead_edges ();
2237 return 0;
2240 struct rtl_opt_pass pass_postreload_cse =
2243 RTL_PASS,
2244 "postreload", /* name */
2245 gate_handle_postreload, /* gate */
2246 rest_of_handle_postreload, /* execute */
2247 NULL, /* sub */
2248 NULL, /* next */
2249 0, /* static_pass_number */
2250 TV_RELOAD_CSE_REGS, /* tv_id */
2251 0, /* properties_required */
2252 0, /* properties_provided */
2253 0, /* properties_destroyed */
2254 0, /* todo_flags_start */
2255 TODO_df_finish | TODO_verify_rtl_sharing |
2256 TODO_dump_func /* todo_flags_finish */