Give the target more control over ARRAY_TYPE modes
[official-gcc.git] / gcc / stor-layout.c
blob0f65e166411dab479291b0ad4ab431516d0271a1
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
65 tree
66 variable_size (tree size)
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
83 return save_expr (size);
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
89 /* Return true if T is a self-referential component reference. */
91 static bool
92 self_referential_component_ref_p (tree t)
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 enum tree_code code = TREE_CODE (*tp);
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
117 *walk_subtrees = 0;
118 return NULL_TREE;
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 *walk_subtrees = 0;
126 return NULL_TREE;
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
147 return copy_tree_r (tp, walk_subtrees, data);
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
153 static tree
154 self_referential_size (tree size)
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 tree subst, param_name, param_type, param_decl;
186 if (DECL_P (ref))
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
208 size = substitute_in_expr (size, subst, param_decl);
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
215 self_refs.release ();
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
273 void
274 finalize_size_functions (void)
276 unsigned int i;
277 tree fndecl;
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
292 vec_free (size_functions);
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 machine_mode mode;
304 int i;
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return opt_machine_mode ();
323 /* Similar, except passed a tree node. */
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
355 gcc_assert (mode != VOIDmode);
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
396 case MODE_RANDOM:
397 if (mode == BLKmode)
398 return opt_scalar_int_mode ();
400 /* fall through */
402 case MODE_CC:
403 default:
404 gcc_unreachable ();
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409 if one exists. */
411 opt_machine_mode
412 bitwise_mode_for_mode (machine_mode mode)
414 /* Quick exit if we already have a suitable mode. */
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
423 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
430 machine_mode trial = mode;
431 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 && have_regs_of_mode[GET_MODE_INNER (trial)])
434 return trial;
437 /* Try to replace vector modes with vector modes. Also try using vector
438 modes if an integer mode would be too big. */
439 if (VECTOR_MODE_P (mode)
440 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
442 machine_mode trial = mode;
443 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 && have_regs_of_mode[trial]
446 && targetm.vector_mode_supported_p (trial))
447 return trial;
450 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
451 return mode_for_size (bitsize, MODE_INT, true);
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455 Return null if no such mode exists. */
457 tree
458 bitwise_type_for_mode (machine_mode mode)
460 if (!bitwise_mode_for_mode (mode).exists (&mode))
461 return NULL_TREE;
463 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464 tree inner_type = build_nonstandard_integer_type (inner_size, true);
466 if (VECTOR_MODE_P (mode))
467 return build_vector_type_for_mode (inner_type, mode);
469 if (COMPLEX_MODE_P (mode))
470 return build_complex_type (inner_type);
472 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473 return inner_type;
476 /* Find a mode that is suitable for representing a vector with NUNITS
477 elements of mode INNERMODE, if one exists. The returned mode can be
478 either an integer mode or a vector mode. */
480 opt_machine_mode
481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
483 machine_mode mode;
485 /* First, look for a supported vector type. */
486 if (SCALAR_FLOAT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FLOAT;
488 else if (SCALAR_FRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FRACT;
490 else if (SCALAR_UFRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_UFRACT;
492 else if (SCALAR_ACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_ACCUM;
494 else if (SCALAR_UACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_UACCUM;
496 else
497 mode = MIN_MODE_VECTOR_INT;
499 /* Do not check vector_mode_supported_p here. We'll do that
500 later in vector_type_mode. */
501 FOR_EACH_MODE_FROM (mode, mode)
502 if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 && GET_MODE_INNER (mode) == innermode)
504 return mode;
506 /* For integers, try mapping it to a same-sized scalar mode. */
507 if (GET_MODE_CLASS (innermode) == MODE_INT)
509 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510 if (int_mode_for_size (nbits, 0).exists (&mode)
511 && have_regs_of_mode[mode])
512 return mode;
515 return opt_machine_mode ();
518 /* Return the mode for a vector that has NUNITS integer elements of
519 INT_BITS bits each, if such a mode exists. The mode can be either
520 an integer mode or a vector mode. */
522 opt_machine_mode
523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
525 scalar_int_mode int_mode;
526 machine_mode vec_mode;
527 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529 return vec_mode;
530 return opt_machine_mode ();
533 /* Return the alignment of MODE. This will be bounded by 1 and
534 BIGGEST_ALIGNMENT. */
536 unsigned int
537 get_mode_alignment (machine_mode mode)
539 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543 total and has elements of type ELEM_TYPE. */
545 static machine_mode
546 mode_for_array (tree elem_type, tree size)
548 tree elem_size;
549 poly_uint64 int_size, int_elem_size;
550 unsigned HOST_WIDE_INT num_elems;
551 bool limit_p;
553 /* One-element arrays get the component type's mode. */
554 elem_size = TYPE_SIZE (elem_type);
555 if (simple_cst_equal (size, elem_size))
556 return TYPE_MODE (elem_type);
558 limit_p = true;
559 if (poly_int_tree_p (size, &int_size)
560 && poly_int_tree_p (elem_size, &int_elem_size)
561 && maybe_ne (int_elem_size, 0U)
562 && constant_multiple_p (int_size, int_elem_size, &num_elems))
564 machine_mode elem_mode = TYPE_MODE (elem_type);
565 machine_mode mode;
566 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 return mode;
568 if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 limit_p = false;
571 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575 But if the decl itself wants greater alignment, don't override that. */
577 static inline void
578 do_type_align (tree type, tree decl)
580 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
582 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583 if (TREE_CODE (decl) == FIELD_DECL)
584 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
586 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
590 /* Set the size, mode and alignment of a ..._DECL node.
591 TYPE_DECL does need this for C++.
592 Note that LABEL_DECL and CONST_DECL nodes do not need this,
593 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594 Don't call layout_decl for them.
596 KNOWN_ALIGN is the amount of alignment we can assume this
597 decl has with no special effort. It is relevant only for FIELD_DECLs
598 and depends on the previous fields.
599 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601 the record will be aligned to suit. */
603 void
604 layout_decl (tree decl, unsigned int known_align)
606 tree type = TREE_TYPE (decl);
607 enum tree_code code = TREE_CODE (decl);
608 rtx rtl = NULL_RTX;
609 location_t loc = DECL_SOURCE_LOCATION (decl);
611 if (code == CONST_DECL)
612 return;
614 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 || code == TYPE_DECL || code == FIELD_DECL);
617 rtl = DECL_RTL_IF_SET (decl);
619 if (type == error_mark_node)
620 type = void_type_node;
622 /* Usually the size and mode come from the data type without change,
623 however, the front-end may set the explicit width of the field, so its
624 size may not be the same as the size of its type. This happens with
625 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626 also happens with other fields. For example, the C++ front-end creates
627 zero-sized fields corresponding to empty base classes, and depends on
628 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
629 size in bytes from the size in bits. If we have already set the mode,
630 don't set it again since we can be called twice for FIELD_DECLs. */
632 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633 if (DECL_MODE (decl) == VOIDmode)
634 SET_DECL_MODE (decl, TYPE_MODE (type));
636 if (DECL_SIZE (decl) == 0)
638 DECL_SIZE (decl) = TYPE_SIZE (type);
639 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
641 else if (DECL_SIZE_UNIT (decl) == 0)
642 DECL_SIZE_UNIT (decl)
643 = fold_convert_loc (loc, sizetype,
644 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 bitsize_unit_node));
647 if (code != FIELD_DECL)
648 /* For non-fields, update the alignment from the type. */
649 do_type_align (type, decl);
650 else
651 /* For fields, it's a bit more complicated... */
653 bool old_user_align = DECL_USER_ALIGN (decl);
654 bool zero_bitfield = false;
655 bool packed_p = DECL_PACKED (decl);
656 unsigned int mfa;
658 if (DECL_BIT_FIELD (decl))
660 DECL_BIT_FIELD_TYPE (decl) = type;
662 /* A zero-length bit-field affects the alignment of the next
663 field. In essence such bit-fields are not influenced by
664 any packing due to #pragma pack or attribute packed. */
665 if (integer_zerop (DECL_SIZE (decl))
666 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
668 zero_bitfield = true;
669 packed_p = false;
670 if (PCC_BITFIELD_TYPE_MATTERS)
671 do_type_align (type, decl);
672 else
674 #ifdef EMPTY_FIELD_BOUNDARY
675 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
677 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 DECL_USER_ALIGN (decl) = 0;
680 #endif
684 /* See if we can use an ordinary integer mode for a bit-field.
685 Conditions are: a fixed size that is correct for another mode,
686 occupying a complete byte or bytes on proper boundary. */
687 if (TYPE_SIZE (type) != 0
688 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
691 machine_mode xmode;
692 if (mode_for_size_tree (DECL_SIZE (decl),
693 MODE_INT, 1).exists (&xmode))
695 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 && (known_align == 0 || known_align >= xalign))
699 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 SET_DECL_MODE (decl, xmode);
701 DECL_BIT_FIELD (decl) = 0;
706 /* Turn off DECL_BIT_FIELD if we won't need it set. */
707 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 && known_align >= TYPE_ALIGN (type)
709 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 DECL_BIT_FIELD (decl) = 0;
712 else if (packed_p && DECL_USER_ALIGN (decl))
713 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
714 round up; we'll reduce it again below. We want packing to
715 supersede USER_ALIGN inherited from the type, but defer to
716 alignment explicitly specified on the field decl. */;
717 else
718 do_type_align (type, decl);
720 /* If the field is packed and not explicitly aligned, give it the
721 minimum alignment. Note that do_type_align may set
722 DECL_USER_ALIGN, so we need to check old_user_align instead. */
723 if (packed_p
724 && !old_user_align)
725 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
727 if (! packed_p && ! DECL_USER_ALIGN (decl))
729 /* Some targets (i.e. i386, VMS) limit struct field alignment
730 to a lower boundary than alignment of variables unless
731 it was overridden by attribute aligned. */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 DECL_ALIGN (decl)));
739 #endif
742 if (zero_bitfield)
743 mfa = initial_max_fld_align * BITS_PER_UNIT;
744 else
745 mfa = maximum_field_alignment;
746 /* Should this be controlled by DECL_USER_ALIGN, too? */
747 if (mfa != 0)
748 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
751 /* Evaluate nonconstant size only once, either now or as soon as safe. */
752 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754 if (DECL_SIZE_UNIT (decl) != 0
755 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
758 /* If requested, warn about definitions of large data objects. */
759 if (warn_larger_than
760 && (code == VAR_DECL || code == PARM_DECL)
761 && ! DECL_EXTERNAL (decl))
763 tree size = DECL_SIZE_UNIT (decl);
765 if (size != 0 && TREE_CODE (size) == INTEGER_CST
766 && compare_tree_int (size, larger_than_size) > 0)
768 int size_as_int = TREE_INT_CST_LOW (size);
770 if (compare_tree_int (size, size_as_int) == 0)
771 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
772 else
773 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
774 decl, larger_than_size);
778 /* If the RTL was already set, update its mode and mem attributes. */
779 if (rtl)
781 PUT_MODE (rtl, DECL_MODE (decl));
782 SET_DECL_RTL (decl, 0);
783 if (MEM_P (rtl))
784 set_mem_attributes (rtl, decl, 1);
785 SET_DECL_RTL (decl, rtl);
789 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
790 results of a previous call to layout_decl and calls it again. */
792 void
793 relayout_decl (tree decl)
795 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
796 SET_DECL_MODE (decl, VOIDmode);
797 if (!DECL_USER_ALIGN (decl))
798 SET_DECL_ALIGN (decl, 0);
799 if (DECL_RTL_SET_P (decl))
800 SET_DECL_RTL (decl, 0);
802 layout_decl (decl, 0);
805 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
807 is to be passed to all other layout functions for this record. It is the
808 responsibility of the caller to call `free' for the storage returned.
809 Note that garbage collection is not permitted until we finish laying
810 out the record. */
812 record_layout_info
813 start_record_layout (tree t)
815 record_layout_info rli = XNEW (struct record_layout_info_s);
817 rli->t = t;
819 /* If the type has a minimum specified alignment (via an attribute
820 declaration, for example) use it -- otherwise, start with a
821 one-byte alignment. */
822 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
823 rli->unpacked_align = rli->record_align;
824 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
826 #ifdef STRUCTURE_SIZE_BOUNDARY
827 /* Packed structures don't need to have minimum size. */
828 if (! TYPE_PACKED (t))
830 unsigned tmp;
832 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
833 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834 if (maximum_field_alignment != 0)
835 tmp = MIN (tmp, maximum_field_alignment);
836 rli->record_align = MAX (rli->record_align, tmp);
838 #endif
840 rli->offset = size_zero_node;
841 rli->bitpos = bitsize_zero_node;
842 rli->prev_field = 0;
843 rli->pending_statics = 0;
844 rli->packed_maybe_necessary = 0;
845 rli->remaining_in_alignment = 0;
847 return rli;
850 /* Fold sizetype value X to bitsizetype, given that X represents a type
851 size or offset. */
853 static tree
854 bits_from_bytes (tree x)
856 if (POLY_INT_CST_P (x))
857 /* The runtime calculation isn't allowed to overflow sizetype;
858 increasing the runtime values must always increase the size
859 or offset of the object. This means that the object imposes
860 a maximum value on the runtime parameters, but we don't record
861 what that is. */
862 return build_poly_int_cst
863 (bitsizetype,
864 poly_wide_int::from (poly_int_cst_value (x),
865 TYPE_PRECISION (bitsizetype),
866 TYPE_SIGN (TREE_TYPE (x))));
867 x = fold_convert (bitsizetype, x);
868 gcc_checking_assert (x);
869 return x;
872 /* Return the combined bit position for the byte offset OFFSET and the
873 bit position BITPOS.
875 These functions operate on byte and bit positions present in FIELD_DECLs
876 and assume that these expressions result in no (intermediate) overflow.
877 This assumption is necessary to fold the expressions as much as possible,
878 so as to avoid creating artificially variable-sized types in languages
879 supporting variable-sized types like Ada. */
881 tree
882 bit_from_pos (tree offset, tree bitpos)
884 return size_binop (PLUS_EXPR, bitpos,
885 size_binop (MULT_EXPR, bits_from_bytes (offset),
886 bitsize_unit_node));
889 /* Return the combined truncated byte position for the byte offset OFFSET and
890 the bit position BITPOS. */
892 tree
893 byte_from_pos (tree offset, tree bitpos)
895 tree bytepos;
896 if (TREE_CODE (bitpos) == MULT_EXPR
897 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
898 bytepos = TREE_OPERAND (bitpos, 0);
899 else
900 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
901 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
904 /* Split the bit position POS into a byte offset *POFFSET and a bit
905 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
907 void
908 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
909 tree pos)
911 tree toff_align = bitsize_int (off_align);
912 if (TREE_CODE (pos) == MULT_EXPR
913 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
915 *poffset = size_binop (MULT_EXPR,
916 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
917 size_int (off_align / BITS_PER_UNIT));
918 *pbitpos = bitsize_zero_node;
920 else
922 *poffset = size_binop (MULT_EXPR,
923 fold_convert (sizetype,
924 size_binop (FLOOR_DIV_EXPR, pos,
925 toff_align)),
926 size_int (off_align / BITS_PER_UNIT));
927 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
931 /* Given a pointer to bit and byte offsets and an offset alignment,
932 normalize the offsets so they are within the alignment. */
934 void
935 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
937 /* If the bit position is now larger than it should be, adjust it
938 downwards. */
939 if (compare_tree_int (*pbitpos, off_align) >= 0)
941 tree offset, bitpos;
942 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
943 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
944 *pbitpos = bitpos;
948 /* Print debugging information about the information in RLI. */
950 DEBUG_FUNCTION void
951 debug_rli (record_layout_info rli)
953 print_node_brief (stderr, "type", rli->t, 0);
954 print_node_brief (stderr, "\noffset", rli->offset, 0);
955 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
957 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
958 rli->record_align, rli->unpacked_align,
959 rli->offset_align);
961 /* The ms_struct code is the only that uses this. */
962 if (targetm.ms_bitfield_layout_p (rli->t))
963 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
965 if (rli->packed_maybe_necessary)
966 fprintf (stderr, "packed may be necessary\n");
968 if (!vec_safe_is_empty (rli->pending_statics))
970 fprintf (stderr, "pending statics:\n");
971 debug (rli->pending_statics);
975 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
976 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
978 void
979 normalize_rli (record_layout_info rli)
981 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
984 /* Returns the size in bytes allocated so far. */
986 tree
987 rli_size_unit_so_far (record_layout_info rli)
989 return byte_from_pos (rli->offset, rli->bitpos);
992 /* Returns the size in bits allocated so far. */
994 tree
995 rli_size_so_far (record_layout_info rli)
997 return bit_from_pos (rli->offset, rli->bitpos);
1000 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1001 the next available location within the record is given by KNOWN_ALIGN.
1002 Update the variable alignment fields in RLI, and return the alignment
1003 to give the FIELD. */
1005 unsigned int
1006 update_alignment_for_field (record_layout_info rli, tree field,
1007 unsigned int known_align)
1009 /* The alignment required for FIELD. */
1010 unsigned int desired_align;
1011 /* The type of this field. */
1012 tree type = TREE_TYPE (field);
1013 /* True if the field was explicitly aligned by the user. */
1014 bool user_align;
1015 bool is_bitfield;
1017 /* Do not attempt to align an ERROR_MARK node */
1018 if (TREE_CODE (type) == ERROR_MARK)
1019 return 0;
1021 /* Lay out the field so we know what alignment it needs. */
1022 layout_decl (field, known_align);
1023 desired_align = DECL_ALIGN (field);
1024 user_align = DECL_USER_ALIGN (field);
1026 is_bitfield = (type != error_mark_node
1027 && DECL_BIT_FIELD_TYPE (field)
1028 && ! integer_zerop (TYPE_SIZE (type)));
1030 /* Record must have at least as much alignment as any field.
1031 Otherwise, the alignment of the field within the record is
1032 meaningless. */
1033 if (targetm.ms_bitfield_layout_p (rli->t))
1035 /* Here, the alignment of the underlying type of a bitfield can
1036 affect the alignment of a record; even a zero-sized field
1037 can do this. The alignment should be to the alignment of
1038 the type, except that for zero-size bitfields this only
1039 applies if there was an immediately prior, nonzero-size
1040 bitfield. (That's the way it is, experimentally.) */
1041 if ((!is_bitfield && !DECL_PACKED (field))
1042 || ((DECL_SIZE (field) == NULL_TREE
1043 || !integer_zerop (DECL_SIZE (field)))
1044 ? !DECL_PACKED (field)
1045 : (rli->prev_field
1046 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1047 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1049 unsigned int type_align = TYPE_ALIGN (type);
1050 type_align = MAX (type_align, desired_align);
1051 if (maximum_field_alignment != 0)
1052 type_align = MIN (type_align, maximum_field_alignment);
1053 rli->record_align = MAX (rli->record_align, type_align);
1054 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1057 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1059 /* Named bit-fields cause the entire structure to have the
1060 alignment implied by their type. Some targets also apply the same
1061 rules to unnamed bitfields. */
1062 if (DECL_NAME (field) != 0
1063 || targetm.align_anon_bitfield ())
1065 unsigned int type_align = TYPE_ALIGN (type);
1067 #ifdef ADJUST_FIELD_ALIGN
1068 if (! TYPE_USER_ALIGN (type))
1069 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1070 #endif
1072 /* Targets might chose to handle unnamed and hence possibly
1073 zero-width bitfield. Those are not influenced by #pragmas
1074 or packed attributes. */
1075 if (integer_zerop (DECL_SIZE (field)))
1077 if (initial_max_fld_align)
1078 type_align = MIN (type_align,
1079 initial_max_fld_align * BITS_PER_UNIT);
1081 else if (maximum_field_alignment != 0)
1082 type_align = MIN (type_align, maximum_field_alignment);
1083 else if (DECL_PACKED (field))
1084 type_align = MIN (type_align, BITS_PER_UNIT);
1086 /* The alignment of the record is increased to the maximum
1087 of the current alignment, the alignment indicated on the
1088 field (i.e., the alignment specified by an __aligned__
1089 attribute), and the alignment indicated by the type of
1090 the field. */
1091 rli->record_align = MAX (rli->record_align, desired_align);
1092 rli->record_align = MAX (rli->record_align, type_align);
1094 if (warn_packed)
1095 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1096 user_align |= TYPE_USER_ALIGN (type);
1099 else
1101 rli->record_align = MAX (rli->record_align, desired_align);
1102 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1105 TYPE_USER_ALIGN (rli->t) |= user_align;
1107 return desired_align;
1110 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1111 the field alignment of FIELD or FIELD isn't aligned. */
1113 static void
1114 handle_warn_if_not_align (tree field, unsigned int record_align)
1116 tree type = TREE_TYPE (field);
1118 if (type == error_mark_node)
1119 return;
1121 unsigned int warn_if_not_align = 0;
1123 int opt_w = 0;
1125 if (warn_if_not_aligned)
1127 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1128 if (!warn_if_not_align)
1129 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1130 if (warn_if_not_align)
1131 opt_w = OPT_Wif_not_aligned;
1134 if (!warn_if_not_align
1135 && warn_packed_not_aligned
1136 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1138 warn_if_not_align = TYPE_ALIGN (type);
1139 opt_w = OPT_Wpacked_not_aligned;
1142 if (!warn_if_not_align)
1143 return;
1145 tree context = DECL_CONTEXT (field);
1147 warn_if_not_align /= BITS_PER_UNIT;
1148 record_align /= BITS_PER_UNIT;
1149 if ((record_align % warn_if_not_align) != 0)
1150 warning (opt_w, "alignment %u of %qT is less than %u",
1151 record_align, context, warn_if_not_align);
1153 unsigned HOST_WIDE_INT off
1154 = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1155 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) / BITS_PER_UNIT);
1156 if ((off % warn_if_not_align) != 0)
1157 warning (opt_w, "%q+D offset %wu in %qT isn't aligned to %u",
1158 field, off, context, warn_if_not_align);
1161 /* Called from place_field to handle unions. */
1163 static void
1164 place_union_field (record_layout_info rli, tree field)
1166 update_alignment_for_field (rli, field, /*known_align=*/0);
1168 DECL_FIELD_OFFSET (field) = size_zero_node;
1169 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1170 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1171 handle_warn_if_not_align (field, rli->record_align);
1173 /* If this is an ERROR_MARK return *after* having set the
1174 field at the start of the union. This helps when parsing
1175 invalid fields. */
1176 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1177 return;
1179 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1180 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1181 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1183 /* We assume the union's size will be a multiple of a byte so we don't
1184 bother with BITPOS. */
1185 if (TREE_CODE (rli->t) == UNION_TYPE)
1186 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1187 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1188 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1189 DECL_SIZE_UNIT (field), rli->offset);
1192 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1193 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1194 units of alignment than the underlying TYPE. */
1195 static int
1196 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1197 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1199 /* Note that the calculation of OFFSET might overflow; we calculate it so
1200 that we still get the right result as long as ALIGN is a power of two. */
1201 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1203 offset = offset % align;
1204 return ((offset + size + align - 1) / align
1205 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1208 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1209 is a FIELD_DECL to be added after those fields already present in
1210 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1211 callers that desire that behavior must manually perform that step.) */
1213 void
1214 place_field (record_layout_info rli, tree field)
1216 /* The alignment required for FIELD. */
1217 unsigned int desired_align;
1218 /* The alignment FIELD would have if we just dropped it into the
1219 record as it presently stands. */
1220 unsigned int known_align;
1221 unsigned int actual_align;
1222 /* The type of this field. */
1223 tree type = TREE_TYPE (field);
1225 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1227 /* If FIELD is static, then treat it like a separate variable, not
1228 really like a structure field. If it is a FUNCTION_DECL, it's a
1229 method. In both cases, all we do is lay out the decl, and we do
1230 it *after* the record is laid out. */
1231 if (VAR_P (field))
1233 vec_safe_push (rli->pending_statics, field);
1234 return;
1237 /* Enumerators and enum types which are local to this class need not
1238 be laid out. Likewise for initialized constant fields. */
1239 else if (TREE_CODE (field) != FIELD_DECL)
1240 return;
1242 /* Unions are laid out very differently than records, so split
1243 that code off to another function. */
1244 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1246 place_union_field (rli, field);
1247 return;
1250 else if (TREE_CODE (type) == ERROR_MARK)
1252 /* Place this field at the current allocation position, so we
1253 maintain monotonicity. */
1254 DECL_FIELD_OFFSET (field) = rli->offset;
1255 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1256 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1257 handle_warn_if_not_align (field, rli->record_align);
1258 return;
1261 if (AGGREGATE_TYPE_P (type)
1262 && TYPE_TYPELESS_STORAGE (type))
1263 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1265 /* Work out the known alignment so far. Note that A & (-A) is the
1266 value of the least-significant bit in A that is one. */
1267 if (! integer_zerop (rli->bitpos))
1268 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1269 else if (integer_zerop (rli->offset))
1270 known_align = 0;
1271 else if (tree_fits_uhwi_p (rli->offset))
1272 known_align = (BITS_PER_UNIT
1273 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1274 else
1275 known_align = rli->offset_align;
1277 desired_align = update_alignment_for_field (rli, field, known_align);
1278 if (known_align == 0)
1279 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1281 if (warn_packed && DECL_PACKED (field))
1283 if (known_align >= TYPE_ALIGN (type))
1285 if (TYPE_ALIGN (type) > desired_align)
1287 if (STRICT_ALIGNMENT)
1288 warning (OPT_Wattributes, "packed attribute causes "
1289 "inefficient alignment for %q+D", field);
1290 /* Don't warn if DECL_PACKED was set by the type. */
1291 else if (!TYPE_PACKED (rli->t))
1292 warning (OPT_Wattributes, "packed attribute is "
1293 "unnecessary for %q+D", field);
1296 else
1297 rli->packed_maybe_necessary = 1;
1300 /* Does this field automatically have alignment it needs by virtue
1301 of the fields that precede it and the record's own alignment? */
1302 if (known_align < desired_align)
1304 /* No, we need to skip space before this field.
1305 Bump the cumulative size to multiple of field alignment. */
1307 if (!targetm.ms_bitfield_layout_p (rli->t)
1308 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1309 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1311 /* If the alignment is still within offset_align, just align
1312 the bit position. */
1313 if (desired_align < rli->offset_align)
1314 rli->bitpos = round_up (rli->bitpos, desired_align);
1315 else
1317 /* First adjust OFFSET by the partial bits, then align. */
1318 rli->offset
1319 = size_binop (PLUS_EXPR, rli->offset,
1320 fold_convert (sizetype,
1321 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1322 bitsize_unit_node)));
1323 rli->bitpos = bitsize_zero_node;
1325 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1328 if (! TREE_CONSTANT (rli->offset))
1329 rli->offset_align = desired_align;
1330 if (targetm.ms_bitfield_layout_p (rli->t))
1331 rli->prev_field = NULL;
1334 /* Handle compatibility with PCC. Note that if the record has any
1335 variable-sized fields, we need not worry about compatibility. */
1336 if (PCC_BITFIELD_TYPE_MATTERS
1337 && ! targetm.ms_bitfield_layout_p (rli->t)
1338 && TREE_CODE (field) == FIELD_DECL
1339 && type != error_mark_node
1340 && DECL_BIT_FIELD (field)
1341 && (! DECL_PACKED (field)
1342 /* Enter for these packed fields only to issue a warning. */
1343 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1344 && maximum_field_alignment == 0
1345 && ! integer_zerop (DECL_SIZE (field))
1346 && tree_fits_uhwi_p (DECL_SIZE (field))
1347 && tree_fits_uhwi_p (rli->offset)
1348 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1350 unsigned int type_align = TYPE_ALIGN (type);
1351 tree dsize = DECL_SIZE (field);
1352 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1353 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1354 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1356 #ifdef ADJUST_FIELD_ALIGN
1357 if (! TYPE_USER_ALIGN (type))
1358 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1359 #endif
1361 /* A bit field may not span more units of alignment of its type
1362 than its type itself. Advance to next boundary if necessary. */
1363 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1365 if (DECL_PACKED (field))
1367 if (warn_packed_bitfield_compat == 1)
1368 inform
1369 (input_location,
1370 "offset of packed bit-field %qD has changed in GCC 4.4",
1371 field);
1373 else
1374 rli->bitpos = round_up (rli->bitpos, type_align);
1377 if (! DECL_PACKED (field))
1378 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1380 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1381 TYPE_WARN_IF_NOT_ALIGN (type));
1384 #ifdef BITFIELD_NBYTES_LIMITED
1385 if (BITFIELD_NBYTES_LIMITED
1386 && ! targetm.ms_bitfield_layout_p (rli->t)
1387 && TREE_CODE (field) == FIELD_DECL
1388 && type != error_mark_node
1389 && DECL_BIT_FIELD_TYPE (field)
1390 && ! DECL_PACKED (field)
1391 && ! integer_zerop (DECL_SIZE (field))
1392 && tree_fits_uhwi_p (DECL_SIZE (field))
1393 && tree_fits_uhwi_p (rli->offset)
1394 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1396 unsigned int type_align = TYPE_ALIGN (type);
1397 tree dsize = DECL_SIZE (field);
1398 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1399 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1400 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1402 #ifdef ADJUST_FIELD_ALIGN
1403 if (! TYPE_USER_ALIGN (type))
1404 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1405 #endif
1407 if (maximum_field_alignment != 0)
1408 type_align = MIN (type_align, maximum_field_alignment);
1409 /* ??? This test is opposite the test in the containing if
1410 statement, so this code is unreachable currently. */
1411 else if (DECL_PACKED (field))
1412 type_align = MIN (type_align, BITS_PER_UNIT);
1414 /* A bit field may not span the unit of alignment of its type.
1415 Advance to next boundary if necessary. */
1416 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1417 rli->bitpos = round_up (rli->bitpos, type_align);
1419 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1420 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1421 TYPE_WARN_IF_NOT_ALIGN (type));
1423 #endif
1425 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1426 A subtlety:
1427 When a bit field is inserted into a packed record, the whole
1428 size of the underlying type is used by one or more same-size
1429 adjacent bitfields. (That is, if its long:3, 32 bits is
1430 used in the record, and any additional adjacent long bitfields are
1431 packed into the same chunk of 32 bits. However, if the size
1432 changes, a new field of that size is allocated.) In an unpacked
1433 record, this is the same as using alignment, but not equivalent
1434 when packing.
1436 Note: for compatibility, we use the type size, not the type alignment
1437 to determine alignment, since that matches the documentation */
1439 if (targetm.ms_bitfield_layout_p (rli->t))
1441 tree prev_saved = rli->prev_field;
1442 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1444 /* This is a bitfield if it exists. */
1445 if (rli->prev_field)
1447 /* If both are bitfields, nonzero, and the same size, this is
1448 the middle of a run. Zero declared size fields are special
1449 and handled as "end of run". (Note: it's nonzero declared
1450 size, but equal type sizes!) (Since we know that both
1451 the current and previous fields are bitfields by the
1452 time we check it, DECL_SIZE must be present for both.) */
1453 if (DECL_BIT_FIELD_TYPE (field)
1454 && !integer_zerop (DECL_SIZE (field))
1455 && !integer_zerop (DECL_SIZE (rli->prev_field))
1456 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1457 && tree_fits_uhwi_p (TYPE_SIZE (type))
1458 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1460 /* We're in the middle of a run of equal type size fields; make
1461 sure we realign if we run out of bits. (Not decl size,
1462 type size!) */
1463 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1465 if (rli->remaining_in_alignment < bitsize)
1467 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1469 /* out of bits; bump up to next 'word'. */
1470 rli->bitpos
1471 = size_binop (PLUS_EXPR, rli->bitpos,
1472 bitsize_int (rli->remaining_in_alignment));
1473 rli->prev_field = field;
1474 if (typesize < bitsize)
1475 rli->remaining_in_alignment = 0;
1476 else
1477 rli->remaining_in_alignment = typesize - bitsize;
1479 else
1480 rli->remaining_in_alignment -= bitsize;
1482 else
1484 /* End of a run: if leaving a run of bitfields of the same type
1485 size, we have to "use up" the rest of the bits of the type
1486 size.
1488 Compute the new position as the sum of the size for the prior
1489 type and where we first started working on that type.
1490 Note: since the beginning of the field was aligned then
1491 of course the end will be too. No round needed. */
1493 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1495 rli->bitpos
1496 = size_binop (PLUS_EXPR, rli->bitpos,
1497 bitsize_int (rli->remaining_in_alignment));
1499 else
1500 /* We "use up" size zero fields; the code below should behave
1501 as if the prior field was not a bitfield. */
1502 prev_saved = NULL;
1504 /* Cause a new bitfield to be captured, either this time (if
1505 currently a bitfield) or next time we see one. */
1506 if (!DECL_BIT_FIELD_TYPE (field)
1507 || integer_zerop (DECL_SIZE (field)))
1508 rli->prev_field = NULL;
1511 normalize_rli (rli);
1514 /* If we're starting a new run of same type size bitfields
1515 (or a run of non-bitfields), set up the "first of the run"
1516 fields.
1518 That is, if the current field is not a bitfield, or if there
1519 was a prior bitfield the type sizes differ, or if there wasn't
1520 a prior bitfield the size of the current field is nonzero.
1522 Note: we must be sure to test ONLY the type size if there was
1523 a prior bitfield and ONLY for the current field being zero if
1524 there wasn't. */
1526 if (!DECL_BIT_FIELD_TYPE (field)
1527 || (prev_saved != NULL
1528 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1529 : !integer_zerop (DECL_SIZE (field)) ))
1531 /* Never smaller than a byte for compatibility. */
1532 unsigned int type_align = BITS_PER_UNIT;
1534 /* (When not a bitfield), we could be seeing a flex array (with
1535 no DECL_SIZE). Since we won't be using remaining_in_alignment
1536 until we see a bitfield (and come by here again) we just skip
1537 calculating it. */
1538 if (DECL_SIZE (field) != NULL
1539 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1540 && tree_fits_uhwi_p (DECL_SIZE (field)))
1542 unsigned HOST_WIDE_INT bitsize
1543 = tree_to_uhwi (DECL_SIZE (field));
1544 unsigned HOST_WIDE_INT typesize
1545 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1547 if (typesize < bitsize)
1548 rli->remaining_in_alignment = 0;
1549 else
1550 rli->remaining_in_alignment = typesize - bitsize;
1553 /* Now align (conventionally) for the new type. */
1554 type_align = TYPE_ALIGN (TREE_TYPE (field));
1556 if (maximum_field_alignment != 0)
1557 type_align = MIN (type_align, maximum_field_alignment);
1559 rli->bitpos = round_up (rli->bitpos, type_align);
1561 /* If we really aligned, don't allow subsequent bitfields
1562 to undo that. */
1563 rli->prev_field = NULL;
1567 /* Offset so far becomes the position of this field after normalizing. */
1568 normalize_rli (rli);
1569 DECL_FIELD_OFFSET (field) = rli->offset;
1570 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1571 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1572 handle_warn_if_not_align (field, rli->record_align);
1574 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1575 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1576 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1578 /* If this field ended up more aligned than we thought it would be (we
1579 approximate this by seeing if its position changed), lay out the field
1580 again; perhaps we can use an integral mode for it now. */
1581 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1582 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1583 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1584 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1585 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1586 actual_align = (BITS_PER_UNIT
1587 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1588 else
1589 actual_align = DECL_OFFSET_ALIGN (field);
1590 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1591 store / extract bit field operations will check the alignment of the
1592 record against the mode of bit fields. */
1594 if (known_align != actual_align)
1595 layout_decl (field, actual_align);
1597 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1598 rli->prev_field = field;
1600 /* Now add size of this field to the size of the record. If the size is
1601 not constant, treat the field as being a multiple of bytes and just
1602 adjust the offset, resetting the bit position. Otherwise, apportion the
1603 size amongst the bit position and offset. First handle the case of an
1604 unspecified size, which can happen when we have an invalid nested struct
1605 definition, such as struct j { struct j { int i; } }. The error message
1606 is printed in finish_struct. */
1607 if (DECL_SIZE (field) == 0)
1608 /* Do nothing. */;
1609 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1610 || TREE_OVERFLOW (DECL_SIZE (field)))
1612 rli->offset
1613 = size_binop (PLUS_EXPR, rli->offset,
1614 fold_convert (sizetype,
1615 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1616 bitsize_unit_node)));
1617 rli->offset
1618 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1619 rli->bitpos = bitsize_zero_node;
1620 rli->offset_align = MIN (rli->offset_align, desired_align);
1622 else if (targetm.ms_bitfield_layout_p (rli->t))
1624 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1626 /* If we ended a bitfield before the full length of the type then
1627 pad the struct out to the full length of the last type. */
1628 if ((DECL_CHAIN (field) == NULL
1629 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1630 && DECL_BIT_FIELD_TYPE (field)
1631 && !integer_zerop (DECL_SIZE (field)))
1632 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1633 bitsize_int (rli->remaining_in_alignment));
1635 normalize_rli (rli);
1637 else
1639 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1640 normalize_rli (rli);
1644 /* Assuming that all the fields have been laid out, this function uses
1645 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1646 indicated by RLI. */
1648 static void
1649 finalize_record_size (record_layout_info rli)
1651 tree unpadded_size, unpadded_size_unit;
1653 /* Now we want just byte and bit offsets, so set the offset alignment
1654 to be a byte and then normalize. */
1655 rli->offset_align = BITS_PER_UNIT;
1656 normalize_rli (rli);
1658 /* Determine the desired alignment. */
1659 #ifdef ROUND_TYPE_ALIGN
1660 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1661 rli->record_align));
1662 #else
1663 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1664 #endif
1666 /* Compute the size so far. Be sure to allow for extra bits in the
1667 size in bytes. We have guaranteed above that it will be no more
1668 than a single byte. */
1669 unpadded_size = rli_size_so_far (rli);
1670 unpadded_size_unit = rli_size_unit_so_far (rli);
1671 if (! integer_zerop (rli->bitpos))
1672 unpadded_size_unit
1673 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1675 /* Round the size up to be a multiple of the required alignment. */
1676 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1677 TYPE_SIZE_UNIT (rli->t)
1678 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1680 if (TREE_CONSTANT (unpadded_size)
1681 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1682 && input_location != BUILTINS_LOCATION)
1683 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1685 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1686 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1687 && TREE_CONSTANT (unpadded_size))
1689 tree unpacked_size;
1691 #ifdef ROUND_TYPE_ALIGN
1692 rli->unpacked_align
1693 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1694 #else
1695 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1696 #endif
1698 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1699 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1701 if (TYPE_NAME (rli->t))
1703 tree name;
1705 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1706 name = TYPE_NAME (rli->t);
1707 else
1708 name = DECL_NAME (TYPE_NAME (rli->t));
1710 if (STRICT_ALIGNMENT)
1711 warning (OPT_Wpacked, "packed attribute causes inefficient "
1712 "alignment for %qE", name);
1713 else
1714 warning (OPT_Wpacked,
1715 "packed attribute is unnecessary for %qE", name);
1717 else
1719 if (STRICT_ALIGNMENT)
1720 warning (OPT_Wpacked,
1721 "packed attribute causes inefficient alignment");
1722 else
1723 warning (OPT_Wpacked, "packed attribute is unnecessary");
1729 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1731 void
1732 compute_record_mode (tree type)
1734 tree field;
1735 machine_mode mode = VOIDmode;
1737 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1738 However, if possible, we use a mode that fits in a register
1739 instead, in order to allow for better optimization down the
1740 line. */
1741 SET_TYPE_MODE (type, BLKmode);
1743 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1744 return;
1746 /* A record which has any BLKmode members must itself be
1747 BLKmode; it can't go in a register. Unless the member is
1748 BLKmode only because it isn't aligned. */
1749 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1751 if (TREE_CODE (field) != FIELD_DECL)
1752 continue;
1754 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1755 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1756 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1757 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1758 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1759 || ! tree_fits_uhwi_p (bit_position (field))
1760 || DECL_SIZE (field) == 0
1761 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1762 return;
1764 /* If this field is the whole struct, remember its mode so
1765 that, say, we can put a double in a class into a DF
1766 register instead of forcing it to live in the stack. */
1767 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1768 mode = DECL_MODE (field);
1770 /* With some targets, it is sub-optimal to access an aligned
1771 BLKmode structure as a scalar. */
1772 if (targetm.member_type_forces_blk (field, mode))
1773 return;
1776 /* If we only have one real field; use its mode if that mode's size
1777 matches the type's size. This only applies to RECORD_TYPE. This
1778 does not apply to unions. */
1779 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1780 && tree_fits_uhwi_p (TYPE_SIZE (type))
1781 && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
1783 else
1784 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1786 /* If structure's known alignment is less than what the scalar
1787 mode would need, and it matters, then stick with BLKmode. */
1788 if (mode != BLKmode
1789 && STRICT_ALIGNMENT
1790 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1791 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1793 /* If this is the only reason this type is BLKmode, then
1794 don't force containing types to be BLKmode. */
1795 TYPE_NO_FORCE_BLK (type) = 1;
1796 mode = BLKmode;
1799 SET_TYPE_MODE (type, mode);
1802 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1803 out. */
1805 static void
1806 finalize_type_size (tree type)
1808 /* Normally, use the alignment corresponding to the mode chosen.
1809 However, where strict alignment is not required, avoid
1810 over-aligning structures, since most compilers do not do this
1811 alignment. */
1812 if (TYPE_MODE (type) != BLKmode
1813 && TYPE_MODE (type) != VOIDmode
1814 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1816 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1818 /* Don't override a larger alignment requirement coming from a user
1819 alignment of one of the fields. */
1820 if (mode_align >= TYPE_ALIGN (type))
1822 SET_TYPE_ALIGN (type, mode_align);
1823 TYPE_USER_ALIGN (type) = 0;
1827 /* Do machine-dependent extra alignment. */
1828 #ifdef ROUND_TYPE_ALIGN
1829 SET_TYPE_ALIGN (type,
1830 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1831 #endif
1833 /* If we failed to find a simple way to calculate the unit size
1834 of the type, find it by division. */
1835 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1836 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1837 result will fit in sizetype. We will get more efficient code using
1838 sizetype, so we force a conversion. */
1839 TYPE_SIZE_UNIT (type)
1840 = fold_convert (sizetype,
1841 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1842 bitsize_unit_node));
1844 if (TYPE_SIZE (type) != 0)
1846 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1847 TYPE_SIZE_UNIT (type)
1848 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1851 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1852 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1853 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1854 if (TYPE_SIZE_UNIT (type) != 0
1855 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1856 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1858 /* Also layout any other variants of the type. */
1859 if (TYPE_NEXT_VARIANT (type)
1860 || type != TYPE_MAIN_VARIANT (type))
1862 tree variant;
1863 /* Record layout info of this variant. */
1864 tree size = TYPE_SIZE (type);
1865 tree size_unit = TYPE_SIZE_UNIT (type);
1866 unsigned int align = TYPE_ALIGN (type);
1867 unsigned int precision = TYPE_PRECISION (type);
1868 unsigned int user_align = TYPE_USER_ALIGN (type);
1869 machine_mode mode = TYPE_MODE (type);
1871 /* Copy it into all variants. */
1872 for (variant = TYPE_MAIN_VARIANT (type);
1873 variant != 0;
1874 variant = TYPE_NEXT_VARIANT (variant))
1876 TYPE_SIZE (variant) = size;
1877 TYPE_SIZE_UNIT (variant) = size_unit;
1878 unsigned valign = align;
1879 if (TYPE_USER_ALIGN (variant))
1880 valign = MAX (valign, TYPE_ALIGN (variant));
1881 else
1882 TYPE_USER_ALIGN (variant) = user_align;
1883 SET_TYPE_ALIGN (variant, valign);
1884 TYPE_PRECISION (variant) = precision;
1885 SET_TYPE_MODE (variant, mode);
1889 /* Handle empty records as per the x86-64 psABI. */
1890 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1893 /* Return a new underlying object for a bitfield started with FIELD. */
1895 static tree
1896 start_bitfield_representative (tree field)
1898 tree repr = make_node (FIELD_DECL);
1899 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1900 /* Force the representative to begin at a BITS_PER_UNIT aligned
1901 boundary - C++ may use tail-padding of a base object to
1902 continue packing bits so the bitfield region does not start
1903 at bit zero (see g++.dg/abi/bitfield5.C for example).
1904 Unallocated bits may happen for other reasons as well,
1905 for example Ada which allows explicit bit-granular structure layout. */
1906 DECL_FIELD_BIT_OFFSET (repr)
1907 = size_binop (BIT_AND_EXPR,
1908 DECL_FIELD_BIT_OFFSET (field),
1909 bitsize_int (~(BITS_PER_UNIT - 1)));
1910 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1911 DECL_SIZE (repr) = DECL_SIZE (field);
1912 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1913 DECL_PACKED (repr) = DECL_PACKED (field);
1914 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1915 /* There are no indirect accesses to this field. If we introduce
1916 some then they have to use the record alias set. This makes
1917 sure to properly conflict with [indirect] accesses to addressable
1918 fields of the bitfield group. */
1919 DECL_NONADDRESSABLE_P (repr) = 1;
1920 return repr;
1923 /* Finish up a bitfield group that was started by creating the underlying
1924 object REPR with the last field in the bitfield group FIELD. */
1926 static void
1927 finish_bitfield_representative (tree repr, tree field)
1929 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1930 tree nextf, size;
1932 size = size_diffop (DECL_FIELD_OFFSET (field),
1933 DECL_FIELD_OFFSET (repr));
1934 while (TREE_CODE (size) == COMPOUND_EXPR)
1935 size = TREE_OPERAND (size, 1);
1936 gcc_assert (tree_fits_uhwi_p (size));
1937 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1938 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1939 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1940 + tree_to_uhwi (DECL_SIZE (field)));
1942 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1943 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1945 /* Now nothing tells us how to pad out bitsize ... */
1946 nextf = DECL_CHAIN (field);
1947 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1948 nextf = DECL_CHAIN (nextf);
1949 if (nextf)
1951 tree maxsize;
1952 /* If there was an error, the field may be not laid out
1953 correctly. Don't bother to do anything. */
1954 if (TREE_TYPE (nextf) == error_mark_node)
1955 return;
1956 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1957 DECL_FIELD_OFFSET (repr));
1958 if (tree_fits_uhwi_p (maxsize))
1960 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1961 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1962 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1963 /* If the group ends within a bitfield nextf does not need to be
1964 aligned to BITS_PER_UNIT. Thus round up. */
1965 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1967 else
1968 maxbitsize = bitsize;
1970 else
1972 /* Note that if the C++ FE sets up tail-padding to be re-used it
1973 creates a as-base variant of the type with TYPE_SIZE adjusted
1974 accordingly. So it is safe to include tail-padding here. */
1975 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1976 (DECL_CONTEXT (field));
1977 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1978 /* We cannot generally rely on maxsize to fold to an integer constant,
1979 so use bitsize as fallback for this case. */
1980 if (tree_fits_uhwi_p (maxsize))
1981 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1982 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1983 else
1984 maxbitsize = bitsize;
1987 /* Only if we don't artificially break up the representative in
1988 the middle of a large bitfield with different possibly
1989 overlapping representatives. And all representatives start
1990 at byte offset. */
1991 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1993 /* Find the smallest nice mode to use. */
1994 opt_scalar_int_mode mode_iter;
1995 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1996 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
1997 break;
1999 scalar_int_mode mode;
2000 if (!mode_iter.exists (&mode)
2001 || GET_MODE_BITSIZE (mode) > maxbitsize
2002 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2004 /* We really want a BLKmode representative only as a last resort,
2005 considering the member b in
2006 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2007 Otherwise we simply want to split the representative up
2008 allowing for overlaps within the bitfield region as required for
2009 struct { int a : 7; int b : 7;
2010 int c : 10; int d; } __attribute__((packed));
2011 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2012 DECL_SIZE (repr) = bitsize_int (bitsize);
2013 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2014 SET_DECL_MODE (repr, BLKmode);
2015 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2016 bitsize / BITS_PER_UNIT);
2018 else
2020 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2021 DECL_SIZE (repr) = bitsize_int (modesize);
2022 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2023 SET_DECL_MODE (repr, mode);
2024 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2027 /* Remember whether the bitfield group is at the end of the
2028 structure or not. */
2029 DECL_CHAIN (repr) = nextf;
2032 /* Compute and set FIELD_DECLs for the underlying objects we should
2033 use for bitfield access for the structure T. */
2035 void
2036 finish_bitfield_layout (tree t)
2038 tree field, prev;
2039 tree repr = NULL_TREE;
2041 /* Unions would be special, for the ease of type-punning optimizations
2042 we could use the underlying type as hint for the representative
2043 if the bitfield would fit and the representative would not exceed
2044 the union in size. */
2045 if (TREE_CODE (t) != RECORD_TYPE)
2046 return;
2048 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2049 field; field = DECL_CHAIN (field))
2051 if (TREE_CODE (field) != FIELD_DECL)
2052 continue;
2054 /* In the C++ memory model, consecutive bit fields in a structure are
2055 considered one memory location and updating a memory location
2056 may not store into adjacent memory locations. */
2057 if (!repr
2058 && DECL_BIT_FIELD_TYPE (field))
2060 /* Start new representative. */
2061 repr = start_bitfield_representative (field);
2063 else if (repr
2064 && ! DECL_BIT_FIELD_TYPE (field))
2066 /* Finish off new representative. */
2067 finish_bitfield_representative (repr, prev);
2068 repr = NULL_TREE;
2070 else if (DECL_BIT_FIELD_TYPE (field))
2072 gcc_assert (repr != NULL_TREE);
2074 /* Zero-size bitfields finish off a representative and
2075 do not have a representative themselves. This is
2076 required by the C++ memory model. */
2077 if (integer_zerop (DECL_SIZE (field)))
2079 finish_bitfield_representative (repr, prev);
2080 repr = NULL_TREE;
2083 /* We assume that either DECL_FIELD_OFFSET of the representative
2084 and each bitfield member is a constant or they are equal.
2085 This is because we need to be able to compute the bit-offset
2086 of each field relative to the representative in get_bit_range
2087 during RTL expansion.
2088 If these constraints are not met, simply force a new
2089 representative to be generated. That will at most
2090 generate worse code but still maintain correctness with
2091 respect to the C++ memory model. */
2092 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2093 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2094 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2095 DECL_FIELD_OFFSET (field), 0)))
2097 finish_bitfield_representative (repr, prev);
2098 repr = start_bitfield_representative (field);
2101 else
2102 continue;
2104 if (repr)
2105 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2107 prev = field;
2110 if (repr)
2111 finish_bitfield_representative (repr, prev);
2114 /* Do all of the work required to layout the type indicated by RLI,
2115 once the fields have been laid out. This function will call `free'
2116 for RLI, unless FREE_P is false. Passing a value other than false
2117 for FREE_P is bad practice; this option only exists to support the
2118 G++ 3.2 ABI. */
2120 void
2121 finish_record_layout (record_layout_info rli, int free_p)
2123 tree variant;
2125 /* Compute the final size. */
2126 finalize_record_size (rli);
2128 /* Compute the TYPE_MODE for the record. */
2129 compute_record_mode (rli->t);
2131 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2132 finalize_type_size (rli->t);
2134 /* Compute bitfield representatives. */
2135 finish_bitfield_layout (rli->t);
2137 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2138 With C++ templates, it is too early to do this when the attribute
2139 is being parsed. */
2140 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2141 variant = TYPE_NEXT_VARIANT (variant))
2143 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2144 TYPE_REVERSE_STORAGE_ORDER (variant)
2145 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2148 /* Lay out any static members. This is done now because their type
2149 may use the record's type. */
2150 while (!vec_safe_is_empty (rli->pending_statics))
2151 layout_decl (rli->pending_statics->pop (), 0);
2153 /* Clean up. */
2154 if (free_p)
2156 vec_free (rli->pending_statics);
2157 free (rli);
2162 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2163 NAME, its fields are chained in reverse on FIELDS.
2165 If ALIGN_TYPE is non-null, it is given the same alignment as
2166 ALIGN_TYPE. */
2168 void
2169 finish_builtin_struct (tree type, const char *name, tree fields,
2170 tree align_type)
2172 tree tail, next;
2174 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2176 DECL_FIELD_CONTEXT (fields) = type;
2177 next = DECL_CHAIN (fields);
2178 DECL_CHAIN (fields) = tail;
2180 TYPE_FIELDS (type) = tail;
2182 if (align_type)
2184 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2185 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2186 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2187 TYPE_WARN_IF_NOT_ALIGN (align_type));
2190 layout_type (type);
2191 #if 0 /* not yet, should get fixed properly later */
2192 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2193 #else
2194 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2195 TYPE_DECL, get_identifier (name), type);
2196 #endif
2197 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2198 layout_decl (TYPE_NAME (type), 0);
2201 /* Calculate the mode, size, and alignment for TYPE.
2202 For an array type, calculate the element separation as well.
2203 Record TYPE on the chain of permanent or temporary types
2204 so that dbxout will find out about it.
2206 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2207 layout_type does nothing on such a type.
2209 If the type is incomplete, its TYPE_SIZE remains zero. */
2211 void
2212 layout_type (tree type)
2214 gcc_assert (type);
2216 if (type == error_mark_node)
2217 return;
2219 /* We don't want finalize_type_size to copy an alignment attribute to
2220 variants that don't have it. */
2221 type = TYPE_MAIN_VARIANT (type);
2223 /* Do nothing if type has been laid out before. */
2224 if (TYPE_SIZE (type))
2225 return;
2227 switch (TREE_CODE (type))
2229 case LANG_TYPE:
2230 /* This kind of type is the responsibility
2231 of the language-specific code. */
2232 gcc_unreachable ();
2234 case BOOLEAN_TYPE:
2235 case INTEGER_TYPE:
2236 case ENUMERAL_TYPE:
2238 scalar_int_mode mode
2239 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2240 SET_TYPE_MODE (type, mode);
2241 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2242 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2243 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2244 break;
2247 case REAL_TYPE:
2249 /* Allow the caller to choose the type mode, which is how decimal
2250 floats are distinguished from binary ones. */
2251 if (TYPE_MODE (type) == VOIDmode)
2252 SET_TYPE_MODE
2253 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2254 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2255 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2256 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2257 break;
2260 case FIXED_POINT_TYPE:
2262 /* TYPE_MODE (type) has been set already. */
2263 scalar_mode mode = SCALAR_TYPE_MODE (type);
2264 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2265 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2266 break;
2269 case COMPLEX_TYPE:
2270 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2271 SET_TYPE_MODE (type,
2272 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2274 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2275 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2276 break;
2278 case VECTOR_TYPE:
2280 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2281 tree innertype = TREE_TYPE (type);
2283 /* Find an appropriate mode for the vector type. */
2284 if (TYPE_MODE (type) == VOIDmode)
2285 SET_TYPE_MODE (type,
2286 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2287 nunits).else_blk ());
2289 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2290 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2291 /* Several boolean vector elements may fit in a single unit. */
2292 if (VECTOR_BOOLEAN_TYPE_P (type)
2293 && type->type_common.mode != BLKmode)
2294 TYPE_SIZE_UNIT (type)
2295 = size_int (GET_MODE_SIZE (type->type_common.mode));
2296 else
2297 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2298 TYPE_SIZE_UNIT (innertype),
2299 size_int (nunits));
2300 TYPE_SIZE (type) = int_const_binop
2301 (MULT_EXPR,
2302 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2303 bitsize_int (BITS_PER_UNIT));
2305 /* For vector types, we do not default to the mode's alignment.
2306 Instead, query a target hook, defaulting to natural alignment.
2307 This prevents ABI changes depending on whether or not native
2308 vector modes are supported. */
2309 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2311 /* However, if the underlying mode requires a bigger alignment than
2312 what the target hook provides, we cannot use the mode. For now,
2313 simply reject that case. */
2314 gcc_assert (TYPE_ALIGN (type)
2315 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2316 break;
2319 case VOID_TYPE:
2320 /* This is an incomplete type and so doesn't have a size. */
2321 SET_TYPE_ALIGN (type, 1);
2322 TYPE_USER_ALIGN (type) = 0;
2323 SET_TYPE_MODE (type, VOIDmode);
2324 break;
2326 case POINTER_BOUNDS_TYPE:
2327 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2328 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2329 break;
2331 case OFFSET_TYPE:
2332 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2333 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2334 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2335 integral, which may be an __intN. */
2336 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2337 TYPE_PRECISION (type) = POINTER_SIZE;
2338 break;
2340 case FUNCTION_TYPE:
2341 case METHOD_TYPE:
2342 /* It's hard to see what the mode and size of a function ought to
2343 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2344 make it consistent with that. */
2345 SET_TYPE_MODE (type,
2346 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2347 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2348 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2349 break;
2351 case POINTER_TYPE:
2352 case REFERENCE_TYPE:
2354 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2355 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2356 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2357 TYPE_UNSIGNED (type) = 1;
2358 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2360 break;
2362 case ARRAY_TYPE:
2364 tree index = TYPE_DOMAIN (type);
2365 tree element = TREE_TYPE (type);
2367 /* We need to know both bounds in order to compute the size. */
2368 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2369 && TYPE_SIZE (element))
2371 tree ub = TYPE_MAX_VALUE (index);
2372 tree lb = TYPE_MIN_VALUE (index);
2373 tree element_size = TYPE_SIZE (element);
2374 tree length;
2376 /* Make sure that an array of zero-sized element is zero-sized
2377 regardless of its extent. */
2378 if (integer_zerop (element_size))
2379 length = size_zero_node;
2381 /* The computation should happen in the original signedness so
2382 that (possible) negative values are handled appropriately
2383 when determining overflow. */
2384 else
2386 /* ??? When it is obvious that the range is signed
2387 represent it using ssizetype. */
2388 if (TREE_CODE (lb) == INTEGER_CST
2389 && TREE_CODE (ub) == INTEGER_CST
2390 && TYPE_UNSIGNED (TREE_TYPE (lb))
2391 && tree_int_cst_lt (ub, lb))
2393 lb = wide_int_to_tree (ssizetype,
2394 offset_int::from (wi::to_wide (lb),
2395 SIGNED));
2396 ub = wide_int_to_tree (ssizetype,
2397 offset_int::from (wi::to_wide (ub),
2398 SIGNED));
2400 length
2401 = fold_convert (sizetype,
2402 size_binop (PLUS_EXPR,
2403 build_int_cst (TREE_TYPE (lb), 1),
2404 size_binop (MINUS_EXPR, ub, lb)));
2407 /* ??? We have no way to distinguish a null-sized array from an
2408 array spanning the whole sizetype range, so we arbitrarily
2409 decide that [0, -1] is the only valid representation. */
2410 if (integer_zerop (length)
2411 && TREE_OVERFLOW (length)
2412 && integer_zerop (lb))
2413 length = size_zero_node;
2415 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2416 bits_from_bytes (length));
2418 /* If we know the size of the element, calculate the total size
2419 directly, rather than do some division thing below. This
2420 optimization helps Fortran assumed-size arrays (where the
2421 size of the array is determined at runtime) substantially. */
2422 if (TYPE_SIZE_UNIT (element))
2423 TYPE_SIZE_UNIT (type)
2424 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2427 /* Now round the alignment and size,
2428 using machine-dependent criteria if any. */
2430 unsigned align = TYPE_ALIGN (element);
2431 if (TYPE_USER_ALIGN (type))
2432 align = MAX (align, TYPE_ALIGN (type));
2433 else
2434 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2435 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2436 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2437 TYPE_WARN_IF_NOT_ALIGN (element));
2438 #ifdef ROUND_TYPE_ALIGN
2439 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2440 #else
2441 align = MAX (align, BITS_PER_UNIT);
2442 #endif
2443 SET_TYPE_ALIGN (type, align);
2444 SET_TYPE_MODE (type, BLKmode);
2445 if (TYPE_SIZE (type) != 0
2446 && ! targetm.member_type_forces_blk (type, VOIDmode)
2447 /* BLKmode elements force BLKmode aggregate;
2448 else extract/store fields may lose. */
2449 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2450 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2452 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2453 TYPE_SIZE (type)));
2454 if (TYPE_MODE (type) != BLKmode
2455 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2456 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2458 TYPE_NO_FORCE_BLK (type) = 1;
2459 SET_TYPE_MODE (type, BLKmode);
2462 if (AGGREGATE_TYPE_P (element))
2463 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2464 /* When the element size is constant, check that it is at least as
2465 large as the element alignment. */
2466 if (TYPE_SIZE_UNIT (element)
2467 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2468 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2469 TYPE_ALIGN_UNIT. */
2470 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2471 && !integer_zerop (TYPE_SIZE_UNIT (element))
2472 && compare_tree_int (TYPE_SIZE_UNIT (element),
2473 TYPE_ALIGN_UNIT (element)) < 0)
2474 error ("alignment of array elements is greater than element size");
2475 break;
2478 case RECORD_TYPE:
2479 case UNION_TYPE:
2480 case QUAL_UNION_TYPE:
2482 tree field;
2483 record_layout_info rli;
2485 /* Initialize the layout information. */
2486 rli = start_record_layout (type);
2488 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2489 in the reverse order in building the COND_EXPR that denotes
2490 its size. We reverse them again later. */
2491 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2492 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2494 /* Place all the fields. */
2495 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2496 place_field (rli, field);
2498 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2499 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2501 /* Finish laying out the record. */
2502 finish_record_layout (rli, /*free_p=*/true);
2504 break;
2506 default:
2507 gcc_unreachable ();
2510 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2511 records and unions, finish_record_layout already called this
2512 function. */
2513 if (!RECORD_OR_UNION_TYPE_P (type))
2514 finalize_type_size (type);
2516 /* We should never see alias sets on incomplete aggregates. And we
2517 should not call layout_type on not incomplete aggregates. */
2518 if (AGGREGATE_TYPE_P (type))
2519 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2522 /* Return the least alignment required for type TYPE. */
2524 unsigned int
2525 min_align_of_type (tree type)
2527 unsigned int align = TYPE_ALIGN (type);
2528 if (!TYPE_USER_ALIGN (type))
2530 align = MIN (align, BIGGEST_ALIGNMENT);
2531 #ifdef BIGGEST_FIELD_ALIGNMENT
2532 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2533 #endif
2534 unsigned int field_align = align;
2535 #ifdef ADJUST_FIELD_ALIGN
2536 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2537 #endif
2538 align = MIN (align, field_align);
2540 return align / BITS_PER_UNIT;
2543 /* Create and return a type for signed integers of PRECISION bits. */
2545 tree
2546 make_signed_type (int precision)
2548 tree type = make_node (INTEGER_TYPE);
2550 TYPE_PRECISION (type) = precision;
2552 fixup_signed_type (type);
2553 return type;
2556 /* Create and return a type for unsigned integers of PRECISION bits. */
2558 tree
2559 make_unsigned_type (int precision)
2561 tree type = make_node (INTEGER_TYPE);
2563 TYPE_PRECISION (type) = precision;
2565 fixup_unsigned_type (type);
2566 return type;
2569 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2570 and SATP. */
2572 tree
2573 make_fract_type (int precision, int unsignedp, int satp)
2575 tree type = make_node (FIXED_POINT_TYPE);
2577 TYPE_PRECISION (type) = precision;
2579 if (satp)
2580 TYPE_SATURATING (type) = 1;
2582 /* Lay out the type: set its alignment, size, etc. */
2583 TYPE_UNSIGNED (type) = unsignedp;
2584 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2585 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2586 layout_type (type);
2588 return type;
2591 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2592 and SATP. */
2594 tree
2595 make_accum_type (int precision, int unsignedp, int satp)
2597 tree type = make_node (FIXED_POINT_TYPE);
2599 TYPE_PRECISION (type) = precision;
2601 if (satp)
2602 TYPE_SATURATING (type) = 1;
2604 /* Lay out the type: set its alignment, size, etc. */
2605 TYPE_UNSIGNED (type) = unsignedp;
2606 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2607 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2608 layout_type (type);
2610 return type;
2613 /* Initialize sizetypes so layout_type can use them. */
2615 void
2616 initialize_sizetypes (void)
2618 int precision, bprecision;
2620 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2621 if (strcmp (SIZETYPE, "unsigned int") == 0)
2622 precision = INT_TYPE_SIZE;
2623 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2624 precision = LONG_TYPE_SIZE;
2625 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2626 precision = LONG_LONG_TYPE_SIZE;
2627 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2628 precision = SHORT_TYPE_SIZE;
2629 else
2631 int i;
2633 precision = -1;
2634 for (i = 0; i < NUM_INT_N_ENTS; i++)
2635 if (int_n_enabled_p[i])
2637 char name[50];
2638 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2640 if (strcmp (name, SIZETYPE) == 0)
2642 precision = int_n_data[i].bitsize;
2645 if (precision == -1)
2646 gcc_unreachable ();
2649 bprecision
2650 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2651 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2652 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2653 bprecision = HOST_BITS_PER_DOUBLE_INT;
2655 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2656 sizetype = make_node (INTEGER_TYPE);
2657 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2658 TYPE_PRECISION (sizetype) = precision;
2659 TYPE_UNSIGNED (sizetype) = 1;
2660 bitsizetype = make_node (INTEGER_TYPE);
2661 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2662 TYPE_PRECISION (bitsizetype) = bprecision;
2663 TYPE_UNSIGNED (bitsizetype) = 1;
2665 /* Now layout both types manually. */
2666 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2667 SET_TYPE_MODE (sizetype, mode);
2668 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2669 TYPE_SIZE (sizetype) = bitsize_int (precision);
2670 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2671 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2673 mode = smallest_int_mode_for_size (bprecision);
2674 SET_TYPE_MODE (bitsizetype, mode);
2675 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2676 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2677 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2678 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2680 /* Create the signed variants of *sizetype. */
2681 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2682 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2683 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2684 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2687 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2688 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2689 for TYPE, based on the PRECISION and whether or not the TYPE
2690 IS_UNSIGNED. PRECISION need not correspond to a width supported
2691 natively by the hardware; for example, on a machine with 8-bit,
2692 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2693 61. */
2695 void
2696 set_min_and_max_values_for_integral_type (tree type,
2697 int precision,
2698 signop sgn)
2700 /* For bitfields with zero width we end up creating integer types
2701 with zero precision. Don't assign any minimum/maximum values
2702 to those types, they don't have any valid value. */
2703 if (precision < 1)
2704 return;
2706 TYPE_MIN_VALUE (type)
2707 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2708 TYPE_MAX_VALUE (type)
2709 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2712 /* Set the extreme values of TYPE based on its precision in bits,
2713 then lay it out. Used when make_signed_type won't do
2714 because the tree code is not INTEGER_TYPE. */
2716 void
2717 fixup_signed_type (tree type)
2719 int precision = TYPE_PRECISION (type);
2721 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2723 /* Lay out the type: set its alignment, size, etc. */
2724 layout_type (type);
2727 /* Set the extreme values of TYPE based on its precision in bits,
2728 then lay it out. This is used both in `make_unsigned_type'
2729 and for enumeral types. */
2731 void
2732 fixup_unsigned_type (tree type)
2734 int precision = TYPE_PRECISION (type);
2736 TYPE_UNSIGNED (type) = 1;
2738 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2740 /* Lay out the type: set its alignment, size, etc. */
2741 layout_type (type);
2744 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2745 starting at BITPOS.
2747 BITREGION_START is the bit position of the first bit in this
2748 sequence of bit fields. BITREGION_END is the last bit in this
2749 sequence. If these two fields are non-zero, we should restrict the
2750 memory access to that range. Otherwise, we are allowed to touch
2751 any adjacent non bit-fields.
2753 ALIGN is the alignment of the underlying object in bits.
2754 VOLATILEP says whether the bitfield is volatile. */
2756 bit_field_mode_iterator
2757 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2758 poly_int64 bitregion_start,
2759 poly_int64 bitregion_end,
2760 unsigned int align, bool volatilep)
2761 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2762 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2763 m_bitregion_end (bitregion_end), m_align (align),
2764 m_volatilep (volatilep), m_count (0)
2766 if (known_eq (m_bitregion_end, 0))
2768 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2769 the bitfield is mapped and won't trap, provided that ALIGN isn't
2770 too large. The cap is the biggest required alignment for data,
2771 or at least the word size. And force one such chunk at least. */
2772 unsigned HOST_WIDE_INT units
2773 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2774 if (bitsize <= 0)
2775 bitsize = 1;
2776 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2777 m_bitregion_end = end - end % units - 1;
2781 /* Calls to this function return successively larger modes that can be used
2782 to represent the bitfield. Return true if another bitfield mode is
2783 available, storing it in *OUT_MODE if so. */
2785 bool
2786 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2788 scalar_int_mode mode;
2789 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2791 unsigned int unit = GET_MODE_BITSIZE (mode);
2793 /* Skip modes that don't have full precision. */
2794 if (unit != GET_MODE_PRECISION (mode))
2795 continue;
2797 /* Stop if the mode is too wide to handle efficiently. */
2798 if (unit > MAX_FIXED_MODE_SIZE)
2799 break;
2801 /* Don't deliver more than one multiword mode; the smallest one
2802 should be used. */
2803 if (m_count > 0 && unit > BITS_PER_WORD)
2804 break;
2806 /* Skip modes that are too small. */
2807 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2808 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2809 if (subend > unit)
2810 continue;
2812 /* Stop if the mode goes outside the bitregion. */
2813 HOST_WIDE_INT start = m_bitpos - substart;
2814 if (maybe_ne (m_bitregion_start, 0)
2815 && maybe_lt (start, m_bitregion_start))
2816 break;
2817 HOST_WIDE_INT end = start + unit;
2818 if (maybe_gt (end, m_bitregion_end + 1))
2819 break;
2821 /* Stop if the mode requires too much alignment. */
2822 if (GET_MODE_ALIGNMENT (mode) > m_align
2823 && targetm.slow_unaligned_access (mode, m_align))
2824 break;
2826 *out_mode = mode;
2827 m_mode = GET_MODE_WIDER_MODE (mode);
2828 m_count++;
2829 return true;
2831 return false;
2834 /* Return true if smaller modes are generally preferred for this kind
2835 of bitfield. */
2837 bool
2838 bit_field_mode_iterator::prefer_smaller_modes ()
2840 return (m_volatilep
2841 ? targetm.narrow_volatile_bitfield ()
2842 : !SLOW_BYTE_ACCESS);
2845 /* Find the best machine mode to use when referencing a bit field of length
2846 BITSIZE bits starting at BITPOS.
2848 BITREGION_START is the bit position of the first bit in this
2849 sequence of bit fields. BITREGION_END is the last bit in this
2850 sequence. If these two fields are non-zero, we should restrict the
2851 memory access to that range. Otherwise, we are allowed to touch
2852 any adjacent non bit-fields.
2854 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2855 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2856 doesn't want to apply a specific limit.
2858 If no mode meets all these conditions, we return VOIDmode.
2860 The underlying object is known to be aligned to a boundary of ALIGN bits.
2862 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2863 smallest mode meeting these conditions.
2865 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2866 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2867 all the conditions.
2869 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2870 decide which of the above modes should be used. */
2872 bool
2873 get_best_mode (int bitsize, int bitpos,
2874 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2875 unsigned int align,
2876 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2877 scalar_int_mode *best_mode)
2879 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2880 bitregion_end, align, volatilep);
2881 scalar_int_mode mode;
2882 bool found = false;
2883 while (iter.next_mode (&mode)
2884 /* ??? For historical reasons, reject modes that would normally
2885 receive greater alignment, even if unaligned accesses are
2886 acceptable. This has both advantages and disadvantages.
2887 Removing this check means that something like:
2889 struct s { unsigned int x; unsigned int y; };
2890 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2892 can be implemented using a single load and compare on
2893 64-bit machines that have no alignment restrictions.
2894 For example, on powerpc64-linux-gnu, we would generate:
2896 ld 3,0(3)
2897 cntlzd 3,3
2898 srdi 3,3,6
2901 rather than:
2903 lwz 9,0(3)
2904 cmpwi 7,9,0
2905 bne 7,.L3
2906 lwz 3,4(3)
2907 cntlzw 3,3
2908 srwi 3,3,5
2909 extsw 3,3
2911 .p2align 4,,15
2912 .L3:
2913 li 3,0
2916 However, accessing more than one field can make life harder
2917 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2918 has a series of unsigned short copies followed by a series of
2919 unsigned short comparisons. With this check, both the copies
2920 and comparisons remain 16-bit accesses and FRE is able
2921 to eliminate the latter. Without the check, the comparisons
2922 can be done using 2 64-bit operations, which FRE isn't able
2923 to handle in the same way.
2925 Either way, it would probably be worth disabling this check
2926 during expand. One particular example where removing the
2927 check would help is the get_best_mode call in store_bit_field.
2928 If we are given a memory bitregion of 128 bits that is aligned
2929 to a 64-bit boundary, and the bitfield we want to modify is
2930 in the second half of the bitregion, this check causes
2931 store_bitfield to turn the memory into a 64-bit reference
2932 to the _first_ half of the region. We later use
2933 adjust_bitfield_address to get a reference to the correct half,
2934 but doing so looks to adjust_bitfield_address as though we are
2935 moving past the end of the original object, so it drops the
2936 associated MEM_EXPR and MEM_OFFSET. Removing the check
2937 causes store_bit_field to keep a 128-bit memory reference,
2938 so that the final bitfield reference still has a MEM_EXPR
2939 and MEM_OFFSET. */
2940 && GET_MODE_ALIGNMENT (mode) <= align
2941 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
2943 *best_mode = mode;
2944 found = true;
2945 if (iter.prefer_smaller_modes ())
2946 break;
2949 return found;
2952 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2953 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2955 void
2956 get_mode_bounds (scalar_int_mode mode, int sign,
2957 scalar_int_mode target_mode,
2958 rtx *mmin, rtx *mmax)
2960 unsigned size = GET_MODE_PRECISION (mode);
2961 unsigned HOST_WIDE_INT min_val, max_val;
2963 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2965 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2966 if (mode == BImode)
2968 if (STORE_FLAG_VALUE < 0)
2970 min_val = STORE_FLAG_VALUE;
2971 max_val = 0;
2973 else
2975 min_val = 0;
2976 max_val = STORE_FLAG_VALUE;
2979 else if (sign)
2981 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2982 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2984 else
2986 min_val = 0;
2987 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2990 *mmin = gen_int_mode (min_val, target_mode);
2991 *mmax = gen_int_mode (max_val, target_mode);
2994 #include "gt-stor-layout.h"