PR target/58115
[official-gcc.git] / gcc / optabs.c
blobe36fd133430e96b0333595225851b45cf335613e
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "stringpool.h"
34 #include "varasm.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "function.h"
38 #include "except.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "ggc.h"
45 #include "basic-block.h"
46 #include "target.h"
48 struct target_optabs default_target_optabs;
49 struct target_libfuncs default_target_libfuncs;
50 struct target_optabs *this_fn_optabs = &default_target_optabs;
51 #if SWITCHABLE_TARGET
52 struct target_optabs *this_target_optabs = &default_target_optabs;
53 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
54 #endif
56 #define libfunc_hash \
57 (this_target_libfuncs->x_libfunc_hash)
59 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
60 enum machine_mode *);
61 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
62 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
74 /* Used for libfunc_hash. */
76 static hashval_t
77 hash_libfunc (const void *p)
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
80 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
83 /* Used for libfunc_hash. */
85 static int
86 eq_libfunc (const void *p, const void *q)
88 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
89 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
90 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
93 /* Return libfunc corresponding operation defined by OPTAB converting
94 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
95 if no libfunc is available. */
96 rtx
97 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
98 enum machine_mode mode2)
100 struct libfunc_entry e;
101 struct libfunc_entry **slot;
103 /* ??? This ought to be an assert, but not all of the places
104 that we expand optabs know about the optabs that got moved
105 to being direct. */
106 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
107 return NULL_RTX;
109 e.op = optab;
110 e.mode1 = mode1;
111 e.mode2 = mode2;
112 slot = (struct libfunc_entry **)
113 htab_find_slot (libfunc_hash, &e, NO_INSERT);
114 if (!slot)
116 const struct convert_optab_libcall_d *d
117 = &convlib_def[optab - FIRST_CONV_OPTAB];
119 if (d->libcall_gen == NULL)
120 return NULL;
122 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
123 slot = (struct libfunc_entry **)
124 htab_find_slot (libfunc_hash, &e, NO_INSERT);
125 if (!slot)
126 return NULL;
128 return (*slot)->libfunc;
131 /* Return libfunc corresponding operation defined by OPTAB in MODE.
132 Trigger lazy initialization if needed, return NULL if no libfunc is
133 available. */
135 optab_libfunc (optab optab, enum machine_mode mode)
137 struct libfunc_entry e;
138 struct libfunc_entry **slot;
140 /* ??? This ought to be an assert, but not all of the places
141 that we expand optabs know about the optabs that got moved
142 to being direct. */
143 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
144 return NULL_RTX;
146 e.op = optab;
147 e.mode1 = mode;
148 e.mode2 = VOIDmode;
149 slot = (struct libfunc_entry **)
150 htab_find_slot (libfunc_hash, &e, NO_INSERT);
151 if (!slot)
153 const struct optab_libcall_d *d
154 = &normlib_def[optab - FIRST_NORM_OPTAB];
156 if (d->libcall_gen == NULL)
157 return NULL;
159 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
160 slot = (struct libfunc_entry **)
161 htab_find_slot (libfunc_hash, &e, NO_INSERT);
162 if (!slot)
163 return NULL;
165 return (*slot)->libfunc;
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
173 If the last insn does not set TARGET, don't do anything, but return 1.
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
179 static int
180 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
182 rtx last_insn, set;
183 rtx note;
185 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
187 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
188 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
189 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
190 && GET_RTX_CLASS (code) != RTX_COMPARE
191 && GET_RTX_CLASS (code) != RTX_UNARY)
192 return 1;
194 if (GET_CODE (target) == ZERO_EXTRACT)
195 return 1;
197 for (last_insn = insns;
198 NEXT_INSN (last_insn) != NULL_RTX;
199 last_insn = NEXT_INSN (last_insn))
202 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
203 a value changing in the insn, so the note would be invalid for CSE. */
204 if (reg_overlap_mentioned_p (target, op0)
205 || (op1 && reg_overlap_mentioned_p (target, op1)))
207 if (MEM_P (target)
208 && (rtx_equal_p (target, op0)
209 || (op1 && rtx_equal_p (target, op1))))
211 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
212 over expanding it as temp = MEM op X, MEM = temp. If the target
213 supports MEM = MEM op X instructions, it is sometimes too hard
214 to reconstruct that form later, especially if X is also a memory,
215 and due to multiple occurrences of addresses the address might
216 be forced into register unnecessarily.
217 Note that not emitting the REG_EQUIV note might inhibit
218 CSE in some cases. */
219 set = single_set (last_insn);
220 if (set
221 && GET_CODE (SET_SRC (set)) == code
222 && MEM_P (SET_DEST (set))
223 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
224 || (op1 && rtx_equal_p (SET_DEST (set),
225 XEXP (SET_SRC (set), 1)))))
226 return 1;
228 return 0;
231 set = single_set (last_insn);
232 if (set == NULL_RTX)
233 return 1;
235 if (! rtx_equal_p (SET_DEST (set), target)
236 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
237 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
238 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
239 return 1;
241 if (GET_RTX_CLASS (code) == RTX_UNARY)
242 switch (code)
244 case FFS:
245 case CLZ:
246 case CTZ:
247 case CLRSB:
248 case POPCOUNT:
249 case PARITY:
250 case BSWAP:
251 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
253 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
254 if (GET_MODE_SIZE (GET_MODE (op0))
255 > GET_MODE_SIZE (GET_MODE (target)))
256 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
257 note, GET_MODE (op0));
258 else
259 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
260 note, GET_MODE (op0));
261 break;
263 /* FALLTHRU */
264 default:
265 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
266 break;
268 else
269 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
271 set_unique_reg_note (last_insn, REG_EQUAL, note);
273 return 1;
276 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
277 for a widening operation would be. In most cases this would be OP0, but if
278 that's a constant it'll be VOIDmode, which isn't useful. */
280 static enum machine_mode
281 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
283 enum machine_mode m0 = GET_MODE (op0);
284 enum machine_mode m1 = GET_MODE (op1);
285 enum machine_mode result;
287 if (m0 == VOIDmode && m1 == VOIDmode)
288 return to_mode;
289 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
290 result = m1;
291 else
292 result = m0;
294 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
295 return to_mode;
297 return result;
300 /* Find a widening optab even if it doesn't widen as much as we want.
301 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
302 direct HI->SI insn, then return SI->DI, if that exists.
303 If PERMIT_NON_WIDENING is non-zero then this can be used with
304 non-widening optabs also. */
306 enum insn_code
307 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
308 enum machine_mode from_mode,
309 int permit_non_widening,
310 enum machine_mode *found_mode)
312 for (; (permit_non_widening || from_mode != to_mode)
313 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
314 && from_mode != VOIDmode;
315 from_mode = GET_MODE_WIDER_MODE (from_mode))
317 enum insn_code handler = widening_optab_handler (op, to_mode,
318 from_mode);
320 if (handler != CODE_FOR_nothing)
322 if (found_mode)
323 *found_mode = from_mode;
324 return handler;
328 return CODE_FOR_nothing;
331 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
332 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
333 not actually do a sign-extend or zero-extend, but can leave the
334 higher-order bits of the result rtx undefined, for example, in the case
335 of logical operations, but not right shifts. */
337 static rtx
338 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
339 int unsignedp, int no_extend)
341 rtx result;
343 /* If we don't have to extend and this is a constant, return it. */
344 if (no_extend && GET_MODE (op) == VOIDmode)
345 return op;
347 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
348 extend since it will be more efficient to do so unless the signedness of
349 a promoted object differs from our extension. */
350 if (! no_extend
351 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
352 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
353 return convert_modes (mode, oldmode, op, unsignedp);
355 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
356 SUBREG. */
357 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
358 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
360 /* Otherwise, get an object of MODE, clobber it, and set the low-order
361 part to OP. */
363 result = gen_reg_rtx (mode);
364 emit_clobber (result);
365 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
366 return result;
369 /* Return the optab used for computing the operation given by the tree code,
370 CODE and the tree EXP. This function is not always usable (for example, it
371 cannot give complete results for multiplication or division) but probably
372 ought to be relied on more widely throughout the expander. */
373 optab
374 optab_for_tree_code (enum tree_code code, const_tree type,
375 enum optab_subtype subtype)
377 bool trapv;
378 switch (code)
380 case BIT_AND_EXPR:
381 return and_optab;
383 case BIT_IOR_EXPR:
384 return ior_optab;
386 case BIT_NOT_EXPR:
387 return one_cmpl_optab;
389 case BIT_XOR_EXPR:
390 return xor_optab;
392 case MULT_HIGHPART_EXPR:
393 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
395 case TRUNC_MOD_EXPR:
396 case CEIL_MOD_EXPR:
397 case FLOOR_MOD_EXPR:
398 case ROUND_MOD_EXPR:
399 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
401 case RDIV_EXPR:
402 case TRUNC_DIV_EXPR:
403 case CEIL_DIV_EXPR:
404 case FLOOR_DIV_EXPR:
405 case ROUND_DIV_EXPR:
406 case EXACT_DIV_EXPR:
407 if (TYPE_SATURATING (type))
408 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
409 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
411 case LSHIFT_EXPR:
412 if (TREE_CODE (type) == VECTOR_TYPE)
414 if (subtype == optab_vector)
415 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
417 gcc_assert (subtype == optab_scalar);
419 if (TYPE_SATURATING (type))
420 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
421 return ashl_optab;
423 case RSHIFT_EXPR:
424 if (TREE_CODE (type) == VECTOR_TYPE)
426 if (subtype == optab_vector)
427 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
429 gcc_assert (subtype == optab_scalar);
431 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
433 case LROTATE_EXPR:
434 if (TREE_CODE (type) == VECTOR_TYPE)
436 if (subtype == optab_vector)
437 return vrotl_optab;
439 gcc_assert (subtype == optab_scalar);
441 return rotl_optab;
443 case RROTATE_EXPR:
444 if (TREE_CODE (type) == VECTOR_TYPE)
446 if (subtype == optab_vector)
447 return vrotr_optab;
449 gcc_assert (subtype == optab_scalar);
451 return rotr_optab;
453 case MAX_EXPR:
454 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
456 case MIN_EXPR:
457 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
459 case REALIGN_LOAD_EXPR:
460 return vec_realign_load_optab;
462 case WIDEN_SUM_EXPR:
463 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
465 case DOT_PROD_EXPR:
466 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
468 case WIDEN_MULT_PLUS_EXPR:
469 return (TYPE_UNSIGNED (type)
470 ? (TYPE_SATURATING (type)
471 ? usmadd_widen_optab : umadd_widen_optab)
472 : (TYPE_SATURATING (type)
473 ? ssmadd_widen_optab : smadd_widen_optab));
475 case WIDEN_MULT_MINUS_EXPR:
476 return (TYPE_UNSIGNED (type)
477 ? (TYPE_SATURATING (type)
478 ? usmsub_widen_optab : umsub_widen_optab)
479 : (TYPE_SATURATING (type)
480 ? ssmsub_widen_optab : smsub_widen_optab));
482 case FMA_EXPR:
483 return fma_optab;
485 case REDUC_MAX_EXPR:
486 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
488 case REDUC_MIN_EXPR:
489 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
491 case REDUC_PLUS_EXPR:
492 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
494 case VEC_LSHIFT_EXPR:
495 return vec_shl_optab;
497 case VEC_RSHIFT_EXPR:
498 return vec_shr_optab;
500 case VEC_WIDEN_MULT_HI_EXPR:
501 return TYPE_UNSIGNED (type) ?
502 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
504 case VEC_WIDEN_MULT_LO_EXPR:
505 return TYPE_UNSIGNED (type) ?
506 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
508 case VEC_WIDEN_MULT_EVEN_EXPR:
509 return TYPE_UNSIGNED (type) ?
510 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
512 case VEC_WIDEN_MULT_ODD_EXPR:
513 return TYPE_UNSIGNED (type) ?
514 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
516 case VEC_WIDEN_LSHIFT_HI_EXPR:
517 return TYPE_UNSIGNED (type) ?
518 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
520 case VEC_WIDEN_LSHIFT_LO_EXPR:
521 return TYPE_UNSIGNED (type) ?
522 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
524 case VEC_UNPACK_HI_EXPR:
525 return TYPE_UNSIGNED (type) ?
526 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
528 case VEC_UNPACK_LO_EXPR:
529 return TYPE_UNSIGNED (type) ?
530 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
532 case VEC_UNPACK_FLOAT_HI_EXPR:
533 /* The signedness is determined from input operand. */
534 return TYPE_UNSIGNED (type) ?
535 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
537 case VEC_UNPACK_FLOAT_LO_EXPR:
538 /* The signedness is determined from input operand. */
539 return TYPE_UNSIGNED (type) ?
540 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
542 case VEC_PACK_TRUNC_EXPR:
543 return vec_pack_trunc_optab;
545 case VEC_PACK_SAT_EXPR:
546 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
548 case VEC_PACK_FIX_TRUNC_EXPR:
549 /* The signedness is determined from output operand. */
550 return TYPE_UNSIGNED (type) ?
551 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
553 default:
554 break;
557 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
558 switch (code)
560 case POINTER_PLUS_EXPR:
561 case PLUS_EXPR:
562 if (TYPE_SATURATING (type))
563 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
564 return trapv ? addv_optab : add_optab;
566 case MINUS_EXPR:
567 if (TYPE_SATURATING (type))
568 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
569 return trapv ? subv_optab : sub_optab;
571 case MULT_EXPR:
572 if (TYPE_SATURATING (type))
573 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
574 return trapv ? smulv_optab : smul_optab;
576 case NEGATE_EXPR:
577 if (TYPE_SATURATING (type))
578 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
579 return trapv ? negv_optab : neg_optab;
581 case ABS_EXPR:
582 return trapv ? absv_optab : abs_optab;
584 default:
585 return unknown_optab;
590 /* Expand vector widening operations.
592 There are two different classes of operations handled here:
593 1) Operations whose result is wider than all the arguments to the operation.
594 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
595 In this case OP0 and optionally OP1 would be initialized,
596 but WIDE_OP wouldn't (not relevant for this case).
597 2) Operations whose result is of the same size as the last argument to the
598 operation, but wider than all the other arguments to the operation.
599 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
600 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
602 E.g, when called to expand the following operations, this is how
603 the arguments will be initialized:
604 nops OP0 OP1 WIDE_OP
605 widening-sum 2 oprnd0 - oprnd1
606 widening-dot-product 3 oprnd0 oprnd1 oprnd2
607 widening-mult 2 oprnd0 oprnd1 -
608 type-promotion (vec-unpack) 1 oprnd0 - - */
611 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
612 rtx target, int unsignedp)
614 struct expand_operand eops[4];
615 tree oprnd0, oprnd1, oprnd2;
616 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
617 optab widen_pattern_optab;
618 enum insn_code icode;
619 int nops = TREE_CODE_LENGTH (ops->code);
620 int op;
622 oprnd0 = ops->op0;
623 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
624 widen_pattern_optab =
625 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
626 if (ops->code == WIDEN_MULT_PLUS_EXPR
627 || ops->code == WIDEN_MULT_MINUS_EXPR)
628 icode = find_widening_optab_handler (widen_pattern_optab,
629 TYPE_MODE (TREE_TYPE (ops->op2)),
630 tmode0, 0);
631 else
632 icode = optab_handler (widen_pattern_optab, tmode0);
633 gcc_assert (icode != CODE_FOR_nothing);
635 if (nops >= 2)
637 oprnd1 = ops->op1;
638 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
641 /* The last operand is of a wider mode than the rest of the operands. */
642 if (nops == 2)
643 wmode = tmode1;
644 else if (nops == 3)
646 gcc_assert (tmode1 == tmode0);
647 gcc_assert (op1);
648 oprnd2 = ops->op2;
649 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
652 op = 0;
653 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
654 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
655 if (op1)
656 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
657 if (wide_op)
658 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
659 expand_insn (icode, op, eops);
660 return eops[0].value;
663 /* Generate code to perform an operation specified by TERNARY_OPTAB
664 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
666 UNSIGNEDP is for the case where we have to widen the operands
667 to perform the operation. It says to use zero-extension.
669 If TARGET is nonzero, the value
670 is generated there, if it is convenient to do so.
671 In all cases an rtx is returned for the locus of the value;
672 this may or may not be TARGET. */
675 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
676 rtx op1, rtx op2, rtx target, int unsignedp)
678 struct expand_operand ops[4];
679 enum insn_code icode = optab_handler (ternary_optab, mode);
681 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
683 create_output_operand (&ops[0], target, mode);
684 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
685 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
686 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
687 expand_insn (icode, 4, ops);
688 return ops[0].value;
692 /* Like expand_binop, but return a constant rtx if the result can be
693 calculated at compile time. The arguments and return value are
694 otherwise the same as for expand_binop. */
697 simplify_expand_binop (enum machine_mode mode, optab binoptab,
698 rtx op0, rtx op1, rtx target, int unsignedp,
699 enum optab_methods methods)
701 if (CONSTANT_P (op0) && CONSTANT_P (op1))
703 rtx x = simplify_binary_operation (optab_to_code (binoptab),
704 mode, op0, op1);
705 if (x)
706 return x;
709 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
712 /* Like simplify_expand_binop, but always put the result in TARGET.
713 Return true if the expansion succeeded. */
715 bool
716 force_expand_binop (enum machine_mode mode, optab binoptab,
717 rtx op0, rtx op1, rtx target, int unsignedp,
718 enum optab_methods methods)
720 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
721 target, unsignedp, methods);
722 if (x == 0)
723 return false;
724 if (x != target)
725 emit_move_insn (target, x);
726 return true;
729 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
732 expand_vec_shift_expr (sepops ops, rtx target)
734 struct expand_operand eops[3];
735 enum insn_code icode;
736 rtx rtx_op1, rtx_op2;
737 enum machine_mode mode = TYPE_MODE (ops->type);
738 tree vec_oprnd = ops->op0;
739 tree shift_oprnd = ops->op1;
740 optab shift_optab;
742 switch (ops->code)
744 case VEC_RSHIFT_EXPR:
745 shift_optab = vec_shr_optab;
746 break;
747 case VEC_LSHIFT_EXPR:
748 shift_optab = vec_shl_optab;
749 break;
750 default:
751 gcc_unreachable ();
754 icode = optab_handler (shift_optab, mode);
755 gcc_assert (icode != CODE_FOR_nothing);
757 rtx_op1 = expand_normal (vec_oprnd);
758 rtx_op2 = expand_normal (shift_oprnd);
760 create_output_operand (&eops[0], target, mode);
761 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
762 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
763 expand_insn (icode, 3, eops);
765 return eops[0].value;
768 /* Create a new vector value in VMODE with all elements set to OP. The
769 mode of OP must be the element mode of VMODE. If OP is a constant,
770 then the return value will be a constant. */
772 static rtx
773 expand_vector_broadcast (enum machine_mode vmode, rtx op)
775 enum insn_code icode;
776 rtvec vec;
777 rtx ret;
778 int i, n;
780 gcc_checking_assert (VECTOR_MODE_P (vmode));
782 n = GET_MODE_NUNITS (vmode);
783 vec = rtvec_alloc (n);
784 for (i = 0; i < n; ++i)
785 RTVEC_ELT (vec, i) = op;
787 if (CONSTANT_P (op))
788 return gen_rtx_CONST_VECTOR (vmode, vec);
790 /* ??? If the target doesn't have a vec_init, then we have no easy way
791 of performing this operation. Most of this sort of generic support
792 is hidden away in the vector lowering support in gimple. */
793 icode = optab_handler (vec_init_optab, vmode);
794 if (icode == CODE_FOR_nothing)
795 return NULL;
797 ret = gen_reg_rtx (vmode);
798 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
800 return ret;
803 /* This subroutine of expand_doubleword_shift handles the cases in which
804 the effective shift value is >= BITS_PER_WORD. The arguments and return
805 value are the same as for the parent routine, except that SUPERWORD_OP1
806 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
807 INTO_TARGET may be null if the caller has decided to calculate it. */
809 static bool
810 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
811 rtx outof_target, rtx into_target,
812 int unsignedp, enum optab_methods methods)
814 if (into_target != 0)
815 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
816 into_target, unsignedp, methods))
817 return false;
819 if (outof_target != 0)
821 /* For a signed right shift, we must fill OUTOF_TARGET with copies
822 of the sign bit, otherwise we must fill it with zeros. */
823 if (binoptab != ashr_optab)
824 emit_move_insn (outof_target, CONST0_RTX (word_mode));
825 else
826 if (!force_expand_binop (word_mode, binoptab,
827 outof_input, GEN_INT (BITS_PER_WORD - 1),
828 outof_target, unsignedp, methods))
829 return false;
831 return true;
834 /* This subroutine of expand_doubleword_shift handles the cases in which
835 the effective shift value is < BITS_PER_WORD. The arguments and return
836 value are the same as for the parent routine. */
838 static bool
839 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
840 rtx outof_input, rtx into_input, rtx op1,
841 rtx outof_target, rtx into_target,
842 int unsignedp, enum optab_methods methods,
843 unsigned HOST_WIDE_INT shift_mask)
845 optab reverse_unsigned_shift, unsigned_shift;
846 rtx tmp, carries;
848 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
849 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
851 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
852 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
853 the opposite direction to BINOPTAB. */
854 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
856 carries = outof_input;
857 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
858 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
859 0, true, methods);
861 else
863 /* We must avoid shifting by BITS_PER_WORD bits since that is either
864 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
865 has unknown behavior. Do a single shift first, then shift by the
866 remainder. It's OK to use ~OP1 as the remainder if shift counts
867 are truncated to the mode size. */
868 carries = expand_binop (word_mode, reverse_unsigned_shift,
869 outof_input, const1_rtx, 0, unsignedp, methods);
870 if (shift_mask == BITS_PER_WORD - 1)
872 tmp = immed_double_const (-1, -1, op1_mode);
873 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
874 0, true, methods);
876 else
878 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
879 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
880 0, true, methods);
883 if (tmp == 0 || carries == 0)
884 return false;
885 carries = expand_binop (word_mode, reverse_unsigned_shift,
886 carries, tmp, 0, unsignedp, methods);
887 if (carries == 0)
888 return false;
890 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
891 so the result can go directly into INTO_TARGET if convenient. */
892 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
893 into_target, unsignedp, methods);
894 if (tmp == 0)
895 return false;
897 /* Now OR in the bits carried over from OUTOF_INPUT. */
898 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
899 into_target, unsignedp, methods))
900 return false;
902 /* Use a standard word_mode shift for the out-of half. */
903 if (outof_target != 0)
904 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
905 outof_target, unsignedp, methods))
906 return false;
908 return true;
912 #ifdef HAVE_conditional_move
913 /* Try implementing expand_doubleword_shift using conditional moves.
914 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
915 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
916 are the shift counts to use in the former and latter case. All other
917 arguments are the same as the parent routine. */
919 static bool
920 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
921 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
922 rtx outof_input, rtx into_input,
923 rtx subword_op1, rtx superword_op1,
924 rtx outof_target, rtx into_target,
925 int unsignedp, enum optab_methods methods,
926 unsigned HOST_WIDE_INT shift_mask)
928 rtx outof_superword, into_superword;
930 /* Put the superword version of the output into OUTOF_SUPERWORD and
931 INTO_SUPERWORD. */
932 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
933 if (outof_target != 0 && subword_op1 == superword_op1)
935 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
936 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
937 into_superword = outof_target;
938 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
939 outof_superword, 0, unsignedp, methods))
940 return false;
942 else
944 into_superword = gen_reg_rtx (word_mode);
945 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
946 outof_superword, into_superword,
947 unsignedp, methods))
948 return false;
951 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
952 if (!expand_subword_shift (op1_mode, binoptab,
953 outof_input, into_input, subword_op1,
954 outof_target, into_target,
955 unsignedp, methods, shift_mask))
956 return false;
958 /* Select between them. Do the INTO half first because INTO_SUPERWORD
959 might be the current value of OUTOF_TARGET. */
960 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
961 into_target, into_superword, word_mode, false))
962 return false;
964 if (outof_target != 0)
965 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
966 outof_target, outof_superword,
967 word_mode, false))
968 return false;
970 return true;
972 #endif
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
994 are undefined.
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1001 Return true if the shift could be successfully synthesized. */
1003 static bool
1004 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1005 rtx outof_input, rtx into_input, rtx op1,
1006 rtx outof_target, rtx into_target,
1007 int unsignedp, enum optab_methods methods,
1008 unsigned HOST_WIDE_INT shift_mask)
1010 rtx superword_op1, tmp, cmp1, cmp2;
1011 rtx subword_label, done_label;
1012 enum rtx_code cmp_code;
1014 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1015 fill the result with sign or zero bits as appropriate. If so, the value
1016 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1017 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1018 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1020 This isn't worthwhile for constant shifts since the optimizers will
1021 cope better with in-range shift counts. */
1022 if (shift_mask >= BITS_PER_WORD
1023 && outof_target != 0
1024 && !CONSTANT_P (op1))
1026 if (!expand_doubleword_shift (op1_mode, binoptab,
1027 outof_input, into_input, op1,
1028 0, into_target,
1029 unsignedp, methods, shift_mask))
1030 return false;
1031 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1032 outof_target, unsignedp, methods))
1033 return false;
1034 return true;
1037 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1038 is true when the effective shift value is less than BITS_PER_WORD.
1039 Set SUPERWORD_OP1 to the shift count that should be used to shift
1040 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1041 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1042 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1044 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1045 is a subword shift count. */
1046 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1047 0, true, methods);
1048 cmp2 = CONST0_RTX (op1_mode);
1049 cmp_code = EQ;
1050 superword_op1 = op1;
1052 else
1054 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1055 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1056 0, true, methods);
1057 cmp2 = CONST0_RTX (op1_mode);
1058 cmp_code = LT;
1059 superword_op1 = cmp1;
1061 if (cmp1 == 0)
1062 return false;
1064 /* If we can compute the condition at compile time, pick the
1065 appropriate subroutine. */
1066 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1067 if (tmp != 0 && CONST_INT_P (tmp))
1069 if (tmp == const0_rtx)
1070 return expand_superword_shift (binoptab, outof_input, superword_op1,
1071 outof_target, into_target,
1072 unsignedp, methods);
1073 else
1074 return expand_subword_shift (op1_mode, binoptab,
1075 outof_input, into_input, op1,
1076 outof_target, into_target,
1077 unsignedp, methods, shift_mask);
1080 #ifdef HAVE_conditional_move
1081 /* Try using conditional moves to generate straight-line code. */
1083 rtx start = get_last_insn ();
1084 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1085 cmp_code, cmp1, cmp2,
1086 outof_input, into_input,
1087 op1, superword_op1,
1088 outof_target, into_target,
1089 unsignedp, methods, shift_mask))
1090 return true;
1091 delete_insns_since (start);
1093 #endif
1095 /* As a last resort, use branches to select the correct alternative. */
1096 subword_label = gen_label_rtx ();
1097 done_label = gen_label_rtx ();
1099 NO_DEFER_POP;
1100 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1101 0, 0, subword_label, -1);
1102 OK_DEFER_POP;
1104 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1105 outof_target, into_target,
1106 unsignedp, methods))
1107 return false;
1109 emit_jump_insn (gen_jump (done_label));
1110 emit_barrier ();
1111 emit_label (subword_label);
1113 if (!expand_subword_shift (op1_mode, binoptab,
1114 outof_input, into_input, op1,
1115 outof_target, into_target,
1116 unsignedp, methods, shift_mask))
1117 return false;
1119 emit_label (done_label);
1120 return true;
1123 /* Subroutine of expand_binop. Perform a double word multiplication of
1124 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1125 as the target's word_mode. This function return NULL_RTX if anything
1126 goes wrong, in which case it may have already emitted instructions
1127 which need to be deleted.
1129 If we want to multiply two two-word values and have normal and widening
1130 multiplies of single-word values, we can do this with three smaller
1131 multiplications.
1133 The multiplication proceeds as follows:
1134 _______________________
1135 [__op0_high_|__op0_low__]
1136 _______________________
1137 * [__op1_high_|__op1_low__]
1138 _______________________________________________
1139 _______________________
1140 (1) [__op0_low__*__op1_low__]
1141 _______________________
1142 (2a) [__op0_low__*__op1_high_]
1143 _______________________
1144 (2b) [__op0_high_*__op1_low__]
1145 _______________________
1146 (3) [__op0_high_*__op1_high_]
1149 This gives a 4-word result. Since we are only interested in the
1150 lower 2 words, partial result (3) and the upper words of (2a) and
1151 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1152 calculated using non-widening multiplication.
1154 (1), however, needs to be calculated with an unsigned widening
1155 multiplication. If this operation is not directly supported we
1156 try using a signed widening multiplication and adjust the result.
1157 This adjustment works as follows:
1159 If both operands are positive then no adjustment is needed.
1161 If the operands have different signs, for example op0_low < 0 and
1162 op1_low >= 0, the instruction treats the most significant bit of
1163 op0_low as a sign bit instead of a bit with significance
1164 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1165 with 2**BITS_PER_WORD - op0_low, and two's complements the
1166 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1167 the result.
1169 Similarly, if both operands are negative, we need to add
1170 (op0_low + op1_low) * 2**BITS_PER_WORD.
1172 We use a trick to adjust quickly. We logically shift op0_low right
1173 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1174 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1175 logical shift exists, we do an arithmetic right shift and subtract
1176 the 0 or -1. */
1178 static rtx
1179 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1180 bool umulp, enum optab_methods methods)
1182 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1183 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1184 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1185 rtx product, adjust, product_high, temp;
1187 rtx op0_high = operand_subword_force (op0, high, mode);
1188 rtx op0_low = operand_subword_force (op0, low, mode);
1189 rtx op1_high = operand_subword_force (op1, high, mode);
1190 rtx op1_low = operand_subword_force (op1, low, mode);
1192 /* If we're using an unsigned multiply to directly compute the product
1193 of the low-order words of the operands and perform any required
1194 adjustments of the operands, we begin by trying two more multiplications
1195 and then computing the appropriate sum.
1197 We have checked above that the required addition is provided.
1198 Full-word addition will normally always succeed, especially if
1199 it is provided at all, so we don't worry about its failure. The
1200 multiplication may well fail, however, so we do handle that. */
1202 if (!umulp)
1204 /* ??? This could be done with emit_store_flag where available. */
1205 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1206 NULL_RTX, 1, methods);
1207 if (temp)
1208 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 else
1212 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1213 NULL_RTX, 0, methods);
1214 if (!temp)
1215 return NULL_RTX;
1216 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1217 NULL_RTX, 0, OPTAB_DIRECT);
1220 if (!op0_high)
1221 return NULL_RTX;
1224 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1225 NULL_RTX, 0, OPTAB_DIRECT);
1226 if (!adjust)
1227 return NULL_RTX;
1229 /* OP0_HIGH should now be dead. */
1231 if (!umulp)
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1241 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1249 if (!op1_high)
1250 return NULL_RTX;
1253 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!temp)
1256 return NULL_RTX;
1258 /* OP1_HIGH should now be dead. */
1260 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1261 NULL_RTX, 0, OPTAB_DIRECT);
1263 if (target && !REG_P (target))
1264 target = NULL_RTX;
1266 if (umulp)
1267 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1268 target, 1, OPTAB_DIRECT);
1269 else
1270 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1271 target, 1, OPTAB_DIRECT);
1273 if (!product)
1274 return NULL_RTX;
1276 product_high = operand_subword (product, high, 1, mode);
1277 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1278 NULL_RTX, 0, OPTAB_DIRECT);
1279 emit_move_insn (product_high, adjust);
1280 return product;
1283 /* Wrapper around expand_binop which takes an rtx code to specify
1284 the operation to perform, not an optab pointer. All other
1285 arguments are the same. */
1287 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1288 rtx op1, rtx target, int unsignedp,
1289 enum optab_methods methods)
1291 optab binop = code_to_optab (code);
1292 gcc_assert (binop);
1294 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1297 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1298 binop. Order them according to commutative_operand_precedence and, if
1299 possible, try to put TARGET or a pseudo first. */
1300 static bool
1301 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1303 int op0_prec = commutative_operand_precedence (op0);
1304 int op1_prec = commutative_operand_precedence (op1);
1306 if (op0_prec < op1_prec)
1307 return true;
1309 if (op0_prec > op1_prec)
1310 return false;
1312 /* With equal precedence, both orders are ok, but it is better if the
1313 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1314 if (target == 0 || REG_P (target))
1315 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1316 else
1317 return rtx_equal_p (op1, target);
1320 /* Return true if BINOPTAB implements a shift operation. */
1322 static bool
1323 shift_optab_p (optab binoptab)
1325 switch (optab_to_code (binoptab))
1327 case ASHIFT:
1328 case SS_ASHIFT:
1329 case US_ASHIFT:
1330 case ASHIFTRT:
1331 case LSHIFTRT:
1332 case ROTATE:
1333 case ROTATERT:
1334 return true;
1336 default:
1337 return false;
1341 /* Return true if BINOPTAB implements a commutative binary operation. */
1343 static bool
1344 commutative_optab_p (optab binoptab)
1346 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1347 || binoptab == smul_widen_optab
1348 || binoptab == umul_widen_optab
1349 || binoptab == smul_highpart_optab
1350 || binoptab == umul_highpart_optab);
1353 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1354 optimizing, and if the operand is a constant that costs more than
1355 1 instruction, force the constant into a register and return that
1356 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1358 static rtx
1359 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1360 int opn, rtx x, bool unsignedp)
1362 bool speed = optimize_insn_for_speed_p ();
1364 if (mode != VOIDmode
1365 && optimize
1366 && CONSTANT_P (x)
1367 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1368 > set_src_cost (x, speed)))
1370 if (CONST_INT_P (x))
1372 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1373 if (intval != INTVAL (x))
1374 x = GEN_INT (intval);
1376 else
1377 x = convert_modes (mode, VOIDmode, x, unsignedp);
1378 x = force_reg (mode, x);
1380 return x;
1383 /* Helper function for expand_binop: handle the case where there
1384 is an insn that directly implements the indicated operation.
1385 Returns null if this is not possible. */
1386 static rtx
1387 expand_binop_directly (enum machine_mode mode, optab binoptab,
1388 rtx op0, rtx op1,
1389 rtx target, int unsignedp, enum optab_methods methods,
1390 rtx last)
1392 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1393 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1394 from_mode, 1);
1395 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1396 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1397 enum machine_mode mode0, mode1, tmp_mode;
1398 struct expand_operand ops[3];
1399 bool commutative_p;
1400 rtx pat;
1401 rtx xop0 = op0, xop1 = op1;
1402 rtx swap;
1404 /* If it is a commutative operator and the modes would match
1405 if we would swap the operands, we can save the conversions. */
1406 commutative_p = commutative_optab_p (binoptab);
1407 if (commutative_p
1408 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1409 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1411 swap = xop0;
1412 xop0 = xop1;
1413 xop1 = swap;
1416 /* If we are optimizing, force expensive constants into a register. */
1417 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1418 if (!shift_optab_p (binoptab))
1419 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1421 /* In case the insn wants input operands in modes different from
1422 those of the actual operands, convert the operands. It would
1423 seem that we don't need to convert CONST_INTs, but we do, so
1424 that they're properly zero-extended, sign-extended or truncated
1425 for their mode. */
1427 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1428 if (xmode0 != VOIDmode && xmode0 != mode0)
1430 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1431 mode0 = xmode0;
1434 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1435 if (xmode1 != VOIDmode && xmode1 != mode1)
1437 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1438 mode1 = xmode1;
1441 /* If operation is commutative,
1442 try to make the first operand a register.
1443 Even better, try to make it the same as the target.
1444 Also try to make the last operand a constant. */
1445 if (commutative_p
1446 && swap_commutative_operands_with_target (target, xop0, xop1))
1448 swap = xop1;
1449 xop1 = xop0;
1450 xop0 = swap;
1453 /* Now, if insn's predicates don't allow our operands, put them into
1454 pseudo regs. */
1456 if (binoptab == vec_pack_trunc_optab
1457 || binoptab == vec_pack_usat_optab
1458 || binoptab == vec_pack_ssat_optab
1459 || binoptab == vec_pack_ufix_trunc_optab
1460 || binoptab == vec_pack_sfix_trunc_optab)
1462 /* The mode of the result is different then the mode of the
1463 arguments. */
1464 tmp_mode = insn_data[(int) icode].operand[0].mode;
1465 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1467 delete_insns_since (last);
1468 return NULL_RTX;
1471 else
1472 tmp_mode = mode;
1474 create_output_operand (&ops[0], target, tmp_mode);
1475 create_input_operand (&ops[1], xop0, mode0);
1476 create_input_operand (&ops[2], xop1, mode1);
1477 pat = maybe_gen_insn (icode, 3, ops);
1478 if (pat)
1480 /* If PAT is composed of more than one insn, try to add an appropriate
1481 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1482 operand, call expand_binop again, this time without a target. */
1483 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1484 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1485 ops[1].value, ops[2].value))
1487 delete_insns_since (last);
1488 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1489 unsignedp, methods);
1492 emit_insn (pat);
1493 return ops[0].value;
1495 delete_insns_since (last);
1496 return NULL_RTX;
1499 /* Generate code to perform an operation specified by BINOPTAB
1500 on operands OP0 and OP1, with result having machine-mode MODE.
1502 UNSIGNEDP is for the case where we have to widen the operands
1503 to perform the operation. It says to use zero-extension.
1505 If TARGET is nonzero, the value
1506 is generated there, if it is convenient to do so.
1507 In all cases an rtx is returned for the locus of the value;
1508 this may or may not be TARGET. */
1511 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1512 rtx target, int unsignedp, enum optab_methods methods)
1514 enum optab_methods next_methods
1515 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1516 ? OPTAB_WIDEN : methods);
1517 enum mode_class mclass;
1518 enum machine_mode wider_mode;
1519 rtx libfunc;
1520 rtx temp;
1521 rtx entry_last = get_last_insn ();
1522 rtx last;
1524 mclass = GET_MODE_CLASS (mode);
1526 /* If subtracting an integer constant, convert this into an addition of
1527 the negated constant. */
1529 if (binoptab == sub_optab && CONST_INT_P (op1))
1531 op1 = negate_rtx (mode, op1);
1532 binoptab = add_optab;
1535 /* Record where to delete back to if we backtrack. */
1536 last = get_last_insn ();
1538 /* If we can do it with a three-operand insn, do so. */
1540 if (methods != OPTAB_MUST_WIDEN
1541 && find_widening_optab_handler (binoptab, mode,
1542 widened_mode (mode, op0, op1), 1)
1543 != CODE_FOR_nothing)
1545 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1546 unsignedp, methods, last);
1547 if (temp)
1548 return temp;
1551 /* If we were trying to rotate, and that didn't work, try rotating
1552 the other direction before falling back to shifts and bitwise-or. */
1553 if (((binoptab == rotl_optab
1554 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1555 || (binoptab == rotr_optab
1556 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1557 && mclass == MODE_INT)
1559 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1560 rtx newop1;
1561 unsigned int bits = GET_MODE_PRECISION (mode);
1563 if (CONST_INT_P (op1))
1564 newop1 = GEN_INT (bits - INTVAL (op1));
1565 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1566 newop1 = negate_rtx (GET_MODE (op1), op1);
1567 else
1568 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1569 gen_int_mode (bits, GET_MODE (op1)), op1,
1570 NULL_RTX, unsignedp, OPTAB_DIRECT);
1572 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1573 target, unsignedp, methods, last);
1574 if (temp)
1575 return temp;
1578 /* If this is a multiply, see if we can do a widening operation that
1579 takes operands of this mode and makes a wider mode. */
1581 if (binoptab == smul_optab
1582 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1583 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1584 : smul_widen_optab),
1585 GET_MODE_2XWIDER_MODE (mode), mode)
1586 != CODE_FOR_nothing))
1588 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1589 unsignedp ? umul_widen_optab : smul_widen_optab,
1590 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1592 if (temp != 0)
1594 if (GET_MODE_CLASS (mode) == MODE_INT
1595 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1596 return gen_lowpart (mode, temp);
1597 else
1598 return convert_to_mode (mode, temp, unsignedp);
1602 /* If this is a vector shift by a scalar, see if we can do a vector
1603 shift by a vector. If so, broadcast the scalar into a vector. */
1604 if (mclass == MODE_VECTOR_INT)
1606 optab otheroptab = unknown_optab;
1608 if (binoptab == ashl_optab)
1609 otheroptab = vashl_optab;
1610 else if (binoptab == ashr_optab)
1611 otheroptab = vashr_optab;
1612 else if (binoptab == lshr_optab)
1613 otheroptab = vlshr_optab;
1614 else if (binoptab == rotl_optab)
1615 otheroptab = vrotl_optab;
1616 else if (binoptab == rotr_optab)
1617 otheroptab = vrotr_optab;
1619 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1621 rtx vop1 = expand_vector_broadcast (mode, op1);
1622 if (vop1)
1624 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1625 target, unsignedp, methods, last);
1626 if (temp)
1627 return temp;
1632 /* Look for a wider mode of the same class for which we think we
1633 can open-code the operation. Check for a widening multiply at the
1634 wider mode as well. */
1636 if (CLASS_HAS_WIDER_MODES_P (mclass)
1637 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1638 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1639 wider_mode != VOIDmode;
1640 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1642 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1643 || (binoptab == smul_optab
1644 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1645 && (find_widening_optab_handler ((unsignedp
1646 ? umul_widen_optab
1647 : smul_widen_optab),
1648 GET_MODE_WIDER_MODE (wider_mode),
1649 mode, 0)
1650 != CODE_FOR_nothing)))
1652 rtx xop0 = op0, xop1 = op1;
1653 int no_extend = 0;
1655 /* For certain integer operations, we need not actually extend
1656 the narrow operands, as long as we will truncate
1657 the results to the same narrowness. */
1659 if ((binoptab == ior_optab || binoptab == and_optab
1660 || binoptab == xor_optab
1661 || binoptab == add_optab || binoptab == sub_optab
1662 || binoptab == smul_optab || binoptab == ashl_optab)
1663 && mclass == MODE_INT)
1665 no_extend = 1;
1666 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1667 xop0, unsignedp);
1668 if (binoptab != ashl_optab)
1669 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1670 xop1, unsignedp);
1673 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1675 /* The second operand of a shift must always be extended. */
1676 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1677 no_extend && binoptab != ashl_optab);
1679 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1680 unsignedp, OPTAB_DIRECT);
1681 if (temp)
1683 if (mclass != MODE_INT
1684 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1686 if (target == 0)
1687 target = gen_reg_rtx (mode);
1688 convert_move (target, temp, 0);
1689 return target;
1691 else
1692 return gen_lowpart (mode, temp);
1694 else
1695 delete_insns_since (last);
1699 /* If operation is commutative,
1700 try to make the first operand a register.
1701 Even better, try to make it the same as the target.
1702 Also try to make the last operand a constant. */
1703 if (commutative_optab_p (binoptab)
1704 && swap_commutative_operands_with_target (target, op0, op1))
1706 temp = op1;
1707 op1 = op0;
1708 op0 = temp;
1711 /* These can be done a word at a time. */
1712 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1713 && mclass == MODE_INT
1714 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1715 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1717 int i;
1718 rtx insns;
1720 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1721 won't be accurate, so use a new target. */
1722 if (target == 0
1723 || target == op0
1724 || target == op1
1725 || !valid_multiword_target_p (target))
1726 target = gen_reg_rtx (mode);
1728 start_sequence ();
1730 /* Do the actual arithmetic. */
1731 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1733 rtx target_piece = operand_subword (target, i, 1, mode);
1734 rtx x = expand_binop (word_mode, binoptab,
1735 operand_subword_force (op0, i, mode),
1736 operand_subword_force (op1, i, mode),
1737 target_piece, unsignedp, next_methods);
1739 if (x == 0)
1740 break;
1742 if (target_piece != x)
1743 emit_move_insn (target_piece, x);
1746 insns = get_insns ();
1747 end_sequence ();
1749 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1751 emit_insn (insns);
1752 return target;
1756 /* Synthesize double word shifts from single word shifts. */
1757 if ((binoptab == lshr_optab || binoptab == ashl_optab
1758 || binoptab == ashr_optab)
1759 && mclass == MODE_INT
1760 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1761 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1762 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1763 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1765 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1767 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1768 enum machine_mode op1_mode;
1770 double_shift_mask = targetm.shift_truncation_mask (mode);
1771 shift_mask = targetm.shift_truncation_mask (word_mode);
1772 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1774 /* Apply the truncation to constant shifts. */
1775 if (double_shift_mask > 0 && CONST_INT_P (op1))
1776 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1778 if (op1 == CONST0_RTX (op1_mode))
1779 return op0;
1781 /* Make sure that this is a combination that expand_doubleword_shift
1782 can handle. See the comments there for details. */
1783 if (double_shift_mask == 0
1784 || (shift_mask == BITS_PER_WORD - 1
1785 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1787 rtx insns;
1788 rtx into_target, outof_target;
1789 rtx into_input, outof_input;
1790 int left_shift, outof_word;
1792 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1793 won't be accurate, so use a new target. */
1794 if (target == 0
1795 || target == op0
1796 || target == op1
1797 || !valid_multiword_target_p (target))
1798 target = gen_reg_rtx (mode);
1800 start_sequence ();
1802 /* OUTOF_* is the word we are shifting bits away from, and
1803 INTO_* is the word that we are shifting bits towards, thus
1804 they differ depending on the direction of the shift and
1805 WORDS_BIG_ENDIAN. */
1807 left_shift = binoptab == ashl_optab;
1808 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1810 outof_target = operand_subword (target, outof_word, 1, mode);
1811 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1813 outof_input = operand_subword_force (op0, outof_word, mode);
1814 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1816 if (expand_doubleword_shift (op1_mode, binoptab,
1817 outof_input, into_input, op1,
1818 outof_target, into_target,
1819 unsignedp, next_methods, shift_mask))
1821 insns = get_insns ();
1822 end_sequence ();
1824 emit_insn (insns);
1825 return target;
1827 end_sequence ();
1831 /* Synthesize double word rotates from single word shifts. */
1832 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1833 && mclass == MODE_INT
1834 && CONST_INT_P (op1)
1835 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1836 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1837 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1839 rtx insns;
1840 rtx into_target, outof_target;
1841 rtx into_input, outof_input;
1842 rtx inter;
1843 int shift_count, left_shift, outof_word;
1845 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1846 won't be accurate, so use a new target. Do this also if target is not
1847 a REG, first because having a register instead may open optimization
1848 opportunities, and second because if target and op0 happen to be MEMs
1849 designating the same location, we would risk clobbering it too early
1850 in the code sequence we generate below. */
1851 if (target == 0
1852 || target == op0
1853 || target == op1
1854 || !REG_P (target)
1855 || !valid_multiword_target_p (target))
1856 target = gen_reg_rtx (mode);
1858 start_sequence ();
1860 shift_count = INTVAL (op1);
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1876 if (shift_count == BITS_PER_WORD)
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1883 else
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1895 if (shift_count > BITS_PER_WORD)
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1900 else
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1938 insns = get_insns ();
1939 end_sequence ();
1941 if (inter != 0)
1943 emit_insn (insns);
1944 return target;
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1973 xtarget = gen_reg_rtx (mode);
1975 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1976 target = xtarget;
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1998 if (i + 1 < nwords)
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2009 if (i > 0)
2011 rtx newx;
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2019 if (i + 1 < nwords)
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2036 emit_move_insn (target_piece, newx);
2038 else
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2044 carry_in = carry_out;
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2049 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2052 rtx temp = emit_move_insn (target, xtarget);
2054 set_dst_reg_note (temp, REG_EQUAL,
2055 gen_rtx_fmt_ee (optab_to_code (binoptab),
2056 mode, copy_rtx (xop0),
2057 copy_rtx (xop1)),
2058 target);
2060 else
2061 target = xtarget;
2063 return target;
2066 else
2067 delete_insns_since (last);
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2081 rtx product = NULL_RTX;
2082 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2083 != CODE_FOR_nothing)
2085 product = expand_doubleword_mult (mode, op0, op1, target,
2086 true, methods);
2087 if (!product)
2088 delete_insns_since (last);
2091 if (product == NULL_RTX
2092 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2093 != CODE_FOR_nothing)
2095 product = expand_doubleword_mult (mode, op0, op1, target,
2096 false, methods);
2097 if (!product)
2098 delete_insns_since (last);
2101 if (product != NULL_RTX)
2103 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2105 temp = emit_move_insn (target ? target : product, product);
2106 set_dst_reg_note (temp,
2107 REG_EQUAL,
2108 gen_rtx_fmt_ee (MULT, mode,
2109 copy_rtx (op0),
2110 copy_rtx (op1)),
2111 target ? target : product);
2113 return product;
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2129 start_sequence ();
2131 if (shift_optab_p (binoptab))
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2149 insns = get_insns ();
2150 end_sequence ();
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block_1 (insns, target, value,
2154 gen_rtx_fmt_ee (optab_to_code (binoptab),
2155 mode, op0, op1),
2156 trapv_binoptab_p (binoptab));
2158 return target;
2161 delete_insns_since (last);
2163 /* It can't be done in this mode. Can we do it in a wider mode? */
2165 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2166 || methods == OPTAB_MUST_WIDEN))
2168 /* Caller says, don't even try. */
2169 delete_insns_since (entry_last);
2170 return 0;
2173 /* Compute the value of METHODS to pass to recursive calls.
2174 Don't allow widening to be tried recursively. */
2176 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2178 /* Look for a wider mode of the same class for which it appears we can do
2179 the operation. */
2181 if (CLASS_HAS_WIDER_MODES_P (mclass))
2183 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2184 wider_mode != VOIDmode;
2185 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2187 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2188 != CODE_FOR_nothing
2189 || (methods == OPTAB_LIB
2190 && optab_libfunc (binoptab, wider_mode)))
2192 rtx xop0 = op0, xop1 = op1;
2193 int no_extend = 0;
2195 /* For certain integer operations, we need not actually extend
2196 the narrow operands, as long as we will truncate
2197 the results to the same narrowness. */
2199 if ((binoptab == ior_optab || binoptab == and_optab
2200 || binoptab == xor_optab
2201 || binoptab == add_optab || binoptab == sub_optab
2202 || binoptab == smul_optab || binoptab == ashl_optab)
2203 && mclass == MODE_INT)
2204 no_extend = 1;
2206 xop0 = widen_operand (xop0, wider_mode, mode,
2207 unsignedp, no_extend);
2209 /* The second operand of a shift must always be extended. */
2210 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2211 no_extend && binoptab != ashl_optab);
2213 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2214 unsignedp, methods);
2215 if (temp)
2217 if (mclass != MODE_INT
2218 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2220 if (target == 0)
2221 target = gen_reg_rtx (mode);
2222 convert_move (target, temp, 0);
2223 return target;
2225 else
2226 return gen_lowpart (mode, temp);
2228 else
2229 delete_insns_since (last);
2234 delete_insns_since (entry_last);
2235 return 0;
2238 /* Expand a binary operator which has both signed and unsigned forms.
2239 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2240 signed operations.
2242 If we widen unsigned operands, we may use a signed wider operation instead
2243 of an unsigned wider operation, since the result would be the same. */
2246 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2247 rtx op0, rtx op1, rtx target, int unsignedp,
2248 enum optab_methods methods)
2250 rtx temp;
2251 optab direct_optab = unsignedp ? uoptab : soptab;
2252 bool save_enable;
2254 /* Do it without widening, if possible. */
2255 temp = expand_binop (mode, direct_optab, op0, op1, target,
2256 unsignedp, OPTAB_DIRECT);
2257 if (temp || methods == OPTAB_DIRECT)
2258 return temp;
2260 /* Try widening to a signed int. Disable any direct use of any
2261 signed insn in the current mode. */
2262 save_enable = swap_optab_enable (soptab, mode, false);
2264 temp = expand_binop (mode, soptab, op0, op1, target,
2265 unsignedp, OPTAB_WIDEN);
2267 /* For unsigned operands, try widening to an unsigned int. */
2268 if (!temp && unsignedp)
2269 temp = expand_binop (mode, uoptab, op0, op1, target,
2270 unsignedp, OPTAB_WIDEN);
2271 if (temp || methods == OPTAB_WIDEN)
2272 goto egress;
2274 /* Use the right width libcall if that exists. */
2275 temp = expand_binop (mode, direct_optab, op0, op1, target,
2276 unsignedp, OPTAB_LIB);
2277 if (temp || methods == OPTAB_LIB)
2278 goto egress;
2280 /* Must widen and use a libcall, use either signed or unsigned. */
2281 temp = expand_binop (mode, soptab, op0, op1, target,
2282 unsignedp, methods);
2283 if (!temp && unsignedp)
2284 temp = expand_binop (mode, uoptab, op0, op1, target,
2285 unsignedp, methods);
2287 egress:
2288 /* Undo the fiddling above. */
2289 if (save_enable)
2290 swap_optab_enable (soptab, mode, true);
2291 return temp;
2294 /* Generate code to perform an operation specified by UNOPPTAB
2295 on operand OP0, with two results to TARG0 and TARG1.
2296 We assume that the order of the operands for the instruction
2297 is TARG0, TARG1, OP0.
2299 Either TARG0 or TARG1 may be zero, but what that means is that
2300 the result is not actually wanted. We will generate it into
2301 a dummy pseudo-reg and discard it. They may not both be zero.
2303 Returns 1 if this operation can be performed; 0 if not. */
2306 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2307 int unsignedp)
2309 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2310 enum mode_class mclass;
2311 enum machine_mode wider_mode;
2312 rtx entry_last = get_last_insn ();
2313 rtx last;
2315 mclass = GET_MODE_CLASS (mode);
2317 if (!targ0)
2318 targ0 = gen_reg_rtx (mode);
2319 if (!targ1)
2320 targ1 = gen_reg_rtx (mode);
2322 /* Record where to go back to if we fail. */
2323 last = get_last_insn ();
2325 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2327 struct expand_operand ops[3];
2328 enum insn_code icode = optab_handler (unoptab, mode);
2330 create_fixed_operand (&ops[0], targ0);
2331 create_fixed_operand (&ops[1], targ1);
2332 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2333 if (maybe_expand_insn (icode, 3, ops))
2334 return 1;
2337 /* It can't be done in this mode. Can we do it in a wider mode? */
2339 if (CLASS_HAS_WIDER_MODES_P (mclass))
2341 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2342 wider_mode != VOIDmode;
2343 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2345 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2347 rtx t0 = gen_reg_rtx (wider_mode);
2348 rtx t1 = gen_reg_rtx (wider_mode);
2349 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2351 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2353 convert_move (targ0, t0, unsignedp);
2354 convert_move (targ1, t1, unsignedp);
2355 return 1;
2357 else
2358 delete_insns_since (last);
2363 delete_insns_since (entry_last);
2364 return 0;
2367 /* Generate code to perform an operation specified by BINOPTAB
2368 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2369 We assume that the order of the operands for the instruction
2370 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2371 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2373 Either TARG0 or TARG1 may be zero, but what that means is that
2374 the result is not actually wanted. We will generate it into
2375 a dummy pseudo-reg and discard it. They may not both be zero.
2377 Returns 1 if this operation can be performed; 0 if not. */
2380 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2381 int unsignedp)
2383 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2384 enum mode_class mclass;
2385 enum machine_mode wider_mode;
2386 rtx entry_last = get_last_insn ();
2387 rtx last;
2389 mclass = GET_MODE_CLASS (mode);
2391 if (!targ0)
2392 targ0 = gen_reg_rtx (mode);
2393 if (!targ1)
2394 targ1 = gen_reg_rtx (mode);
2396 /* Record where to go back to if we fail. */
2397 last = get_last_insn ();
2399 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2401 struct expand_operand ops[4];
2402 enum insn_code icode = optab_handler (binoptab, mode);
2403 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2404 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2405 rtx xop0 = op0, xop1 = op1;
2407 /* If we are optimizing, force expensive constants into a register. */
2408 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2409 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2411 create_fixed_operand (&ops[0], targ0);
2412 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2413 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2414 create_fixed_operand (&ops[3], targ1);
2415 if (maybe_expand_insn (icode, 4, ops))
2416 return 1;
2417 delete_insns_since (last);
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2422 if (CLASS_HAS_WIDER_MODES_P (mclass))
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2425 wider_mode != VOIDmode;
2426 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2428 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2442 else
2443 delete_insns_since (last);
2448 delete_insns_since (entry_last);
2449 return 0;
2452 /* Expand the two-valued library call indicated by BINOPTAB, but
2453 preserve only one of the values. If TARG0 is non-NULL, the first
2454 value is placed into TARG0; otherwise the second value is placed
2455 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2456 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2457 This routine assumes that the value returned by the library call is
2458 as if the return value was of an integral mode twice as wide as the
2459 mode of OP0. Returns 1 if the call was successful. */
2461 bool
2462 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2463 rtx targ0, rtx targ1, enum rtx_code code)
2465 enum machine_mode mode;
2466 enum machine_mode libval_mode;
2467 rtx libval;
2468 rtx insns;
2469 rtx libfunc;
2471 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2472 gcc_assert (!targ0 != !targ1);
2474 mode = GET_MODE (op0);
2475 libfunc = optab_libfunc (binoptab, mode);
2476 if (!libfunc)
2477 return false;
2479 /* The value returned by the library function will have twice as
2480 many bits as the nominal MODE. */
2481 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2482 MODE_INT);
2483 start_sequence ();
2484 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2485 libval_mode, 2,
2486 op0, mode,
2487 op1, mode);
2488 /* Get the part of VAL containing the value that we want. */
2489 libval = simplify_gen_subreg (mode, libval, libval_mode,
2490 targ0 ? 0 : GET_MODE_SIZE (mode));
2491 insns = get_insns ();
2492 end_sequence ();
2493 /* Move the into the desired location. */
2494 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2495 gen_rtx_fmt_ee (code, mode, op0, op1));
2497 return true;
2501 /* Wrapper around expand_unop which takes an rtx code to specify
2502 the operation to perform, not an optab pointer. All other
2503 arguments are the same. */
2505 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2506 rtx target, int unsignedp)
2508 optab unop = code_to_optab (code);
2509 gcc_assert (unop);
2511 return expand_unop (mode, unop, op0, target, unsignedp);
2514 /* Try calculating
2515 (clz:narrow x)
2517 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2519 A similar operation can be used for clrsb. UNOPTAB says which operation
2520 we are trying to expand. */
2521 static rtx
2522 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2524 enum mode_class mclass = GET_MODE_CLASS (mode);
2525 if (CLASS_HAS_WIDER_MODES_P (mclass))
2527 enum machine_mode wider_mode;
2528 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2529 wider_mode != VOIDmode;
2530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2532 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2534 rtx xop0, temp, last;
2536 last = get_last_insn ();
2538 if (target == 0)
2539 target = gen_reg_rtx (mode);
2540 xop0 = widen_operand (op0, wider_mode, mode,
2541 unoptab != clrsb_optab, false);
2542 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2543 unoptab != clrsb_optab);
2544 if (temp != 0)
2545 temp = expand_binop
2546 (wider_mode, sub_optab, temp,
2547 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2548 - GET_MODE_PRECISION (mode),
2549 wider_mode),
2550 target, true, OPTAB_DIRECT);
2551 if (temp == 0)
2552 delete_insns_since (last);
2554 return temp;
2558 return 0;
2561 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2562 quantities, choosing which based on whether the high word is nonzero. */
2563 static rtx
2564 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2566 rtx xop0 = force_reg (mode, op0);
2567 rtx subhi = gen_highpart (word_mode, xop0);
2568 rtx sublo = gen_lowpart (word_mode, xop0);
2569 rtx hi0_label = gen_label_rtx ();
2570 rtx after_label = gen_label_rtx ();
2571 rtx seq, temp, result;
2573 /* If we were not given a target, use a word_mode register, not a
2574 'mode' register. The result will fit, and nobody is expecting
2575 anything bigger (the return type of __builtin_clz* is int). */
2576 if (!target)
2577 target = gen_reg_rtx (word_mode);
2579 /* In any case, write to a word_mode scratch in both branches of the
2580 conditional, so we can ensure there is a single move insn setting
2581 'target' to tag a REG_EQUAL note on. */
2582 result = gen_reg_rtx (word_mode);
2584 start_sequence ();
2586 /* If the high word is not equal to zero,
2587 then clz of the full value is clz of the high word. */
2588 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2589 word_mode, true, hi0_label);
2591 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2592 if (!temp)
2593 goto fail;
2595 if (temp != result)
2596 convert_move (result, temp, true);
2598 emit_jump_insn (gen_jump (after_label));
2599 emit_barrier ();
2601 /* Else clz of the full value is clz of the low word plus the number
2602 of bits in the high word. */
2603 emit_label (hi0_label);
2605 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2606 if (!temp)
2607 goto fail;
2608 temp = expand_binop (word_mode, add_optab, temp,
2609 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2610 result, true, OPTAB_DIRECT);
2611 if (!temp)
2612 goto fail;
2613 if (temp != result)
2614 convert_move (result, temp, true);
2616 emit_label (after_label);
2617 convert_move (target, result, true);
2619 seq = get_insns ();
2620 end_sequence ();
2622 add_equal_note (seq, target, CLZ, xop0, 0);
2623 emit_insn (seq);
2624 return target;
2626 fail:
2627 end_sequence ();
2628 return 0;
2631 /* Try calculating
2632 (bswap:narrow x)
2634 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2635 static rtx
2636 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2638 enum mode_class mclass = GET_MODE_CLASS (mode);
2639 enum machine_mode wider_mode;
2640 rtx x, last;
2642 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2643 return NULL_RTX;
2645 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2646 wider_mode != VOIDmode;
2647 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2648 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2649 goto found;
2650 return NULL_RTX;
2652 found:
2653 last = get_last_insn ();
2655 x = widen_operand (op0, wider_mode, mode, true, true);
2656 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2658 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2659 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2660 if (x != 0)
2661 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2662 GET_MODE_BITSIZE (wider_mode)
2663 - GET_MODE_BITSIZE (mode),
2664 NULL_RTX, true);
2666 if (x != 0)
2668 if (target == 0)
2669 target = gen_reg_rtx (mode);
2670 emit_move_insn (target, gen_lowpart (mode, x));
2672 else
2673 delete_insns_since (last);
2675 return target;
2678 /* Try calculating bswap as two bswaps of two word-sized operands. */
2680 static rtx
2681 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2683 rtx t0, t1;
2685 t1 = expand_unop (word_mode, bswap_optab,
2686 operand_subword_force (op, 0, mode), NULL_RTX, true);
2687 t0 = expand_unop (word_mode, bswap_optab,
2688 operand_subword_force (op, 1, mode), NULL_RTX, true);
2690 if (target == 0 || !valid_multiword_target_p (target))
2691 target = gen_reg_rtx (mode);
2692 if (REG_P (target))
2693 emit_clobber (target);
2694 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2695 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2697 return target;
2700 /* Try calculating (parity x) as (and (popcount x) 1), where
2701 popcount can also be done in a wider mode. */
2702 static rtx
2703 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2705 enum mode_class mclass = GET_MODE_CLASS (mode);
2706 if (CLASS_HAS_WIDER_MODES_P (mclass))
2708 enum machine_mode wider_mode;
2709 for (wider_mode = mode; wider_mode != VOIDmode;
2710 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2712 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2714 rtx xop0, temp, last;
2716 last = get_last_insn ();
2718 if (target == 0)
2719 target = gen_reg_rtx (mode);
2720 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2721 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2722 true);
2723 if (temp != 0)
2724 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2725 target, true, OPTAB_DIRECT);
2726 if (temp == 0)
2727 delete_insns_since (last);
2729 return temp;
2733 return 0;
2736 /* Try calculating ctz(x) as K - clz(x & -x) ,
2737 where K is GET_MODE_PRECISION(mode) - 1.
2739 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2740 don't have to worry about what the hardware does in that case. (If
2741 the clz instruction produces the usual value at 0, which is K, the
2742 result of this code sequence will be -1; expand_ffs, below, relies
2743 on this. It might be nice to have it be K instead, for consistency
2744 with the (very few) processors that provide a ctz with a defined
2745 value, but that would take one more instruction, and it would be
2746 less convenient for expand_ffs anyway. */
2748 static rtx
2749 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2751 rtx seq, temp;
2753 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2754 return 0;
2756 start_sequence ();
2758 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2759 if (temp)
2760 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2761 true, OPTAB_DIRECT);
2762 if (temp)
2763 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2764 if (temp)
2765 temp = expand_binop (mode, sub_optab,
2766 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2767 temp, target,
2768 true, OPTAB_DIRECT);
2769 if (temp == 0)
2771 end_sequence ();
2772 return 0;
2775 seq = get_insns ();
2776 end_sequence ();
2778 add_equal_note (seq, temp, CTZ, op0, 0);
2779 emit_insn (seq);
2780 return temp;
2784 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2785 else with the sequence used by expand_clz.
2787 The ffs builtin promises to return zero for a zero value and ctz/clz
2788 may have an undefined value in that case. If they do not give us a
2789 convenient value, we have to generate a test and branch. */
2790 static rtx
2791 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2793 HOST_WIDE_INT val = 0;
2794 bool defined_at_zero = false;
2795 rtx temp, seq;
2797 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2799 start_sequence ();
2801 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2802 if (!temp)
2803 goto fail;
2805 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2807 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2809 start_sequence ();
2810 temp = expand_ctz (mode, op0, 0);
2811 if (!temp)
2812 goto fail;
2814 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2816 defined_at_zero = true;
2817 val = (GET_MODE_PRECISION (mode) - 1) - val;
2820 else
2821 return 0;
2823 if (defined_at_zero && val == -1)
2824 /* No correction needed at zero. */;
2825 else
2827 /* We don't try to do anything clever with the situation found
2828 on some processors (eg Alpha) where ctz(0:mode) ==
2829 bitsize(mode). If someone can think of a way to send N to -1
2830 and leave alone all values in the range 0..N-1 (where N is a
2831 power of two), cheaper than this test-and-branch, please add it.
2833 The test-and-branch is done after the operation itself, in case
2834 the operation sets condition codes that can be recycled for this.
2835 (This is true on i386, for instance.) */
2837 rtx nonzero_label = gen_label_rtx ();
2838 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2839 mode, true, nonzero_label);
2841 convert_move (temp, GEN_INT (-1), false);
2842 emit_label (nonzero_label);
2845 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2846 to produce a value in the range 0..bitsize. */
2847 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2848 target, false, OPTAB_DIRECT);
2849 if (!temp)
2850 goto fail;
2852 seq = get_insns ();
2853 end_sequence ();
2855 add_equal_note (seq, temp, FFS, op0, 0);
2856 emit_insn (seq);
2857 return temp;
2859 fail:
2860 end_sequence ();
2861 return 0;
2864 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2865 conditions, VAL may already be a SUBREG against which we cannot generate
2866 a further SUBREG. In this case, we expect forcing the value into a
2867 register will work around the situation. */
2869 static rtx
2870 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2871 enum machine_mode imode)
2873 rtx ret;
2874 ret = lowpart_subreg (omode, val, imode);
2875 if (ret == NULL)
2877 val = force_reg (imode, val);
2878 ret = lowpart_subreg (omode, val, imode);
2879 gcc_assert (ret != NULL);
2881 return ret;
2884 /* Expand a floating point absolute value or negation operation via a
2885 logical operation on the sign bit. */
2887 static rtx
2888 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2889 rtx op0, rtx target)
2891 const struct real_format *fmt;
2892 int bitpos, word, nwords, i;
2893 enum machine_mode imode;
2894 double_int mask;
2895 rtx temp, insns;
2897 /* The format has to have a simple sign bit. */
2898 fmt = REAL_MODE_FORMAT (mode);
2899 if (fmt == NULL)
2900 return NULL_RTX;
2902 bitpos = fmt->signbit_rw;
2903 if (bitpos < 0)
2904 return NULL_RTX;
2906 /* Don't create negative zeros if the format doesn't support them. */
2907 if (code == NEG && !fmt->has_signed_zero)
2908 return NULL_RTX;
2910 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2912 imode = int_mode_for_mode (mode);
2913 if (imode == BLKmode)
2914 return NULL_RTX;
2915 word = 0;
2916 nwords = 1;
2918 else
2920 imode = word_mode;
2922 if (FLOAT_WORDS_BIG_ENDIAN)
2923 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2924 else
2925 word = bitpos / BITS_PER_WORD;
2926 bitpos = bitpos % BITS_PER_WORD;
2927 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2930 mask = double_int_zero.set_bit (bitpos);
2931 if (code == ABS)
2932 mask = ~mask;
2934 if (target == 0
2935 || target == op0
2936 || (nwords > 1 && !valid_multiword_target_p (target)))
2937 target = gen_reg_rtx (mode);
2939 if (nwords > 1)
2941 start_sequence ();
2943 for (i = 0; i < nwords; ++i)
2945 rtx targ_piece = operand_subword (target, i, 1, mode);
2946 rtx op0_piece = operand_subword_force (op0, i, mode);
2948 if (i == word)
2950 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2951 op0_piece,
2952 immed_double_int_const (mask, imode),
2953 targ_piece, 1, OPTAB_LIB_WIDEN);
2954 if (temp != targ_piece)
2955 emit_move_insn (targ_piece, temp);
2957 else
2958 emit_move_insn (targ_piece, op0_piece);
2961 insns = get_insns ();
2962 end_sequence ();
2964 emit_insn (insns);
2966 else
2968 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2969 gen_lowpart (imode, op0),
2970 immed_double_int_const (mask, imode),
2971 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2972 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2974 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2975 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2976 target);
2979 return target;
2982 /* As expand_unop, but will fail rather than attempt the operation in a
2983 different mode or with a libcall. */
2984 static rtx
2985 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2986 int unsignedp)
2988 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2990 struct expand_operand ops[2];
2991 enum insn_code icode = optab_handler (unoptab, mode);
2992 rtx last = get_last_insn ();
2993 rtx pat;
2995 create_output_operand (&ops[0], target, mode);
2996 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2997 pat = maybe_gen_insn (icode, 2, ops);
2998 if (pat)
3000 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3001 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3002 ops[1].value, NULL_RTX))
3004 delete_insns_since (last);
3005 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3008 emit_insn (pat);
3010 return ops[0].value;
3013 return 0;
3016 /* Generate code to perform an operation specified by UNOPTAB
3017 on operand OP0, with result having machine-mode MODE.
3019 UNSIGNEDP is for the case where we have to widen the operands
3020 to perform the operation. It says to use zero-extension.
3022 If TARGET is nonzero, the value
3023 is generated there, if it is convenient to do so.
3024 In all cases an rtx is returned for the locus of the value;
3025 this may or may not be TARGET. */
3028 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3029 int unsignedp)
3031 enum mode_class mclass = GET_MODE_CLASS (mode);
3032 enum machine_mode wider_mode;
3033 rtx temp;
3034 rtx libfunc;
3036 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3037 if (temp)
3038 return temp;
3040 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3042 /* Widening (or narrowing) clz needs special treatment. */
3043 if (unoptab == clz_optab)
3045 temp = widen_leading (mode, op0, target, unoptab);
3046 if (temp)
3047 return temp;
3049 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3050 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3052 temp = expand_doubleword_clz (mode, op0, target);
3053 if (temp)
3054 return temp;
3057 goto try_libcall;
3060 if (unoptab == clrsb_optab)
3062 temp = widen_leading (mode, op0, target, unoptab);
3063 if (temp)
3064 return temp;
3065 goto try_libcall;
3068 /* Widening (or narrowing) bswap needs special treatment. */
3069 if (unoptab == bswap_optab)
3071 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3072 or ROTATERT. First try these directly; if this fails, then try the
3073 obvious pair of shifts with allowed widening, as this will probably
3074 be always more efficient than the other fallback methods. */
3075 if (mode == HImode)
3077 rtx last, temp1, temp2;
3079 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3081 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3082 unsignedp, OPTAB_DIRECT);
3083 if (temp)
3084 return temp;
3087 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3089 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3090 unsignedp, OPTAB_DIRECT);
3091 if (temp)
3092 return temp;
3095 last = get_last_insn ();
3097 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3098 unsignedp, OPTAB_WIDEN);
3099 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3100 unsignedp, OPTAB_WIDEN);
3101 if (temp1 && temp2)
3103 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3104 unsignedp, OPTAB_WIDEN);
3105 if (temp)
3106 return temp;
3109 delete_insns_since (last);
3112 temp = widen_bswap (mode, op0, target);
3113 if (temp)
3114 return temp;
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3119 temp = expand_doubleword_bswap (mode, op0, target);
3120 if (temp)
3121 return temp;
3124 goto try_libcall;
3127 if (CLASS_HAS_WIDER_MODES_P (mclass))
3128 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3129 wider_mode != VOIDmode;
3130 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3132 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3134 rtx xop0 = op0;
3135 rtx last = get_last_insn ();
3137 /* For certain operations, we need not actually extend
3138 the narrow operand, as long as we will truncate the
3139 results to the same narrowness. */
3141 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3142 (unoptab == neg_optab
3143 || unoptab == one_cmpl_optab)
3144 && mclass == MODE_INT);
3146 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3147 unsignedp);
3149 if (temp)
3151 if (mclass != MODE_INT
3152 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3154 if (target == 0)
3155 target = gen_reg_rtx (mode);
3156 convert_move (target, temp, 0);
3157 return target;
3159 else
3160 return gen_lowpart (mode, temp);
3162 else
3163 delete_insns_since (last);
3167 /* These can be done a word at a time. */
3168 if (unoptab == one_cmpl_optab
3169 && mclass == MODE_INT
3170 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3171 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3173 int i;
3174 rtx insns;
3176 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3177 target = gen_reg_rtx (mode);
3179 start_sequence ();
3181 /* Do the actual arithmetic. */
3182 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3184 rtx target_piece = operand_subword (target, i, 1, mode);
3185 rtx x = expand_unop (word_mode, unoptab,
3186 operand_subword_force (op0, i, mode),
3187 target_piece, unsignedp);
3189 if (target_piece != x)
3190 emit_move_insn (target_piece, x);
3193 insns = get_insns ();
3194 end_sequence ();
3196 emit_insn (insns);
3197 return target;
3200 if (optab_to_code (unoptab) == NEG)
3202 /* Try negating floating point values by flipping the sign bit. */
3203 if (SCALAR_FLOAT_MODE_P (mode))
3205 temp = expand_absneg_bit (NEG, mode, op0, target);
3206 if (temp)
3207 return temp;
3210 /* If there is no negation pattern, and we have no negative zero,
3211 try subtracting from zero. */
3212 if (!HONOR_SIGNED_ZEROS (mode))
3214 temp = expand_binop (mode, (unoptab == negv_optab
3215 ? subv_optab : sub_optab),
3216 CONST0_RTX (mode), op0, target,
3217 unsignedp, OPTAB_DIRECT);
3218 if (temp)
3219 return temp;
3223 /* Try calculating parity (x) as popcount (x) % 2. */
3224 if (unoptab == parity_optab)
3226 temp = expand_parity (mode, op0, target);
3227 if (temp)
3228 return temp;
3231 /* Try implementing ffs (x) in terms of clz (x). */
3232 if (unoptab == ffs_optab)
3234 temp = expand_ffs (mode, op0, target);
3235 if (temp)
3236 return temp;
3239 /* Try implementing ctz (x) in terms of clz (x). */
3240 if (unoptab == ctz_optab)
3242 temp = expand_ctz (mode, op0, target);
3243 if (temp)
3244 return temp;
3247 try_libcall:
3248 /* Now try a library call in this mode. */
3249 libfunc = optab_libfunc (unoptab, mode);
3250 if (libfunc)
3252 rtx insns;
3253 rtx value;
3254 rtx eq_value;
3255 enum machine_mode outmode = mode;
3257 /* All of these functions return small values. Thus we choose to
3258 have them return something that isn't a double-word. */
3259 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3260 || unoptab == clrsb_optab || unoptab == popcount_optab
3261 || unoptab == parity_optab)
3262 outmode
3263 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3264 optab_libfunc (unoptab, mode)));
3266 start_sequence ();
3268 /* Pass 1 for NO_QUEUE so we don't lose any increments
3269 if the libcall is cse'd or moved. */
3270 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3271 1, op0, mode);
3272 insns = get_insns ();
3273 end_sequence ();
3275 target = gen_reg_rtx (outmode);
3276 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3277 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3278 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3279 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3280 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3281 emit_libcall_block_1 (insns, target, value, eq_value,
3282 trapv_unoptab_p (unoptab));
3284 return target;
3287 /* It can't be done in this mode. Can we do it in a wider mode? */
3289 if (CLASS_HAS_WIDER_MODES_P (mclass))
3291 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3292 wider_mode != VOIDmode;
3293 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3295 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3296 || optab_libfunc (unoptab, wider_mode))
3298 rtx xop0 = op0;
3299 rtx last = get_last_insn ();
3301 /* For certain operations, we need not actually extend
3302 the narrow operand, as long as we will truncate the
3303 results to the same narrowness. */
3304 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3305 (unoptab == neg_optab
3306 || unoptab == one_cmpl_optab
3307 || unoptab == bswap_optab)
3308 && mclass == MODE_INT);
3310 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3311 unsignedp);
3313 /* If we are generating clz using wider mode, adjust the
3314 result. Similarly for clrsb. */
3315 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3316 && temp != 0)
3317 temp = expand_binop
3318 (wider_mode, sub_optab, temp,
3319 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3320 - GET_MODE_PRECISION (mode),
3321 wider_mode),
3322 target, true, OPTAB_DIRECT);
3324 /* Likewise for bswap. */
3325 if (unoptab == bswap_optab && temp != 0)
3327 gcc_assert (GET_MODE_PRECISION (wider_mode)
3328 == GET_MODE_BITSIZE (wider_mode)
3329 && GET_MODE_PRECISION (mode)
3330 == GET_MODE_BITSIZE (mode));
3332 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3333 GET_MODE_BITSIZE (wider_mode)
3334 - GET_MODE_BITSIZE (mode),
3335 NULL_RTX, true);
3338 if (temp)
3340 if (mclass != MODE_INT)
3342 if (target == 0)
3343 target = gen_reg_rtx (mode);
3344 convert_move (target, temp, 0);
3345 return target;
3347 else
3348 return gen_lowpart (mode, temp);
3350 else
3351 delete_insns_since (last);
3356 /* One final attempt at implementing negation via subtraction,
3357 this time allowing widening of the operand. */
3358 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3360 rtx temp;
3361 temp = expand_binop (mode,
3362 unoptab == negv_optab ? subv_optab : sub_optab,
3363 CONST0_RTX (mode), op0,
3364 target, unsignedp, OPTAB_LIB_WIDEN);
3365 if (temp)
3366 return temp;
3369 return 0;
3372 /* Emit code to compute the absolute value of OP0, with result to
3373 TARGET if convenient. (TARGET may be 0.) The return value says
3374 where the result actually is to be found.
3376 MODE is the mode of the operand; the mode of the result is
3377 different but can be deduced from MODE.
3382 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3383 int result_unsignedp)
3385 rtx temp;
3387 if (! flag_trapv)
3388 result_unsignedp = 1;
3390 /* First try to do it with a special abs instruction. */
3391 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3392 op0, target, 0);
3393 if (temp != 0)
3394 return temp;
3396 /* For floating point modes, try clearing the sign bit. */
3397 if (SCALAR_FLOAT_MODE_P (mode))
3399 temp = expand_absneg_bit (ABS, mode, op0, target);
3400 if (temp)
3401 return temp;
3404 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3405 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3406 && !HONOR_SIGNED_ZEROS (mode))
3408 rtx last = get_last_insn ();
3410 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3411 if (temp != 0)
3412 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3413 OPTAB_WIDEN);
3415 if (temp != 0)
3416 return temp;
3418 delete_insns_since (last);
3421 /* If this machine has expensive jumps, we can do integer absolute
3422 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3423 where W is the width of MODE. */
3425 if (GET_MODE_CLASS (mode) == MODE_INT
3426 && BRANCH_COST (optimize_insn_for_speed_p (),
3427 false) >= 2)
3429 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3430 GET_MODE_PRECISION (mode) - 1,
3431 NULL_RTX, 0);
3433 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3434 OPTAB_LIB_WIDEN);
3435 if (temp != 0)
3436 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3437 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3439 if (temp != 0)
3440 return temp;
3443 return NULL_RTX;
3447 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3448 int result_unsignedp, int safe)
3450 rtx temp, op1;
3452 if (! flag_trapv)
3453 result_unsignedp = 1;
3455 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3456 if (temp != 0)
3457 return temp;
3459 /* If that does not win, use conditional jump and negate. */
3461 /* It is safe to use the target if it is the same
3462 as the source if this is also a pseudo register */
3463 if (op0 == target && REG_P (op0)
3464 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3465 safe = 1;
3467 op1 = gen_label_rtx ();
3468 if (target == 0 || ! safe
3469 || GET_MODE (target) != mode
3470 || (MEM_P (target) && MEM_VOLATILE_P (target))
3471 || (REG_P (target)
3472 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3473 target = gen_reg_rtx (mode);
3475 emit_move_insn (target, op0);
3476 NO_DEFER_POP;
3478 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3479 NULL_RTX, NULL_RTX, op1, -1);
3481 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3482 target, target, 0);
3483 if (op0 != target)
3484 emit_move_insn (target, op0);
3485 emit_label (op1);
3486 OK_DEFER_POP;
3487 return target;
3490 /* Emit code to compute the one's complement absolute value of OP0
3491 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3492 (TARGET may be NULL_RTX.) The return value says where the result
3493 actually is to be found.
3495 MODE is the mode of the operand; the mode of the result is
3496 different but can be deduced from MODE. */
3499 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3501 rtx temp;
3503 /* Not applicable for floating point modes. */
3504 if (FLOAT_MODE_P (mode))
3505 return NULL_RTX;
3507 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3508 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3510 rtx last = get_last_insn ();
3512 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3513 if (temp != 0)
3514 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3515 OPTAB_WIDEN);
3517 if (temp != 0)
3518 return temp;
3520 delete_insns_since (last);
3523 /* If this machine has expensive jumps, we can do one's complement
3524 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3526 if (GET_MODE_CLASS (mode) == MODE_INT
3527 && BRANCH_COST (optimize_insn_for_speed_p (),
3528 false) >= 2)
3530 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3531 GET_MODE_PRECISION (mode) - 1,
3532 NULL_RTX, 0);
3534 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3535 OPTAB_LIB_WIDEN);
3537 if (temp != 0)
3538 return temp;
3541 return NULL_RTX;
3544 /* A subroutine of expand_copysign, perform the copysign operation using the
3545 abs and neg primitives advertised to exist on the target. The assumption
3546 is that we have a split register file, and leaving op0 in fp registers,
3547 and not playing with subregs so much, will help the register allocator. */
3549 static rtx
3550 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3551 int bitpos, bool op0_is_abs)
3553 enum machine_mode imode;
3554 enum insn_code icode;
3555 rtx sign, label;
3557 if (target == op1)
3558 target = NULL_RTX;
3560 /* Check if the back end provides an insn that handles signbit for the
3561 argument's mode. */
3562 icode = optab_handler (signbit_optab, mode);
3563 if (icode != CODE_FOR_nothing)
3565 imode = insn_data[(int) icode].operand[0].mode;
3566 sign = gen_reg_rtx (imode);
3567 emit_unop_insn (icode, sign, op1, UNKNOWN);
3569 else
3571 double_int mask;
3573 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3575 imode = int_mode_for_mode (mode);
3576 if (imode == BLKmode)
3577 return NULL_RTX;
3578 op1 = gen_lowpart (imode, op1);
3580 else
3582 int word;
3584 imode = word_mode;
3585 if (FLOAT_WORDS_BIG_ENDIAN)
3586 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3587 else
3588 word = bitpos / BITS_PER_WORD;
3589 bitpos = bitpos % BITS_PER_WORD;
3590 op1 = operand_subword_force (op1, word, mode);
3593 mask = double_int_zero.set_bit (bitpos);
3595 sign = expand_binop (imode, and_optab, op1,
3596 immed_double_int_const (mask, imode),
3597 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3600 if (!op0_is_abs)
3602 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3603 if (op0 == NULL)
3604 return NULL_RTX;
3605 target = op0;
3607 else
3609 if (target == NULL_RTX)
3610 target = copy_to_reg (op0);
3611 else
3612 emit_move_insn (target, op0);
3615 label = gen_label_rtx ();
3616 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3618 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3619 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3620 else
3621 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3622 if (op0 != target)
3623 emit_move_insn (target, op0);
3625 emit_label (label);
3627 return target;
3631 /* A subroutine of expand_copysign, perform the entire copysign operation
3632 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3633 is true if op0 is known to have its sign bit clear. */
3635 static rtx
3636 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3637 int bitpos, bool op0_is_abs)
3639 enum machine_mode imode;
3640 double_int mask;
3641 int word, nwords, i;
3642 rtx temp, insns;
3644 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3646 imode = int_mode_for_mode (mode);
3647 if (imode == BLKmode)
3648 return NULL_RTX;
3649 word = 0;
3650 nwords = 1;
3652 else
3654 imode = word_mode;
3656 if (FLOAT_WORDS_BIG_ENDIAN)
3657 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3658 else
3659 word = bitpos / BITS_PER_WORD;
3660 bitpos = bitpos % BITS_PER_WORD;
3661 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3664 mask = double_int_zero.set_bit (bitpos);
3666 if (target == 0
3667 || target == op0
3668 || target == op1
3669 || (nwords > 1 && !valid_multiword_target_p (target)))
3670 target = gen_reg_rtx (mode);
3672 if (nwords > 1)
3674 start_sequence ();
3676 for (i = 0; i < nwords; ++i)
3678 rtx targ_piece = operand_subword (target, i, 1, mode);
3679 rtx op0_piece = operand_subword_force (op0, i, mode);
3681 if (i == word)
3683 if (!op0_is_abs)
3684 op0_piece
3685 = expand_binop (imode, and_optab, op0_piece,
3686 immed_double_int_const (~mask, imode),
3687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3689 op1 = expand_binop (imode, and_optab,
3690 operand_subword_force (op1, i, mode),
3691 immed_double_int_const (mask, imode),
3692 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3694 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3695 targ_piece, 1, OPTAB_LIB_WIDEN);
3696 if (temp != targ_piece)
3697 emit_move_insn (targ_piece, temp);
3699 else
3700 emit_move_insn (targ_piece, op0_piece);
3703 insns = get_insns ();
3704 end_sequence ();
3706 emit_insn (insns);
3708 else
3710 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3711 immed_double_int_const (mask, imode),
3712 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3714 op0 = gen_lowpart (imode, op0);
3715 if (!op0_is_abs)
3716 op0 = expand_binop (imode, and_optab, op0,
3717 immed_double_int_const (~mask, imode),
3718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3720 temp = expand_binop (imode, ior_optab, op0, op1,
3721 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3722 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3725 return target;
3728 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3729 scalar floating point mode. Return NULL if we do not know how to
3730 expand the operation inline. */
3733 expand_copysign (rtx op0, rtx op1, rtx target)
3735 enum machine_mode mode = GET_MODE (op0);
3736 const struct real_format *fmt;
3737 bool op0_is_abs;
3738 rtx temp;
3740 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3741 gcc_assert (GET_MODE (op1) == mode);
3743 /* First try to do it with a special instruction. */
3744 temp = expand_binop (mode, copysign_optab, op0, op1,
3745 target, 0, OPTAB_DIRECT);
3746 if (temp)
3747 return temp;
3749 fmt = REAL_MODE_FORMAT (mode);
3750 if (fmt == NULL || !fmt->has_signed_zero)
3751 return NULL_RTX;
3753 op0_is_abs = false;
3754 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3756 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3757 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3758 op0_is_abs = true;
3761 if (fmt->signbit_ro >= 0
3762 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3763 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3764 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3766 temp = expand_copysign_absneg (mode, op0, op1, target,
3767 fmt->signbit_ro, op0_is_abs);
3768 if (temp)
3769 return temp;
3772 if (fmt->signbit_rw < 0)
3773 return NULL_RTX;
3774 return expand_copysign_bit (mode, op0, op1, target,
3775 fmt->signbit_rw, op0_is_abs);
3778 /* Generate an instruction whose insn-code is INSN_CODE,
3779 with two operands: an output TARGET and an input OP0.
3780 TARGET *must* be nonzero, and the output is always stored there.
3781 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3782 the value that is stored into TARGET.
3784 Return false if expansion failed. */
3786 bool
3787 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3788 enum rtx_code code)
3790 struct expand_operand ops[2];
3791 rtx pat;
3793 create_output_operand (&ops[0], target, GET_MODE (target));
3794 create_input_operand (&ops[1], op0, GET_MODE (op0));
3795 pat = maybe_gen_insn (icode, 2, ops);
3796 if (!pat)
3797 return false;
3799 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3800 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3802 emit_insn (pat);
3804 if (ops[0].value != target)
3805 emit_move_insn (target, ops[0].value);
3806 return true;
3808 /* Generate an instruction whose insn-code is INSN_CODE,
3809 with two operands: an output TARGET and an input OP0.
3810 TARGET *must* be nonzero, and the output is always stored there.
3811 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3812 the value that is stored into TARGET. */
3814 void
3815 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3817 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3818 gcc_assert (ok);
3821 struct no_conflict_data
3823 rtx target, first, insn;
3824 bool must_stay;
3827 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3828 the currently examined clobber / store has to stay in the list of
3829 insns that constitute the actual libcall block. */
3830 static void
3831 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3833 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3835 /* If this inns directly contributes to setting the target, it must stay. */
3836 if (reg_overlap_mentioned_p (p->target, dest))
3837 p->must_stay = true;
3838 /* If we haven't committed to keeping any other insns in the list yet,
3839 there is nothing more to check. */
3840 else if (p->insn == p->first)
3841 return;
3842 /* If this insn sets / clobbers a register that feeds one of the insns
3843 already in the list, this insn has to stay too. */
3844 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3845 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3846 || reg_used_between_p (dest, p->first, p->insn)
3847 /* Likewise if this insn depends on a register set by a previous
3848 insn in the list, or if it sets a result (presumably a hard
3849 register) that is set or clobbered by a previous insn.
3850 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3851 SET_DEST perform the former check on the address, and the latter
3852 check on the MEM. */
3853 || (GET_CODE (set) == SET
3854 && (modified_in_p (SET_SRC (set), p->first)
3855 || modified_in_p (SET_DEST (set), p->first)
3856 || modified_between_p (SET_SRC (set), p->first, p->insn)
3857 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3858 p->must_stay = true;
3862 /* Emit code to make a call to a constant function or a library call.
3864 INSNS is a list containing all insns emitted in the call.
3865 These insns leave the result in RESULT. Our block is to copy RESULT
3866 to TARGET, which is logically equivalent to EQUIV.
3868 We first emit any insns that set a pseudo on the assumption that these are
3869 loading constants into registers; doing so allows them to be safely cse'ed
3870 between blocks. Then we emit all the other insns in the block, followed by
3871 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3872 note with an operand of EQUIV. */
3874 static void
3875 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3876 bool equiv_may_trap)
3878 rtx final_dest = target;
3879 rtx next, last, insn;
3881 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3882 into a MEM later. Protect the libcall block from this change. */
3883 if (! REG_P (target) || REG_USERVAR_P (target))
3884 target = gen_reg_rtx (GET_MODE (target));
3886 /* If we're using non-call exceptions, a libcall corresponding to an
3887 operation that may trap may also trap. */
3888 /* ??? See the comment in front of make_reg_eh_region_note. */
3889 if (cfun->can_throw_non_call_exceptions
3890 && (equiv_may_trap || may_trap_p (equiv)))
3892 for (insn = insns; insn; insn = NEXT_INSN (insn))
3893 if (CALL_P (insn))
3895 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3896 if (note)
3898 int lp_nr = INTVAL (XEXP (note, 0));
3899 if (lp_nr == 0 || lp_nr == INT_MIN)
3900 remove_note (insn, note);
3904 else
3906 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3907 reg note to indicate that this call cannot throw or execute a nonlocal
3908 goto (unless there is already a REG_EH_REGION note, in which case
3909 we update it). */
3910 for (insn = insns; insn; insn = NEXT_INSN (insn))
3911 if (CALL_P (insn))
3912 make_reg_eh_region_note_nothrow_nononlocal (insn);
3915 /* First emit all insns that set pseudos. Remove them from the list as
3916 we go. Avoid insns that set pseudos which were referenced in previous
3917 insns. These can be generated by move_by_pieces, for example,
3918 to update an address. Similarly, avoid insns that reference things
3919 set in previous insns. */
3921 for (insn = insns; insn; insn = next)
3923 rtx set = single_set (insn);
3925 next = NEXT_INSN (insn);
3927 if (set != 0 && REG_P (SET_DEST (set))
3928 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3930 struct no_conflict_data data;
3932 data.target = const0_rtx;
3933 data.first = insns;
3934 data.insn = insn;
3935 data.must_stay = 0;
3936 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3937 if (! data.must_stay)
3939 if (PREV_INSN (insn))
3940 NEXT_INSN (PREV_INSN (insn)) = next;
3941 else
3942 insns = next;
3944 if (next)
3945 PREV_INSN (next) = PREV_INSN (insn);
3947 add_insn (insn);
3951 /* Some ports use a loop to copy large arguments onto the stack.
3952 Don't move anything outside such a loop. */
3953 if (LABEL_P (insn))
3954 break;
3957 /* Write the remaining insns followed by the final copy. */
3958 for (insn = insns; insn; insn = next)
3960 next = NEXT_INSN (insn);
3962 add_insn (insn);
3965 last = emit_move_insn (target, result);
3966 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3968 if (final_dest != target)
3969 emit_move_insn (final_dest, target);
3972 void
3973 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3975 emit_libcall_block_1 (insns, target, result, equiv, false);
3978 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3979 PURPOSE describes how this comparison will be used. CODE is the rtx
3980 comparison code we will be using.
3982 ??? Actually, CODE is slightly weaker than that. A target is still
3983 required to implement all of the normal bcc operations, but not
3984 required to implement all (or any) of the unordered bcc operations. */
3987 can_compare_p (enum rtx_code code, enum machine_mode mode,
3988 enum can_compare_purpose purpose)
3990 rtx test;
3991 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3994 enum insn_code icode;
3996 if (purpose == ccp_jump
3997 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3998 && insn_operand_matches (icode, 0, test))
3999 return 1;
4000 if (purpose == ccp_store_flag
4001 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4002 && insn_operand_matches (icode, 1, test))
4003 return 1;
4004 if (purpose == ccp_cmov
4005 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4006 return 1;
4008 mode = GET_MODE_WIDER_MODE (mode);
4009 PUT_MODE (test, mode);
4011 while (mode != VOIDmode);
4013 return 0;
4016 /* This function is called when we are going to emit a compare instruction that
4017 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4019 *PMODE is the mode of the inputs (in case they are const_int).
4020 *PUNSIGNEDP nonzero says that the operands are unsigned;
4021 this matters if they need to be widened (as given by METHODS).
4023 If they have mode BLKmode, then SIZE specifies the size of both operands.
4025 This function performs all the setup necessary so that the caller only has
4026 to emit a single comparison insn. This setup can involve doing a BLKmode
4027 comparison or emitting a library call to perform the comparison if no insn
4028 is available to handle it.
4029 The values which are passed in through pointers can be modified; the caller
4030 should perform the comparison on the modified values. Constant
4031 comparisons must have already been folded. */
4033 static void
4034 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4035 int unsignedp, enum optab_methods methods,
4036 rtx *ptest, enum machine_mode *pmode)
4038 enum machine_mode mode = *pmode;
4039 rtx libfunc, test;
4040 enum machine_mode cmp_mode;
4041 enum mode_class mclass;
4043 /* The other methods are not needed. */
4044 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4045 || methods == OPTAB_LIB_WIDEN);
4047 /* If we are optimizing, force expensive constants into a register. */
4048 if (CONSTANT_P (x) && optimize
4049 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4050 > COSTS_N_INSNS (1)))
4051 x = force_reg (mode, x);
4053 if (CONSTANT_P (y) && optimize
4054 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4055 > COSTS_N_INSNS (1)))
4056 y = force_reg (mode, y);
4058 #ifdef HAVE_cc0
4059 /* Make sure if we have a canonical comparison. The RTL
4060 documentation states that canonical comparisons are required only
4061 for targets which have cc0. */
4062 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4063 #endif
4065 /* Don't let both operands fail to indicate the mode. */
4066 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4067 x = force_reg (mode, x);
4068 if (mode == VOIDmode)
4069 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4071 /* Handle all BLKmode compares. */
4073 if (mode == BLKmode)
4075 enum machine_mode result_mode;
4076 enum insn_code cmp_code;
4077 tree length_type;
4078 rtx libfunc;
4079 rtx result;
4080 rtx opalign
4081 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4083 gcc_assert (size);
4085 /* Try to use a memory block compare insn - either cmpstr
4086 or cmpmem will do. */
4087 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4088 cmp_mode != VOIDmode;
4089 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4091 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4092 if (cmp_code == CODE_FOR_nothing)
4093 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4094 if (cmp_code == CODE_FOR_nothing)
4095 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4096 if (cmp_code == CODE_FOR_nothing)
4097 continue;
4099 /* Must make sure the size fits the insn's mode. */
4100 if ((CONST_INT_P (size)
4101 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4102 || (GET_MODE_BITSIZE (GET_MODE (size))
4103 > GET_MODE_BITSIZE (cmp_mode)))
4104 continue;
4106 result_mode = insn_data[cmp_code].operand[0].mode;
4107 result = gen_reg_rtx (result_mode);
4108 size = convert_to_mode (cmp_mode, size, 1);
4109 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4111 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4112 *pmode = result_mode;
4113 return;
4116 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4117 goto fail;
4119 /* Otherwise call a library function, memcmp. */
4120 libfunc = memcmp_libfunc;
4121 length_type = sizetype;
4122 result_mode = TYPE_MODE (integer_type_node);
4123 cmp_mode = TYPE_MODE (length_type);
4124 size = convert_to_mode (TYPE_MODE (length_type), size,
4125 TYPE_UNSIGNED (length_type));
4127 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4128 result_mode, 3,
4129 XEXP (x, 0), Pmode,
4130 XEXP (y, 0), Pmode,
4131 size, cmp_mode);
4132 x = result;
4133 y = const0_rtx;
4134 mode = result_mode;
4135 methods = OPTAB_LIB_WIDEN;
4136 unsignedp = false;
4139 /* Don't allow operands to the compare to trap, as that can put the
4140 compare and branch in different basic blocks. */
4141 if (cfun->can_throw_non_call_exceptions)
4143 if (may_trap_p (x))
4144 x = force_reg (mode, x);
4145 if (may_trap_p (y))
4146 y = force_reg (mode, y);
4149 if (GET_MODE_CLASS (mode) == MODE_CC)
4151 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4152 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4153 return;
4156 mclass = GET_MODE_CLASS (mode);
4157 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4158 cmp_mode = mode;
4161 enum insn_code icode;
4162 icode = optab_handler (cbranch_optab, cmp_mode);
4163 if (icode != CODE_FOR_nothing
4164 && insn_operand_matches (icode, 0, test))
4166 rtx last = get_last_insn ();
4167 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4168 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4169 if (op0 && op1
4170 && insn_operand_matches (icode, 1, op0)
4171 && insn_operand_matches (icode, 2, op1))
4173 XEXP (test, 0) = op0;
4174 XEXP (test, 1) = op1;
4175 *ptest = test;
4176 *pmode = cmp_mode;
4177 return;
4179 delete_insns_since (last);
4182 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4183 break;
4184 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4186 while (cmp_mode != VOIDmode);
4188 if (methods != OPTAB_LIB_WIDEN)
4189 goto fail;
4191 if (!SCALAR_FLOAT_MODE_P (mode))
4193 rtx result;
4194 enum machine_mode ret_mode;
4196 /* Handle a libcall just for the mode we are using. */
4197 libfunc = optab_libfunc (cmp_optab, mode);
4198 gcc_assert (libfunc);
4200 /* If we want unsigned, and this mode has a distinct unsigned
4201 comparison routine, use that. */
4202 if (unsignedp)
4204 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4205 if (ulibfunc)
4206 libfunc = ulibfunc;
4209 ret_mode = targetm.libgcc_cmp_return_mode ();
4210 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4211 ret_mode, 2, x, mode, y, mode);
4213 /* There are two kinds of comparison routines. Biased routines
4214 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4215 of gcc expect that the comparison operation is equivalent
4216 to the modified comparison. For signed comparisons compare the
4217 result against 1 in the biased case, and zero in the unbiased
4218 case. For unsigned comparisons always compare against 1 after
4219 biasing the unbiased result by adding 1. This gives us a way to
4220 represent LTU.
4221 The comparisons in the fixed-point helper library are always
4222 biased. */
4223 x = result;
4224 y = const1_rtx;
4226 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4228 if (unsignedp)
4229 x = plus_constant (ret_mode, result, 1);
4230 else
4231 y = const0_rtx;
4234 *pmode = word_mode;
4235 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4236 ptest, pmode);
4238 else
4239 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4241 return;
4243 fail:
4244 *ptest = NULL_RTX;
4247 /* Before emitting an insn with code ICODE, make sure that X, which is going
4248 to be used for operand OPNUM of the insn, is converted from mode MODE to
4249 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4250 that it is accepted by the operand predicate. Return the new value. */
4253 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4254 enum machine_mode wider_mode, int unsignedp)
4256 if (mode != wider_mode)
4257 x = convert_modes (wider_mode, mode, x, unsignedp);
4259 if (!insn_operand_matches (icode, opnum, x))
4261 if (reload_completed)
4262 return NULL_RTX;
4263 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4266 return x;
4269 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4270 we can do the branch. */
4272 static void
4273 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4275 enum machine_mode optab_mode;
4276 enum mode_class mclass;
4277 enum insn_code icode;
4278 rtx insn;
4280 mclass = GET_MODE_CLASS (mode);
4281 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4282 icode = optab_handler (cbranch_optab, optab_mode);
4284 gcc_assert (icode != CODE_FOR_nothing);
4285 gcc_assert (insn_operand_matches (icode, 0, test));
4286 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4287 XEXP (test, 1), label));
4288 if (prob != -1
4289 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4290 && insn
4291 && JUMP_P (insn)
4292 && any_condjump_p (insn)
4293 && !find_reg_note (insn, REG_BR_PROB, 0))
4294 add_int_reg_note (insn, REG_BR_PROB, prob);
4297 /* Generate code to compare X with Y so that the condition codes are
4298 set and to jump to LABEL if the condition is true. If X is a
4299 constant and Y is not a constant, then the comparison is swapped to
4300 ensure that the comparison RTL has the canonical form.
4302 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4303 need to be widened. UNSIGNEDP is also used to select the proper
4304 branch condition code.
4306 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4308 MODE is the mode of the inputs (in case they are const_int).
4310 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4311 It will be potentially converted into an unsigned variant based on
4312 UNSIGNEDP to select a proper jump instruction.
4314 PROB is the probability of jumping to LABEL. */
4316 void
4317 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4318 enum machine_mode mode, int unsignedp, rtx label,
4319 int prob)
4321 rtx op0 = x, op1 = y;
4322 rtx test;
4324 /* Swap operands and condition to ensure canonical RTL. */
4325 if (swap_commutative_operands_p (x, y)
4326 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4328 op0 = y, op1 = x;
4329 comparison = swap_condition (comparison);
4332 /* If OP0 is still a constant, then both X and Y must be constants
4333 or the opposite comparison is not supported. Force X into a register
4334 to create canonical RTL. */
4335 if (CONSTANT_P (op0))
4336 op0 = force_reg (mode, op0);
4338 if (unsignedp)
4339 comparison = unsigned_condition (comparison);
4341 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4342 &test, &mode);
4343 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4347 /* Emit a library call comparison between floating point X and Y.
4348 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4350 static void
4351 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4352 rtx *ptest, enum machine_mode *pmode)
4354 enum rtx_code swapped = swap_condition (comparison);
4355 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4356 enum machine_mode orig_mode = GET_MODE (x);
4357 enum machine_mode mode, cmp_mode;
4358 rtx true_rtx, false_rtx;
4359 rtx value, target, insns, equiv;
4360 rtx libfunc = 0;
4361 bool reversed_p = false;
4362 cmp_mode = targetm.libgcc_cmp_return_mode ();
4364 for (mode = orig_mode;
4365 mode != VOIDmode;
4366 mode = GET_MODE_WIDER_MODE (mode))
4368 if (code_to_optab (comparison)
4369 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4370 break;
4372 if (code_to_optab (swapped)
4373 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4375 rtx tmp;
4376 tmp = x; x = y; y = tmp;
4377 comparison = swapped;
4378 break;
4381 if (code_to_optab (reversed)
4382 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4384 comparison = reversed;
4385 reversed_p = true;
4386 break;
4390 gcc_assert (mode != VOIDmode);
4392 if (mode != orig_mode)
4394 x = convert_to_mode (mode, x, 0);
4395 y = convert_to_mode (mode, y, 0);
4398 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4399 the RTL. The allows the RTL optimizers to delete the libcall if the
4400 condition can be determined at compile-time. */
4401 if (comparison == UNORDERED
4402 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4404 true_rtx = const_true_rtx;
4405 false_rtx = const0_rtx;
4407 else
4409 switch (comparison)
4411 case EQ:
4412 true_rtx = const0_rtx;
4413 false_rtx = const_true_rtx;
4414 break;
4416 case NE:
4417 true_rtx = const_true_rtx;
4418 false_rtx = const0_rtx;
4419 break;
4421 case GT:
4422 true_rtx = const1_rtx;
4423 false_rtx = const0_rtx;
4424 break;
4426 case GE:
4427 true_rtx = const0_rtx;
4428 false_rtx = constm1_rtx;
4429 break;
4431 case LT:
4432 true_rtx = constm1_rtx;
4433 false_rtx = const0_rtx;
4434 break;
4436 case LE:
4437 true_rtx = const0_rtx;
4438 false_rtx = const1_rtx;
4439 break;
4441 default:
4442 gcc_unreachable ();
4446 if (comparison == UNORDERED)
4448 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4449 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4450 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4451 temp, const_true_rtx, equiv);
4453 else
4455 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4456 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4457 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4458 equiv, true_rtx, false_rtx);
4461 start_sequence ();
4462 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4463 cmp_mode, 2, x, mode, y, mode);
4464 insns = get_insns ();
4465 end_sequence ();
4467 target = gen_reg_rtx (cmp_mode);
4468 emit_libcall_block (insns, target, value, equiv);
4470 if (comparison == UNORDERED
4471 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4472 || reversed_p)
4473 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4474 else
4475 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4477 *pmode = cmp_mode;
4480 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4482 void
4483 emit_indirect_jump (rtx loc)
4485 struct expand_operand ops[1];
4487 create_address_operand (&ops[0], loc);
4488 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4489 emit_barrier ();
4492 #ifdef HAVE_conditional_move
4494 /* Emit a conditional move instruction if the machine supports one for that
4495 condition and machine mode.
4497 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4498 the mode to use should they be constants. If it is VOIDmode, they cannot
4499 both be constants.
4501 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4502 should be stored there. MODE is the mode to use should they be constants.
4503 If it is VOIDmode, they cannot both be constants.
4505 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4506 is not supported. */
4509 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4510 enum machine_mode cmode, rtx op2, rtx op3,
4511 enum machine_mode mode, int unsignedp)
4513 rtx tem, comparison, last;
4514 enum insn_code icode;
4515 enum rtx_code reversed;
4517 /* If one operand is constant, make it the second one. Only do this
4518 if the other operand is not constant as well. */
4520 if (swap_commutative_operands_p (op0, op1))
4522 tem = op0;
4523 op0 = op1;
4524 op1 = tem;
4525 code = swap_condition (code);
4528 /* get_condition will prefer to generate LT and GT even if the old
4529 comparison was against zero, so undo that canonicalization here since
4530 comparisons against zero are cheaper. */
4531 if (code == LT && op1 == const1_rtx)
4532 code = LE, op1 = const0_rtx;
4533 else if (code == GT && op1 == constm1_rtx)
4534 code = GE, op1 = const0_rtx;
4536 if (cmode == VOIDmode)
4537 cmode = GET_MODE (op0);
4539 if (swap_commutative_operands_p (op2, op3)
4540 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4541 != UNKNOWN))
4543 tem = op2;
4544 op2 = op3;
4545 op3 = tem;
4546 code = reversed;
4549 if (mode == VOIDmode)
4550 mode = GET_MODE (op2);
4552 icode = direct_optab_handler (movcc_optab, mode);
4554 if (icode == CODE_FOR_nothing)
4555 return 0;
4557 if (!target)
4558 target = gen_reg_rtx (mode);
4560 code = unsignedp ? unsigned_condition (code) : code;
4561 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4563 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4564 return NULL and let the caller figure out how best to deal with this
4565 situation. */
4566 if (!COMPARISON_P (comparison))
4567 return NULL_RTX;
4569 saved_pending_stack_adjust save;
4570 save_pending_stack_adjust (&save);
4571 last = get_last_insn ();
4572 do_pending_stack_adjust ();
4573 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4574 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4575 &comparison, &cmode);
4576 if (comparison)
4578 struct expand_operand ops[4];
4580 create_output_operand (&ops[0], target, mode);
4581 create_fixed_operand (&ops[1], comparison);
4582 create_input_operand (&ops[2], op2, mode);
4583 create_input_operand (&ops[3], op3, mode);
4584 if (maybe_expand_insn (icode, 4, ops))
4586 if (ops[0].value != target)
4587 convert_move (target, ops[0].value, false);
4588 return target;
4591 delete_insns_since (last);
4592 restore_pending_stack_adjust (&save);
4593 return NULL_RTX;
4596 /* Return nonzero if a conditional move of mode MODE is supported.
4598 This function is for combine so it can tell whether an insn that looks
4599 like a conditional move is actually supported by the hardware. If we
4600 guess wrong we lose a bit on optimization, but that's it. */
4601 /* ??? sparc64 supports conditionally moving integers values based on fp
4602 comparisons, and vice versa. How do we handle them? */
4605 can_conditionally_move_p (enum machine_mode mode)
4607 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4608 return 1;
4610 return 0;
4613 #endif /* HAVE_conditional_move */
4615 /* Emit a conditional addition instruction if the machine supports one for that
4616 condition and machine mode.
4618 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4619 the mode to use should they be constants. If it is VOIDmode, they cannot
4620 both be constants.
4622 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4623 should be stored there. MODE is the mode to use should they be constants.
4624 If it is VOIDmode, they cannot both be constants.
4626 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4627 is not supported. */
4630 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4631 enum machine_mode cmode, rtx op2, rtx op3,
4632 enum machine_mode mode, int unsignedp)
4634 rtx tem, comparison, last;
4635 enum insn_code icode;
4637 /* If one operand is constant, make it the second one. Only do this
4638 if the other operand is not constant as well. */
4640 if (swap_commutative_operands_p (op0, op1))
4642 tem = op0;
4643 op0 = op1;
4644 op1 = tem;
4645 code = swap_condition (code);
4648 /* get_condition will prefer to generate LT and GT even if the old
4649 comparison was against zero, so undo that canonicalization here since
4650 comparisons against zero are cheaper. */
4651 if (code == LT && op1 == const1_rtx)
4652 code = LE, op1 = const0_rtx;
4653 else if (code == GT && op1 == constm1_rtx)
4654 code = GE, op1 = const0_rtx;
4656 if (cmode == VOIDmode)
4657 cmode = GET_MODE (op0);
4659 if (mode == VOIDmode)
4660 mode = GET_MODE (op2);
4662 icode = optab_handler (addcc_optab, mode);
4664 if (icode == CODE_FOR_nothing)
4665 return 0;
4667 if (!target)
4668 target = gen_reg_rtx (mode);
4670 code = unsignedp ? unsigned_condition (code) : code;
4671 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4673 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4674 return NULL and let the caller figure out how best to deal with this
4675 situation. */
4676 if (!COMPARISON_P (comparison))
4677 return NULL_RTX;
4679 do_pending_stack_adjust ();
4680 last = get_last_insn ();
4681 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4682 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4683 &comparison, &cmode);
4684 if (comparison)
4686 struct expand_operand ops[4];
4688 create_output_operand (&ops[0], target, mode);
4689 create_fixed_operand (&ops[1], comparison);
4690 create_input_operand (&ops[2], op2, mode);
4691 create_input_operand (&ops[3], op3, mode);
4692 if (maybe_expand_insn (icode, 4, ops))
4694 if (ops[0].value != target)
4695 convert_move (target, ops[0].value, false);
4696 return target;
4699 delete_insns_since (last);
4700 return NULL_RTX;
4703 /* These functions attempt to generate an insn body, rather than
4704 emitting the insn, but if the gen function already emits them, we
4705 make no attempt to turn them back into naked patterns. */
4707 /* Generate and return an insn body to add Y to X. */
4710 gen_add2_insn (rtx x, rtx y)
4712 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4714 gcc_assert (insn_operand_matches (icode, 0, x));
4715 gcc_assert (insn_operand_matches (icode, 1, x));
4716 gcc_assert (insn_operand_matches (icode, 2, y));
4718 return GEN_FCN (icode) (x, x, y);
4721 /* Generate and return an insn body to add r1 and c,
4722 storing the result in r0. */
4725 gen_add3_insn (rtx r0, rtx r1, rtx c)
4727 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4729 if (icode == CODE_FOR_nothing
4730 || !insn_operand_matches (icode, 0, r0)
4731 || !insn_operand_matches (icode, 1, r1)
4732 || !insn_operand_matches (icode, 2, c))
4733 return NULL_RTX;
4735 return GEN_FCN (icode) (r0, r1, c);
4739 have_add2_insn (rtx x, rtx y)
4741 enum insn_code icode;
4743 gcc_assert (GET_MODE (x) != VOIDmode);
4745 icode = optab_handler (add_optab, GET_MODE (x));
4747 if (icode == CODE_FOR_nothing)
4748 return 0;
4750 if (!insn_operand_matches (icode, 0, x)
4751 || !insn_operand_matches (icode, 1, x)
4752 || !insn_operand_matches (icode, 2, y))
4753 return 0;
4755 return 1;
4758 /* Generate and return an insn body to subtract Y from X. */
4761 gen_sub2_insn (rtx x, rtx y)
4763 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4765 gcc_assert (insn_operand_matches (icode, 0, x));
4766 gcc_assert (insn_operand_matches (icode, 1, x));
4767 gcc_assert (insn_operand_matches (icode, 2, y));
4769 return GEN_FCN (icode) (x, x, y);
4772 /* Generate and return an insn body to subtract r1 and c,
4773 storing the result in r0. */
4776 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4778 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4780 if (icode == CODE_FOR_nothing
4781 || !insn_operand_matches (icode, 0, r0)
4782 || !insn_operand_matches (icode, 1, r1)
4783 || !insn_operand_matches (icode, 2, c))
4784 return NULL_RTX;
4786 return GEN_FCN (icode) (r0, r1, c);
4790 have_sub2_insn (rtx x, rtx y)
4792 enum insn_code icode;
4794 gcc_assert (GET_MODE (x) != VOIDmode);
4796 icode = optab_handler (sub_optab, GET_MODE (x));
4798 if (icode == CODE_FOR_nothing)
4799 return 0;
4801 if (!insn_operand_matches (icode, 0, x)
4802 || !insn_operand_matches (icode, 1, x)
4803 || !insn_operand_matches (icode, 2, y))
4804 return 0;
4806 return 1;
4809 /* Generate the body of an instruction to copy Y into X.
4810 It may be a list of insns, if one insn isn't enough. */
4813 gen_move_insn (rtx x, rtx y)
4815 rtx seq;
4817 start_sequence ();
4818 emit_move_insn_1 (x, y);
4819 seq = get_insns ();
4820 end_sequence ();
4821 return seq;
4824 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4825 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4826 no such operation exists, CODE_FOR_nothing will be returned. */
4828 enum insn_code
4829 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4830 int unsignedp)
4832 convert_optab tab;
4833 #ifdef HAVE_ptr_extend
4834 if (unsignedp < 0)
4835 return CODE_FOR_ptr_extend;
4836 #endif
4838 tab = unsignedp ? zext_optab : sext_optab;
4839 return convert_optab_handler (tab, to_mode, from_mode);
4842 /* Generate the body of an insn to extend Y (with mode MFROM)
4843 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4846 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4847 enum machine_mode mfrom, int unsignedp)
4849 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4850 return GEN_FCN (icode) (x, y);
4853 /* can_fix_p and can_float_p say whether the target machine
4854 can directly convert a given fixed point type to
4855 a given floating point type, or vice versa.
4856 The returned value is the CODE_FOR_... value to use,
4857 or CODE_FOR_nothing if these modes cannot be directly converted.
4859 *TRUNCP_PTR is set to 1 if it is necessary to output
4860 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4862 static enum insn_code
4863 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4864 int unsignedp, int *truncp_ptr)
4866 convert_optab tab;
4867 enum insn_code icode;
4869 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4870 icode = convert_optab_handler (tab, fixmode, fltmode);
4871 if (icode != CODE_FOR_nothing)
4873 *truncp_ptr = 0;
4874 return icode;
4877 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4878 for this to work. We need to rework the fix* and ftrunc* patterns
4879 and documentation. */
4880 tab = unsignedp ? ufix_optab : sfix_optab;
4881 icode = convert_optab_handler (tab, fixmode, fltmode);
4882 if (icode != CODE_FOR_nothing
4883 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4885 *truncp_ptr = 1;
4886 return icode;
4889 *truncp_ptr = 0;
4890 return CODE_FOR_nothing;
4893 enum insn_code
4894 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4895 int unsignedp)
4897 convert_optab tab;
4899 tab = unsignedp ? ufloat_optab : sfloat_optab;
4900 return convert_optab_handler (tab, fltmode, fixmode);
4903 /* Function supportable_convert_operation
4905 Check whether an operation represented by the code CODE is a
4906 convert operation that is supported by the target platform in
4907 vector form (i.e., when operating on arguments of type VECTYPE_IN
4908 producing a result of type VECTYPE_OUT).
4910 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4911 This function checks if these operations are supported
4912 by the target platform either directly (via vector tree-codes), or via
4913 target builtins.
4915 Output:
4916 - CODE1 is code of vector operation to be used when
4917 vectorizing the operation, if available.
4918 - DECL is decl of target builtin functions to be used
4919 when vectorizing the operation, if available. In this case,
4920 CODE1 is CALL_EXPR. */
4922 bool
4923 supportable_convert_operation (enum tree_code code,
4924 tree vectype_out, tree vectype_in,
4925 tree *decl, enum tree_code *code1)
4927 enum machine_mode m1,m2;
4928 int truncp;
4930 m1 = TYPE_MODE (vectype_out);
4931 m2 = TYPE_MODE (vectype_in);
4933 /* First check if we can done conversion directly. */
4934 if ((code == FIX_TRUNC_EXPR
4935 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4936 != CODE_FOR_nothing)
4937 || (code == FLOAT_EXPR
4938 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4939 != CODE_FOR_nothing))
4941 *code1 = code;
4942 return true;
4945 /* Now check for builtin. */
4946 if (targetm.vectorize.builtin_conversion
4947 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4949 *code1 = CALL_EXPR;
4950 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4951 return true;
4953 return false;
4957 /* Generate code to convert FROM to floating point
4958 and store in TO. FROM must be fixed point and not VOIDmode.
4959 UNSIGNEDP nonzero means regard FROM as unsigned.
4960 Normally this is done by correcting the final value
4961 if it is negative. */
4963 void
4964 expand_float (rtx to, rtx from, int unsignedp)
4966 enum insn_code icode;
4967 rtx target = to;
4968 enum machine_mode fmode, imode;
4969 bool can_do_signed = false;
4971 /* Crash now, because we won't be able to decide which mode to use. */
4972 gcc_assert (GET_MODE (from) != VOIDmode);
4974 /* Look for an insn to do the conversion. Do it in the specified
4975 modes if possible; otherwise convert either input, output or both to
4976 wider mode. If the integer mode is wider than the mode of FROM,
4977 we can do the conversion signed even if the input is unsigned. */
4979 for (fmode = GET_MODE (to); fmode != VOIDmode;
4980 fmode = GET_MODE_WIDER_MODE (fmode))
4981 for (imode = GET_MODE (from); imode != VOIDmode;
4982 imode = GET_MODE_WIDER_MODE (imode))
4984 int doing_unsigned = unsignedp;
4986 if (fmode != GET_MODE (to)
4987 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4988 continue;
4990 icode = can_float_p (fmode, imode, unsignedp);
4991 if (icode == CODE_FOR_nothing && unsignedp)
4993 enum insn_code scode = can_float_p (fmode, imode, 0);
4994 if (scode != CODE_FOR_nothing)
4995 can_do_signed = true;
4996 if (imode != GET_MODE (from))
4997 icode = scode, doing_unsigned = 0;
5000 if (icode != CODE_FOR_nothing)
5002 if (imode != GET_MODE (from))
5003 from = convert_to_mode (imode, from, unsignedp);
5005 if (fmode != GET_MODE (to))
5006 target = gen_reg_rtx (fmode);
5008 emit_unop_insn (icode, target, from,
5009 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5011 if (target != to)
5012 convert_move (to, target, 0);
5013 return;
5017 /* Unsigned integer, and no way to convert directly. Convert as signed,
5018 then unconditionally adjust the result. */
5019 if (unsignedp && can_do_signed)
5021 rtx label = gen_label_rtx ();
5022 rtx temp;
5023 REAL_VALUE_TYPE offset;
5025 /* Look for a usable floating mode FMODE wider than the source and at
5026 least as wide as the target. Using FMODE will avoid rounding woes
5027 with unsigned values greater than the signed maximum value. */
5029 for (fmode = GET_MODE (to); fmode != VOIDmode;
5030 fmode = GET_MODE_WIDER_MODE (fmode))
5031 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5032 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5033 break;
5035 if (fmode == VOIDmode)
5037 /* There is no such mode. Pretend the target is wide enough. */
5038 fmode = GET_MODE (to);
5040 /* Avoid double-rounding when TO is narrower than FROM. */
5041 if ((significand_size (fmode) + 1)
5042 < GET_MODE_PRECISION (GET_MODE (from)))
5044 rtx temp1;
5045 rtx neglabel = gen_label_rtx ();
5047 /* Don't use TARGET if it isn't a register, is a hard register,
5048 or is the wrong mode. */
5049 if (!REG_P (target)
5050 || REGNO (target) < FIRST_PSEUDO_REGISTER
5051 || GET_MODE (target) != fmode)
5052 target = gen_reg_rtx (fmode);
5054 imode = GET_MODE (from);
5055 do_pending_stack_adjust ();
5057 /* Test whether the sign bit is set. */
5058 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5059 0, neglabel);
5061 /* The sign bit is not set. Convert as signed. */
5062 expand_float (target, from, 0);
5063 emit_jump_insn (gen_jump (label));
5064 emit_barrier ();
5066 /* The sign bit is set.
5067 Convert to a usable (positive signed) value by shifting right
5068 one bit, while remembering if a nonzero bit was shifted
5069 out; i.e., compute (from & 1) | (from >> 1). */
5071 emit_label (neglabel);
5072 temp = expand_binop (imode, and_optab, from, const1_rtx,
5073 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5074 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5075 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5076 OPTAB_LIB_WIDEN);
5077 expand_float (target, temp, 0);
5079 /* Multiply by 2 to undo the shift above. */
5080 temp = expand_binop (fmode, add_optab, target, target,
5081 target, 0, OPTAB_LIB_WIDEN);
5082 if (temp != target)
5083 emit_move_insn (target, temp);
5085 do_pending_stack_adjust ();
5086 emit_label (label);
5087 goto done;
5091 /* If we are about to do some arithmetic to correct for an
5092 unsigned operand, do it in a pseudo-register. */
5094 if (GET_MODE (to) != fmode
5095 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5096 target = gen_reg_rtx (fmode);
5098 /* Convert as signed integer to floating. */
5099 expand_float (target, from, 0);
5101 /* If FROM is negative (and therefore TO is negative),
5102 correct its value by 2**bitwidth. */
5104 do_pending_stack_adjust ();
5105 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5106 0, label);
5109 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5110 temp = expand_binop (fmode, add_optab, target,
5111 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5112 target, 0, OPTAB_LIB_WIDEN);
5113 if (temp != target)
5114 emit_move_insn (target, temp);
5116 do_pending_stack_adjust ();
5117 emit_label (label);
5118 goto done;
5121 /* No hardware instruction available; call a library routine. */
5123 rtx libfunc;
5124 rtx insns;
5125 rtx value;
5126 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5128 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5129 from = convert_to_mode (SImode, from, unsignedp);
5131 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5132 gcc_assert (libfunc);
5134 start_sequence ();
5136 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5137 GET_MODE (to), 1, from,
5138 GET_MODE (from));
5139 insns = get_insns ();
5140 end_sequence ();
5142 emit_libcall_block (insns, target, value,
5143 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5144 GET_MODE (to), from));
5147 done:
5149 /* Copy result to requested destination
5150 if we have been computing in a temp location. */
5152 if (target != to)
5154 if (GET_MODE (target) == GET_MODE (to))
5155 emit_move_insn (to, target);
5156 else
5157 convert_move (to, target, 0);
5161 /* Generate code to convert FROM to fixed point and store in TO. FROM
5162 must be floating point. */
5164 void
5165 expand_fix (rtx to, rtx from, int unsignedp)
5167 enum insn_code icode;
5168 rtx target = to;
5169 enum machine_mode fmode, imode;
5170 int must_trunc = 0;
5172 /* We first try to find a pair of modes, one real and one integer, at
5173 least as wide as FROM and TO, respectively, in which we can open-code
5174 this conversion. If the integer mode is wider than the mode of TO,
5175 we can do the conversion either signed or unsigned. */
5177 for (fmode = GET_MODE (from); fmode != VOIDmode;
5178 fmode = GET_MODE_WIDER_MODE (fmode))
5179 for (imode = GET_MODE (to); imode != VOIDmode;
5180 imode = GET_MODE_WIDER_MODE (imode))
5182 int doing_unsigned = unsignedp;
5184 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5185 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5186 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5188 if (icode != CODE_FOR_nothing)
5190 rtx last = get_last_insn ();
5191 if (fmode != GET_MODE (from))
5192 from = convert_to_mode (fmode, from, 0);
5194 if (must_trunc)
5196 rtx temp = gen_reg_rtx (GET_MODE (from));
5197 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5198 temp, 0);
5201 if (imode != GET_MODE (to))
5202 target = gen_reg_rtx (imode);
5204 if (maybe_emit_unop_insn (icode, target, from,
5205 doing_unsigned ? UNSIGNED_FIX : FIX))
5207 if (target != to)
5208 convert_move (to, target, unsignedp);
5209 return;
5211 delete_insns_since (last);
5215 /* For an unsigned conversion, there is one more way to do it.
5216 If we have a signed conversion, we generate code that compares
5217 the real value to the largest representable positive number. If if
5218 is smaller, the conversion is done normally. Otherwise, subtract
5219 one plus the highest signed number, convert, and add it back.
5221 We only need to check all real modes, since we know we didn't find
5222 anything with a wider integer mode.
5224 This code used to extend FP value into mode wider than the destination.
5225 This is needed for decimal float modes which cannot accurately
5226 represent one plus the highest signed number of the same size, but
5227 not for binary modes. Consider, for instance conversion from SFmode
5228 into DImode.
5230 The hot path through the code is dealing with inputs smaller than 2^63
5231 and doing just the conversion, so there is no bits to lose.
5233 In the other path we know the value is positive in the range 2^63..2^64-1
5234 inclusive. (as for other input overflow happens and result is undefined)
5235 So we know that the most important bit set in mantissa corresponds to
5236 2^63. The subtraction of 2^63 should not generate any rounding as it
5237 simply clears out that bit. The rest is trivial. */
5239 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5240 for (fmode = GET_MODE (from); fmode != VOIDmode;
5241 fmode = GET_MODE_WIDER_MODE (fmode))
5242 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5243 && (!DECIMAL_FLOAT_MODE_P (fmode)
5244 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5246 int bitsize;
5247 REAL_VALUE_TYPE offset;
5248 rtx limit, lab1, lab2, insn;
5250 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5251 real_2expN (&offset, bitsize - 1, fmode);
5252 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5253 lab1 = gen_label_rtx ();
5254 lab2 = gen_label_rtx ();
5256 if (fmode != GET_MODE (from))
5257 from = convert_to_mode (fmode, from, 0);
5259 /* See if we need to do the subtraction. */
5260 do_pending_stack_adjust ();
5261 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5262 0, lab1);
5264 /* If not, do the signed "fix" and branch around fixup code. */
5265 expand_fix (to, from, 0);
5266 emit_jump_insn (gen_jump (lab2));
5267 emit_barrier ();
5269 /* Otherwise, subtract 2**(N-1), convert to signed number,
5270 then add 2**(N-1). Do the addition using XOR since this
5271 will often generate better code. */
5272 emit_label (lab1);
5273 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5274 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5275 expand_fix (to, target, 0);
5276 target = expand_binop (GET_MODE (to), xor_optab, to,
5277 gen_int_mode
5278 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5279 GET_MODE (to)),
5280 to, 1, OPTAB_LIB_WIDEN);
5282 if (target != to)
5283 emit_move_insn (to, target);
5285 emit_label (lab2);
5287 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5289 /* Make a place for a REG_NOTE and add it. */
5290 insn = emit_move_insn (to, to);
5291 set_dst_reg_note (insn, REG_EQUAL,
5292 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5293 copy_rtx (from)),
5294 to);
5297 return;
5300 /* We can't do it with an insn, so use a library call. But first ensure
5301 that the mode of TO is at least as wide as SImode, since those are the
5302 only library calls we know about. */
5304 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5306 target = gen_reg_rtx (SImode);
5308 expand_fix (target, from, unsignedp);
5310 else
5312 rtx insns;
5313 rtx value;
5314 rtx libfunc;
5316 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5317 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5318 gcc_assert (libfunc);
5320 start_sequence ();
5322 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5323 GET_MODE (to), 1, from,
5324 GET_MODE (from));
5325 insns = get_insns ();
5326 end_sequence ();
5328 emit_libcall_block (insns, target, value,
5329 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5330 GET_MODE (to), from));
5333 if (target != to)
5335 if (GET_MODE (to) == GET_MODE (target))
5336 emit_move_insn (to, target);
5337 else
5338 convert_move (to, target, 0);
5342 /* Generate code to convert FROM or TO a fixed-point.
5343 If UINTP is true, either TO or FROM is an unsigned integer.
5344 If SATP is true, we need to saturate the result. */
5346 void
5347 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5349 enum machine_mode to_mode = GET_MODE (to);
5350 enum machine_mode from_mode = GET_MODE (from);
5351 convert_optab tab;
5352 enum rtx_code this_code;
5353 enum insn_code code;
5354 rtx insns, value;
5355 rtx libfunc;
5357 if (to_mode == from_mode)
5359 emit_move_insn (to, from);
5360 return;
5363 if (uintp)
5365 tab = satp ? satfractuns_optab : fractuns_optab;
5366 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5368 else
5370 tab = satp ? satfract_optab : fract_optab;
5371 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5373 code = convert_optab_handler (tab, to_mode, from_mode);
5374 if (code != CODE_FOR_nothing)
5376 emit_unop_insn (code, to, from, this_code);
5377 return;
5380 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5381 gcc_assert (libfunc);
5383 start_sequence ();
5384 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5385 1, from, from_mode);
5386 insns = get_insns ();
5387 end_sequence ();
5389 emit_libcall_block (insns, to, value,
5390 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5393 /* Generate code to convert FROM to fixed point and store in TO. FROM
5394 must be floating point, TO must be signed. Use the conversion optab
5395 TAB to do the conversion. */
5397 bool
5398 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5400 enum insn_code icode;
5401 rtx target = to;
5402 enum machine_mode fmode, imode;
5404 /* We first try to find a pair of modes, one real and one integer, at
5405 least as wide as FROM and TO, respectively, in which we can open-code
5406 this conversion. If the integer mode is wider than the mode of TO,
5407 we can do the conversion either signed or unsigned. */
5409 for (fmode = GET_MODE (from); fmode != VOIDmode;
5410 fmode = GET_MODE_WIDER_MODE (fmode))
5411 for (imode = GET_MODE (to); imode != VOIDmode;
5412 imode = GET_MODE_WIDER_MODE (imode))
5414 icode = convert_optab_handler (tab, imode, fmode);
5415 if (icode != CODE_FOR_nothing)
5417 rtx last = get_last_insn ();
5418 if (fmode != GET_MODE (from))
5419 from = convert_to_mode (fmode, from, 0);
5421 if (imode != GET_MODE (to))
5422 target = gen_reg_rtx (imode);
5424 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5426 delete_insns_since (last);
5427 continue;
5429 if (target != to)
5430 convert_move (to, target, 0);
5431 return true;
5435 return false;
5438 /* Report whether we have an instruction to perform the operation
5439 specified by CODE on operands of mode MODE. */
5441 have_insn_for (enum rtx_code code, enum machine_mode mode)
5443 return (code_to_optab (code)
5444 && (optab_handler (code_to_optab (code), mode)
5445 != CODE_FOR_nothing));
5448 /* Initialize the libfunc fields of an entire group of entries in some
5449 optab. Each entry is set equal to a string consisting of a leading
5450 pair of underscores followed by a generic operation name followed by
5451 a mode name (downshifted to lowercase) followed by a single character
5452 representing the number of operands for the given operation (which is
5453 usually one of the characters '2', '3', or '4').
5455 OPTABLE is the table in which libfunc fields are to be initialized.
5456 OPNAME is the generic (string) name of the operation.
5457 SUFFIX is the character which specifies the number of operands for
5458 the given generic operation.
5459 MODE is the mode to generate for.
5462 static void
5463 gen_libfunc (optab optable, const char *opname, int suffix,
5464 enum machine_mode mode)
5466 unsigned opname_len = strlen (opname);
5467 const char *mname = GET_MODE_NAME (mode);
5468 unsigned mname_len = strlen (mname);
5469 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5470 int len = prefix_len + opname_len + mname_len + 1 + 1;
5471 char *libfunc_name = XALLOCAVEC (char, len);
5472 char *p;
5473 const char *q;
5475 p = libfunc_name;
5476 *p++ = '_';
5477 *p++ = '_';
5478 if (targetm.libfunc_gnu_prefix)
5480 *p++ = 'g';
5481 *p++ = 'n';
5482 *p++ = 'u';
5483 *p++ = '_';
5485 for (q = opname; *q; )
5486 *p++ = *q++;
5487 for (q = mname; *q; q++)
5488 *p++ = TOLOWER (*q);
5489 *p++ = suffix;
5490 *p = '\0';
5492 set_optab_libfunc (optable, mode,
5493 ggc_alloc_string (libfunc_name, p - libfunc_name));
5496 /* Like gen_libfunc, but verify that integer operation is involved. */
5498 void
5499 gen_int_libfunc (optab optable, const char *opname, char suffix,
5500 enum machine_mode mode)
5502 int maxsize = 2 * BITS_PER_WORD;
5504 if (GET_MODE_CLASS (mode) != MODE_INT)
5505 return;
5506 if (maxsize < LONG_LONG_TYPE_SIZE)
5507 maxsize = LONG_LONG_TYPE_SIZE;
5508 if (GET_MODE_CLASS (mode) != MODE_INT
5509 || GET_MODE_BITSIZE (mode) < BITS_PER_WORD
5510 || GET_MODE_BITSIZE (mode) > maxsize)
5511 return;
5512 gen_libfunc (optable, opname, suffix, mode);
5515 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5517 void
5518 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5519 enum machine_mode mode)
5521 char *dec_opname;
5523 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5524 gen_libfunc (optable, opname, suffix, mode);
5525 if (DECIMAL_FLOAT_MODE_P (mode))
5527 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5528 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5529 depending on the low level floating format used. */
5530 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5531 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5532 gen_libfunc (optable, dec_opname, suffix, mode);
5536 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5538 void
5539 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5540 enum machine_mode mode)
5542 if (!ALL_FIXED_POINT_MODE_P (mode))
5543 return;
5544 gen_libfunc (optable, opname, suffix, mode);
5547 /* Like gen_libfunc, but verify that signed fixed-point operation is
5548 involved. */
5550 void
5551 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5552 enum machine_mode mode)
5554 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5555 return;
5556 gen_libfunc (optable, opname, suffix, mode);
5559 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5560 involved. */
5562 void
5563 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5564 enum machine_mode mode)
5566 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5567 return;
5568 gen_libfunc (optable, opname, suffix, mode);
5571 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5573 void
5574 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5575 enum machine_mode mode)
5577 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5578 gen_fp_libfunc (optable, name, suffix, mode);
5579 if (INTEGRAL_MODE_P (mode))
5580 gen_int_libfunc (optable, name, suffix, mode);
5583 /* Like gen_libfunc, but verify that FP or INT operation is involved
5584 and add 'v' suffix for integer operation. */
5586 void
5587 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5588 enum machine_mode mode)
5590 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5591 gen_fp_libfunc (optable, name, suffix, mode);
5592 if (GET_MODE_CLASS (mode) == MODE_INT)
5594 int len = strlen (name);
5595 char *v_name = XALLOCAVEC (char, len + 2);
5596 strcpy (v_name, name);
5597 v_name[len] = 'v';
5598 v_name[len + 1] = 0;
5599 gen_int_libfunc (optable, v_name, suffix, mode);
5603 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5604 involved. */
5606 void
5607 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5608 enum machine_mode mode)
5610 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5611 gen_fp_libfunc (optable, name, suffix, mode);
5612 if (INTEGRAL_MODE_P (mode))
5613 gen_int_libfunc (optable, name, suffix, mode);
5614 if (ALL_FIXED_POINT_MODE_P (mode))
5615 gen_fixed_libfunc (optable, name, suffix, mode);
5618 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5619 involved. */
5621 void
5622 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5623 enum machine_mode mode)
5625 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5626 gen_fp_libfunc (optable, name, suffix, mode);
5627 if (INTEGRAL_MODE_P (mode))
5628 gen_int_libfunc (optable, name, suffix, mode);
5629 if (SIGNED_FIXED_POINT_MODE_P (mode))
5630 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5633 /* Like gen_libfunc, but verify that INT or FIXED operation is
5634 involved. */
5636 void
5637 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5638 enum machine_mode mode)
5640 if (INTEGRAL_MODE_P (mode))
5641 gen_int_libfunc (optable, name, suffix, mode);
5642 if (ALL_FIXED_POINT_MODE_P (mode))
5643 gen_fixed_libfunc (optable, name, suffix, mode);
5646 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5647 involved. */
5649 void
5650 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5651 enum machine_mode mode)
5653 if (INTEGRAL_MODE_P (mode))
5654 gen_int_libfunc (optable, name, suffix, mode);
5655 if (SIGNED_FIXED_POINT_MODE_P (mode))
5656 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5659 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5660 involved. */
5662 void
5663 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5664 enum machine_mode mode)
5666 if (INTEGRAL_MODE_P (mode))
5667 gen_int_libfunc (optable, name, suffix, mode);
5668 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5669 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5672 /* Initialize the libfunc fields of an entire group of entries of an
5673 inter-mode-class conversion optab. The string formation rules are
5674 similar to the ones for init_libfuncs, above, but instead of having
5675 a mode name and an operand count these functions have two mode names
5676 and no operand count. */
5678 void
5679 gen_interclass_conv_libfunc (convert_optab tab,
5680 const char *opname,
5681 enum machine_mode tmode,
5682 enum machine_mode fmode)
5684 size_t opname_len = strlen (opname);
5685 size_t mname_len = 0;
5687 const char *fname, *tname;
5688 const char *q;
5689 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5690 char *libfunc_name, *suffix;
5691 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5692 char *p;
5694 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5695 depends on which underlying decimal floating point format is used. */
5696 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5698 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5700 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5701 nondec_name[0] = '_';
5702 nondec_name[1] = '_';
5703 if (targetm.libfunc_gnu_prefix)
5705 nondec_name[2] = 'g';
5706 nondec_name[3] = 'n';
5707 nondec_name[4] = 'u';
5708 nondec_name[5] = '_';
5711 memcpy (&nondec_name[prefix_len], opname, opname_len);
5712 nondec_suffix = nondec_name + opname_len + prefix_len;
5714 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5715 dec_name[0] = '_';
5716 dec_name[1] = '_';
5717 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5718 memcpy (&dec_name[2+dec_len], opname, opname_len);
5719 dec_suffix = dec_name + dec_len + opname_len + 2;
5721 fname = GET_MODE_NAME (fmode);
5722 tname = GET_MODE_NAME (tmode);
5724 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5726 libfunc_name = dec_name;
5727 suffix = dec_suffix;
5729 else
5731 libfunc_name = nondec_name;
5732 suffix = nondec_suffix;
5735 p = suffix;
5736 for (q = fname; *q; p++, q++)
5737 *p = TOLOWER (*q);
5738 for (q = tname; *q; p++, q++)
5739 *p = TOLOWER (*q);
5741 *p = '\0';
5743 set_conv_libfunc (tab, tmode, fmode,
5744 ggc_alloc_string (libfunc_name, p - libfunc_name));
5747 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5748 int->fp conversion. */
5750 void
5751 gen_int_to_fp_conv_libfunc (convert_optab tab,
5752 const char *opname,
5753 enum machine_mode tmode,
5754 enum machine_mode fmode)
5756 if (GET_MODE_CLASS (fmode) != MODE_INT)
5757 return;
5758 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5759 return;
5760 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5763 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5764 naming scheme. */
5766 void
5767 gen_ufloat_conv_libfunc (convert_optab tab,
5768 const char *opname ATTRIBUTE_UNUSED,
5769 enum machine_mode tmode,
5770 enum machine_mode fmode)
5772 if (DECIMAL_FLOAT_MODE_P (tmode))
5773 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5774 else
5775 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5778 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5779 fp->int conversion. */
5781 void
5782 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5783 const char *opname,
5784 enum machine_mode tmode,
5785 enum machine_mode fmode)
5787 if (GET_MODE_CLASS (fmode) != MODE_INT)
5788 return;
5789 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5790 return;
5791 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5794 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5795 fp->int conversion with no decimal floating point involved. */
5797 void
5798 gen_fp_to_int_conv_libfunc (convert_optab tab,
5799 const char *opname,
5800 enum machine_mode tmode,
5801 enum machine_mode fmode)
5803 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5804 return;
5805 if (GET_MODE_CLASS (tmode) != MODE_INT)
5806 return;
5807 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5810 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5811 The string formation rules are
5812 similar to the ones for init_libfunc, above. */
5814 void
5815 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5816 enum machine_mode tmode, enum machine_mode fmode)
5818 size_t opname_len = strlen (opname);
5819 size_t mname_len = 0;
5821 const char *fname, *tname;
5822 const char *q;
5823 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5824 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5825 char *libfunc_name, *suffix;
5826 char *p;
5828 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5829 depends on which underlying decimal floating point format is used. */
5830 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5832 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5834 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5835 nondec_name[0] = '_';
5836 nondec_name[1] = '_';
5837 if (targetm.libfunc_gnu_prefix)
5839 nondec_name[2] = 'g';
5840 nondec_name[3] = 'n';
5841 nondec_name[4] = 'u';
5842 nondec_name[5] = '_';
5844 memcpy (&nondec_name[prefix_len], opname, opname_len);
5845 nondec_suffix = nondec_name + opname_len + prefix_len;
5847 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5848 dec_name[0] = '_';
5849 dec_name[1] = '_';
5850 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5851 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5852 dec_suffix = dec_name + dec_len + opname_len + 2;
5854 fname = GET_MODE_NAME (fmode);
5855 tname = GET_MODE_NAME (tmode);
5857 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5859 libfunc_name = dec_name;
5860 suffix = dec_suffix;
5862 else
5864 libfunc_name = nondec_name;
5865 suffix = nondec_suffix;
5868 p = suffix;
5869 for (q = fname; *q; p++, q++)
5870 *p = TOLOWER (*q);
5871 for (q = tname; *q; p++, q++)
5872 *p = TOLOWER (*q);
5874 *p++ = '2';
5875 *p = '\0';
5877 set_conv_libfunc (tab, tmode, fmode,
5878 ggc_alloc_string (libfunc_name, p - libfunc_name));
5881 /* Pick proper libcall for trunc_optab. We need to chose if we do
5882 truncation or extension and interclass or intraclass. */
5884 void
5885 gen_trunc_conv_libfunc (convert_optab tab,
5886 const char *opname,
5887 enum machine_mode tmode,
5888 enum machine_mode fmode)
5890 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5891 return;
5892 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5893 return;
5894 if (tmode == fmode)
5895 return;
5897 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5898 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5899 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5901 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5902 return;
5904 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5905 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5906 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5907 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5910 /* Pick proper libcall for extend_optab. We need to chose if we do
5911 truncation or extension and interclass or intraclass. */
5913 void
5914 gen_extend_conv_libfunc (convert_optab tab,
5915 const char *opname ATTRIBUTE_UNUSED,
5916 enum machine_mode tmode,
5917 enum machine_mode fmode)
5919 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5920 return;
5921 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5922 return;
5923 if (tmode == fmode)
5924 return;
5926 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5927 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5928 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5930 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5931 return;
5933 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5934 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5935 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5936 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5939 /* Pick proper libcall for fract_optab. We need to chose if we do
5940 interclass or intraclass. */
5942 void
5943 gen_fract_conv_libfunc (convert_optab tab,
5944 const char *opname,
5945 enum machine_mode tmode,
5946 enum machine_mode fmode)
5948 if (tmode == fmode)
5949 return;
5950 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5951 return;
5953 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5954 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5955 else
5956 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5959 /* Pick proper libcall for fractuns_optab. */
5961 void
5962 gen_fractuns_conv_libfunc (convert_optab tab,
5963 const char *opname,
5964 enum machine_mode tmode,
5965 enum machine_mode fmode)
5967 if (tmode == fmode)
5968 return;
5969 /* One mode must be a fixed-point mode, and the other must be an integer
5970 mode. */
5971 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5972 || (ALL_FIXED_POINT_MODE_P (fmode)
5973 && GET_MODE_CLASS (tmode) == MODE_INT)))
5974 return;
5976 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5979 /* Pick proper libcall for satfract_optab. We need to chose if we do
5980 interclass or intraclass. */
5982 void
5983 gen_satfract_conv_libfunc (convert_optab tab,
5984 const char *opname,
5985 enum machine_mode tmode,
5986 enum machine_mode fmode)
5988 if (tmode == fmode)
5989 return;
5990 /* TMODE must be a fixed-point mode. */
5991 if (!ALL_FIXED_POINT_MODE_P (tmode))
5992 return;
5994 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5995 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5996 else
5997 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6000 /* Pick proper libcall for satfractuns_optab. */
6002 void
6003 gen_satfractuns_conv_libfunc (convert_optab tab,
6004 const char *opname,
6005 enum machine_mode tmode,
6006 enum machine_mode fmode)
6008 if (tmode == fmode)
6009 return;
6010 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6011 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6012 return;
6014 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6017 /* A table of previously-created libfuncs, hashed by name. */
6018 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6020 /* Hashtable callbacks for libfunc_decls. */
6022 static hashval_t
6023 libfunc_decl_hash (const void *entry)
6025 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6028 static int
6029 libfunc_decl_eq (const void *entry1, const void *entry2)
6031 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6034 /* Build a decl for a libfunc named NAME. */
6036 tree
6037 build_libfunc_function (const char *name)
6039 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6040 get_identifier (name),
6041 build_function_type (integer_type_node, NULL_TREE));
6042 /* ??? We don't have any type information except for this is
6043 a function. Pretend this is "int foo()". */
6044 DECL_ARTIFICIAL (decl) = 1;
6045 DECL_EXTERNAL (decl) = 1;
6046 TREE_PUBLIC (decl) = 1;
6047 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6049 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6050 are the flags assigned by targetm.encode_section_info. */
6051 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6053 return decl;
6057 init_one_libfunc (const char *name)
6059 tree id, decl;
6060 void **slot;
6061 hashval_t hash;
6063 if (libfunc_decls == NULL)
6064 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6065 libfunc_decl_eq, NULL);
6067 /* See if we have already created a libfunc decl for this function. */
6068 id = get_identifier (name);
6069 hash = IDENTIFIER_HASH_VALUE (id);
6070 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6071 decl = (tree) *slot;
6072 if (decl == NULL)
6074 /* Create a new decl, so that it can be passed to
6075 targetm.encode_section_info. */
6076 decl = build_libfunc_function (name);
6077 *slot = decl;
6079 return XEXP (DECL_RTL (decl), 0);
6082 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6085 set_user_assembler_libfunc (const char *name, const char *asmspec)
6087 tree id, decl;
6088 void **slot;
6089 hashval_t hash;
6091 id = get_identifier (name);
6092 hash = IDENTIFIER_HASH_VALUE (id);
6093 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6094 gcc_assert (slot);
6095 decl = (tree) *slot;
6096 set_user_assembler_name (decl, asmspec);
6097 return XEXP (DECL_RTL (decl), 0);
6100 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6101 MODE to NAME, which should be either 0 or a string constant. */
6102 void
6103 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6105 rtx val;
6106 struct libfunc_entry e;
6107 struct libfunc_entry **slot;
6109 e.op = op;
6110 e.mode1 = mode;
6111 e.mode2 = VOIDmode;
6113 if (name)
6114 val = init_one_libfunc (name);
6115 else
6116 val = 0;
6117 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6118 if (*slot == NULL)
6119 *slot = ggc_alloc_libfunc_entry ();
6120 (*slot)->op = op;
6121 (*slot)->mode1 = mode;
6122 (*slot)->mode2 = VOIDmode;
6123 (*slot)->libfunc = val;
6126 /* Call this to reset the function entry for one conversion optab
6127 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6128 either 0 or a string constant. */
6129 void
6130 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6131 enum machine_mode fmode, const char *name)
6133 rtx val;
6134 struct libfunc_entry e;
6135 struct libfunc_entry **slot;
6137 e.op = optab;
6138 e.mode1 = tmode;
6139 e.mode2 = fmode;
6141 if (name)
6142 val = init_one_libfunc (name);
6143 else
6144 val = 0;
6145 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6146 if (*slot == NULL)
6147 *slot = ggc_alloc_libfunc_entry ();
6148 (*slot)->op = optab;
6149 (*slot)->mode1 = tmode;
6150 (*slot)->mode2 = fmode;
6151 (*slot)->libfunc = val;
6154 /* Call this to initialize the contents of the optabs
6155 appropriately for the current target machine. */
6157 void
6158 init_optabs (void)
6160 if (libfunc_hash)
6161 htab_empty (libfunc_hash);
6162 else
6163 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6165 /* Fill in the optabs with the insns we support. */
6166 init_all_optabs (this_fn_optabs);
6168 /* The ffs function operates on `int'. Fall back on it if we do not
6169 have a libgcc2 function for that width. */
6170 if (INT_TYPE_SIZE < BITS_PER_WORD)
6171 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6172 "ffs");
6174 /* Explicitly initialize the bswap libfuncs since we need them to be
6175 valid for things other than word_mode. */
6176 if (targetm.libfunc_gnu_prefix)
6178 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6179 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6181 else
6183 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6184 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6187 /* Use cabs for double complex abs, since systems generally have cabs.
6188 Don't define any libcall for float complex, so that cabs will be used. */
6189 if (complex_double_type_node)
6190 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6191 "cabs");
6193 abort_libfunc = init_one_libfunc ("abort");
6194 memcpy_libfunc = init_one_libfunc ("memcpy");
6195 memmove_libfunc = init_one_libfunc ("memmove");
6196 memcmp_libfunc = init_one_libfunc ("memcmp");
6197 memset_libfunc = init_one_libfunc ("memset");
6198 setbits_libfunc = init_one_libfunc ("__setbits");
6200 #ifndef DONT_USE_BUILTIN_SETJMP
6201 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6202 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6203 #else
6204 setjmp_libfunc = init_one_libfunc ("setjmp");
6205 longjmp_libfunc = init_one_libfunc ("longjmp");
6206 #endif
6207 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6208 unwind_sjlj_unregister_libfunc
6209 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6211 /* For function entry/exit instrumentation. */
6212 profile_function_entry_libfunc
6213 = init_one_libfunc ("__cyg_profile_func_enter");
6214 profile_function_exit_libfunc
6215 = init_one_libfunc ("__cyg_profile_func_exit");
6217 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6219 /* Allow the target to add more libcalls or rename some, etc. */
6220 targetm.init_libfuncs ();
6223 /* Use the current target and options to initialize
6224 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6226 void
6227 init_tree_optimization_optabs (tree optnode)
6229 /* Quick exit if we have already computed optabs for this target. */
6230 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6231 return;
6233 /* Forget any previous information and set up for the current target. */
6234 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6235 struct target_optabs *tmp_optabs = (struct target_optabs *)
6236 TREE_OPTIMIZATION_OPTABS (optnode);
6237 if (tmp_optabs)
6238 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6239 else
6240 tmp_optabs = (struct target_optabs *)
6241 ggc_alloc_atomic (sizeof (struct target_optabs));
6243 /* Generate a new set of optabs into tmp_optabs. */
6244 init_all_optabs (tmp_optabs);
6246 /* If the optabs changed, record it. */
6247 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6248 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
6249 else
6251 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6252 ggc_free (tmp_optabs);
6256 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6257 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6259 static void
6260 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6262 enum machine_mode mode;
6263 char buf[64];
6264 size_t len = strlen (base);
6265 int i;
6267 gcc_assert (max <= 8);
6268 gcc_assert (len + 3 < sizeof (buf));
6270 memcpy (buf, base, len);
6271 buf[len] = '_';
6272 buf[len + 1] = '0';
6273 buf[len + 2] = '\0';
6275 mode = QImode;
6276 for (i = 1; i <= max; i *= 2)
6278 buf[len + 1] = '0' + i;
6279 set_optab_libfunc (tab, mode, buf);
6280 mode = GET_MODE_2XWIDER_MODE (mode);
6284 void
6285 init_sync_libfuncs (int max)
6287 if (!flag_sync_libcalls)
6288 return;
6290 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6291 "__sync_val_compare_and_swap", max);
6292 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6293 "__sync_lock_test_and_set", max);
6295 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6296 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6297 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6298 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6299 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6300 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6302 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6303 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6304 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6305 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6306 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6307 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6310 /* Print information about the current contents of the optabs on
6311 STDERR. */
6313 DEBUG_FUNCTION void
6314 debug_optab_libfuncs (void)
6316 int i, j, k;
6318 /* Dump the arithmetic optabs. */
6319 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6320 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6322 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6323 if (l)
6325 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6326 fprintf (stderr, "%s\t%s:\t%s\n",
6327 GET_RTX_NAME (optab_to_code ((optab) i)),
6328 GET_MODE_NAME (j),
6329 XSTR (l, 0));
6333 /* Dump the conversion optabs. */
6334 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6335 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6336 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6338 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6339 (enum machine_mode) k);
6340 if (l)
6342 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6343 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6344 GET_RTX_NAME (optab_to_code ((optab) i)),
6345 GET_MODE_NAME (j),
6346 GET_MODE_NAME (k),
6347 XSTR (l, 0));
6353 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6354 CODE. Return 0 on failure. */
6357 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6359 enum machine_mode mode = GET_MODE (op1);
6360 enum insn_code icode;
6361 rtx insn;
6362 rtx trap_rtx;
6364 if (mode == VOIDmode)
6365 return 0;
6367 icode = optab_handler (ctrap_optab, mode);
6368 if (icode == CODE_FOR_nothing)
6369 return 0;
6371 /* Some targets only accept a zero trap code. */
6372 if (!insn_operand_matches (icode, 3, tcode))
6373 return 0;
6375 do_pending_stack_adjust ();
6376 start_sequence ();
6377 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6378 &trap_rtx, &mode);
6379 if (!trap_rtx)
6380 insn = NULL_RTX;
6381 else
6382 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6383 tcode);
6385 /* If that failed, then give up. */
6386 if (insn == 0)
6388 end_sequence ();
6389 return 0;
6392 emit_insn (insn);
6393 insn = get_insns ();
6394 end_sequence ();
6395 return insn;
6398 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6399 or unsigned operation code. */
6401 static enum rtx_code
6402 get_rtx_code (enum tree_code tcode, bool unsignedp)
6404 enum rtx_code code;
6405 switch (tcode)
6407 case EQ_EXPR:
6408 code = EQ;
6409 break;
6410 case NE_EXPR:
6411 code = NE;
6412 break;
6413 case LT_EXPR:
6414 code = unsignedp ? LTU : LT;
6415 break;
6416 case LE_EXPR:
6417 code = unsignedp ? LEU : LE;
6418 break;
6419 case GT_EXPR:
6420 code = unsignedp ? GTU : GT;
6421 break;
6422 case GE_EXPR:
6423 code = unsignedp ? GEU : GE;
6424 break;
6426 case UNORDERED_EXPR:
6427 code = UNORDERED;
6428 break;
6429 case ORDERED_EXPR:
6430 code = ORDERED;
6431 break;
6432 case UNLT_EXPR:
6433 code = UNLT;
6434 break;
6435 case UNLE_EXPR:
6436 code = UNLE;
6437 break;
6438 case UNGT_EXPR:
6439 code = UNGT;
6440 break;
6441 case UNGE_EXPR:
6442 code = UNGE;
6443 break;
6444 case UNEQ_EXPR:
6445 code = UNEQ;
6446 break;
6447 case LTGT_EXPR:
6448 code = LTGT;
6449 break;
6451 default:
6452 gcc_unreachable ();
6454 return code;
6457 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6458 unsigned operators. Do not generate compare instruction. */
6460 static rtx
6461 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6462 bool unsignedp, enum insn_code icode)
6464 struct expand_operand ops[2];
6465 rtx rtx_op0, rtx_op1;
6466 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6468 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6470 /* Expand operands. */
6471 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6472 EXPAND_STACK_PARM);
6473 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6474 EXPAND_STACK_PARM);
6476 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6477 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6478 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6479 gcc_unreachable ();
6480 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6483 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6484 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6486 bool
6487 can_vec_perm_p (enum machine_mode mode, bool variable,
6488 const unsigned char *sel)
6490 enum machine_mode qimode;
6492 /* If the target doesn't implement a vector mode for the vector type,
6493 then no operations are supported. */
6494 if (!VECTOR_MODE_P (mode))
6495 return false;
6497 if (!variable)
6499 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6500 && (sel == NULL
6501 || targetm.vectorize.vec_perm_const_ok == NULL
6502 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6503 return true;
6506 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6507 return true;
6509 /* We allow fallback to a QI vector mode, and adjust the mask. */
6510 if (GET_MODE_INNER (mode) == QImode)
6511 return false;
6512 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6513 if (!VECTOR_MODE_P (qimode))
6514 return false;
6516 /* ??? For completeness, we ought to check the QImode version of
6517 vec_perm_const_optab. But all users of this implicit lowering
6518 feature implement the variable vec_perm_optab. */
6519 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6520 return false;
6522 /* In order to support the lowering of variable permutations,
6523 we need to support shifts and adds. */
6524 if (variable)
6526 if (GET_MODE_UNIT_SIZE (mode) > 2
6527 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6528 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6529 return false;
6530 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6531 return false;
6534 return true;
6537 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6539 static rtx
6540 expand_vec_perm_1 (enum insn_code icode, rtx target,
6541 rtx v0, rtx v1, rtx sel)
6543 enum machine_mode tmode = GET_MODE (target);
6544 enum machine_mode smode = GET_MODE (sel);
6545 struct expand_operand ops[4];
6547 create_output_operand (&ops[0], target, tmode);
6548 create_input_operand (&ops[3], sel, smode);
6550 /* Make an effort to preserve v0 == v1. The target expander is able to
6551 rely on this to determine if we're permuting a single input operand. */
6552 if (rtx_equal_p (v0, v1))
6554 if (!insn_operand_matches (icode, 1, v0))
6555 v0 = force_reg (tmode, v0);
6556 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6557 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6559 create_fixed_operand (&ops[1], v0);
6560 create_fixed_operand (&ops[2], v0);
6562 else
6564 create_input_operand (&ops[1], v0, tmode);
6565 create_input_operand (&ops[2], v1, tmode);
6568 if (maybe_expand_insn (icode, 4, ops))
6569 return ops[0].value;
6570 return NULL_RTX;
6573 /* Generate instructions for vec_perm optab given its mode
6574 and three operands. */
6577 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6579 enum insn_code icode;
6580 enum machine_mode qimode;
6581 unsigned int i, w, e, u;
6582 rtx tmp, sel_qi = NULL;
6583 rtvec vec;
6585 if (!target || GET_MODE (target) != mode)
6586 target = gen_reg_rtx (mode);
6588 w = GET_MODE_SIZE (mode);
6589 e = GET_MODE_NUNITS (mode);
6590 u = GET_MODE_UNIT_SIZE (mode);
6592 /* Set QIMODE to a different vector mode with byte elements.
6593 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6594 qimode = VOIDmode;
6595 if (GET_MODE_INNER (mode) != QImode)
6597 qimode = mode_for_vector (QImode, w);
6598 if (!VECTOR_MODE_P (qimode))
6599 qimode = VOIDmode;
6602 /* If the input is a constant, expand it specially. */
6603 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6604 if (GET_CODE (sel) == CONST_VECTOR)
6606 icode = direct_optab_handler (vec_perm_const_optab, mode);
6607 if (icode != CODE_FOR_nothing)
6609 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6610 if (tmp)
6611 return tmp;
6614 /* Fall back to a constant byte-based permutation. */
6615 if (qimode != VOIDmode)
6617 vec = rtvec_alloc (w);
6618 for (i = 0; i < e; ++i)
6620 unsigned int j, this_e;
6622 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6623 this_e &= 2 * e - 1;
6624 this_e *= u;
6626 for (j = 0; j < u; ++j)
6627 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6629 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6631 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6632 if (icode != CODE_FOR_nothing)
6634 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6635 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6636 gen_lowpart (qimode, v1), sel_qi);
6637 if (tmp)
6638 return gen_lowpart (mode, tmp);
6643 /* Otherwise expand as a fully variable permuation. */
6644 icode = direct_optab_handler (vec_perm_optab, mode);
6645 if (icode != CODE_FOR_nothing)
6647 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6648 if (tmp)
6649 return tmp;
6652 /* As a special case to aid several targets, lower the element-based
6653 permutation to a byte-based permutation and try again. */
6654 if (qimode == VOIDmode)
6655 return NULL_RTX;
6656 icode = direct_optab_handler (vec_perm_optab, qimode);
6657 if (icode == CODE_FOR_nothing)
6658 return NULL_RTX;
6660 if (sel_qi == NULL)
6662 /* Multiply each element by its byte size. */
6663 enum machine_mode selmode = GET_MODE (sel);
6664 if (u == 2)
6665 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6666 sel, 0, OPTAB_DIRECT);
6667 else
6668 sel = expand_simple_binop (selmode, ASHIFT, sel,
6669 GEN_INT (exact_log2 (u)),
6670 sel, 0, OPTAB_DIRECT);
6671 gcc_assert (sel != NULL);
6673 /* Broadcast the low byte each element into each of its bytes. */
6674 vec = rtvec_alloc (w);
6675 for (i = 0; i < w; ++i)
6677 int this_e = i / u * u;
6678 if (BYTES_BIG_ENDIAN)
6679 this_e += u - 1;
6680 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6682 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6683 sel = gen_lowpart (qimode, sel);
6684 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6685 gcc_assert (sel != NULL);
6687 /* Add the byte offset to each byte element. */
6688 /* Note that the definition of the indicies here is memory ordering,
6689 so there should be no difference between big and little endian. */
6690 vec = rtvec_alloc (w);
6691 for (i = 0; i < w; ++i)
6692 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6693 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6694 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6695 sel, 0, OPTAB_DIRECT);
6696 gcc_assert (sel_qi != NULL);
6699 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6700 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6701 gen_lowpart (qimode, v1), sel_qi);
6702 if (tmp)
6703 tmp = gen_lowpart (mode, tmp);
6704 return tmp;
6707 /* Return insn code for a conditional operator with a comparison in
6708 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6710 static inline enum insn_code
6711 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6713 enum insn_code icode = CODE_FOR_nothing;
6714 if (uns)
6715 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6716 else
6717 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6718 return icode;
6721 /* Return TRUE iff, appropriate vector insns are available
6722 for vector cond expr with vector type VALUE_TYPE and a comparison
6723 with operand vector types in CMP_OP_TYPE. */
6725 bool
6726 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6728 enum machine_mode value_mode = TYPE_MODE (value_type);
6729 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6730 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6731 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6732 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6733 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6734 return false;
6735 return true;
6738 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6739 three operands. */
6742 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6743 rtx target)
6745 struct expand_operand ops[6];
6746 enum insn_code icode;
6747 rtx comparison, rtx_op1, rtx_op2;
6748 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6749 enum machine_mode cmp_op_mode;
6750 bool unsignedp;
6751 tree op0a, op0b;
6752 enum tree_code tcode;
6754 if (COMPARISON_CLASS_P (op0))
6756 op0a = TREE_OPERAND (op0, 0);
6757 op0b = TREE_OPERAND (op0, 1);
6758 tcode = TREE_CODE (op0);
6760 else
6762 /* Fake op0 < 0. */
6763 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6764 op0a = op0;
6765 op0b = build_zero_cst (TREE_TYPE (op0));
6766 tcode = LT_EXPR;
6768 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6769 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6772 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6773 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6775 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6776 if (icode == CODE_FOR_nothing)
6777 return 0;
6779 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6780 rtx_op1 = expand_normal (op1);
6781 rtx_op2 = expand_normal (op2);
6783 create_output_operand (&ops[0], target, mode);
6784 create_input_operand (&ops[1], rtx_op1, mode);
6785 create_input_operand (&ops[2], rtx_op2, mode);
6786 create_fixed_operand (&ops[3], comparison);
6787 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6788 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6789 expand_insn (icode, 6, ops);
6790 return ops[0].value;
6793 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6794 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6795 2 for even/odd widening, and 3 for hi/lo widening. */
6798 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6800 optab op;
6801 unsigned char *sel;
6802 unsigned i, nunits;
6804 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6805 if (optab_handler (op, mode) != CODE_FOR_nothing)
6806 return 1;
6808 /* If the mode is an integral vector, synth from widening operations. */
6809 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6810 return 0;
6812 nunits = GET_MODE_NUNITS (mode);
6813 sel = XALLOCAVEC (unsigned char, nunits);
6815 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6816 if (optab_handler (op, mode) != CODE_FOR_nothing)
6818 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6819 if (optab_handler (op, mode) != CODE_FOR_nothing)
6821 for (i = 0; i < nunits; ++i)
6822 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6823 if (can_vec_perm_p (mode, false, sel))
6824 return 2;
6828 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6829 if (optab_handler (op, mode) != CODE_FOR_nothing)
6831 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6832 if (optab_handler (op, mode) != CODE_FOR_nothing)
6834 for (i = 0; i < nunits; ++i)
6835 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6836 if (can_vec_perm_p (mode, false, sel))
6837 return 3;
6841 return 0;
6844 /* Expand a highpart multiply. */
6847 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6848 rtx target, bool uns_p)
6850 struct expand_operand eops[3];
6851 enum insn_code icode;
6852 int method, i, nunits;
6853 enum machine_mode wmode;
6854 rtx m1, m2, perm;
6855 optab tab1, tab2;
6856 rtvec v;
6858 method = can_mult_highpart_p (mode, uns_p);
6859 switch (method)
6861 case 0:
6862 return NULL_RTX;
6863 case 1:
6864 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6865 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6866 OPTAB_LIB_WIDEN);
6867 case 2:
6868 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6869 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6870 break;
6871 case 3:
6872 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6873 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6874 if (BYTES_BIG_ENDIAN)
6876 optab t = tab1;
6877 tab1 = tab2;
6878 tab2 = t;
6880 break;
6881 default:
6882 gcc_unreachable ();
6885 icode = optab_handler (tab1, mode);
6886 nunits = GET_MODE_NUNITS (mode);
6887 wmode = insn_data[icode].operand[0].mode;
6888 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6889 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6891 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6892 create_input_operand (&eops[1], op0, mode);
6893 create_input_operand (&eops[2], op1, mode);
6894 expand_insn (icode, 3, eops);
6895 m1 = gen_lowpart (mode, eops[0].value);
6897 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6898 create_input_operand (&eops[1], op0, mode);
6899 create_input_operand (&eops[2], op1, mode);
6900 expand_insn (optab_handler (tab2, mode), 3, eops);
6901 m2 = gen_lowpart (mode, eops[0].value);
6903 v = rtvec_alloc (nunits);
6904 if (method == 2)
6906 for (i = 0; i < nunits; ++i)
6907 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6908 + ((i & 1) ? nunits : 0));
6910 else
6912 for (i = 0; i < nunits; ++i)
6913 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6915 perm = gen_rtx_CONST_VECTOR (mode, v);
6917 return expand_vec_perm (mode, m1, m2, perm, target);
6920 /* Return true if target supports vector masked load/store for mode. */
6921 bool
6922 can_vec_mask_load_store_p (enum machine_mode mode, bool is_load)
6924 optab op = is_load ? maskload_optab : maskstore_optab;
6925 enum machine_mode vmode;
6926 unsigned int vector_sizes;
6928 /* If mode is vector mode, check it directly. */
6929 if (VECTOR_MODE_P (mode))
6930 return optab_handler (op, mode) != CODE_FOR_nothing;
6932 /* Otherwise, return true if there is some vector mode with
6933 the mask load/store supported. */
6935 /* See if there is any chance the mask load or store might be
6936 vectorized. If not, punt. */
6937 vmode = targetm.vectorize.preferred_simd_mode (mode);
6938 if (!VECTOR_MODE_P (vmode))
6939 return false;
6941 if (optab_handler (op, vmode) != CODE_FOR_nothing)
6942 return true;
6944 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
6945 while (vector_sizes != 0)
6947 unsigned int cur = 1 << floor_log2 (vector_sizes);
6948 vector_sizes &= ~cur;
6949 if (cur <= GET_MODE_SIZE (mode))
6950 continue;
6951 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
6952 if (VECTOR_MODE_P (vmode)
6953 && optab_handler (op, vmode) != CODE_FOR_nothing)
6954 return true;
6956 return false;
6959 /* Return true if there is a compare_and_swap pattern. */
6961 bool
6962 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6964 enum insn_code icode;
6966 /* Check for __atomic_compare_and_swap. */
6967 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6968 if (icode != CODE_FOR_nothing)
6969 return true;
6971 /* Check for __sync_compare_and_swap. */
6972 icode = optab_handler (sync_compare_and_swap_optab, mode);
6973 if (icode != CODE_FOR_nothing)
6974 return true;
6975 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6976 return true;
6978 /* No inline compare and swap. */
6979 return false;
6982 /* Return true if an atomic exchange can be performed. */
6984 bool
6985 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6987 enum insn_code icode;
6989 /* Check for __atomic_exchange. */
6990 icode = direct_optab_handler (atomic_exchange_optab, mode);
6991 if (icode != CODE_FOR_nothing)
6992 return true;
6994 /* Don't check __sync_test_and_set, as on some platforms that
6995 has reduced functionality. Targets that really do support
6996 a proper exchange should simply be updated to the __atomics. */
6998 return can_compare_and_swap_p (mode, allow_libcall);
7002 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7003 pattern. */
7005 static void
7006 find_cc_set (rtx x, const_rtx pat, void *data)
7008 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7009 && GET_CODE (pat) == SET)
7011 rtx *p_cc_reg = (rtx *) data;
7012 gcc_assert (!*p_cc_reg);
7013 *p_cc_reg = x;
7017 /* This is a helper function for the other atomic operations. This function
7018 emits a loop that contains SEQ that iterates until a compare-and-swap
7019 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7020 a set of instructions that takes a value from OLD_REG as an input and
7021 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7022 set to the current contents of MEM. After SEQ, a compare-and-swap will
7023 attempt to update MEM with NEW_REG. The function returns true when the
7024 loop was generated successfully. */
7026 static bool
7027 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7029 enum machine_mode mode = GET_MODE (mem);
7030 rtx label, cmp_reg, success, oldval;
7032 /* The loop we want to generate looks like
7034 cmp_reg = mem;
7035 label:
7036 old_reg = cmp_reg;
7037 seq;
7038 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7039 if (success)
7040 goto label;
7042 Note that we only do the plain load from memory once. Subsequent
7043 iterations use the value loaded by the compare-and-swap pattern. */
7045 label = gen_label_rtx ();
7046 cmp_reg = gen_reg_rtx (mode);
7048 emit_move_insn (cmp_reg, mem);
7049 emit_label (label);
7050 emit_move_insn (old_reg, cmp_reg);
7051 if (seq)
7052 emit_insn (seq);
7054 success = NULL_RTX;
7055 oldval = cmp_reg;
7056 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7057 new_reg, false, MEMMODEL_SEQ_CST,
7058 MEMMODEL_RELAXED))
7059 return false;
7061 if (oldval != cmp_reg)
7062 emit_move_insn (cmp_reg, oldval);
7064 /* Mark this jump predicted not taken. */
7065 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7066 GET_MODE (success), 1, label, 0);
7067 return true;
7071 /* This function tries to emit an atomic_exchange intruction. VAL is written
7072 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7073 using TARGET if possible. */
7075 static rtx
7076 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7078 enum machine_mode mode = GET_MODE (mem);
7079 enum insn_code icode;
7081 /* If the target supports the exchange directly, great. */
7082 icode = direct_optab_handler (atomic_exchange_optab, mode);
7083 if (icode != CODE_FOR_nothing)
7085 struct expand_operand ops[4];
7087 create_output_operand (&ops[0], target, mode);
7088 create_fixed_operand (&ops[1], mem);
7089 create_input_operand (&ops[2], val, mode);
7090 create_integer_operand (&ops[3], model);
7091 if (maybe_expand_insn (icode, 4, ops))
7092 return ops[0].value;
7095 return NULL_RTX;
7098 /* This function tries to implement an atomic exchange operation using
7099 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7100 The previous contents of *MEM are returned, using TARGET if possible.
7101 Since this instructionn is an acquire barrier only, stronger memory
7102 models may require additional barriers to be emitted. */
7104 static rtx
7105 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7106 enum memmodel model)
7108 enum machine_mode mode = GET_MODE (mem);
7109 enum insn_code icode;
7110 rtx last_insn = get_last_insn ();
7112 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7114 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7115 exists, and the memory model is stronger than acquire, add a release
7116 barrier before the instruction. */
7118 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7119 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7120 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7121 expand_mem_thread_fence (model);
7123 if (icode != CODE_FOR_nothing)
7125 struct expand_operand ops[3];
7126 create_output_operand (&ops[0], target, mode);
7127 create_fixed_operand (&ops[1], mem);
7128 create_input_operand (&ops[2], val, mode);
7129 if (maybe_expand_insn (icode, 3, ops))
7130 return ops[0].value;
7133 /* If an external test-and-set libcall is provided, use that instead of
7134 any external compare-and-swap that we might get from the compare-and-
7135 swap-loop expansion later. */
7136 if (!can_compare_and_swap_p (mode, false))
7138 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7139 if (libfunc != NULL)
7141 rtx addr;
7143 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7144 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7145 mode, 2, addr, ptr_mode,
7146 val, mode);
7150 /* If the test_and_set can't be emitted, eliminate any barrier that might
7151 have been emitted. */
7152 delete_insns_since (last_insn);
7153 return NULL_RTX;
7156 /* This function tries to implement an atomic exchange operation using a
7157 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7158 *MEM are returned, using TARGET if possible. No memory model is required
7159 since a compare_and_swap loop is seq-cst. */
7161 static rtx
7162 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7164 enum machine_mode mode = GET_MODE (mem);
7166 if (can_compare_and_swap_p (mode, true))
7168 if (!target || !register_operand (target, mode))
7169 target = gen_reg_rtx (mode);
7170 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7171 return target;
7174 return NULL_RTX;
7177 /* This function tries to implement an atomic test-and-set operation
7178 using the atomic_test_and_set instruction pattern. A boolean value
7179 is returned from the operation, using TARGET if possible. */
7181 #ifndef HAVE_atomic_test_and_set
7182 #define HAVE_atomic_test_and_set 0
7183 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7184 #endif
7186 static rtx
7187 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7189 enum machine_mode pat_bool_mode;
7190 struct expand_operand ops[3];
7192 if (!HAVE_atomic_test_and_set)
7193 return NULL_RTX;
7195 /* While we always get QImode from __atomic_test_and_set, we get
7196 other memory modes from __sync_lock_test_and_set. Note that we
7197 use no endian adjustment here. This matches the 4.6 behavior
7198 in the Sparc backend. */
7199 gcc_checking_assert
7200 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7201 if (GET_MODE (mem) != QImode)
7202 mem = adjust_address_nv (mem, QImode, 0);
7204 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7205 create_output_operand (&ops[0], target, pat_bool_mode);
7206 create_fixed_operand (&ops[1], mem);
7207 create_integer_operand (&ops[2], model);
7209 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7210 return ops[0].value;
7211 return NULL_RTX;
7214 /* This function expands the legacy _sync_lock test_and_set operation which is
7215 generally an atomic exchange. Some limited targets only allow the
7216 constant 1 to be stored. This is an ACQUIRE operation.
7218 TARGET is an optional place to stick the return value.
7219 MEM is where VAL is stored. */
7222 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7224 rtx ret;
7226 /* Try an atomic_exchange first. */
7227 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7228 if (ret)
7229 return ret;
7231 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7232 if (ret)
7233 return ret;
7235 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7236 if (ret)
7237 return ret;
7239 /* If there are no other options, try atomic_test_and_set if the value
7240 being stored is 1. */
7241 if (val == const1_rtx)
7242 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7244 return ret;
7247 /* This function expands the atomic test_and_set operation:
7248 atomically store a boolean TRUE into MEM and return the previous value.
7250 MEMMODEL is the memory model variant to use.
7251 TARGET is an optional place to stick the return value. */
7254 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7256 enum machine_mode mode = GET_MODE (mem);
7257 rtx ret, trueval, subtarget;
7259 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7260 if (ret)
7261 return ret;
7263 /* Be binary compatible with non-default settings of trueval, and different
7264 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7265 another only has atomic-exchange. */
7266 if (targetm.atomic_test_and_set_trueval == 1)
7268 trueval = const1_rtx;
7269 subtarget = target ? target : gen_reg_rtx (mode);
7271 else
7273 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7274 subtarget = gen_reg_rtx (mode);
7277 /* Try the atomic-exchange optab... */
7278 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7280 /* ... then an atomic-compare-and-swap loop ... */
7281 if (!ret)
7282 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7284 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7285 if (!ret)
7286 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7288 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7289 things with the value 1. Thus we try again without trueval. */
7290 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7291 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7293 /* Failing all else, assume a single threaded environment and simply
7294 perform the operation. */
7295 if (!ret)
7297 emit_move_insn (subtarget, mem);
7298 emit_move_insn (mem, trueval);
7299 ret = subtarget;
7302 /* Recall that have to return a boolean value; rectify if trueval
7303 is not exactly one. */
7304 if (targetm.atomic_test_and_set_trueval != 1)
7305 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7307 return ret;
7310 /* This function expands the atomic exchange operation:
7311 atomically store VAL in MEM and return the previous value in MEM.
7313 MEMMODEL is the memory model variant to use.
7314 TARGET is an optional place to stick the return value. */
7317 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7319 rtx ret;
7321 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7323 /* Next try a compare-and-swap loop for the exchange. */
7324 if (!ret)
7325 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7327 return ret;
7330 /* This function expands the atomic compare exchange operation:
7332 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7333 *PTARGET_OVAL is an optional place to store the old value from memory.
7334 Both target parameters may be NULL to indicate that we do not care about
7335 that return value. Both target parameters are updated on success to
7336 the actual location of the corresponding result.
7338 MEMMODEL is the memory model variant to use.
7340 The return value of the function is true for success. */
7342 bool
7343 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7344 rtx mem, rtx expected, rtx desired,
7345 bool is_weak, enum memmodel succ_model,
7346 enum memmodel fail_model)
7348 enum machine_mode mode = GET_MODE (mem);
7349 struct expand_operand ops[8];
7350 enum insn_code icode;
7351 rtx target_oval, target_bool = NULL_RTX;
7352 rtx libfunc;
7354 /* Load expected into a register for the compare and swap. */
7355 if (MEM_P (expected))
7356 expected = copy_to_reg (expected);
7358 /* Make sure we always have some place to put the return oldval.
7359 Further, make sure that place is distinct from the input expected,
7360 just in case we need that path down below. */
7361 if (ptarget_oval == NULL
7362 || (target_oval = *ptarget_oval) == NULL
7363 || reg_overlap_mentioned_p (expected, target_oval))
7364 target_oval = gen_reg_rtx (mode);
7366 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7367 if (icode != CODE_FOR_nothing)
7369 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7371 /* Make sure we always have a place for the bool operand. */
7372 if (ptarget_bool == NULL
7373 || (target_bool = *ptarget_bool) == NULL
7374 || GET_MODE (target_bool) != bool_mode)
7375 target_bool = gen_reg_rtx (bool_mode);
7377 /* Emit the compare_and_swap. */
7378 create_output_operand (&ops[0], target_bool, bool_mode);
7379 create_output_operand (&ops[1], target_oval, mode);
7380 create_fixed_operand (&ops[2], mem);
7381 create_input_operand (&ops[3], expected, mode);
7382 create_input_operand (&ops[4], desired, mode);
7383 create_integer_operand (&ops[5], is_weak);
7384 create_integer_operand (&ops[6], succ_model);
7385 create_integer_operand (&ops[7], fail_model);
7386 expand_insn (icode, 8, ops);
7388 /* Return success/failure. */
7389 target_bool = ops[0].value;
7390 target_oval = ops[1].value;
7391 goto success;
7394 /* Otherwise fall back to the original __sync_val_compare_and_swap
7395 which is always seq-cst. */
7396 icode = optab_handler (sync_compare_and_swap_optab, mode);
7397 if (icode != CODE_FOR_nothing)
7399 rtx cc_reg;
7401 create_output_operand (&ops[0], target_oval, mode);
7402 create_fixed_operand (&ops[1], mem);
7403 create_input_operand (&ops[2], expected, mode);
7404 create_input_operand (&ops[3], desired, mode);
7405 if (!maybe_expand_insn (icode, 4, ops))
7406 return false;
7408 target_oval = ops[0].value;
7410 /* If the caller isn't interested in the boolean return value,
7411 skip the computation of it. */
7412 if (ptarget_bool == NULL)
7413 goto success;
7415 /* Otherwise, work out if the compare-and-swap succeeded. */
7416 cc_reg = NULL_RTX;
7417 if (have_insn_for (COMPARE, CCmode))
7418 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7419 if (cc_reg)
7421 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7422 const0_rtx, VOIDmode, 0, 1);
7423 goto success;
7425 goto success_bool_from_val;
7428 /* Also check for library support for __sync_val_compare_and_swap. */
7429 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7430 if (libfunc != NULL)
7432 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7433 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7434 mode, 3, addr, ptr_mode,
7435 expected, mode, desired, mode);
7437 /* Compute the boolean return value only if requested. */
7438 if (ptarget_bool)
7439 goto success_bool_from_val;
7440 else
7441 goto success;
7444 /* Failure. */
7445 return false;
7447 success_bool_from_val:
7448 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7449 expected, VOIDmode, 1, 1);
7450 success:
7451 /* Make sure that the oval output winds up where the caller asked. */
7452 if (ptarget_oval)
7453 *ptarget_oval = target_oval;
7454 if (ptarget_bool)
7455 *ptarget_bool = target_bool;
7456 return true;
7459 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7461 static void
7462 expand_asm_memory_barrier (void)
7464 rtx asm_op, clob;
7466 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7467 rtvec_alloc (0), rtvec_alloc (0),
7468 rtvec_alloc (0), UNKNOWN_LOCATION);
7469 MEM_VOLATILE_P (asm_op) = 1;
7471 clob = gen_rtx_SCRATCH (VOIDmode);
7472 clob = gen_rtx_MEM (BLKmode, clob);
7473 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7475 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7478 /* This routine will either emit the mem_thread_fence pattern or issue a
7479 sync_synchronize to generate a fence for memory model MEMMODEL. */
7481 #ifndef HAVE_mem_thread_fence
7482 # define HAVE_mem_thread_fence 0
7483 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7484 #endif
7485 #ifndef HAVE_memory_barrier
7486 # define HAVE_memory_barrier 0
7487 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7488 #endif
7490 void
7491 expand_mem_thread_fence (enum memmodel model)
7493 if (HAVE_mem_thread_fence)
7494 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7495 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7497 if (HAVE_memory_barrier)
7498 emit_insn (gen_memory_barrier ());
7499 else if (synchronize_libfunc != NULL_RTX)
7500 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7501 else
7502 expand_asm_memory_barrier ();
7506 /* This routine will either emit the mem_signal_fence pattern or issue a
7507 sync_synchronize to generate a fence for memory model MEMMODEL. */
7509 #ifndef HAVE_mem_signal_fence
7510 # define HAVE_mem_signal_fence 0
7511 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7512 #endif
7514 void
7515 expand_mem_signal_fence (enum memmodel model)
7517 if (HAVE_mem_signal_fence)
7518 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7519 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7521 /* By default targets are coherent between a thread and the signal
7522 handler running on the same thread. Thus this really becomes a
7523 compiler barrier, in that stores must not be sunk past
7524 (or raised above) a given point. */
7525 expand_asm_memory_barrier ();
7529 /* This function expands the atomic load operation:
7530 return the atomically loaded value in MEM.
7532 MEMMODEL is the memory model variant to use.
7533 TARGET is an option place to stick the return value. */
7536 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7538 enum machine_mode mode = GET_MODE (mem);
7539 enum insn_code icode;
7541 /* If the target supports the load directly, great. */
7542 icode = direct_optab_handler (atomic_load_optab, mode);
7543 if (icode != CODE_FOR_nothing)
7545 struct expand_operand ops[3];
7547 create_output_operand (&ops[0], target, mode);
7548 create_fixed_operand (&ops[1], mem);
7549 create_integer_operand (&ops[2], model);
7550 if (maybe_expand_insn (icode, 3, ops))
7551 return ops[0].value;
7554 /* If the size of the object is greater than word size on this target,
7555 then we assume that a load will not be atomic. */
7556 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7558 /* Issue val = compare_and_swap (mem, 0, 0).
7559 This may cause the occasional harmless store of 0 when the value is
7560 already 0, but it seems to be OK according to the standards guys. */
7561 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7562 const0_rtx, false, model, model))
7563 return target;
7564 else
7565 /* Otherwise there is no atomic load, leave the library call. */
7566 return NULL_RTX;
7569 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7570 if (!target || target == const0_rtx)
7571 target = gen_reg_rtx (mode);
7573 /* For SEQ_CST, emit a barrier before the load. */
7574 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7575 expand_mem_thread_fence (model);
7577 emit_move_insn (target, mem);
7579 /* Emit the appropriate barrier after the load. */
7580 expand_mem_thread_fence (model);
7582 return target;
7585 /* This function expands the atomic store operation:
7586 Atomically store VAL in MEM.
7587 MEMMODEL is the memory model variant to use.
7588 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7589 function returns const0_rtx if a pattern was emitted. */
7592 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7594 enum machine_mode mode = GET_MODE (mem);
7595 enum insn_code icode;
7596 struct expand_operand ops[3];
7598 /* If the target supports the store directly, great. */
7599 icode = direct_optab_handler (atomic_store_optab, mode);
7600 if (icode != CODE_FOR_nothing)
7602 create_fixed_operand (&ops[0], mem);
7603 create_input_operand (&ops[1], val, mode);
7604 create_integer_operand (&ops[2], model);
7605 if (maybe_expand_insn (icode, 3, ops))
7606 return const0_rtx;
7609 /* If using __sync_lock_release is a viable alternative, try it. */
7610 if (use_release)
7612 icode = direct_optab_handler (sync_lock_release_optab, mode);
7613 if (icode != CODE_FOR_nothing)
7615 create_fixed_operand (&ops[0], mem);
7616 create_input_operand (&ops[1], const0_rtx, mode);
7617 if (maybe_expand_insn (icode, 2, ops))
7619 /* lock_release is only a release barrier. */
7620 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7621 expand_mem_thread_fence (model);
7622 return const0_rtx;
7627 /* If the size of the object is greater than word size on this target,
7628 a default store will not be atomic, Try a mem_exchange and throw away
7629 the result. If that doesn't work, don't do anything. */
7630 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7632 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7633 if (!target)
7634 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7635 if (target)
7636 return const0_rtx;
7637 else
7638 return NULL_RTX;
7641 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7642 expand_mem_thread_fence (model);
7644 emit_move_insn (mem, val);
7646 /* For SEQ_CST, also emit a barrier after the store. */
7647 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7648 expand_mem_thread_fence (model);
7650 return const0_rtx;
7654 /* Structure containing the pointers and values required to process the
7655 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7657 struct atomic_op_functions
7659 direct_optab mem_fetch_before;
7660 direct_optab mem_fetch_after;
7661 direct_optab mem_no_result;
7662 optab fetch_before;
7663 optab fetch_after;
7664 direct_optab no_result;
7665 enum rtx_code reverse_code;
7669 /* Fill in structure pointed to by OP with the various optab entries for an
7670 operation of type CODE. */
7672 static void
7673 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7675 gcc_assert (op!= NULL);
7677 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7678 in the source code during compilation, and the optab entries are not
7679 computable until runtime. Fill in the values at runtime. */
7680 switch (code)
7682 case PLUS:
7683 op->mem_fetch_before = atomic_fetch_add_optab;
7684 op->mem_fetch_after = atomic_add_fetch_optab;
7685 op->mem_no_result = atomic_add_optab;
7686 op->fetch_before = sync_old_add_optab;
7687 op->fetch_after = sync_new_add_optab;
7688 op->no_result = sync_add_optab;
7689 op->reverse_code = MINUS;
7690 break;
7691 case MINUS:
7692 op->mem_fetch_before = atomic_fetch_sub_optab;
7693 op->mem_fetch_after = atomic_sub_fetch_optab;
7694 op->mem_no_result = atomic_sub_optab;
7695 op->fetch_before = sync_old_sub_optab;
7696 op->fetch_after = sync_new_sub_optab;
7697 op->no_result = sync_sub_optab;
7698 op->reverse_code = PLUS;
7699 break;
7700 case XOR:
7701 op->mem_fetch_before = atomic_fetch_xor_optab;
7702 op->mem_fetch_after = atomic_xor_fetch_optab;
7703 op->mem_no_result = atomic_xor_optab;
7704 op->fetch_before = sync_old_xor_optab;
7705 op->fetch_after = sync_new_xor_optab;
7706 op->no_result = sync_xor_optab;
7707 op->reverse_code = XOR;
7708 break;
7709 case AND:
7710 op->mem_fetch_before = atomic_fetch_and_optab;
7711 op->mem_fetch_after = atomic_and_fetch_optab;
7712 op->mem_no_result = atomic_and_optab;
7713 op->fetch_before = sync_old_and_optab;
7714 op->fetch_after = sync_new_and_optab;
7715 op->no_result = sync_and_optab;
7716 op->reverse_code = UNKNOWN;
7717 break;
7718 case IOR:
7719 op->mem_fetch_before = atomic_fetch_or_optab;
7720 op->mem_fetch_after = atomic_or_fetch_optab;
7721 op->mem_no_result = atomic_or_optab;
7722 op->fetch_before = sync_old_ior_optab;
7723 op->fetch_after = sync_new_ior_optab;
7724 op->no_result = sync_ior_optab;
7725 op->reverse_code = UNKNOWN;
7726 break;
7727 case NOT:
7728 op->mem_fetch_before = atomic_fetch_nand_optab;
7729 op->mem_fetch_after = atomic_nand_fetch_optab;
7730 op->mem_no_result = atomic_nand_optab;
7731 op->fetch_before = sync_old_nand_optab;
7732 op->fetch_after = sync_new_nand_optab;
7733 op->no_result = sync_nand_optab;
7734 op->reverse_code = UNKNOWN;
7735 break;
7736 default:
7737 gcc_unreachable ();
7741 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7742 using memory order MODEL. If AFTER is true the operation needs to return
7743 the value of *MEM after the operation, otherwise the previous value.
7744 TARGET is an optional place to place the result. The result is unused if
7745 it is const0_rtx.
7746 Return the result if there is a better sequence, otherwise NULL_RTX. */
7748 static rtx
7749 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7750 enum memmodel model, bool after)
7752 /* If the value is prefetched, or not used, it may be possible to replace
7753 the sequence with a native exchange operation. */
7754 if (!after || target == const0_rtx)
7756 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7757 if (code == AND && val == const0_rtx)
7759 if (target == const0_rtx)
7760 target = gen_reg_rtx (GET_MODE (mem));
7761 return maybe_emit_atomic_exchange (target, mem, val, model);
7764 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7765 if (code == IOR && val == constm1_rtx)
7767 if (target == const0_rtx)
7768 target = gen_reg_rtx (GET_MODE (mem));
7769 return maybe_emit_atomic_exchange (target, mem, val, model);
7773 return NULL_RTX;
7776 /* Try to emit an instruction for a specific operation varaition.
7777 OPTAB contains the OP functions.
7778 TARGET is an optional place to return the result. const0_rtx means unused.
7779 MEM is the memory location to operate on.
7780 VAL is the value to use in the operation.
7781 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7782 MODEL is the memory model, if used.
7783 AFTER is true if the returned result is the value after the operation. */
7785 static rtx
7786 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7787 rtx val, bool use_memmodel, enum memmodel model, bool after)
7789 enum machine_mode mode = GET_MODE (mem);
7790 struct expand_operand ops[4];
7791 enum insn_code icode;
7792 int op_counter = 0;
7793 int num_ops;
7795 /* Check to see if there is a result returned. */
7796 if (target == const0_rtx)
7798 if (use_memmodel)
7800 icode = direct_optab_handler (optab->mem_no_result, mode);
7801 create_integer_operand (&ops[2], model);
7802 num_ops = 3;
7804 else
7806 icode = direct_optab_handler (optab->no_result, mode);
7807 num_ops = 2;
7810 /* Otherwise, we need to generate a result. */
7811 else
7813 if (use_memmodel)
7815 icode = direct_optab_handler (after ? optab->mem_fetch_after
7816 : optab->mem_fetch_before, mode);
7817 create_integer_operand (&ops[3], model);
7818 num_ops = 4;
7820 else
7822 icode = optab_handler (after ? optab->fetch_after
7823 : optab->fetch_before, mode);
7824 num_ops = 3;
7826 create_output_operand (&ops[op_counter++], target, mode);
7828 if (icode == CODE_FOR_nothing)
7829 return NULL_RTX;
7831 create_fixed_operand (&ops[op_counter++], mem);
7832 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7833 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7835 if (maybe_expand_insn (icode, num_ops, ops))
7836 return (target == const0_rtx ? const0_rtx : ops[0].value);
7838 return NULL_RTX;
7842 /* This function expands an atomic fetch_OP or OP_fetch operation:
7843 TARGET is an option place to stick the return value. const0_rtx indicates
7844 the result is unused.
7845 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7846 CODE is the operation being performed (OP)
7847 MEMMODEL is the memory model variant to use.
7848 AFTER is true to return the result of the operation (OP_fetch).
7849 AFTER is false to return the value before the operation (fetch_OP).
7851 This function will *only* generate instructions if there is a direct
7852 optab. No compare and swap loops or libcalls will be generated. */
7854 static rtx
7855 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7856 enum rtx_code code, enum memmodel model,
7857 bool after)
7859 enum machine_mode mode = GET_MODE (mem);
7860 struct atomic_op_functions optab;
7861 rtx result;
7862 bool unused_result = (target == const0_rtx);
7864 get_atomic_op_for_code (&optab, code);
7866 /* Check to see if there are any better instructions. */
7867 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7868 if (result)
7869 return result;
7871 /* Check for the case where the result isn't used and try those patterns. */
7872 if (unused_result)
7874 /* Try the memory model variant first. */
7875 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7876 if (result)
7877 return result;
7879 /* Next try the old style withuot a memory model. */
7880 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7881 if (result)
7882 return result;
7884 /* There is no no-result pattern, so try patterns with a result. */
7885 target = NULL_RTX;
7888 /* Try the __atomic version. */
7889 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7890 if (result)
7891 return result;
7893 /* Try the older __sync version. */
7894 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7895 if (result)
7896 return result;
7898 /* If the fetch value can be calculated from the other variation of fetch,
7899 try that operation. */
7900 if (after || unused_result || optab.reverse_code != UNKNOWN)
7902 /* Try the __atomic version, then the older __sync version. */
7903 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7904 if (!result)
7905 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7907 if (result)
7909 /* If the result isn't used, no need to do compensation code. */
7910 if (unused_result)
7911 return result;
7913 /* Issue compensation code. Fetch_after == fetch_before OP val.
7914 Fetch_before == after REVERSE_OP val. */
7915 if (!after)
7916 code = optab.reverse_code;
7917 if (code == NOT)
7919 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7920 true, OPTAB_LIB_WIDEN);
7921 result = expand_simple_unop (mode, NOT, result, target, true);
7923 else
7924 result = expand_simple_binop (mode, code, result, val, target,
7925 true, OPTAB_LIB_WIDEN);
7926 return result;
7930 /* No direct opcode can be generated. */
7931 return NULL_RTX;
7936 /* This function expands an atomic fetch_OP or OP_fetch operation:
7937 TARGET is an option place to stick the return value. const0_rtx indicates
7938 the result is unused.
7939 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7940 CODE is the operation being performed (OP)
7941 MEMMODEL is the memory model variant to use.
7942 AFTER is true to return the result of the operation (OP_fetch).
7943 AFTER is false to return the value before the operation (fetch_OP). */
7945 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7946 enum memmodel model, bool after)
7948 enum machine_mode mode = GET_MODE (mem);
7949 rtx result;
7950 bool unused_result = (target == const0_rtx);
7952 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7953 after);
7955 if (result)
7956 return result;
7958 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7959 if (code == PLUS || code == MINUS)
7961 rtx tmp;
7962 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7964 start_sequence ();
7965 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7966 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7967 model, after);
7968 if (result)
7970 /* PLUS worked so emit the insns and return. */
7971 tmp = get_insns ();
7972 end_sequence ();
7973 emit_insn (tmp);
7974 return result;
7977 /* PLUS did not work, so throw away the negation code and continue. */
7978 end_sequence ();
7981 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7982 if (!can_compare_and_swap_p (mode, false))
7984 rtx libfunc;
7985 bool fixup = false;
7986 enum rtx_code orig_code = code;
7987 struct atomic_op_functions optab;
7989 get_atomic_op_for_code (&optab, code);
7990 libfunc = optab_libfunc (after ? optab.fetch_after
7991 : optab.fetch_before, mode);
7992 if (libfunc == NULL
7993 && (after || unused_result || optab.reverse_code != UNKNOWN))
7995 fixup = true;
7996 if (!after)
7997 code = optab.reverse_code;
7998 libfunc = optab_libfunc (after ? optab.fetch_before
7999 : optab.fetch_after, mode);
8001 if (libfunc != NULL)
8003 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8004 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8005 2, addr, ptr_mode, val, mode);
8007 if (!unused_result && fixup)
8008 result = expand_simple_binop (mode, code, result, val, target,
8009 true, OPTAB_LIB_WIDEN);
8010 return result;
8013 /* We need the original code for any further attempts. */
8014 code = orig_code;
8017 /* If nothing else has succeeded, default to a compare and swap loop. */
8018 if (can_compare_and_swap_p (mode, true))
8020 rtx insn;
8021 rtx t0 = gen_reg_rtx (mode), t1;
8023 start_sequence ();
8025 /* If the result is used, get a register for it. */
8026 if (!unused_result)
8028 if (!target || !register_operand (target, mode))
8029 target = gen_reg_rtx (mode);
8030 /* If fetch_before, copy the value now. */
8031 if (!after)
8032 emit_move_insn (target, t0);
8034 else
8035 target = const0_rtx;
8037 t1 = t0;
8038 if (code == NOT)
8040 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8041 true, OPTAB_LIB_WIDEN);
8042 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8044 else
8045 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8046 OPTAB_LIB_WIDEN);
8048 /* For after, copy the value now. */
8049 if (!unused_result && after)
8050 emit_move_insn (target, t1);
8051 insn = get_insns ();
8052 end_sequence ();
8054 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8055 return target;
8058 return NULL_RTX;
8061 /* Return true if OPERAND is suitable for operand number OPNO of
8062 instruction ICODE. */
8064 bool
8065 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8067 return (!insn_data[(int) icode].operand[opno].predicate
8068 || (insn_data[(int) icode].operand[opno].predicate
8069 (operand, insn_data[(int) icode].operand[opno].mode)));
8072 /* TARGET is a target of a multiword operation that we are going to
8073 implement as a series of word-mode operations. Return true if
8074 TARGET is suitable for this purpose. */
8076 bool
8077 valid_multiword_target_p (rtx target)
8079 enum machine_mode mode;
8080 int i;
8082 mode = GET_MODE (target);
8083 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8084 if (!validate_subreg (word_mode, mode, target, i))
8085 return false;
8086 return true;
8089 /* Like maybe_legitimize_operand, but do not change the code of the
8090 current rtx value. */
8092 static bool
8093 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8094 struct expand_operand *op)
8096 /* See if the operand matches in its current form. */
8097 if (insn_operand_matches (icode, opno, op->value))
8098 return true;
8100 /* If the operand is a memory whose address has no side effects,
8101 try forcing the address into a non-virtual pseudo register.
8102 The check for side effects is important because copy_to_mode_reg
8103 cannot handle things like auto-modified addresses. */
8104 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8106 rtx addr, mem;
8108 mem = op->value;
8109 addr = XEXP (mem, 0);
8110 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8111 && !side_effects_p (addr))
8113 rtx last;
8114 enum machine_mode mode;
8116 last = get_last_insn ();
8117 mode = get_address_mode (mem);
8118 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8119 if (insn_operand_matches (icode, opno, mem))
8121 op->value = mem;
8122 return true;
8124 delete_insns_since (last);
8128 return false;
8131 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8132 on success, storing the new operand value back in OP. */
8134 static bool
8135 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8136 struct expand_operand *op)
8138 enum machine_mode mode, imode;
8139 bool old_volatile_ok, result;
8141 mode = op->mode;
8142 switch (op->type)
8144 case EXPAND_FIXED:
8145 old_volatile_ok = volatile_ok;
8146 volatile_ok = true;
8147 result = maybe_legitimize_operand_same_code (icode, opno, op);
8148 volatile_ok = old_volatile_ok;
8149 return result;
8151 case EXPAND_OUTPUT:
8152 gcc_assert (mode != VOIDmode);
8153 if (op->value
8154 && op->value != const0_rtx
8155 && GET_MODE (op->value) == mode
8156 && maybe_legitimize_operand_same_code (icode, opno, op))
8157 return true;
8159 op->value = gen_reg_rtx (mode);
8160 break;
8162 case EXPAND_INPUT:
8163 input:
8164 gcc_assert (mode != VOIDmode);
8165 gcc_assert (GET_MODE (op->value) == VOIDmode
8166 || GET_MODE (op->value) == mode);
8167 if (maybe_legitimize_operand_same_code (icode, opno, op))
8168 return true;
8170 op->value = copy_to_mode_reg (mode, op->value);
8171 break;
8173 case EXPAND_CONVERT_TO:
8174 gcc_assert (mode != VOIDmode);
8175 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8176 goto input;
8178 case EXPAND_CONVERT_FROM:
8179 if (GET_MODE (op->value) != VOIDmode)
8180 mode = GET_MODE (op->value);
8181 else
8182 /* The caller must tell us what mode this value has. */
8183 gcc_assert (mode != VOIDmode);
8185 imode = insn_data[(int) icode].operand[opno].mode;
8186 if (imode != VOIDmode && imode != mode)
8188 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8189 mode = imode;
8191 goto input;
8193 case EXPAND_ADDRESS:
8194 gcc_assert (mode != VOIDmode);
8195 op->value = convert_memory_address (mode, op->value);
8196 goto input;
8198 case EXPAND_INTEGER:
8199 mode = insn_data[(int) icode].operand[opno].mode;
8200 if (mode != VOIDmode && const_int_operand (op->value, mode))
8201 goto input;
8202 break;
8204 return insn_operand_matches (icode, opno, op->value);
8207 /* Make OP describe an input operand that should have the same value
8208 as VALUE, after any mode conversion that the target might request.
8209 TYPE is the type of VALUE. */
8211 void
8212 create_convert_operand_from_type (struct expand_operand *op,
8213 rtx value, tree type)
8215 create_convert_operand_from (op, value, TYPE_MODE (type),
8216 TYPE_UNSIGNED (type));
8219 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8220 of instruction ICODE. Return true on success, leaving the new operand
8221 values in the OPS themselves. Emit no code on failure. */
8223 bool
8224 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8225 unsigned int nops, struct expand_operand *ops)
8227 rtx last;
8228 unsigned int i;
8230 last = get_last_insn ();
8231 for (i = 0; i < nops; i++)
8232 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8234 delete_insns_since (last);
8235 return false;
8237 return true;
8240 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8241 as its operands. Return the instruction pattern on success,
8242 and emit any necessary set-up code. Return null and emit no
8243 code on failure. */
8246 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8247 struct expand_operand *ops)
8249 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8250 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8251 return NULL_RTX;
8253 switch (nops)
8255 case 1:
8256 return GEN_FCN (icode) (ops[0].value);
8257 case 2:
8258 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8259 case 3:
8260 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8261 case 4:
8262 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8263 ops[3].value);
8264 case 5:
8265 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8266 ops[3].value, ops[4].value);
8267 case 6:
8268 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8269 ops[3].value, ops[4].value, ops[5].value);
8270 case 7:
8271 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8272 ops[3].value, ops[4].value, ops[5].value,
8273 ops[6].value);
8274 case 8:
8275 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8276 ops[3].value, ops[4].value, ops[5].value,
8277 ops[6].value, ops[7].value);
8278 case 9:
8279 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8280 ops[3].value, ops[4].value, ops[5].value,
8281 ops[6].value, ops[7].value, ops[8].value);
8283 gcc_unreachable ();
8286 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8287 as its operands. Return true on success and emit no code on failure. */
8289 bool
8290 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8291 struct expand_operand *ops)
8293 rtx pat = maybe_gen_insn (icode, nops, ops);
8294 if (pat)
8296 emit_insn (pat);
8297 return true;
8299 return false;
8302 /* Like maybe_expand_insn, but for jumps. */
8304 bool
8305 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8306 struct expand_operand *ops)
8308 rtx pat = maybe_gen_insn (icode, nops, ops);
8309 if (pat)
8311 emit_jump_insn (pat);
8312 return true;
8314 return false;
8317 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8318 as its operands. */
8320 void
8321 expand_insn (enum insn_code icode, unsigned int nops,
8322 struct expand_operand *ops)
8324 if (!maybe_expand_insn (icode, nops, ops))
8325 gcc_unreachable ();
8328 /* Like expand_insn, but for jumps. */
8330 void
8331 expand_jump_insn (enum insn_code icode, unsigned int nops,
8332 struct expand_operand *ops)
8334 if (!maybe_expand_jump_insn (icode, nops, ops))
8335 gcc_unreachable ();
8338 /* Reduce conditional compilation elsewhere. */
8339 #ifndef HAVE_insv
8340 #define HAVE_insv 0
8341 #define CODE_FOR_insv CODE_FOR_nothing
8342 #endif
8343 #ifndef HAVE_extv
8344 #define HAVE_extv 0
8345 #define CODE_FOR_extv CODE_FOR_nothing
8346 #endif
8347 #ifndef HAVE_extzv
8348 #define HAVE_extzv 0
8349 #define CODE_FOR_extzv CODE_FOR_nothing
8350 #endif
8352 /* Enumerates the possible types of structure operand to an
8353 extraction_insn. */
8354 enum extraction_type { ET_unaligned_mem, ET_reg };
8356 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8357 insertion or extraction of type TYPE on a structure of mode MODE.
8358 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8359 operand number of the structure (the first sign_extract or zero_extract
8360 operand) and FIELD_OP is the operand number of the field (the other
8361 side of the set from the sign_extract or zero_extract). */
8363 static bool
8364 get_traditional_extraction_insn (extraction_insn *insn,
8365 enum extraction_type type,
8366 enum machine_mode mode,
8367 enum insn_code icode,
8368 int struct_op, int field_op)
8370 const struct insn_data_d *data = &insn_data[icode];
8372 enum machine_mode struct_mode = data->operand[struct_op].mode;
8373 if (struct_mode == VOIDmode)
8374 struct_mode = word_mode;
8375 if (mode != struct_mode)
8376 return false;
8378 enum machine_mode field_mode = data->operand[field_op].mode;
8379 if (field_mode == VOIDmode)
8380 field_mode = word_mode;
8382 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8383 if (pos_mode == VOIDmode)
8384 pos_mode = word_mode;
8386 insn->icode = icode;
8387 insn->field_mode = field_mode;
8388 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8389 insn->pos_mode = pos_mode;
8390 return true;
8393 /* Return true if an optab exists to perform an insertion or extraction
8394 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8396 REG_OPTAB is the optab to use for register structures and
8397 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8398 POS_OP is the operand number of the bit position. */
8400 static bool
8401 get_optab_extraction_insn (struct extraction_insn *insn,
8402 enum extraction_type type,
8403 enum machine_mode mode, direct_optab reg_optab,
8404 direct_optab misalign_optab, int pos_op)
8406 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8407 enum insn_code icode = direct_optab_handler (optab, mode);
8408 if (icode == CODE_FOR_nothing)
8409 return false;
8411 const struct insn_data_d *data = &insn_data[icode];
8413 insn->icode = icode;
8414 insn->field_mode = mode;
8415 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8416 insn->pos_mode = data->operand[pos_op].mode;
8417 if (insn->pos_mode == VOIDmode)
8418 insn->pos_mode = word_mode;
8419 return true;
8422 /* Return true if an instruction exists to perform an insertion or
8423 extraction (PATTERN says which) of type TYPE in mode MODE.
8424 Describe the instruction in *INSN if so. */
8426 static bool
8427 get_extraction_insn (extraction_insn *insn,
8428 enum extraction_pattern pattern,
8429 enum extraction_type type,
8430 enum machine_mode mode)
8432 switch (pattern)
8434 case EP_insv:
8435 if (HAVE_insv
8436 && get_traditional_extraction_insn (insn, type, mode,
8437 CODE_FOR_insv, 0, 3))
8438 return true;
8439 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8440 insvmisalign_optab, 2);
8442 case EP_extv:
8443 if (HAVE_extv
8444 && get_traditional_extraction_insn (insn, type, mode,
8445 CODE_FOR_extv, 1, 0))
8446 return true;
8447 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8448 extvmisalign_optab, 3);
8450 case EP_extzv:
8451 if (HAVE_extzv
8452 && get_traditional_extraction_insn (insn, type, mode,
8453 CODE_FOR_extzv, 1, 0))
8454 return true;
8455 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8456 extzvmisalign_optab, 3);
8458 default:
8459 gcc_unreachable ();
8463 /* Return true if an instruction exists to access a field of mode
8464 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8465 Describe the "best" such instruction in *INSN if so. PATTERN and
8466 TYPE describe the type of insertion or extraction we want to perform.
8468 For an insertion, the number of significant structure bits includes
8469 all bits of the target. For an extraction, it need only include the
8470 most significant bit of the field. Larger widths are acceptable
8471 in both cases. */
8473 static bool
8474 get_best_extraction_insn (extraction_insn *insn,
8475 enum extraction_pattern pattern,
8476 enum extraction_type type,
8477 unsigned HOST_WIDE_INT struct_bits,
8478 enum machine_mode field_mode)
8480 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8481 while (mode != VOIDmode)
8483 if (get_extraction_insn (insn, pattern, type, mode))
8485 while (mode != VOIDmode
8486 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8487 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8488 field_mode))
8490 get_extraction_insn (insn, pattern, type, mode);
8491 mode = GET_MODE_WIDER_MODE (mode);
8493 return true;
8495 mode = GET_MODE_WIDER_MODE (mode);
8497 return false;
8500 /* Return true if an instruction exists to access a field of mode
8501 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8502 Describe the "best" such instruction in *INSN if so. PATTERN describes
8503 the type of insertion or extraction we want to perform.
8505 For an insertion, the number of significant structure bits includes
8506 all bits of the target. For an extraction, it need only include the
8507 most significant bit of the field. Larger widths are acceptable
8508 in both cases. */
8510 bool
8511 get_best_reg_extraction_insn (extraction_insn *insn,
8512 enum extraction_pattern pattern,
8513 unsigned HOST_WIDE_INT struct_bits,
8514 enum machine_mode field_mode)
8516 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8517 field_mode);
8520 /* Return true if an instruction exists to access a field of BITSIZE
8521 bits starting BITNUM bits into a memory structure. Describe the
8522 "best" such instruction in *INSN if so. PATTERN describes the type
8523 of insertion or extraction we want to perform and FIELDMODE is the
8524 natural mode of the extracted field.
8526 The instructions considered here only access bytes that overlap
8527 the bitfield; they do not touch any surrounding bytes. */
8529 bool
8530 get_best_mem_extraction_insn (extraction_insn *insn,
8531 enum extraction_pattern pattern,
8532 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8533 enum machine_mode field_mode)
8535 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8536 + bitsize
8537 + BITS_PER_UNIT - 1);
8538 struct_bits -= struct_bits % BITS_PER_UNIT;
8539 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8540 struct_bits, field_mode);
8543 #include "gt-optabs.h"