PR target/58115
[official-gcc.git] / gcc / recog.c
blobb81214cf41c57c9ea531b17fa9f13e1a21bb54b5
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "target.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "insn-codes.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in reginfo.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
72 int volatile_ok;
74 struct recog_data_d recog_data;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
83 int which_alternative;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
89 int reload_completed;
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
98 void
99 init_recog_no_volatile (void)
101 volatile_ok = 0;
104 void
105 init_recog (void)
107 volatile_ok = 1;
111 /* Return true if labels in asm operands BODY are LABEL_REFs. */
113 static bool
114 asm_labels_ok (rtx body)
116 rtx asmop;
117 int i;
119 asmop = extract_asm_operands (body);
120 if (asmop == NULL_RTX)
121 return true;
123 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
124 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
125 return false;
127 return true;
130 /* Check that X is an insn-body for an `asm' with operands
131 and that the operands mentioned in it are legitimate. */
134 check_asm_operands (rtx x)
136 int noperands;
137 rtx *operands;
138 const char **constraints;
139 int i;
141 if (!asm_labels_ok (x))
142 return 0;
144 /* Post-reload, be more strict with things. */
145 if (reload_completed)
147 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
148 extract_insn (make_insn_raw (x));
149 constrain_operands (1);
150 return which_alternative >= 0;
153 noperands = asm_noperands (x);
154 if (noperands < 0)
155 return 0;
156 if (noperands == 0)
157 return 1;
159 operands = XALLOCAVEC (rtx, noperands);
160 constraints = XALLOCAVEC (const char *, noperands);
162 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
164 for (i = 0; i < noperands; i++)
166 const char *c = constraints[i];
167 if (c[0] == '%')
168 c++;
169 if (! asm_operand_ok (operands[i], c, constraints))
170 return 0;
173 return 1;
176 /* Static data for the next two routines. */
178 typedef struct change_t
180 rtx object;
181 int old_code;
182 rtx *loc;
183 rtx old;
184 bool unshare;
185 } change_t;
187 static change_t *changes;
188 static int changes_allocated;
190 static int num_changes = 0;
192 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
193 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
194 the change is simply made.
196 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
197 will be called with the address and mode as parameters. If OBJECT is
198 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
199 the change in place.
201 IN_GROUP is nonzero if this is part of a group of changes that must be
202 performed as a group. In that case, the changes will be stored. The
203 function `apply_change_group' will validate and apply the changes.
205 If IN_GROUP is zero, this is a single change. Try to recognize the insn
206 or validate the memory reference with the change applied. If the result
207 is not valid for the machine, suppress the change and return zero.
208 Otherwise, perform the change and return 1. */
210 static bool
211 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
213 rtx old = *loc;
215 if (old == new_rtx || rtx_equal_p (old, new_rtx))
216 return 1;
218 gcc_assert (in_group != 0 || num_changes == 0);
220 *loc = new_rtx;
222 /* Save the information describing this change. */
223 if (num_changes >= changes_allocated)
225 if (changes_allocated == 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated = MAX_RECOG_OPERANDS * 5;
229 else
230 changes_allocated *= 2;
232 changes = XRESIZEVEC (change_t, changes, changes_allocated);
235 changes[num_changes].object = object;
236 changes[num_changes].loc = loc;
237 changes[num_changes].old = old;
238 changes[num_changes].unshare = unshare;
240 if (object && !MEM_P (object))
242 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 case invalid. */
244 changes[num_changes].old_code = INSN_CODE (object);
245 INSN_CODE (object) = -1;
248 num_changes++;
250 /* If we are making a group of changes, return 1. Otherwise, validate the
251 change group we made. */
253 if (in_group)
254 return 1;
255 else
256 return apply_change_group ();
259 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
260 UNSHARE to false. */
262 bool
263 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
265 return validate_change_1 (object, loc, new_rtx, in_group, false);
268 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
269 UNSHARE to true. */
271 bool
272 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 return validate_change_1 (object, loc, new_rtx, in_group, true);
278 /* Keep X canonicalized if some changes have made it non-canonical; only
279 modifies the operands of X, not (for example) its code. Simplifications
280 are not the job of this routine.
282 Return true if anything was changed. */
283 bool
284 canonicalize_change_group (rtx insn, rtx x)
286 if (COMMUTATIVE_P (x)
287 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
289 /* Oops, the caller has made X no longer canonical.
290 Let's redo the changes in the correct order. */
291 rtx tem = XEXP (x, 0);
292 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
293 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
294 return true;
296 else
297 return false;
301 /* This subroutine of apply_change_group verifies whether the changes to INSN
302 were valid; i.e. whether INSN can still be recognized.
304 If IN_GROUP is true clobbers which have to be added in order to
305 match the instructions will be added to the current change group.
306 Otherwise the changes will take effect immediately. */
309 insn_invalid_p (rtx insn, bool in_group)
311 rtx pat = PATTERN (insn);
312 int num_clobbers = 0;
313 /* If we are before reload and the pattern is a SET, see if we can add
314 clobbers. */
315 int icode = recog (pat, insn,
316 (GET_CODE (pat) == SET
317 && ! reload_completed
318 && ! reload_in_progress)
319 ? &num_clobbers : 0);
320 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
323 /* If this is an asm and the operand aren't legal, then fail. Likewise if
324 this is not an asm and the insn wasn't recognized. */
325 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
326 || (!is_asm && icode < 0))
327 return 1;
329 /* If we have to add CLOBBERs, fail if we have to add ones that reference
330 hard registers since our callers can't know if they are live or not.
331 Otherwise, add them. */
332 if (num_clobbers > 0)
334 rtx newpat;
336 if (added_clobbers_hard_reg_p (icode))
337 return 1;
339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
340 XVECEXP (newpat, 0, 0) = pat;
341 add_clobbers (newpat, icode);
342 if (in_group)
343 validate_change (insn, &PATTERN (insn), newpat, 1);
344 else
345 PATTERN (insn) = pat = newpat;
348 /* After reload, verify that all constraints are satisfied. */
349 if (reload_completed)
351 extract_insn (insn);
353 if (! constrain_operands (1))
354 return 1;
357 INSN_CODE (insn) = icode;
358 return 0;
361 /* Return number of changes made and not validated yet. */
363 num_changes_pending (void)
365 return num_changes;
368 /* Tentatively apply the changes numbered NUM and up.
369 Return 1 if all changes are valid, zero otherwise. */
372 verify_changes (int num)
374 int i;
375 rtx last_validated = NULL_RTX;
377 /* The changes have been applied and all INSN_CODEs have been reset to force
378 rerecognition.
380 The changes are valid if we aren't given an object, or if we are
381 given a MEM and it still is a valid address, or if this is in insn
382 and it is recognized. In the latter case, if reload has completed,
383 we also require that the operands meet the constraints for
384 the insn. */
386 for (i = num; i < num_changes; i++)
388 rtx object = changes[i].object;
390 /* If there is no object to test or if it is the same as the one we
391 already tested, ignore it. */
392 if (object == 0 || object == last_validated)
393 continue;
395 if (MEM_P (object))
397 if (! memory_address_addr_space_p (GET_MODE (object),
398 XEXP (object, 0),
399 MEM_ADDR_SPACE (object)))
400 break;
402 else if (/* changes[i].old might be zero, e.g. when putting a
403 REG_FRAME_RELATED_EXPR into a previously empty list. */
404 changes[i].old
405 && REG_P (changes[i].old)
406 && asm_noperands (PATTERN (object)) > 0
407 && REG_EXPR (changes[i].old) != NULL_TREE
408 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
409 && DECL_REGISTER (REG_EXPR (changes[i].old)))
411 /* Don't allow changes of hard register operands to inline
412 assemblies if they have been defined as register asm ("x"). */
413 break;
415 else if (DEBUG_INSN_P (object))
416 continue;
417 else if (insn_invalid_p (object, true))
419 rtx pat = PATTERN (object);
421 /* Perhaps we couldn't recognize the insn because there were
422 extra CLOBBERs at the end. If so, try to re-recognize
423 without the last CLOBBER (later iterations will cause each of
424 them to be eliminated, in turn). But don't do this if we
425 have an ASM_OPERAND. */
426 if (GET_CODE (pat) == PARALLEL
427 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
428 && asm_noperands (PATTERN (object)) < 0)
430 rtx newpat;
432 if (XVECLEN (pat, 0) == 2)
433 newpat = XVECEXP (pat, 0, 0);
434 else
436 int j;
438 newpat
439 = gen_rtx_PARALLEL (VOIDmode,
440 rtvec_alloc (XVECLEN (pat, 0) - 1));
441 for (j = 0; j < XVECLEN (newpat, 0); j++)
442 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
445 /* Add a new change to this group to replace the pattern
446 with this new pattern. Then consider this change
447 as having succeeded. The change we added will
448 cause the entire call to fail if things remain invalid.
450 Note that this can lose if a later change than the one
451 we are processing specified &XVECEXP (PATTERN (object), 0, X)
452 but this shouldn't occur. */
454 validate_change (object, &PATTERN (object), newpat, 1);
455 continue;
457 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
458 || GET_CODE (pat) == VAR_LOCATION)
459 /* If this insn is a CLOBBER or USE, it is always valid, but is
460 never recognized. */
461 continue;
462 else
463 break;
465 last_validated = object;
468 return (i == num_changes);
471 /* A group of changes has previously been issued with validate_change
472 and verified with verify_changes. Call df_insn_rescan for each of
473 the insn changed and clear num_changes. */
475 void
476 confirm_change_group (void)
478 int i;
479 rtx last_object = NULL;
481 for (i = 0; i < num_changes; i++)
483 rtx object = changes[i].object;
485 if (changes[i].unshare)
486 *changes[i].loc = copy_rtx (*changes[i].loc);
488 /* Avoid unnecessary rescanning when multiple changes to same instruction
489 are made. */
490 if (object)
492 if (object != last_object && last_object && INSN_P (last_object))
493 df_insn_rescan (last_object);
494 last_object = object;
498 if (last_object && INSN_P (last_object))
499 df_insn_rescan (last_object);
500 num_changes = 0;
503 /* Apply a group of changes previously issued with `validate_change'.
504 If all changes are valid, call confirm_change_group and return 1,
505 otherwise, call cancel_changes and return 0. */
508 apply_change_group (void)
510 if (verify_changes (0))
512 confirm_change_group ();
513 return 1;
515 else
517 cancel_changes (0);
518 return 0;
523 /* Return the number of changes so far in the current group. */
526 num_validated_changes (void)
528 return num_changes;
531 /* Retract the changes numbered NUM and up. */
533 void
534 cancel_changes (int num)
536 int i;
538 /* Back out all the changes. Do this in the opposite order in which
539 they were made. */
540 for (i = num_changes - 1; i >= num; i--)
542 *changes[i].loc = changes[i].old;
543 if (changes[i].object && !MEM_P (changes[i].object))
544 INSN_CODE (changes[i].object) = changes[i].old_code;
546 num_changes = num;
549 /* Reduce conditional compilation elsewhere. */
550 #ifndef HAVE_extv
551 #define HAVE_extv 0
552 #define CODE_FOR_extv CODE_FOR_nothing
553 #endif
554 #ifndef HAVE_extzv
555 #define HAVE_extzv 0
556 #define CODE_FOR_extzv CODE_FOR_nothing
557 #endif
559 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
560 rtx. */
562 static void
563 simplify_while_replacing (rtx *loc, rtx to, rtx object,
564 enum machine_mode op0_mode)
566 rtx x = *loc;
567 enum rtx_code code = GET_CODE (x);
568 rtx new_rtx;
570 if (SWAPPABLE_OPERANDS_P (x)
571 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
573 validate_unshare_change (object, loc,
574 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
575 : swap_condition (code),
576 GET_MODE (x), XEXP (x, 1),
577 XEXP (x, 0)), 1);
578 x = *loc;
579 code = GET_CODE (x);
582 switch (code)
584 case PLUS:
585 /* If we have a PLUS whose second operand is now a CONST_INT, use
586 simplify_gen_binary to try to simplify it.
587 ??? We may want later to remove this, once simplification is
588 separated from this function. */
589 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
590 validate_change (object, loc,
591 simplify_gen_binary
592 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
593 break;
594 case MINUS:
595 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
596 validate_change (object, loc,
597 simplify_gen_binary
598 (PLUS, GET_MODE (x), XEXP (x, 0),
599 simplify_gen_unary (NEG,
600 GET_MODE (x), XEXP (x, 1),
601 GET_MODE (x))), 1);
602 break;
603 case ZERO_EXTEND:
604 case SIGN_EXTEND:
605 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
607 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
608 op0_mode);
609 /* If any of the above failed, substitute in something that
610 we know won't be recognized. */
611 if (!new_rtx)
612 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
613 validate_change (object, loc, new_rtx, 1);
615 break;
616 case SUBREG:
617 /* All subregs possible to simplify should be simplified. */
618 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
619 SUBREG_BYTE (x));
621 /* Subregs of VOIDmode operands are incorrect. */
622 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
623 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
624 if (new_rtx)
625 validate_change (object, loc, new_rtx, 1);
626 break;
627 case ZERO_EXTRACT:
628 case SIGN_EXTRACT:
629 /* If we are replacing a register with memory, try to change the memory
630 to be the mode required for memory in extract operations (this isn't
631 likely to be an insertion operation; if it was, nothing bad will
632 happen, we might just fail in some cases). */
634 if (MEM_P (XEXP (x, 0))
635 && CONST_INT_P (XEXP (x, 1))
636 && CONST_INT_P (XEXP (x, 2))
637 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
638 MEM_ADDR_SPACE (XEXP (x, 0)))
639 && !MEM_VOLATILE_P (XEXP (x, 0)))
641 enum machine_mode wanted_mode = VOIDmode;
642 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
643 int pos = INTVAL (XEXP (x, 2));
645 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
647 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
648 if (wanted_mode == VOIDmode)
649 wanted_mode = word_mode;
651 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
653 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
654 if (wanted_mode == VOIDmode)
655 wanted_mode = word_mode;
658 /* If we have a narrower mode, we can do something. */
659 if (wanted_mode != VOIDmode
660 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
662 int offset = pos / BITS_PER_UNIT;
663 rtx newmem;
665 /* If the bytes and bits are counted differently, we
666 must adjust the offset. */
667 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
668 offset =
669 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
670 offset);
672 gcc_assert (GET_MODE_PRECISION (wanted_mode)
673 == GET_MODE_BITSIZE (wanted_mode));
674 pos %= GET_MODE_BITSIZE (wanted_mode);
676 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
678 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
679 validate_change (object, &XEXP (x, 0), newmem, 1);
683 break;
685 default:
686 break;
690 /* Replace every occurrence of FROM in X with TO. Mark each change with
691 validate_change passing OBJECT. */
693 static void
694 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
695 bool simplify)
697 int i, j;
698 const char *fmt;
699 rtx x = *loc;
700 enum rtx_code code;
701 enum machine_mode op0_mode = VOIDmode;
702 int prev_changes = num_changes;
704 if (!x)
705 return;
707 code = GET_CODE (x);
708 fmt = GET_RTX_FORMAT (code);
709 if (fmt[0] == 'e')
710 op0_mode = GET_MODE (XEXP (x, 0));
712 /* X matches FROM if it is the same rtx or they are both referring to the
713 same register in the same mode. Avoid calling rtx_equal_p unless the
714 operands look similar. */
716 if (x == from
717 || (REG_P (x) && REG_P (from)
718 && GET_MODE (x) == GET_MODE (from)
719 && REGNO (x) == REGNO (from))
720 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
721 && rtx_equal_p (x, from)))
723 validate_unshare_change (object, loc, to, 1);
724 return;
727 /* Call ourself recursively to perform the replacements.
728 We must not replace inside already replaced expression, otherwise we
729 get infinite recursion for replacements like (reg X)->(subreg (reg X))
730 so we must special case shared ASM_OPERANDS. */
732 if (GET_CODE (x) == PARALLEL)
734 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
736 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
737 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
739 /* Verify that operands are really shared. */
740 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
741 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
742 (x, 0, j))));
743 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
744 from, to, object, simplify);
746 else
747 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
748 simplify);
751 else
752 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
754 if (fmt[i] == 'e')
755 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
756 else if (fmt[i] == 'E')
757 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
758 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
759 simplify);
762 /* If we didn't substitute, there is nothing more to do. */
763 if (num_changes == prev_changes)
764 return;
766 /* ??? The regmove is no more, so is this aberration still necessary? */
767 /* Allow substituted expression to have different mode. This is used by
768 regmove to change mode of pseudo register. */
769 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
770 op0_mode = GET_MODE (XEXP (x, 0));
772 /* Do changes needed to keep rtx consistent. Don't do any other
773 simplifications, as it is not our job. */
774 if (simplify)
775 simplify_while_replacing (loc, to, object, op0_mode);
778 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
779 with TO. After all changes have been made, validate by seeing
780 if INSN is still valid. */
783 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
785 validate_replace_rtx_1 (loc, from, to, insn, true);
786 return apply_change_group ();
789 /* Try replacing every occurrence of FROM in INSN with TO. After all
790 changes have been made, validate by seeing if INSN is still valid. */
793 validate_replace_rtx (rtx from, rtx to, rtx insn)
795 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
796 return apply_change_group ();
799 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
800 is a part of INSN. After all changes have been made, validate by seeing if
801 INSN is still valid.
802 validate_replace_rtx (from, to, insn) is equivalent to
803 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
806 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
808 validate_replace_rtx_1 (where, from, to, insn, true);
809 return apply_change_group ();
812 /* Same as above, but do not simplify rtx afterwards. */
814 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
815 rtx insn)
817 validate_replace_rtx_1 (where, from, to, insn, false);
818 return apply_change_group ();
822 /* Try replacing every occurrence of FROM in INSN with TO. This also
823 will replace in REG_EQUAL and REG_EQUIV notes. */
825 void
826 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
828 rtx note;
829 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
830 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
831 if (REG_NOTE_KIND (note) == REG_EQUAL
832 || REG_NOTE_KIND (note) == REG_EQUIV)
833 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
836 /* Function called by note_uses to replace used subexpressions. */
837 struct validate_replace_src_data
839 rtx from; /* Old RTX */
840 rtx to; /* New RTX */
841 rtx insn; /* Insn in which substitution is occurring. */
844 static void
845 validate_replace_src_1 (rtx *x, void *data)
847 struct validate_replace_src_data *d
848 = (struct validate_replace_src_data *) data;
850 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
853 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
854 SET_DESTs. */
856 void
857 validate_replace_src_group (rtx from, rtx to, rtx insn)
859 struct validate_replace_src_data d;
861 d.from = from;
862 d.to = to;
863 d.insn = insn;
864 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
867 /* Try simplify INSN.
868 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
869 pattern and return true if something was simplified. */
871 bool
872 validate_simplify_insn (rtx insn)
874 int i;
875 rtx pat = NULL;
876 rtx newpat = NULL;
878 pat = PATTERN (insn);
880 if (GET_CODE (pat) == SET)
882 newpat = simplify_rtx (SET_SRC (pat));
883 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
884 validate_change (insn, &SET_SRC (pat), newpat, 1);
885 newpat = simplify_rtx (SET_DEST (pat));
886 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
887 validate_change (insn, &SET_DEST (pat), newpat, 1);
889 else if (GET_CODE (pat) == PARALLEL)
890 for (i = 0; i < XVECLEN (pat, 0); i++)
892 rtx s = XVECEXP (pat, 0, i);
894 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
896 newpat = simplify_rtx (SET_SRC (s));
897 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
898 validate_change (insn, &SET_SRC (s), newpat, 1);
899 newpat = simplify_rtx (SET_DEST (s));
900 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
901 validate_change (insn, &SET_DEST (s), newpat, 1);
904 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
907 #ifdef HAVE_cc0
908 /* Return 1 if the insn using CC0 set by INSN does not contain
909 any ordered tests applied to the condition codes.
910 EQ and NE tests do not count. */
913 next_insn_tests_no_inequality (rtx insn)
915 rtx next = next_cc0_user (insn);
917 /* If there is no next insn, we have to take the conservative choice. */
918 if (next == 0)
919 return 0;
921 return (INSN_P (next)
922 && ! inequality_comparisons_p (PATTERN (next)));
924 #endif
926 /* Return 1 if OP is a valid general operand for machine mode MODE.
927 This is either a register reference, a memory reference,
928 or a constant. In the case of a memory reference, the address
929 is checked for general validity for the target machine.
931 Register and memory references must have mode MODE in order to be valid,
932 but some constants have no machine mode and are valid for any mode.
934 If MODE is VOIDmode, OP is checked for validity for whatever mode
935 it has.
937 The main use of this function is as a predicate in match_operand
938 expressions in the machine description. */
941 general_operand (rtx op, enum machine_mode mode)
943 enum rtx_code code = GET_CODE (op);
945 if (mode == VOIDmode)
946 mode = GET_MODE (op);
948 /* Don't accept CONST_INT or anything similar
949 if the caller wants something floating. */
950 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
951 && GET_MODE_CLASS (mode) != MODE_INT
952 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
953 return 0;
955 if (CONST_INT_P (op)
956 && mode != VOIDmode
957 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
958 return 0;
960 if (CONSTANT_P (op))
961 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
962 || mode == VOIDmode)
963 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
964 && targetm.legitimate_constant_p (mode == VOIDmode
965 ? GET_MODE (op)
966 : mode, op));
968 /* Except for certain constants with VOIDmode, already checked for,
969 OP's mode must match MODE if MODE specifies a mode. */
971 if (GET_MODE (op) != mode)
972 return 0;
974 if (code == SUBREG)
976 rtx sub = SUBREG_REG (op);
978 #ifdef INSN_SCHEDULING
979 /* On machines that have insn scheduling, we want all memory
980 reference to be explicit, so outlaw paradoxical SUBREGs.
981 However, we must allow them after reload so that they can
982 get cleaned up by cleanup_subreg_operands. */
983 if (!reload_completed && MEM_P (sub)
984 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
985 return 0;
986 #endif
987 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
988 may result in incorrect reference. We should simplify all valid
989 subregs of MEM anyway. But allow this after reload because we
990 might be called from cleanup_subreg_operands.
992 ??? This is a kludge. */
993 if (!reload_completed && SUBREG_BYTE (op) != 0
994 && MEM_P (sub))
995 return 0;
997 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
998 create such rtl, and we must reject it. */
999 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1000 /* LRA can use subreg to store a floating point value in an
1001 integer mode. Although the floating point and the
1002 integer modes need the same number of hard registers, the
1003 size of floating point mode can be less than the integer
1004 mode. */
1005 && ! lra_in_progress
1006 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1007 return 0;
1009 op = sub;
1010 code = GET_CODE (op);
1013 if (code == REG)
1014 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1015 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1017 if (code == MEM)
1019 rtx y = XEXP (op, 0);
1021 if (! volatile_ok && MEM_VOLATILE_P (op))
1022 return 0;
1024 /* Use the mem's mode, since it will be reloaded thus. LRA can
1025 generate move insn with invalid addresses which is made valid
1026 and efficiently calculated by LRA through further numerous
1027 transformations. */
1028 if (lra_in_progress
1029 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1030 return 1;
1033 return 0;
1036 /* Return 1 if OP is a valid memory address for a memory reference
1037 of mode MODE.
1039 The main use of this function is as a predicate in match_operand
1040 expressions in the machine description. */
1043 address_operand (rtx op, enum machine_mode mode)
1045 return memory_address_p (mode, op);
1048 /* Return 1 if OP is a register reference of mode MODE.
1049 If MODE is VOIDmode, accept a register in any mode.
1051 The main use of this function is as a predicate in match_operand
1052 expressions in the machine description. */
1055 register_operand (rtx op, enum machine_mode mode)
1057 if (GET_MODE (op) != mode && mode != VOIDmode)
1058 return 0;
1060 if (GET_CODE (op) == SUBREG)
1062 rtx sub = SUBREG_REG (op);
1064 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1065 because it is guaranteed to be reloaded into one.
1066 Just make sure the MEM is valid in itself.
1067 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1068 but currently it does result from (SUBREG (REG)...) where the
1069 reg went on the stack.) */
1070 if (! reload_completed && MEM_P (sub))
1071 return general_operand (op, mode);
1073 #ifdef CANNOT_CHANGE_MODE_CLASS
1074 if (REG_P (sub)
1075 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1076 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1077 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1078 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1079 /* LRA can generate some invalid SUBREGS just for matched
1080 operand reload presentation. LRA needs to treat them as
1081 valid. */
1082 && ! LRA_SUBREG_P (op))
1083 return 0;
1084 #endif
1086 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1087 create such rtl, and we must reject it. */
1088 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1089 /* LRA can use subreg to store a floating point value in an
1090 integer mode. Although the floating point and the
1091 integer modes need the same number of hard registers, the
1092 size of floating point mode can be less than the integer
1093 mode. */
1094 && ! lra_in_progress
1095 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1096 return 0;
1098 op = sub;
1101 return (REG_P (op)
1102 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1103 || in_hard_reg_set_p (operand_reg_set,
1104 GET_MODE (op), REGNO (op))));
1107 /* Return 1 for a register in Pmode; ignore the tested mode. */
1110 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1112 return register_operand (op, Pmode);
1115 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1116 or a hard register. */
1119 scratch_operand (rtx op, enum machine_mode mode)
1121 if (GET_MODE (op) != mode && mode != VOIDmode)
1122 return 0;
1124 return (GET_CODE (op) == SCRATCH
1125 || (REG_P (op)
1126 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1129 /* Return 1 if OP is a valid immediate operand for mode MODE.
1131 The main use of this function is as a predicate in match_operand
1132 expressions in the machine description. */
1135 immediate_operand (rtx op, enum machine_mode mode)
1137 /* Don't accept CONST_INT or anything similar
1138 if the caller wants something floating. */
1139 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1140 && GET_MODE_CLASS (mode) != MODE_INT
1141 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1142 return 0;
1144 if (CONST_INT_P (op)
1145 && mode != VOIDmode
1146 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1147 return 0;
1149 return (CONSTANT_P (op)
1150 && (GET_MODE (op) == mode || mode == VOIDmode
1151 || GET_MODE (op) == VOIDmode)
1152 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1153 && targetm.legitimate_constant_p (mode == VOIDmode
1154 ? GET_MODE (op)
1155 : mode, op));
1158 /* Returns 1 if OP is an operand that is a CONST_INT. */
1161 const_int_operand (rtx op, enum machine_mode mode)
1163 if (!CONST_INT_P (op))
1164 return 0;
1166 if (mode != VOIDmode
1167 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1168 return 0;
1170 return 1;
1173 /* Returns 1 if OP is an operand that is a constant integer or constant
1174 floating-point number. */
1177 const_double_operand (rtx op, enum machine_mode mode)
1179 /* Don't accept CONST_INT or anything similar
1180 if the caller wants something floating. */
1181 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1182 && GET_MODE_CLASS (mode) != MODE_INT
1183 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1184 return 0;
1186 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1187 && (mode == VOIDmode || GET_MODE (op) == mode
1188 || GET_MODE (op) == VOIDmode));
1191 /* Return 1 if OP is a general operand that is not an immediate operand. */
1194 nonimmediate_operand (rtx op, enum machine_mode mode)
1196 return (general_operand (op, mode) && ! CONSTANT_P (op));
1199 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1202 nonmemory_operand (rtx op, enum machine_mode mode)
1204 if (CONSTANT_P (op))
1205 return immediate_operand (op, mode);
1207 if (GET_MODE (op) != mode && mode != VOIDmode)
1208 return 0;
1210 if (GET_CODE (op) == SUBREG)
1212 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1213 because it is guaranteed to be reloaded into one.
1214 Just make sure the MEM is valid in itself.
1215 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1216 but currently it does result from (SUBREG (REG)...) where the
1217 reg went on the stack.) */
1218 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1219 return general_operand (op, mode);
1220 op = SUBREG_REG (op);
1223 return (REG_P (op)
1224 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1225 || in_hard_reg_set_p (operand_reg_set,
1226 GET_MODE (op), REGNO (op))));
1229 /* Return 1 if OP is a valid operand that stands for pushing a
1230 value of mode MODE onto the stack.
1232 The main use of this function is as a predicate in match_operand
1233 expressions in the machine description. */
1236 push_operand (rtx op, enum machine_mode mode)
1238 unsigned int rounded_size = GET_MODE_SIZE (mode);
1240 #ifdef PUSH_ROUNDING
1241 rounded_size = PUSH_ROUNDING (rounded_size);
1242 #endif
1244 if (!MEM_P (op))
1245 return 0;
1247 if (mode != VOIDmode && GET_MODE (op) != mode)
1248 return 0;
1250 op = XEXP (op, 0);
1252 if (rounded_size == GET_MODE_SIZE (mode))
1254 if (GET_CODE (op) != STACK_PUSH_CODE)
1255 return 0;
1257 else
1259 if (GET_CODE (op) != PRE_MODIFY
1260 || GET_CODE (XEXP (op, 1)) != PLUS
1261 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1262 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1263 #ifdef STACK_GROWS_DOWNWARD
1264 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1265 #else
1266 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1267 #endif
1269 return 0;
1272 return XEXP (op, 0) == stack_pointer_rtx;
1275 /* Return 1 if OP is a valid operand that stands for popping a
1276 value of mode MODE off the stack.
1278 The main use of this function is as a predicate in match_operand
1279 expressions in the machine description. */
1282 pop_operand (rtx op, enum machine_mode mode)
1284 if (!MEM_P (op))
1285 return 0;
1287 if (mode != VOIDmode && GET_MODE (op) != mode)
1288 return 0;
1290 op = XEXP (op, 0);
1292 if (GET_CODE (op) != STACK_POP_CODE)
1293 return 0;
1295 return XEXP (op, 0) == stack_pointer_rtx;
1298 /* Return 1 if ADDR is a valid memory address
1299 for mode MODE in address space AS. */
1302 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1303 rtx addr, addr_space_t as)
1305 #ifdef GO_IF_LEGITIMATE_ADDRESS
1306 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1307 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1308 return 0;
1310 win:
1311 return 1;
1312 #else
1313 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1314 #endif
1317 /* Return 1 if OP is a valid memory reference with mode MODE,
1318 including a valid address.
1320 The main use of this function is as a predicate in match_operand
1321 expressions in the machine description. */
1324 memory_operand (rtx op, enum machine_mode mode)
1326 rtx inner;
1328 if (! reload_completed)
1329 /* Note that no SUBREG is a memory operand before end of reload pass,
1330 because (SUBREG (MEM...)) forces reloading into a register. */
1331 return MEM_P (op) && general_operand (op, mode);
1333 if (mode != VOIDmode && GET_MODE (op) != mode)
1334 return 0;
1336 inner = op;
1337 if (GET_CODE (inner) == SUBREG)
1338 inner = SUBREG_REG (inner);
1340 return (MEM_P (inner) && general_operand (op, mode));
1343 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1344 that is, a memory reference whose address is a general_operand. */
1347 indirect_operand (rtx op, enum machine_mode mode)
1349 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1350 if (! reload_completed
1351 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1353 int offset = SUBREG_BYTE (op);
1354 rtx inner = SUBREG_REG (op);
1356 if (mode != VOIDmode && GET_MODE (op) != mode)
1357 return 0;
1359 /* The only way that we can have a general_operand as the resulting
1360 address is if OFFSET is zero and the address already is an operand
1361 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1362 operand. */
1364 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1365 || (GET_CODE (XEXP (inner, 0)) == PLUS
1366 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1367 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1368 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1371 return (MEM_P (op)
1372 && memory_operand (op, mode)
1373 && general_operand (XEXP (op, 0), Pmode));
1376 /* Return 1 if this is an ordered comparison operator (not including
1377 ORDERED and UNORDERED). */
1380 ordered_comparison_operator (rtx op, enum machine_mode mode)
1382 if (mode != VOIDmode && GET_MODE (op) != mode)
1383 return false;
1384 switch (GET_CODE (op))
1386 case EQ:
1387 case NE:
1388 case LT:
1389 case LTU:
1390 case LE:
1391 case LEU:
1392 case GT:
1393 case GTU:
1394 case GE:
1395 case GEU:
1396 return true;
1397 default:
1398 return false;
1402 /* Return 1 if this is a comparison operator. This allows the use of
1403 MATCH_OPERATOR to recognize all the branch insns. */
1406 comparison_operator (rtx op, enum machine_mode mode)
1408 return ((mode == VOIDmode || GET_MODE (op) == mode)
1409 && COMPARISON_P (op));
1412 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1415 extract_asm_operands (rtx body)
1417 rtx tmp;
1418 switch (GET_CODE (body))
1420 case ASM_OPERANDS:
1421 return body;
1423 case SET:
1424 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1425 tmp = SET_SRC (body);
1426 if (GET_CODE (tmp) == ASM_OPERANDS)
1427 return tmp;
1428 break;
1430 case PARALLEL:
1431 tmp = XVECEXP (body, 0, 0);
1432 if (GET_CODE (tmp) == ASM_OPERANDS)
1433 return tmp;
1434 if (GET_CODE (tmp) == SET)
1436 tmp = SET_SRC (tmp);
1437 if (GET_CODE (tmp) == ASM_OPERANDS)
1438 return tmp;
1440 break;
1442 default:
1443 break;
1445 return NULL;
1448 /* If BODY is an insn body that uses ASM_OPERANDS,
1449 return the number of operands (both input and output) in the insn.
1450 Otherwise return -1. */
1453 asm_noperands (const_rtx body)
1455 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1456 int n_sets = 0;
1458 if (asm_op == NULL)
1459 return -1;
1461 if (GET_CODE (body) == SET)
1462 n_sets = 1;
1463 else if (GET_CODE (body) == PARALLEL)
1465 int i;
1466 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1468 /* Multiple output operands, or 1 output plus some clobbers:
1469 body is
1470 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1471 /* Count backwards through CLOBBERs to determine number of SETs. */
1472 for (i = XVECLEN (body, 0); i > 0; i--)
1474 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1475 break;
1476 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1477 return -1;
1480 /* N_SETS is now number of output operands. */
1481 n_sets = i;
1483 /* Verify that all the SETs we have
1484 came from a single original asm_operands insn
1485 (so that invalid combinations are blocked). */
1486 for (i = 0; i < n_sets; i++)
1488 rtx elt = XVECEXP (body, 0, i);
1489 if (GET_CODE (elt) != SET)
1490 return -1;
1491 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1492 return -1;
1493 /* If these ASM_OPERANDS rtx's came from different original insns
1494 then they aren't allowed together. */
1495 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1496 != ASM_OPERANDS_INPUT_VEC (asm_op))
1497 return -1;
1500 else
1502 /* 0 outputs, but some clobbers:
1503 body is [(asm_operands ...) (clobber (reg ...))...]. */
1504 /* Make sure all the other parallel things really are clobbers. */
1505 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1506 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1507 return -1;
1511 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1512 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1515 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1516 copy its operands (both input and output) into the vector OPERANDS,
1517 the locations of the operands within the insn into the vector OPERAND_LOCS,
1518 and the constraints for the operands into CONSTRAINTS.
1519 Write the modes of the operands into MODES.
1520 Return the assembler-template.
1522 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1523 we don't store that info. */
1525 const char *
1526 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1527 const char **constraints, enum machine_mode *modes,
1528 location_t *loc)
1530 int nbase = 0, n, i;
1531 rtx asmop;
1533 switch (GET_CODE (body))
1535 case ASM_OPERANDS:
1536 /* Zero output asm: BODY is (asm_operands ...). */
1537 asmop = body;
1538 break;
1540 case SET:
1541 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1542 asmop = SET_SRC (body);
1544 /* The output is in the SET.
1545 Its constraint is in the ASM_OPERANDS itself. */
1546 if (operands)
1547 operands[0] = SET_DEST (body);
1548 if (operand_locs)
1549 operand_locs[0] = &SET_DEST (body);
1550 if (constraints)
1551 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1552 if (modes)
1553 modes[0] = GET_MODE (SET_DEST (body));
1554 nbase = 1;
1555 break;
1557 case PARALLEL:
1559 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1561 asmop = XVECEXP (body, 0, 0);
1562 if (GET_CODE (asmop) == SET)
1564 asmop = SET_SRC (asmop);
1566 /* At least one output, plus some CLOBBERs. The outputs are in
1567 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1568 for (i = 0; i < nparallel; i++)
1570 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1571 break; /* Past last SET */
1572 if (operands)
1573 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1574 if (operand_locs)
1575 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1576 if (constraints)
1577 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1578 if (modes)
1579 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1581 nbase = i;
1583 break;
1586 default:
1587 gcc_unreachable ();
1590 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1591 for (i = 0; i < n; i++)
1593 if (operand_locs)
1594 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1595 if (operands)
1596 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1597 if (constraints)
1598 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1599 if (modes)
1600 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1602 nbase += n;
1604 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1605 for (i = 0; i < n; i++)
1607 if (operand_locs)
1608 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1609 if (operands)
1610 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1611 if (constraints)
1612 constraints[nbase + i] = "";
1613 if (modes)
1614 modes[nbase + i] = Pmode;
1617 if (loc)
1618 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1620 return ASM_OPERANDS_TEMPLATE (asmop);
1623 /* Check if an asm_operand matches its constraints.
1624 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1627 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1629 int result = 0;
1630 #ifdef AUTO_INC_DEC
1631 bool incdec_ok = false;
1632 #endif
1634 /* Use constrain_operands after reload. */
1635 gcc_assert (!reload_completed);
1637 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1638 many alternatives as required to match the other operands. */
1639 if (*constraint == '\0')
1640 result = 1;
1642 while (*constraint)
1644 char c = *constraint;
1645 int len;
1646 switch (c)
1648 case ',':
1649 constraint++;
1650 continue;
1651 case '=':
1652 case '+':
1653 case '*':
1654 case '%':
1655 case '!':
1656 case '#':
1657 case '&':
1658 case '?':
1659 break;
1661 case '0': case '1': case '2': case '3': case '4':
1662 case '5': case '6': case '7': case '8': case '9':
1663 /* If caller provided constraints pointer, look up
1664 the matching constraint. Otherwise, our caller should have
1665 given us the proper matching constraint, but we can't
1666 actually fail the check if they didn't. Indicate that
1667 results are inconclusive. */
1668 if (constraints)
1670 char *end;
1671 unsigned long match;
1673 match = strtoul (constraint, &end, 10);
1674 if (!result)
1675 result = asm_operand_ok (op, constraints[match], NULL);
1676 constraint = (const char *) end;
1678 else
1681 constraint++;
1682 while (ISDIGIT (*constraint));
1683 if (! result)
1684 result = -1;
1686 continue;
1688 case 'p':
1689 if (address_operand (op, VOIDmode))
1690 result = 1;
1691 break;
1693 case TARGET_MEM_CONSTRAINT:
1694 case 'V': /* non-offsettable */
1695 if (memory_operand (op, VOIDmode))
1696 result = 1;
1697 break;
1699 case 'o': /* offsettable */
1700 if (offsettable_nonstrict_memref_p (op))
1701 result = 1;
1702 break;
1704 case '<':
1705 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1706 excepting those that expand_call created. Further, on some
1707 machines which do not have generalized auto inc/dec, an inc/dec
1708 is not a memory_operand.
1710 Match any memory and hope things are resolved after reload. */
1712 if (MEM_P (op)
1713 && (1
1714 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1715 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1716 result = 1;
1717 #ifdef AUTO_INC_DEC
1718 incdec_ok = true;
1719 #endif
1720 break;
1722 case '>':
1723 if (MEM_P (op)
1724 && (1
1725 || GET_CODE (XEXP (op, 0)) == PRE_INC
1726 || GET_CODE (XEXP (op, 0)) == POST_INC))
1727 result = 1;
1728 #ifdef AUTO_INC_DEC
1729 incdec_ok = true;
1730 #endif
1731 break;
1733 case 'E':
1734 case 'F':
1735 if (CONST_DOUBLE_AS_FLOAT_P (op)
1736 || (GET_CODE (op) == CONST_VECTOR
1737 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1738 result = 1;
1739 break;
1741 case 'G':
1742 if (CONST_DOUBLE_AS_FLOAT_P (op)
1743 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1744 result = 1;
1745 break;
1746 case 'H':
1747 if (CONST_DOUBLE_AS_FLOAT_P (op)
1748 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1749 result = 1;
1750 break;
1752 case 's':
1753 if (CONST_SCALAR_INT_P (op))
1754 break;
1755 /* Fall through. */
1757 case 'i':
1758 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1759 result = 1;
1760 break;
1762 case 'n':
1763 if (CONST_SCALAR_INT_P (op))
1764 result = 1;
1765 break;
1767 case 'I':
1768 if (CONST_INT_P (op)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1770 result = 1;
1771 break;
1772 case 'J':
1773 if (CONST_INT_P (op)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1775 result = 1;
1776 break;
1777 case 'K':
1778 if (CONST_INT_P (op)
1779 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1780 result = 1;
1781 break;
1782 case 'L':
1783 if (CONST_INT_P (op)
1784 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1785 result = 1;
1786 break;
1787 case 'M':
1788 if (CONST_INT_P (op)
1789 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1790 result = 1;
1791 break;
1792 case 'N':
1793 if (CONST_INT_P (op)
1794 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1795 result = 1;
1796 break;
1797 case 'O':
1798 if (CONST_INT_P (op)
1799 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1800 result = 1;
1801 break;
1802 case 'P':
1803 if (CONST_INT_P (op)
1804 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1805 result = 1;
1806 break;
1808 case 'X':
1809 result = 1;
1810 break;
1812 case 'g':
1813 if (general_operand (op, VOIDmode))
1814 result = 1;
1815 break;
1817 default:
1818 /* For all other letters, we first check for a register class,
1819 otherwise it is an EXTRA_CONSTRAINT. */
1820 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1822 case 'r':
1823 if (GET_MODE (op) == BLKmode)
1824 break;
1825 if (register_operand (op, VOIDmode))
1826 result = 1;
1828 #ifdef EXTRA_CONSTRAINT_STR
1829 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1830 /* Every memory operand can be reloaded to fit. */
1831 result = result || memory_operand (op, VOIDmode);
1832 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1833 /* Every address operand can be reloaded to fit. */
1834 result = result || address_operand (op, VOIDmode);
1835 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1836 result = 1;
1837 #endif
1838 break;
1840 len = CONSTRAINT_LEN (c, constraint);
1842 constraint++;
1843 while (--len && *constraint);
1844 if (len)
1845 return 0;
1848 #ifdef AUTO_INC_DEC
1849 /* For operands without < or > constraints reject side-effects. */
1850 if (!incdec_ok && result && MEM_P (op))
1851 switch (GET_CODE (XEXP (op, 0)))
1853 case PRE_INC:
1854 case POST_INC:
1855 case PRE_DEC:
1856 case POST_DEC:
1857 case PRE_MODIFY:
1858 case POST_MODIFY:
1859 return 0;
1860 default:
1861 break;
1863 #endif
1865 return result;
1868 /* Given an rtx *P, if it is a sum containing an integer constant term,
1869 return the location (type rtx *) of the pointer to that constant term.
1870 Otherwise, return a null pointer. */
1872 rtx *
1873 find_constant_term_loc (rtx *p)
1875 rtx *tem;
1876 enum rtx_code code = GET_CODE (*p);
1878 /* If *P IS such a constant term, P is its location. */
1880 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1881 || code == CONST)
1882 return p;
1884 /* Otherwise, if not a sum, it has no constant term. */
1886 if (GET_CODE (*p) != PLUS)
1887 return 0;
1889 /* If one of the summands is constant, return its location. */
1891 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1892 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1893 return p;
1895 /* Otherwise, check each summand for containing a constant term. */
1897 if (XEXP (*p, 0) != 0)
1899 tem = find_constant_term_loc (&XEXP (*p, 0));
1900 if (tem != 0)
1901 return tem;
1904 if (XEXP (*p, 1) != 0)
1906 tem = find_constant_term_loc (&XEXP (*p, 1));
1907 if (tem != 0)
1908 return tem;
1911 return 0;
1914 /* Return 1 if OP is a memory reference
1915 whose address contains no side effects
1916 and remains valid after the addition
1917 of a positive integer less than the
1918 size of the object being referenced.
1920 We assume that the original address is valid and do not check it.
1922 This uses strict_memory_address_p as a subroutine, so
1923 don't use it before reload. */
1926 offsettable_memref_p (rtx op)
1928 return ((MEM_P (op))
1929 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1930 MEM_ADDR_SPACE (op)));
1933 /* Similar, but don't require a strictly valid mem ref:
1934 consider pseudo-regs valid as index or base regs. */
1937 offsettable_nonstrict_memref_p (rtx op)
1939 return ((MEM_P (op))
1940 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1941 MEM_ADDR_SPACE (op)));
1944 /* Return 1 if Y is a memory address which contains no side effects
1945 and would remain valid for address space AS after the addition of
1946 a positive integer less than the size of that mode.
1948 We assume that the original address is valid and do not check it.
1949 We do check that it is valid for narrower modes.
1951 If STRICTP is nonzero, we require a strictly valid address,
1952 for the sake of use in reload.c. */
1955 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1956 addr_space_t as)
1958 enum rtx_code ycode = GET_CODE (y);
1959 rtx z;
1960 rtx y1 = y;
1961 rtx *y2;
1962 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1963 (strictp ? strict_memory_address_addr_space_p
1964 : memory_address_addr_space_p);
1965 unsigned int mode_sz = GET_MODE_SIZE (mode);
1967 if (CONSTANT_ADDRESS_P (y))
1968 return 1;
1970 /* Adjusting an offsettable address involves changing to a narrower mode.
1971 Make sure that's OK. */
1973 if (mode_dependent_address_p (y, as))
1974 return 0;
1976 enum machine_mode address_mode = GET_MODE (y);
1977 if (address_mode == VOIDmode)
1978 address_mode = targetm.addr_space.address_mode (as);
1979 #ifdef POINTERS_EXTEND_UNSIGNED
1980 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1981 #endif
1983 /* ??? How much offset does an offsettable BLKmode reference need?
1984 Clearly that depends on the situation in which it's being used.
1985 However, the current situation in which we test 0xffffffff is
1986 less than ideal. Caveat user. */
1987 if (mode_sz == 0)
1988 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1990 /* If the expression contains a constant term,
1991 see if it remains valid when max possible offset is added. */
1993 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1995 int good;
1997 y1 = *y2;
1998 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1999 /* Use QImode because an odd displacement may be automatically invalid
2000 for any wider mode. But it should be valid for a single byte. */
2001 good = (*addressp) (QImode, y, as);
2003 /* In any case, restore old contents of memory. */
2004 *y2 = y1;
2005 return good;
2008 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2009 return 0;
2011 /* The offset added here is chosen as the maximum offset that
2012 any instruction could need to add when operating on something
2013 of the specified mode. We assume that if Y and Y+c are
2014 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2015 go inside a LO_SUM here, so we do so as well. */
2016 if (GET_CODE (y) == LO_SUM
2017 && mode != BLKmode
2018 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2019 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2020 plus_constant (address_mode, XEXP (y, 1),
2021 mode_sz - 1));
2022 #ifdef POINTERS_EXTEND_UNSIGNED
2023 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2024 else if (POINTERS_EXTEND_UNSIGNED > 0
2025 && GET_CODE (y) == ZERO_EXTEND
2026 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2027 z = gen_rtx_ZERO_EXTEND (address_mode,
2028 plus_constant (pointer_mode, XEXP (y, 0),
2029 mode_sz - 1));
2030 #endif
2031 else
2032 z = plus_constant (address_mode, y, mode_sz - 1);
2034 /* Use QImode because an odd displacement may be automatically invalid
2035 for any wider mode. But it should be valid for a single byte. */
2036 return (*addressp) (QImode, z, as);
2039 /* Return 1 if ADDR is an address-expression whose effect depends
2040 on the mode of the memory reference it is used in.
2042 ADDRSPACE is the address space associated with the address.
2044 Autoincrement addressing is a typical example of mode-dependence
2045 because the amount of the increment depends on the mode. */
2047 bool
2048 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2050 /* Auto-increment addressing with anything other than post_modify
2051 or pre_modify always introduces a mode dependency. Catch such
2052 cases now instead of deferring to the target. */
2053 if (GET_CODE (addr) == PRE_INC
2054 || GET_CODE (addr) == POST_INC
2055 || GET_CODE (addr) == PRE_DEC
2056 || GET_CODE (addr) == POST_DEC)
2057 return true;
2059 return targetm.mode_dependent_address_p (addr, addrspace);
2062 /* Like extract_insn, but save insn extracted and don't extract again, when
2063 called again for the same insn expecting that recog_data still contain the
2064 valid information. This is used primary by gen_attr infrastructure that
2065 often does extract insn again and again. */
2066 void
2067 extract_insn_cached (rtx insn)
2069 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2070 return;
2071 extract_insn (insn);
2072 recog_data.insn = insn;
2075 /* Do cached extract_insn, constrain_operands and complain about failures.
2076 Used by insn_attrtab. */
2077 void
2078 extract_constrain_insn_cached (rtx insn)
2080 extract_insn_cached (insn);
2081 if (which_alternative == -1
2082 && !constrain_operands (reload_completed))
2083 fatal_insn_not_found (insn);
2086 /* Do cached constrain_operands and complain about failures. */
2088 constrain_operands_cached (int strict)
2090 if (which_alternative == -1)
2091 return constrain_operands (strict);
2092 else
2093 return 1;
2096 /* Analyze INSN and fill in recog_data. */
2098 void
2099 extract_insn (rtx insn)
2101 int i;
2102 int icode;
2103 int noperands;
2104 rtx body = PATTERN (insn);
2106 recog_data.n_operands = 0;
2107 recog_data.n_alternatives = 0;
2108 recog_data.n_dups = 0;
2109 recog_data.is_asm = false;
2111 switch (GET_CODE (body))
2113 case USE:
2114 case CLOBBER:
2115 case ASM_INPUT:
2116 case ADDR_VEC:
2117 case ADDR_DIFF_VEC:
2118 case VAR_LOCATION:
2119 return;
2121 case SET:
2122 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2123 goto asm_insn;
2124 else
2125 goto normal_insn;
2126 case PARALLEL:
2127 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2128 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2129 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2130 goto asm_insn;
2131 else
2132 goto normal_insn;
2133 case ASM_OPERANDS:
2134 asm_insn:
2135 recog_data.n_operands = noperands = asm_noperands (body);
2136 if (noperands >= 0)
2138 /* This insn is an `asm' with operands. */
2140 /* expand_asm_operands makes sure there aren't too many operands. */
2141 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2143 /* Now get the operand values and constraints out of the insn. */
2144 decode_asm_operands (body, recog_data.operand,
2145 recog_data.operand_loc,
2146 recog_data.constraints,
2147 recog_data.operand_mode, NULL);
2148 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2149 if (noperands > 0)
2151 const char *p = recog_data.constraints[0];
2152 recog_data.n_alternatives = 1;
2153 while (*p)
2154 recog_data.n_alternatives += (*p++ == ',');
2156 recog_data.is_asm = true;
2157 break;
2159 fatal_insn_not_found (insn);
2161 default:
2162 normal_insn:
2163 /* Ordinary insn: recognize it, get the operands via insn_extract
2164 and get the constraints. */
2166 icode = recog_memoized (insn);
2167 if (icode < 0)
2168 fatal_insn_not_found (insn);
2170 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2171 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2172 recog_data.n_dups = insn_data[icode].n_dups;
2174 insn_extract (insn);
2176 for (i = 0; i < noperands; i++)
2178 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2179 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2180 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2181 /* VOIDmode match_operands gets mode from their real operand. */
2182 if (recog_data.operand_mode[i] == VOIDmode)
2183 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2186 for (i = 0; i < noperands; i++)
2187 recog_data.operand_type[i]
2188 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2189 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2190 : OP_IN);
2192 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2194 if (INSN_CODE (insn) < 0)
2195 for (i = 0; i < recog_data.n_alternatives; i++)
2196 recog_data.alternative_enabled_p[i] = true;
2197 else
2199 recog_data.insn = insn;
2200 for (i = 0; i < recog_data.n_alternatives; i++)
2202 which_alternative = i;
2203 recog_data.alternative_enabled_p[i]
2204 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2208 recog_data.insn = NULL;
2209 which_alternative = -1;
2212 /* After calling extract_insn, you can use this function to extract some
2213 information from the constraint strings into a more usable form.
2214 The collected data is stored in recog_op_alt. */
2215 void
2216 preprocess_constraints (void)
2218 int i;
2220 for (i = 0; i < recog_data.n_operands; i++)
2221 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2222 * sizeof (struct operand_alternative)));
2224 for (i = 0; i < recog_data.n_operands; i++)
2226 int j;
2227 struct operand_alternative *op_alt;
2228 const char *p = recog_data.constraints[i];
2230 op_alt = recog_op_alt[i];
2232 for (j = 0; j < recog_data.n_alternatives; j++)
2234 op_alt[j].cl = NO_REGS;
2235 op_alt[j].constraint = p;
2236 op_alt[j].matches = -1;
2237 op_alt[j].matched = -1;
2239 if (!recog_data.alternative_enabled_p[j])
2241 p = skip_alternative (p);
2242 continue;
2245 if (*p == '\0' || *p == ',')
2247 op_alt[j].anything_ok = 1;
2248 continue;
2251 for (;;)
2253 char c = *p;
2254 if (c == '#')
2256 c = *++p;
2257 while (c != ',' && c != '\0');
2258 if (c == ',' || c == '\0')
2260 p++;
2261 break;
2264 switch (c)
2266 case '=': case '+': case '*': case '%':
2267 case 'E': case 'F': case 'G': case 'H':
2268 case 's': case 'i': case 'n':
2269 case 'I': case 'J': case 'K': case 'L':
2270 case 'M': case 'N': case 'O': case 'P':
2271 /* These don't say anything we care about. */
2272 break;
2274 case '?':
2275 op_alt[j].reject += 6;
2276 break;
2277 case '!':
2278 op_alt[j].reject += 600;
2279 break;
2280 case '&':
2281 op_alt[j].earlyclobber = 1;
2282 break;
2284 case '0': case '1': case '2': case '3': case '4':
2285 case '5': case '6': case '7': case '8': case '9':
2287 char *end;
2288 op_alt[j].matches = strtoul (p, &end, 10);
2289 recog_op_alt[op_alt[j].matches][j].matched = i;
2290 p = end;
2292 continue;
2294 case TARGET_MEM_CONSTRAINT:
2295 op_alt[j].memory_ok = 1;
2296 break;
2297 case '<':
2298 op_alt[j].decmem_ok = 1;
2299 break;
2300 case '>':
2301 op_alt[j].incmem_ok = 1;
2302 break;
2303 case 'V':
2304 op_alt[j].nonoffmem_ok = 1;
2305 break;
2306 case 'o':
2307 op_alt[j].offmem_ok = 1;
2308 break;
2309 case 'X':
2310 op_alt[j].anything_ok = 1;
2311 break;
2313 case 'p':
2314 op_alt[j].is_address = 1;
2315 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2316 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2317 ADDRESS, SCRATCH)];
2318 break;
2320 case 'g':
2321 case 'r':
2322 op_alt[j].cl =
2323 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2324 break;
2326 default:
2327 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2329 op_alt[j].memory_ok = 1;
2330 break;
2332 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2334 op_alt[j].is_address = 1;
2335 op_alt[j].cl
2336 = (reg_class_subunion
2337 [(int) op_alt[j].cl]
2338 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2339 ADDRESS, SCRATCH)]);
2340 break;
2343 op_alt[j].cl
2344 = (reg_class_subunion
2345 [(int) op_alt[j].cl]
2346 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2347 break;
2349 p += CONSTRAINT_LEN (c, p);
2355 /* Check the operands of an insn against the insn's operand constraints
2356 and return 1 if they are valid.
2357 The information about the insn's operands, constraints, operand modes
2358 etc. is obtained from the global variables set up by extract_insn.
2360 WHICH_ALTERNATIVE is set to a number which indicates which
2361 alternative of constraints was matched: 0 for the first alternative,
2362 1 for the next, etc.
2364 In addition, when two operands are required to match
2365 and it happens that the output operand is (reg) while the
2366 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2367 make the output operand look like the input.
2368 This is because the output operand is the one the template will print.
2370 This is used in final, just before printing the assembler code and by
2371 the routines that determine an insn's attribute.
2373 If STRICT is a positive nonzero value, it means that we have been
2374 called after reload has been completed. In that case, we must
2375 do all checks strictly. If it is zero, it means that we have been called
2376 before reload has completed. In that case, we first try to see if we can
2377 find an alternative that matches strictly. If not, we try again, this
2378 time assuming that reload will fix up the insn. This provides a "best
2379 guess" for the alternative and is used to compute attributes of insns prior
2380 to reload. A negative value of STRICT is used for this internal call. */
2382 struct funny_match
2384 int this_op, other;
2388 constrain_operands (int strict)
2390 const char *constraints[MAX_RECOG_OPERANDS];
2391 int matching_operands[MAX_RECOG_OPERANDS];
2392 int earlyclobber[MAX_RECOG_OPERANDS];
2393 int c;
2395 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2396 int funny_match_index;
2398 which_alternative = 0;
2399 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2400 return 1;
2402 for (c = 0; c < recog_data.n_operands; c++)
2404 constraints[c] = recog_data.constraints[c];
2405 matching_operands[c] = -1;
2410 int seen_earlyclobber_at = -1;
2411 int opno;
2412 int lose = 0;
2413 funny_match_index = 0;
2415 if (!recog_data.alternative_enabled_p[which_alternative])
2417 int i;
2419 for (i = 0; i < recog_data.n_operands; i++)
2420 constraints[i] = skip_alternative (constraints[i]);
2422 which_alternative++;
2423 continue;
2426 for (opno = 0; opno < recog_data.n_operands; opno++)
2428 rtx op = recog_data.operand[opno];
2429 enum machine_mode mode = GET_MODE (op);
2430 const char *p = constraints[opno];
2431 int offset = 0;
2432 int win = 0;
2433 int val;
2434 int len;
2436 earlyclobber[opno] = 0;
2438 /* A unary operator may be accepted by the predicate, but it
2439 is irrelevant for matching constraints. */
2440 if (UNARY_P (op))
2441 op = XEXP (op, 0);
2443 if (GET_CODE (op) == SUBREG)
2445 if (REG_P (SUBREG_REG (op))
2446 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2447 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2448 GET_MODE (SUBREG_REG (op)),
2449 SUBREG_BYTE (op),
2450 GET_MODE (op));
2451 op = SUBREG_REG (op);
2454 /* An empty constraint or empty alternative
2455 allows anything which matched the pattern. */
2456 if (*p == 0 || *p == ',')
2457 win = 1;
2460 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2462 case '\0':
2463 len = 0;
2464 break;
2465 case ',':
2466 c = '\0';
2467 break;
2469 case '?': case '!': case '*': case '%':
2470 case '=': case '+':
2471 break;
2473 case '#':
2474 /* Ignore rest of this alternative as far as
2475 constraint checking is concerned. */
2477 p++;
2478 while (*p && *p != ',');
2479 len = 0;
2480 break;
2482 case '&':
2483 earlyclobber[opno] = 1;
2484 if (seen_earlyclobber_at < 0)
2485 seen_earlyclobber_at = opno;
2486 break;
2488 case '0': case '1': case '2': case '3': case '4':
2489 case '5': case '6': case '7': case '8': case '9':
2491 /* This operand must be the same as a previous one.
2492 This kind of constraint is used for instructions such
2493 as add when they take only two operands.
2495 Note that the lower-numbered operand is passed first.
2497 If we are not testing strictly, assume that this
2498 constraint will be satisfied. */
2500 char *end;
2501 int match;
2503 match = strtoul (p, &end, 10);
2504 p = end;
2506 if (strict < 0)
2507 val = 1;
2508 else
2510 rtx op1 = recog_data.operand[match];
2511 rtx op2 = recog_data.operand[opno];
2513 /* A unary operator may be accepted by the predicate,
2514 but it is irrelevant for matching constraints. */
2515 if (UNARY_P (op1))
2516 op1 = XEXP (op1, 0);
2517 if (UNARY_P (op2))
2518 op2 = XEXP (op2, 0);
2520 val = operands_match_p (op1, op2);
2523 matching_operands[opno] = match;
2524 matching_operands[match] = opno;
2526 if (val != 0)
2527 win = 1;
2529 /* If output is *x and input is *--x, arrange later
2530 to change the output to *--x as well, since the
2531 output op is the one that will be printed. */
2532 if (val == 2 && strict > 0)
2534 funny_match[funny_match_index].this_op = opno;
2535 funny_match[funny_match_index++].other = match;
2538 len = 0;
2539 break;
2541 case 'p':
2542 /* p is used for address_operands. When we are called by
2543 gen_reload, no one will have checked that the address is
2544 strictly valid, i.e., that all pseudos requiring hard regs
2545 have gotten them. */
2546 if (strict <= 0
2547 || (strict_memory_address_p (recog_data.operand_mode[opno],
2548 op)))
2549 win = 1;
2550 break;
2552 /* No need to check general_operand again;
2553 it was done in insn-recog.c. Well, except that reload
2554 doesn't check the validity of its replacements, but
2555 that should only matter when there's a bug. */
2556 case 'g':
2557 /* Anything goes unless it is a REG and really has a hard reg
2558 but the hard reg is not in the class GENERAL_REGS. */
2559 if (REG_P (op))
2561 if (strict < 0
2562 || GENERAL_REGS == ALL_REGS
2563 || (reload_in_progress
2564 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2565 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2566 win = 1;
2568 else if (strict < 0 || general_operand (op, mode))
2569 win = 1;
2570 break;
2572 case 'X':
2573 /* This is used for a MATCH_SCRATCH in the cases when
2574 we don't actually need anything. So anything goes
2575 any time. */
2576 win = 1;
2577 break;
2579 case TARGET_MEM_CONSTRAINT:
2580 /* Memory operands must be valid, to the extent
2581 required by STRICT. */
2582 if (MEM_P (op))
2584 if (strict > 0
2585 && !strict_memory_address_addr_space_p
2586 (GET_MODE (op), XEXP (op, 0),
2587 MEM_ADDR_SPACE (op)))
2588 break;
2589 if (strict == 0
2590 && !memory_address_addr_space_p
2591 (GET_MODE (op), XEXP (op, 0),
2592 MEM_ADDR_SPACE (op)))
2593 break;
2594 win = 1;
2596 /* Before reload, accept what reload can turn into mem. */
2597 else if (strict < 0 && CONSTANT_P (op))
2598 win = 1;
2599 /* During reload, accept a pseudo */
2600 else if (reload_in_progress && REG_P (op)
2601 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2602 win = 1;
2603 break;
2605 case '<':
2606 if (MEM_P (op)
2607 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2608 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2609 win = 1;
2610 break;
2612 case '>':
2613 if (MEM_P (op)
2614 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2615 || GET_CODE (XEXP (op, 0)) == POST_INC))
2616 win = 1;
2617 break;
2619 case 'E':
2620 case 'F':
2621 if (CONST_DOUBLE_AS_FLOAT_P (op)
2622 || (GET_CODE (op) == CONST_VECTOR
2623 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2624 win = 1;
2625 break;
2627 case 'G':
2628 case 'H':
2629 if (CONST_DOUBLE_AS_FLOAT_P (op)
2630 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2631 win = 1;
2632 break;
2634 case 's':
2635 if (CONST_SCALAR_INT_P (op))
2636 break;
2637 case 'i':
2638 if (CONSTANT_P (op))
2639 win = 1;
2640 break;
2642 case 'n':
2643 if (CONST_SCALAR_INT_P (op))
2644 win = 1;
2645 break;
2647 case 'I':
2648 case 'J':
2649 case 'K':
2650 case 'L':
2651 case 'M':
2652 case 'N':
2653 case 'O':
2654 case 'P':
2655 if (CONST_INT_P (op)
2656 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2657 win = 1;
2658 break;
2660 case 'V':
2661 if (MEM_P (op)
2662 && ((strict > 0 && ! offsettable_memref_p (op))
2663 || (strict < 0
2664 && !(CONSTANT_P (op) || MEM_P (op)))
2665 || (reload_in_progress
2666 && !(REG_P (op)
2667 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2668 win = 1;
2669 break;
2671 case 'o':
2672 if ((strict > 0 && offsettable_memref_p (op))
2673 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2674 /* Before reload, accept what reload can handle. */
2675 || (strict < 0
2676 && (CONSTANT_P (op) || MEM_P (op)))
2677 /* During reload, accept a pseudo */
2678 || (reload_in_progress && REG_P (op)
2679 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2680 win = 1;
2681 break;
2683 default:
2685 enum reg_class cl;
2687 cl = (c == 'r'
2688 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2689 if (cl != NO_REGS)
2691 if (strict < 0
2692 || (strict == 0
2693 && REG_P (op)
2694 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2695 || (strict == 0 && GET_CODE (op) == SCRATCH)
2696 || (REG_P (op)
2697 && reg_fits_class_p (op, cl, offset, mode)))
2698 win = 1;
2700 #ifdef EXTRA_CONSTRAINT_STR
2701 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2702 win = 1;
2704 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2705 /* Every memory operand can be reloaded to fit. */
2706 && ((strict < 0 && MEM_P (op))
2707 /* Before reload, accept what reload can turn
2708 into mem. */
2709 || (strict < 0 && CONSTANT_P (op))
2710 /* During reload, accept a pseudo */
2711 || (reload_in_progress && REG_P (op)
2712 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2713 win = 1;
2714 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2715 /* Every address operand can be reloaded to fit. */
2716 && strict < 0)
2717 win = 1;
2718 /* Cater to architectures like IA-64 that define extra memory
2719 constraints without using define_memory_constraint. */
2720 else if (reload_in_progress
2721 && REG_P (op)
2722 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2723 && reg_renumber[REGNO (op)] < 0
2724 && reg_equiv_mem (REGNO (op)) != 0
2725 && EXTRA_CONSTRAINT_STR
2726 (reg_equiv_mem (REGNO (op)), c, p))
2727 win = 1;
2728 #endif
2729 break;
2732 while (p += len, c);
2734 constraints[opno] = p;
2735 /* If this operand did not win somehow,
2736 this alternative loses. */
2737 if (! win)
2738 lose = 1;
2740 /* This alternative won; the operands are ok.
2741 Change whichever operands this alternative says to change. */
2742 if (! lose)
2744 int opno, eopno;
2746 /* See if any earlyclobber operand conflicts with some other
2747 operand. */
2749 if (strict > 0 && seen_earlyclobber_at >= 0)
2750 for (eopno = seen_earlyclobber_at;
2751 eopno < recog_data.n_operands;
2752 eopno++)
2753 /* Ignore earlyclobber operands now in memory,
2754 because we would often report failure when we have
2755 two memory operands, one of which was formerly a REG. */
2756 if (earlyclobber[eopno]
2757 && REG_P (recog_data.operand[eopno]))
2758 for (opno = 0; opno < recog_data.n_operands; opno++)
2759 if ((MEM_P (recog_data.operand[opno])
2760 || recog_data.operand_type[opno] != OP_OUT)
2761 && opno != eopno
2762 /* Ignore things like match_operator operands. */
2763 && *recog_data.constraints[opno] != 0
2764 && ! (matching_operands[opno] == eopno
2765 && operands_match_p (recog_data.operand[opno],
2766 recog_data.operand[eopno]))
2767 && ! safe_from_earlyclobber (recog_data.operand[opno],
2768 recog_data.operand[eopno]))
2769 lose = 1;
2771 if (! lose)
2773 while (--funny_match_index >= 0)
2775 recog_data.operand[funny_match[funny_match_index].other]
2776 = recog_data.operand[funny_match[funny_match_index].this_op];
2779 #ifdef AUTO_INC_DEC
2780 /* For operands without < or > constraints reject side-effects. */
2781 if (recog_data.is_asm)
2783 for (opno = 0; opno < recog_data.n_operands; opno++)
2784 if (MEM_P (recog_data.operand[opno]))
2785 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 case PRE_MODIFY:
2792 case POST_MODIFY:
2793 if (strchr (recog_data.constraints[opno], '<') == NULL
2794 && strchr (recog_data.constraints[opno], '>')
2795 == NULL)
2796 return 0;
2797 break;
2798 default:
2799 break;
2802 #endif
2803 return 1;
2807 which_alternative++;
2809 while (which_alternative < recog_data.n_alternatives);
2811 which_alternative = -1;
2812 /* If we are about to reject this, but we are not to test strictly,
2813 try a very loose test. Only return failure if it fails also. */
2814 if (strict == 0)
2815 return constrain_operands (-1);
2816 else
2817 return 0;
2820 /* Return true iff OPERAND (assumed to be a REG rtx)
2821 is a hard reg in class CLASS when its regno is offset by OFFSET
2822 and changed to mode MODE.
2823 If REG occupies multiple hard regs, all of them must be in CLASS. */
2825 bool
2826 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2827 enum machine_mode mode)
2829 unsigned int regno = REGNO (operand);
2831 if (cl == NO_REGS)
2832 return false;
2834 /* Regno must not be a pseudo register. Offset may be negative. */
2835 return (HARD_REGISTER_NUM_P (regno)
2836 && HARD_REGISTER_NUM_P (regno + offset)
2837 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2838 regno + offset));
2841 /* Split single instruction. Helper function for split_all_insns and
2842 split_all_insns_noflow. Return last insn in the sequence if successful,
2843 or NULL if unsuccessful. */
2845 static rtx
2846 split_insn (rtx insn)
2848 /* Split insns here to get max fine-grain parallelism. */
2849 rtx first = PREV_INSN (insn);
2850 rtx last = try_split (PATTERN (insn), insn, 1);
2851 rtx insn_set, last_set, note;
2853 if (last == insn)
2854 return NULL_RTX;
2856 /* If the original instruction was a single set that was known to be
2857 equivalent to a constant, see if we can say the same about the last
2858 instruction in the split sequence. The two instructions must set
2859 the same destination. */
2860 insn_set = single_set (insn);
2861 if (insn_set)
2863 last_set = single_set (last);
2864 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2866 note = find_reg_equal_equiv_note (insn);
2867 if (note && CONSTANT_P (XEXP (note, 0)))
2868 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2869 else if (CONSTANT_P (SET_SRC (insn_set)))
2870 set_unique_reg_note (last, REG_EQUAL,
2871 copy_rtx (SET_SRC (insn_set)));
2875 /* try_split returns the NOTE that INSN became. */
2876 SET_INSN_DELETED (insn);
2878 /* ??? Coddle to md files that generate subregs in post-reload
2879 splitters instead of computing the proper hard register. */
2880 if (reload_completed && first != last)
2882 first = NEXT_INSN (first);
2883 for (;;)
2885 if (INSN_P (first))
2886 cleanup_subreg_operands (first);
2887 if (first == last)
2888 break;
2889 first = NEXT_INSN (first);
2893 return last;
2896 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2898 void
2899 split_all_insns (void)
2901 sbitmap blocks;
2902 bool changed;
2903 basic_block bb;
2905 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2906 bitmap_clear (blocks);
2907 changed = false;
2909 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2911 rtx insn, next;
2912 bool finish = false;
2914 rtl_profile_for_bb (bb);
2915 for (insn = BB_HEAD (bb); !finish ; insn = next)
2917 /* Can't use `next_real_insn' because that might go across
2918 CODE_LABELS and short-out basic blocks. */
2919 next = NEXT_INSN (insn);
2920 finish = (insn == BB_END (bb));
2921 if (INSN_P (insn))
2923 rtx set = single_set (insn);
2925 /* Don't split no-op move insns. These should silently
2926 disappear later in final. Splitting such insns would
2927 break the code that handles LIBCALL blocks. */
2928 if (set && set_noop_p (set))
2930 /* Nops get in the way while scheduling, so delete them
2931 now if register allocation has already been done. It
2932 is too risky to try to do this before register
2933 allocation, and there are unlikely to be very many
2934 nops then anyways. */
2935 if (reload_completed)
2936 delete_insn_and_edges (insn);
2938 else
2940 if (split_insn (insn))
2942 bitmap_set_bit (blocks, bb->index);
2943 changed = true;
2950 default_rtl_profile ();
2951 if (changed)
2952 find_many_sub_basic_blocks (blocks);
2954 #ifdef ENABLE_CHECKING
2955 verify_flow_info ();
2956 #endif
2958 sbitmap_free (blocks);
2961 /* Same as split_all_insns, but do not expect CFG to be available.
2962 Used by machine dependent reorg passes. */
2964 unsigned int
2965 split_all_insns_noflow (void)
2967 rtx next, insn;
2969 for (insn = get_insns (); insn; insn = next)
2971 next = NEXT_INSN (insn);
2972 if (INSN_P (insn))
2974 /* Don't split no-op move insns. These should silently
2975 disappear later in final. Splitting such insns would
2976 break the code that handles LIBCALL blocks. */
2977 rtx set = single_set (insn);
2978 if (set && set_noop_p (set))
2980 /* Nops get in the way while scheduling, so delete them
2981 now if register allocation has already been done. It
2982 is too risky to try to do this before register
2983 allocation, and there are unlikely to be very many
2984 nops then anyways.
2986 ??? Should we use delete_insn when the CFG isn't valid? */
2987 if (reload_completed)
2988 delete_insn_and_edges (insn);
2990 else
2991 split_insn (insn);
2994 return 0;
2997 #ifdef HAVE_peephole2
2998 struct peep2_insn_data
3000 rtx insn;
3001 regset live_before;
3004 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3005 static int peep2_current;
3007 static bool peep2_do_rebuild_jump_labels;
3008 static bool peep2_do_cleanup_cfg;
3010 /* The number of instructions available to match a peep2. */
3011 int peep2_current_count;
3013 /* A non-insn marker indicating the last insn of the block.
3014 The live_before regset for this element is correct, indicating
3015 DF_LIVE_OUT for the block. */
3016 #define PEEP2_EOB pc_rtx
3018 /* Wrap N to fit into the peep2_insn_data buffer. */
3020 static int
3021 peep2_buf_position (int n)
3023 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3024 n -= MAX_INSNS_PER_PEEP2 + 1;
3025 return n;
3028 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3029 does not exist. Used by the recognizer to find the next insn to match
3030 in a multi-insn pattern. */
3033 peep2_next_insn (int n)
3035 gcc_assert (n <= peep2_current_count);
3037 n = peep2_buf_position (peep2_current + n);
3039 return peep2_insn_data[n].insn;
3042 /* Return true if REGNO is dead before the Nth non-note insn
3043 after `current'. */
3046 peep2_regno_dead_p (int ofs, int regno)
3048 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3050 ofs = peep2_buf_position (peep2_current + ofs);
3052 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3054 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3057 /* Similarly for a REG. */
3060 peep2_reg_dead_p (int ofs, rtx reg)
3062 int regno, n;
3064 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3066 ofs = peep2_buf_position (peep2_current + ofs);
3068 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3070 regno = REGNO (reg);
3071 n = hard_regno_nregs[regno][GET_MODE (reg)];
3072 while (--n >= 0)
3073 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3074 return 0;
3075 return 1;
3078 /* Regno offset to be used in the register search. */
3079 static int search_ofs;
3081 /* Try to find a hard register of mode MODE, matching the register class in
3082 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3083 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3084 in which case the only condition is that the register must be available
3085 before CURRENT_INSN.
3086 Registers that already have bits set in REG_SET will not be considered.
3088 If an appropriate register is available, it will be returned and the
3089 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3090 returned. */
3093 peep2_find_free_register (int from, int to, const char *class_str,
3094 enum machine_mode mode, HARD_REG_SET *reg_set)
3096 enum reg_class cl;
3097 HARD_REG_SET live;
3098 df_ref *def_rec;
3099 int i;
3101 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3102 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3104 from = peep2_buf_position (peep2_current + from);
3105 to = peep2_buf_position (peep2_current + to);
3107 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3108 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3110 while (from != to)
3112 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3114 /* Don't use registers set or clobbered by the insn. */
3115 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3116 *def_rec; def_rec++)
3117 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3119 from = peep2_buf_position (from + 1);
3122 cl = (class_str[0] == 'r' ? GENERAL_REGS
3123 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3125 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3127 int raw_regno, regno, success, j;
3129 /* Distribute the free registers as much as possible. */
3130 raw_regno = search_ofs + i;
3131 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3132 raw_regno -= FIRST_PSEUDO_REGISTER;
3133 #ifdef REG_ALLOC_ORDER
3134 regno = reg_alloc_order[raw_regno];
3135 #else
3136 regno = raw_regno;
3137 #endif
3139 /* Can it support the mode we need? */
3140 if (! HARD_REGNO_MODE_OK (regno, mode))
3141 continue;
3143 success = 1;
3144 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3146 /* Don't allocate fixed registers. */
3147 if (fixed_regs[regno + j])
3149 success = 0;
3150 break;
3152 /* Don't allocate global registers. */
3153 if (global_regs[regno + j])
3155 success = 0;
3156 break;
3158 /* Make sure the register is of the right class. */
3159 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3161 success = 0;
3162 break;
3164 /* And that we don't create an extra save/restore. */
3165 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3167 success = 0;
3168 break;
3171 if (! targetm.hard_regno_scratch_ok (regno + j))
3173 success = 0;
3174 break;
3177 /* And we don't clobber traceback for noreturn functions. */
3178 if ((regno + j == FRAME_POINTER_REGNUM
3179 || regno + j == HARD_FRAME_POINTER_REGNUM)
3180 && (! reload_completed || frame_pointer_needed))
3182 success = 0;
3183 break;
3186 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3187 || TEST_HARD_REG_BIT (live, regno + j))
3189 success = 0;
3190 break;
3194 if (success)
3196 add_to_hard_reg_set (reg_set, mode, regno);
3198 /* Start the next search with the next register. */
3199 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3200 raw_regno = 0;
3201 search_ofs = raw_regno;
3203 return gen_rtx_REG (mode, regno);
3207 search_ofs = 0;
3208 return NULL_RTX;
3211 /* Forget all currently tracked instructions, only remember current
3212 LIVE regset. */
3214 static void
3215 peep2_reinit_state (regset live)
3217 int i;
3219 /* Indicate that all slots except the last holds invalid data. */
3220 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3221 peep2_insn_data[i].insn = NULL_RTX;
3222 peep2_current_count = 0;
3224 /* Indicate that the last slot contains live_after data. */
3225 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3226 peep2_current = MAX_INSNS_PER_PEEP2;
3228 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3231 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3232 starting at INSN. Perform the replacement, removing the old insns and
3233 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3234 if the replacement is rejected. */
3236 static rtx
3237 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3239 int i;
3240 rtx last, eh_note, as_note, before_try, x;
3241 rtx old_insn, new_insn;
3242 bool was_call = false;
3244 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3245 match more than one insn, or to be split into more than one insn. */
3246 old_insn = peep2_insn_data[peep2_current].insn;
3247 if (RTX_FRAME_RELATED_P (old_insn))
3249 bool any_note = false;
3250 rtx note;
3252 if (match_len != 0)
3253 return NULL;
3255 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3256 may be in the stream for the purpose of register allocation. */
3257 if (active_insn_p (attempt))
3258 new_insn = attempt;
3259 else
3260 new_insn = next_active_insn (attempt);
3261 if (next_active_insn (new_insn))
3262 return NULL;
3264 /* We have a 1-1 replacement. Copy over any frame-related info. */
3265 RTX_FRAME_RELATED_P (new_insn) = 1;
3267 /* Allow the backend to fill in a note during the split. */
3268 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3269 switch (REG_NOTE_KIND (note))
3271 case REG_FRAME_RELATED_EXPR:
3272 case REG_CFA_DEF_CFA:
3273 case REG_CFA_ADJUST_CFA:
3274 case REG_CFA_OFFSET:
3275 case REG_CFA_REGISTER:
3276 case REG_CFA_EXPRESSION:
3277 case REG_CFA_RESTORE:
3278 case REG_CFA_SET_VDRAP:
3279 any_note = true;
3280 break;
3281 default:
3282 break;
3285 /* If the backend didn't supply a note, copy one over. */
3286 if (!any_note)
3287 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3288 switch (REG_NOTE_KIND (note))
3290 case REG_FRAME_RELATED_EXPR:
3291 case REG_CFA_DEF_CFA:
3292 case REG_CFA_ADJUST_CFA:
3293 case REG_CFA_OFFSET:
3294 case REG_CFA_REGISTER:
3295 case REG_CFA_EXPRESSION:
3296 case REG_CFA_RESTORE:
3297 case REG_CFA_SET_VDRAP:
3298 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3299 any_note = true;
3300 break;
3301 default:
3302 break;
3305 /* If there still isn't a note, make sure the unwind info sees the
3306 same expression as before the split. */
3307 if (!any_note)
3309 rtx old_set, new_set;
3311 /* The old insn had better have been simple, or annotated. */
3312 old_set = single_set (old_insn);
3313 gcc_assert (old_set != NULL);
3315 new_set = single_set (new_insn);
3316 if (!new_set || !rtx_equal_p (new_set, old_set))
3317 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3320 /* Copy prologue/epilogue status. This is required in order to keep
3321 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3322 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3325 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3326 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3327 cfg-related call notes. */
3328 for (i = 0; i <= match_len; ++i)
3330 int j;
3331 rtx note;
3333 j = peep2_buf_position (peep2_current + i);
3334 old_insn = peep2_insn_data[j].insn;
3335 if (!CALL_P (old_insn))
3336 continue;
3337 was_call = true;
3339 new_insn = attempt;
3340 while (new_insn != NULL_RTX)
3342 if (CALL_P (new_insn))
3343 break;
3344 new_insn = NEXT_INSN (new_insn);
3347 gcc_assert (new_insn != NULL_RTX);
3349 CALL_INSN_FUNCTION_USAGE (new_insn)
3350 = CALL_INSN_FUNCTION_USAGE (old_insn);
3352 for (note = REG_NOTES (old_insn);
3353 note;
3354 note = XEXP (note, 1))
3355 switch (REG_NOTE_KIND (note))
3357 case REG_NORETURN:
3358 case REG_SETJMP:
3359 case REG_TM:
3360 add_reg_note (new_insn, REG_NOTE_KIND (note),
3361 XEXP (note, 0));
3362 break;
3363 default:
3364 /* Discard all other reg notes. */
3365 break;
3368 /* Croak if there is another call in the sequence. */
3369 while (++i <= match_len)
3371 j = peep2_buf_position (peep2_current + i);
3372 old_insn = peep2_insn_data[j].insn;
3373 gcc_assert (!CALL_P (old_insn));
3375 break;
3378 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3379 move those notes over to the new sequence. */
3380 as_note = NULL;
3381 for (i = match_len; i >= 0; --i)
3383 int j = peep2_buf_position (peep2_current + i);
3384 old_insn = peep2_insn_data[j].insn;
3386 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3387 if (as_note)
3388 break;
3391 i = peep2_buf_position (peep2_current + match_len);
3392 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3394 /* Replace the old sequence with the new. */
3395 last = emit_insn_after_setloc (attempt,
3396 peep2_insn_data[i].insn,
3397 INSN_LOCATION (peep2_insn_data[i].insn));
3398 before_try = PREV_INSN (insn);
3399 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3401 /* Re-insert the EH_REGION notes. */
3402 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3404 edge eh_edge;
3405 edge_iterator ei;
3407 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3408 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3409 break;
3411 if (eh_note)
3412 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3414 if (eh_edge)
3415 for (x = last; x != before_try; x = PREV_INSN (x))
3416 if (x != BB_END (bb)
3417 && (can_throw_internal (x)
3418 || can_nonlocal_goto (x)))
3420 edge nfte, nehe;
3421 int flags;
3423 nfte = split_block (bb, x);
3424 flags = (eh_edge->flags
3425 & (EDGE_EH | EDGE_ABNORMAL));
3426 if (CALL_P (x))
3427 flags |= EDGE_ABNORMAL_CALL;
3428 nehe = make_edge (nfte->src, eh_edge->dest,
3429 flags);
3431 nehe->probability = eh_edge->probability;
3432 nfte->probability
3433 = REG_BR_PROB_BASE - nehe->probability;
3435 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3436 bb = nfte->src;
3437 eh_edge = nehe;
3440 /* Converting possibly trapping insn to non-trapping is
3441 possible. Zap dummy outgoing edges. */
3442 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3445 /* Re-insert the ARGS_SIZE notes. */
3446 if (as_note)
3447 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3449 /* If we generated a jump instruction, it won't have
3450 JUMP_LABEL set. Recompute after we're done. */
3451 for (x = last; x != before_try; x = PREV_INSN (x))
3452 if (JUMP_P (x))
3454 peep2_do_rebuild_jump_labels = true;
3455 break;
3458 return last;
3461 /* After performing a replacement in basic block BB, fix up the life
3462 information in our buffer. LAST is the last of the insns that we
3463 emitted as a replacement. PREV is the insn before the start of
3464 the replacement. MATCH_LEN is the number of instructions that were
3465 matched, and which now need to be replaced in the buffer. */
3467 static void
3468 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3470 int i = peep2_buf_position (peep2_current + match_len + 1);
3471 rtx x;
3472 regset_head live;
3474 INIT_REG_SET (&live);
3475 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3477 gcc_assert (peep2_current_count >= match_len + 1);
3478 peep2_current_count -= match_len + 1;
3480 x = last;
3483 if (INSN_P (x))
3485 df_insn_rescan (x);
3486 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3488 peep2_current_count++;
3489 if (--i < 0)
3490 i = MAX_INSNS_PER_PEEP2;
3491 peep2_insn_data[i].insn = x;
3492 df_simulate_one_insn_backwards (bb, x, &live);
3493 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3496 x = PREV_INSN (x);
3498 while (x != prev);
3499 CLEAR_REG_SET (&live);
3501 peep2_current = i;
3504 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3505 Return true if we added it, false otherwise. The caller will try to match
3506 peepholes against the buffer if we return false; otherwise it will try to
3507 add more instructions to the buffer. */
3509 static bool
3510 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3512 int pos;
3514 /* Once we have filled the maximum number of insns the buffer can hold,
3515 allow the caller to match the insns against peepholes. We wait until
3516 the buffer is full in case the target has similar peepholes of different
3517 length; we always want to match the longest if possible. */
3518 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3519 return false;
3521 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3522 any other pattern, lest it change the semantics of the frame info. */
3523 if (RTX_FRAME_RELATED_P (insn))
3525 /* Let the buffer drain first. */
3526 if (peep2_current_count > 0)
3527 return false;
3528 /* Now the insn will be the only thing in the buffer. */
3531 pos = peep2_buf_position (peep2_current + peep2_current_count);
3532 peep2_insn_data[pos].insn = insn;
3533 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3534 peep2_current_count++;
3536 df_simulate_one_insn_forwards (bb, insn, live);
3537 return true;
3540 /* Perform the peephole2 optimization pass. */
3542 static void
3543 peephole2_optimize (void)
3545 rtx insn;
3546 bitmap live;
3547 int i;
3548 basic_block bb;
3550 peep2_do_cleanup_cfg = false;
3551 peep2_do_rebuild_jump_labels = false;
3553 df_set_flags (DF_LR_RUN_DCE);
3554 df_note_add_problem ();
3555 df_analyze ();
3557 /* Initialize the regsets we're going to use. */
3558 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3559 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3560 search_ofs = 0;
3561 live = BITMAP_ALLOC (&reg_obstack);
3563 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3565 bool past_end = false;
3566 int pos;
3568 rtl_profile_for_bb (bb);
3570 /* Start up propagation. */
3571 bitmap_copy (live, DF_LR_IN (bb));
3572 df_simulate_initialize_forwards (bb, live);
3573 peep2_reinit_state (live);
3575 insn = BB_HEAD (bb);
3576 for (;;)
3578 rtx attempt, head;
3579 int match_len;
3581 if (!past_end && !NONDEBUG_INSN_P (insn))
3583 next_insn:
3584 insn = NEXT_INSN (insn);
3585 if (insn == NEXT_INSN (BB_END (bb)))
3586 past_end = true;
3587 continue;
3589 if (!past_end && peep2_fill_buffer (bb, insn, live))
3590 goto next_insn;
3592 /* If we did not fill an empty buffer, it signals the end of the
3593 block. */
3594 if (peep2_current_count == 0)
3595 break;
3597 /* The buffer filled to the current maximum, so try to match. */
3599 pos = peep2_buf_position (peep2_current + peep2_current_count);
3600 peep2_insn_data[pos].insn = PEEP2_EOB;
3601 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3603 /* Match the peephole. */
3604 head = peep2_insn_data[peep2_current].insn;
3605 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3606 if (attempt != NULL)
3608 rtx last = peep2_attempt (bb, head, match_len, attempt);
3609 if (last)
3611 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3612 continue;
3616 /* No match: advance the buffer by one insn. */
3617 peep2_current = peep2_buf_position (peep2_current + 1);
3618 peep2_current_count--;
3622 default_rtl_profile ();
3623 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3624 BITMAP_FREE (peep2_insn_data[i].live_before);
3625 BITMAP_FREE (live);
3626 if (peep2_do_rebuild_jump_labels)
3627 rebuild_jump_labels (get_insns ());
3629 #endif /* HAVE_peephole2 */
3631 /* Common predicates for use with define_bypass. */
3633 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3634 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3635 must be either a single_set or a PARALLEL with SETs inside. */
3638 store_data_bypass_p (rtx out_insn, rtx in_insn)
3640 rtx out_set, in_set;
3641 rtx out_pat, in_pat;
3642 rtx out_exp, in_exp;
3643 int i, j;
3645 in_set = single_set (in_insn);
3646 if (in_set)
3648 if (!MEM_P (SET_DEST (in_set)))
3649 return false;
3651 out_set = single_set (out_insn);
3652 if (out_set)
3654 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3655 return false;
3657 else
3659 out_pat = PATTERN (out_insn);
3661 if (GET_CODE (out_pat) != PARALLEL)
3662 return false;
3664 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3666 out_exp = XVECEXP (out_pat, 0, i);
3668 if (GET_CODE (out_exp) == CLOBBER)
3669 continue;
3671 gcc_assert (GET_CODE (out_exp) == SET);
3673 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3674 return false;
3678 else
3680 in_pat = PATTERN (in_insn);
3681 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3683 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3685 in_exp = XVECEXP (in_pat, 0, i);
3687 if (GET_CODE (in_exp) == CLOBBER)
3688 continue;
3690 gcc_assert (GET_CODE (in_exp) == SET);
3692 if (!MEM_P (SET_DEST (in_exp)))
3693 return false;
3695 out_set = single_set (out_insn);
3696 if (out_set)
3698 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3699 return false;
3701 else
3703 out_pat = PATTERN (out_insn);
3704 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3706 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3708 out_exp = XVECEXP (out_pat, 0, j);
3710 if (GET_CODE (out_exp) == CLOBBER)
3711 continue;
3713 gcc_assert (GET_CODE (out_exp) == SET);
3715 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3716 return false;
3722 return true;
3725 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3726 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3727 or multiple set; IN_INSN should be single_set for truth, but for convenience
3728 of insn categorization may be any JUMP or CALL insn. */
3731 if_test_bypass_p (rtx out_insn, rtx in_insn)
3733 rtx out_set, in_set;
3735 in_set = single_set (in_insn);
3736 if (! in_set)
3738 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3739 return false;
3742 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3743 return false;
3744 in_set = SET_SRC (in_set);
3746 out_set = single_set (out_insn);
3747 if (out_set)
3749 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3750 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3751 return false;
3753 else
3755 rtx out_pat;
3756 int i;
3758 out_pat = PATTERN (out_insn);
3759 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3761 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3763 rtx exp = XVECEXP (out_pat, 0, i);
3765 if (GET_CODE (exp) == CLOBBER)
3766 continue;
3768 gcc_assert (GET_CODE (exp) == SET);
3770 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3771 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3772 return false;
3776 return true;
3779 static bool
3780 gate_handle_peephole2 (void)
3782 return (optimize > 0 && flag_peephole2);
3785 static unsigned int
3786 rest_of_handle_peephole2 (void)
3788 #ifdef HAVE_peephole2
3789 peephole2_optimize ();
3790 #endif
3791 return 0;
3794 namespace {
3796 const pass_data pass_data_peephole2 =
3798 RTL_PASS, /* type */
3799 "peephole2", /* name */
3800 OPTGROUP_NONE, /* optinfo_flags */
3801 true, /* has_gate */
3802 true, /* has_execute */
3803 TV_PEEPHOLE2, /* tv_id */
3804 0, /* properties_required */
3805 0, /* properties_provided */
3806 0, /* properties_destroyed */
3807 0, /* todo_flags_start */
3808 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
3811 class pass_peephole2 : public rtl_opt_pass
3813 public:
3814 pass_peephole2 (gcc::context *ctxt)
3815 : rtl_opt_pass (pass_data_peephole2, ctxt)
3818 /* opt_pass methods: */
3819 /* The epiphany backend creates a second instance of this pass, so we need
3820 a clone method. */
3821 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3822 bool gate () { return gate_handle_peephole2 (); }
3823 unsigned int execute () { return rest_of_handle_peephole2 (); }
3825 }; // class pass_peephole2
3827 } // anon namespace
3829 rtl_opt_pass *
3830 make_pass_peephole2 (gcc::context *ctxt)
3832 return new pass_peephole2 (ctxt);
3835 static unsigned int
3836 rest_of_handle_split_all_insns (void)
3838 split_all_insns ();
3839 return 0;
3842 namespace {
3844 const pass_data pass_data_split_all_insns =
3846 RTL_PASS, /* type */
3847 "split1", /* name */
3848 OPTGROUP_NONE, /* optinfo_flags */
3849 false, /* has_gate */
3850 true, /* has_execute */
3851 TV_NONE, /* tv_id */
3852 0, /* properties_required */
3853 0, /* properties_provided */
3854 0, /* properties_destroyed */
3855 0, /* todo_flags_start */
3856 0, /* todo_flags_finish */
3859 class pass_split_all_insns : public rtl_opt_pass
3861 public:
3862 pass_split_all_insns (gcc::context *ctxt)
3863 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3866 /* opt_pass methods: */
3867 /* The epiphany backend creates a second instance of this pass, so
3868 we need a clone method. */
3869 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3870 unsigned int execute () { return rest_of_handle_split_all_insns (); }
3872 }; // class pass_split_all_insns
3874 } // anon namespace
3876 rtl_opt_pass *
3877 make_pass_split_all_insns (gcc::context *ctxt)
3879 return new pass_split_all_insns (ctxt);
3882 static unsigned int
3883 rest_of_handle_split_after_reload (void)
3885 /* If optimizing, then go ahead and split insns now. */
3886 #ifndef STACK_REGS
3887 if (optimize > 0)
3888 #endif
3889 split_all_insns ();
3890 return 0;
3893 namespace {
3895 const pass_data pass_data_split_after_reload =
3897 RTL_PASS, /* type */
3898 "split2", /* name */
3899 OPTGROUP_NONE, /* optinfo_flags */
3900 false, /* has_gate */
3901 true, /* has_execute */
3902 TV_NONE, /* tv_id */
3903 0, /* properties_required */
3904 0, /* properties_provided */
3905 0, /* properties_destroyed */
3906 0, /* todo_flags_start */
3907 0, /* todo_flags_finish */
3910 class pass_split_after_reload : public rtl_opt_pass
3912 public:
3913 pass_split_after_reload (gcc::context *ctxt)
3914 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3917 /* opt_pass methods: */
3918 unsigned int execute () { return rest_of_handle_split_after_reload (); }
3920 }; // class pass_split_after_reload
3922 } // anon namespace
3924 rtl_opt_pass *
3925 make_pass_split_after_reload (gcc::context *ctxt)
3927 return new pass_split_after_reload (ctxt);
3930 static bool
3931 gate_handle_split_before_regstack (void)
3933 #if HAVE_ATTR_length && defined (STACK_REGS)
3934 /* If flow2 creates new instructions which need splitting
3935 and scheduling after reload is not done, they might not be
3936 split until final which doesn't allow splitting
3937 if HAVE_ATTR_length. */
3938 # ifdef INSN_SCHEDULING
3939 return (optimize && !flag_schedule_insns_after_reload);
3940 # else
3941 return (optimize);
3942 # endif
3943 #else
3944 return 0;
3945 #endif
3948 static unsigned int
3949 rest_of_handle_split_before_regstack (void)
3951 split_all_insns ();
3952 return 0;
3955 namespace {
3957 const pass_data pass_data_split_before_regstack =
3959 RTL_PASS, /* type */
3960 "split3", /* name */
3961 OPTGROUP_NONE, /* optinfo_flags */
3962 true, /* has_gate */
3963 true, /* has_execute */
3964 TV_NONE, /* tv_id */
3965 0, /* properties_required */
3966 0, /* properties_provided */
3967 0, /* properties_destroyed */
3968 0, /* todo_flags_start */
3969 0, /* todo_flags_finish */
3972 class pass_split_before_regstack : public rtl_opt_pass
3974 public:
3975 pass_split_before_regstack (gcc::context *ctxt)
3976 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3979 /* opt_pass methods: */
3980 bool gate () { return gate_handle_split_before_regstack (); }
3981 unsigned int execute () {
3982 return rest_of_handle_split_before_regstack ();
3985 }; // class pass_split_before_regstack
3987 } // anon namespace
3989 rtl_opt_pass *
3990 make_pass_split_before_regstack (gcc::context *ctxt)
3992 return new pass_split_before_regstack (ctxt);
3995 static bool
3996 gate_handle_split_before_sched2 (void)
3998 #ifdef INSN_SCHEDULING
3999 return optimize > 0 && flag_schedule_insns_after_reload;
4000 #else
4001 return 0;
4002 #endif
4005 static unsigned int
4006 rest_of_handle_split_before_sched2 (void)
4008 #ifdef INSN_SCHEDULING
4009 split_all_insns ();
4010 #endif
4011 return 0;
4014 namespace {
4016 const pass_data pass_data_split_before_sched2 =
4018 RTL_PASS, /* type */
4019 "split4", /* name */
4020 OPTGROUP_NONE, /* optinfo_flags */
4021 true, /* has_gate */
4022 true, /* has_execute */
4023 TV_NONE, /* tv_id */
4024 0, /* properties_required */
4025 0, /* properties_provided */
4026 0, /* properties_destroyed */
4027 0, /* todo_flags_start */
4028 TODO_verify_flow, /* todo_flags_finish */
4031 class pass_split_before_sched2 : public rtl_opt_pass
4033 public:
4034 pass_split_before_sched2 (gcc::context *ctxt)
4035 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4038 /* opt_pass methods: */
4039 bool gate () { return gate_handle_split_before_sched2 (); }
4040 unsigned int execute () { return rest_of_handle_split_before_sched2 (); }
4042 }; // class pass_split_before_sched2
4044 } // anon namespace
4046 rtl_opt_pass *
4047 make_pass_split_before_sched2 (gcc::context *ctxt)
4049 return new pass_split_before_sched2 (ctxt);
4052 /* The placement of the splitting that we do for shorten_branches
4053 depends on whether regstack is used by the target or not. */
4054 static bool
4055 gate_do_final_split (void)
4057 #if HAVE_ATTR_length && !defined (STACK_REGS)
4058 return 1;
4059 #else
4060 return 0;
4061 #endif
4064 namespace {
4066 const pass_data pass_data_split_for_shorten_branches =
4068 RTL_PASS, /* type */
4069 "split5", /* name */
4070 OPTGROUP_NONE, /* optinfo_flags */
4071 true, /* has_gate */
4072 true, /* has_execute */
4073 TV_NONE, /* tv_id */
4074 0, /* properties_required */
4075 0, /* properties_provided */
4076 0, /* properties_destroyed */
4077 0, /* todo_flags_start */
4078 TODO_verify_rtl_sharing, /* todo_flags_finish */
4081 class pass_split_for_shorten_branches : public rtl_opt_pass
4083 public:
4084 pass_split_for_shorten_branches (gcc::context *ctxt)
4085 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4088 /* opt_pass methods: */
4089 bool gate () { return gate_do_final_split (); }
4090 unsigned int execute () { return split_all_insns_noflow (); }
4092 }; // class pass_split_for_shorten_branches
4094 } // anon namespace
4096 rtl_opt_pass *
4097 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4099 return new pass_split_for_shorten_branches (ctxt);