PR tree-optimization/81184
[official-gcc.git] / gcc / tree-vectorizer.h
blob56e875f20caaf8f576f803fe0a093ca9106e851d
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION,
72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
73 to implement:
75 for (int i = 0; i < VF; ++i)
76 res = cond[i] ? val[i] : res; */
77 EXTRACT_LAST_REDUCTION,
79 /* Use a folding reduction within the loop to implement:
81 for (int i = 0; i < VF; ++i)
82 res = res OP val[i];
84 (with no reassocation). */
85 FOLD_LEFT_REDUCTION
88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
89 || ((D) == vect_double_reduction_def) \
90 || ((D) == vect_nested_cycle))
92 /* Structure to encapsulate information about a group of like
93 instructions to be presented to the target cost model. */
94 struct stmt_info_for_cost {
95 int count;
96 enum vect_cost_for_stmt kind;
97 gimple *stmt;
98 int misalign;
101 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
103 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
104 known alignment for that base. */
105 typedef hash_map<tree_operand_hash,
106 innermost_loop_behavior *> vec_base_alignments;
108 /************************************************************************
110 ************************************************************************/
111 typedef struct _slp_tree *slp_tree;
113 /* A computation tree of an SLP instance. Each node corresponds to a group of
114 stmts to be packed in a SIMD stmt. */
115 struct _slp_tree {
116 /* Nodes that contain def-stmts of this node statements operands. */
117 vec<slp_tree> children;
118 /* A group of scalar stmts to be vectorized together. */
119 vec<gimple *> stmts;
120 /* Load permutation relative to the stores, NULL if there is no
121 permutation. */
122 vec<unsigned> load_permutation;
123 /* Vectorized stmt/s. */
124 vec<gimple *> vec_stmts;
125 /* Number of vector stmts that are created to replace the group of scalar
126 stmts. It is calculated during the transformation phase as the number of
127 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
128 divided by vector size. */
129 unsigned int vec_stmts_size;
130 /* Whether the scalar computations use two different operators. */
131 bool two_operators;
132 /* The DEF type of this node. */
133 enum vect_def_type def_type;
137 /* SLP instance is a sequence of stmts in a loop that can be packed into
138 SIMD stmts. */
139 typedef struct _slp_instance {
140 /* The root of SLP tree. */
141 slp_tree root;
143 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
144 unsigned int group_size;
146 /* The unrolling factor required to vectorized this SLP instance. */
147 poly_uint64 unrolling_factor;
149 /* The group of nodes that contain loads of this SLP instance. */
150 vec<slp_tree> loads;
152 /* The SLP node containing the reduction PHIs. */
153 slp_tree reduc_phis;
154 } *slp_instance;
157 /* Access Functions. */
158 #define SLP_INSTANCE_TREE(S) (S)->root
159 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
160 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
161 #define SLP_INSTANCE_LOADS(S) (S)->loads
163 #define SLP_TREE_CHILDREN(S) (S)->children
164 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
165 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
166 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
167 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
168 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
169 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
173 /* Describes two objects whose addresses must be unequal for the vectorized
174 loop to be valid. */
175 typedef std::pair<tree, tree> vec_object_pair;
177 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
178 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
179 struct vec_lower_bound {
180 vec_lower_bound () {}
181 vec_lower_bound (tree e, bool u, poly_uint64 m)
182 : expr (e), unsigned_p (u), min_value (m) {}
184 tree expr;
185 bool unsigned_p;
186 poly_uint64 min_value;
189 /* Vectorizer state common between loop and basic-block vectorization. */
190 struct vec_info {
191 enum vec_kind { bb, loop };
193 vec_info (vec_kind, void *);
194 ~vec_info ();
196 /* The type of vectorization. */
197 vec_kind kind;
199 /* All SLP instances. */
200 auto_vec<slp_instance> slp_instances;
202 /* All data references. Freed by free_data_refs, so not an auto_vec. */
203 vec<data_reference_p> datarefs;
205 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
206 known alignment for that base. */
207 vec_base_alignments base_alignments;
209 /* All data dependences. Freed by free_dependence_relations, so not
210 an auto_vec. */
211 vec<ddr_p> ddrs;
213 /* All interleaving chains of stores, represented by the first
214 stmt in the chain. */
215 auto_vec<gimple *> grouped_stores;
217 /* Cost data used by the target cost model. */
218 void *target_cost_data;
221 struct _loop_vec_info;
222 struct _bb_vec_info;
224 template<>
225 template<>
226 inline bool
227 is_a_helper <_loop_vec_info *>::test (vec_info *i)
229 return i->kind == vec_info::loop;
232 template<>
233 template<>
234 inline bool
235 is_a_helper <_bb_vec_info *>::test (vec_info *i)
237 return i->kind == vec_info::bb;
241 /* In general, we can divide the vector statements in a vectorized loop
242 into related groups ("rgroups") and say that for each rgroup there is
243 some nS such that the rgroup operates on nS values from one scalar
244 iteration followed by nS values from the next. That is, if VF is the
245 vectorization factor of the loop, the rgroup operates on a sequence:
247 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
249 where (i,j) represents a scalar value with index j in a scalar
250 iteration with index i.
252 [ We use the term "rgroup" to emphasise that this grouping isn't
253 necessarily the same as the grouping of statements used elsewhere.
254 For example, if we implement a group of scalar loads using gather
255 loads, we'll use a separate gather load for each scalar load, and
256 thus each gather load will belong to its own rgroup. ]
258 In general this sequence will occupy nV vectors concatenated
259 together. If these vectors have nL lanes each, the total number
260 of scalar values N is given by:
262 N = nS * VF = nV * nL
264 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
265 are compile-time constants but VF and nL can be variable (if the target
266 supports variable-length vectors).
268 In classical vectorization, each iteration of the vector loop would
269 handle exactly VF iterations of the original scalar loop. However,
270 in a fully-masked loop, a particular iteration of the vector loop
271 might handle fewer than VF iterations of the scalar loop. The vector
272 lanes that correspond to iterations of the scalar loop are said to be
273 "active" and the other lanes are said to be "inactive".
275 In a fully-masked loop, many rgroups need to be masked to ensure that
276 they have no effect for the inactive lanes. Each such rgroup needs a
277 sequence of booleans in the same order as above, but with each (i,j)
278 replaced by a boolean that indicates whether iteration i is active.
279 This sequence occupies nV vector masks that again have nL lanes each.
280 Thus the mask sequence as a whole consists of VF independent booleans
281 that are each repeated nS times.
283 We make the simplifying assumption that if a sequence of nV masks is
284 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
285 VIEW_CONVERTing it. This holds for all current targets that support
286 fully-masked loops. For example, suppose the scalar loop is:
288 float *f;
289 double *d;
290 for (int i = 0; i < n; ++i)
292 f[i * 2 + 0] += 1.0f;
293 f[i * 2 + 1] += 2.0f;
294 d[i] += 3.0;
297 and suppose that vectors have 256 bits. The vectorized f accesses
298 will belong to one rgroup and the vectorized d access to another:
300 f rgroup: nS = 2, nV = 1, nL = 8
301 d rgroup: nS = 1, nV = 1, nL = 4
302 VF = 4
304 [ In this simple example the rgroups do correspond to the normal
305 SLP grouping scheme. ]
307 If only the first three lanes are active, the masks we need are:
309 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
310 d rgroup: 1 | 1 | 1 | 0
312 Here we can use a mask calculated for f's rgroup for d's, but not
313 vice versa.
315 Thus for each value of nV, it is enough to provide nV masks, with the
316 mask being calculated based on the highest nL (or, equivalently, based
317 on the highest nS) required by any rgroup with that nV. We therefore
318 represent the entire collection of masks as a two-level table, with the
319 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
320 the second being indexed by the mask index 0 <= i < nV. */
322 /* The masks needed by rgroups with nV vectors, according to the
323 description above. */
324 struct rgroup_masks {
325 /* The largest nS for all rgroups that use these masks. */
326 unsigned int max_nscalars_per_iter;
328 /* The type of mask to use, based on the highest nS recorded above. */
329 tree mask_type;
331 /* A vector of nV masks, in iteration order. */
332 vec<tree> masks;
335 typedef auto_vec<rgroup_masks> vec_loop_masks;
337 /*-----------------------------------------------------------------*/
338 /* Info on vectorized loops. */
339 /*-----------------------------------------------------------------*/
340 typedef struct _loop_vec_info : public vec_info {
341 _loop_vec_info (struct loop *);
342 ~_loop_vec_info ();
344 /* The loop to which this info struct refers to. */
345 struct loop *loop;
347 /* The loop basic blocks. */
348 basic_block *bbs;
350 /* Number of latch executions. */
351 tree num_itersm1;
352 /* Number of iterations. */
353 tree num_iters;
354 /* Number of iterations of the original loop. */
355 tree num_iters_unchanged;
356 /* Condition under which this loop is analyzed and versioned. */
357 tree num_iters_assumptions;
359 /* Threshold of number of iterations below which vectorzation will not be
360 performed. It is calculated from MIN_PROFITABLE_ITERS and
361 PARAM_MIN_VECT_LOOP_BOUND. */
362 unsigned int th;
364 /* When applying loop versioning, the vector form should only be used
365 if the number of scalar iterations is >= this value, on top of all
366 the other requirements. Ignored when loop versioning is not being
367 used. */
368 poly_uint64 versioning_threshold;
370 /* Unrolling factor */
371 poly_uint64 vectorization_factor;
373 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
374 if there is no particular limit. */
375 unsigned HOST_WIDE_INT max_vectorization_factor;
377 /* The masks that a fully-masked loop should use to avoid operating
378 on inactive scalars. */
379 vec_loop_masks masks;
381 /* If we are using a loop mask to align memory addresses, this variable
382 contains the number of vector elements that we should skip in the
383 first iteration of the vector loop (i.e. the number of leading
384 elements that should be false in the first mask). */
385 tree mask_skip_niters;
387 /* Type of the variables to use in the WHILE_ULT call for fully-masked
388 loops. */
389 tree mask_compare_type;
391 /* Unknown DRs according to which loop was peeled. */
392 struct data_reference *unaligned_dr;
394 /* peeling_for_alignment indicates whether peeling for alignment will take
395 place, and what the peeling factor should be:
396 peeling_for_alignment = X means:
397 If X=0: Peeling for alignment will not be applied.
398 If X>0: Peel first X iterations.
399 If X=-1: Generate a runtime test to calculate the number of iterations
400 to be peeled, using the dataref recorded in the field
401 unaligned_dr. */
402 int peeling_for_alignment;
404 /* The mask used to check the alignment of pointers or arrays. */
405 int ptr_mask;
407 /* The loop nest in which the data dependences are computed. */
408 auto_vec<loop_p> loop_nest;
410 /* Data Dependence Relations defining address ranges that are candidates
411 for a run-time aliasing check. */
412 auto_vec<ddr_p> may_alias_ddrs;
414 /* Data Dependence Relations defining address ranges together with segment
415 lengths from which the run-time aliasing check is built. */
416 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
418 /* Check that the addresses of each pair of objects is unequal. */
419 auto_vec<vec_object_pair> check_unequal_addrs;
421 /* List of values that are required to be nonzero. This is used to check
422 whether things like "x[i * n] += 1;" are safe and eventually gets added
423 to the checks for lower bounds below. */
424 auto_vec<tree> check_nonzero;
426 /* List of values that need to be checked for a minimum value. */
427 auto_vec<vec_lower_bound> lower_bounds;
429 /* Statements in the loop that have data references that are candidates for a
430 runtime (loop versioning) misalignment check. */
431 auto_vec<gimple *> may_misalign_stmts;
433 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
434 auto_vec<gimple *> reductions;
436 /* All reduction chains in the loop, represented by the first
437 stmt in the chain. */
438 auto_vec<gimple *> reduction_chains;
440 /* Cost vector for a single scalar iteration. */
441 auto_vec<stmt_info_for_cost> scalar_cost_vec;
443 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
444 applied to the loop, i.e., no unrolling is needed, this is 1. */
445 poly_uint64 slp_unrolling_factor;
447 /* Cost of a single scalar iteration. */
448 int single_scalar_iteration_cost;
450 /* Is the loop vectorizable? */
451 bool vectorizable;
453 /* Records whether we still have the option of using a fully-masked loop. */
454 bool can_fully_mask_p;
456 /* True if have decided to use a fully-masked loop. */
457 bool fully_masked_p;
459 /* When we have grouped data accesses with gaps, we may introduce invalid
460 memory accesses. We peel the last iteration of the loop to prevent
461 this. */
462 bool peeling_for_gaps;
464 /* When the number of iterations is not a multiple of the vector size
465 we need to peel off iterations at the end to form an epilogue loop. */
466 bool peeling_for_niter;
468 /* Reductions are canonicalized so that the last operand is the reduction
469 operand. If this places a constant into RHS1, this decanonicalizes
470 GIMPLE for other phases, so we must track when this has occurred and
471 fix it up. */
472 bool operands_swapped;
474 /* True if there are no loop carried data dependencies in the loop.
475 If loop->safelen <= 1, then this is always true, either the loop
476 didn't have any loop carried data dependencies, or the loop is being
477 vectorized guarded with some runtime alias checks, or couldn't
478 be vectorized at all, but then this field shouldn't be used.
479 For loop->safelen >= 2, the user has asserted that there are no
480 backward dependencies, but there still could be loop carried forward
481 dependencies in such loops. This flag will be false if normal
482 vectorizer data dependency analysis would fail or require versioning
483 for alias, but because of loop->safelen >= 2 it has been vectorized
484 even without versioning for alias. E.g. in:
485 #pragma omp simd
486 for (int i = 0; i < m; i++)
487 a[i] = a[i + k] * c;
488 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
489 DTRT even for k > 0 && k < m, but without safelen we would not
490 vectorize this, so this field would be false. */
491 bool no_data_dependencies;
493 /* Mark loops having masked stores. */
494 bool has_mask_store;
496 /* If if-conversion versioned this loop before conversion, this is the
497 loop version without if-conversion. */
498 struct loop *scalar_loop;
500 /* For loops being epilogues of already vectorized loops
501 this points to the original vectorized loop. Otherwise NULL. */
502 _loop_vec_info *orig_loop_info;
504 } *loop_vec_info;
506 /* Access Functions. */
507 #define LOOP_VINFO_LOOP(L) (L)->loop
508 #define LOOP_VINFO_BBS(L) (L)->bbs
509 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
510 #define LOOP_VINFO_NITERS(L) (L)->num_iters
511 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
512 prologue peeling retain total unchanged scalar loop iterations for
513 cost model. */
514 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
515 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
516 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
517 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
518 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
519 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
520 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
521 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
522 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
523 #define LOOP_VINFO_MASKS(L) (L)->masks
524 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
525 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
526 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
527 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
528 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
529 #define LOOP_VINFO_DDRS(L) (L)->ddrs
530 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
531 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
532 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
533 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
534 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
535 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
536 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
537 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
538 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
539 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
540 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
541 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
542 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
543 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
544 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
545 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
546 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
547 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
548 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
549 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
550 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
551 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
552 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
553 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
555 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
556 ((L)->may_misalign_stmts.length () > 0)
557 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
558 ((L)->comp_alias_ddrs.length () > 0 \
559 || (L)->check_unequal_addrs.length () > 0 \
560 || (L)->lower_bounds.length () > 0)
561 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
562 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
563 #define LOOP_REQUIRES_VERSIONING(L) \
564 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
565 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
566 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
568 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
569 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
571 #define LOOP_VINFO_EPILOGUE_P(L) \
572 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
574 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
575 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
577 static inline loop_vec_info
578 loop_vec_info_for_loop (struct loop *loop)
580 return (loop_vec_info) loop->aux;
583 static inline bool
584 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
586 return (loop->inner
587 && (loop->inner == (gimple_bb (stmt))->loop_father));
590 typedef struct _bb_vec_info : public vec_info
592 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
593 ~_bb_vec_info ();
595 basic_block bb;
596 gimple_stmt_iterator region_begin;
597 gimple_stmt_iterator region_end;
598 } *bb_vec_info;
600 #define BB_VINFO_BB(B) (B)->bb
601 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
602 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
603 #define BB_VINFO_DATAREFS(B) (B)->datarefs
604 #define BB_VINFO_DDRS(B) (B)->ddrs
605 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
607 static inline bb_vec_info
608 vec_info_for_bb (basic_block bb)
610 return (bb_vec_info) bb->aux;
613 /*-----------------------------------------------------------------*/
614 /* Info on vectorized defs. */
615 /*-----------------------------------------------------------------*/
616 enum stmt_vec_info_type {
617 undef_vec_info_type = 0,
618 load_vec_info_type,
619 store_vec_info_type,
620 shift_vec_info_type,
621 op_vec_info_type,
622 call_vec_info_type,
623 call_simd_clone_vec_info_type,
624 assignment_vec_info_type,
625 condition_vec_info_type,
626 comparison_vec_info_type,
627 reduc_vec_info_type,
628 induc_vec_info_type,
629 type_promotion_vec_info_type,
630 type_demotion_vec_info_type,
631 type_conversion_vec_info_type,
632 loop_exit_ctrl_vec_info_type
635 /* Indicates whether/how a variable is used in the scope of loop/basic
636 block. */
637 enum vect_relevant {
638 vect_unused_in_scope = 0,
640 /* The def is only used outside the loop. */
641 vect_used_only_live,
642 /* The def is in the inner loop, and the use is in the outer loop, and the
643 use is a reduction stmt. */
644 vect_used_in_outer_by_reduction,
645 /* The def is in the inner loop, and the use is in the outer loop (and is
646 not part of reduction). */
647 vect_used_in_outer,
649 /* defs that feed computations that end up (only) in a reduction. These
650 defs may be used by non-reduction stmts, but eventually, any
651 computations/values that are affected by these defs are used to compute
652 a reduction (i.e. don't get stored to memory, for example). We use this
653 to identify computations that we can change the order in which they are
654 computed. */
655 vect_used_by_reduction,
657 vect_used_in_scope
660 /* The type of vectorization that can be applied to the stmt: regular loop-based
661 vectorization; pure SLP - the stmt is a part of SLP instances and does not
662 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
663 a part of SLP instance and also must be loop-based vectorized, since it has
664 uses outside SLP sequences.
666 In the loop context the meanings of pure and hybrid SLP are slightly
667 different. By saying that pure SLP is applied to the loop, we mean that we
668 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
669 vectorized without doing any conceptual unrolling, cause we don't pack
670 together stmts from different iterations, only within a single iteration.
671 Loop hybrid SLP means that we exploit both intra-iteration and
672 inter-iteration parallelism (e.g., number of elements in the vector is 4
673 and the slp-group-size is 2, in which case we don't have enough parallelism
674 within an iteration, so we obtain the rest of the parallelism from subsequent
675 iterations by unrolling the loop by 2). */
676 enum slp_vect_type {
677 loop_vect = 0,
678 pure_slp,
679 hybrid
682 /* Says whether a statement is a load, a store of a vectorized statement
683 result, or a store of an invariant value. */
684 enum vec_load_store_type {
685 VLS_LOAD,
686 VLS_STORE,
687 VLS_STORE_INVARIANT
690 /* Describes how we're going to vectorize an individual load or store,
691 or a group of loads or stores. */
692 enum vect_memory_access_type {
693 /* An access to an invariant address. This is used only for loads. */
694 VMAT_INVARIANT,
696 /* A simple contiguous access. */
697 VMAT_CONTIGUOUS,
699 /* A contiguous access that goes down in memory rather than up,
700 with no additional permutation. This is used only for stores
701 of invariants. */
702 VMAT_CONTIGUOUS_DOWN,
704 /* A simple contiguous access in which the elements need to be permuted
705 after loading or before storing. Only used for loop vectorization;
706 SLP uses separate permutes. */
707 VMAT_CONTIGUOUS_PERMUTE,
709 /* A simple contiguous access in which the elements need to be reversed
710 after loading or before storing. */
711 VMAT_CONTIGUOUS_REVERSE,
713 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
714 VMAT_LOAD_STORE_LANES,
716 /* An access in which each scalar element is loaded or stored
717 individually. */
718 VMAT_ELEMENTWISE,
720 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
721 SLP accesses. Each unrolled iteration uses a contiguous load
722 or store for the whole group, but the groups from separate iterations
723 are combined in the same way as for VMAT_ELEMENTWISE. */
724 VMAT_STRIDED_SLP,
726 /* The access uses gather loads or scatter stores. */
727 VMAT_GATHER_SCATTER
730 typedef struct data_reference *dr_p;
732 typedef struct _stmt_vec_info {
734 enum stmt_vec_info_type type;
736 /* Indicates whether this stmts is part of a computation whose result is
737 used outside the loop. */
738 bool live;
740 /* Stmt is part of some pattern (computation idiom) */
741 bool in_pattern_p;
743 /* Is this statement vectorizable or should it be skipped in (partial)
744 vectorization. */
745 bool vectorizable;
747 /* The stmt to which this info struct refers to. */
748 gimple *stmt;
750 /* The vec_info with respect to which STMT is vectorized. */
751 vec_info *vinfo;
753 /* The vector type to be used for the LHS of this statement. */
754 tree vectype;
756 /* The vectorized version of the stmt. */
757 gimple *vectorized_stmt;
760 /* The following is relevant only for stmts that contain a non-scalar
761 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
762 at most one such data-ref. */
764 /* Information about the data-ref (access function, etc),
765 relative to the inner-most containing loop. */
766 struct data_reference *data_ref_info;
768 /* Information about the data-ref relative to this loop
769 nest (the loop that is being considered for vectorization). */
770 innermost_loop_behavior dr_wrt_vec_loop;
772 /* For loop PHI nodes, the base and evolution part of it. This makes sure
773 this information is still available in vect_update_ivs_after_vectorizer
774 where we may not be able to re-analyze the PHI nodes evolution as
775 peeling for the prologue loop can make it unanalyzable. The evolution
776 part is still correct after peeling, but the base may have changed from
777 the version here. */
778 tree loop_phi_evolution_base_unchanged;
779 tree loop_phi_evolution_part;
781 /* Used for various bookkeeping purposes, generally holding a pointer to
782 some other stmt S that is in some way "related" to this stmt.
783 Current use of this field is:
784 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
785 true): S is the "pattern stmt" that represents (and replaces) the
786 sequence of stmts that constitutes the pattern. Similarly, the
787 related_stmt of the "pattern stmt" points back to this stmt (which is
788 the last stmt in the original sequence of stmts that constitutes the
789 pattern). */
790 gimple *related_stmt;
792 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
793 gimple_seq pattern_def_seq;
795 /* List of datarefs that are known to have the same alignment as the dataref
796 of this stmt. */
797 vec<dr_p> same_align_refs;
799 /* Selected SIMD clone's function info. First vector element
800 is SIMD clone's function decl, followed by a pair of trees (base + step)
801 for linear arguments (pair of NULLs for other arguments). */
802 vec<tree> simd_clone_info;
804 /* Classify the def of this stmt. */
805 enum vect_def_type def_type;
807 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
808 enum slp_vect_type slp_type;
810 /* Interleaving and reduction chains info. */
811 /* First element in the group. */
812 gimple *first_element;
813 /* Pointer to the next element in the group. */
814 gimple *next_element;
815 /* For data-refs, in case that two or more stmts share data-ref, this is the
816 pointer to the previously detected stmt with the same dr. */
817 gimple *same_dr_stmt;
818 /* The size of the group. */
819 unsigned int size;
820 /* For stores, number of stores from this group seen. We vectorize the last
821 one. */
822 unsigned int store_count;
823 /* For loads only, the gap from the previous load. For consecutive loads, GAP
824 is 1. */
825 unsigned int gap;
827 /* The minimum negative dependence distance this stmt participates in
828 or zero if none. */
829 unsigned int min_neg_dist;
831 /* Not all stmts in the loop need to be vectorized. e.g, the increment
832 of the loop induction variable and computation of array indexes. relevant
833 indicates whether the stmt needs to be vectorized. */
834 enum vect_relevant relevant;
836 /* For loads if this is a gather, for stores if this is a scatter. */
837 bool gather_scatter_p;
839 /* True if this is an access with loop-invariant stride. */
840 bool strided_p;
842 /* For both loads and stores. */
843 bool simd_lane_access_p;
845 /* Classifies how the load or store is going to be implemented
846 for loop vectorization. */
847 vect_memory_access_type memory_access_type;
849 /* For reduction loops, this is the type of reduction. */
850 enum vect_reduction_type v_reduc_type;
852 /* For CONST_COND_REDUCTION, record the reduc code. */
853 enum tree_code const_cond_reduc_code;
855 /* On a reduction PHI the reduction type as detected by
856 vect_force_simple_reduction. */
857 enum vect_reduction_type reduc_type;
859 /* On a reduction PHI the def returned by vect_force_simple_reduction.
860 On the def returned by vect_force_simple_reduction the
861 corresponding PHI. */
862 gimple *reduc_def;
864 /* The number of scalar stmt references from active SLP instances. */
865 unsigned int num_slp_uses;
866 } *stmt_vec_info;
868 /* Information about a gather/scatter call. */
869 struct gather_scatter_info {
870 /* The internal function to use for the gather/scatter operation,
871 or IFN_LAST if a built-in function should be used instead. */
872 internal_fn ifn;
874 /* The FUNCTION_DECL for the built-in gather/scatter function,
875 or null if an internal function should be used instead. */
876 tree decl;
878 /* The loop-invariant base value. */
879 tree base;
881 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
882 tree offset;
884 /* Each offset element should be multiplied by this amount before
885 being added to the base. */
886 int scale;
888 /* The definition type for the vectorized offset. */
889 enum vect_def_type offset_dt;
891 /* The type of the vectorized offset. */
892 tree offset_vectype;
894 /* The type of the scalar elements after loading or before storing. */
895 tree element_type;
897 /* The type of the scalar elements being loaded or stored. */
898 tree memory_type;
901 /* Access Functions. */
902 #define STMT_VINFO_TYPE(S) (S)->type
903 #define STMT_VINFO_STMT(S) (S)->stmt
904 inline loop_vec_info
905 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
907 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
908 return loop_vinfo;
909 return NULL;
911 inline bb_vec_info
912 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
914 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
915 return bb_vinfo;
916 return NULL;
918 #define STMT_VINFO_RELEVANT(S) (S)->relevant
919 #define STMT_VINFO_LIVE_P(S) (S)->live
920 #define STMT_VINFO_VECTYPE(S) (S)->vectype
921 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
922 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
923 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
924 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
925 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
926 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
927 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
928 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
929 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
931 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
932 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
933 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
934 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
935 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
936 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
937 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
938 (S)->dr_wrt_vec_loop.base_misalignment
939 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
940 (S)->dr_wrt_vec_loop.offset_alignment
941 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
942 (S)->dr_wrt_vec_loop.step_alignment
944 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
945 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
946 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
947 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
948 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
949 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
950 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element
951 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element
952 #define STMT_VINFO_GROUP_SIZE(S) (S)->size
953 #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count
954 #define STMT_VINFO_GROUP_GAP(S) (S)->gap
955 #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
956 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info)
957 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
958 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
959 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
960 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
961 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
962 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
964 #define GROUP_FIRST_ELEMENT(S) (S)->first_element
965 #define GROUP_NEXT_ELEMENT(S) (S)->next_element
966 #define GROUP_SIZE(S) (S)->size
967 #define GROUP_STORE_COUNT(S) (S)->store_count
968 #define GROUP_GAP(S) (S)->gap
969 #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
971 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
973 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
974 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
975 #define STMT_SLP_TYPE(S) (S)->slp_type
977 struct dataref_aux {
978 /* The misalignment in bytes of the reference, or -1 if not known. */
979 int misalignment;
980 /* The byte alignment that we'd ideally like the reference to have,
981 and the value that misalignment is measured against. */
982 int target_alignment;
983 /* If true the alignment of base_decl needs to be increased. */
984 bool base_misaligned;
985 tree base_decl;
988 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
990 #define VECT_MAX_COST 1000
992 /* The maximum number of intermediate steps required in multi-step type
993 conversion. */
994 #define MAX_INTERM_CVT_STEPS 3
996 #define MAX_VECTORIZATION_FACTOR INT_MAX
998 /* Nonzero if TYPE represents a (scalar) boolean type or type
999 in the middle-end compatible with it (unsigned precision 1 integral
1000 types). Used to determine which types should be vectorized as
1001 VECTOR_BOOLEAN_TYPE_P. */
1003 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1004 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1005 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1006 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1007 && TYPE_PRECISION (TYPE) == 1 \
1008 && TYPE_UNSIGNED (TYPE)))
1010 extern vec<stmt_vec_info> stmt_vec_info_vec;
1012 void init_stmt_vec_info_vec (void);
1013 void free_stmt_vec_info_vec (void);
1015 /* Return a stmt_vec_info corresponding to STMT. */
1017 static inline stmt_vec_info
1018 vinfo_for_stmt (gimple *stmt)
1020 int uid = gimple_uid (stmt);
1021 if (uid <= 0)
1022 return NULL;
1024 return stmt_vec_info_vec[uid - 1];
1027 /* Set vectorizer information INFO for STMT. */
1029 static inline void
1030 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1032 unsigned int uid = gimple_uid (stmt);
1033 if (uid == 0)
1035 gcc_checking_assert (info);
1036 uid = stmt_vec_info_vec.length () + 1;
1037 gimple_set_uid (stmt, uid);
1038 stmt_vec_info_vec.safe_push (info);
1040 else
1042 gcc_checking_assert (info == NULL);
1043 stmt_vec_info_vec[uid - 1] = info;
1047 /* Return the earlier statement between STMT1 and STMT2. */
1049 static inline gimple *
1050 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
1052 unsigned int uid1, uid2;
1054 if (stmt1 == NULL)
1055 return stmt2;
1057 if (stmt2 == NULL)
1058 return stmt1;
1060 uid1 = gimple_uid (stmt1);
1061 uid2 = gimple_uid (stmt2);
1063 if (uid1 == 0 || uid2 == 0)
1064 return NULL;
1066 gcc_checking_assert (uid1 <= stmt_vec_info_vec.length ()
1067 && uid2 <= stmt_vec_info_vec.length ());
1069 if (uid1 < uid2)
1070 return stmt1;
1071 else
1072 return stmt2;
1075 /* Return the later statement between STMT1 and STMT2. */
1077 static inline gimple *
1078 get_later_stmt (gimple *stmt1, gimple *stmt2)
1080 unsigned int uid1, uid2;
1082 if (stmt1 == NULL)
1083 return stmt2;
1085 if (stmt2 == NULL)
1086 return stmt1;
1088 uid1 = gimple_uid (stmt1);
1089 uid2 = gimple_uid (stmt2);
1091 if (uid1 == 0 || uid2 == 0)
1092 return NULL;
1094 gcc_assert (uid1 <= stmt_vec_info_vec.length ());
1095 gcc_assert (uid2 <= stmt_vec_info_vec.length ());
1097 if (uid1 > uid2)
1098 return stmt1;
1099 else
1100 return stmt2;
1103 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1104 pattern. */
1106 static inline bool
1107 is_pattern_stmt_p (stmt_vec_info stmt_info)
1109 gimple *related_stmt;
1110 stmt_vec_info related_stmt_info;
1112 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1113 if (related_stmt
1114 && (related_stmt_info = vinfo_for_stmt (related_stmt))
1115 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
1116 return true;
1118 return false;
1121 /* Return true if BB is a loop header. */
1123 static inline bool
1124 is_loop_header_bb_p (basic_block bb)
1126 if (bb == (bb->loop_father)->header)
1127 return true;
1128 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1129 return false;
1132 /* Return pow2 (X). */
1134 static inline int
1135 vect_pow2 (int x)
1137 int i, res = 1;
1139 for (i = 0; i < x; i++)
1140 res *= 2;
1142 return res;
1145 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1147 static inline int
1148 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1149 tree vectype, int misalign)
1151 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1152 vectype, misalign);
1155 /* Get cost by calling cost target builtin. */
1157 static inline
1158 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1160 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1163 /* Alias targetm.vectorize.init_cost. */
1165 static inline void *
1166 init_cost (struct loop *loop_info)
1168 return targetm.vectorize.init_cost (loop_info);
1171 /* Alias targetm.vectorize.add_stmt_cost. */
1173 static inline unsigned
1174 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1175 stmt_vec_info stmt_info, int misalign,
1176 enum vect_cost_model_location where)
1178 return targetm.vectorize.add_stmt_cost (data, count, kind,
1179 stmt_info, misalign, where);
1182 /* Alias targetm.vectorize.finish_cost. */
1184 static inline void
1185 finish_cost (void *data, unsigned *prologue_cost,
1186 unsigned *body_cost, unsigned *epilogue_cost)
1188 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1191 /* Alias targetm.vectorize.destroy_cost_data. */
1193 static inline void
1194 destroy_cost_data (void *data)
1196 targetm.vectorize.destroy_cost_data (data);
1199 /*-----------------------------------------------------------------*/
1200 /* Info on data references alignment. */
1201 /*-----------------------------------------------------------------*/
1202 inline void
1203 set_dr_misalignment (struct data_reference *dr, int val)
1205 dataref_aux *data_aux = DR_VECT_AUX (dr);
1207 if (!data_aux)
1209 data_aux = XCNEW (dataref_aux);
1210 dr->aux = data_aux;
1213 data_aux->misalignment = val;
1216 inline int
1217 dr_misalignment (struct data_reference *dr)
1219 return DR_VECT_AUX (dr)->misalignment;
1222 /* Reflects actual alignment of first access in the vectorized loop,
1223 taking into account peeling/versioning if applied. */
1224 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1225 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1226 #define DR_MISALIGNMENT_UNKNOWN (-1)
1228 /* Only defined once DR_MISALIGNMENT is defined. */
1229 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1231 /* Return true if data access DR is aligned to its target alignment
1232 (which may be less than a full vector). */
1234 static inline bool
1235 aligned_access_p (struct data_reference *data_ref_info)
1237 return (DR_MISALIGNMENT (data_ref_info) == 0);
1240 /* Return TRUE if the alignment of the data access is known, and FALSE
1241 otherwise. */
1243 static inline bool
1244 known_alignment_for_access_p (struct data_reference *data_ref_info)
1246 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1249 /* Return the minimum alignment in bytes that the vectorized version
1250 of DR is guaranteed to have. */
1252 static inline unsigned int
1253 vect_known_alignment_in_bytes (struct data_reference *dr)
1255 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1256 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1257 if (DR_MISALIGNMENT (dr) == 0)
1258 return DR_TARGET_ALIGNMENT (dr);
1259 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1262 /* Return the behavior of DR with respect to the vectorization context
1263 (which for outer loop vectorization might not be the behavior recorded
1264 in DR itself). */
1266 static inline innermost_loop_behavior *
1267 vect_dr_behavior (data_reference *dr)
1269 gimple *stmt = DR_STMT (dr);
1270 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1271 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1272 if (loop_vinfo == NULL
1273 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1274 return &DR_INNERMOST (dr);
1275 else
1276 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1279 /* Return true if the vect cost model is unlimited. */
1280 static inline bool
1281 unlimited_cost_model (loop_p loop)
1283 if (loop != NULL && loop->force_vectorize
1284 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1285 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1286 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1289 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1290 if the first iteration should use a partial mask in order to achieve
1291 alignment. */
1293 static inline bool
1294 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1296 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1297 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1300 /* Return the number of vectors of type VECTYPE that are needed to get
1301 NUNITS elements. NUNITS should be based on the vectorization factor,
1302 so it is always a known multiple of the number of elements in VECTYPE. */
1304 static inline unsigned int
1305 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1307 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1310 /* Return the number of copies needed for loop vectorization when
1311 a statement operates on vectors of type VECTYPE. This is the
1312 vectorization factor divided by the number of elements in
1313 VECTYPE and is always known at compile time. */
1315 static inline unsigned int
1316 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1318 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1321 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1322 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1323 if we haven't yet recorded any vector types. */
1325 static inline void
1326 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1328 /* All unit counts have the form current_vector_size * X for some
1329 rational X, so two unit sizes must have a common multiple.
1330 Everything is a multiple of the initial value of 1. */
1331 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1332 *max_nunits = force_common_multiple (*max_nunits, nunits);
1335 /* Return the vectorization factor that should be used for costing
1336 purposes while vectorizing the loop described by LOOP_VINFO.
1337 Pick a reasonable estimate if the vectorization factor isn't
1338 known at compile time. */
1340 static inline unsigned int
1341 vect_vf_for_cost (loop_vec_info loop_vinfo)
1343 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1346 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1347 Pick a reasonable estimate if the exact number isn't known at
1348 compile time. */
1350 static inline unsigned int
1351 vect_nunits_for_cost (tree vec_type)
1353 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1356 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1358 static inline unsigned HOST_WIDE_INT
1359 vect_max_vf (loop_vec_info loop_vinfo)
1361 unsigned HOST_WIDE_INT vf;
1362 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1363 return vf;
1364 return MAX_VECTORIZATION_FACTOR;
1367 /* Return the size of the value accessed by unvectorized data reference DR.
1368 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1369 associated gimple statement, since that guarantees that DR accesses
1370 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1371 includes things like V1SI, which can be vectorized in the same way
1372 as a plain SI.) */
1374 inline unsigned int
1375 vect_get_scalar_dr_size (struct data_reference *dr)
1377 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1380 /* Source location */
1381 extern source_location vect_location;
1383 /*-----------------------------------------------------------------*/
1384 /* Function prototypes. */
1385 /*-----------------------------------------------------------------*/
1387 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1388 in tree-vect-loop-manip.c. */
1389 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1390 tree, tree, tree, bool);
1391 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1392 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1393 struct loop *, edge);
1394 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1395 poly_uint64);
1396 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1397 tree *, tree *, tree *, int, bool, bool);
1398 extern void vect_prepare_for_masked_peels (loop_vec_info);
1399 extern source_location find_loop_location (struct loop *);
1400 extern bool vect_can_advance_ivs_p (loop_vec_info);
1402 /* In tree-vect-stmts.c. */
1403 extern poly_uint64 current_vector_size;
1404 extern tree get_vectype_for_scalar_type (tree);
1405 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1406 extern tree get_mask_type_for_scalar_type (tree);
1407 extern tree get_same_sized_vectype (tree, tree);
1408 extern bool vect_get_loop_mask_type (loop_vec_info);
1409 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1410 enum vect_def_type *);
1411 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1412 enum vect_def_type *, tree *);
1413 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1414 tree, enum tree_code *,
1415 enum tree_code *, int *,
1416 vec<tree> *);
1417 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1418 enum tree_code *,
1419 int *, vec<tree> *);
1420 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1421 extern void free_stmt_vec_info (gimple *stmt);
1422 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
1423 int, stmt_vector_for_cost *,
1424 stmt_vector_for_cost *);
1425 extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type,
1426 vec_load_store_type, slp_tree,
1427 stmt_vector_for_cost *,
1428 stmt_vector_for_cost *);
1429 extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type,
1430 slp_tree, stmt_vector_for_cost *,
1431 stmt_vector_for_cost *);
1432 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1433 enum vect_cost_for_stmt, stmt_vec_info,
1434 int, enum vect_cost_model_location);
1435 extern void vect_finish_replace_stmt (gimple *, gimple *);
1436 extern void vect_finish_stmt_generation (gimple *, gimple *,
1437 gimple_stmt_iterator *);
1438 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1439 extern tree vect_get_store_rhs (gimple *);
1440 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1441 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1442 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1443 vec<tree> *, slp_tree);
1444 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1445 vec<tree> *, vec<tree> *);
1446 extern tree vect_init_vector (gimple *, tree, tree,
1447 gimple_stmt_iterator *);
1448 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1449 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1450 bool *, slp_tree, slp_instance);
1451 extern void vect_remove_stores (gimple *);
1452 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance);
1453 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1454 gimple **, tree, int, slp_tree);
1455 extern void vect_get_load_cost (struct data_reference *, int, bool,
1456 unsigned int *, unsigned int *,
1457 stmt_vector_for_cost *,
1458 stmt_vector_for_cost *, bool);
1459 extern void vect_get_store_cost (struct data_reference *, int,
1460 unsigned int *, stmt_vector_for_cost *);
1461 extern bool vect_supportable_shift (enum tree_code, tree);
1462 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1463 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1464 extern void optimize_mask_stores (struct loop*);
1465 extern gcall *vect_gen_while (tree, tree, tree);
1466 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1468 /* In tree-vect-data-refs.c. */
1469 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1470 extern enum dr_alignment_support vect_supportable_dr_alignment
1471 (struct data_reference *, bool);
1472 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1473 HOST_WIDE_INT *);
1474 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1475 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1476 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1477 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1478 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1479 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1480 extern bool vect_analyze_data_ref_accesses (vec_info *);
1481 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1482 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1483 signop, int, internal_fn *, tree *);
1484 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1485 gather_scatter_info *);
1486 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1487 extern void vect_record_base_alignments (vec_info *);
1488 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1489 tree *, gimple_stmt_iterator *,
1490 gimple **, bool, bool *,
1491 tree = NULL_TREE, tree = NULL_TREE);
1492 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1493 tree);
1494 extern tree vect_create_destination_var (tree, tree);
1495 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1496 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1497 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1498 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1499 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1500 gimple_stmt_iterator *, vec<tree> *);
1501 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1502 enum dr_alignment_support, tree,
1503 struct loop **);
1504 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1505 gimple_stmt_iterator *);
1506 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1507 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1508 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1509 const char * = NULL);
1510 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1511 tree, tree = NULL_TREE);
1513 /* In tree-vect-loop.c. */
1514 /* FORNOW: Used in tree-parloops.c. */
1515 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1516 bool *, bool);
1517 /* Used in gimple-loop-interchange.c. */
1518 extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
1519 enum tree_code);
1520 /* Drive for loop analysis stage. */
1521 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1522 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1523 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1524 tree *, bool);
1525 extern tree vect_halve_mask_nunits (tree);
1526 extern tree vect_double_mask_nunits (tree);
1527 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1528 unsigned int, tree);
1529 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1530 unsigned int, tree, unsigned int);
1532 /* Drive for loop transformation stage. */
1533 extern struct loop *vect_transform_loop (loop_vec_info);
1534 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1535 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1536 slp_tree, int, gimple **);
1537 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1538 gimple **, slp_tree, slp_instance);
1539 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1540 gimple **, slp_tree);
1541 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1542 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1543 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1544 stmt_vector_for_cost *,
1545 stmt_vector_for_cost *,
1546 stmt_vector_for_cost *);
1548 /* In tree-vect-slp.c. */
1549 extern void vect_free_slp_instance (slp_instance);
1550 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1551 gimple_stmt_iterator *, poly_uint64,
1552 slp_instance, bool, unsigned *);
1553 extern bool vect_slp_analyze_operations (vec_info *);
1554 extern bool vect_schedule_slp (vec_info *);
1555 extern bool vect_analyze_slp (vec_info *, unsigned);
1556 extern bool vect_make_slp_decision (loop_vec_info);
1557 extern void vect_detect_hybrid_slp (loop_vec_info);
1558 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1559 extern bool vect_slp_bb (basic_block);
1560 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1561 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1562 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1563 unsigned int * = NULL,
1564 tree * = NULL, tree * = NULL);
1565 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1566 unsigned int, vec<tree> &);
1568 /* In tree-vect-patterns.c. */
1569 /* Pattern recognition functions.
1570 Additional pattern recognition functions can (and will) be added
1571 in the future. */
1572 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1573 #define NUM_PATTERNS 15
1574 void vect_pattern_recog (vec_info *);
1576 /* In tree-vectorizer.c. */
1577 unsigned vectorize_loops (void);
1578 bool vect_stmt_in_region_p (vec_info *, gimple *);
1579 void vect_free_loop_info_assumptions (struct loop *);
1581 #endif /* GCC_TREE_VECTORIZER_H */