PR tree-optimization/27865
[official-gcc.git] / gcc / tree-vrp.c
blob5f53211475796bf0446e6f4c6810dbf68abfce93
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
290 return vr;
293 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
295 static inline bool
296 vrp_operand_equal_p (tree val1, tree val2)
298 return (val1 == val2
299 || (val1 && val2
300 && operand_equal_p (val1, val2, 0)));
303 /* Return true, if the bitmaps B1 and B2 are equal. */
305 static inline bool
306 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
308 return (b1 == b2
309 || (b1 && b2
310 && bitmap_equal_p (b1, b2)));
313 /* Update the value range and equivalence set for variable VAR to
314 NEW_VR. Return true if NEW_VR is different from VAR's previous
315 value.
317 NOTE: This function assumes that NEW_VR is a temporary value range
318 object created for the sole purpose of updating VAR's range. The
319 storage used by the equivalence set from NEW_VR will be freed by
320 this function. Do not call update_value_range when NEW_VR
321 is the range object associated with another SSA name. */
323 static inline bool
324 update_value_range (tree var, value_range_t *new_vr)
326 value_range_t *old_vr;
327 bool is_new;
329 /* Update the value range, if necessary. */
330 old_vr = get_value_range (var);
331 is_new = old_vr->type != new_vr->type
332 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
333 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
334 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
336 if (is_new)
337 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
338 new_vr->equiv);
340 BITMAP_FREE (new_vr->equiv);
341 new_vr->equiv = NULL;
343 return is_new;
347 /* Add VAR and VAR's equivalence set to EQUIV. */
349 static void
350 add_equivalence (bitmap equiv, tree var)
352 unsigned ver = SSA_NAME_VERSION (var);
353 value_range_t *vr = vr_value[ver];
355 bitmap_set_bit (equiv, ver);
356 if (vr && vr->equiv)
357 bitmap_ior_into (equiv, vr->equiv);
361 /* Return true if VR is ~[0, 0]. */
363 static inline bool
364 range_is_nonnull (value_range_t *vr)
366 return vr->type == VR_ANTI_RANGE
367 && integer_zerop (vr->min)
368 && integer_zerop (vr->max);
372 /* Return true if VR is [0, 0]. */
374 static inline bool
375 range_is_null (value_range_t *vr)
377 return vr->type == VR_RANGE
378 && integer_zerop (vr->min)
379 && integer_zerop (vr->max);
383 /* Return true if value range VR involves at least one symbol. */
385 static inline bool
386 symbolic_range_p (value_range_t *vr)
388 return (!is_gimple_min_invariant (vr->min)
389 || !is_gimple_min_invariant (vr->max));
392 /* Like tree_expr_nonnegative_p, but this function uses value ranges
393 obtained so far. */
395 static bool
396 vrp_expr_computes_nonnegative (tree expr)
398 return tree_expr_nonnegative_p (expr);
401 /* Like tree_expr_nonzero_p, but this function uses value ranges
402 obtained so far. */
404 static bool
405 vrp_expr_computes_nonzero (tree expr)
407 if (tree_expr_nonzero_p (expr))
408 return true;
410 /* If we have an expression of the form &X->a, then the expression
411 is nonnull if X is nonnull. */
412 if (TREE_CODE (expr) == ADDR_EXPR)
414 tree base = get_base_address (TREE_OPERAND (expr, 0));
416 if (base != NULL_TREE
417 && TREE_CODE (base) == INDIRECT_REF
418 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
420 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
421 if (range_is_nonnull (vr))
422 return true;
426 return false;
429 /* Returns true if EXPR is a valid value (as expected by compare_values) --
430 a gimple invariant, or SSA_NAME +- CST. */
432 static bool
433 valid_value_p (tree expr)
435 if (TREE_CODE (expr) == SSA_NAME)
436 return true;
438 if (TREE_CODE (expr) == PLUS_EXPR
439 || TREE_CODE (expr) == MINUS_EXPR)
440 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
441 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
443 return is_gimple_min_invariant (expr);
446 /* Compare two values VAL1 and VAL2. Return
448 -2 if VAL1 and VAL2 cannot be compared at compile-time,
449 -1 if VAL1 < VAL2,
450 0 if VAL1 == VAL2,
451 +1 if VAL1 > VAL2, and
452 +2 if VAL1 != VAL2
454 This is similar to tree_int_cst_compare but supports pointer values
455 and values that cannot be compared at compile time. */
457 static int
458 compare_values (tree val1, tree val2)
460 if (val1 == val2)
461 return 0;
463 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
464 both integers. */
465 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
466 == POINTER_TYPE_P (TREE_TYPE (val2)));
468 if ((TREE_CODE (val1) == SSA_NAME
469 || TREE_CODE (val1) == PLUS_EXPR
470 || TREE_CODE (val1) == MINUS_EXPR)
471 && (TREE_CODE (val2) == SSA_NAME
472 || TREE_CODE (val2) == PLUS_EXPR
473 || TREE_CODE (val2) == MINUS_EXPR))
475 tree n1, c1, n2, c2;
476 enum tree_code code1, code2;
478 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
479 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
480 same name, return -2. */
481 if (TREE_CODE (val1) == SSA_NAME)
483 code1 = SSA_NAME;
484 n1 = val1;
485 c1 = NULL_TREE;
487 else
489 code1 = TREE_CODE (val1);
490 n1 = TREE_OPERAND (val1, 0);
491 c1 = TREE_OPERAND (val1, 1);
492 if (tree_int_cst_sgn (c1) == -1)
494 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
495 if (!c1)
496 return -2;
497 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
501 if (TREE_CODE (val2) == SSA_NAME)
503 code2 = SSA_NAME;
504 n2 = val2;
505 c2 = NULL_TREE;
507 else
509 code2 = TREE_CODE (val2);
510 n2 = TREE_OPERAND (val2, 0);
511 c2 = TREE_OPERAND (val2, 1);
512 if (tree_int_cst_sgn (c2) == -1)
514 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
515 if (!c2)
516 return -2;
517 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
521 /* Both values must use the same name. */
522 if (n1 != n2)
523 return -2;
525 if (code1 == SSA_NAME
526 && code2 == SSA_NAME)
527 /* NAME == NAME */
528 return 0;
530 /* If overflow is defined we cannot simplify more. */
531 if (TYPE_UNSIGNED (TREE_TYPE (val1))
532 || flag_wrapv)
533 return -2;
535 if (code1 == SSA_NAME)
537 if (code2 == PLUS_EXPR)
538 /* NAME < NAME + CST */
539 return -1;
540 else if (code2 == MINUS_EXPR)
541 /* NAME > NAME - CST */
542 return 1;
544 else if (code1 == PLUS_EXPR)
546 if (code2 == SSA_NAME)
547 /* NAME + CST > NAME */
548 return 1;
549 else if (code2 == PLUS_EXPR)
550 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
551 return compare_values (c1, c2);
552 else if (code2 == MINUS_EXPR)
553 /* NAME + CST1 > NAME - CST2 */
554 return 1;
556 else if (code1 == MINUS_EXPR)
558 if (code2 == SSA_NAME)
559 /* NAME - CST < NAME */
560 return -1;
561 else if (code2 == PLUS_EXPR)
562 /* NAME - CST1 < NAME + CST2 */
563 return -1;
564 else if (code2 == MINUS_EXPR)
565 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
566 C1 and C2 are swapped in the call to compare_values. */
567 return compare_values (c2, c1);
570 gcc_unreachable ();
573 /* We cannot compare non-constants. */
574 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
575 return -2;
577 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
579 /* We cannot compare overflowed values. */
580 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
581 return -2;
583 return tree_int_cst_compare (val1, val2);
585 else
587 tree t;
589 /* First see if VAL1 and VAL2 are not the same. */
590 if (val1 == val2 || operand_equal_p (val1, val2, 0))
591 return 0;
593 /* If VAL1 is a lower address than VAL2, return -1. */
594 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
595 if (t == boolean_true_node)
596 return -1;
598 /* If VAL1 is a higher address than VAL2, return +1. */
599 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
600 if (t == boolean_true_node)
601 return 1;
603 /* If VAL1 is different than VAL2, return +2. */
604 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
605 if (t == boolean_true_node)
606 return 2;
608 return -2;
613 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
614 0 if VAL is not inside VR,
615 -2 if we cannot tell either way.
617 FIXME, the current semantics of this functions are a bit quirky
618 when taken in the context of VRP. In here we do not care
619 about VR's type. If VR is the anti-range ~[3, 5] the call
620 value_inside_range (4, VR) will return 1.
622 This is counter-intuitive in a strict sense, but the callers
623 currently expect this. They are calling the function
624 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
625 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
626 themselves.
628 This also applies to value_ranges_intersect_p and
629 range_includes_zero_p. The semantics of VR_RANGE and
630 VR_ANTI_RANGE should be encoded here, but that also means
631 adapting the users of these functions to the new semantics. */
633 static inline int
634 value_inside_range (tree val, value_range_t *vr)
636 tree cmp1, cmp2;
638 cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
639 if (!cmp1)
640 return -2;
642 cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
643 if (!cmp2)
644 return -2;
646 return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
650 /* Return true if value ranges VR0 and VR1 have a non-empty
651 intersection. */
653 static inline bool
654 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
656 return (value_inside_range (vr1->min, vr0) == 1
657 || value_inside_range (vr1->max, vr0) == 1
658 || value_inside_range (vr0->min, vr1) == 1
659 || value_inside_range (vr0->max, vr1) == 1);
663 /* Return true if VR includes the value zero, false otherwise. FIXME,
664 currently this will return false for an anti-range like ~[-4, 3].
665 This will be wrong when the semantics of value_inside_range are
666 modified (currently the users of this function expect these
667 semantics). */
669 static inline bool
670 range_includes_zero_p (value_range_t *vr)
672 tree zero;
674 gcc_assert (vr->type != VR_UNDEFINED
675 && vr->type != VR_VARYING
676 && !symbolic_range_p (vr));
678 zero = build_int_cst (TREE_TYPE (vr->min), 0);
679 return (value_inside_range (zero, vr) == 1);
682 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
683 false otherwise or if no value range information is available. */
685 bool
686 ssa_name_nonnegative_p (tree t)
688 value_range_t *vr = get_value_range (t);
690 if (!vr)
691 return false;
693 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
694 which would return a useful value should be encoded as a VR_RANGE. */
695 if (vr->type == VR_RANGE)
697 int result = compare_values (vr->min, integer_zero_node);
699 return (result == 0 || result == 1);
701 return false;
704 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
705 false otherwise or if no value range information is available. */
707 bool
708 ssa_name_nonzero_p (tree t)
710 value_range_t *vr = get_value_range (t);
712 if (!vr)
713 return false;
715 /* A VR_RANGE which does not include zero is a nonzero value. */
716 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
717 return ! range_includes_zero_p (vr);
719 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
720 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
721 return range_includes_zero_p (vr);
723 return false;
727 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
728 initially consider X_i and Y_j equivalent, so the equivalence set
729 of Y_j is added to the equivalence set of X_i. However, it is
730 possible to have a chain of ASSERT_EXPRs whose predicates are
731 actually incompatible. This is usually the result of nesting of
732 contradictory if-then-else statements. For instance, in PR 24670:
734 count_4 has range [-INF, 63]
736 if (count_4 != 0)
738 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
739 if (count_19 > 63)
741 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
742 if (count_18 <= 63)
747 Notice that 'if (count_19 > 63)' is trivially false and will be
748 folded out at the end. However, during propagation, the flowgraph
749 is not cleaned up and so, VRP will evaluate predicates more
750 predicates than necessary, so it must support these
751 inconsistencies. The problem here is that because of the chaining
752 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
753 Since count_4 has an incompatible range, we ICE when evaluating the
754 ranges in the equivalency set. So, we need to remove count_4 from
755 it. */
757 static void
758 fix_equivalence_set (value_range_t *vr_p)
760 bitmap_iterator bi;
761 unsigned i;
762 bitmap e = vr_p->equiv;
763 bitmap to_remove;
765 /* Only detect inconsistencies on numeric ranges. */
766 if (vr_p->type == VR_VARYING
767 || vr_p->type == VR_UNDEFINED
768 || symbolic_range_p (vr_p))
769 return;
771 to_remove = BITMAP_ALLOC (NULL);
772 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
774 value_range_t *equiv_vr = vr_value[i];
776 if (equiv_vr->type == VR_VARYING
777 || equiv_vr->type == VR_UNDEFINED
778 || symbolic_range_p (equiv_vr))
779 continue;
781 if (equiv_vr->type == VR_RANGE
782 && vr_p->type == VR_RANGE
783 && !value_ranges_intersect_p (vr_p, equiv_vr))
784 bitmap_set_bit (to_remove, i);
785 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
786 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
788 /* A range and an anti-range have an empty intersection if
789 their end points are the same. FIXME,
790 value_ranges_intersect_p should handle this
791 automatically. */
792 if (compare_values (equiv_vr->min, vr_p->min) == 0
793 && compare_values (equiv_vr->max, vr_p->max) == 0)
794 bitmap_set_bit (to_remove, i);
798 bitmap_and_compl_into (vr_p->equiv, to_remove);
799 BITMAP_FREE (to_remove);
803 /* Extract value range information from an ASSERT_EXPR EXPR and store
804 it in *VR_P. */
806 static void
807 extract_range_from_assert (value_range_t *vr_p, tree expr)
809 tree var, cond, limit, min, max, type;
810 value_range_t *var_vr, *limit_vr;
811 enum tree_code cond_code;
813 var = ASSERT_EXPR_VAR (expr);
814 cond = ASSERT_EXPR_COND (expr);
816 gcc_assert (COMPARISON_CLASS_P (cond));
818 /* Find VAR in the ASSERT_EXPR conditional. */
819 if (var == TREE_OPERAND (cond, 0))
821 /* If the predicate is of the form VAR COMP LIMIT, then we just
822 take LIMIT from the RHS and use the same comparison code. */
823 limit = TREE_OPERAND (cond, 1);
824 cond_code = TREE_CODE (cond);
826 else
828 /* If the predicate is of the form LIMIT COMP VAR, then we need
829 to flip around the comparison code to create the proper range
830 for VAR. */
831 limit = TREE_OPERAND (cond, 0);
832 cond_code = swap_tree_comparison (TREE_CODE (cond));
835 type = TREE_TYPE (limit);
836 gcc_assert (limit != var);
838 /* For pointer arithmetic, we only keep track of pointer equality
839 and inequality. */
840 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
842 set_value_range_to_varying (vr_p);
843 return;
846 /* If LIMIT is another SSA name and LIMIT has a range of its own,
847 try to use LIMIT's range to avoid creating symbolic ranges
848 unnecessarily. */
849 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
851 /* LIMIT's range is only interesting if it has any useful information. */
852 if (limit_vr
853 && (limit_vr->type == VR_UNDEFINED
854 || limit_vr->type == VR_VARYING
855 || symbolic_range_p (limit_vr)))
856 limit_vr = NULL;
858 /* Initially, the new range has the same set of equivalences of
859 VAR's range. This will be revised before returning the final
860 value. Since assertions may be chained via mutually exclusive
861 predicates, we will need to trim the set of equivalences before
862 we are done. */
863 gcc_assert (vr_p->equiv == NULL);
864 vr_p->equiv = BITMAP_ALLOC (NULL);
865 add_equivalence (vr_p->equiv, var);
867 /* Extract a new range based on the asserted comparison for VAR and
868 LIMIT's value range. Notice that if LIMIT has an anti-range, we
869 will only use it for equality comparisons (EQ_EXPR). For any
870 other kind of assertion, we cannot derive a range from LIMIT's
871 anti-range that can be used to describe the new range. For
872 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
873 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
874 no single range for x_2 that could describe LE_EXPR, so we might
875 as well build the range [b_4, +INF] for it. */
876 if (cond_code == EQ_EXPR)
878 enum value_range_type range_type;
880 if (limit_vr)
882 range_type = limit_vr->type;
883 min = limit_vr->min;
884 max = limit_vr->max;
886 else
888 range_type = VR_RANGE;
889 min = limit;
890 max = limit;
893 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
895 /* When asserting the equality VAR == LIMIT and LIMIT is another
896 SSA name, the new range will also inherit the equivalence set
897 from LIMIT. */
898 if (TREE_CODE (limit) == SSA_NAME)
899 add_equivalence (vr_p->equiv, limit);
901 else if (cond_code == NE_EXPR)
903 /* As described above, when LIMIT's range is an anti-range and
904 this assertion is an inequality (NE_EXPR), then we cannot
905 derive anything from the anti-range. For instance, if
906 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
907 not imply that VAR's range is [0, 0]. So, in the case of
908 anti-ranges, we just assert the inequality using LIMIT and
909 not its anti-range.
911 If LIMIT_VR is a range, we can only use it to build a new
912 anti-range if LIMIT_VR is a single-valued range. For
913 instance, if LIMIT_VR is [0, 1], the predicate
914 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
915 Rather, it means that for value 0 VAR should be ~[0, 0]
916 and for value 1, VAR should be ~[1, 1]. We cannot
917 represent these ranges.
919 The only situation in which we can build a valid
920 anti-range is when LIMIT_VR is a single-valued range
921 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
922 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
923 if (limit_vr
924 && limit_vr->type == VR_RANGE
925 && compare_values (limit_vr->min, limit_vr->max) == 0)
927 min = limit_vr->min;
928 max = limit_vr->max;
930 else
932 /* In any other case, we cannot use LIMIT's range to build a
933 valid anti-range. */
934 min = max = limit;
937 /* If MIN and MAX cover the whole range for their type, then
938 just use the original LIMIT. */
939 if (INTEGRAL_TYPE_P (type)
940 && min == TYPE_MIN_VALUE (type)
941 && max == TYPE_MAX_VALUE (type))
942 min = max = limit;
944 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
946 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
948 min = TYPE_MIN_VALUE (type);
950 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
951 max = limit;
952 else
954 /* If LIMIT_VR is of the form [N1, N2], we need to build the
955 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
956 LT_EXPR. */
957 max = limit_vr->max;
960 /* If the maximum value forces us to be out of bounds, simply punt.
961 It would be pointless to try and do anything more since this
962 all should be optimized away above us. */
963 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
964 set_value_range_to_varying (vr_p);
965 else
967 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
968 if (cond_code == LT_EXPR)
970 tree one = build_int_cst (type, 1);
971 max = fold_build2 (MINUS_EXPR, type, max, one);
974 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
977 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
979 max = TYPE_MAX_VALUE (type);
981 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
982 min = limit;
983 else
985 /* If LIMIT_VR is of the form [N1, N2], we need to build the
986 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
987 GT_EXPR. */
988 min = limit_vr->min;
991 /* If the minimum value forces us to be out of bounds, simply punt.
992 It would be pointless to try and do anything more since this
993 all should be optimized away above us. */
994 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
995 set_value_range_to_varying (vr_p);
996 else
998 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
999 if (cond_code == GT_EXPR)
1001 tree one = build_int_cst (type, 1);
1002 min = fold_build2 (PLUS_EXPR, type, min, one);
1005 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1008 else
1009 gcc_unreachable ();
1011 /* If VAR already had a known range, it may happen that the new
1012 range we have computed and VAR's range are not compatible. For
1013 instance,
1015 if (p_5 == NULL)
1016 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1017 x_7 = p_6->fld;
1018 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1020 While the above comes from a faulty program, it will cause an ICE
1021 later because p_8 and p_6 will have incompatible ranges and at
1022 the same time will be considered equivalent. A similar situation
1023 would arise from
1025 if (i_5 > 10)
1026 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1027 if (i_5 < 5)
1028 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1030 Again i_6 and i_7 will have incompatible ranges. It would be
1031 pointless to try and do anything with i_7's range because
1032 anything dominated by 'if (i_5 < 5)' will be optimized away.
1033 Note, due to the wa in which simulation proceeds, the statement
1034 i_7 = ASSERT_EXPR <...> we would never be visited because the
1035 conditional 'if (i_5 < 5)' always evaluates to false. However,
1036 this extra check does not hurt and may protect against future
1037 changes to VRP that may get into a situation similar to the
1038 NULL pointer dereference example.
1040 Note that these compatibility tests are only needed when dealing
1041 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1042 are both anti-ranges, they will always be compatible, because two
1043 anti-ranges will always have a non-empty intersection. */
1045 var_vr = get_value_range (var);
1047 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1048 ranges or anti-ranges. */
1049 if (vr_p->type == VR_VARYING
1050 || vr_p->type == VR_UNDEFINED
1051 || var_vr->type == VR_VARYING
1052 || var_vr->type == VR_UNDEFINED
1053 || symbolic_range_p (vr_p)
1054 || symbolic_range_p (var_vr))
1055 goto done;
1057 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1059 /* If the two ranges have a non-empty intersection, we can
1060 refine the resulting range. Since the assert expression
1061 creates an equivalency and at the same time it asserts a
1062 predicate, we can take the intersection of the two ranges to
1063 get better precision. */
1064 if (value_ranges_intersect_p (var_vr, vr_p))
1066 /* Use the larger of the two minimums. */
1067 if (compare_values (vr_p->min, var_vr->min) == -1)
1068 min = var_vr->min;
1069 else
1070 min = vr_p->min;
1072 /* Use the smaller of the two maximums. */
1073 if (compare_values (vr_p->max, var_vr->max) == 1)
1074 max = var_vr->max;
1075 else
1076 max = vr_p->max;
1078 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1080 else
1082 /* The two ranges do not intersect, set the new range to
1083 VARYING, because we will not be able to do anything
1084 meaningful with it. */
1085 set_value_range_to_varying (vr_p);
1088 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1089 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1091 /* A range and an anti-range will cancel each other only if
1092 their ends are the same. For instance, in the example above,
1093 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1094 so VR_P should be set to VR_VARYING. */
1095 if (compare_values (var_vr->min, vr_p->min) == 0
1096 && compare_values (var_vr->max, vr_p->max) == 0)
1097 set_value_range_to_varying (vr_p);
1098 else
1100 tree min, max, anti_min, anti_max, real_min, real_max;
1102 /* We want to compute the logical AND of the two ranges;
1103 there are three cases to consider.
1106 1. The VR_ANTI_RANGE range is completely within the
1107 VR_RANGE and the endpoints of the ranges are
1108 different. In that case the resulting range
1109 should be whichever range is more precise.
1110 Typically that will be the VR_RANGE.
1112 2. The VR_ANTI_RANGE is completely disjoint from
1113 the VR_RANGE. In this case the resulting range
1114 should be the VR_RANGE.
1116 3. There is some overlap between the VR_ANTI_RANGE
1117 and the VR_RANGE.
1119 3a. If the high limit of the VR_ANTI_RANGE resides
1120 within the VR_RANGE, then the result is a new
1121 VR_RANGE starting at the high limit of the
1122 the VR_ANTI_RANGE + 1 and extending to the
1123 high limit of the original VR_RANGE.
1125 3b. If the low limit of the VR_ANTI_RANGE resides
1126 within the VR_RANGE, then the result is a new
1127 VR_RANGE starting at the low limit of the original
1128 VR_RANGE and extending to the low limit of the
1129 VR_ANTI_RANGE - 1. */
1130 if (vr_p->type == VR_ANTI_RANGE)
1132 anti_min = vr_p->min;
1133 anti_max = vr_p->max;
1134 real_min = var_vr->min;
1135 real_max = var_vr->max;
1137 else
1139 anti_min = var_vr->min;
1140 anti_max = var_vr->max;
1141 real_min = vr_p->min;
1142 real_max = vr_p->max;
1146 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1147 not including any endpoints. */
1148 if (compare_values (anti_max, real_max) == -1
1149 && compare_values (anti_min, real_min) == 1)
1151 set_value_range (vr_p, VR_RANGE, real_min,
1152 real_max, vr_p->equiv);
1154 /* Case 2, VR_ANTI_RANGE completely disjoint from
1155 VR_RANGE. */
1156 else if (compare_values (anti_min, real_max) == 1
1157 || compare_values (anti_max, real_min) == -1)
1159 set_value_range (vr_p, VR_RANGE, real_min,
1160 real_max, vr_p->equiv);
1162 /* Case 3a, the anti-range extends into the low
1163 part of the real range. Thus creating a new
1164 low for the real range. */
1165 else if ((compare_values (anti_max, real_min) == 1
1166 || compare_values (anti_max, real_min) == 0)
1167 && compare_values (anti_max, real_max) == -1)
1169 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1170 anti_max,
1171 build_int_cst (TREE_TYPE (var_vr->min), 1));
1172 max = real_max;
1173 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1175 /* Case 3b, the anti-range extends into the high
1176 part of the real range. Thus creating a new
1177 higher for the real range. */
1178 else if (compare_values (anti_min, real_min) == 1
1179 && (compare_values (anti_min, real_max) == -1
1180 || compare_values (anti_min, real_max) == 0))
1182 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1183 anti_min,
1184 build_int_cst (TREE_TYPE (var_vr->min), 1));
1185 min = real_min;
1186 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1191 /* Remove names from the equivalence set that have ranges
1192 incompatible with VR_P. */
1193 done:
1194 fix_equivalence_set (vr_p);
1198 /* Extract range information from SSA name VAR and store it in VR. If
1199 VAR has an interesting range, use it. Otherwise, create the
1200 range [VAR, VAR] and return it. This is useful in situations where
1201 we may have conditionals testing values of VARYING names. For
1202 instance,
1204 x_3 = y_5;
1205 if (x_3 > y_5)
1208 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1209 always false. */
1211 static void
1212 extract_range_from_ssa_name (value_range_t *vr, tree var)
1214 value_range_t *var_vr = get_value_range (var);
1216 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1217 copy_value_range (vr, var_vr);
1218 else
1219 set_value_range (vr, VR_RANGE, var, var, NULL);
1221 add_equivalence (vr->equiv, var);
1225 /* Wrapper around int_const_binop. If the operation overflows and we
1226 are not using wrapping arithmetic, then adjust the result to be
1227 -INF or +INF depending on CODE, VAL1 and VAL2. */
1229 static inline tree
1230 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1232 tree res;
1234 if (flag_wrapv)
1235 return int_const_binop (code, val1, val2, 0);
1237 /* If we are not using wrapping arithmetic, operate symbolically
1238 on -INF and +INF. */
1239 res = int_const_binop (code, val1, val2, 0);
1241 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1243 int checkz = compare_values (res, val1);
1244 bool overflow = false;
1246 /* Ensure that res = val1 [+*] val2 >= val1
1247 or that res = val1 - val2 <= val1. */
1248 if ((code == PLUS_EXPR
1249 && !(checkz == 1 || checkz == 0))
1250 || (code == MINUS_EXPR
1251 && !(checkz == 0 || checkz == -1)))
1253 overflow = true;
1255 /* Checking for multiplication overflow is done by dividing the
1256 output of the multiplication by the first input of the
1257 multiplication. If the result of that division operation is
1258 not equal to the second input of the multiplication, then the
1259 multiplication overflowed. */
1260 else if (code == MULT_EXPR && !integer_zerop (val1))
1262 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1263 TYPE_MAX_VALUE (TREE_TYPE (val1)),
1264 val1, 0);
1265 int check = compare_values (tmp, val2);
1267 if (check != 0)
1268 overflow = true;
1271 if (overflow)
1273 res = copy_node (res);
1274 TREE_OVERFLOW (res) = 1;
1278 else if (TREE_OVERFLOW (res)
1279 && !TREE_OVERFLOW (val1)
1280 && !TREE_OVERFLOW (val2))
1282 /* If the operation overflowed but neither VAL1 nor VAL2 are
1283 overflown, return -INF or +INF depending on the operation
1284 and the combination of signs of the operands. */
1285 int sgn1 = tree_int_cst_sgn (val1);
1286 int sgn2 = tree_int_cst_sgn (val2);
1288 /* Notice that we only need to handle the restricted set of
1289 operations handled by extract_range_from_binary_expr.
1290 Among them, only multiplication, addition and subtraction
1291 can yield overflow without overflown operands because we
1292 are working with integral types only... except in the
1293 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1294 for division too. */
1296 /* For multiplication, the sign of the overflow is given
1297 by the comparison of the signs of the operands. */
1298 if ((code == MULT_EXPR && sgn1 == sgn2)
1299 /* For addition, the operands must be of the same sign
1300 to yield an overflow. Its sign is therefore that
1301 of one of the operands, for example the first. */
1302 || (code == PLUS_EXPR && sgn1 > 0)
1303 /* For subtraction, the operands must be of different
1304 signs to yield an overflow. Its sign is therefore
1305 that of the first operand or the opposite of that
1306 of the second operand. A first operand of 0 counts
1307 as positive here, for the corner case 0 - (-INF),
1308 which overflows, but must yield +INF. */
1309 || (code == MINUS_EXPR && sgn1 >= 0)
1310 /* For division, the only case is -INF / -1 = +INF. */
1311 || code == TRUNC_DIV_EXPR
1312 || code == FLOOR_DIV_EXPR
1313 || code == CEIL_DIV_EXPR
1314 || code == EXACT_DIV_EXPR
1315 || code == ROUND_DIV_EXPR)
1316 return TYPE_MAX_VALUE (TREE_TYPE (res));
1317 else
1318 return TYPE_MIN_VALUE (TREE_TYPE (res));
1321 return res;
1325 /* Extract range information from a binary expression EXPR based on
1326 the ranges of each of its operands and the expression code. */
1328 static void
1329 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1331 enum tree_code code = TREE_CODE (expr);
1332 enum value_range_type type;
1333 tree op0, op1, min, max;
1334 int cmp;
1335 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1336 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1338 /* Not all binary expressions can be applied to ranges in a
1339 meaningful way. Handle only arithmetic operations. */
1340 if (code != PLUS_EXPR
1341 && code != MINUS_EXPR
1342 && code != MULT_EXPR
1343 && code != TRUNC_DIV_EXPR
1344 && code != FLOOR_DIV_EXPR
1345 && code != CEIL_DIV_EXPR
1346 && code != EXACT_DIV_EXPR
1347 && code != ROUND_DIV_EXPR
1348 && code != MIN_EXPR
1349 && code != MAX_EXPR
1350 && code != BIT_AND_EXPR
1351 && code != TRUTH_ANDIF_EXPR
1352 && code != TRUTH_ORIF_EXPR
1353 && code != TRUTH_AND_EXPR
1354 && code != TRUTH_OR_EXPR)
1356 set_value_range_to_varying (vr);
1357 return;
1360 /* Get value ranges for each operand. For constant operands, create
1361 a new value range with the operand to simplify processing. */
1362 op0 = TREE_OPERAND (expr, 0);
1363 if (TREE_CODE (op0) == SSA_NAME)
1364 vr0 = *(get_value_range (op0));
1365 else if (is_gimple_min_invariant (op0))
1366 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1367 else
1368 set_value_range_to_varying (&vr0);
1370 op1 = TREE_OPERAND (expr, 1);
1371 if (TREE_CODE (op1) == SSA_NAME)
1372 vr1 = *(get_value_range (op1));
1373 else if (is_gimple_min_invariant (op1))
1374 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1375 else
1376 set_value_range_to_varying (&vr1);
1378 /* If either range is UNDEFINED, so is the result. */
1379 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1381 set_value_range_to_undefined (vr);
1382 return;
1385 /* The type of the resulting value range defaults to VR0.TYPE. */
1386 type = vr0.type;
1388 /* Refuse to operate on VARYING ranges, ranges of different kinds
1389 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1390 because we may be able to derive a useful range even if one of
1391 the operands is VR_VARYING or symbolic range. TODO, we may be
1392 able to derive anti-ranges in some cases. */
1393 if (code != BIT_AND_EXPR
1394 && code != TRUTH_AND_EXPR
1395 && code != TRUTH_OR_EXPR
1396 && (vr0.type == VR_VARYING
1397 || vr1.type == VR_VARYING
1398 || vr0.type != vr1.type
1399 || symbolic_range_p (&vr0)
1400 || symbolic_range_p (&vr1)))
1402 set_value_range_to_varying (vr);
1403 return;
1406 /* Now evaluate the expression to determine the new range. */
1407 if (POINTER_TYPE_P (TREE_TYPE (expr))
1408 || POINTER_TYPE_P (TREE_TYPE (op0))
1409 || POINTER_TYPE_P (TREE_TYPE (op1)))
1411 /* For pointer types, we are really only interested in asserting
1412 whether the expression evaluates to non-NULL. FIXME, we used
1413 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1414 ivopts is generating expressions with pointer multiplication
1415 in them. */
1416 if (code == PLUS_EXPR)
1418 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1419 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1420 else if (range_is_null (&vr0) && range_is_null (&vr1))
1421 set_value_range_to_null (vr, TREE_TYPE (expr));
1422 else
1423 set_value_range_to_varying (vr);
1425 else
1427 /* Subtracting from a pointer, may yield 0, so just drop the
1428 resulting range to varying. */
1429 set_value_range_to_varying (vr);
1432 return;
1435 /* For integer ranges, apply the operation to each end of the
1436 range and see what we end up with. */
1437 if (code == TRUTH_ANDIF_EXPR
1438 || code == TRUTH_ORIF_EXPR
1439 || code == TRUTH_AND_EXPR
1440 || code == TRUTH_OR_EXPR)
1442 /* If one of the operands is zero, we know that the whole
1443 expression evaluates zero. */
1444 if (code == TRUTH_AND_EXPR
1445 && ((vr0.type == VR_RANGE
1446 && integer_zerop (vr0.min)
1447 && integer_zerop (vr0.max))
1448 || (vr1.type == VR_RANGE
1449 && integer_zerop (vr1.min)
1450 && integer_zerop (vr1.max))))
1452 type = VR_RANGE;
1453 min = max = build_int_cst (TREE_TYPE (expr), 0);
1455 /* If one of the operands is one, we know that the whole
1456 expression evaluates one. */
1457 else if (code == TRUTH_OR_EXPR
1458 && ((vr0.type == VR_RANGE
1459 && integer_onep (vr0.min)
1460 && integer_onep (vr0.max))
1461 || (vr1.type == VR_RANGE
1462 && integer_onep (vr1.min)
1463 && integer_onep (vr1.max))))
1465 type = VR_RANGE;
1466 min = max = build_int_cst (TREE_TYPE (expr), 1);
1468 else if (vr0.type != VR_VARYING
1469 && vr1.type != VR_VARYING
1470 && vr0.type == vr1.type
1471 && !symbolic_range_p (&vr0)
1472 && !symbolic_range_p (&vr1))
1474 /* Boolean expressions cannot be folded with int_const_binop. */
1475 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1476 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1478 else
1480 set_value_range_to_varying (vr);
1481 return;
1484 else if (code == PLUS_EXPR
1485 || code == MIN_EXPR
1486 || code == MAX_EXPR)
1488 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1489 VR_VARYING. It would take more effort to compute a precise
1490 range for such a case. For example, if we have op0 == 1 and
1491 op1 == -1 with their ranges both being ~[0,0], we would have
1492 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1493 Note that we are guaranteed to have vr0.type == vr1.type at
1494 this point. */
1495 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1497 set_value_range_to_varying (vr);
1498 return;
1501 /* For operations that make the resulting range directly
1502 proportional to the original ranges, apply the operation to
1503 the same end of each range. */
1504 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1505 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1507 else if (code == MULT_EXPR
1508 || code == TRUNC_DIV_EXPR
1509 || code == FLOOR_DIV_EXPR
1510 || code == CEIL_DIV_EXPR
1511 || code == EXACT_DIV_EXPR
1512 || code == ROUND_DIV_EXPR)
1514 tree val[4];
1515 size_t i;
1517 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1518 drop to VR_VARYING. It would take more effort to compute a
1519 precise range for such a case. For example, if we have
1520 op0 == 65536 and op1 == 65536 with their ranges both being
1521 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1522 we cannot claim that the product is in ~[0,0]. Note that we
1523 are guaranteed to have vr0.type == vr1.type at this
1524 point. */
1525 if (code == MULT_EXPR
1526 && vr0.type == VR_ANTI_RANGE
1527 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1529 set_value_range_to_varying (vr);
1530 return;
1533 /* Multiplications and divisions are a bit tricky to handle,
1534 depending on the mix of signs we have in the two ranges, we
1535 need to operate on different values to get the minimum and
1536 maximum values for the new range. One approach is to figure
1537 out all the variations of range combinations and do the
1538 operations.
1540 However, this involves several calls to compare_values and it
1541 is pretty convoluted. It's simpler to do the 4 operations
1542 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1543 MAX1) and then figure the smallest and largest values to form
1544 the new range. */
1546 /* Divisions by zero result in a VARYING value. */
1547 if (code != MULT_EXPR
1548 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1550 set_value_range_to_varying (vr);
1551 return;
1554 /* Compute the 4 cross operations. */
1555 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1557 val[1] = (vr1.max != vr1.min)
1558 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1559 : NULL_TREE;
1561 val[2] = (vr0.max != vr0.min)
1562 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1563 : NULL_TREE;
1565 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1566 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1567 : NULL_TREE;
1569 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1570 of VAL[i]. */
1571 min = val[0];
1572 max = val[0];
1573 for (i = 1; i < 4; i++)
1575 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1576 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1577 break;
1579 if (val[i])
1581 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1583 /* If we found an overflowed value, set MIN and MAX
1584 to it so that we set the resulting range to
1585 VARYING. */
1586 min = max = val[i];
1587 break;
1590 if (compare_values (val[i], min) == -1)
1591 min = val[i];
1593 if (compare_values (val[i], max) == 1)
1594 max = val[i];
1598 else if (code == MINUS_EXPR)
1600 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1601 VR_VARYING. It would take more effort to compute a precise
1602 range for such a case. For example, if we have op0 == 1 and
1603 op1 == 1 with their ranges both being ~[0,0], we would have
1604 op0 - op1 == 0, so we cannot claim that the difference is in
1605 ~[0,0]. Note that we are guaranteed to have
1606 vr0.type == vr1.type at this point. */
1607 if (vr0.type == VR_ANTI_RANGE)
1609 set_value_range_to_varying (vr);
1610 return;
1613 /* For MINUS_EXPR, apply the operation to the opposite ends of
1614 each range. */
1615 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1616 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1618 else if (code == BIT_AND_EXPR)
1620 if (vr0.type == VR_RANGE
1621 && vr0.min == vr0.max
1622 && tree_expr_nonnegative_p (vr0.max)
1623 && TREE_CODE (vr0.max) == INTEGER_CST)
1625 min = build_int_cst (TREE_TYPE (expr), 0);
1626 max = vr0.max;
1628 else if (vr1.type == VR_RANGE
1629 && vr1.min == vr1.max
1630 && tree_expr_nonnegative_p (vr1.max)
1631 && TREE_CODE (vr1.max) == INTEGER_CST)
1633 type = VR_RANGE;
1634 min = build_int_cst (TREE_TYPE (expr), 0);
1635 max = vr1.max;
1637 else
1639 set_value_range_to_varying (vr);
1640 return;
1643 else
1644 gcc_unreachable ();
1646 /* If either MIN or MAX overflowed, then set the resulting range to
1647 VARYING. */
1648 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1649 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1651 set_value_range_to_varying (vr);
1652 return;
1655 cmp = compare_values (min, max);
1656 if (cmp == -2 || cmp == 1)
1658 /* If the new range has its limits swapped around (MIN > MAX),
1659 then the operation caused one of them to wrap around, mark
1660 the new range VARYING. */
1661 set_value_range_to_varying (vr);
1663 else
1664 set_value_range (vr, type, min, max, NULL);
1668 /* Extract range information from a unary expression EXPR based on
1669 the range of its operand and the expression code. */
1671 static void
1672 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1674 enum tree_code code = TREE_CODE (expr);
1675 tree min, max, op0;
1676 int cmp;
1677 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1679 /* Refuse to operate on certain unary expressions for which we
1680 cannot easily determine a resulting range. */
1681 if (code == FIX_TRUNC_EXPR
1682 || code == FIX_CEIL_EXPR
1683 || code == FIX_FLOOR_EXPR
1684 || code == FIX_ROUND_EXPR
1685 || code == FLOAT_EXPR
1686 || code == BIT_NOT_EXPR
1687 || code == NON_LVALUE_EXPR
1688 || code == CONJ_EXPR)
1690 set_value_range_to_varying (vr);
1691 return;
1694 /* Get value ranges for the operand. For constant operands, create
1695 a new value range with the operand to simplify processing. */
1696 op0 = TREE_OPERAND (expr, 0);
1697 if (TREE_CODE (op0) == SSA_NAME)
1698 vr0 = *(get_value_range (op0));
1699 else if (is_gimple_min_invariant (op0))
1700 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1701 else
1702 set_value_range_to_varying (&vr0);
1704 /* If VR0 is UNDEFINED, so is the result. */
1705 if (vr0.type == VR_UNDEFINED)
1707 set_value_range_to_undefined (vr);
1708 return;
1711 /* Refuse to operate on symbolic ranges, or if neither operand is
1712 a pointer or integral type. */
1713 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1714 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1715 || (vr0.type != VR_VARYING
1716 && symbolic_range_p (&vr0)))
1718 set_value_range_to_varying (vr);
1719 return;
1722 /* If the expression involves pointers, we are only interested in
1723 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1724 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1726 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1727 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1728 else if (range_is_null (&vr0))
1729 set_value_range_to_null (vr, TREE_TYPE (expr));
1730 else
1731 set_value_range_to_varying (vr);
1733 return;
1736 /* Handle unary expressions on integer ranges. */
1737 if (code == NOP_EXPR || code == CONVERT_EXPR)
1739 tree inner_type = TREE_TYPE (op0);
1740 tree outer_type = TREE_TYPE (expr);
1742 /* If VR0 represents a simple range, then try to convert
1743 the min and max values for the range to the same type
1744 as OUTER_TYPE. If the results compare equal to VR0's
1745 min and max values and the new min is still less than
1746 or equal to the new max, then we can safely use the newly
1747 computed range for EXPR. This allows us to compute
1748 accurate ranges through many casts. */
1749 if (vr0.type == VR_RANGE
1750 || (vr0.type == VR_VARYING
1751 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1753 tree new_min, new_max, orig_min, orig_max;
1755 /* Convert the input operand min/max to OUTER_TYPE. If
1756 the input has no range information, then use the min/max
1757 for the input's type. */
1758 if (vr0.type == VR_RANGE)
1760 orig_min = vr0.min;
1761 orig_max = vr0.max;
1763 else
1765 orig_min = TYPE_MIN_VALUE (inner_type);
1766 orig_max = TYPE_MAX_VALUE (inner_type);
1769 new_min = fold_convert (outer_type, orig_min);
1770 new_max = fold_convert (outer_type, orig_max);
1772 /* Verify the new min/max values are gimple values and
1773 that they compare equal to the original input's
1774 min/max values. */
1775 if (is_gimple_val (new_min)
1776 && is_gimple_val (new_max)
1777 && tree_int_cst_equal (new_min, orig_min)
1778 && tree_int_cst_equal (new_max, orig_max)
1779 && compare_values (new_min, new_max) <= 0
1780 && compare_values (new_min, new_max) >= -1)
1782 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1783 return;
1787 /* When converting types of different sizes, set the result to
1788 VARYING. Things like sign extensions and precision loss may
1789 change the range. For instance, if x_3 is of type 'long long
1790 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1791 is impossible to know at compile time whether y_5 will be
1792 ~[0, 0]. */
1793 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1794 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1796 set_value_range_to_varying (vr);
1797 return;
1801 /* Conversion of a VR_VARYING value to a wider type can result
1802 in a usable range. So wait until after we've handled conversions
1803 before dropping the result to VR_VARYING if we had a source
1804 operand that is VR_VARYING. */
1805 if (vr0.type == VR_VARYING)
1807 set_value_range_to_varying (vr);
1808 return;
1811 /* Apply the operation to each end of the range and see what we end
1812 up with. */
1813 if (code == NEGATE_EXPR
1814 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1816 /* NEGATE_EXPR flips the range around. We need to treat
1817 TYPE_MIN_VALUE specially dependent on wrapping, range type
1818 and if it was used as minimum or maximum value:
1819 -~[MIN, MIN] == ~[MIN, MIN]
1820 -[MIN, 0] == [0, MAX] for -fno-wrapv
1821 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1822 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1823 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1824 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1826 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1827 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1828 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1829 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1830 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1833 else if (code == NEGATE_EXPR
1834 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1836 if (!range_includes_zero_p (&vr0))
1838 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1839 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1841 else
1843 if (range_is_null (&vr0))
1844 set_value_range_to_null (vr, TREE_TYPE (expr));
1845 else
1846 set_value_range_to_varying (vr);
1847 return;
1850 else if (code == ABS_EXPR
1851 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1853 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1854 useful range. */
1855 if (flag_wrapv
1856 && ((vr0.type == VR_RANGE
1857 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1858 || (vr0.type == VR_ANTI_RANGE
1859 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1860 && !range_includes_zero_p (&vr0))))
1862 set_value_range_to_varying (vr);
1863 return;
1866 /* ABS_EXPR may flip the range around, if the original range
1867 included negative values. */
1868 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1869 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1870 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1872 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1874 cmp = compare_values (min, max);
1876 /* If a VR_ANTI_RANGEs contains zero, then we have
1877 ~[-INF, min(MIN, MAX)]. */
1878 if (vr0.type == VR_ANTI_RANGE)
1880 if (range_includes_zero_p (&vr0))
1882 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1884 /* Take the lower of the two values. */
1885 if (cmp != 1)
1886 max = min;
1888 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1889 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1890 flag_wrapv is set and the original anti-range doesn't include
1891 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1892 min = (flag_wrapv && vr0.min != type_min_value
1893 ? int_const_binop (PLUS_EXPR,
1894 type_min_value,
1895 integer_one_node, 0)
1896 : type_min_value);
1898 else
1900 /* All else has failed, so create the range [0, INF], even for
1901 flag_wrapv since TYPE_MIN_VALUE is in the original
1902 anti-range. */
1903 vr0.type = VR_RANGE;
1904 min = build_int_cst (TREE_TYPE (expr), 0);
1905 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1909 /* If the range contains zero then we know that the minimum value in the
1910 range will be zero. */
1911 else if (range_includes_zero_p (&vr0))
1913 if (cmp == 1)
1914 max = min;
1915 min = build_int_cst (TREE_TYPE (expr), 0);
1917 else
1919 /* If the range was reversed, swap MIN and MAX. */
1920 if (cmp == 1)
1922 tree t = min;
1923 min = max;
1924 max = t;
1928 else
1930 /* Otherwise, operate on each end of the range. */
1931 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1932 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1935 cmp = compare_values (min, max);
1936 if (cmp == -2 || cmp == 1)
1938 /* If the new range has its limits swapped around (MIN > MAX),
1939 then the operation caused one of them to wrap around, mark
1940 the new range VARYING. */
1941 set_value_range_to_varying (vr);
1943 else
1944 set_value_range (vr, vr0.type, min, max, NULL);
1948 /* Extract range information from a comparison expression EXPR based
1949 on the range of its operand and the expression code. */
1951 static void
1952 extract_range_from_comparison (value_range_t *vr, tree expr)
1954 tree val = vrp_evaluate_conditional (expr, false);
1955 if (val)
1957 /* Since this expression was found on the RHS of an assignment,
1958 its type may be different from _Bool. Convert VAL to EXPR's
1959 type. */
1960 val = fold_convert (TREE_TYPE (expr), val);
1961 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1963 else
1964 set_value_range_to_varying (vr);
1968 /* Try to compute a useful range out of expression EXPR and store it
1969 in *VR. */
1971 static void
1972 extract_range_from_expr (value_range_t *vr, tree expr)
1974 enum tree_code code = TREE_CODE (expr);
1976 if (code == ASSERT_EXPR)
1977 extract_range_from_assert (vr, expr);
1978 else if (code == SSA_NAME)
1979 extract_range_from_ssa_name (vr, expr);
1980 else if (TREE_CODE_CLASS (code) == tcc_binary
1981 || code == TRUTH_ANDIF_EXPR
1982 || code == TRUTH_ORIF_EXPR
1983 || code == TRUTH_AND_EXPR
1984 || code == TRUTH_OR_EXPR
1985 || code == TRUTH_XOR_EXPR)
1986 extract_range_from_binary_expr (vr, expr);
1987 else if (TREE_CODE_CLASS (code) == tcc_unary)
1988 extract_range_from_unary_expr (vr, expr);
1989 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1990 extract_range_from_comparison (vr, expr);
1991 else if (is_gimple_min_invariant (expr))
1992 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1993 else
1994 set_value_range_to_varying (vr);
1996 /* If we got a varying range from the tests above, try a final
1997 time to derive a nonnegative or nonzero range. This time
1998 relying primarily on generic routines in fold in conjunction
1999 with range data. */
2000 if (vr->type == VR_VARYING)
2002 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2003 && vrp_expr_computes_nonnegative (expr))
2004 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
2005 else if (vrp_expr_computes_nonzero (expr))
2006 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2010 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2011 would be profitable to adjust VR using scalar evolution information
2012 for VAR. If so, update VR with the new limits. */
2014 static void
2015 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2016 tree var)
2018 tree init, step, chrec, tmin, tmax, min, max, type;
2019 enum ev_direction dir;
2021 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2022 better opportunities than a regular range, but I'm not sure. */
2023 if (vr->type == VR_ANTI_RANGE)
2024 return;
2026 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2027 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2028 return;
2030 init = initial_condition_in_loop_num (chrec, loop->num);
2031 step = evolution_part_in_loop_num (chrec, loop->num);
2033 /* If STEP is symbolic, we can't know whether INIT will be the
2034 minimum or maximum value in the range. Also, unless INIT is
2035 a simple expression, compare_values and possibly other functions
2036 in tree-vrp won't be able to handle it. */
2037 if (step == NULL_TREE
2038 || !is_gimple_min_invariant (step)
2039 || !valid_value_p (init))
2040 return;
2042 dir = scev_direction (chrec);
2043 if (/* Do not adjust ranges if we do not know whether the iv increases
2044 or decreases, ... */
2045 dir == EV_DIR_UNKNOWN
2046 /* ... or if it may wrap. */
2047 || scev_probably_wraps_p (init, step, stmt,
2048 current_loops->parray[CHREC_VARIABLE (chrec)],
2049 true))
2050 return;
2052 type = TREE_TYPE (var);
2053 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2054 tmin = lower_bound_in_type (type, type);
2055 else
2056 tmin = TYPE_MIN_VALUE (type);
2057 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2058 tmax = upper_bound_in_type (type, type);
2059 else
2060 tmax = TYPE_MAX_VALUE (type);
2062 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2064 min = tmin;
2065 max = tmax;
2067 /* For VARYING or UNDEFINED ranges, just about anything we get
2068 from scalar evolutions should be better. */
2070 if (dir == EV_DIR_DECREASES)
2071 max = init;
2072 else
2073 min = init;
2075 /* If we would create an invalid range, then just assume we
2076 know absolutely nothing. This may be over-conservative,
2077 but it's clearly safe, and should happen only in unreachable
2078 parts of code, or for invalid programs. */
2079 if (compare_values (min, max) == 1)
2080 return;
2082 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2084 else if (vr->type == VR_RANGE)
2086 min = vr->min;
2087 max = vr->max;
2089 if (dir == EV_DIR_DECREASES)
2091 /* INIT is the maximum value. If INIT is lower than VR->MAX
2092 but no smaller than VR->MIN, set VR->MAX to INIT. */
2093 if (compare_values (init, max) == -1)
2095 max = init;
2097 /* If we just created an invalid range with the minimum
2098 greater than the maximum, we fail conservatively.
2099 This should happen only in unreachable
2100 parts of code, or for invalid programs. */
2101 if (compare_values (min, max) == 1)
2102 return;
2105 else
2107 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2108 if (compare_values (init, min) == 1)
2110 min = init;
2112 /* Again, avoid creating invalid range by failing. */
2113 if (compare_values (min, max) == 1)
2114 return;
2118 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2123 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2125 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2126 all the values in the ranges.
2128 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2130 - Return NULL_TREE if it is not always possible to determine the
2131 value of the comparison. */
2134 static tree
2135 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2137 /* VARYING or UNDEFINED ranges cannot be compared. */
2138 if (vr0->type == VR_VARYING
2139 || vr0->type == VR_UNDEFINED
2140 || vr1->type == VR_VARYING
2141 || vr1->type == VR_UNDEFINED)
2142 return NULL_TREE;
2144 /* Anti-ranges need to be handled separately. */
2145 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2147 /* If both are anti-ranges, then we cannot compute any
2148 comparison. */
2149 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2150 return NULL_TREE;
2152 /* These comparisons are never statically computable. */
2153 if (comp == GT_EXPR
2154 || comp == GE_EXPR
2155 || comp == LT_EXPR
2156 || comp == LE_EXPR)
2157 return NULL_TREE;
2159 /* Equality can be computed only between a range and an
2160 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2161 if (vr0->type == VR_RANGE)
2163 /* To simplify processing, make VR0 the anti-range. */
2164 value_range_t *tmp = vr0;
2165 vr0 = vr1;
2166 vr1 = tmp;
2169 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2171 if (compare_values (vr0->min, vr1->min) == 0
2172 && compare_values (vr0->max, vr1->max) == 0)
2173 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2175 return NULL_TREE;
2178 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2179 operands around and change the comparison code. */
2180 if (comp == GT_EXPR || comp == GE_EXPR)
2182 value_range_t *tmp;
2183 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2184 tmp = vr0;
2185 vr0 = vr1;
2186 vr1 = tmp;
2189 if (comp == EQ_EXPR)
2191 /* Equality may only be computed if both ranges represent
2192 exactly one value. */
2193 if (compare_values (vr0->min, vr0->max) == 0
2194 && compare_values (vr1->min, vr1->max) == 0)
2196 int cmp_min = compare_values (vr0->min, vr1->min);
2197 int cmp_max = compare_values (vr0->max, vr1->max);
2198 if (cmp_min == 0 && cmp_max == 0)
2199 return boolean_true_node;
2200 else if (cmp_min != -2 && cmp_max != -2)
2201 return boolean_false_node;
2203 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2204 else if (compare_values (vr0->min, vr1->max) == 1
2205 || compare_values (vr1->min, vr0->max) == 1)
2206 return boolean_false_node;
2208 return NULL_TREE;
2210 else if (comp == NE_EXPR)
2212 int cmp1, cmp2;
2214 /* If VR0 is completely to the left or completely to the right
2215 of VR1, they are always different. Notice that we need to
2216 make sure that both comparisons yield similar results to
2217 avoid comparing values that cannot be compared at
2218 compile-time. */
2219 cmp1 = compare_values (vr0->max, vr1->min);
2220 cmp2 = compare_values (vr0->min, vr1->max);
2221 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2222 return boolean_true_node;
2224 /* If VR0 and VR1 represent a single value and are identical,
2225 return false. */
2226 else if (compare_values (vr0->min, vr0->max) == 0
2227 && compare_values (vr1->min, vr1->max) == 0
2228 && compare_values (vr0->min, vr1->min) == 0
2229 && compare_values (vr0->max, vr1->max) == 0)
2230 return boolean_false_node;
2232 /* Otherwise, they may or may not be different. */
2233 else
2234 return NULL_TREE;
2236 else if (comp == LT_EXPR || comp == LE_EXPR)
2238 int tst;
2240 /* If VR0 is to the left of VR1, return true. */
2241 tst = compare_values (vr0->max, vr1->min);
2242 if ((comp == LT_EXPR && tst == -1)
2243 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2244 return boolean_true_node;
2246 /* If VR0 is to the right of VR1, return false. */
2247 tst = compare_values (vr0->min, vr1->max);
2248 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2249 || (comp == LE_EXPR && tst == 1))
2250 return boolean_false_node;
2252 /* Otherwise, we don't know. */
2253 return NULL_TREE;
2256 gcc_unreachable ();
2260 /* Given a value range VR, a value VAL and a comparison code COMP, return
2261 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2262 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2263 always returns false. Return NULL_TREE if it is not always
2264 possible to determine the value of the comparison. */
2266 static tree
2267 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2269 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2270 return NULL_TREE;
2272 /* Anti-ranges need to be handled separately. */
2273 if (vr->type == VR_ANTI_RANGE)
2275 /* For anti-ranges, the only predicates that we can compute at
2276 compile time are equality and inequality. */
2277 if (comp == GT_EXPR
2278 || comp == GE_EXPR
2279 || comp == LT_EXPR
2280 || comp == LE_EXPR)
2281 return NULL_TREE;
2283 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2284 if (value_inside_range (val, vr) == 1)
2285 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2287 return NULL_TREE;
2290 if (comp == EQ_EXPR)
2292 /* EQ_EXPR may only be computed if VR represents exactly
2293 one value. */
2294 if (compare_values (vr->min, vr->max) == 0)
2296 int cmp = compare_values (vr->min, val);
2297 if (cmp == 0)
2298 return boolean_true_node;
2299 else if (cmp == -1 || cmp == 1 || cmp == 2)
2300 return boolean_false_node;
2302 else if (compare_values (val, vr->min) == -1
2303 || compare_values (vr->max, val) == -1)
2304 return boolean_false_node;
2306 return NULL_TREE;
2308 else if (comp == NE_EXPR)
2310 /* If VAL is not inside VR, then they are always different. */
2311 if (compare_values (vr->max, val) == -1
2312 || compare_values (vr->min, val) == 1)
2313 return boolean_true_node;
2315 /* If VR represents exactly one value equal to VAL, then return
2316 false. */
2317 if (compare_values (vr->min, vr->max) == 0
2318 && compare_values (vr->min, val) == 0)
2319 return boolean_false_node;
2321 /* Otherwise, they may or may not be different. */
2322 return NULL_TREE;
2324 else if (comp == LT_EXPR || comp == LE_EXPR)
2326 int tst;
2328 /* If VR is to the left of VAL, return true. */
2329 tst = compare_values (vr->max, val);
2330 if ((comp == LT_EXPR && tst == -1)
2331 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2332 return boolean_true_node;
2334 /* If VR is to the right of VAL, return false. */
2335 tst = compare_values (vr->min, val);
2336 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2337 || (comp == LE_EXPR && tst == 1))
2338 return boolean_false_node;
2340 /* Otherwise, we don't know. */
2341 return NULL_TREE;
2343 else if (comp == GT_EXPR || comp == GE_EXPR)
2345 int tst;
2347 /* If VR is to the right of VAL, return true. */
2348 tst = compare_values (vr->min, val);
2349 if ((comp == GT_EXPR && tst == 1)
2350 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2351 return boolean_true_node;
2353 /* If VR is to the left of VAL, return false. */
2354 tst = compare_values (vr->max, val);
2355 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2356 || (comp == GE_EXPR && tst == -1))
2357 return boolean_false_node;
2359 /* Otherwise, we don't know. */
2360 return NULL_TREE;
2363 gcc_unreachable ();
2367 /* Debugging dumps. */
2369 void dump_value_range (FILE *, value_range_t *);
2370 void debug_value_range (value_range_t *);
2371 void dump_all_value_ranges (FILE *);
2372 void debug_all_value_ranges (void);
2373 void dump_vr_equiv (FILE *, bitmap);
2374 void debug_vr_equiv (bitmap);
2377 /* Dump value range VR to FILE. */
2379 void
2380 dump_value_range (FILE *file, value_range_t *vr)
2382 if (vr == NULL)
2383 fprintf (file, "[]");
2384 else if (vr->type == VR_UNDEFINED)
2385 fprintf (file, "UNDEFINED");
2386 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2388 tree type = TREE_TYPE (vr->min);
2390 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2392 if (INTEGRAL_TYPE_P (type)
2393 && !TYPE_UNSIGNED (type)
2394 && vr->min == TYPE_MIN_VALUE (type))
2395 fprintf (file, "-INF");
2396 else
2397 print_generic_expr (file, vr->min, 0);
2399 fprintf (file, ", ");
2401 if (INTEGRAL_TYPE_P (type)
2402 && vr->max == TYPE_MAX_VALUE (type))
2403 fprintf (file, "+INF");
2404 else
2405 print_generic_expr (file, vr->max, 0);
2407 fprintf (file, "]");
2409 if (vr->equiv)
2411 bitmap_iterator bi;
2412 unsigned i, c = 0;
2414 fprintf (file, " EQUIVALENCES: { ");
2416 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2418 print_generic_expr (file, ssa_name (i), 0);
2419 fprintf (file, " ");
2420 c++;
2423 fprintf (file, "} (%u elements)", c);
2426 else if (vr->type == VR_VARYING)
2427 fprintf (file, "VARYING");
2428 else
2429 fprintf (file, "INVALID RANGE");
2433 /* Dump value range VR to stderr. */
2435 void
2436 debug_value_range (value_range_t *vr)
2438 dump_value_range (stderr, vr);
2442 /* Dump value ranges of all SSA_NAMEs to FILE. */
2444 void
2445 dump_all_value_ranges (FILE *file)
2447 size_t i;
2449 for (i = 0; i < num_ssa_names; i++)
2451 if (vr_value[i])
2453 print_generic_expr (file, ssa_name (i), 0);
2454 fprintf (file, ": ");
2455 dump_value_range (file, vr_value[i]);
2456 fprintf (file, "\n");
2460 fprintf (file, "\n");
2464 /* Dump all value ranges to stderr. */
2466 void
2467 debug_all_value_ranges (void)
2469 dump_all_value_ranges (stderr);
2473 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2474 create a new SSA name N and return the assertion assignment
2475 'V = ASSERT_EXPR <V, V OP W>'. */
2477 static tree
2478 build_assert_expr_for (tree cond, tree v)
2480 tree n, assertion;
2482 gcc_assert (TREE_CODE (v) == SSA_NAME);
2483 n = duplicate_ssa_name (v, NULL_TREE);
2485 if (COMPARISON_CLASS_P (cond))
2487 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2488 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2490 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2492 /* Given !V, build the assignment N = false. */
2493 tree op0 = TREE_OPERAND (cond, 0);
2494 gcc_assert (op0 == v);
2495 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2497 else if (TREE_CODE (cond) == SSA_NAME)
2499 /* Given V, build the assignment N = true. */
2500 gcc_assert (v == cond);
2501 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2503 else
2504 gcc_unreachable ();
2506 SSA_NAME_DEF_STMT (n) = assertion;
2508 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2509 operand of the ASSERT_EXPR. Register the new name and the old one
2510 in the replacement table so that we can fix the SSA web after
2511 adding all the ASSERT_EXPRs. */
2512 register_new_name_mapping (n, v);
2514 return assertion;
2518 /* Return false if EXPR is a predicate expression involving floating
2519 point values. */
2521 static inline bool
2522 fp_predicate (tree expr)
2524 return (COMPARISON_CLASS_P (expr)
2525 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2529 /* If the range of values taken by OP can be inferred after STMT executes,
2530 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2531 describes the inferred range. Return true if a range could be
2532 inferred. */
2534 static bool
2535 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2537 *val_p = NULL_TREE;
2538 *comp_code_p = ERROR_MARK;
2540 /* Do not attempt to infer anything in names that flow through
2541 abnormal edges. */
2542 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2543 return false;
2545 /* Similarly, don't infer anything from statements that may throw
2546 exceptions. */
2547 if (tree_could_throw_p (stmt))
2548 return false;
2550 /* If STMT is the last statement of a basic block with no
2551 successors, there is no point inferring anything about any of its
2552 operands. We would not be able to find a proper insertion point
2553 for the assertion, anyway. */
2554 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2555 return false;
2557 /* We can only assume that a pointer dereference will yield
2558 non-NULL if -fdelete-null-pointer-checks is enabled. */
2559 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2561 bool is_store;
2562 unsigned num_uses, num_derefs;
2564 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2565 if (num_derefs > 0)
2567 *val_p = build_int_cst (TREE_TYPE (op), 0);
2568 *comp_code_p = NE_EXPR;
2569 return true;
2573 return false;
2577 void dump_asserts_for (FILE *, tree);
2578 void debug_asserts_for (tree);
2579 void dump_all_asserts (FILE *);
2580 void debug_all_asserts (void);
2582 /* Dump all the registered assertions for NAME to FILE. */
2584 void
2585 dump_asserts_for (FILE *file, tree name)
2587 assert_locus_t loc;
2589 fprintf (file, "Assertions to be inserted for ");
2590 print_generic_expr (file, name, 0);
2591 fprintf (file, "\n");
2593 loc = asserts_for[SSA_NAME_VERSION (name)];
2594 while (loc)
2596 fprintf (file, "\t");
2597 print_generic_expr (file, bsi_stmt (loc->si), 0);
2598 fprintf (file, "\n\tBB #%d", loc->bb->index);
2599 if (loc->e)
2601 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2602 loc->e->dest->index);
2603 dump_edge_info (file, loc->e, 0);
2605 fprintf (file, "\n\tPREDICATE: ");
2606 print_generic_expr (file, name, 0);
2607 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2608 print_generic_expr (file, loc->val, 0);
2609 fprintf (file, "\n\n");
2610 loc = loc->next;
2613 fprintf (file, "\n");
2617 /* Dump all the registered assertions for NAME to stderr. */
2619 void
2620 debug_asserts_for (tree name)
2622 dump_asserts_for (stderr, name);
2626 /* Dump all the registered assertions for all the names to FILE. */
2628 void
2629 dump_all_asserts (FILE *file)
2631 unsigned i;
2632 bitmap_iterator bi;
2634 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2635 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2636 dump_asserts_for (file, ssa_name (i));
2637 fprintf (file, "\n");
2641 /* Dump all the registered assertions for all the names to stderr. */
2643 void
2644 debug_all_asserts (void)
2646 dump_all_asserts (stderr);
2650 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2651 'NAME COMP_CODE VAL' at a location that dominates block BB or
2652 E->DEST, then register this location as a possible insertion point
2653 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2655 BB, E and SI provide the exact insertion point for the new
2656 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2657 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2658 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2659 must not be NULL. */
2661 static void
2662 register_new_assert_for (tree name,
2663 enum tree_code comp_code,
2664 tree val,
2665 basic_block bb,
2666 edge e,
2667 block_stmt_iterator si)
2669 assert_locus_t n, loc, last_loc;
2670 bool found;
2671 basic_block dest_bb;
2673 #if defined ENABLE_CHECKING
2674 gcc_assert (bb == NULL || e == NULL);
2676 if (e == NULL)
2677 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2678 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2679 #endif
2681 /* The new assertion A will be inserted at BB or E. We need to
2682 determine if the new location is dominated by a previously
2683 registered location for A. If we are doing an edge insertion,
2684 assume that A will be inserted at E->DEST. Note that this is not
2685 necessarily true.
2687 If E is a critical edge, it will be split. But even if E is
2688 split, the new block will dominate the same set of blocks that
2689 E->DEST dominates.
2691 The reverse, however, is not true, blocks dominated by E->DEST
2692 will not be dominated by the new block created to split E. So,
2693 if the insertion location is on a critical edge, we will not use
2694 the new location to move another assertion previously registered
2695 at a block dominated by E->DEST. */
2696 dest_bb = (bb) ? bb : e->dest;
2698 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2699 VAL at a block dominating DEST_BB, then we don't need to insert a new
2700 one. Similarly, if the same assertion already exists at a block
2701 dominated by DEST_BB and the new location is not on a critical
2702 edge, then update the existing location for the assertion (i.e.,
2703 move the assertion up in the dominance tree).
2705 Note, this is implemented as a simple linked list because there
2706 should not be more than a handful of assertions registered per
2707 name. If this becomes a performance problem, a table hashed by
2708 COMP_CODE and VAL could be implemented. */
2709 loc = asserts_for[SSA_NAME_VERSION (name)];
2710 last_loc = loc;
2711 found = false;
2712 while (loc)
2714 if (loc->comp_code == comp_code
2715 && (loc->val == val
2716 || operand_equal_p (loc->val, val, 0)))
2718 /* If the assertion NAME COMP_CODE VAL has already been
2719 registered at a basic block that dominates DEST_BB, then
2720 we don't need to insert the same assertion again. Note
2721 that we don't check strict dominance here to avoid
2722 replicating the same assertion inside the same basic
2723 block more than once (e.g., when a pointer is
2724 dereferenced several times inside a block).
2726 An exception to this rule are edge insertions. If the
2727 new assertion is to be inserted on edge E, then it will
2728 dominate all the other insertions that we may want to
2729 insert in DEST_BB. So, if we are doing an edge
2730 insertion, don't do this dominance check. */
2731 if (e == NULL
2732 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2733 return;
2735 /* Otherwise, if E is not a critical edge and DEST_BB
2736 dominates the existing location for the assertion, move
2737 the assertion up in the dominance tree by updating its
2738 location information. */
2739 if ((e == NULL || !EDGE_CRITICAL_P (e))
2740 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2742 loc->bb = dest_bb;
2743 loc->e = e;
2744 loc->si = si;
2745 return;
2749 /* Update the last node of the list and move to the next one. */
2750 last_loc = loc;
2751 loc = loc->next;
2754 /* If we didn't find an assertion already registered for
2755 NAME COMP_CODE VAL, add a new one at the end of the list of
2756 assertions associated with NAME. */
2757 n = XNEW (struct assert_locus_d);
2758 n->bb = dest_bb;
2759 n->e = e;
2760 n->si = si;
2761 n->comp_code = comp_code;
2762 n->val = val;
2763 n->next = NULL;
2765 if (last_loc)
2766 last_loc->next = n;
2767 else
2768 asserts_for[SSA_NAME_VERSION (name)] = n;
2770 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2774 /* Try to register an edge assertion for SSA name NAME on edge E for
2775 the conditional jump pointed to by SI. Return true if an assertion
2776 for NAME could be registered. */
2778 static bool
2779 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2781 tree val, stmt;
2782 enum tree_code comp_code;
2784 stmt = bsi_stmt (si);
2786 /* Do not attempt to infer anything in names that flow through
2787 abnormal edges. */
2788 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2789 return false;
2791 /* If NAME was not found in the sub-graph reachable from E, then
2792 there's nothing to do. */
2793 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2794 return false;
2796 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2797 Register an assertion for NAME according to the value that NAME
2798 takes on edge E. */
2799 if (TREE_CODE (stmt) == COND_EXPR)
2801 /* If BB ends in a COND_EXPR then NAME then we should insert
2802 the original predicate on EDGE_TRUE_VALUE and the
2803 opposite predicate on EDGE_FALSE_VALUE. */
2804 tree cond = COND_EXPR_COND (stmt);
2805 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2807 /* Predicates may be a single SSA name or NAME OP VAL. */
2808 if (cond == name)
2810 /* If the predicate is a name, it must be NAME, in which
2811 case we create the predicate NAME == true or
2812 NAME == false accordingly. */
2813 comp_code = EQ_EXPR;
2814 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2816 else
2818 /* Otherwise, we have a comparison of the form NAME COMP VAL
2819 or VAL COMP NAME. */
2820 if (name == TREE_OPERAND (cond, 1))
2822 /* If the predicate is of the form VAL COMP NAME, flip
2823 COMP around because we need to register NAME as the
2824 first operand in the predicate. */
2825 comp_code = swap_tree_comparison (TREE_CODE (cond));
2826 val = TREE_OPERAND (cond, 0);
2828 else
2830 /* The comparison is of the form NAME COMP VAL, so the
2831 comparison code remains unchanged. */
2832 comp_code = TREE_CODE (cond);
2833 val = TREE_OPERAND (cond, 1);
2836 /* If we are inserting the assertion on the ELSE edge, we
2837 need to invert the sign comparison. */
2838 if (is_else_edge)
2839 comp_code = invert_tree_comparison (comp_code, 0);
2841 /* Do not register always-false predicates. FIXME, this
2842 works around a limitation in fold() when dealing with
2843 enumerations. Given 'enum { N1, N2 } x;', fold will not
2844 fold 'if (x > N2)' to 'if (0)'. */
2845 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2846 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2847 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2849 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2850 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2852 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2853 return false;
2855 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2856 return false;
2860 else
2862 /* FIXME. Handle SWITCH_EXPR. */
2863 gcc_unreachable ();
2866 register_new_assert_for (name, comp_code, val, NULL, e, si);
2867 return true;
2871 static bool find_assert_locations (basic_block bb);
2873 /* Determine whether the outgoing edges of BB should receive an
2874 ASSERT_EXPR for each of the operands of BB's last statement. The
2875 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2877 If any of the sub-graphs rooted at BB have an interesting use of
2878 the predicate operands, an assert location node is added to the
2879 list of assertions for the corresponding operands. */
2881 static bool
2882 find_conditional_asserts (basic_block bb)
2884 bool need_assert;
2885 block_stmt_iterator last_si;
2886 tree op, last;
2887 edge_iterator ei;
2888 edge e;
2889 ssa_op_iter iter;
2891 need_assert = false;
2892 last_si = bsi_last (bb);
2893 last = bsi_stmt (last_si);
2895 /* Look for uses of the operands in each of the sub-graphs
2896 rooted at BB. We need to check each of the outgoing edges
2897 separately, so that we know what kind of ASSERT_EXPR to
2898 insert. */
2899 FOR_EACH_EDGE (e, ei, bb->succs)
2901 if (e->dest == bb)
2902 continue;
2904 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2905 Otherwise, when we finish traversing each of the sub-graphs, we
2906 won't know whether the variables were found in the sub-graphs or
2907 if they had been found in a block upstream from BB.
2909 This is actually a bad idea is some cases, particularly jump
2910 threading. Consider a CFG like the following:
2920 Assume that one or more operands in the conditional at the
2921 end of block 0 are used in a conditional in block 2, but not
2922 anywhere in block 1. In this case we will not insert any
2923 assert statements in block 1, which may cause us to miss
2924 opportunities to optimize, particularly for jump threading. */
2925 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2926 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2928 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2929 to determine if any of the operands in the conditional
2930 predicate are used. */
2931 if (e->dest != bb)
2932 need_assert |= find_assert_locations (e->dest);
2934 /* Register the necessary assertions for each operand in the
2935 conditional predicate. */
2936 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2937 need_assert |= register_edge_assert_for (op, e, last_si);
2940 /* Finally, indicate that we have found the operands in the
2941 conditional. */
2942 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2943 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2945 return need_assert;
2949 /* Traverse all the statements in block BB looking for statements that
2950 may generate useful assertions for the SSA names in their operand.
2951 If a statement produces a useful assertion A for name N_i, then the
2952 list of assertions already generated for N_i is scanned to
2953 determine if A is actually needed.
2955 If N_i already had the assertion A at a location dominating the
2956 current location, then nothing needs to be done. Otherwise, the
2957 new location for A is recorded instead.
2959 1- For every statement S in BB, all the variables used by S are
2960 added to bitmap FOUND_IN_SUBGRAPH.
2962 2- If statement S uses an operand N in a way that exposes a known
2963 value range for N, then if N was not already generated by an
2964 ASSERT_EXPR, create a new assert location for N. For instance,
2965 if N is a pointer and the statement dereferences it, we can
2966 assume that N is not NULL.
2968 3- COND_EXPRs are a special case of #2. We can derive range
2969 information from the predicate but need to insert different
2970 ASSERT_EXPRs for each of the sub-graphs rooted at the
2971 conditional block. If the last statement of BB is a conditional
2972 expression of the form 'X op Y', then
2974 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2976 b) If the conditional is the only entry point to the sub-graph
2977 corresponding to the THEN_CLAUSE, recurse into it. On
2978 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2979 an ASSERT_EXPR is added for the corresponding variable.
2981 c) Repeat step (b) on the ELSE_CLAUSE.
2983 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2985 For instance,
2987 if (a == 9)
2988 b = a;
2989 else
2990 b = c + 1;
2992 In this case, an assertion on the THEN clause is useful to
2993 determine that 'a' is always 9 on that edge. However, an assertion
2994 on the ELSE clause would be unnecessary.
2996 4- If BB does not end in a conditional expression, then we recurse
2997 into BB's dominator children.
2999 At the end of the recursive traversal, every SSA name will have a
3000 list of locations where ASSERT_EXPRs should be added. When a new
3001 location for name N is found, it is registered by calling
3002 register_new_assert_for. That function keeps track of all the
3003 registered assertions to prevent adding unnecessary assertions.
3004 For instance, if a pointer P_4 is dereferenced more than once in a
3005 dominator tree, only the location dominating all the dereference of
3006 P_4 will receive an ASSERT_EXPR.
3008 If this function returns true, then it means that there are names
3009 for which we need to generate ASSERT_EXPRs. Those assertions are
3010 inserted by process_assert_insertions.
3012 TODO. Handle SWITCH_EXPR. */
3014 static bool
3015 find_assert_locations (basic_block bb)
3017 block_stmt_iterator si;
3018 tree last, phi;
3019 bool need_assert;
3020 basic_block son;
3022 if (TEST_BIT (blocks_visited, bb->index))
3023 return false;
3025 SET_BIT (blocks_visited, bb->index);
3027 need_assert = false;
3029 /* Traverse all PHI nodes in BB marking used operands. */
3030 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3032 use_operand_p arg_p;
3033 ssa_op_iter i;
3035 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3037 tree arg = USE_FROM_PTR (arg_p);
3038 if (TREE_CODE (arg) == SSA_NAME)
3040 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3041 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3046 /* Traverse all the statements in BB marking used names and looking
3047 for statements that may infer assertions for their used operands. */
3048 last = NULL_TREE;
3049 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3051 tree stmt, op;
3052 ssa_op_iter i;
3054 stmt = bsi_stmt (si);
3056 /* See if we can derive an assertion for any of STMT's operands. */
3057 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3059 tree value;
3060 enum tree_code comp_code;
3062 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3063 the sub-graph of a conditional block, when we return from
3064 this recursive walk, our parent will use the
3065 FOUND_IN_SUBGRAPH bitset to determine if one of the
3066 operands it was looking for was present in the sub-graph. */
3067 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3069 /* If OP is used in such a way that we can infer a value
3070 range for it, and we don't find a previous assertion for
3071 it, create a new assertion location node for OP. */
3072 if (infer_value_range (stmt, op, &comp_code, &value))
3074 /* If we are able to infer a nonzero value range for OP,
3075 then walk backwards through the use-def chain to see if OP
3076 was set via a typecast.
3078 If so, then we can also infer a nonzero value range
3079 for the operand of the NOP_EXPR. */
3080 if (comp_code == NE_EXPR && integer_zerop (value))
3082 tree t = op;
3083 tree def_stmt = SSA_NAME_DEF_STMT (t);
3085 while (TREE_CODE (def_stmt) == MODIFY_EXPR
3086 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3087 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3088 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3090 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3091 def_stmt = SSA_NAME_DEF_STMT (t);
3093 /* Note we want to register the assert for the
3094 operand of the NOP_EXPR after SI, not after the
3095 conversion. */
3096 if (! has_single_use (t))
3098 register_new_assert_for (t, comp_code, value,
3099 bb, NULL, si);
3100 need_assert = true;
3105 /* If OP is used only once, namely in this STMT, don't
3106 bother creating an ASSERT_EXPR for it. Such an
3107 ASSERT_EXPR would do nothing but increase compile time. */
3108 if (!has_single_use (op))
3110 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3111 need_assert = true;
3116 /* Remember the last statement of the block. */
3117 last = stmt;
3120 /* If BB's last statement is a conditional expression
3121 involving integer operands, recurse into each of the sub-graphs
3122 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3123 if (last
3124 && TREE_CODE (last) == COND_EXPR
3125 && !fp_predicate (COND_EXPR_COND (last))
3126 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3127 need_assert |= find_conditional_asserts (bb);
3129 /* Recurse into the dominator children of BB. */
3130 for (son = first_dom_son (CDI_DOMINATORS, bb);
3131 son;
3132 son = next_dom_son (CDI_DOMINATORS, son))
3133 need_assert |= find_assert_locations (son);
3135 return need_assert;
3139 /* Create an ASSERT_EXPR for NAME and insert it in the location
3140 indicated by LOC. Return true if we made any edge insertions. */
3142 static bool
3143 process_assert_insertions_for (tree name, assert_locus_t loc)
3145 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3146 tree stmt, cond, assert_expr;
3147 edge_iterator ei;
3148 edge e;
3150 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3151 assert_expr = build_assert_expr_for (cond, name);
3153 if (loc->e)
3155 /* We have been asked to insert the assertion on an edge. This
3156 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3157 #if defined ENABLE_CHECKING
3158 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3159 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3160 #endif
3162 bsi_insert_on_edge (loc->e, assert_expr);
3163 return true;
3166 /* Otherwise, we can insert right after LOC->SI iff the
3167 statement must not be the last statement in the block. */
3168 stmt = bsi_stmt (loc->si);
3169 if (!stmt_ends_bb_p (stmt))
3171 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3172 return false;
3175 /* If STMT must be the last statement in BB, we can only insert new
3176 assertions on the non-abnormal edge out of BB. Note that since
3177 STMT is not control flow, there may only be one non-abnormal edge
3178 out of BB. */
3179 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3180 if (!(e->flags & EDGE_ABNORMAL))
3182 bsi_insert_on_edge (e, assert_expr);
3183 return true;
3186 gcc_unreachable ();
3190 /* Process all the insertions registered for every name N_i registered
3191 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3192 found in ASSERTS_FOR[i]. */
3194 static void
3195 process_assert_insertions (void)
3197 unsigned i;
3198 bitmap_iterator bi;
3199 bool update_edges_p = false;
3200 int num_asserts = 0;
3202 if (dump_file && (dump_flags & TDF_DETAILS))
3203 dump_all_asserts (dump_file);
3205 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3207 assert_locus_t loc = asserts_for[i];
3208 gcc_assert (loc);
3210 while (loc)
3212 assert_locus_t next = loc->next;
3213 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3214 free (loc);
3215 loc = next;
3216 num_asserts++;
3220 if (update_edges_p)
3221 bsi_commit_edge_inserts ();
3223 if (dump_file && (dump_flags & TDF_STATS))
3224 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3225 num_asserts);
3229 /* Traverse the flowgraph looking for conditional jumps to insert range
3230 expressions. These range expressions are meant to provide information
3231 to optimizations that need to reason in terms of value ranges. They
3232 will not be expanded into RTL. For instance, given:
3234 x = ...
3235 y = ...
3236 if (x < y)
3237 y = x - 2;
3238 else
3239 x = y + 3;
3241 this pass will transform the code into:
3243 x = ...
3244 y = ...
3245 if (x < y)
3247 x = ASSERT_EXPR <x, x < y>
3248 y = x - 2
3250 else
3252 y = ASSERT_EXPR <y, x <= y>
3253 x = y + 3
3256 The idea is that once copy and constant propagation have run, other
3257 optimizations will be able to determine what ranges of values can 'x'
3258 take in different paths of the code, simply by checking the reaching
3259 definition of 'x'. */
3261 static void
3262 insert_range_assertions (void)
3264 edge e;
3265 edge_iterator ei;
3266 bool update_ssa_p;
3268 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3269 sbitmap_zero (found_in_subgraph);
3271 blocks_visited = sbitmap_alloc (last_basic_block);
3272 sbitmap_zero (blocks_visited);
3274 need_assert_for = BITMAP_ALLOC (NULL);
3275 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3276 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3278 calculate_dominance_info (CDI_DOMINATORS);
3280 update_ssa_p = false;
3281 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3282 if (find_assert_locations (e->dest))
3283 update_ssa_p = true;
3285 if (update_ssa_p)
3287 process_assert_insertions ();
3288 update_ssa (TODO_update_ssa_no_phi);
3291 if (dump_file && (dump_flags & TDF_DETAILS))
3293 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3294 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3297 sbitmap_free (found_in_subgraph);
3298 free (asserts_for);
3299 BITMAP_FREE (need_assert_for);
3303 /* Convert range assertion expressions into the implied copies and
3304 copy propagate away the copies. Doing the trivial copy propagation
3305 here avoids the need to run the full copy propagation pass after
3306 VRP.
3308 FIXME, this will eventually lead to copy propagation removing the
3309 names that had useful range information attached to them. For
3310 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3311 then N_i will have the range [3, +INF].
3313 However, by converting the assertion into the implied copy
3314 operation N_i = N_j, we will then copy-propagate N_j into the uses
3315 of N_i and lose the range information. We may want to hold on to
3316 ASSERT_EXPRs a little while longer as the ranges could be used in
3317 things like jump threading.
3319 The problem with keeping ASSERT_EXPRs around is that passes after
3320 VRP need to handle them appropriately.
3322 Another approach would be to make the range information a first
3323 class property of the SSA_NAME so that it can be queried from
3324 any pass. This is made somewhat more complex by the need for
3325 multiple ranges to be associated with one SSA_NAME. */
3327 static void
3328 remove_range_assertions (void)
3330 basic_block bb;
3331 block_stmt_iterator si;
3333 /* Note that the BSI iterator bump happens at the bottom of the
3334 loop and no bump is necessary if we're removing the statement
3335 referenced by the current BSI. */
3336 FOR_EACH_BB (bb)
3337 for (si = bsi_start (bb); !bsi_end_p (si);)
3339 tree stmt = bsi_stmt (si);
3340 tree use_stmt;
3342 if (TREE_CODE (stmt) == MODIFY_EXPR
3343 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3345 tree rhs = TREE_OPERAND (stmt, 1), var;
3346 tree cond = fold (ASSERT_EXPR_COND (rhs));
3347 use_operand_p use_p;
3348 imm_use_iterator iter;
3350 gcc_assert (cond != boolean_false_node);
3352 /* Propagate the RHS into every use of the LHS. */
3353 var = ASSERT_EXPR_VAR (rhs);
3354 FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3355 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3357 SET_USE (use_p, var);
3358 gcc_assert (TREE_CODE (var) == SSA_NAME);
3361 /* And finally, remove the copy, it is not needed. */
3362 bsi_remove (&si, true);
3364 else
3365 bsi_next (&si);
3368 sbitmap_free (blocks_visited);
3372 /* Return true if STMT is interesting for VRP. */
3374 static bool
3375 stmt_interesting_for_vrp (tree stmt)
3377 if (TREE_CODE (stmt) == PHI_NODE
3378 && is_gimple_reg (PHI_RESULT (stmt))
3379 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3380 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3381 return true;
3382 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3384 tree lhs = TREE_OPERAND (stmt, 0);
3385 tree rhs = TREE_OPERAND (stmt, 1);
3387 /* In general, assignments with virtual operands are not useful
3388 for deriving ranges, with the obvious exception of calls to
3389 builtin functions. */
3390 if (TREE_CODE (lhs) == SSA_NAME
3391 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3392 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3393 && ((TREE_CODE (rhs) == CALL_EXPR
3394 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3395 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3396 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3397 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3398 return true;
3400 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3401 return true;
3403 return false;
3407 /* Initialize local data structures for VRP. */
3409 static void
3410 vrp_initialize (void)
3412 basic_block bb;
3414 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3415 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3417 FOR_EACH_BB (bb)
3419 block_stmt_iterator si;
3420 tree phi;
3422 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3424 if (!stmt_interesting_for_vrp (phi))
3426 tree lhs = PHI_RESULT (phi);
3427 set_value_range_to_varying (get_value_range (lhs));
3428 DONT_SIMULATE_AGAIN (phi) = true;
3430 else
3431 DONT_SIMULATE_AGAIN (phi) = false;
3434 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3436 tree stmt = bsi_stmt (si);
3438 if (!stmt_interesting_for_vrp (stmt))
3440 ssa_op_iter i;
3441 tree def;
3442 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3443 set_value_range_to_varying (get_value_range (def));
3444 DONT_SIMULATE_AGAIN (stmt) = true;
3446 else
3448 DONT_SIMULATE_AGAIN (stmt) = false;
3455 /* Visit assignment STMT. If it produces an interesting range, record
3456 the SSA name in *OUTPUT_P. */
3458 static enum ssa_prop_result
3459 vrp_visit_assignment (tree stmt, tree *output_p)
3461 tree lhs, rhs, def;
3462 ssa_op_iter iter;
3464 lhs = TREE_OPERAND (stmt, 0);
3465 rhs = TREE_OPERAND (stmt, 1);
3467 /* We only keep track of ranges in integral and pointer types. */
3468 if (TREE_CODE (lhs) == SSA_NAME
3469 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3470 /* It is valid to have NULL MIN/MAX values on a type. See
3471 build_range_type. */
3472 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3473 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3474 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3476 struct loop *l;
3477 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3479 extract_range_from_expr (&new_vr, rhs);
3481 /* If STMT is inside a loop, we may be able to know something
3482 else about the range of LHS by examining scalar evolution
3483 information. */
3484 if (current_loops && (l = loop_containing_stmt (stmt)))
3485 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3487 if (update_value_range (lhs, &new_vr))
3489 *output_p = lhs;
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3493 fprintf (dump_file, "Found new range for ");
3494 print_generic_expr (dump_file, lhs, 0);
3495 fprintf (dump_file, ": ");
3496 dump_value_range (dump_file, &new_vr);
3497 fprintf (dump_file, "\n\n");
3500 if (new_vr.type == VR_VARYING)
3501 return SSA_PROP_VARYING;
3503 return SSA_PROP_INTERESTING;
3506 return SSA_PROP_NOT_INTERESTING;
3509 /* Every other statement produces no useful ranges. */
3510 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3511 set_value_range_to_varying (get_value_range (def));
3513 return SSA_PROP_VARYING;
3517 /* Compare all the value ranges for names equivalent to VAR with VAL
3518 using comparison code COMP. Return the same value returned by
3519 compare_range_with_value. */
3521 static tree
3522 compare_name_with_value (enum tree_code comp, tree var, tree val)
3524 bitmap_iterator bi;
3525 unsigned i;
3526 bitmap e;
3527 tree retval, t;
3529 t = retval = NULL_TREE;
3531 /* Get the set of equivalences for VAR. */
3532 e = get_value_range (var)->equiv;
3534 /* Add VAR to its own set of equivalences so that VAR's value range
3535 is processed by this loop (otherwise, we would have to replicate
3536 the body of the loop just to check VAR's value range). */
3537 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3539 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3541 value_range_t equiv_vr = *(vr_value[i]);
3543 /* If name N_i does not have a valid range, use N_i as its own
3544 range. This allows us to compare against names that may
3545 have N_i in their ranges. */
3546 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3548 equiv_vr.type = VR_RANGE;
3549 equiv_vr.min = ssa_name (i);
3550 equiv_vr.max = ssa_name (i);
3553 t = compare_range_with_value (comp, &equiv_vr, val);
3554 if (t)
3556 /* All the ranges should compare the same against VAL. */
3557 gcc_assert (retval == NULL || t == retval);
3558 retval = t;
3562 /* Remove VAR from its own equivalence set. */
3563 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3565 if (retval)
3566 return retval;
3568 /* We couldn't find a non-NULL value for the predicate. */
3569 return NULL_TREE;
3573 /* Given a comparison code COMP and names N1 and N2, compare all the
3574 ranges equivalent to N1 against all the ranges equivalent to N2
3575 to determine the value of N1 COMP N2. Return the same value
3576 returned by compare_ranges. */
3578 static tree
3579 compare_names (enum tree_code comp, tree n1, tree n2)
3581 tree t, retval;
3582 bitmap e1, e2;
3583 bitmap_iterator bi1, bi2;
3584 unsigned i1, i2;
3586 /* Compare the ranges of every name equivalent to N1 against the
3587 ranges of every name equivalent to N2. */
3588 e1 = get_value_range (n1)->equiv;
3589 e2 = get_value_range (n2)->equiv;
3591 /* Add N1 and N2 to their own set of equivalences to avoid
3592 duplicating the body of the loop just to check N1 and N2
3593 ranges. */
3594 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3595 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3597 /* If the equivalence sets have a common intersection, then the two
3598 names can be compared without checking their ranges. */
3599 if (bitmap_intersect_p (e1, e2))
3601 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3602 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3604 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3605 ? boolean_true_node
3606 : boolean_false_node;
3609 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3610 N2 to their own set of equivalences to avoid duplicating the body
3611 of the loop just to check N1 and N2 ranges. */
3612 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3614 value_range_t vr1 = *(vr_value[i1]);
3616 /* If the range is VARYING or UNDEFINED, use the name itself. */
3617 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3619 vr1.type = VR_RANGE;
3620 vr1.min = ssa_name (i1);
3621 vr1.max = ssa_name (i1);
3624 t = retval = NULL_TREE;
3625 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3627 value_range_t vr2 = *(vr_value[i2]);
3629 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3631 vr2.type = VR_RANGE;
3632 vr2.min = ssa_name (i2);
3633 vr2.max = ssa_name (i2);
3636 t = compare_ranges (comp, &vr1, &vr2);
3637 if (t)
3639 /* All the ranges in the equivalent sets should compare
3640 the same. */
3641 gcc_assert (retval == NULL || t == retval);
3642 retval = t;
3646 if (retval)
3648 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3649 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3650 return retval;
3654 /* None of the equivalent ranges are useful in computing this
3655 comparison. */
3656 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3657 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3658 return NULL_TREE;
3662 /* Given a conditional predicate COND, try to determine if COND yields
3663 true or false based on the value ranges of its operands. Return
3664 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3665 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3666 NULL if the conditional cannot be evaluated at compile time.
3668 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3669 the operands in COND are used when trying to compute its value.
3670 This is only used during final substitution. During propagation,
3671 we only check the range of each variable and not its equivalents. */
3673 tree
3674 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3676 gcc_assert (TREE_CODE (cond) == SSA_NAME
3677 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3679 if (TREE_CODE (cond) == SSA_NAME)
3681 value_range_t *vr;
3682 tree retval;
3684 if (use_equiv_p)
3685 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3686 else
3688 value_range_t *vr = get_value_range (cond);
3689 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3692 /* If COND has a known boolean range, return it. */
3693 if (retval)
3694 return retval;
3696 /* Otherwise, if COND has a symbolic range of exactly one value,
3697 return it. */
3698 vr = get_value_range (cond);
3699 if (vr->type == VR_RANGE && vr->min == vr->max)
3700 return vr->min;
3702 else
3704 tree op0 = TREE_OPERAND (cond, 0);
3705 tree op1 = TREE_OPERAND (cond, 1);
3707 /* We only deal with integral and pointer types. */
3708 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3709 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3710 return NULL_TREE;
3712 if (use_equiv_p)
3714 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3715 return compare_names (TREE_CODE (cond), op0, op1);
3716 else if (TREE_CODE (op0) == SSA_NAME)
3717 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3718 else if (TREE_CODE (op1) == SSA_NAME)
3719 return compare_name_with_value (
3720 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3722 else
3724 value_range_t *vr0, *vr1;
3726 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3727 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3729 if (vr0 && vr1)
3730 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3731 else if (vr0 && vr1 == NULL)
3732 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3733 else if (vr0 == NULL && vr1)
3734 return compare_range_with_value (
3735 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3739 /* Anything else cannot be computed statically. */
3740 return NULL_TREE;
3744 /* Visit conditional statement STMT. If we can determine which edge
3745 will be taken out of STMT's basic block, record it in
3746 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3747 SSA_PROP_VARYING. */
3749 static enum ssa_prop_result
3750 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3752 tree cond, val;
3754 *taken_edge_p = NULL;
3756 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3757 add ASSERT_EXPRs for them. */
3758 if (TREE_CODE (stmt) == SWITCH_EXPR)
3759 return SSA_PROP_VARYING;
3761 cond = COND_EXPR_COND (stmt);
3763 if (dump_file && (dump_flags & TDF_DETAILS))
3765 tree use;
3766 ssa_op_iter i;
3768 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3769 print_generic_expr (dump_file, cond, 0);
3770 fprintf (dump_file, "\nWith known ranges\n");
3772 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3774 fprintf (dump_file, "\t");
3775 print_generic_expr (dump_file, use, 0);
3776 fprintf (dump_file, ": ");
3777 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3780 fprintf (dump_file, "\n");
3783 /* Compute the value of the predicate COND by checking the known
3784 ranges of each of its operands.
3786 Note that we cannot evaluate all the equivalent ranges here
3787 because those ranges may not yet be final and with the current
3788 propagation strategy, we cannot determine when the value ranges
3789 of the names in the equivalence set have changed.
3791 For instance, given the following code fragment
3793 i_5 = PHI <8, i_13>
3795 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3796 if (i_14 == 1)
3799 Assume that on the first visit to i_14, i_5 has the temporary
3800 range [8, 8] because the second argument to the PHI function is
3801 not yet executable. We derive the range ~[0, 0] for i_14 and the
3802 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3803 the first time, since i_14 is equivalent to the range [8, 8], we
3804 determine that the predicate is always false.
3806 On the next round of propagation, i_13 is determined to be
3807 VARYING, which causes i_5 to drop down to VARYING. So, another
3808 visit to i_14 is scheduled. In this second visit, we compute the
3809 exact same range and equivalence set for i_14, namely ~[0, 0] and
3810 { i_5 }. But we did not have the previous range for i_5
3811 registered, so vrp_visit_assignment thinks that the range for
3812 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3813 is not visited again, which stops propagation from visiting
3814 statements in the THEN clause of that if().
3816 To properly fix this we would need to keep the previous range
3817 value for the names in the equivalence set. This way we would've
3818 discovered that from one visit to the other i_5 changed from
3819 range [8, 8] to VR_VARYING.
3821 However, fixing this apparent limitation may not be worth the
3822 additional checking. Testing on several code bases (GCC, DLV,
3823 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3824 4 more predicates folded in SPEC. */
3825 val = vrp_evaluate_conditional (cond, false);
3826 if (val)
3827 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3829 if (dump_file && (dump_flags & TDF_DETAILS))
3831 fprintf (dump_file, "\nPredicate evaluates to: ");
3832 if (val == NULL_TREE)
3833 fprintf (dump_file, "DON'T KNOW\n");
3834 else
3835 print_generic_stmt (dump_file, val, 0);
3838 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3842 /* Evaluate statement STMT. If the statement produces a useful range,
3843 return SSA_PROP_INTERESTING and record the SSA name with the
3844 interesting range into *OUTPUT_P.
3846 If STMT is a conditional branch and we can determine its truth
3847 value, the taken edge is recorded in *TAKEN_EDGE_P.
3849 If STMT produces a varying value, return SSA_PROP_VARYING. */
3851 static enum ssa_prop_result
3852 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3854 tree def;
3855 ssa_op_iter iter;
3856 stmt_ann_t ann;
3858 if (dump_file && (dump_flags & TDF_DETAILS))
3860 fprintf (dump_file, "\nVisiting statement:\n");
3861 print_generic_stmt (dump_file, stmt, dump_flags);
3862 fprintf (dump_file, "\n");
3865 ann = stmt_ann (stmt);
3866 if (TREE_CODE (stmt) == MODIFY_EXPR)
3868 tree rhs = TREE_OPERAND (stmt, 1);
3870 /* In general, assignments with virtual operands are not useful
3871 for deriving ranges, with the obvious exception of calls to
3872 builtin functions. */
3873 if ((TREE_CODE (rhs) == CALL_EXPR
3874 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3875 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3876 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3877 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3878 return vrp_visit_assignment (stmt, output_p);
3880 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3881 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3883 /* All other statements produce nothing of interest for VRP, so mark
3884 their outputs varying and prevent further simulation. */
3885 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3886 set_value_range_to_varying (get_value_range (def));
3888 return SSA_PROP_VARYING;
3892 /* Meet operation for value ranges. Given two value ranges VR0 and
3893 VR1, store in VR0 the result of meeting VR0 and VR1.
3895 The meeting rules are as follows:
3897 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3899 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3900 union of VR0 and VR1. */
3902 static void
3903 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3905 if (vr0->type == VR_UNDEFINED)
3907 copy_value_range (vr0, vr1);
3908 return;
3911 if (vr1->type == VR_UNDEFINED)
3913 /* Nothing to do. VR0 already has the resulting range. */
3914 return;
3917 if (vr0->type == VR_VARYING)
3919 /* Nothing to do. VR0 already has the resulting range. */
3920 return;
3923 if (vr1->type == VR_VARYING)
3925 set_value_range_to_varying (vr0);
3926 return;
3929 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3931 /* If VR0 and VR1 have a non-empty intersection, compute the
3932 union of both ranges. */
3933 if (value_ranges_intersect_p (vr0, vr1))
3935 int cmp;
3936 tree min, max;
3938 /* The lower limit of the new range is the minimum of the
3939 two ranges. If they cannot be compared, the result is
3940 VARYING. */
3941 cmp = compare_values (vr0->min, vr1->min);
3942 if (cmp == 0 || cmp == 1)
3943 min = vr1->min;
3944 else if (cmp == -1)
3945 min = vr0->min;
3946 else
3948 set_value_range_to_varying (vr0);
3949 return;
3952 /* Similarly, the upper limit of the new range is the
3953 maximum of the two ranges. If they cannot be compared,
3954 the result is VARYING. */
3955 cmp = compare_values (vr0->max, vr1->max);
3956 if (cmp == 0 || cmp == -1)
3957 max = vr1->max;
3958 else if (cmp == 1)
3959 max = vr0->max;
3960 else
3962 set_value_range_to_varying (vr0);
3963 return;
3966 /* The resulting set of equivalences is the intersection of
3967 the two sets. */
3968 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3969 bitmap_and_into (vr0->equiv, vr1->equiv);
3970 else if (vr0->equiv && !vr1->equiv)
3971 bitmap_clear (vr0->equiv);
3973 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3975 else
3976 goto no_meet;
3978 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3980 /* Two anti-ranges meet only if they are both identical. */
3981 if (compare_values (vr0->min, vr1->min) == 0
3982 && compare_values (vr0->max, vr1->max) == 0
3983 && compare_values (vr0->min, vr0->max) == 0)
3985 /* The resulting set of equivalences is the intersection of
3986 the two sets. */
3987 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3988 bitmap_and_into (vr0->equiv, vr1->equiv);
3989 else if (vr0->equiv && !vr1->equiv)
3990 bitmap_clear (vr0->equiv);
3992 else
3993 goto no_meet;
3995 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3997 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3998 meet only if the ranges have an empty intersection. The
3999 result of the meet operation is the anti-range. */
4000 if (!symbolic_range_p (vr0)
4001 && !symbolic_range_p (vr1)
4002 && !value_ranges_intersect_p (vr0, vr1))
4004 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4005 set. We need to compute the intersection of the two
4006 equivalence sets. */
4007 if (vr1->type == VR_ANTI_RANGE)
4008 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4010 /* The resulting set of equivalences is the intersection of
4011 the two sets. */
4012 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4013 bitmap_and_into (vr0->equiv, vr1->equiv);
4014 else if (vr0->equiv && !vr1->equiv)
4015 bitmap_clear (vr0->equiv);
4017 else
4018 goto no_meet;
4020 else
4021 gcc_unreachable ();
4023 return;
4025 no_meet:
4026 /* The two range VR0 and VR1 do not meet. Before giving up and
4027 setting the result to VARYING, see if we can at least derive a
4028 useful anti-range. FIXME, all this nonsense about distinguishing
4029 anti-ranges from ranges is necessary because of the odd
4030 semantics of range_includes_zero_p and friends. */
4031 if (!symbolic_range_p (vr0)
4032 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4033 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4034 && !symbolic_range_p (vr1)
4035 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4036 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4038 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4040 /* Since this meet operation did not result from the meeting of
4041 two equivalent names, VR0 cannot have any equivalences. */
4042 if (vr0->equiv)
4043 bitmap_clear (vr0->equiv);
4045 else
4046 set_value_range_to_varying (vr0);
4050 /* Visit all arguments for PHI node PHI that flow through executable
4051 edges. If a valid value range can be derived from all the incoming
4052 value ranges, set a new range for the LHS of PHI. */
4054 static enum ssa_prop_result
4055 vrp_visit_phi_node (tree phi)
4057 int i;
4058 tree lhs = PHI_RESULT (phi);
4059 value_range_t *lhs_vr = get_value_range (lhs);
4060 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4062 copy_value_range (&vr_result, lhs_vr);
4064 if (dump_file && (dump_flags & TDF_DETAILS))
4066 fprintf (dump_file, "\nVisiting PHI node: ");
4067 print_generic_expr (dump_file, phi, dump_flags);
4070 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4072 edge e = PHI_ARG_EDGE (phi, i);
4074 if (dump_file && (dump_flags & TDF_DETAILS))
4076 fprintf (dump_file,
4077 "\n Argument #%d (%d -> %d %sexecutable)\n",
4078 i, e->src->index, e->dest->index,
4079 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4082 if (e->flags & EDGE_EXECUTABLE)
4084 tree arg = PHI_ARG_DEF (phi, i);
4085 value_range_t vr_arg;
4087 if (TREE_CODE (arg) == SSA_NAME)
4088 vr_arg = *(get_value_range (arg));
4089 else
4091 vr_arg.type = VR_RANGE;
4092 vr_arg.min = arg;
4093 vr_arg.max = arg;
4094 vr_arg.equiv = NULL;
4097 if (dump_file && (dump_flags & TDF_DETAILS))
4099 fprintf (dump_file, "\t");
4100 print_generic_expr (dump_file, arg, dump_flags);
4101 fprintf (dump_file, "\n\tValue: ");
4102 dump_value_range (dump_file, &vr_arg);
4103 fprintf (dump_file, "\n");
4106 vrp_meet (&vr_result, &vr_arg);
4108 if (vr_result.type == VR_VARYING)
4109 break;
4113 if (vr_result.type == VR_VARYING)
4114 goto varying;
4116 /* To prevent infinite iterations in the algorithm, derive ranges
4117 when the new value is slightly bigger or smaller than the
4118 previous one. */
4119 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4121 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4123 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4124 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4126 /* If the new minimum is smaller or larger than the previous
4127 one, go all the way to -INF. In the first case, to avoid
4128 iterating millions of times to reach -INF, and in the
4129 other case to avoid infinite bouncing between different
4130 minimums. */
4131 if (cmp_min > 0 || cmp_min < 0)
4132 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4134 /* Similarly, if the new maximum is smaller or larger than
4135 the previous one, go all the way to +INF. */
4136 if (cmp_max < 0 || cmp_max > 0)
4137 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4139 /* If we ended up with a (-INF, +INF) range, set it to
4140 VARYING. */
4141 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4142 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4143 goto varying;
4147 /* If the new range is different than the previous value, keep
4148 iterating. */
4149 if (update_value_range (lhs, &vr_result))
4150 return SSA_PROP_INTERESTING;
4152 /* Nothing changed, don't add outgoing edges. */
4153 return SSA_PROP_NOT_INTERESTING;
4155 /* No match found. Set the LHS to VARYING. */
4156 varying:
4157 set_value_range_to_varying (lhs_vr);
4158 return SSA_PROP_VARYING;
4161 /* Simplify a division or modulo operator to a right shift or
4162 bitwise and if the first operand is unsigned or is greater
4163 than zero and the second operand is an exact power of two. */
4165 static void
4166 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4168 tree val = NULL;
4169 tree op = TREE_OPERAND (rhs, 0);
4170 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4172 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4174 val = integer_one_node;
4176 else
4178 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4181 if (val && integer_onep (val))
4183 tree t;
4184 tree op0 = TREE_OPERAND (rhs, 0);
4185 tree op1 = TREE_OPERAND (rhs, 1);
4187 if (rhs_code == TRUNC_DIV_EXPR)
4189 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4190 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4192 else
4194 t = build_int_cst (TREE_TYPE (op1), 1);
4195 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4196 t = fold_convert (TREE_TYPE (op0), t);
4197 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4200 TREE_OPERAND (stmt, 1) = t;
4201 update_stmt (stmt);
4205 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4206 ABS_EXPR. If the operand is <= 0, then simplify the
4207 ABS_EXPR into a NEGATE_EXPR. */
4209 static void
4210 simplify_abs_using_ranges (tree stmt, tree rhs)
4212 tree val = NULL;
4213 tree op = TREE_OPERAND (rhs, 0);
4214 tree type = TREE_TYPE (op);
4215 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4217 if (TYPE_UNSIGNED (type))
4219 val = integer_zero_node;
4221 else if (vr)
4223 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4224 if (!val)
4226 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4228 if (val)
4230 if (integer_zerop (val))
4231 val = integer_one_node;
4232 else if (integer_onep (val))
4233 val = integer_zero_node;
4237 if (val
4238 && (integer_onep (val) || integer_zerop (val)))
4240 tree t;
4242 if (integer_onep (val))
4243 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4244 else
4245 t = op;
4247 TREE_OPERAND (stmt, 1) = t;
4248 update_stmt (stmt);
4253 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4254 a known value range VR.
4256 If there is one and only one value which will satisfy the
4257 conditional, then return that value. Else return NULL. */
4259 static tree
4260 test_for_singularity (enum tree_code cond_code, tree op0,
4261 tree op1, value_range_t *vr)
4263 tree min = NULL;
4264 tree max = NULL;
4266 /* Extract minimum/maximum values which satisfy the
4267 the conditional as it was written. */
4268 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4270 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4272 max = op1;
4273 if (cond_code == LT_EXPR)
4275 tree one = build_int_cst (TREE_TYPE (op0), 1);
4276 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4279 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4281 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4283 min = op1;
4284 if (cond_code == GT_EXPR)
4286 tree one = build_int_cst (TREE_TYPE (op0), 1);
4287 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4291 /* Now refine the minimum and maximum values using any
4292 value range information we have for op0. */
4293 if (min && max)
4295 if (compare_values (vr->min, min) == -1)
4296 min = min;
4297 else
4298 min = vr->min;
4299 if (compare_values (vr->max, max) == 1)
4300 max = max;
4301 else
4302 max = vr->max;
4304 /* If the new min/max values have converged to a single value,
4305 then there is only one value which can satisfy the condition,
4306 return that value. */
4307 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4308 return min;
4310 return NULL;
4313 /* Simplify a conditional using a relational operator to an equality
4314 test if the range information indicates only one value can satisfy
4315 the original conditional. */
4317 static void
4318 simplify_cond_using_ranges (tree stmt)
4320 tree cond = COND_EXPR_COND (stmt);
4321 tree op0 = TREE_OPERAND (cond, 0);
4322 tree op1 = TREE_OPERAND (cond, 1);
4323 enum tree_code cond_code = TREE_CODE (cond);
4325 if (cond_code != NE_EXPR
4326 && cond_code != EQ_EXPR
4327 && TREE_CODE (op0) == SSA_NAME
4328 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4329 && is_gimple_min_invariant (op1))
4331 value_range_t *vr = get_value_range (op0);
4333 /* If we have range information for OP0, then we might be
4334 able to simplify this conditional. */
4335 if (vr->type == VR_RANGE)
4337 tree new = test_for_singularity (cond_code, op0, op1, vr);
4339 if (new)
4341 if (dump_file)
4343 fprintf (dump_file, "Simplified relational ");
4344 print_generic_expr (dump_file, cond, 0);
4345 fprintf (dump_file, " into ");
4348 COND_EXPR_COND (stmt)
4349 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4350 update_stmt (stmt);
4352 if (dump_file)
4354 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4355 fprintf (dump_file, "\n");
4357 return;
4361 /* Try again after inverting the condition. We only deal
4362 with integral types here, so no need to worry about
4363 issues with inverting FP comparisons. */
4364 cond_code = invert_tree_comparison (cond_code, false);
4365 new = test_for_singularity (cond_code, op0, op1, vr);
4367 if (new)
4369 if (dump_file)
4371 fprintf (dump_file, "Simplified relational ");
4372 print_generic_expr (dump_file, cond, 0);
4373 fprintf (dump_file, " into ");
4376 COND_EXPR_COND (stmt)
4377 = build2 (NE_EXPR, boolean_type_node, op0, new);
4378 update_stmt (stmt);
4380 if (dump_file)
4382 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4383 fprintf (dump_file, "\n");
4385 return;
4392 /* Simplify STMT using ranges if possible. */
4394 void
4395 simplify_stmt_using_ranges (tree stmt)
4397 if (TREE_CODE (stmt) == MODIFY_EXPR)
4399 tree rhs = TREE_OPERAND (stmt, 1);
4400 enum tree_code rhs_code = TREE_CODE (rhs);
4402 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4403 and BIT_AND_EXPR respectively if the first operand is greater
4404 than zero and the second operand is an exact power of two. */
4405 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4406 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4407 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4408 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4410 /* Transform ABS (X) into X or -X as appropriate. */
4411 if (rhs_code == ABS_EXPR
4412 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4413 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4414 simplify_abs_using_ranges (stmt, rhs);
4416 else if (TREE_CODE (stmt) == COND_EXPR
4417 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4419 simplify_cond_using_ranges (stmt);
4423 /* Stack of dest,src equivalency pairs that need to be restored after
4424 each attempt to thread a block's incoming edge to an outgoing edge.
4426 A NULL entry is used to mark the end of pairs which need to be
4427 restored. */
4428 static VEC(tree,heap) *stack;
4430 /* A trivial wrapper so that we can present the generic jump
4431 threading code with a simple API for simplifying statements. */
4432 static tree
4433 simplify_stmt_for_jump_threading (tree stmt)
4435 /* We only use VRP information to simplify conditionals. This is
4436 overly conservative, but it's unclear if doing more would be
4437 worth the compile time cost. */
4438 if (TREE_CODE (stmt) != COND_EXPR)
4439 return NULL;
4441 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4444 /* Blocks which have more than one predecessor and more than
4445 one successor present jump threading opportunities. ie,
4446 when the block is reached from a specific predecessor, we
4447 may be able to determine which of the outgoing edges will
4448 be traversed. When this optimization applies, we are able
4449 to avoid conditionals at runtime and we may expose secondary
4450 optimization opportunities.
4452 This routine is effectively a driver for the generic jump
4453 threading code. It basically just presents the generic code
4454 with edges that may be suitable for jump threading.
4456 Unlike DOM, we do not iterate VRP if jump threading was successful.
4457 While iterating may expose new opportunities for VRP, it is expected
4458 those opportunities would be very limited and the compile time cost
4459 to expose those opportunities would be significant.
4461 As jump threading opportunities are discovered, they are registered
4462 for later realization. */
4464 static void
4465 identify_jump_threads (void)
4467 basic_block bb;
4468 tree dummy;
4470 /* Ugh. When substituting values earlier in this pass we can
4471 wipe the dominance information. So rebuild the dominator
4472 information as we need it within the jump threading code. */
4473 calculate_dominance_info (CDI_DOMINATORS);
4475 /* We do not allow VRP information to be used for jump threading
4476 across a back edge in the CFG. Otherwise it becomes too
4477 difficult to avoid eliminating loop exit tests. Of course
4478 EDGE_DFS_BACK is not accurate at this time so we have to
4479 recompute it. */
4480 mark_dfs_back_edges ();
4482 /* Allocate our unwinder stack to unwind any temporary equivalences
4483 that might be recorded. */
4484 stack = VEC_alloc (tree, heap, 20);
4486 /* To avoid lots of silly node creation, we create a single
4487 conditional and just modify it in-place when attempting to
4488 thread jumps. */
4489 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4490 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4492 /* Walk through all the blocks finding those which present a
4493 potential jump threading opportunity. We could set this up
4494 as a dominator walker and record data during the walk, but
4495 I doubt it's worth the effort for the classes of jump
4496 threading opportunities we are trying to identify at this
4497 point in compilation. */
4498 FOR_EACH_BB (bb)
4500 tree last, cond;
4502 /* If the generic jump threading code does not find this block
4503 interesting, then there is nothing to do. */
4504 if (! potentially_threadable_block (bb))
4505 continue;
4507 /* We only care about blocks ending in a COND_EXPR. While there
4508 may be some value in handling SWITCH_EXPR here, I doubt it's
4509 terribly important. */
4510 last = bsi_stmt (bsi_last (bb));
4511 if (TREE_CODE (last) != COND_EXPR)
4512 continue;
4514 /* We're basically looking for any kind of conditional with
4515 integral type arguments. */
4516 cond = COND_EXPR_COND (last);
4517 if ((TREE_CODE (cond) == SSA_NAME
4518 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4519 || (COMPARISON_CLASS_P (cond)
4520 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4521 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4522 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4523 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4524 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4526 edge_iterator ei;
4527 edge e;
4529 /* We've got a block with multiple predecessors and multiple
4530 successors which also ends in a suitable conditional. For
4531 each predecessor, see if we can thread it to a specific
4532 successor. */
4533 FOR_EACH_EDGE (e, ei, bb->preds)
4535 /* Do not thread across back edges or abnormal edges
4536 in the CFG. */
4537 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4538 continue;
4540 thread_across_edge (dummy, e, true,
4541 &stack,
4542 simplify_stmt_for_jump_threading);
4547 /* We do not actually update the CFG or SSA graphs at this point as
4548 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4549 handle ASSERT_EXPRs gracefully. */
4552 /* We identified all the jump threading opportunities earlier, but could
4553 not transform the CFG at that time. This routine transforms the
4554 CFG and arranges for the dominator tree to be rebuilt if necessary.
4556 Note the SSA graph update will occur during the normal TODO
4557 processing by the pass manager. */
4558 static void
4559 finalize_jump_threads (void)
4561 bool cfg_altered = false;
4562 cfg_altered = thread_through_all_blocks ();
4564 /* If we threaded jumps, then we need to recompute the dominance
4565 information, to safely do that we must clean up the CFG first. */
4566 if (cfg_altered)
4568 free_dominance_info (CDI_DOMINATORS);
4569 cleanup_tree_cfg ();
4570 calculate_dominance_info (CDI_DOMINATORS);
4572 VEC_free (tree, heap, stack);
4576 /* Traverse all the blocks folding conditionals with known ranges. */
4578 static void
4579 vrp_finalize (void)
4581 size_t i;
4582 prop_value_t *single_val_range;
4583 bool do_value_subst_p;
4585 if (dump_file)
4587 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4588 dump_all_value_ranges (dump_file);
4589 fprintf (dump_file, "\n");
4592 /* We may have ended with ranges that have exactly one value. Those
4593 values can be substituted as any other copy/const propagated
4594 value using substitute_and_fold. */
4595 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4596 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4598 do_value_subst_p = false;
4599 for (i = 0; i < num_ssa_names; i++)
4600 if (vr_value[i]
4601 && vr_value[i]->type == VR_RANGE
4602 && vr_value[i]->min == vr_value[i]->max)
4604 single_val_range[i].value = vr_value[i]->min;
4605 do_value_subst_p = true;
4608 if (!do_value_subst_p)
4610 /* We found no single-valued ranges, don't waste time trying to
4611 do single value substitution in substitute_and_fold. */
4612 free (single_val_range);
4613 single_val_range = NULL;
4616 substitute_and_fold (single_val_range, true);
4618 /* We must identify jump threading opportunities before we release
4619 the datastructures built by VRP. */
4620 identify_jump_threads ();
4622 /* Free allocated memory. */
4623 for (i = 0; i < num_ssa_names; i++)
4624 if (vr_value[i])
4626 BITMAP_FREE (vr_value[i]->equiv);
4627 free (vr_value[i]);
4630 free (single_val_range);
4631 free (vr_value);
4633 /* So that we can distinguish between VRP data being available
4634 and not available. */
4635 vr_value = NULL;
4639 /* Main entry point to VRP (Value Range Propagation). This pass is
4640 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4641 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4642 Programming Language Design and Implementation, pp. 67-78, 1995.
4643 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4645 This is essentially an SSA-CCP pass modified to deal with ranges
4646 instead of constants.
4648 While propagating ranges, we may find that two or more SSA name
4649 have equivalent, though distinct ranges. For instance,
4651 1 x_9 = p_3->a;
4652 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4653 3 if (p_4 == q_2)
4654 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4655 5 endif
4656 6 if (q_2)
4658 In the code above, pointer p_5 has range [q_2, q_2], but from the
4659 code we can also determine that p_5 cannot be NULL and, if q_2 had
4660 a non-varying range, p_5's range should also be compatible with it.
4662 These equivalences are created by two expressions: ASSERT_EXPR and
4663 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4664 result of another assertion, then we can use the fact that p_5 and
4665 p_4 are equivalent when evaluating p_5's range.
4667 Together with value ranges, we also propagate these equivalences
4668 between names so that we can take advantage of information from
4669 multiple ranges when doing final replacement. Note that this
4670 equivalency relation is transitive but not symmetric.
4672 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4673 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4674 in contexts where that assertion does not hold (e.g., in line 6).
4676 TODO, the main difference between this pass and Patterson's is that
4677 we do not propagate edge probabilities. We only compute whether
4678 edges can be taken or not. That is, instead of having a spectrum
4679 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4680 DON'T KNOW. In the future, it may be worthwhile to propagate
4681 probabilities to aid branch prediction. */
4683 static unsigned int
4684 execute_vrp (void)
4686 insert_range_assertions ();
4688 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4689 if (current_loops)
4690 scev_initialize (current_loops);
4692 vrp_initialize ();
4693 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4694 vrp_finalize ();
4696 if (current_loops)
4698 scev_finalize ();
4699 loop_optimizer_finalize (current_loops);
4700 current_loops = NULL;
4703 /* ASSERT_EXPRs must be removed before finalizing jump threads
4704 as finalizing jump threads calls the CFG cleanup code which
4705 does not properly handle ASSERT_EXPRs. */
4706 remove_range_assertions ();
4708 /* If we exposed any new variables, go ahead and put them into
4709 SSA form now, before we handle jump threading. This simplifies
4710 interactions between rewriting of _DECL nodes into SSA form
4711 and rewriting SSA_NAME nodes into SSA form after block
4712 duplication and CFG manipulation. */
4713 update_ssa (TODO_update_ssa);
4715 finalize_jump_threads ();
4716 return 0;
4719 static bool
4720 gate_vrp (void)
4722 return flag_tree_vrp != 0;
4725 struct tree_opt_pass pass_vrp =
4727 "vrp", /* name */
4728 gate_vrp, /* gate */
4729 execute_vrp, /* execute */
4730 NULL, /* sub */
4731 NULL, /* next */
4732 0, /* static_pass_number */
4733 TV_TREE_VRP, /* tv_id */
4734 PROP_ssa | PROP_alias, /* properties_required */
4735 0, /* properties_provided */
4736 PROP_smt_usage, /* properties_destroyed */
4737 0, /* todo_flags_start */
4738 TODO_cleanup_cfg
4739 | TODO_ggc_collect
4740 | TODO_verify_ssa
4741 | TODO_dump_func
4742 | TODO_update_ssa
4743 | TODO_update_smt_usage, /* todo_flags_finish */
4744 0 /* letter */