* doc/tm.texi (INIT_CUMULATIVE_ARGS): Update doco.
[official-gcc.git] / gcc / function.c
blob890ebd34c5dd6100dfd467ab237cab38cc18f6ba
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
75 #ifndef STACK_ALIGNMENT_NEEDED
76 #define STACK_ALIGNMENT_NEEDED 1
77 #endif
79 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81 /* Some systems use __main in a way incompatible with its use in gcc, in these
82 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
83 give the same symbol without quotes for an alternative entry point. You
84 must define both, or neither. */
85 #ifndef NAME__MAIN
86 #define NAME__MAIN "__main"
87 #endif
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
117 int current_function_nothrow;
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero.
131 calls.c:emit_library_call_value_1 uses it to set up
132 post-instantiation libcalls. */
133 int virtuals_instantiated;
135 /* Nonzero if at least one trampoline has been created. */
136 int trampolines_created;
138 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
139 static GTY(()) int funcdef_no;
141 /* These variables hold pointers to functions to create and destroy
142 target specific, per-function data structures. */
143 struct machine_function * (*init_machine_status) (void);
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
148 /* The currently compiled function. */
149 struct function *cfun = 0;
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static GTY(()) varray_type prologue;
153 static GTY(()) varray_type epilogue;
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static GTY(()) varray_type sibcall_epilogue;
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
177 struct temp_slot GTY(())
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 unsigned int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Nonzero if this temporary is currently in use. */
198 char in_use;
199 /* Nonzero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Nonzero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
218 struct fixup_replacement GTY(())
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
225 struct insns_for_mem_entry
227 /* A MEM. */
228 rtx key;
229 /* These are the INSNs which reference the MEM. */
230 rtx insns;
233 /* Forward declarations. */
235 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
236 struct function *);
237 static struct temp_slot *find_temp_slot_from_address (rtx);
238 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
239 enum machine_mode, int, unsigned int, int, htab_t);
240 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
241 htab_t);
242 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
243 static struct fixup_replacement
244 *find_fixup_replacement (struct fixup_replacement **, rtx);
245 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
246 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
247 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
248 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
249 struct fixup_replacement **, rtx);
250 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
251 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
252 static rtx fixup_stack_1 (rtx, rtx);
253 static void optimize_bit_field (rtx, rtx, rtx *);
254 static void instantiate_decls (tree, int);
255 static void instantiate_decls_1 (tree, int);
256 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
257 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
258 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
259 static void delete_handlers (void);
260 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
261 static void pad_below (struct args_size *, enum machine_mode, tree);
262 static rtx round_trampoline_addr (rtx);
263 static rtx adjust_trampoline_addr (rtx);
264 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
265 static void reorder_blocks_0 (tree);
266 static void reorder_blocks_1 (rtx, tree, varray_type *);
267 static void reorder_fix_fragments (tree);
268 static tree blocks_nreverse (tree);
269 static int all_blocks (tree, tree *);
270 static tree *get_block_vector (tree, int *);
271 extern tree debug_find_var_in_block_tree (tree, tree);
272 /* We always define `record_insns' even if it's not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
275 static int contains (rtx, varray_type);
276 #ifdef HAVE_return
277 static void emit_return_into_block (basic_block, rtx);
278 #endif
279 static void put_addressof_into_stack (rtx, htab_t);
280 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
281 static void purge_single_hard_subreg_set (rtx);
282 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
283 static rtx keep_stack_depressed (rtx);
284 #endif
285 static int is_addressof (rtx *, void *);
286 static hashval_t insns_for_mem_hash (const void *);
287 static int insns_for_mem_comp (const void *, const void *);
288 static int insns_for_mem_walk (rtx *, void *);
289 static void compute_insns_for_mem (rtx, rtx, htab_t);
290 static void prepare_function_start (tree);
291 static void do_clobber_return_reg (rtx, void *);
292 static void do_use_return_reg (rtx, void *);
293 static void instantiate_virtual_regs_lossage (rtx);
294 static tree split_complex_args (tree);
295 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
297 /* Pointer to chain of `struct function' for containing functions. */
298 struct function *outer_function_chain;
300 /* List of insns that were postponed by purge_addressof_1. */
301 static rtx postponed_insns;
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
306 struct function *
307 find_function_data (tree decl)
309 struct function *p;
311 for (p = outer_function_chain; p; p = p->outer)
312 if (p->decl == decl)
313 return p;
315 abort ();
318 /* Save the current context for compilation of a nested function.
319 This is called from language-specific code. The caller should use
320 the enter_nested langhook to save any language-specific state,
321 since this function knows only about language-independent
322 variables. */
324 void
325 push_function_context_to (tree context)
327 struct function *p;
329 if (context)
331 if (context == current_function_decl)
332 cfun->contains_functions = 1;
333 else
335 struct function *containing = find_function_data (context);
336 containing->contains_functions = 1;
340 if (cfun == 0)
341 init_dummy_function_start ();
342 p = cfun;
344 p->outer = outer_function_chain;
345 outer_function_chain = p;
346 p->fixup_var_refs_queue = 0;
348 (*lang_hooks.function.enter_nested) (p);
350 cfun = 0;
353 void
354 push_function_context (void)
356 push_function_context_to (current_function_decl);
359 /* Restore the last saved context, at the end of a nested function.
360 This function is called from language-specific code. */
362 void
363 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
368 cfun = p;
369 outer_function_chain = p->outer;
371 current_function_decl = p->decl;
372 reg_renumber = 0;
374 restore_emit_status (p);
376 (*lang_hooks.function.leave_nested) (p);
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
391 rtx list = 0;
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context (void)
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (struct function *f)
423 /* f->expr->forced_labels is used by code generation. */
424 /* f->emit->regno_reg_rtx is used by code generation. */
425 /* f->varasm is used by code generation. */
426 /* f->eh->eh_return_stub_label is used by code generation. */
428 (*lang_hooks.function.final) (f);
429 f->stmt = NULL;
432 /* Clear out all parts of the state in F that can safely be discarded
433 after the function has been compiled, to let garbage collection
434 reclaim the memory. */
436 void
437 free_after_compilation (struct function *f)
439 f->eh = NULL;
440 f->expr = NULL;
441 f->emit = NULL;
442 f->varasm = NULL;
443 f->machine = NULL;
445 f->x_temp_slots = NULL;
446 f->arg_offset_rtx = NULL;
447 f->return_rtx = NULL;
448 f->internal_arg_pointer = NULL;
449 f->x_nonlocal_labels = NULL;
450 f->x_nonlocal_goto_handler_slots = NULL;
451 f->x_nonlocal_goto_handler_labels = NULL;
452 f->x_nonlocal_goto_stack_level = NULL;
453 f->x_cleanup_label = NULL;
454 f->x_return_label = NULL;
455 f->x_naked_return_label = NULL;
456 f->computed_goto_common_label = NULL;
457 f->computed_goto_common_reg = NULL;
458 f->x_save_expr_regs = NULL;
459 f->x_stack_slot_list = NULL;
460 f->x_rtl_expr_chain = NULL;
461 f->x_tail_recursion_label = NULL;
462 f->x_tail_recursion_reentry = NULL;
463 f->x_arg_pointer_save_area = NULL;
464 f->x_clobber_return_insn = NULL;
465 f->x_context_display = NULL;
466 f->x_trampoline_list = NULL;
467 f->x_parm_birth_insn = NULL;
468 f->x_last_parm_insn = NULL;
469 f->x_parm_reg_stack_loc = NULL;
470 f->fixup_var_refs_queue = NULL;
471 f->original_arg_vector = NULL;
472 f->original_decl_initial = NULL;
473 f->inl_last_parm_insn = NULL;
474 f->epilogue_delay_list = NULL;
477 /* Allocate fixed slots in the stack frame of the current function. */
479 /* Return size needed for stack frame based on slots so far allocated in
480 function F.
481 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
482 the caller may have to do that. */
484 HOST_WIDE_INT
485 get_func_frame_size (struct function *f)
487 #ifdef FRAME_GROWS_DOWNWARD
488 return -f->x_frame_offset;
489 #else
490 return f->x_frame_offset;
491 #endif
494 /* Return size needed for stack frame based on slots so far allocated.
495 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
496 the caller may have to do that. */
497 HOST_WIDE_INT
498 get_frame_size (void)
500 return get_func_frame_size (cfun);
503 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
504 with machine mode MODE.
506 ALIGN controls the amount of alignment for the address of the slot:
507 0 means according to MODE,
508 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
509 positive specifies alignment boundary in bits.
511 We do not round to stack_boundary here.
513 FUNCTION specifies the function to allocate in. */
515 static rtx
516 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
517 struct function *function)
519 rtx x, addr;
520 int bigend_correction = 0;
521 int alignment;
522 int frame_off, frame_alignment, frame_phase;
524 if (align == 0)
526 tree type;
528 if (mode == BLKmode)
529 alignment = BIGGEST_ALIGNMENT;
530 else
531 alignment = GET_MODE_ALIGNMENT (mode);
533 /* Allow the target to (possibly) increase the alignment of this
534 stack slot. */
535 type = (*lang_hooks.types.type_for_mode) (mode, 0);
536 if (type)
537 alignment = LOCAL_ALIGNMENT (type, alignment);
539 alignment /= BITS_PER_UNIT;
541 else if (align == -1)
543 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
544 size = CEIL_ROUND (size, alignment);
546 else
547 alignment = align / BITS_PER_UNIT;
549 #ifdef FRAME_GROWS_DOWNWARD
550 function->x_frame_offset -= size;
551 #endif
553 /* Ignore alignment we can't do with expected alignment of the boundary. */
554 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
555 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
557 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
558 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
560 /* Calculate how many bytes the start of local variables is off from
561 stack alignment. */
562 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
563 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
564 frame_phase = frame_off ? frame_alignment - frame_off : 0;
566 /* Round the frame offset to the specified alignment. The default is
567 to always honor requests to align the stack but a port may choose to
568 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
569 if (STACK_ALIGNMENT_NEEDED
570 || mode != BLKmode
571 || size != 0)
573 /* We must be careful here, since FRAME_OFFSET might be negative and
574 division with a negative dividend isn't as well defined as we might
575 like. So we instead assume that ALIGNMENT is a power of two and
576 use logical operations which are unambiguous. */
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset
579 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
580 + frame_phase);
581 #else
582 function->x_frame_offset
583 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
584 + frame_phase);
585 #endif
588 /* On a big-endian machine, if we are allocating more space than we will use,
589 use the least significant bytes of those that are allocated. */
590 if (BYTES_BIG_ENDIAN && mode != BLKmode)
591 bigend_correction = size - GET_MODE_SIZE (mode);
593 /* If we have already instantiated virtual registers, return the actual
594 address relative to the frame pointer. */
595 if (function == cfun && virtuals_instantiated)
596 addr = plus_constant (frame_pointer_rtx,
597 trunc_int_for_mode
598 (frame_offset + bigend_correction
599 + STARTING_FRAME_OFFSET, Pmode));
600 else
601 addr = plus_constant (virtual_stack_vars_rtx,
602 trunc_int_for_mode
603 (function->x_frame_offset + bigend_correction,
604 Pmode));
606 #ifndef FRAME_GROWS_DOWNWARD
607 function->x_frame_offset += size;
608 #endif
610 x = gen_rtx_MEM (mode, addr);
612 function->x_stack_slot_list
613 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
615 return x;
618 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
619 current function. */
622 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
624 return assign_stack_local_1 (mode, size, align, cfun);
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
630 MODE is the machine mode to be given to the returned rtx.
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
642 TYPE is the type that will be used for the stack slot. */
645 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
646 tree type)
648 unsigned int align;
649 struct temp_slot *p, *best_p = 0;
650 rtx slot;
652 /* If SIZE is -1 it means that somebody tried to allocate a temporary
653 of a variable size. */
654 if (size == -1)
655 abort ();
657 if (mode == BLKmode)
658 align = BIGGEST_ALIGNMENT;
659 else
660 align = GET_MODE_ALIGNMENT (mode);
662 if (! type)
663 type = (*lang_hooks.types.type_for_mode) (mode, 0);
665 if (type)
666 align = LOCAL_ALIGNMENT (type, align);
668 /* Try to find an available, already-allocated temporary of the proper
669 mode which meets the size and alignment requirements. Choose the
670 smallest one with the closest alignment. */
671 for (p = temp_slots; p; p = p->next)
672 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
673 && ! p->in_use
674 && objects_must_conflict_p (p->type, type)
675 && (best_p == 0 || best_p->size > p->size
676 || (best_p->size == p->size && best_p->align > p->align)))
678 if (p->align == align && p->size == size)
680 best_p = 0;
681 break;
683 best_p = p;
686 /* Make our best, if any, the one to use. */
687 if (best_p)
689 /* If there are enough aligned bytes left over, make them into a new
690 temp_slot so that the extra bytes don't get wasted. Do this only
691 for BLKmode slots, so that we can be sure of the alignment. */
692 if (GET_MODE (best_p->slot) == BLKmode)
694 int alignment = best_p->align / BITS_PER_UNIT;
695 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
697 if (best_p->size - rounded_size >= alignment)
699 p = ggc_alloc (sizeof (struct temp_slot));
700 p->in_use = p->addr_taken = 0;
701 p->size = best_p->size - rounded_size;
702 p->base_offset = best_p->base_offset + rounded_size;
703 p->full_size = best_p->full_size - rounded_size;
704 p->slot = gen_rtx_MEM (BLKmode,
705 plus_constant (XEXP (best_p->slot, 0),
706 rounded_size));
707 p->align = best_p->align;
708 p->address = 0;
709 p->rtl_expr = 0;
710 p->type = best_p->type;
711 p->next = temp_slots;
712 temp_slots = p;
714 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
715 stack_slot_list);
717 best_p->size = rounded_size;
718 best_p->full_size = rounded_size;
722 p = best_p;
725 /* If we still didn't find one, make a new temporary. */
726 if (p == 0)
728 HOST_WIDE_INT frame_offset_old = frame_offset;
730 p = ggc_alloc (sizeof (struct temp_slot));
732 /* We are passing an explicit alignment request to assign_stack_local.
733 One side effect of that is assign_stack_local will not round SIZE
734 to ensure the frame offset remains suitably aligned.
736 So for requests which depended on the rounding of SIZE, we go ahead
737 and round it now. We also make sure ALIGNMENT is at least
738 BIGGEST_ALIGNMENT. */
739 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
740 abort ();
741 p->slot = assign_stack_local (mode,
742 (mode == BLKmode
743 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
744 : size),
745 align);
747 p->align = align;
749 /* The following slot size computation is necessary because we don't
750 know the actual size of the temporary slot until assign_stack_local
751 has performed all the frame alignment and size rounding for the
752 requested temporary. Note that extra space added for alignment
753 can be either above or below this stack slot depending on which
754 way the frame grows. We include the extra space if and only if it
755 is above this slot. */
756 #ifdef FRAME_GROWS_DOWNWARD
757 p->size = frame_offset_old - frame_offset;
758 #else
759 p->size = size;
760 #endif
762 /* Now define the fields used by combine_temp_slots. */
763 #ifdef FRAME_GROWS_DOWNWARD
764 p->base_offset = frame_offset;
765 p->full_size = frame_offset_old - frame_offset;
766 #else
767 p->base_offset = frame_offset_old;
768 p->full_size = frame_offset - frame_offset_old;
769 #endif
770 p->address = 0;
771 p->next = temp_slots;
772 temp_slots = p;
775 p->in_use = 1;
776 p->addr_taken = 0;
777 p->rtl_expr = seq_rtl_expr;
778 p->type = type;
780 if (keep == 2)
782 p->level = target_temp_slot_level;
783 p->keep = 0;
785 else if (keep == 3)
787 p->level = var_temp_slot_level;
788 p->keep = 0;
790 else
792 p->level = temp_slot_level;
793 p->keep = keep;
797 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
798 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
799 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
801 /* If we know the alias set for the memory that will be used, use
802 it. If there's no TYPE, then we don't know anything about the
803 alias set for the memory. */
804 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
805 set_mem_align (slot, align);
807 /* If a type is specified, set the relevant flags. */
808 if (type != 0)
810 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
811 && TYPE_READONLY (type));
812 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
813 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
816 return slot;
819 /* Allocate a temporary stack slot and record it for possible later
820 reuse. First three arguments are same as in preceding function. */
823 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
825 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
828 /* Assign a temporary.
829 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
830 and so that should be used in error messages. In either case, we
831 allocate of the given type.
832 KEEP is as for assign_stack_temp.
833 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
834 it is 0 if a register is OK.
835 DONT_PROMOTE is 1 if we should not promote values in register
836 to wider modes. */
839 assign_temp (tree type_or_decl, int keep, int memory_required,
840 int dont_promote ATTRIBUTE_UNUSED)
842 tree type, decl;
843 enum machine_mode mode;
844 #ifndef PROMOTE_FOR_CALL_ONLY
845 int unsignedp;
846 #endif
848 if (DECL_P (type_or_decl))
849 decl = type_or_decl, type = TREE_TYPE (decl);
850 else
851 decl = NULL, type = type_or_decl;
853 mode = TYPE_MODE (type);
854 #ifndef PROMOTE_FOR_CALL_ONLY
855 unsignedp = TREE_UNSIGNED (type);
856 #endif
858 if (mode == BLKmode || memory_required)
860 HOST_WIDE_INT size = int_size_in_bytes (type);
861 rtx tmp;
863 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
864 problems with allocating the stack space. */
865 if (size == 0)
866 size = 1;
868 /* Unfortunately, we don't yet know how to allocate variable-sized
869 temporaries. However, sometimes we have a fixed upper limit on
870 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
871 instead. This is the case for Chill variable-sized strings. */
872 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
873 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
874 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
875 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
877 /* The size of the temporary may be too large to fit into an integer. */
878 /* ??? Not sure this should happen except for user silliness, so limit
879 this to things that aren't compiler-generated temporaries. The
880 rest of the time we'll abort in assign_stack_temp_for_type. */
881 if (decl && size == -1
882 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
884 error ("%Jsize of variable '%D' is too large", decl, decl);
885 size = 1;
888 tmp = assign_stack_temp_for_type (mode, size, keep, type);
889 return tmp;
892 #ifndef PROMOTE_FOR_CALL_ONLY
893 if (! dont_promote)
894 mode = promote_mode (type, mode, &unsignedp, 0);
895 #endif
897 return gen_reg_rtx (mode);
900 /* Combine temporary stack slots which are adjacent on the stack.
902 This allows for better use of already allocated stack space. This is only
903 done for BLKmode slots because we can be sure that we won't have alignment
904 problems in this case. */
906 void
907 combine_temp_slots (void)
909 struct temp_slot *p, *q;
910 struct temp_slot *prev_p, *prev_q;
911 int num_slots;
913 /* We can't combine slots, because the information about which slot
914 is in which alias set will be lost. */
915 if (flag_strict_aliasing)
916 return;
918 /* If there are a lot of temp slots, don't do anything unless
919 high levels of optimization. */
920 if (! flag_expensive_optimizations)
921 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
922 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
923 return;
925 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
927 int delete_p = 0;
929 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
930 for (q = p->next, prev_q = p; q; q = prev_q->next)
932 int delete_q = 0;
933 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
935 if (p->base_offset + p->full_size == q->base_offset)
937 /* Q comes after P; combine Q into P. */
938 p->size += q->size;
939 p->full_size += q->full_size;
940 delete_q = 1;
942 else if (q->base_offset + q->full_size == p->base_offset)
944 /* P comes after Q; combine P into Q. */
945 q->size += p->size;
946 q->full_size += p->full_size;
947 delete_p = 1;
948 break;
951 /* Either delete Q or advance past it. */
952 if (delete_q)
953 prev_q->next = q->next;
954 else
955 prev_q = q;
957 /* Either delete P or advance past it. */
958 if (delete_p)
960 if (prev_p)
961 prev_p->next = p->next;
962 else
963 temp_slots = p->next;
965 else
966 prev_p = p;
970 /* Find the temp slot corresponding to the object at address X. */
972 static struct temp_slot *
973 find_temp_slot_from_address (rtx x)
975 struct temp_slot *p;
976 rtx next;
978 for (p = temp_slots; p; p = p->next)
980 if (! p->in_use)
981 continue;
983 else if (XEXP (p->slot, 0) == x
984 || p->address == x
985 || (GET_CODE (x) == PLUS
986 && XEXP (x, 0) == virtual_stack_vars_rtx
987 && GET_CODE (XEXP (x, 1)) == CONST_INT
988 && INTVAL (XEXP (x, 1)) >= p->base_offset
989 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
990 return p;
992 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
993 for (next = p->address; next; next = XEXP (next, 1))
994 if (XEXP (next, 0) == x)
995 return p;
998 /* If we have a sum involving a register, see if it points to a temp
999 slot. */
1000 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1002 return p;
1003 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1004 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1005 return p;
1007 return 0;
1010 /* Indicate that NEW is an alternate way of referring to the temp slot
1011 that previously was known by OLD. */
1013 void
1014 update_temp_slot_address (rtx old, rtx new)
1016 struct temp_slot *p;
1018 if (rtx_equal_p (old, new))
1019 return;
1021 p = find_temp_slot_from_address (old);
1023 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1024 is a register, see if one operand of the PLUS is a temporary
1025 location. If so, NEW points into it. Otherwise, if both OLD and
1026 NEW are a PLUS and if there is a register in common between them.
1027 If so, try a recursive call on those values. */
1028 if (p == 0)
1030 if (GET_CODE (old) != PLUS)
1031 return;
1033 if (GET_CODE (new) == REG)
1035 update_temp_slot_address (XEXP (old, 0), new);
1036 update_temp_slot_address (XEXP (old, 1), new);
1037 return;
1039 else if (GET_CODE (new) != PLUS)
1040 return;
1042 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1043 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1044 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1045 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1046 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1047 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1048 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1049 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1051 return;
1054 /* Otherwise add an alias for the temp's address. */
1055 else if (p->address == 0)
1056 p->address = new;
1057 else
1059 if (GET_CODE (p->address) != EXPR_LIST)
1060 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1062 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1066 /* If X could be a reference to a temporary slot, mark the fact that its
1067 address was taken. */
1069 void
1070 mark_temp_addr_taken (rtx x)
1072 struct temp_slot *p;
1074 if (x == 0)
1075 return;
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1096 void
1097 preserve_temp_slots (rtx x)
1099 struct temp_slot *p = 0;
1101 /* If there is no result, we still might have some objects whose address
1102 were taken, so we need to make sure they stay around. */
1103 if (x == 0)
1105 for (p = temp_slots; p; p = p->next)
1106 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1107 p->level--;
1109 return;
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. To be consistent with
1114 the code below, we really should preserve all non-kept slots
1115 if we can't find a match, but that seems to be much too costly. */
1116 if (GET_CODE (x) == REG && REG_POINTER (x))
1117 p = find_temp_slot_from_address (x);
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot, but it can contain something whose address was
1121 taken. */
1122 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1124 for (p = temp_slots; p; p = p->next)
1125 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1126 p->level--;
1128 return;
1131 /* First see if we can find a match. */
1132 if (p == 0)
1133 p = find_temp_slot_from_address (XEXP (x, 0));
1135 if (p != 0)
1137 /* Move everything at our level whose address was taken to our new
1138 level in case we used its address. */
1139 struct temp_slot *q;
1141 if (p->level == temp_slot_level)
1143 for (q = temp_slots; q; q = q->next)
1144 if (q != p && q->addr_taken && q->level == p->level)
1145 q->level--;
1147 p->level--;
1148 p->addr_taken = 0;
1150 return;
1153 /* Otherwise, preserve all non-kept slots at this level. */
1154 for (p = temp_slots; p; p = p->next)
1155 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1156 p->level--;
1159 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1160 with that RTL_EXPR, promote it into a temporary slot at the present
1161 level so it will not be freed when we free slots made in the
1162 RTL_EXPR. */
1164 void
1165 preserve_rtl_expr_result (rtx x)
1167 struct temp_slot *p;
1169 /* If X is not in memory or is at a constant address, it cannot be in
1170 a temporary slot. */
1171 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1172 return;
1174 /* If we can find a match, move it to our level unless it is already at
1175 an upper level. */
1176 p = find_temp_slot_from_address (XEXP (x, 0));
1177 if (p != 0)
1179 p->level = MIN (p->level, temp_slot_level);
1180 p->rtl_expr = 0;
1183 return;
1186 /* Free all temporaries used so far. This is normally called at the end
1187 of generating code for a statement. Don't free any temporaries
1188 currently in use for an RTL_EXPR that hasn't yet been emitted.
1189 We could eventually do better than this since it can be reused while
1190 generating the same RTL_EXPR, but this is complex and probably not
1191 worthwhile. */
1193 void
1194 free_temp_slots (void)
1196 struct temp_slot *p;
1198 for (p = temp_slots; p; p = p->next)
1199 if (p->in_use && p->level == temp_slot_level && ! p->keep
1200 && p->rtl_expr == 0)
1201 p->in_use = 0;
1203 combine_temp_slots ();
1206 /* Free all temporary slots used in T, an RTL_EXPR node. */
1208 void
1209 free_temps_for_rtl_expr (tree t)
1211 struct temp_slot *p;
1213 for (p = temp_slots; p; p = p->next)
1214 if (p->rtl_expr == t)
1216 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1217 needs to be preserved. This can happen if a temporary in
1218 the RTL_EXPR was addressed; preserve_temp_slots will move
1219 the temporary into a higher level. */
1220 if (temp_slot_level <= p->level)
1221 p->in_use = 0;
1222 else
1223 p->rtl_expr = NULL_TREE;
1226 combine_temp_slots ();
1229 /* Mark all temporaries ever allocated in this function as not suitable
1230 for reuse until the current level is exited. */
1232 void
1233 mark_all_temps_used (void)
1235 struct temp_slot *p;
1237 for (p = temp_slots; p; p = p->next)
1239 p->in_use = p->keep = 1;
1240 p->level = MIN (p->level, temp_slot_level);
1244 /* Push deeper into the nesting level for stack temporaries. */
1246 void
1247 push_temp_slots (void)
1249 temp_slot_level++;
1252 /* Pop a temporary nesting level. All slots in use in the current level
1253 are freed. */
1255 void
1256 pop_temp_slots (void)
1258 struct temp_slot *p;
1260 for (p = temp_slots; p; p = p->next)
1261 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1262 p->in_use = 0;
1264 combine_temp_slots ();
1266 temp_slot_level--;
1269 /* Initialize temporary slots. */
1271 void
1272 init_temp_slots (void)
1274 /* We have not allocated any temporaries yet. */
1275 temp_slots = 0;
1276 temp_slot_level = 0;
1277 var_temp_slot_level = 0;
1278 target_temp_slot_level = 0;
1281 /* Retroactively move an auto variable from a register to a stack
1282 slot. This is done when an address-reference to the variable is
1283 seen. If RESCAN is true, all previously emitted instructions are
1284 examined and modified to handle the fact that DECL is now
1285 addressable. */
1287 void
1288 put_var_into_stack (tree decl, int rescan)
1290 rtx reg;
1291 enum machine_mode promoted_mode, decl_mode;
1292 struct function *function = 0;
1293 tree context;
1294 int can_use_addressof;
1295 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1296 int usedp = (TREE_USED (decl)
1297 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1299 context = decl_function_context (decl);
1301 /* Get the current rtl used for this object and its original mode. */
1302 reg = (TREE_CODE (decl) == SAVE_EXPR
1303 ? SAVE_EXPR_RTL (decl)
1304 : DECL_RTL_IF_SET (decl));
1306 /* No need to do anything if decl has no rtx yet
1307 since in that case caller is setting TREE_ADDRESSABLE
1308 and a stack slot will be assigned when the rtl is made. */
1309 if (reg == 0)
1310 return;
1312 /* Get the declared mode for this object. */
1313 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1314 : DECL_MODE (decl));
1315 /* Get the mode it's actually stored in. */
1316 promoted_mode = GET_MODE (reg);
1318 /* If this variable comes from an outer function, find that
1319 function's saved context. Don't use find_function_data here,
1320 because it might not be in any active function.
1321 FIXME: Is that really supposed to happen?
1322 It does in ObjC at least. */
1323 if (context != current_function_decl && context != inline_function_decl)
1324 for (function = outer_function_chain; function; function = function->outer)
1325 if (function->decl == context)
1326 break;
1328 /* If this is a variable-sized object or a structure passed by invisible
1329 reference, with a pseudo to address it, put that pseudo into the stack
1330 if the var is non-local. */
1331 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1332 && GET_CODE (reg) == MEM
1333 && GET_CODE (XEXP (reg, 0)) == REG
1334 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1336 reg = XEXP (reg, 0);
1337 decl_mode = promoted_mode = GET_MODE (reg);
1340 /* If this variable lives in the current function and we don't need to put it
1341 in the stack for the sake of setjmp or the non-locality, try to keep it in
1342 a register until we know we actually need the address. */
1343 can_use_addressof
1344 = (function == 0
1345 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1346 && optimize > 0
1347 /* FIXME make it work for promoted modes too */
1348 && decl_mode == promoted_mode
1349 #ifdef NON_SAVING_SETJMP
1350 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1351 #endif
1354 /* If we can't use ADDRESSOF, make sure we see through one we already
1355 generated. */
1356 if (! can_use_addressof && GET_CODE (reg) == MEM
1357 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1358 reg = XEXP (XEXP (reg, 0), 0);
1360 /* Now we should have a value that resides in one or more pseudo regs. */
1362 if (GET_CODE (reg) == REG)
1364 if (can_use_addressof)
1365 gen_mem_addressof (reg, decl, rescan);
1366 else
1367 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1368 decl_mode, volatilep, 0, usedp, 0);
1370 else if (GET_CODE (reg) == CONCAT)
1372 /* A CONCAT contains two pseudos; put them both in the stack.
1373 We do it so they end up consecutive.
1374 We fixup references to the parts only after we fixup references
1375 to the whole CONCAT, lest we do double fixups for the latter
1376 references. */
1377 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1378 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1379 rtx lopart = XEXP (reg, 0);
1380 rtx hipart = XEXP (reg, 1);
1381 #ifdef FRAME_GROWS_DOWNWARD
1382 /* Since part 0 should have a lower address, do it second. */
1383 put_reg_into_stack (function, hipart, part_type, part_mode,
1384 part_mode, volatilep, 0, 0, 0);
1385 put_reg_into_stack (function, lopart, part_type, part_mode,
1386 part_mode, volatilep, 0, 0, 0);
1387 #else
1388 put_reg_into_stack (function, lopart, part_type, part_mode,
1389 part_mode, volatilep, 0, 0, 0);
1390 put_reg_into_stack (function, hipart, part_type, part_mode,
1391 part_mode, volatilep, 0, 0, 0);
1392 #endif
1394 /* Change the CONCAT into a combined MEM for both parts. */
1395 PUT_CODE (reg, MEM);
1396 MEM_ATTRS (reg) = 0;
1398 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1399 already computed alias sets. Here we want to re-generate. */
1400 if (DECL_P (decl))
1401 SET_DECL_RTL (decl, NULL);
1402 set_mem_attributes (reg, decl, 1);
1403 if (DECL_P (decl))
1404 SET_DECL_RTL (decl, reg);
1406 /* The two parts are in memory order already.
1407 Use the lower parts address as ours. */
1408 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1409 /* Prevent sharing of rtl that might lose. */
1410 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1411 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1412 if (usedp && rescan)
1414 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1415 promoted_mode, 0);
1416 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1417 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1420 else
1421 return;
1424 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1425 into the stack frame of FUNCTION (0 means the current function).
1426 DECL_MODE is the machine mode of the user-level data type.
1427 PROMOTED_MODE is the machine mode of the register.
1428 VOLATILE_P is nonzero if this is for a "volatile" decl.
1429 USED_P is nonzero if this reg might have already been used in an insn. */
1431 static void
1432 put_reg_into_stack (struct function *function, rtx reg, tree type,
1433 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1434 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1436 struct function *func = function ? function : cfun;
1437 rtx new = 0;
1438 unsigned int regno = original_regno;
1440 if (regno == 0)
1441 regno = REGNO (reg);
1443 if (regno < func->x_max_parm_reg)
1444 new = func->x_parm_reg_stack_loc[regno];
1446 if (new == 0)
1447 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1449 PUT_CODE (reg, MEM);
1450 PUT_MODE (reg, decl_mode);
1451 XEXP (reg, 0) = XEXP (new, 0);
1452 MEM_ATTRS (reg) = 0;
1453 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1454 MEM_VOLATILE_P (reg) = volatile_p;
1456 /* If this is a memory ref that contains aggregate components,
1457 mark it as such for cse and loop optimize. If we are reusing a
1458 previously generated stack slot, then we need to copy the bit in
1459 case it was set for other reasons. For instance, it is set for
1460 __builtin_va_alist. */
1461 if (type)
1463 MEM_SET_IN_STRUCT_P (reg,
1464 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1465 set_mem_alias_set (reg, get_alias_set (type));
1468 if (used_p)
1469 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1472 /* Make sure that all refs to the variable, previously made
1473 when it was a register, are fixed up to be valid again.
1474 See function above for meaning of arguments. */
1476 static void
1477 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1478 enum machine_mode promoted_mode, htab_t ht)
1480 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1482 if (function != 0)
1484 struct var_refs_queue *temp;
1486 temp = ggc_alloc (sizeof (struct var_refs_queue));
1487 temp->modified = reg;
1488 temp->promoted_mode = promoted_mode;
1489 temp->unsignedp = unsigned_p;
1490 temp->next = function->fixup_var_refs_queue;
1491 function->fixup_var_refs_queue = temp;
1493 else
1494 /* Variable is local; fix it up now. */
1495 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1498 static void
1499 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1500 rtx may_share, htab_t ht)
1502 tree pending;
1503 rtx first_insn = get_insns ();
1504 struct sequence_stack *stack = seq_stack;
1505 tree rtl_exps = rtl_expr_chain;
1507 /* If there's a hash table, it must record all uses of VAR. */
1508 if (ht)
1510 if (stack != 0)
1511 abort ();
1512 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1513 may_share);
1514 return;
1517 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1518 stack == 0, may_share);
1520 /* Scan all pending sequences too. */
1521 for (; stack; stack = stack->next)
1523 push_to_full_sequence (stack->first, stack->last);
1524 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1525 stack->next != 0, may_share);
1526 /* Update remembered end of sequence
1527 in case we added an insn at the end. */
1528 stack->last = get_last_insn ();
1529 end_sequence ();
1532 /* Scan all waiting RTL_EXPRs too. */
1533 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1535 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1536 if (seq != const0_rtx && seq != 0)
1538 push_to_sequence (seq);
1539 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1540 may_share);
1541 end_sequence ();
1546 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1547 some part of an insn. Return a struct fixup_replacement whose OLD
1548 value is equal to X. Allocate a new structure if no such entry exists. */
1550 static struct fixup_replacement *
1551 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1553 struct fixup_replacement *p;
1555 /* See if we have already replaced this. */
1556 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1559 if (p == 0)
1561 p = xmalloc (sizeof (struct fixup_replacement));
1562 p->old = x;
1563 p->new = 0;
1564 p->next = *replacements;
1565 *replacements = p;
1568 return p;
1571 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1572 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1573 for the current function. MAY_SHARE is either a MEM that is not
1574 to be unshared or a list of them. */
1576 static void
1577 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1578 int unsignedp, int toplevel, rtx may_share)
1580 while (insn)
1582 /* fixup_var_refs_insn might modify insn, so save its next
1583 pointer now. */
1584 rtx next = NEXT_INSN (insn);
1586 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1587 the three sequences they (potentially) contain, and process
1588 them recursively. The CALL_INSN itself is not interesting. */
1590 if (GET_CODE (insn) == CALL_INSN
1591 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1593 int i;
1595 /* Look at the Normal call, sibling call and tail recursion
1596 sequences attached to the CALL_PLACEHOLDER. */
1597 for (i = 0; i < 3; i++)
1599 rtx seq = XEXP (PATTERN (insn), i);
1600 if (seq)
1602 push_to_sequence (seq);
1603 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1604 may_share);
1605 XEXP (PATTERN (insn), i) = get_insns ();
1606 end_sequence ();
1611 else if (INSN_P (insn))
1612 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1613 may_share);
1615 insn = next;
1619 /* Look up the insns which reference VAR in HT and fix them up. Other
1620 arguments are the same as fixup_var_refs_insns.
1622 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1623 because the hash table will point straight to the interesting insn
1624 (inside the CALL_PLACEHOLDER). */
1626 static void
1627 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1628 int unsignedp, rtx may_share)
1630 struct insns_for_mem_entry tmp;
1631 struct insns_for_mem_entry *ime;
1632 rtx insn_list;
1634 tmp.key = var;
1635 ime = htab_find (ht, &tmp);
1636 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1637 if (INSN_P (XEXP (insn_list, 0)))
1638 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1639 unsignedp, 1, may_share);
1643 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1644 the insn under examination, VAR is the variable to fix up
1645 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1646 TOPLEVEL is nonzero if this is the main insn chain for this
1647 function. */
1649 static void
1650 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1651 int unsignedp, int toplevel, rtx no_share)
1653 rtx call_dest = 0;
1654 rtx set, prev, prev_set;
1655 rtx note;
1657 /* Remember the notes in case we delete the insn. */
1658 note = REG_NOTES (insn);
1660 /* If this is a CLOBBER of VAR, delete it.
1662 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1663 and REG_RETVAL notes too. */
1664 if (GET_CODE (PATTERN (insn)) == CLOBBER
1665 && (XEXP (PATTERN (insn), 0) == var
1666 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1667 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1668 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1670 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1671 /* The REG_LIBCALL note will go away since we are going to
1672 turn INSN into a NOTE, so just delete the
1673 corresponding REG_RETVAL note. */
1674 remove_note (XEXP (note, 0),
1675 find_reg_note (XEXP (note, 0), REG_RETVAL,
1676 NULL_RTX));
1678 delete_insn (insn);
1681 /* The insn to load VAR from a home in the arglist
1682 is now a no-op. When we see it, just delete it.
1683 Similarly if this is storing VAR from a register from which
1684 it was loaded in the previous insn. This will occur
1685 when an ADDRESSOF was made for an arglist slot. */
1686 else if (toplevel
1687 && (set = single_set (insn)) != 0
1688 && SET_DEST (set) == var
1689 /* If this represents the result of an insn group,
1690 don't delete the insn. */
1691 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1692 && (rtx_equal_p (SET_SRC (set), var)
1693 || (GET_CODE (SET_SRC (set)) == REG
1694 && (prev = prev_nonnote_insn (insn)) != 0
1695 && (prev_set = single_set (prev)) != 0
1696 && SET_DEST (prev_set) == SET_SRC (set)
1697 && rtx_equal_p (SET_SRC (prev_set), var))))
1699 delete_insn (insn);
1701 else
1703 struct fixup_replacement *replacements = 0;
1704 rtx next_insn = NEXT_INSN (insn);
1706 if (SMALL_REGISTER_CLASSES)
1708 /* If the insn that copies the results of a CALL_INSN
1709 into a pseudo now references VAR, we have to use an
1710 intermediate pseudo since we want the life of the
1711 return value register to be only a single insn.
1713 If we don't use an intermediate pseudo, such things as
1714 address computations to make the address of VAR valid
1715 if it is not can be placed between the CALL_INSN and INSN.
1717 To make sure this doesn't happen, we record the destination
1718 of the CALL_INSN and see if the next insn uses both that
1719 and VAR. */
1721 if (call_dest != 0 && GET_CODE (insn) == INSN
1722 && reg_mentioned_p (var, PATTERN (insn))
1723 && reg_mentioned_p (call_dest, PATTERN (insn)))
1725 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1727 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1729 PATTERN (insn) = replace_rtx (PATTERN (insn),
1730 call_dest, temp);
1733 if (GET_CODE (insn) == CALL_INSN
1734 && GET_CODE (PATTERN (insn)) == SET)
1735 call_dest = SET_DEST (PATTERN (insn));
1736 else if (GET_CODE (insn) == CALL_INSN
1737 && GET_CODE (PATTERN (insn)) == PARALLEL
1738 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1739 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1740 else
1741 call_dest = 0;
1744 /* See if we have to do anything to INSN now that VAR is in
1745 memory. If it needs to be loaded into a pseudo, use a single
1746 pseudo for the entire insn in case there is a MATCH_DUP
1747 between two operands. We pass a pointer to the head of
1748 a list of struct fixup_replacements. If fixup_var_refs_1
1749 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1750 it will record them in this list.
1752 If it allocated a pseudo for any replacement, we copy into
1753 it here. */
1755 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1756 &replacements, no_share);
1758 /* If this is last_parm_insn, and any instructions were output
1759 after it to fix it up, then we must set last_parm_insn to
1760 the last such instruction emitted. */
1761 if (insn == last_parm_insn)
1762 last_parm_insn = PREV_INSN (next_insn);
1764 while (replacements)
1766 struct fixup_replacement *next;
1768 if (GET_CODE (replacements->new) == REG)
1770 rtx insert_before;
1771 rtx seq;
1773 /* OLD might be a (subreg (mem)). */
1774 if (GET_CODE (replacements->old) == SUBREG)
1775 replacements->old
1776 = fixup_memory_subreg (replacements->old, insn,
1777 promoted_mode, 0);
1778 else
1779 replacements->old
1780 = fixup_stack_1 (replacements->old, insn);
1782 insert_before = insn;
1784 /* If we are changing the mode, do a conversion.
1785 This might be wasteful, but combine.c will
1786 eliminate much of the waste. */
1788 if (GET_MODE (replacements->new)
1789 != GET_MODE (replacements->old))
1791 start_sequence ();
1792 convert_move (replacements->new,
1793 replacements->old, unsignedp);
1794 seq = get_insns ();
1795 end_sequence ();
1797 else
1798 seq = gen_move_insn (replacements->new,
1799 replacements->old);
1801 emit_insn_before (seq, insert_before);
1804 next = replacements->next;
1805 free (replacements);
1806 replacements = next;
1810 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1811 But don't touch other insns referred to by reg-notes;
1812 we will get them elsewhere. */
1813 while (note)
1815 if (GET_CODE (note) != INSN_LIST)
1816 XEXP (note, 0)
1817 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1818 promoted_mode, 1);
1819 note = XEXP (note, 1);
1823 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1824 See if the rtx expression at *LOC in INSN needs to be changed.
1826 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1827 contain a list of original rtx's and replacements. If we find that we need
1828 to modify this insn by replacing a memory reference with a pseudo or by
1829 making a new MEM to implement a SUBREG, we consult that list to see if
1830 we have already chosen a replacement. If none has already been allocated,
1831 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1832 or the SUBREG, as appropriate, to the pseudo. */
1834 static void
1835 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1836 struct fixup_replacement **replacements, rtx no_share)
1838 int i;
1839 rtx x = *loc;
1840 RTX_CODE code = GET_CODE (x);
1841 const char *fmt;
1842 rtx tem, tem1;
1843 struct fixup_replacement *replacement;
1845 switch (code)
1847 case ADDRESSOF:
1848 if (XEXP (x, 0) == var)
1850 /* Prevent sharing of rtl that might lose. */
1851 rtx sub = copy_rtx (XEXP (var, 0));
1853 if (! validate_change (insn, loc, sub, 0))
1855 rtx y = gen_reg_rtx (GET_MODE (sub));
1856 rtx seq, new_insn;
1858 /* We should be able to replace with a register or all is lost.
1859 Note that we can't use validate_change to verify this, since
1860 we're not caring for replacing all dups simultaneously. */
1861 if (! validate_replace_rtx (*loc, y, insn))
1862 abort ();
1864 /* Careful! First try to recognize a direct move of the
1865 value, mimicking how things are done in gen_reload wrt
1866 PLUS. Consider what happens when insn is a conditional
1867 move instruction and addsi3 clobbers flags. */
1869 start_sequence ();
1870 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1871 seq = get_insns ();
1872 end_sequence ();
1874 if (recog_memoized (new_insn) < 0)
1876 /* That failed. Fall back on force_operand and hope. */
1878 start_sequence ();
1879 sub = force_operand (sub, y);
1880 if (sub != y)
1881 emit_insn (gen_move_insn (y, sub));
1882 seq = get_insns ();
1883 end_sequence ();
1886 #ifdef HAVE_cc0
1887 /* Don't separate setter from user. */
1888 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1889 insn = PREV_INSN (insn);
1890 #endif
1892 emit_insn_before (seq, insn);
1895 return;
1897 case MEM:
1898 if (var == x)
1900 /* If we already have a replacement, use it. Otherwise,
1901 try to fix up this address in case it is invalid. */
1903 replacement = find_fixup_replacement (replacements, var);
1904 if (replacement->new)
1906 *loc = replacement->new;
1907 return;
1910 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1912 /* Unless we are forcing memory to register or we changed the mode,
1913 we can leave things the way they are if the insn is valid. */
1915 INSN_CODE (insn) = -1;
1916 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1917 && recog_memoized (insn) >= 0)
1918 return;
1920 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1921 return;
1924 /* If X contains VAR, we need to unshare it here so that we update
1925 each occurrence separately. But all identical MEMs in one insn
1926 must be replaced with the same rtx because of the possibility of
1927 MATCH_DUPs. */
1929 if (reg_mentioned_p (var, x))
1931 replacement = find_fixup_replacement (replacements, x);
1932 if (replacement->new == 0)
1933 replacement->new = copy_most_rtx (x, no_share);
1935 *loc = x = replacement->new;
1936 code = GET_CODE (x);
1938 break;
1940 case REG:
1941 case CC0:
1942 case PC:
1943 case CONST_INT:
1944 case CONST:
1945 case SYMBOL_REF:
1946 case LABEL_REF:
1947 case CONST_DOUBLE:
1948 case CONST_VECTOR:
1949 return;
1951 case SIGN_EXTRACT:
1952 case ZERO_EXTRACT:
1953 /* Note that in some cases those types of expressions are altered
1954 by optimize_bit_field, and do not survive to get here. */
1955 if (XEXP (x, 0) == var
1956 || (GET_CODE (XEXP (x, 0)) == SUBREG
1957 && SUBREG_REG (XEXP (x, 0)) == var))
1959 /* Get TEM as a valid MEM in the mode presently in the insn.
1961 We don't worry about the possibility of MATCH_DUP here; it
1962 is highly unlikely and would be tricky to handle. */
1964 tem = XEXP (x, 0);
1965 if (GET_CODE (tem) == SUBREG)
1967 if (GET_MODE_BITSIZE (GET_MODE (tem))
1968 > GET_MODE_BITSIZE (GET_MODE (var)))
1970 replacement = find_fixup_replacement (replacements, var);
1971 if (replacement->new == 0)
1972 replacement->new = gen_reg_rtx (GET_MODE (var));
1973 SUBREG_REG (tem) = replacement->new;
1975 /* The following code works only if we have a MEM, so we
1976 need to handle the subreg here. We directly substitute
1977 it assuming that a subreg must be OK here. We already
1978 scheduled a replacement to copy the mem into the
1979 subreg. */
1980 XEXP (x, 0) = tem;
1981 return;
1983 else
1984 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1986 else
1987 tem = fixup_stack_1 (tem, insn);
1989 /* Unless we want to load from memory, get TEM into the proper mode
1990 for an extract from memory. This can only be done if the
1991 extract is at a constant position and length. */
1993 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1994 && GET_CODE (XEXP (x, 2)) == CONST_INT
1995 && ! mode_dependent_address_p (XEXP (tem, 0))
1996 && ! MEM_VOLATILE_P (tem))
1998 enum machine_mode wanted_mode = VOIDmode;
1999 enum machine_mode is_mode = GET_MODE (tem);
2000 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2002 if (GET_CODE (x) == ZERO_EXTRACT)
2004 enum machine_mode new_mode
2005 = mode_for_extraction (EP_extzv, 1);
2006 if (new_mode != MAX_MACHINE_MODE)
2007 wanted_mode = new_mode;
2009 else if (GET_CODE (x) == SIGN_EXTRACT)
2011 enum machine_mode new_mode
2012 = mode_for_extraction (EP_extv, 1);
2013 if (new_mode != MAX_MACHINE_MODE)
2014 wanted_mode = new_mode;
2017 /* If we have a narrower mode, we can do something. */
2018 if (wanted_mode != VOIDmode
2019 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2021 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2022 rtx old_pos = XEXP (x, 2);
2023 rtx newmem;
2025 /* If the bytes and bits are counted differently, we
2026 must adjust the offset. */
2027 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2028 offset = (GET_MODE_SIZE (is_mode)
2029 - GET_MODE_SIZE (wanted_mode) - offset);
2031 pos %= GET_MODE_BITSIZE (wanted_mode);
2033 newmem = adjust_address_nv (tem, wanted_mode, offset);
2035 /* Make the change and see if the insn remains valid. */
2036 INSN_CODE (insn) = -1;
2037 XEXP (x, 0) = newmem;
2038 XEXP (x, 2) = GEN_INT (pos);
2040 if (recog_memoized (insn) >= 0)
2041 return;
2043 /* Otherwise, restore old position. XEXP (x, 0) will be
2044 restored later. */
2045 XEXP (x, 2) = old_pos;
2049 /* If we get here, the bitfield extract insn can't accept a memory
2050 reference. Copy the input into a register. */
2052 tem1 = gen_reg_rtx (GET_MODE (tem));
2053 emit_insn_before (gen_move_insn (tem1, tem), insn);
2054 XEXP (x, 0) = tem1;
2055 return;
2057 break;
2059 case SUBREG:
2060 if (SUBREG_REG (x) == var)
2062 /* If this is a special SUBREG made because VAR was promoted
2063 from a wider mode, replace it with VAR and call ourself
2064 recursively, this time saying that the object previously
2065 had its current mode (by virtue of the SUBREG). */
2067 if (SUBREG_PROMOTED_VAR_P (x))
2069 *loc = var;
2070 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2071 no_share);
2072 return;
2075 /* If this SUBREG makes VAR wider, it has become a paradoxical
2076 SUBREG with VAR in memory, but these aren't allowed at this
2077 stage of the compilation. So load VAR into a pseudo and take
2078 a SUBREG of that pseudo. */
2079 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2081 replacement = find_fixup_replacement (replacements, var);
2082 if (replacement->new == 0)
2083 replacement->new = gen_reg_rtx (promoted_mode);
2084 SUBREG_REG (x) = replacement->new;
2085 return;
2088 /* See if we have already found a replacement for this SUBREG.
2089 If so, use it. Otherwise, make a MEM and see if the insn
2090 is recognized. If not, or if we should force MEM into a register,
2091 make a pseudo for this SUBREG. */
2092 replacement = find_fixup_replacement (replacements, x);
2093 if (replacement->new)
2095 enum machine_mode mode = GET_MODE (x);
2096 *loc = replacement->new;
2098 /* Careful! We may have just replaced a SUBREG by a MEM, which
2099 means that the insn may have become invalid again. We can't
2100 in this case make a new replacement since we already have one
2101 and we must deal with MATCH_DUPs. */
2102 if (GET_CODE (replacement->new) == MEM)
2104 INSN_CODE (insn) = -1;
2105 if (recog_memoized (insn) >= 0)
2106 return;
2108 fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
2109 insn, replacements, no_share);
2112 return;
2115 replacement->new = *loc = fixup_memory_subreg (x, insn,
2116 promoted_mode, 0);
2118 INSN_CODE (insn) = -1;
2119 if (! flag_force_mem && recog_memoized (insn) >= 0)
2120 return;
2122 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2123 return;
2125 break;
2127 case SET:
2128 /* First do special simplification of bit-field references. */
2129 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2130 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2131 optimize_bit_field (x, insn, 0);
2132 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2133 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2134 optimize_bit_field (x, insn, 0);
2136 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2137 into a register and then store it back out. */
2138 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2139 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2140 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2141 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2142 > GET_MODE_SIZE (GET_MODE (var))))
2144 replacement = find_fixup_replacement (replacements, var);
2145 if (replacement->new == 0)
2146 replacement->new = gen_reg_rtx (GET_MODE (var));
2148 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2149 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2152 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2153 insn into a pseudo and store the low part of the pseudo into VAR. */
2154 if (GET_CODE (SET_DEST (x)) == SUBREG
2155 && SUBREG_REG (SET_DEST (x)) == var
2156 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2157 > GET_MODE_SIZE (GET_MODE (var))))
2159 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2160 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2161 tem)),
2162 insn);
2163 break;
2167 rtx dest = SET_DEST (x);
2168 rtx src = SET_SRC (x);
2169 rtx outerdest = dest;
2171 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2172 || GET_CODE (dest) == SIGN_EXTRACT
2173 || GET_CODE (dest) == ZERO_EXTRACT)
2174 dest = XEXP (dest, 0);
2176 if (GET_CODE (src) == SUBREG)
2177 src = SUBREG_REG (src);
2179 /* If VAR does not appear at the top level of the SET
2180 just scan the lower levels of the tree. */
2182 if (src != var && dest != var)
2183 break;
2185 /* We will need to rerecognize this insn. */
2186 INSN_CODE (insn) = -1;
2188 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2189 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2191 /* Since this case will return, ensure we fixup all the
2192 operands here. */
2193 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2194 insn, replacements, no_share);
2195 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2196 insn, replacements, no_share);
2197 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2198 insn, replacements, no_share);
2200 tem = XEXP (outerdest, 0);
2202 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2203 that may appear inside a ZERO_EXTRACT.
2204 This was legitimate when the MEM was a REG. */
2205 if (GET_CODE (tem) == SUBREG
2206 && SUBREG_REG (tem) == var)
2207 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2208 else
2209 tem = fixup_stack_1 (tem, insn);
2211 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2212 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2213 && ! mode_dependent_address_p (XEXP (tem, 0))
2214 && ! MEM_VOLATILE_P (tem))
2216 enum machine_mode wanted_mode;
2217 enum machine_mode is_mode = GET_MODE (tem);
2218 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2220 wanted_mode = mode_for_extraction (EP_insv, 0);
2222 /* If we have a narrower mode, we can do something. */
2223 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2225 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2226 rtx old_pos = XEXP (outerdest, 2);
2227 rtx newmem;
2229 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2230 offset = (GET_MODE_SIZE (is_mode)
2231 - GET_MODE_SIZE (wanted_mode) - offset);
2233 pos %= GET_MODE_BITSIZE (wanted_mode);
2235 newmem = adjust_address_nv (tem, wanted_mode, offset);
2237 /* Make the change and see if the insn remains valid. */
2238 INSN_CODE (insn) = -1;
2239 XEXP (outerdest, 0) = newmem;
2240 XEXP (outerdest, 2) = GEN_INT (pos);
2242 if (recog_memoized (insn) >= 0)
2243 return;
2245 /* Otherwise, restore old position. XEXP (x, 0) will be
2246 restored later. */
2247 XEXP (outerdest, 2) = old_pos;
2251 /* If we get here, the bit-field store doesn't allow memory
2252 or isn't located at a constant position. Load the value into
2253 a register, do the store, and put it back into memory. */
2255 tem1 = gen_reg_rtx (GET_MODE (tem));
2256 emit_insn_before (gen_move_insn (tem1, tem), insn);
2257 emit_insn_after (gen_move_insn (tem, tem1), insn);
2258 XEXP (outerdest, 0) = tem1;
2259 return;
2262 /* STRICT_LOW_PART is a no-op on memory references
2263 and it can cause combinations to be unrecognizable,
2264 so eliminate it. */
2266 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2267 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2269 /* A valid insn to copy VAR into or out of a register
2270 must be left alone, to avoid an infinite loop here.
2271 If the reference to VAR is by a subreg, fix that up,
2272 since SUBREG is not valid for a memref.
2273 Also fix up the address of the stack slot.
2275 Note that we must not try to recognize the insn until
2276 after we know that we have valid addresses and no
2277 (subreg (mem ...) ...) constructs, since these interfere
2278 with determining the validity of the insn. */
2280 if ((SET_SRC (x) == var
2281 || (GET_CODE (SET_SRC (x)) == SUBREG
2282 && SUBREG_REG (SET_SRC (x)) == var))
2283 && (GET_CODE (SET_DEST (x)) == REG
2284 || (GET_CODE (SET_DEST (x)) == SUBREG
2285 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2286 && GET_MODE (var) == promoted_mode
2287 && x == single_set (insn))
2289 rtx pat, last;
2291 if (GET_CODE (SET_SRC (x)) == SUBREG
2292 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2293 > GET_MODE_SIZE (GET_MODE (var))))
2295 /* This (subreg VAR) is now a paradoxical subreg. We need
2296 to replace VAR instead of the subreg. */
2297 replacement = find_fixup_replacement (replacements, var);
2298 if (replacement->new == NULL_RTX)
2299 replacement->new = gen_reg_rtx (GET_MODE (var));
2300 SUBREG_REG (SET_SRC (x)) = replacement->new;
2302 else
2304 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2305 if (replacement->new)
2306 SET_SRC (x) = replacement->new;
2307 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2308 SET_SRC (x) = replacement->new
2309 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2311 else
2312 SET_SRC (x) = replacement->new
2313 = fixup_stack_1 (SET_SRC (x), insn);
2316 if (recog_memoized (insn) >= 0)
2317 return;
2319 /* INSN is not valid, but we know that we want to
2320 copy SET_SRC (x) to SET_DEST (x) in some way. So
2321 we generate the move and see whether it requires more
2322 than one insn. If it does, we emit those insns and
2323 delete INSN. Otherwise, we can just replace the pattern
2324 of INSN; we have already verified above that INSN has
2325 no other function that to do X. */
2327 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2328 if (NEXT_INSN (pat) != NULL_RTX)
2330 last = emit_insn_before (pat, insn);
2332 /* INSN might have REG_RETVAL or other important notes, so
2333 we need to store the pattern of the last insn in the
2334 sequence into INSN similarly to the normal case. LAST
2335 should not have REG_NOTES, but we allow them if INSN has
2336 no REG_NOTES. */
2337 if (REG_NOTES (last) && REG_NOTES (insn))
2338 abort ();
2339 if (REG_NOTES (last))
2340 REG_NOTES (insn) = REG_NOTES (last);
2341 PATTERN (insn) = PATTERN (last);
2343 delete_insn (last);
2345 else
2346 PATTERN (insn) = PATTERN (pat);
2348 return;
2351 if ((SET_DEST (x) == var
2352 || (GET_CODE (SET_DEST (x)) == SUBREG
2353 && SUBREG_REG (SET_DEST (x)) == var))
2354 && (GET_CODE (SET_SRC (x)) == REG
2355 || (GET_CODE (SET_SRC (x)) == SUBREG
2356 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2357 && GET_MODE (var) == promoted_mode
2358 && x == single_set (insn))
2360 rtx pat, last;
2362 if (GET_CODE (SET_DEST (x)) == SUBREG)
2363 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2364 promoted_mode, 0);
2365 else
2366 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2368 if (recog_memoized (insn) >= 0)
2369 return;
2371 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2372 if (NEXT_INSN (pat) != NULL_RTX)
2374 last = emit_insn_before (pat, insn);
2376 /* INSN might have REG_RETVAL or other important notes, so
2377 we need to store the pattern of the last insn in the
2378 sequence into INSN similarly to the normal case. LAST
2379 should not have REG_NOTES, but we allow them if INSN has
2380 no REG_NOTES. */
2381 if (REG_NOTES (last) && REG_NOTES (insn))
2382 abort ();
2383 if (REG_NOTES (last))
2384 REG_NOTES (insn) = REG_NOTES (last);
2385 PATTERN (insn) = PATTERN (last);
2387 delete_insn (last);
2389 else
2390 PATTERN (insn) = PATTERN (pat);
2392 return;
2395 /* Otherwise, storing into VAR must be handled specially
2396 by storing into a temporary and copying that into VAR
2397 with a new insn after this one. Note that this case
2398 will be used when storing into a promoted scalar since
2399 the insn will now have different modes on the input
2400 and output and hence will be invalid (except for the case
2401 of setting it to a constant, which does not need any
2402 change if it is valid). We generate extra code in that case,
2403 but combine.c will eliminate it. */
2405 if (dest == var)
2407 rtx temp;
2408 rtx fixeddest = SET_DEST (x);
2409 enum machine_mode temp_mode;
2411 /* STRICT_LOW_PART can be discarded, around a MEM. */
2412 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2413 fixeddest = XEXP (fixeddest, 0);
2414 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2415 if (GET_CODE (fixeddest) == SUBREG)
2417 fixeddest = fixup_memory_subreg (fixeddest, insn,
2418 promoted_mode, 0);
2419 temp_mode = GET_MODE (fixeddest);
2421 else
2423 fixeddest = fixup_stack_1 (fixeddest, insn);
2424 temp_mode = promoted_mode;
2427 temp = gen_reg_rtx (temp_mode);
2429 emit_insn_after (gen_move_insn (fixeddest,
2430 gen_lowpart (GET_MODE (fixeddest),
2431 temp)),
2432 insn);
2434 SET_DEST (x) = temp;
2438 default:
2439 break;
2442 /* Nothing special about this RTX; fix its operands. */
2444 fmt = GET_RTX_FORMAT (code);
2445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2447 if (fmt[i] == 'e')
2448 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2449 no_share);
2450 else if (fmt[i] == 'E')
2452 int j;
2453 for (j = 0; j < XVECLEN (x, i); j++)
2454 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2455 insn, replacements, no_share);
2460 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2461 The REG was placed on the stack, so X now has the form (SUBREG:m1
2462 (MEM:m2 ...)).
2464 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2465 must be emitted to compute NEWADDR, put them before INSN.
2467 UNCRITICAL nonzero means accept paradoxical subregs.
2468 This is used for subregs found inside REG_NOTES. */
2470 static rtx
2471 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2473 int offset;
2474 rtx mem = SUBREG_REG (x);
2475 rtx addr = XEXP (mem, 0);
2476 enum machine_mode mode = GET_MODE (x);
2477 rtx result, seq;
2479 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2480 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2481 abort ();
2483 offset = SUBREG_BYTE (x);
2484 if (BYTES_BIG_ENDIAN)
2485 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2486 the offset so that it points to the right location within the
2487 MEM. */
2488 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2490 if (!flag_force_addr
2491 && memory_address_p (mode, plus_constant (addr, offset)))
2492 /* Shortcut if no insns need be emitted. */
2493 return adjust_address (mem, mode, offset);
2495 start_sequence ();
2496 result = adjust_address (mem, mode, offset);
2497 seq = get_insns ();
2498 end_sequence ();
2500 emit_insn_before (seq, insn);
2501 return result;
2504 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2505 Replace subexpressions of X in place.
2506 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2507 Otherwise return X, with its contents possibly altered.
2509 INSN, PROMOTED_MODE and UNCRITICAL are as for
2510 fixup_memory_subreg. */
2512 static rtx
2513 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2514 int uncritical)
2516 enum rtx_code code;
2517 const char *fmt;
2518 int i;
2520 if (x == 0)
2521 return 0;
2523 code = GET_CODE (x);
2525 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2526 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2528 /* Nothing special about this RTX; fix its operands. */
2530 fmt = GET_RTX_FORMAT (code);
2531 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2533 if (fmt[i] == 'e')
2534 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2535 promoted_mode, uncritical);
2536 else if (fmt[i] == 'E')
2538 int j;
2539 for (j = 0; j < XVECLEN (x, i); j++)
2540 XVECEXP (x, i, j)
2541 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2542 promoted_mode, uncritical);
2545 return x;
2548 /* For each memory ref within X, if it refers to a stack slot
2549 with an out of range displacement, put the address in a temp register
2550 (emitting new insns before INSN to load these registers)
2551 and alter the memory ref to use that register.
2552 Replace each such MEM rtx with a copy, to avoid clobberage. */
2554 static rtx
2555 fixup_stack_1 (rtx x, rtx insn)
2557 int i;
2558 RTX_CODE code = GET_CODE (x);
2559 const char *fmt;
2561 if (code == MEM)
2563 rtx ad = XEXP (x, 0);
2564 /* If we have address of a stack slot but it's not valid
2565 (displacement is too large), compute the sum in a register. */
2566 if (GET_CODE (ad) == PLUS
2567 && GET_CODE (XEXP (ad, 0)) == REG
2568 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2569 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2570 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2571 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2572 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2573 #endif
2574 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2575 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2576 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2577 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2579 rtx temp, seq;
2580 if (memory_address_p (GET_MODE (x), ad))
2581 return x;
2583 start_sequence ();
2584 temp = copy_to_reg (ad);
2585 seq = get_insns ();
2586 end_sequence ();
2587 emit_insn_before (seq, insn);
2588 return replace_equiv_address (x, temp);
2590 return x;
2593 fmt = GET_RTX_FORMAT (code);
2594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2596 if (fmt[i] == 'e')
2597 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2598 else if (fmt[i] == 'E')
2600 int j;
2601 for (j = 0; j < XVECLEN (x, i); j++)
2602 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2605 return x;
2608 /* Optimization: a bit-field instruction whose field
2609 happens to be a byte or halfword in memory
2610 can be changed to a move instruction.
2612 We call here when INSN is an insn to examine or store into a bit-field.
2613 BODY is the SET-rtx to be altered.
2615 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2616 (Currently this is called only from function.c, and EQUIV_MEM
2617 is always 0.) */
2619 static void
2620 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2622 rtx bitfield;
2623 int destflag;
2624 rtx seq = 0;
2625 enum machine_mode mode;
2627 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2628 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2629 bitfield = SET_DEST (body), destflag = 1;
2630 else
2631 bitfield = SET_SRC (body), destflag = 0;
2633 /* First check that the field being stored has constant size and position
2634 and is in fact a byte or halfword suitably aligned. */
2636 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2637 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2638 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2639 != BLKmode)
2640 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2642 rtx memref = 0;
2644 /* Now check that the containing word is memory, not a register,
2645 and that it is safe to change the machine mode. */
2647 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2648 memref = XEXP (bitfield, 0);
2649 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2650 && equiv_mem != 0)
2651 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2652 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2653 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2654 memref = SUBREG_REG (XEXP (bitfield, 0));
2655 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2656 && equiv_mem != 0
2657 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2658 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2660 if (memref
2661 && ! mode_dependent_address_p (XEXP (memref, 0))
2662 && ! MEM_VOLATILE_P (memref))
2664 /* Now adjust the address, first for any subreg'ing
2665 that we are now getting rid of,
2666 and then for which byte of the word is wanted. */
2668 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2669 rtx insns;
2671 /* Adjust OFFSET to count bits from low-address byte. */
2672 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2673 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2674 - offset - INTVAL (XEXP (bitfield, 1)));
2676 /* Adjust OFFSET to count bytes from low-address byte. */
2677 offset /= BITS_PER_UNIT;
2678 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2680 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2681 / UNITS_PER_WORD) * UNITS_PER_WORD;
2682 if (BYTES_BIG_ENDIAN)
2683 offset -= (MIN (UNITS_PER_WORD,
2684 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2685 - MIN (UNITS_PER_WORD,
2686 GET_MODE_SIZE (GET_MODE (memref))));
2689 start_sequence ();
2690 memref = adjust_address (memref, mode, offset);
2691 insns = get_insns ();
2692 end_sequence ();
2693 emit_insn_before (insns, insn);
2695 /* Store this memory reference where
2696 we found the bit field reference. */
2698 if (destflag)
2700 validate_change (insn, &SET_DEST (body), memref, 1);
2701 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2703 rtx src = SET_SRC (body);
2704 while (GET_CODE (src) == SUBREG
2705 && SUBREG_BYTE (src) == 0)
2706 src = SUBREG_REG (src);
2707 if (GET_MODE (src) != GET_MODE (memref))
2708 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2709 validate_change (insn, &SET_SRC (body), src, 1);
2711 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2712 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2713 /* This shouldn't happen because anything that didn't have
2714 one of these modes should have got converted explicitly
2715 and then referenced through a subreg.
2716 This is so because the original bit-field was
2717 handled by agg_mode and so its tree structure had
2718 the same mode that memref now has. */
2719 abort ();
2721 else
2723 rtx dest = SET_DEST (body);
2725 while (GET_CODE (dest) == SUBREG
2726 && SUBREG_BYTE (dest) == 0
2727 && (GET_MODE_CLASS (GET_MODE (dest))
2728 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2729 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2730 <= UNITS_PER_WORD))
2731 dest = SUBREG_REG (dest);
2733 validate_change (insn, &SET_DEST (body), dest, 1);
2735 if (GET_MODE (dest) == GET_MODE (memref))
2736 validate_change (insn, &SET_SRC (body), memref, 1);
2737 else
2739 /* Convert the mem ref to the destination mode. */
2740 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2742 start_sequence ();
2743 convert_move (newreg, memref,
2744 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2745 seq = get_insns ();
2746 end_sequence ();
2748 validate_change (insn, &SET_SRC (body), newreg, 1);
2752 /* See if we can convert this extraction or insertion into
2753 a simple move insn. We might not be able to do so if this
2754 was, for example, part of a PARALLEL.
2756 If we succeed, write out any needed conversions. If we fail,
2757 it is hard to guess why we failed, so don't do anything
2758 special; just let the optimization be suppressed. */
2760 if (apply_change_group () && seq)
2761 emit_insn_before (seq, insn);
2766 /* These routines are responsible for converting virtual register references
2767 to the actual hard register references once RTL generation is complete.
2769 The following four variables are used for communication between the
2770 routines. They contain the offsets of the virtual registers from their
2771 respective hard registers. */
2773 static int in_arg_offset;
2774 static int var_offset;
2775 static int dynamic_offset;
2776 static int out_arg_offset;
2777 static int cfa_offset;
2779 /* In most machines, the stack pointer register is equivalent to the bottom
2780 of the stack. */
2782 #ifndef STACK_POINTER_OFFSET
2783 #define STACK_POINTER_OFFSET 0
2784 #endif
2786 /* If not defined, pick an appropriate default for the offset of dynamically
2787 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2788 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2790 #ifndef STACK_DYNAMIC_OFFSET
2792 /* The bottom of the stack points to the actual arguments. If
2793 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2794 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2795 stack space for register parameters is not pushed by the caller, but
2796 rather part of the fixed stack areas and hence not included in
2797 `current_function_outgoing_args_size'. Nevertheless, we must allow
2798 for it when allocating stack dynamic objects. */
2800 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2801 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2802 ((ACCUMULATE_OUTGOING_ARGS \
2803 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2804 + (STACK_POINTER_OFFSET)) \
2806 #else
2807 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2808 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2809 + (STACK_POINTER_OFFSET))
2810 #endif
2811 #endif
2813 /* On most machines, the CFA coincides with the first incoming parm. */
2815 #ifndef ARG_POINTER_CFA_OFFSET
2816 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2817 #endif
2819 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2820 had its address taken. DECL is the decl or SAVE_EXPR for the
2821 object stored in the register, for later use if we do need to force
2822 REG into the stack. REG is overwritten by the MEM like in
2823 put_reg_into_stack. RESCAN is true if previously emitted
2824 instructions must be rescanned and modified now that the REG has
2825 been transformed. */
2828 gen_mem_addressof (rtx reg, tree decl, int rescan)
2830 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2831 REGNO (reg), decl);
2833 /* Calculate this before we start messing with decl's RTL. */
2834 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2836 /* If the original REG was a user-variable, then so is the REG whose
2837 address is being taken. Likewise for unchanging. */
2838 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2839 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2841 PUT_CODE (reg, MEM);
2842 MEM_ATTRS (reg) = 0;
2843 XEXP (reg, 0) = r;
2845 if (decl)
2847 tree type = TREE_TYPE (decl);
2848 enum machine_mode decl_mode
2849 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2850 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2851 : DECL_RTL_IF_SET (decl));
2853 PUT_MODE (reg, decl_mode);
2855 /* Clear DECL_RTL momentarily so functions below will work
2856 properly, then set it again. */
2857 if (DECL_P (decl) && decl_rtl == reg)
2858 SET_DECL_RTL (decl, 0);
2860 set_mem_attributes (reg, decl, 1);
2861 set_mem_alias_set (reg, set);
2863 if (DECL_P (decl) && decl_rtl == reg)
2864 SET_DECL_RTL (decl, reg);
2866 if (rescan
2867 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2868 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2870 else if (rescan)
2872 /* This can only happen during reload. Clear the same flag bits as
2873 reload. */
2874 MEM_VOLATILE_P (reg) = 0;
2875 RTX_UNCHANGING_P (reg) = 0;
2876 MEM_IN_STRUCT_P (reg) = 0;
2877 MEM_SCALAR_P (reg) = 0;
2878 MEM_ATTRS (reg) = 0;
2880 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2883 return reg;
2886 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2888 void
2889 flush_addressof (tree decl)
2891 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2892 && DECL_RTL (decl) != 0
2893 && GET_CODE (DECL_RTL (decl)) == MEM
2894 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2895 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2896 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2899 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2901 static void
2902 put_addressof_into_stack (rtx r, htab_t ht)
2904 tree decl, type;
2905 int volatile_p, used_p;
2907 rtx reg = XEXP (r, 0);
2909 if (GET_CODE (reg) != REG)
2910 abort ();
2912 decl = ADDRESSOF_DECL (r);
2913 if (decl)
2915 type = TREE_TYPE (decl);
2916 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2917 && TREE_THIS_VOLATILE (decl));
2918 used_p = (TREE_USED (decl)
2919 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2921 else
2923 type = NULL_TREE;
2924 volatile_p = 0;
2925 used_p = 1;
2928 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2929 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2932 /* List of replacements made below in purge_addressof_1 when creating
2933 bitfield insertions. */
2934 static rtx purge_bitfield_addressof_replacements;
2936 /* List of replacements made below in purge_addressof_1 for patterns
2937 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2938 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2939 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2940 enough in complex cases, e.g. when some field values can be
2941 extracted by usage MEM with narrower mode. */
2942 static rtx purge_addressof_replacements;
2944 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2945 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2946 the stack. If the function returns FALSE then the replacement could not
2947 be made. If MAY_POSTPONE is true and we would not put the addressof
2948 to stack, postpone processing of the insn. */
2950 static bool
2951 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2952 htab_t ht)
2954 rtx x;
2955 RTX_CODE code;
2956 int i, j;
2957 const char *fmt;
2958 bool result = true;
2959 bool libcall = false;
2961 /* Re-start here to avoid recursion in common cases. */
2962 restart:
2964 x = *loc;
2965 if (x == 0)
2966 return true;
2968 /* Is this a libcall? */
2969 if (!insn)
2970 libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
2972 code = GET_CODE (x);
2974 /* If we don't return in any of the cases below, we will recurse inside
2975 the RTX, which will normally result in any ADDRESSOF being forced into
2976 memory. */
2977 if (code == SET)
2979 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2980 may_postpone, ht);
2981 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2982 may_postpone, ht);
2983 return result;
2985 else if (code == ADDRESSOF)
2987 rtx sub, insns;
2989 if (GET_CODE (XEXP (x, 0)) != MEM)
2990 put_addressof_into_stack (x, ht);
2992 /* We must create a copy of the rtx because it was created by
2993 overwriting a REG rtx which is always shared. */
2994 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2995 if (validate_change (insn, loc, sub, 0)
2996 || validate_replace_rtx (x, sub, insn))
2997 return true;
2999 start_sequence ();
3001 /* If SUB is a hard or virtual register, try it as a pseudo-register.
3002 Otherwise, perhaps SUB is an expression, so generate code to compute
3003 it. */
3004 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
3005 sub = copy_to_reg (sub);
3006 else
3007 sub = force_operand (sub, NULL_RTX);
3009 if (! validate_change (insn, loc, sub, 0)
3010 && ! validate_replace_rtx (x, sub, insn))
3011 abort ();
3013 insns = get_insns ();
3014 end_sequence ();
3015 emit_insn_before (insns, insn);
3016 return true;
3019 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3021 rtx sub = XEXP (XEXP (x, 0), 0);
3023 if (GET_CODE (sub) == MEM)
3024 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3025 else if (GET_CODE (sub) == REG
3026 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3028 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3030 int size_x, size_sub;
3032 if (may_postpone)
3034 /* Postpone for now, so that we do not emit bitfield arithmetics
3035 unless there is some benefit from it. */
3036 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3037 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3038 return true;
3041 if (!insn)
3043 /* When processing REG_NOTES look at the list of
3044 replacements done on the insn to find the register that X
3045 was replaced by. */
3046 rtx tem;
3048 for (tem = purge_bitfield_addressof_replacements;
3049 tem != NULL_RTX;
3050 tem = XEXP (XEXP (tem, 1), 1))
3051 if (rtx_equal_p (x, XEXP (tem, 0)))
3053 *loc = XEXP (XEXP (tem, 1), 0);
3054 return true;
3057 /* See comment for purge_addressof_replacements. */
3058 for (tem = purge_addressof_replacements;
3059 tem != NULL_RTX;
3060 tem = XEXP (XEXP (tem, 1), 1))
3061 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3063 rtx z = XEXP (XEXP (tem, 1), 0);
3065 if (GET_MODE (x) == GET_MODE (z)
3066 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3067 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3068 abort ();
3070 /* It can happen that the note may speak of things
3071 in a wider (or just different) mode than the
3072 code did. This is especially true of
3073 REG_RETVAL. */
3075 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3076 z = SUBREG_REG (z);
3078 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3079 && (GET_MODE_SIZE (GET_MODE (x))
3080 > GET_MODE_SIZE (GET_MODE (z))))
3082 /* This can occur as a result in invalid
3083 pointer casts, e.g. float f; ...
3084 *(long long int *)&f.
3085 ??? We could emit a warning here, but
3086 without a line number that wouldn't be
3087 very helpful. */
3088 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3090 else
3091 z = gen_lowpart (GET_MODE (x), z);
3093 *loc = z;
3094 return true;
3097 /* When we are processing the REG_NOTES of the last instruction
3098 of a libcall, there will be typically no replacements
3099 for that insn; the replacements happened before, piecemeal
3100 fashion. OTOH we are not interested in the details of
3101 this for the REG_EQUAL note, we want to know the big picture,
3102 which can be succinctly described with a simple SUBREG.
3103 Note that removing the REG_EQUAL note is not an option
3104 on the last insn of a libcall, so we must do a replacement. */
3106 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3107 we got
3108 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3109 [0 S8 A32]), which can be expressed with a simple
3110 same-size subreg */
3111 if ((GET_MODE_SIZE (GET_MODE (x))
3112 <= GET_MODE_SIZE (GET_MODE (sub)))
3113 /* Again, invalid pointer casts (as in
3114 compile/990203-1.c) can require paradoxical
3115 subregs. */
3116 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3117 && (GET_MODE_SIZE (GET_MODE (x))
3118 > GET_MODE_SIZE (GET_MODE (sub)))
3119 && libcall))
3121 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3122 return true;
3124 /* ??? Are there other cases we should handle? */
3126 /* Sometimes we may not be able to find the replacement. For
3127 example when the original insn was a MEM in a wider mode,
3128 and the note is part of a sign extension of a narrowed
3129 version of that MEM. Gcc testcase compile/990829-1.c can
3130 generate an example of this situation. Rather than complain
3131 we return false, which will prompt our caller to remove the
3132 offending note. */
3133 return false;
3136 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3137 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3139 /* Do not frob unchanging MEMs. If a later reference forces the
3140 pseudo to the stack, we can wind up with multiple writes to
3141 an unchanging memory, which is invalid. */
3142 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3145 /* Don't even consider working with paradoxical subregs,
3146 or the moral equivalent seen here. */
3147 else if (size_x <= size_sub
3148 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3150 /* Do a bitfield insertion to mirror what would happen
3151 in memory. */
3153 rtx val, seq;
3155 if (store)
3157 rtx p = PREV_INSN (insn);
3159 start_sequence ();
3160 val = gen_reg_rtx (GET_MODE (x));
3161 if (! validate_change (insn, loc, val, 0))
3163 /* Discard the current sequence and put the
3164 ADDRESSOF on stack. */
3165 end_sequence ();
3166 goto give_up;
3168 seq = get_insns ();
3169 end_sequence ();
3170 emit_insn_before (seq, insn);
3171 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3172 insn, ht);
3174 start_sequence ();
3175 store_bit_field (sub, size_x, 0, GET_MODE (x),
3176 val, GET_MODE_SIZE (GET_MODE (sub)));
3178 /* Make sure to unshare any shared rtl that store_bit_field
3179 might have created. */
3180 unshare_all_rtl_again (get_insns ());
3182 seq = get_insns ();
3183 end_sequence ();
3184 p = emit_insn_after (seq, insn);
3185 if (NEXT_INSN (insn))
3186 compute_insns_for_mem (NEXT_INSN (insn),
3187 p ? NEXT_INSN (p) : NULL_RTX,
3188 ht);
3190 else
3192 rtx p = PREV_INSN (insn);
3194 start_sequence ();
3195 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3196 GET_MODE (x), GET_MODE (x),
3197 GET_MODE_SIZE (GET_MODE (sub)));
3199 if (! validate_change (insn, loc, val, 0))
3201 /* Discard the current sequence and put the
3202 ADDRESSOF on stack. */
3203 end_sequence ();
3204 goto give_up;
3207 seq = get_insns ();
3208 end_sequence ();
3209 emit_insn_before (seq, insn);
3210 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3211 insn, ht);
3214 /* Remember the replacement so that the same one can be done
3215 on the REG_NOTES. */
3216 purge_bitfield_addressof_replacements
3217 = gen_rtx_EXPR_LIST (VOIDmode, x,
3218 gen_rtx_EXPR_LIST
3219 (VOIDmode, val,
3220 purge_bitfield_addressof_replacements));
3222 /* We replaced with a reg -- all done. */
3223 return true;
3227 else if (validate_change (insn, loc, sub, 0))
3229 /* Remember the replacement so that the same one can be done
3230 on the REG_NOTES. */
3231 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3233 rtx tem;
3235 for (tem = purge_addressof_replacements;
3236 tem != NULL_RTX;
3237 tem = XEXP (XEXP (tem, 1), 1))
3238 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3240 XEXP (XEXP (tem, 1), 0) = sub;
3241 return true;
3243 purge_addressof_replacements
3244 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
3245 gen_rtx_EXPR_LIST (VOIDmode, sub,
3246 purge_addressof_replacements));
3247 return true;
3249 goto restart;
3253 give_up:
3254 /* Scan all subexpressions. */
3255 fmt = GET_RTX_FORMAT (code);
3256 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3258 if (*fmt == 'e')
3259 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3260 may_postpone, ht);
3261 else if (*fmt == 'E')
3262 for (j = 0; j < XVECLEN (x, i); j++)
3263 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3264 may_postpone, ht);
3267 return result;
3270 /* Return a hash value for K, a REG. */
3272 static hashval_t
3273 insns_for_mem_hash (const void *k)
3275 /* Use the address of the key for the hash value. */
3276 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3277 return htab_hash_pointer (m->key);
3280 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3282 static int
3283 insns_for_mem_comp (const void *k1, const void *k2)
3285 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3286 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3287 return m1->key == m2->key;
3290 struct insns_for_mem_walk_info
3292 /* The hash table that we are using to record which INSNs use which
3293 MEMs. */
3294 htab_t ht;
3296 /* The INSN we are currently processing. */
3297 rtx insn;
3299 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3300 to find the insns that use the REGs in the ADDRESSOFs. */
3301 int pass;
3304 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3305 that might be used in an ADDRESSOF expression, record this INSN in
3306 the hash table given by DATA (which is really a pointer to an
3307 insns_for_mem_walk_info structure). */
3309 static int
3310 insns_for_mem_walk (rtx *r, void *data)
3312 struct insns_for_mem_walk_info *ifmwi
3313 = (struct insns_for_mem_walk_info *) data;
3314 struct insns_for_mem_entry tmp;
3315 tmp.insns = NULL_RTX;
3317 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3318 && GET_CODE (XEXP (*r, 0)) == REG)
3320 void **e;
3321 tmp.key = XEXP (*r, 0);
3322 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3323 if (*e == NULL)
3325 *e = ggc_alloc (sizeof (tmp));
3326 memcpy (*e, &tmp, sizeof (tmp));
3329 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3331 struct insns_for_mem_entry *ifme;
3332 tmp.key = *r;
3333 ifme = htab_find (ifmwi->ht, &tmp);
3335 /* If we have not already recorded this INSN, do so now. Since
3336 we process the INSNs in order, we know that if we have
3337 recorded it it must be at the front of the list. */
3338 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3339 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3340 ifme->insns);
3343 return 0;
3346 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3347 which REGs in HT. */
3349 static void
3350 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3352 rtx insn;
3353 struct insns_for_mem_walk_info ifmwi;
3354 ifmwi.ht = ht;
3356 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3357 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3358 if (INSN_P (insn))
3360 ifmwi.insn = insn;
3361 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3365 /* Helper function for purge_addressof called through for_each_rtx.
3366 Returns true iff the rtl is an ADDRESSOF. */
3368 static int
3369 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3371 return GET_CODE (*rtl) == ADDRESSOF;
3374 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3375 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3376 stack. */
3378 void
3379 purge_addressof (rtx insns)
3381 rtx insn, tmp;
3382 htab_t ht;
3384 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3385 requires a fixup pass over the instruction stream to correct
3386 INSNs that depended on the REG being a REG, and not a MEM. But,
3387 these fixup passes are slow. Furthermore, most MEMs are not
3388 mentioned in very many instructions. So, we speed up the process
3389 by pre-calculating which REGs occur in which INSNs; that allows
3390 us to perform the fixup passes much more quickly. */
3391 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3392 compute_insns_for_mem (insns, NULL_RTX, ht);
3394 postponed_insns = NULL;
3396 for (insn = insns; insn; insn = NEXT_INSN (insn))
3397 if (INSN_P (insn))
3399 if (! purge_addressof_1 (&PATTERN (insn), insn,
3400 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3401 /* If we could not replace the ADDRESSOFs in the insn,
3402 something is wrong. */
3403 abort ();
3405 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3407 /* If we could not replace the ADDRESSOFs in the insn's notes,
3408 we can just remove the offending notes instead. */
3409 rtx note;
3411 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3413 /* If we find a REG_RETVAL note then the insn is a libcall.
3414 Such insns must have REG_EQUAL notes as well, in order
3415 for later passes of the compiler to work. So it is not
3416 safe to delete the notes here, and instead we abort. */
3417 if (REG_NOTE_KIND (note) == REG_RETVAL)
3418 abort ();
3419 if (for_each_rtx (&note, is_addressof, NULL))
3420 remove_note (insn, note);
3425 /* Process the postponed insns. */
3426 while (postponed_insns)
3428 insn = XEXP (postponed_insns, 0);
3429 tmp = postponed_insns;
3430 postponed_insns = XEXP (postponed_insns, 1);
3431 free_INSN_LIST_node (tmp);
3433 if (! purge_addressof_1 (&PATTERN (insn), insn,
3434 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3435 abort ();
3438 /* Clean up. */
3439 purge_bitfield_addressof_replacements = 0;
3440 purge_addressof_replacements = 0;
3442 /* REGs are shared. purge_addressof will destructively replace a REG
3443 with a MEM, which creates shared MEMs.
3445 Unfortunately, the children of put_reg_into_stack assume that MEMs
3446 referring to the same stack slot are shared (fixup_var_refs and
3447 the associated hash table code).
3449 So, we have to do another unsharing pass after we have flushed any
3450 REGs that had their address taken into the stack.
3452 It may be worth tracking whether or not we converted any REGs into
3453 MEMs to avoid this overhead when it is not needed. */
3454 unshare_all_rtl_again (get_insns ());
3457 /* Convert a SET of a hard subreg to a set of the appropriate hard
3458 register. A subroutine of purge_hard_subreg_sets. */
3460 static void
3461 purge_single_hard_subreg_set (rtx pattern)
3463 rtx reg = SET_DEST (pattern);
3464 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3465 int offset = 0;
3467 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3468 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3470 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3471 GET_MODE (SUBREG_REG (reg)),
3472 SUBREG_BYTE (reg),
3473 GET_MODE (reg));
3474 reg = SUBREG_REG (reg);
3478 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3480 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3481 SET_DEST (pattern) = reg;
3485 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3486 only such SETs that we expect to see are those left in because
3487 integrate can't handle sets of parts of a return value register.
3489 We don't use alter_subreg because we only want to eliminate subregs
3490 of hard registers. */
3492 void
3493 purge_hard_subreg_sets (rtx insn)
3495 for (; insn; insn = NEXT_INSN (insn))
3497 if (INSN_P (insn))
3499 rtx pattern = PATTERN (insn);
3500 switch (GET_CODE (pattern))
3502 case SET:
3503 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3504 purge_single_hard_subreg_set (pattern);
3505 break;
3506 case PARALLEL:
3508 int j;
3509 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3511 rtx inner_pattern = XVECEXP (pattern, 0, j);
3512 if (GET_CODE (inner_pattern) == SET
3513 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3514 purge_single_hard_subreg_set (inner_pattern);
3517 break;
3518 default:
3519 break;
3525 /* Pass through the INSNS of function FNDECL and convert virtual register
3526 references to hard register references. */
3528 void
3529 instantiate_virtual_regs (tree fndecl, rtx insns)
3531 rtx insn;
3532 unsigned int i;
3534 /* Compute the offsets to use for this function. */
3535 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3536 var_offset = STARTING_FRAME_OFFSET;
3537 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3538 out_arg_offset = STACK_POINTER_OFFSET;
3539 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3541 /* Scan all variables and parameters of this function. For each that is
3542 in memory, instantiate all virtual registers if the result is a valid
3543 address. If not, we do it later. That will handle most uses of virtual
3544 regs on many machines. */
3545 instantiate_decls (fndecl, 1);
3547 /* Initialize recognition, indicating that volatile is OK. */
3548 init_recog ();
3550 /* Scan through all the insns, instantiating every virtual register still
3551 present. */
3552 for (insn = insns; insn; insn = NEXT_INSN (insn))
3553 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3554 || GET_CODE (insn) == CALL_INSN)
3556 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3557 if (INSN_DELETED_P (insn))
3558 continue;
3559 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3560 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3561 if (GET_CODE (insn) == CALL_INSN)
3562 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3563 NULL_RTX, 0);
3565 /* Past this point all ASM statements should match. Verify that
3566 to avoid failures later in the compilation process. */
3567 if (asm_noperands (PATTERN (insn)) >= 0
3568 && ! check_asm_operands (PATTERN (insn)))
3569 instantiate_virtual_regs_lossage (insn);
3572 /* Instantiate the stack slots for the parm registers, for later use in
3573 addressof elimination. */
3574 for (i = 0; i < max_parm_reg; ++i)
3575 if (parm_reg_stack_loc[i])
3576 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3578 /* Now instantiate the remaining register equivalences for debugging info.
3579 These will not be valid addresses. */
3580 instantiate_decls (fndecl, 0);
3582 /* Indicate that, from now on, assign_stack_local should use
3583 frame_pointer_rtx. */
3584 virtuals_instantiated = 1;
3587 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3588 all virtual registers in their DECL_RTL's.
3590 If VALID_ONLY, do this only if the resulting address is still valid.
3591 Otherwise, always do it. */
3593 static void
3594 instantiate_decls (tree fndecl, int valid_only)
3596 tree decl;
3598 /* Process all parameters of the function. */
3599 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3601 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3602 HOST_WIDE_INT size_rtl;
3604 instantiate_decl (DECL_RTL (decl), size, valid_only);
3606 /* If the parameter was promoted, then the incoming RTL mode may be
3607 larger than the declared type size. We must use the larger of
3608 the two sizes. */
3609 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3610 size = MAX (size_rtl, size);
3611 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3614 /* Now process all variables defined in the function or its subblocks. */
3615 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3618 /* Subroutine of instantiate_decls: Process all decls in the given
3619 BLOCK node and all its subblocks. */
3621 static void
3622 instantiate_decls_1 (tree let, int valid_only)
3624 tree t;
3626 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3627 if (DECL_RTL_SET_P (t))
3628 instantiate_decl (DECL_RTL (t),
3629 int_size_in_bytes (TREE_TYPE (t)),
3630 valid_only);
3632 /* Process all subblocks. */
3633 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3634 instantiate_decls_1 (t, valid_only);
3637 /* Subroutine of the preceding procedures: Given RTL representing a
3638 decl and the size of the object, do any instantiation required.
3640 If VALID_ONLY is nonzero, it means that the RTL should only be
3641 changed if the new address is valid. */
3643 static void
3644 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3646 enum machine_mode mode;
3647 rtx addr;
3649 /* If this is not a MEM, no need to do anything. Similarly if the
3650 address is a constant or a register that is not a virtual register. */
3652 if (x == 0 || GET_CODE (x) != MEM)
3653 return;
3655 addr = XEXP (x, 0);
3656 if (CONSTANT_P (addr)
3657 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3658 || (GET_CODE (addr) == REG
3659 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3660 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3661 return;
3663 /* If we should only do this if the address is valid, copy the address.
3664 We need to do this so we can undo any changes that might make the
3665 address invalid. This copy is unfortunate, but probably can't be
3666 avoided. */
3668 if (valid_only)
3669 addr = copy_rtx (addr);
3671 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3673 if (valid_only && size >= 0)
3675 unsigned HOST_WIDE_INT decl_size = size;
3677 /* Now verify that the resulting address is valid for every integer or
3678 floating-point mode up to and including SIZE bytes long. We do this
3679 since the object might be accessed in any mode and frame addresses
3680 are shared. */
3682 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3683 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3684 mode = GET_MODE_WIDER_MODE (mode))
3685 if (! memory_address_p (mode, addr))
3686 return;
3688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3689 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3690 mode = GET_MODE_WIDER_MODE (mode))
3691 if (! memory_address_p (mode, addr))
3692 return;
3695 /* Put back the address now that we have updated it and we either know
3696 it is valid or we don't care whether it is valid. */
3698 XEXP (x, 0) = addr;
3701 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3702 is a virtual register, return the equivalent hard register and set the
3703 offset indirectly through the pointer. Otherwise, return 0. */
3705 static rtx
3706 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3708 rtx new;
3709 HOST_WIDE_INT offset;
3711 if (x == virtual_incoming_args_rtx)
3712 new = arg_pointer_rtx, offset = in_arg_offset;
3713 else if (x == virtual_stack_vars_rtx)
3714 new = frame_pointer_rtx, offset = var_offset;
3715 else if (x == virtual_stack_dynamic_rtx)
3716 new = stack_pointer_rtx, offset = dynamic_offset;
3717 else if (x == virtual_outgoing_args_rtx)
3718 new = stack_pointer_rtx, offset = out_arg_offset;
3719 else if (x == virtual_cfa_rtx)
3720 new = arg_pointer_rtx, offset = cfa_offset;
3721 else
3722 return 0;
3724 *poffset = offset;
3725 return new;
3729 /* Called when instantiate_virtual_regs has failed to update the instruction.
3730 Usually this means that non-matching instruction has been emit, however for
3731 asm statements it may be the problem in the constraints. */
3732 static void
3733 instantiate_virtual_regs_lossage (rtx insn)
3735 if (asm_noperands (PATTERN (insn)) >= 0)
3737 error_for_asm (insn, "impossible constraint in `asm'");
3738 delete_insn (insn);
3740 else
3741 abort ();
3743 /* Given a pointer to a piece of rtx and an optional pointer to the
3744 containing object, instantiate any virtual registers present in it.
3746 If EXTRA_INSNS, we always do the replacement and generate
3747 any extra insns before OBJECT. If it zero, we do nothing if replacement
3748 is not valid.
3750 Return 1 if we either had nothing to do or if we were able to do the
3751 needed replacement. Return 0 otherwise; we only return zero if
3752 EXTRA_INSNS is zero.
3754 We first try some simple transformations to avoid the creation of extra
3755 pseudos. */
3757 static int
3758 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3760 rtx x;
3761 RTX_CODE code;
3762 rtx new = 0;
3763 HOST_WIDE_INT offset = 0;
3764 rtx temp;
3765 rtx seq;
3766 int i, j;
3767 const char *fmt;
3769 /* Re-start here to avoid recursion in common cases. */
3770 restart:
3772 x = *loc;
3773 if (x == 0)
3774 return 1;
3776 /* We may have detected and deleted invalid asm statements. */
3777 if (object && INSN_P (object) && INSN_DELETED_P (object))
3778 return 1;
3780 code = GET_CODE (x);
3782 /* Check for some special cases. */
3783 switch (code)
3785 case CONST_INT:
3786 case CONST_DOUBLE:
3787 case CONST_VECTOR:
3788 case CONST:
3789 case SYMBOL_REF:
3790 case CODE_LABEL:
3791 case PC:
3792 case CC0:
3793 case ASM_INPUT:
3794 case ADDR_VEC:
3795 case ADDR_DIFF_VEC:
3796 case RETURN:
3797 return 1;
3799 case SET:
3800 /* We are allowed to set the virtual registers. This means that
3801 the actual register should receive the source minus the
3802 appropriate offset. This is used, for example, in the handling
3803 of non-local gotos. */
3804 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3806 rtx src = SET_SRC (x);
3808 /* We are setting the register, not using it, so the relevant
3809 offset is the negative of the offset to use were we using
3810 the register. */
3811 offset = - offset;
3812 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3814 /* The only valid sources here are PLUS or REG. Just do
3815 the simplest possible thing to handle them. */
3816 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3818 instantiate_virtual_regs_lossage (object);
3819 return 1;
3822 start_sequence ();
3823 if (GET_CODE (src) != REG)
3824 temp = force_operand (src, NULL_RTX);
3825 else
3826 temp = src;
3827 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3828 seq = get_insns ();
3829 end_sequence ();
3831 emit_insn_before (seq, object);
3832 SET_DEST (x) = new;
3834 if (! validate_change (object, &SET_SRC (x), temp, 0)
3835 || ! extra_insns)
3836 instantiate_virtual_regs_lossage (object);
3838 return 1;
3841 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3842 loc = &SET_SRC (x);
3843 goto restart;
3845 case PLUS:
3846 /* Handle special case of virtual register plus constant. */
3847 if (CONSTANT_P (XEXP (x, 1)))
3849 rtx old, new_offset;
3851 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3852 if (GET_CODE (XEXP (x, 0)) == PLUS)
3854 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3856 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3857 extra_insns);
3858 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3860 else
3862 loc = &XEXP (x, 0);
3863 goto restart;
3867 #ifdef POINTERS_EXTEND_UNSIGNED
3868 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3869 we can commute the PLUS and SUBREG because pointers into the
3870 frame are well-behaved. */
3871 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3872 && GET_CODE (XEXP (x, 1)) == CONST_INT
3873 && 0 != (new
3874 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3875 &offset))
3876 && validate_change (object, loc,
3877 plus_constant (gen_lowpart (ptr_mode,
3878 new),
3879 offset
3880 + INTVAL (XEXP (x, 1))),
3882 return 1;
3883 #endif
3884 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3886 /* We know the second operand is a constant. Unless the
3887 first operand is a REG (which has been already checked),
3888 it needs to be checked. */
3889 if (GET_CODE (XEXP (x, 0)) != REG)
3891 loc = &XEXP (x, 0);
3892 goto restart;
3894 return 1;
3897 new_offset = plus_constant (XEXP (x, 1), offset);
3899 /* If the new constant is zero, try to replace the sum with just
3900 the register. */
3901 if (new_offset == const0_rtx
3902 && validate_change (object, loc, new, 0))
3903 return 1;
3905 /* Next try to replace the register and new offset.
3906 There are two changes to validate here and we can't assume that
3907 in the case of old offset equals new just changing the register
3908 will yield a valid insn. In the interests of a little efficiency,
3909 however, we only call validate change once (we don't queue up the
3910 changes and then call apply_change_group). */
3912 old = XEXP (x, 0);
3913 if (offset == 0
3914 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3915 : (XEXP (x, 0) = new,
3916 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3918 if (! extra_insns)
3920 XEXP (x, 0) = old;
3921 return 0;
3924 /* Otherwise copy the new constant into a register and replace
3925 constant with that register. */
3926 temp = gen_reg_rtx (Pmode);
3927 XEXP (x, 0) = new;
3928 if (validate_change (object, &XEXP (x, 1), temp, 0))
3929 emit_insn_before (gen_move_insn (temp, new_offset), object);
3930 else
3932 /* If that didn't work, replace this expression with a
3933 register containing the sum. */
3935 XEXP (x, 0) = old;
3936 new = gen_rtx_PLUS (Pmode, new, new_offset);
3938 start_sequence ();
3939 temp = force_operand (new, NULL_RTX);
3940 seq = get_insns ();
3941 end_sequence ();
3943 emit_insn_before (seq, object);
3944 if (! validate_change (object, loc, temp, 0)
3945 && ! validate_replace_rtx (x, temp, object))
3947 instantiate_virtual_regs_lossage (object);
3948 return 1;
3953 return 1;
3956 /* Fall through to generic two-operand expression case. */
3957 case EXPR_LIST:
3958 case CALL:
3959 case COMPARE:
3960 case MINUS:
3961 case MULT:
3962 case DIV: case UDIV:
3963 case MOD: case UMOD:
3964 case AND: case IOR: case XOR:
3965 case ROTATERT: case ROTATE:
3966 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3967 case NE: case EQ:
3968 case GE: case GT: case GEU: case GTU:
3969 case LE: case LT: case LEU: case LTU:
3970 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3971 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3972 loc = &XEXP (x, 0);
3973 goto restart;
3975 case MEM:
3976 /* Most cases of MEM that convert to valid addresses have already been
3977 handled by our scan of decls. The only special handling we
3978 need here is to make a copy of the rtx to ensure it isn't being
3979 shared if we have to change it to a pseudo.
3981 If the rtx is a simple reference to an address via a virtual register,
3982 it can potentially be shared. In such cases, first try to make it
3983 a valid address, which can also be shared. Otherwise, copy it and
3984 proceed normally.
3986 First check for common cases that need no processing. These are
3987 usually due to instantiation already being done on a previous instance
3988 of a shared rtx. */
3990 temp = XEXP (x, 0);
3991 if (CONSTANT_ADDRESS_P (temp)
3992 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3993 || temp == arg_pointer_rtx
3994 #endif
3995 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3996 || temp == hard_frame_pointer_rtx
3997 #endif
3998 || temp == frame_pointer_rtx)
3999 return 1;
4001 if (GET_CODE (temp) == PLUS
4002 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4003 && (XEXP (temp, 0) == frame_pointer_rtx
4004 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4005 || XEXP (temp, 0) == hard_frame_pointer_rtx
4006 #endif
4007 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4008 || XEXP (temp, 0) == arg_pointer_rtx
4009 #endif
4011 return 1;
4013 if (temp == virtual_stack_vars_rtx
4014 || temp == virtual_incoming_args_rtx
4015 || (GET_CODE (temp) == PLUS
4016 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4017 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4018 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4020 /* This MEM may be shared. If the substitution can be done without
4021 the need to generate new pseudos, we want to do it in place
4022 so all copies of the shared rtx benefit. The call below will
4023 only make substitutions if the resulting address is still
4024 valid.
4026 Note that we cannot pass X as the object in the recursive call
4027 since the insn being processed may not allow all valid
4028 addresses. However, if we were not passed on object, we can
4029 only modify X without copying it if X will have a valid
4030 address.
4032 ??? Also note that this can still lose if OBJECT is an insn that
4033 has less restrictions on an address that some other insn.
4034 In that case, we will modify the shared address. This case
4035 doesn't seem very likely, though. One case where this could
4036 happen is in the case of a USE or CLOBBER reference, but we
4037 take care of that below. */
4039 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4040 object ? object : x, 0))
4041 return 1;
4043 /* Otherwise make a copy and process that copy. We copy the entire
4044 RTL expression since it might be a PLUS which could also be
4045 shared. */
4046 *loc = x = copy_rtx (x);
4049 /* Fall through to generic unary operation case. */
4050 case PREFETCH:
4051 case SUBREG:
4052 case STRICT_LOW_PART:
4053 case NEG: case NOT:
4054 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4055 case SIGN_EXTEND: case ZERO_EXTEND:
4056 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4057 case FLOAT: case FIX:
4058 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4059 case ABS:
4060 case SQRT:
4061 case FFS:
4062 case CLZ: case CTZ:
4063 case POPCOUNT: case PARITY:
4064 /* These case either have just one operand or we know that we need not
4065 check the rest of the operands. */
4066 loc = &XEXP (x, 0);
4067 goto restart;
4069 case USE:
4070 case CLOBBER:
4071 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4072 go ahead and make the invalid one, but do it to a copy. For a REG,
4073 just make the recursive call, since there's no chance of a problem. */
4075 if ((GET_CODE (XEXP (x, 0)) == MEM
4076 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4078 || (GET_CODE (XEXP (x, 0)) == REG
4079 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4080 return 1;
4082 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4083 loc = &XEXP (x, 0);
4084 goto restart;
4086 case REG:
4087 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4088 in front of this insn and substitute the temporary. */
4089 if ((new = instantiate_new_reg (x, &offset)) != 0)
4091 temp = plus_constant (new, offset);
4092 if (!validate_change (object, loc, temp, 0))
4094 if (! extra_insns)
4095 return 0;
4097 start_sequence ();
4098 temp = force_operand (temp, NULL_RTX);
4099 seq = get_insns ();
4100 end_sequence ();
4102 emit_insn_before (seq, object);
4103 if (! validate_change (object, loc, temp, 0)
4104 && ! validate_replace_rtx (x, temp, object))
4105 instantiate_virtual_regs_lossage (object);
4109 return 1;
4111 case ADDRESSOF:
4112 if (GET_CODE (XEXP (x, 0)) == REG)
4113 return 1;
4115 else if (GET_CODE (XEXP (x, 0)) == MEM)
4117 /* If we have a (addressof (mem ..)), do any instantiation inside
4118 since we know we'll be making the inside valid when we finally
4119 remove the ADDRESSOF. */
4120 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4121 return 1;
4123 break;
4125 default:
4126 break;
4129 /* Scan all subexpressions. */
4130 fmt = GET_RTX_FORMAT (code);
4131 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4132 if (*fmt == 'e')
4134 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4135 return 0;
4137 else if (*fmt == 'E')
4138 for (j = 0; j < XVECLEN (x, i); j++)
4139 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4140 extra_insns))
4141 return 0;
4143 return 1;
4146 /* Optimization: assuming this function does not receive nonlocal gotos,
4147 delete the handlers for such, as well as the insns to establish
4148 and disestablish them. */
4150 static void
4151 delete_handlers (void)
4153 rtx insn;
4154 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4156 /* Delete the handler by turning off the flag that would
4157 prevent jump_optimize from deleting it.
4158 Also permit deletion of the nonlocal labels themselves
4159 if nothing local refers to them. */
4160 if (GET_CODE (insn) == CODE_LABEL)
4162 tree t, last_t;
4164 LABEL_PRESERVE_P (insn) = 0;
4166 /* Remove it from the nonlocal_label list, to avoid confusing
4167 flow. */
4168 for (t = nonlocal_labels, last_t = 0; t;
4169 last_t = t, t = TREE_CHAIN (t))
4170 if (DECL_RTL (TREE_VALUE (t)) == insn)
4171 break;
4172 if (t)
4174 if (! last_t)
4175 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4176 else
4177 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4180 if (GET_CODE (insn) == INSN)
4182 int can_delete = 0;
4183 rtx t;
4184 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4185 if (reg_mentioned_p (t, PATTERN (insn)))
4187 can_delete = 1;
4188 break;
4190 if (can_delete
4191 || (nonlocal_goto_stack_level != 0
4192 && reg_mentioned_p (nonlocal_goto_stack_level,
4193 PATTERN (insn))))
4194 delete_related_insns (insn);
4199 /* Return the first insn following those generated by `assign_parms'. */
4202 get_first_nonparm_insn (void)
4204 if (last_parm_insn)
4205 return NEXT_INSN (last_parm_insn);
4206 return get_insns ();
4209 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4210 This means a type for which function calls must pass an address to the
4211 function or get an address back from the function.
4212 EXP may be a type node or an expression (whose type is tested). */
4215 aggregate_value_p (tree exp, tree fntype)
4217 int i, regno, nregs;
4218 rtx reg;
4220 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4222 if (fntype)
4223 switch (TREE_CODE (fntype))
4225 case CALL_EXPR:
4226 fntype = get_callee_fndecl (fntype);
4227 fntype = fntype ? TREE_TYPE (fntype) : 0;
4228 break;
4229 case FUNCTION_DECL:
4230 fntype = TREE_TYPE (fntype);
4231 break;
4232 case FUNCTION_TYPE:
4233 case METHOD_TYPE:
4234 break;
4235 case IDENTIFIER_NODE:
4236 fntype = 0;
4237 break;
4238 default:
4239 /* We don't expect other rtl types here. */
4240 abort();
4243 if (TREE_CODE (type) == VOID_TYPE)
4244 return 0;
4245 if (targetm.calls.return_in_memory (type, fntype))
4246 return 1;
4247 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4248 and thus can't be returned in registers. */
4249 if (TREE_ADDRESSABLE (type))
4250 return 1;
4251 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4252 return 1;
4253 /* Make sure we have suitable call-clobbered regs to return
4254 the value in; if not, we must return it in memory. */
4255 reg = hard_function_value (type, 0, 0);
4257 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4258 it is OK. */
4259 if (GET_CODE (reg) != REG)
4260 return 0;
4262 regno = REGNO (reg);
4263 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
4264 for (i = 0; i < nregs; i++)
4265 if (! call_used_regs[regno + i])
4266 return 1;
4267 return 0;
4270 /* Assign RTL expressions to the function's parameters.
4271 This may involve copying them into registers and using
4272 those registers as the RTL for them. */
4274 void
4275 assign_parms (tree fndecl)
4277 tree parm;
4278 CUMULATIVE_ARGS args_so_far;
4279 /* Total space needed so far for args on the stack,
4280 given as a constant and a tree-expression. */
4281 struct args_size stack_args_size;
4282 tree fntype = TREE_TYPE (fndecl);
4283 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4284 /* This is used for the arg pointer when referring to stack args. */
4285 rtx internal_arg_pointer;
4286 /* This is a dummy PARM_DECL that we used for the function result if
4287 the function returns a structure. */
4288 tree function_result_decl = 0;
4289 int varargs_setup = 0;
4290 int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
4291 rtx conversion_insns = 0;
4293 /* Nonzero if function takes extra anonymous args.
4294 This means the last named arg must be on the stack
4295 right before the anonymous ones. */
4296 int stdarg
4297 = (TYPE_ARG_TYPES (fntype) != 0
4298 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4299 != void_type_node));
4301 current_function_stdarg = stdarg;
4303 /* If the reg that the virtual arg pointer will be translated into is
4304 not a fixed reg or is the stack pointer, make a copy of the virtual
4305 arg pointer, and address parms via the copy. The frame pointer is
4306 considered fixed even though it is not marked as such.
4308 The second time through, simply use ap to avoid generating rtx. */
4310 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4311 || ! (fixed_regs[ARG_POINTER_REGNUM]
4312 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4313 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4314 else
4315 internal_arg_pointer = virtual_incoming_args_rtx;
4316 current_function_internal_arg_pointer = internal_arg_pointer;
4318 stack_args_size.constant = 0;
4319 stack_args_size.var = 0;
4321 /* If struct value address is treated as the first argument, make it so. */
4322 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4323 && ! current_function_returns_pcc_struct
4324 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4326 tree type = build_pointer_type (TREE_TYPE (fntype));
4328 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4330 DECL_ARG_TYPE (function_result_decl) = type;
4331 TREE_CHAIN (function_result_decl) = fnargs;
4332 fnargs = function_result_decl;
4335 orig_fnargs = fnargs;
4337 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4338 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4340 if (SPLIT_COMPLEX_ARGS)
4341 fnargs = split_complex_args (fnargs);
4343 #ifdef REG_PARM_STACK_SPACE
4344 #ifdef MAYBE_REG_PARM_STACK_SPACE
4345 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4346 #else
4347 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4348 #endif
4349 #endif
4351 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4352 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4353 #else
4354 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1);
4355 #endif
4357 /* We haven't yet found an argument that we must push and pretend the
4358 caller did. */
4359 current_function_pretend_args_size = 0;
4361 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4363 rtx entry_parm;
4364 rtx stack_parm;
4365 enum machine_mode promoted_mode, passed_mode;
4366 enum machine_mode nominal_mode, promoted_nominal_mode;
4367 int unsignedp;
4368 struct locate_and_pad_arg_data locate;
4369 int passed_pointer = 0;
4370 int did_conversion = 0;
4371 tree passed_type = DECL_ARG_TYPE (parm);
4372 tree nominal_type = TREE_TYPE (parm);
4373 int last_named = 0, named_arg;
4374 int in_regs;
4375 int partial = 0;
4376 int pretend_bytes = 0;
4377 int loaded_in_reg = 0;
4379 /* Set LAST_NAMED if this is last named arg before last
4380 anonymous args. */
4381 if (stdarg)
4383 tree tem;
4385 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4386 if (DECL_NAME (tem))
4387 break;
4389 if (tem == 0)
4390 last_named = 1;
4392 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4393 most machines, if this is a varargs/stdarg function, then we treat
4394 the last named arg as if it were anonymous too. */
4395 named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named;
4397 if (TREE_TYPE (parm) == error_mark_node
4398 /* This can happen after weird syntax errors
4399 or if an enum type is defined among the parms. */
4400 || TREE_CODE (parm) != PARM_DECL
4401 || passed_type == NULL)
4403 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4404 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4405 TREE_USED (parm) = 1;
4406 continue;
4409 /* Find mode of arg as it is passed, and mode of arg
4410 as it should be during execution of this function. */
4411 passed_mode = TYPE_MODE (passed_type);
4412 nominal_mode = TYPE_MODE (nominal_type);
4414 /* If the parm's mode is VOID, its value doesn't matter,
4415 and avoid the usual things like emit_move_insn that could crash. */
4416 if (nominal_mode == VOIDmode)
4418 SET_DECL_RTL (parm, const0_rtx);
4419 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4420 continue;
4423 /* If the parm is to be passed as a transparent union, use the
4424 type of the first field for the tests below. We have already
4425 verified that the modes are the same. */
4426 if (DECL_TRANSPARENT_UNION (parm)
4427 || (TREE_CODE (passed_type) == UNION_TYPE
4428 && TYPE_TRANSPARENT_UNION (passed_type)))
4429 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4431 /* See if this arg was passed by invisible reference. It is if
4432 it is an object whose size depends on the contents of the
4433 object itself or if the machine requires these objects be passed
4434 that way. */
4436 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4437 || TREE_ADDRESSABLE (passed_type)
4438 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4439 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4440 passed_type, named_arg)
4441 #endif
4444 passed_type = nominal_type = build_pointer_type (passed_type);
4445 passed_pointer = 1;
4446 passed_mode = nominal_mode = Pmode;
4448 /* See if the frontend wants to pass this by invisible reference. */
4449 else if (passed_type != nominal_type
4450 && POINTER_TYPE_P (passed_type)
4451 && TREE_TYPE (passed_type) == nominal_type)
4453 nominal_type = passed_type;
4454 passed_pointer = 1;
4455 passed_mode = nominal_mode = Pmode;
4458 promoted_mode = passed_mode;
4460 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4462 /* Compute the mode in which the arg is actually extended to. */
4463 unsignedp = TREE_UNSIGNED (passed_type);
4464 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4467 /* Let machine desc say which reg (if any) the parm arrives in.
4468 0 means it arrives on the stack. */
4469 #ifdef FUNCTION_INCOMING_ARG
4470 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4471 passed_type, named_arg);
4472 #else
4473 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4474 passed_type, named_arg);
4475 #endif
4477 if (entry_parm == 0)
4478 promoted_mode = passed_mode;
4480 /* If this is the last named parameter, do any required setup for
4481 varargs or stdargs. We need to know about the case of this being an
4482 addressable type, in which case we skip the registers it
4483 would have arrived in.
4485 For stdargs, LAST_NAMED will be set for two parameters, the one that
4486 is actually the last named, and the dummy parameter. We only
4487 want to do this action once.
4489 Also, indicate when RTL generation is to be suppressed. */
4490 if (last_named && !varargs_setup)
4492 int varargs_pretend_bytes = 0;
4493 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4494 passed_type,
4495 &varargs_pretend_bytes, 0);
4496 varargs_setup = 1;
4498 /* If the back-end has requested extra stack space, record how
4499 much is needed. Do not change pretend_args_size otherwise
4500 since it may be nonzero from an earlier partial argument. */
4501 if (varargs_pretend_bytes > 0)
4502 current_function_pretend_args_size = varargs_pretend_bytes;
4505 /* Determine parm's home in the stack,
4506 in case it arrives in the stack or we should pretend it did.
4508 Compute the stack position and rtx where the argument arrives
4509 and its size.
4511 There is one complexity here: If this was a parameter that would
4512 have been passed in registers, but wasn't only because it is
4513 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4514 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4515 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4516 0 as it was the previous time. */
4517 in_regs = entry_parm != 0;
4518 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4519 in_regs = 1;
4520 #endif
4521 if (!in_regs && !named_arg)
4523 int pretend_named =
4524 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4525 if (pretend_named)
4527 #ifdef FUNCTION_INCOMING_ARG
4528 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4529 passed_type,
4530 pretend_named) != 0;
4531 #else
4532 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4533 passed_type,
4534 pretend_named) != 0;
4535 #endif
4539 /* If this parameter was passed both in registers and in the stack,
4540 use the copy on the stack. */
4541 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4542 entry_parm = 0;
4544 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4545 if (entry_parm)
4547 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4548 passed_type, named_arg);
4549 if (partial
4550 #ifndef MAYBE_REG_PARM_STACK_SPACE
4551 /* The caller might already have allocated stack space
4552 for the register parameters. */
4553 && reg_parm_stack_space == 0
4554 #endif
4557 /* Part of this argument is passed in registers and part
4558 is passed on the stack. Ask the prologue code to extend
4559 the stack part so that we can recreate the full value.
4561 PRETEND_BYTES is the size of the registers we need to store.
4562 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4563 stack space that the prologue should allocate.
4565 Internally, gcc assumes that the argument pointer is
4566 aligned to STACK_BOUNDARY bits. This is used both for
4567 alignment optimizations (see init_emit) and to locate
4568 arguments that are aligned to more than PARM_BOUNDARY
4569 bits. We must preserve this invariant by rounding
4570 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4571 boundary. */
4572 pretend_bytes = partial * UNITS_PER_WORD;
4573 current_function_pretend_args_size
4574 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4576 /* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE,
4577 insert the padding before the start of the first pretend
4578 argument. */
4579 stack_args_size.constant
4580 = (current_function_pretend_args_size - pretend_bytes);
4583 #endif
4585 memset (&locate, 0, sizeof (locate));
4586 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4587 entry_parm ? partial : 0, fndecl,
4588 &stack_args_size, &locate);
4591 rtx offset_rtx;
4593 /* If we're passing this arg using a reg, make its stack home
4594 the aligned stack slot. */
4595 if (entry_parm)
4596 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4597 else
4598 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4600 if (offset_rtx == const0_rtx)
4601 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4602 else
4603 stack_parm = gen_rtx_MEM (promoted_mode,
4604 gen_rtx_PLUS (Pmode,
4605 internal_arg_pointer,
4606 offset_rtx));
4608 set_mem_attributes (stack_parm, parm, 1);
4609 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4610 set_mem_align (stack_parm, PARM_BOUNDARY);
4612 /* Set also REG_ATTRS if parameter was passed in a register. */
4613 if (entry_parm)
4614 set_reg_attrs_for_parm (entry_parm, stack_parm);
4617 /* If this parm was passed part in regs and part in memory,
4618 pretend it arrived entirely in memory
4619 by pushing the register-part onto the stack.
4621 In the special case of a DImode or DFmode that is split,
4622 we could put it together in a pseudoreg directly,
4623 but for now that's not worth bothering with. */
4625 if (partial)
4627 /* Handle calls that pass values in multiple non-contiguous
4628 locations. The Irix 6 ABI has examples of this. */
4629 if (GET_CODE (entry_parm) == PARALLEL)
4630 emit_group_store (validize_mem (stack_parm), entry_parm,
4631 TREE_TYPE (parm),
4632 int_size_in_bytes (TREE_TYPE (parm)));
4634 else
4635 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4636 partial);
4638 entry_parm = stack_parm;
4641 /* If we didn't decide this parm came in a register,
4642 by default it came on the stack. */
4643 if (entry_parm == 0)
4644 entry_parm = stack_parm;
4646 /* Record permanently how this parm was passed. */
4647 DECL_INCOMING_RTL (parm) = entry_parm;
4649 /* If there is actually space on the stack for this parm,
4650 count it in stack_args_size; otherwise set stack_parm to 0
4651 to indicate there is no preallocated stack slot for the parm. */
4653 if (entry_parm == stack_parm
4654 || (GET_CODE (entry_parm) == PARALLEL
4655 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4656 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4657 /* On some machines, even if a parm value arrives in a register
4658 there is still an (uninitialized) stack slot allocated for it.
4660 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4661 whether this parameter already has a stack slot allocated,
4662 because an arg block exists only if current_function_args_size
4663 is larger than some threshold, and we haven't calculated that
4664 yet. So, for now, we just assume that stack slots never exist
4665 in this case. */
4666 || REG_PARM_STACK_SPACE (fndecl) > 0
4667 #endif
4670 stack_args_size.constant += pretend_bytes + locate.size.constant;
4671 if (locate.size.var)
4672 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4674 else
4675 /* No stack slot was pushed for this parm. */
4676 stack_parm = 0;
4678 /* Update info on where next arg arrives in registers. */
4680 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4681 passed_type, named_arg);
4683 /* If we can't trust the parm stack slot to be aligned enough
4684 for its ultimate type, don't use that slot after entry.
4685 We'll make another stack slot, if we need one. */
4687 unsigned int thisparm_boundary
4688 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4690 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4691 stack_parm = 0;
4694 /* If parm was passed in memory, and we need to convert it on entry,
4695 don't store it back in that same slot. */
4696 if (entry_parm == stack_parm
4697 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4698 stack_parm = 0;
4700 /* When an argument is passed in multiple locations, we can't
4701 make use of this information, but we can save some copying if
4702 the whole argument is passed in a single register. */
4703 if (GET_CODE (entry_parm) == PARALLEL
4704 && nominal_mode != BLKmode && passed_mode != BLKmode)
4706 int i, len = XVECLEN (entry_parm, 0);
4708 for (i = 0; i < len; i++)
4709 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4710 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4711 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4712 == passed_mode)
4713 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4715 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4716 DECL_INCOMING_RTL (parm) = entry_parm;
4717 break;
4721 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4722 in the mode in which it arrives.
4723 STACK_PARM is an RTX for a stack slot where the parameter can live
4724 during the function (in case we want to put it there).
4725 STACK_PARM is 0 if no stack slot was pushed for it.
4727 Now output code if necessary to convert ENTRY_PARM to
4728 the type in which this function declares it,
4729 and store that result in an appropriate place,
4730 which may be a pseudo reg, may be STACK_PARM,
4731 or may be a local stack slot if STACK_PARM is 0.
4733 Set DECL_RTL to that place. */
4735 if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
4736 && XVECLEN (entry_parm, 0) > 1)
4738 /* Reconstitute objects the size of a register or larger using
4739 register operations instead of the stack. */
4740 rtx parmreg = gen_reg_rtx (nominal_mode);
4742 if (REG_P (parmreg))
4744 unsigned int regno = REGNO (parmreg);
4746 emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
4747 int_size_in_bytes (TREE_TYPE (parm)));
4748 SET_DECL_RTL (parm, parmreg);
4749 loaded_in_reg = 1;
4751 if (regno >= max_parm_reg)
4753 rtx *new;
4754 int old_max_parm_reg = max_parm_reg;
4756 /* It's slow to expand this one register at a time,
4757 but it's also rare and we need max_parm_reg to be
4758 precisely correct. */
4759 max_parm_reg = regno + 1;
4760 new = ggc_realloc (parm_reg_stack_loc,
4761 max_parm_reg * sizeof (rtx));
4762 memset (new + old_max_parm_reg, 0,
4763 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4764 parm_reg_stack_loc = new;
4765 parm_reg_stack_loc[regno] = stack_parm;
4770 if (nominal_mode == BLKmode
4771 #ifdef BLOCK_REG_PADDING
4772 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4773 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4774 #endif
4775 || GET_CODE (entry_parm) == PARALLEL)
4777 /* If a BLKmode arrives in registers, copy it to a stack slot.
4778 Handle calls that pass values in multiple non-contiguous
4779 locations. The Irix 6 ABI has examples of this. */
4780 if (GET_CODE (entry_parm) == REG
4781 || (GET_CODE (entry_parm) == PARALLEL
4782 && (!loaded_in_reg || !optimize)))
4784 int size = int_size_in_bytes (TREE_TYPE (parm));
4785 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4786 rtx mem;
4788 /* Note that we will be storing an integral number of words.
4789 So we have to be careful to ensure that we allocate an
4790 integral number of words. We do this below in the
4791 assign_stack_local if space was not allocated in the argument
4792 list. If it was, this will not work if PARM_BOUNDARY is not
4793 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4794 if it becomes a problem. Exception is when BLKmode arrives
4795 with arguments not conforming to word_mode. */
4797 if (stack_parm == 0)
4799 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4800 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4801 set_mem_attributes (stack_parm, parm, 1);
4803 else if (GET_CODE (entry_parm) == PARALLEL
4804 && GET_MODE(entry_parm) == BLKmode)
4806 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4807 abort ();
4809 mem = validize_mem (stack_parm);
4811 /* Handle calls that pass values in multiple non-contiguous
4812 locations. The Irix 6 ABI has examples of this. */
4813 if (GET_CODE (entry_parm) == PARALLEL)
4814 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4816 else if (size == 0)
4819 /* If SIZE is that of a mode no bigger than a word, just use
4820 that mode's store operation. */
4821 else if (size <= UNITS_PER_WORD)
4823 enum machine_mode mode
4824 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4826 if (mode != BLKmode
4827 #ifdef BLOCK_REG_PADDING
4828 && (size == UNITS_PER_WORD
4829 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4830 != (BYTES_BIG_ENDIAN ? upward : downward)))
4831 #endif
4834 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4835 emit_move_insn (change_address (mem, mode, 0), reg);
4838 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4839 machine must be aligned to the left before storing
4840 to memory. Note that the previous test doesn't
4841 handle all cases (e.g. SIZE == 3). */
4842 else if (size != UNITS_PER_WORD
4843 #ifdef BLOCK_REG_PADDING
4844 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4845 == downward)
4846 #else
4847 && BYTES_BIG_ENDIAN
4848 #endif
4851 rtx tem, x;
4852 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4853 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4855 x = expand_binop (word_mode, ashl_optab, reg,
4856 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4857 tem = change_address (mem, word_mode, 0);
4858 emit_move_insn (tem, x);
4860 else
4861 move_block_from_reg (REGNO (entry_parm), mem,
4862 size_stored / UNITS_PER_WORD);
4864 else
4865 move_block_from_reg (REGNO (entry_parm), mem,
4866 size_stored / UNITS_PER_WORD);
4868 /* If parm is already bound to register pair, don't change
4869 this binding. */
4870 if (! DECL_RTL_SET_P (parm))
4871 SET_DECL_RTL (parm, stack_parm);
4873 else if (! ((! optimize
4874 && ! DECL_REGISTER (parm))
4875 || TREE_SIDE_EFFECTS (parm)
4876 /* If -ffloat-store specified, don't put explicit
4877 float variables into registers. */
4878 || (flag_float_store
4879 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4880 /* Always assign pseudo to structure return or item passed
4881 by invisible reference. */
4882 || passed_pointer || parm == function_result_decl)
4884 /* Store the parm in a pseudoregister during the function, but we
4885 may need to do it in a wider mode. */
4887 rtx parmreg;
4888 unsigned int regno, regnoi = 0, regnor = 0;
4890 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4892 promoted_nominal_mode
4893 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4895 parmreg = gen_reg_rtx (promoted_nominal_mode);
4896 mark_user_reg (parmreg);
4898 /* If this was an item that we received a pointer to, set DECL_RTL
4899 appropriately. */
4900 if (passed_pointer)
4902 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4903 parmreg);
4904 set_mem_attributes (x, parm, 1);
4905 SET_DECL_RTL (parm, x);
4907 else
4909 SET_DECL_RTL (parm, parmreg);
4910 maybe_set_unchanging (DECL_RTL (parm), parm);
4913 /* Copy the value into the register. */
4914 if (nominal_mode != passed_mode
4915 || promoted_nominal_mode != promoted_mode)
4917 int save_tree_used;
4918 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4919 mode, by the caller. We now have to convert it to
4920 NOMINAL_MODE, if different. However, PARMREG may be in
4921 a different mode than NOMINAL_MODE if it is being stored
4922 promoted.
4924 If ENTRY_PARM is a hard register, it might be in a register
4925 not valid for operating in its mode (e.g., an odd-numbered
4926 register for a DFmode). In that case, moves are the only
4927 thing valid, so we can't do a convert from there. This
4928 occurs when the calling sequence allow such misaligned
4929 usages.
4931 In addition, the conversion may involve a call, which could
4932 clobber parameters which haven't been copied to pseudo
4933 registers yet. Therefore, we must first copy the parm to
4934 a pseudo reg here, and save the conversion until after all
4935 parameters have been moved. */
4937 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4939 emit_move_insn (tempreg, validize_mem (entry_parm));
4941 push_to_sequence (conversion_insns);
4942 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4944 if (GET_CODE (tempreg) == SUBREG
4945 && GET_MODE (tempreg) == nominal_mode
4946 && GET_CODE (SUBREG_REG (tempreg)) == REG
4947 && nominal_mode == passed_mode
4948 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4949 && GET_MODE_SIZE (GET_MODE (tempreg))
4950 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4952 /* The argument is already sign/zero extended, so note it
4953 into the subreg. */
4954 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4955 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4958 /* TREE_USED gets set erroneously during expand_assignment. */
4959 save_tree_used = TREE_USED (parm);
4960 expand_assignment (parm,
4961 make_tree (nominal_type, tempreg), 0);
4962 TREE_USED (parm) = save_tree_used;
4963 conversion_insns = get_insns ();
4964 did_conversion = 1;
4965 end_sequence ();
4967 else
4968 emit_move_insn (parmreg, validize_mem (entry_parm));
4970 /* If we were passed a pointer but the actual value
4971 can safely live in a register, put it in one. */
4972 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4973 /* If by-reference argument was promoted, demote it. */
4974 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4975 || ! ((! optimize
4976 && ! DECL_REGISTER (parm))
4977 || TREE_SIDE_EFFECTS (parm)
4978 /* If -ffloat-store specified, don't put explicit
4979 float variables into registers. */
4980 || (flag_float_store
4981 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4983 /* We can't use nominal_mode, because it will have been set to
4984 Pmode above. We must use the actual mode of the parm. */
4985 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4986 mark_user_reg (parmreg);
4987 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4989 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4990 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4991 push_to_sequence (conversion_insns);
4992 emit_move_insn (tempreg, DECL_RTL (parm));
4993 SET_DECL_RTL (parm,
4994 convert_to_mode (GET_MODE (parmreg),
4995 tempreg,
4996 unsigned_p));
4997 emit_move_insn (parmreg, DECL_RTL (parm));
4998 conversion_insns = get_insns();
4999 did_conversion = 1;
5000 end_sequence ();
5002 else
5003 emit_move_insn (parmreg, DECL_RTL (parm));
5004 SET_DECL_RTL (parm, parmreg);
5005 /* STACK_PARM is the pointer, not the parm, and PARMREG is
5006 now the parm. */
5007 stack_parm = 0;
5009 #ifdef FUNCTION_ARG_CALLEE_COPIES
5010 /* If we are passed an arg by reference and it is our responsibility
5011 to make a copy, do it now.
5012 PASSED_TYPE and PASSED mode now refer to the pointer, not the
5013 original argument, so we must recreate them in the call to
5014 FUNCTION_ARG_CALLEE_COPIES. */
5015 /* ??? Later add code to handle the case that if the argument isn't
5016 modified, don't do the copy. */
5018 else if (passed_pointer
5019 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
5020 TYPE_MODE (TREE_TYPE (passed_type)),
5021 TREE_TYPE (passed_type),
5022 named_arg)
5023 && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
5025 rtx copy;
5026 tree type = TREE_TYPE (passed_type);
5028 /* This sequence may involve a library call perhaps clobbering
5029 registers that haven't been copied to pseudos yet. */
5031 push_to_sequence (conversion_insns);
5033 if (!COMPLETE_TYPE_P (type)
5034 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5035 /* This is a variable sized object. */
5036 copy = gen_rtx_MEM (BLKmode,
5037 allocate_dynamic_stack_space
5038 (expr_size (parm), NULL_RTX,
5039 TYPE_ALIGN (type)));
5040 else
5041 copy = assign_stack_temp (TYPE_MODE (type),
5042 int_size_in_bytes (type), 1);
5043 set_mem_attributes (copy, parm, 1);
5045 store_expr (parm, copy, 0);
5046 emit_move_insn (parmreg, XEXP (copy, 0));
5047 conversion_insns = get_insns ();
5048 did_conversion = 1;
5049 end_sequence ();
5051 #endif /* FUNCTION_ARG_CALLEE_COPIES */
5053 /* In any case, record the parm's desired stack location
5054 in case we later discover it must live in the stack.
5056 If it is a COMPLEX value, store the stack location for both
5057 halves. */
5059 if (GET_CODE (parmreg) == CONCAT)
5060 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
5061 else
5062 regno = REGNO (parmreg);
5064 if (regno >= max_parm_reg)
5066 rtx *new;
5067 int old_max_parm_reg = max_parm_reg;
5069 /* It's slow to expand this one register at a time,
5070 but it's also rare and we need max_parm_reg to be
5071 precisely correct. */
5072 max_parm_reg = regno + 1;
5073 new = ggc_realloc (parm_reg_stack_loc,
5074 max_parm_reg * sizeof (rtx));
5075 memset (new + old_max_parm_reg, 0,
5076 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5077 parm_reg_stack_loc = new;
5080 if (GET_CODE (parmreg) == CONCAT)
5082 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5084 regnor = REGNO (gen_realpart (submode, parmreg));
5085 regnoi = REGNO (gen_imagpart (submode, parmreg));
5087 if (stack_parm != 0)
5089 parm_reg_stack_loc[regnor]
5090 = gen_realpart (submode, stack_parm);
5091 parm_reg_stack_loc[regnoi]
5092 = gen_imagpart (submode, stack_parm);
5094 else
5096 parm_reg_stack_loc[regnor] = 0;
5097 parm_reg_stack_loc[regnoi] = 0;
5100 else
5101 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5103 /* Mark the register as eliminable if we did no conversion
5104 and it was copied from memory at a fixed offset,
5105 and the arg pointer was not copied to a pseudo-reg.
5106 If the arg pointer is a pseudo reg or the offset formed
5107 an invalid address, such memory-equivalences
5108 as we make here would screw up life analysis for it. */
5109 if (nominal_mode == passed_mode
5110 && ! did_conversion
5111 && stack_parm != 0
5112 && GET_CODE (stack_parm) == MEM
5113 && locate.offset.var == 0
5114 && reg_mentioned_p (virtual_incoming_args_rtx,
5115 XEXP (stack_parm, 0)))
5117 rtx linsn = get_last_insn ();
5118 rtx sinsn, set;
5120 /* Mark complex types separately. */
5121 if (GET_CODE (parmreg) == CONCAT)
5122 /* Scan backwards for the set of the real and
5123 imaginary parts. */
5124 for (sinsn = linsn; sinsn != 0;
5125 sinsn = prev_nonnote_insn (sinsn))
5127 set = single_set (sinsn);
5128 if (set != 0
5129 && SET_DEST (set) == regno_reg_rtx [regnoi])
5130 REG_NOTES (sinsn)
5131 = gen_rtx_EXPR_LIST (REG_EQUIV,
5132 parm_reg_stack_loc[regnoi],
5133 REG_NOTES (sinsn));
5134 else if (set != 0
5135 && SET_DEST (set) == regno_reg_rtx [regnor])
5136 REG_NOTES (sinsn)
5137 = gen_rtx_EXPR_LIST (REG_EQUIV,
5138 parm_reg_stack_loc[regnor],
5139 REG_NOTES (sinsn));
5141 else if ((set = single_set (linsn)) != 0
5142 && SET_DEST (set) == parmreg)
5143 REG_NOTES (linsn)
5144 = gen_rtx_EXPR_LIST (REG_EQUIV,
5145 stack_parm, REG_NOTES (linsn));
5148 /* For pointer data type, suggest pointer register. */
5149 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5150 mark_reg_pointer (parmreg,
5151 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5153 /* If something wants our address, try to use ADDRESSOF. */
5154 if (TREE_ADDRESSABLE (parm))
5156 /* If we end up putting something into the stack,
5157 fixup_var_refs_insns will need to make a pass over
5158 all the instructions. It looks through the pending
5159 sequences -- but it can't see the ones in the
5160 CONVERSION_INSNS, if they're not on the sequence
5161 stack. So, we go back to that sequence, just so that
5162 the fixups will happen. */
5163 push_to_sequence (conversion_insns);
5164 put_var_into_stack (parm, /*rescan=*/true);
5165 conversion_insns = get_insns ();
5166 end_sequence ();
5169 else
5171 /* Value must be stored in the stack slot STACK_PARM
5172 during function execution. */
5174 if (promoted_mode != nominal_mode)
5176 /* Conversion is required. */
5177 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5179 emit_move_insn (tempreg, validize_mem (entry_parm));
5181 push_to_sequence (conversion_insns);
5182 entry_parm = convert_to_mode (nominal_mode, tempreg,
5183 TREE_UNSIGNED (TREE_TYPE (parm)));
5184 if (stack_parm)
5185 /* ??? This may need a big-endian conversion on sparc64. */
5186 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5188 conversion_insns = get_insns ();
5189 did_conversion = 1;
5190 end_sequence ();
5193 if (entry_parm != stack_parm)
5195 if (stack_parm == 0)
5197 stack_parm
5198 = assign_stack_local (GET_MODE (entry_parm),
5199 GET_MODE_SIZE (GET_MODE (entry_parm)),
5201 set_mem_attributes (stack_parm, parm, 1);
5204 if (promoted_mode != nominal_mode)
5206 push_to_sequence (conversion_insns);
5207 emit_move_insn (validize_mem (stack_parm),
5208 validize_mem (entry_parm));
5209 conversion_insns = get_insns ();
5210 end_sequence ();
5212 else
5213 emit_move_insn (validize_mem (stack_parm),
5214 validize_mem (entry_parm));
5217 SET_DECL_RTL (parm, stack_parm);
5221 if (SPLIT_COMPLEX_ARGS && fnargs != orig_fnargs)
5223 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5225 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE)
5227 SET_DECL_RTL (parm,
5228 gen_rtx_CONCAT (DECL_MODE (parm),
5229 DECL_RTL (fnargs),
5230 DECL_RTL (TREE_CHAIN (fnargs))));
5231 DECL_INCOMING_RTL (parm)
5232 = gen_rtx_CONCAT (DECL_MODE (parm),
5233 DECL_INCOMING_RTL (fnargs),
5234 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5235 fnargs = TREE_CHAIN (fnargs);
5237 else
5239 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5240 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5242 fnargs = TREE_CHAIN (fnargs);
5246 /* Output all parameter conversion instructions (possibly including calls)
5247 now that all parameters have been copied out of hard registers. */
5248 emit_insn (conversion_insns);
5250 /* If we are receiving a struct value address as the first argument, set up
5251 the RTL for the function result. As this might require code to convert
5252 the transmitted address to Pmode, we do this here to ensure that possible
5253 preliminary conversions of the address have been emitted already. */
5254 if (function_result_decl)
5256 tree result = DECL_RESULT (fndecl);
5257 rtx addr = DECL_RTL (function_result_decl);
5258 rtx x;
5260 addr = convert_memory_address (Pmode, addr);
5261 x = gen_rtx_MEM (DECL_MODE (result), addr);
5262 set_mem_attributes (x, result, 1);
5263 SET_DECL_RTL (result, x);
5266 last_parm_insn = get_last_insn ();
5268 current_function_args_size = stack_args_size.constant;
5270 /* Adjust function incoming argument size for alignment and
5271 minimum length. */
5273 #ifdef REG_PARM_STACK_SPACE
5274 #ifndef MAYBE_REG_PARM_STACK_SPACE
5275 current_function_args_size = MAX (current_function_args_size,
5276 REG_PARM_STACK_SPACE (fndecl));
5277 #endif
5278 #endif
5280 current_function_args_size
5281 = ((current_function_args_size + STACK_BYTES - 1)
5282 / STACK_BYTES) * STACK_BYTES;
5284 #ifdef ARGS_GROW_DOWNWARD
5285 current_function_arg_offset_rtx
5286 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5287 : expand_expr (size_diffop (stack_args_size.var,
5288 size_int (-stack_args_size.constant)),
5289 NULL_RTX, VOIDmode, 0));
5290 #else
5291 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5292 #endif
5294 /* See how many bytes, if any, of its args a function should try to pop
5295 on return. */
5297 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5298 current_function_args_size);
5300 /* For stdarg.h function, save info about
5301 regs and stack space used by the named args. */
5303 current_function_args_info = args_so_far;
5305 /* Set the rtx used for the function return value. Put this in its
5306 own variable so any optimizers that need this information don't have
5307 to include tree.h. Do this here so it gets done when an inlined
5308 function gets output. */
5310 current_function_return_rtx
5311 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5312 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5314 /* If scalar return value was computed in a pseudo-reg, or was a named
5315 return value that got dumped to the stack, copy that to the hard
5316 return register. */
5317 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5319 tree decl_result = DECL_RESULT (fndecl);
5320 rtx decl_rtl = DECL_RTL (decl_result);
5322 if (REG_P (decl_rtl)
5323 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5324 : DECL_REGISTER (decl_result))
5326 rtx real_decl_rtl;
5328 #ifdef FUNCTION_OUTGOING_VALUE
5329 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5330 fndecl);
5331 #else
5332 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5333 fndecl);
5334 #endif
5335 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5336 /* The delay slot scheduler assumes that current_function_return_rtx
5337 holds the hard register containing the return value, not a
5338 temporary pseudo. */
5339 current_function_return_rtx = real_decl_rtl;
5344 /* If ARGS contains entries with complex types, split the entry into two
5345 entries of the component type. Return a new list of substitutions are
5346 needed, else the old list. */
5348 static tree
5349 split_complex_args (tree args)
5351 tree p;
5353 /* Before allocating memory, check for the common case of no complex. */
5354 for (p = args; p; p = TREE_CHAIN (p))
5355 if (TREE_CODE (TREE_TYPE (p)) == COMPLEX_TYPE)
5356 goto found;
5357 return args;
5359 found:
5360 args = copy_list (args);
5362 for (p = args; p; p = TREE_CHAIN (p))
5364 tree type = TREE_TYPE (p);
5365 if (TREE_CODE (type) == COMPLEX_TYPE)
5367 tree decl;
5368 tree subtype = TREE_TYPE (type);
5370 /* Rewrite the PARM_DECL's type with its component. */
5371 TREE_TYPE (p) = subtype;
5372 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5373 DECL_MODE (p) = VOIDmode;
5374 DECL_SIZE (p) = NULL;
5375 DECL_SIZE_UNIT (p) = NULL;
5376 layout_decl (p, 0);
5378 /* Build a second synthetic decl. */
5379 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5380 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5381 layout_decl (decl, 0);
5383 /* Splice it in; skip the new decl. */
5384 TREE_CHAIN (decl) = TREE_CHAIN (p);
5385 TREE_CHAIN (p) = decl;
5386 p = decl;
5390 return args;
5393 /* Indicate whether REGNO is an incoming argument to the current function
5394 that was promoted to a wider mode. If so, return the RTX for the
5395 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5396 that REGNO is promoted from and whether the promotion was signed or
5397 unsigned. */
5400 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5402 tree arg;
5404 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5405 arg = TREE_CHAIN (arg))
5406 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5407 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5408 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5410 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5411 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5413 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5414 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5415 && mode != DECL_MODE (arg))
5417 *pmode = DECL_MODE (arg);
5418 *punsignedp = unsignedp;
5419 return DECL_INCOMING_RTL (arg);
5423 return 0;
5427 /* Compute the size and offset from the start of the stacked arguments for a
5428 parm passed in mode PASSED_MODE and with type TYPE.
5430 INITIAL_OFFSET_PTR points to the current offset into the stacked
5431 arguments.
5433 The starting offset and size for this parm are returned in
5434 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5435 nonzero, the offset is that of stack slot, which is returned in
5436 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5437 padding required from the initial offset ptr to the stack slot.
5439 IN_REGS is nonzero if the argument will be passed in registers. It will
5440 never be set if REG_PARM_STACK_SPACE is not defined.
5442 FNDECL is the function in which the argument was defined.
5444 There are two types of rounding that are done. The first, controlled by
5445 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5446 list to be aligned to the specific boundary (in bits). This rounding
5447 affects the initial and starting offsets, but not the argument size.
5449 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5450 optionally rounds the size of the parm to PARM_BOUNDARY. The
5451 initial offset is not affected by this rounding, while the size always
5452 is and the starting offset may be. */
5454 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5455 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5456 callers pass in the total size of args so far as
5457 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5459 void
5460 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5461 int partial, tree fndecl ATTRIBUTE_UNUSED,
5462 struct args_size *initial_offset_ptr,
5463 struct locate_and_pad_arg_data *locate)
5465 tree sizetree;
5466 enum direction where_pad;
5467 int boundary;
5468 int reg_parm_stack_space = 0;
5469 int part_size_in_regs;
5471 #ifdef REG_PARM_STACK_SPACE
5472 #ifdef MAYBE_REG_PARM_STACK_SPACE
5473 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5474 #else
5475 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5476 #endif
5478 /* If we have found a stack parm before we reach the end of the
5479 area reserved for registers, skip that area. */
5480 if (! in_regs)
5482 if (reg_parm_stack_space > 0)
5484 if (initial_offset_ptr->var)
5486 initial_offset_ptr->var
5487 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5488 ssize_int (reg_parm_stack_space));
5489 initial_offset_ptr->constant = 0;
5491 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5492 initial_offset_ptr->constant = reg_parm_stack_space;
5495 #endif /* REG_PARM_STACK_SPACE */
5497 part_size_in_regs = 0;
5498 if (reg_parm_stack_space == 0)
5499 part_size_in_regs = ((partial * UNITS_PER_WORD)
5500 / (PARM_BOUNDARY / BITS_PER_UNIT)
5501 * (PARM_BOUNDARY / BITS_PER_UNIT));
5503 sizetree
5504 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5505 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5506 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5507 locate->where_pad = where_pad;
5509 #ifdef ARGS_GROW_DOWNWARD
5510 locate->slot_offset.constant = -initial_offset_ptr->constant;
5511 if (initial_offset_ptr->var)
5512 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5513 initial_offset_ptr->var);
5516 tree s2 = sizetree;
5517 if (where_pad != none
5518 && (!host_integerp (sizetree, 1)
5519 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5520 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5521 SUB_PARM_SIZE (locate->slot_offset, s2);
5524 locate->slot_offset.constant += part_size_in_regs;
5526 if (!in_regs
5527 #ifdef REG_PARM_STACK_SPACE
5528 || REG_PARM_STACK_SPACE (fndecl) > 0
5529 #endif
5531 pad_to_arg_alignment (&locate->slot_offset, boundary,
5532 &locate->alignment_pad);
5534 locate->size.constant = (-initial_offset_ptr->constant
5535 - locate->slot_offset.constant);
5536 if (initial_offset_ptr->var)
5537 locate->size.var = size_binop (MINUS_EXPR,
5538 size_binop (MINUS_EXPR,
5539 ssize_int (0),
5540 initial_offset_ptr->var),
5541 locate->slot_offset.var);
5543 /* Pad_below needs the pre-rounded size to know how much to pad
5544 below. */
5545 locate->offset = locate->slot_offset;
5546 if (where_pad == downward)
5547 pad_below (&locate->offset, passed_mode, sizetree);
5549 #else /* !ARGS_GROW_DOWNWARD */
5550 if (!in_regs
5551 #ifdef REG_PARM_STACK_SPACE
5552 || REG_PARM_STACK_SPACE (fndecl) > 0
5553 #endif
5555 pad_to_arg_alignment (initial_offset_ptr, boundary,
5556 &locate->alignment_pad);
5557 locate->slot_offset = *initial_offset_ptr;
5559 #ifdef PUSH_ROUNDING
5560 if (passed_mode != BLKmode)
5561 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5562 #endif
5564 /* Pad_below needs the pre-rounded size to know how much to pad below
5565 so this must be done before rounding up. */
5566 locate->offset = locate->slot_offset;
5567 if (where_pad == downward)
5568 pad_below (&locate->offset, passed_mode, sizetree);
5570 if (where_pad != none
5571 && (!host_integerp (sizetree, 1)
5572 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5573 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5575 ADD_PARM_SIZE (locate->size, sizetree);
5577 locate->size.constant -= part_size_in_regs;
5578 #endif /* ARGS_GROW_DOWNWARD */
5581 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5582 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5584 static void
5585 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5586 struct args_size *alignment_pad)
5588 tree save_var = NULL_TREE;
5589 HOST_WIDE_INT save_constant = 0;
5590 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5591 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5593 #ifdef SPARC_STACK_BOUNDARY_HACK
5594 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5595 higher than the real alignment of %sp. However, when it does this,
5596 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5597 This is a temporary hack while the sparc port is fixed. */
5598 if (SPARC_STACK_BOUNDARY_HACK)
5599 sp_offset = 0;
5600 #endif
5602 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5604 save_var = offset_ptr->var;
5605 save_constant = offset_ptr->constant;
5608 alignment_pad->var = NULL_TREE;
5609 alignment_pad->constant = 0;
5611 if (boundary > BITS_PER_UNIT)
5613 if (offset_ptr->var)
5615 tree sp_offset_tree = ssize_int (sp_offset);
5616 tree offset = size_binop (PLUS_EXPR,
5617 ARGS_SIZE_TREE (*offset_ptr),
5618 sp_offset_tree);
5619 #ifdef ARGS_GROW_DOWNWARD
5620 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5621 #else
5622 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5623 #endif
5625 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5626 /* ARGS_SIZE_TREE includes constant term. */
5627 offset_ptr->constant = 0;
5628 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5629 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5630 save_var);
5632 else
5634 offset_ptr->constant = -sp_offset +
5635 #ifdef ARGS_GROW_DOWNWARD
5636 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5637 #else
5638 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5639 #endif
5640 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5641 alignment_pad->constant = offset_ptr->constant - save_constant;
5646 static void
5647 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5649 if (passed_mode != BLKmode)
5651 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5652 offset_ptr->constant
5653 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5654 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5655 - GET_MODE_SIZE (passed_mode));
5657 else
5659 if (TREE_CODE (sizetree) != INTEGER_CST
5660 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5662 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5663 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5664 /* Add it in. */
5665 ADD_PARM_SIZE (*offset_ptr, s2);
5666 SUB_PARM_SIZE (*offset_ptr, sizetree);
5671 /* Walk the tree of blocks describing the binding levels within a function
5672 and warn about uninitialized variables.
5673 This is done after calling flow_analysis and before global_alloc
5674 clobbers the pseudo-regs to hard regs. */
5676 void
5677 uninitialized_vars_warning (tree block)
5679 tree decl, sub;
5680 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5682 if (warn_uninitialized
5683 && TREE_CODE (decl) == VAR_DECL
5684 /* These warnings are unreliable for and aggregates
5685 because assigning the fields one by one can fail to convince
5686 flow.c that the entire aggregate was initialized.
5687 Unions are troublesome because members may be shorter. */
5688 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5689 && DECL_RTL (decl) != 0
5690 && GET_CODE (DECL_RTL (decl)) == REG
5691 /* Global optimizations can make it difficult to determine if a
5692 particular variable has been initialized. However, a VAR_DECL
5693 with a nonzero DECL_INITIAL had an initializer, so do not
5694 claim it is potentially uninitialized.
5696 When the DECL_INITIAL is NULL call the language hook to tell us
5697 if we want to warn. */
5698 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5699 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5700 warning ("%J'%D' might be used uninitialized in this function",
5701 decl, decl);
5702 if (extra_warnings
5703 && TREE_CODE (decl) == VAR_DECL
5704 && DECL_RTL (decl) != 0
5705 && GET_CODE (DECL_RTL (decl)) == REG
5706 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5707 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5708 decl, decl);
5710 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5711 uninitialized_vars_warning (sub);
5714 /* Do the appropriate part of uninitialized_vars_warning
5715 but for arguments instead of local variables. */
5717 void
5718 setjmp_args_warning (void)
5720 tree decl;
5721 for (decl = DECL_ARGUMENTS (current_function_decl);
5722 decl; decl = TREE_CHAIN (decl))
5723 if (DECL_RTL (decl) != 0
5724 && GET_CODE (DECL_RTL (decl)) == REG
5725 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5726 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5727 decl, decl);
5730 /* If this function call setjmp, put all vars into the stack
5731 unless they were declared `register'. */
5733 void
5734 setjmp_protect (tree block)
5736 tree decl, sub;
5737 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5738 if ((TREE_CODE (decl) == VAR_DECL
5739 || TREE_CODE (decl) == PARM_DECL)
5740 && DECL_RTL (decl) != 0
5741 && (GET_CODE (DECL_RTL (decl)) == REG
5742 || (GET_CODE (DECL_RTL (decl)) == MEM
5743 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5744 /* If this variable came from an inline function, it must be
5745 that its life doesn't overlap the setjmp. If there was a
5746 setjmp in the function, it would already be in memory. We
5747 must exclude such variable because their DECL_RTL might be
5748 set to strange things such as virtual_stack_vars_rtx. */
5749 && ! DECL_FROM_INLINE (decl)
5750 && (
5751 #ifdef NON_SAVING_SETJMP
5752 /* If longjmp doesn't restore the registers,
5753 don't put anything in them. */
5754 NON_SAVING_SETJMP
5756 #endif
5757 ! DECL_REGISTER (decl)))
5758 put_var_into_stack (decl, /*rescan=*/true);
5759 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5760 setjmp_protect (sub);
5763 /* Like the previous function, but for args instead of local variables. */
5765 void
5766 setjmp_protect_args (void)
5768 tree decl;
5769 for (decl = DECL_ARGUMENTS (current_function_decl);
5770 decl; decl = TREE_CHAIN (decl))
5771 if ((TREE_CODE (decl) == VAR_DECL
5772 || TREE_CODE (decl) == PARM_DECL)
5773 && DECL_RTL (decl) != 0
5774 && (GET_CODE (DECL_RTL (decl)) == REG
5775 || (GET_CODE (DECL_RTL (decl)) == MEM
5776 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5777 && (
5778 /* If longjmp doesn't restore the registers,
5779 don't put anything in them. */
5780 #ifdef NON_SAVING_SETJMP
5781 NON_SAVING_SETJMP
5783 #endif
5784 ! DECL_REGISTER (decl)))
5785 put_var_into_stack (decl, /*rescan=*/true);
5788 /* Return the context-pointer register corresponding to DECL,
5789 or 0 if it does not need one. */
5792 lookup_static_chain (tree decl)
5794 tree context = decl_function_context (decl);
5795 tree link;
5797 if (context == 0
5798 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5799 return 0;
5801 /* We treat inline_function_decl as an alias for the current function
5802 because that is the inline function whose vars, types, etc.
5803 are being merged into the current function.
5804 See expand_inline_function. */
5805 if (context == current_function_decl || context == inline_function_decl)
5806 return virtual_stack_vars_rtx;
5808 for (link = context_display; link; link = TREE_CHAIN (link))
5809 if (TREE_PURPOSE (link) == context)
5810 return RTL_EXPR_RTL (TREE_VALUE (link));
5812 abort ();
5815 /* Convert a stack slot address ADDR for variable VAR
5816 (from a containing function)
5817 into an address valid in this function (using a static chain). */
5820 fix_lexical_addr (rtx addr, tree var)
5822 rtx basereg;
5823 HOST_WIDE_INT displacement;
5824 tree context = decl_function_context (var);
5825 struct function *fp;
5826 rtx base = 0;
5828 /* If this is the present function, we need not do anything. */
5829 if (context == current_function_decl || context == inline_function_decl)
5830 return addr;
5832 fp = find_function_data (context);
5834 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5835 addr = XEXP (XEXP (addr, 0), 0);
5837 /* Decode given address as base reg plus displacement. */
5838 if (GET_CODE (addr) == REG)
5839 basereg = addr, displacement = 0;
5840 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5841 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5842 else
5843 abort ();
5845 /* We accept vars reached via the containing function's
5846 incoming arg pointer and via its stack variables pointer. */
5847 if (basereg == fp->internal_arg_pointer)
5849 /* If reached via arg pointer, get the arg pointer value
5850 out of that function's stack frame.
5852 There are two cases: If a separate ap is needed, allocate a
5853 slot in the outer function for it and dereference it that way.
5854 This is correct even if the real ap is actually a pseudo.
5855 Otherwise, just adjust the offset from the frame pointer to
5856 compensate. */
5858 #ifdef NEED_SEPARATE_AP
5859 rtx addr;
5861 addr = get_arg_pointer_save_area (fp);
5862 addr = fix_lexical_addr (XEXP (addr, 0), var);
5863 addr = memory_address (Pmode, addr);
5865 base = gen_rtx_MEM (Pmode, addr);
5866 set_mem_alias_set (base, get_frame_alias_set ());
5867 base = copy_to_reg (base);
5868 #else
5869 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5870 base = lookup_static_chain (var);
5871 #endif
5874 else if (basereg == virtual_stack_vars_rtx)
5876 /* This is the same code as lookup_static_chain, duplicated here to
5877 avoid an extra call to decl_function_context. */
5878 tree link;
5880 for (link = context_display; link; link = TREE_CHAIN (link))
5881 if (TREE_PURPOSE (link) == context)
5883 base = RTL_EXPR_RTL (TREE_VALUE (link));
5884 break;
5888 if (base == 0)
5889 abort ();
5891 /* Use same offset, relative to appropriate static chain or argument
5892 pointer. */
5893 return plus_constant (base, displacement);
5896 /* Return the address of the trampoline for entering nested fn FUNCTION.
5897 If necessary, allocate a trampoline (in the stack frame)
5898 and emit rtl to initialize its contents (at entry to this function). */
5901 trampoline_address (tree function)
5903 tree link;
5904 tree rtlexp;
5905 rtx tramp;
5906 struct function *fp;
5907 tree fn_context;
5909 /* Find an existing trampoline and return it. */
5910 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5911 if (TREE_PURPOSE (link) == function)
5912 return
5913 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5915 for (fp = outer_function_chain; fp; fp = fp->outer)
5916 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5917 if (TREE_PURPOSE (link) == function)
5919 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5920 function);
5921 return adjust_trampoline_addr (tramp);
5924 /* None exists; we must make one. */
5926 /* Find the `struct function' for the function containing FUNCTION. */
5927 fp = 0;
5928 fn_context = decl_function_context (function);
5929 if (fn_context != current_function_decl
5930 && fn_context != inline_function_decl)
5931 fp = find_function_data (fn_context);
5933 /* Allocate run-time space for this trampoline. */
5934 /* If rounding needed, allocate extra space
5935 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5936 #define TRAMPOLINE_REAL_SIZE \
5937 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5938 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5939 fp ? fp : cfun);
5940 /* Record the trampoline for reuse and note it for later initialization
5941 by expand_function_end. */
5942 if (fp != 0)
5944 rtlexp = make_node (RTL_EXPR);
5945 RTL_EXPR_RTL (rtlexp) = tramp;
5946 fp->x_trampoline_list = tree_cons (function, rtlexp,
5947 fp->x_trampoline_list);
5949 else
5951 /* Make the RTL_EXPR node temporary, not momentary, so that the
5952 trampoline_list doesn't become garbage. */
5953 rtlexp = make_node (RTL_EXPR);
5955 RTL_EXPR_RTL (rtlexp) = tramp;
5956 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5959 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5960 return adjust_trampoline_addr (tramp);
5963 /* Given a trampoline address,
5964 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5966 static rtx
5967 round_trampoline_addr (rtx tramp)
5969 /* Round address up to desired boundary. */
5970 rtx temp = gen_reg_rtx (Pmode);
5971 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5972 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5974 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5975 temp, 0, OPTAB_LIB_WIDEN);
5976 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5977 temp, 0, OPTAB_LIB_WIDEN);
5979 return tramp;
5982 /* Given a trampoline address, round it then apply any
5983 platform-specific adjustments so that the result can be used for a
5984 function call . */
5986 static rtx
5987 adjust_trampoline_addr (rtx tramp)
5989 tramp = round_trampoline_addr (tramp);
5990 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5991 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5992 #endif
5993 return tramp;
5996 /* Put all this function's BLOCK nodes including those that are chained
5997 onto the first block into a vector, and return it.
5998 Also store in each NOTE for the beginning or end of a block
5999 the index of that block in the vector.
6000 The arguments are BLOCK, the chain of top-level blocks of the function,
6001 and INSNS, the insn chain of the function. */
6003 void
6004 identify_blocks (void)
6006 int n_blocks;
6007 tree *block_vector, *last_block_vector;
6008 tree *block_stack;
6009 tree block = DECL_INITIAL (current_function_decl);
6011 if (block == 0)
6012 return;
6014 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
6015 depth-first order. */
6016 block_vector = get_block_vector (block, &n_blocks);
6017 block_stack = xmalloc (n_blocks * sizeof (tree));
6019 last_block_vector = identify_blocks_1 (get_insns (),
6020 block_vector + 1,
6021 block_vector + n_blocks,
6022 block_stack);
6024 /* If we didn't use all of the subblocks, we've misplaced block notes. */
6025 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
6026 if (0 && last_block_vector != block_vector + n_blocks)
6027 abort ();
6029 free (block_vector);
6030 free (block_stack);
6033 /* Subroutine of identify_blocks. Do the block substitution on the
6034 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
6036 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
6037 BLOCK_VECTOR is incremented for each block seen. */
6039 static tree *
6040 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
6041 tree *orig_block_stack)
6043 rtx insn;
6044 tree *block_stack = orig_block_stack;
6046 for (insn = insns; insn; insn = NEXT_INSN (insn))
6048 if (GET_CODE (insn) == NOTE)
6050 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6052 tree b;
6054 /* If there are more block notes than BLOCKs, something
6055 is badly wrong. */
6056 if (block_vector == end_block_vector)
6057 abort ();
6059 b = *block_vector++;
6060 NOTE_BLOCK (insn) = b;
6061 *block_stack++ = b;
6063 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6065 /* If there are more NOTE_INSN_BLOCK_ENDs than
6066 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
6067 if (block_stack == orig_block_stack)
6068 abort ();
6070 NOTE_BLOCK (insn) = *--block_stack;
6073 else if (GET_CODE (insn) == CALL_INSN
6074 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6076 rtx cp = PATTERN (insn);
6078 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
6079 end_block_vector, block_stack);
6080 if (XEXP (cp, 1))
6081 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
6082 end_block_vector, block_stack);
6083 if (XEXP (cp, 2))
6084 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
6085 end_block_vector, block_stack);
6089 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
6090 something is badly wrong. */
6091 if (block_stack != orig_block_stack)
6092 abort ();
6094 return block_vector;
6097 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
6098 and create duplicate blocks. */
6099 /* ??? Need an option to either create block fragments or to create
6100 abstract origin duplicates of a source block. It really depends
6101 on what optimization has been performed. */
6103 void
6104 reorder_blocks (void)
6106 tree block = DECL_INITIAL (current_function_decl);
6107 varray_type block_stack;
6109 if (block == NULL_TREE)
6110 return;
6112 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6114 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6115 reorder_blocks_0 (block);
6117 /* Prune the old trees away, so that they don't get in the way. */
6118 BLOCK_SUBBLOCKS (block) = NULL_TREE;
6119 BLOCK_CHAIN (block) = NULL_TREE;
6121 /* Recreate the block tree from the note nesting. */
6122 reorder_blocks_1 (get_insns (), block, &block_stack);
6123 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6125 /* Remove deleted blocks from the block fragment chains. */
6126 reorder_fix_fragments (block);
6129 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6131 static void
6132 reorder_blocks_0 (tree block)
6134 while (block)
6136 TREE_ASM_WRITTEN (block) = 0;
6137 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6138 block = BLOCK_CHAIN (block);
6142 static void
6143 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6145 rtx insn;
6147 for (insn = insns; insn; insn = NEXT_INSN (insn))
6149 if (GET_CODE (insn) == NOTE)
6151 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6153 tree block = NOTE_BLOCK (insn);
6155 /* If we have seen this block before, that means it now
6156 spans multiple address regions. Create a new fragment. */
6157 if (TREE_ASM_WRITTEN (block))
6159 tree new_block = copy_node (block);
6160 tree origin;
6162 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6163 ? BLOCK_FRAGMENT_ORIGIN (block)
6164 : block);
6165 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6166 BLOCK_FRAGMENT_CHAIN (new_block)
6167 = BLOCK_FRAGMENT_CHAIN (origin);
6168 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6170 NOTE_BLOCK (insn) = new_block;
6171 block = new_block;
6174 BLOCK_SUBBLOCKS (block) = 0;
6175 TREE_ASM_WRITTEN (block) = 1;
6176 /* When there's only one block for the entire function,
6177 current_block == block and we mustn't do this, it
6178 will cause infinite recursion. */
6179 if (block != current_block)
6181 BLOCK_SUPERCONTEXT (block) = current_block;
6182 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6183 BLOCK_SUBBLOCKS (current_block) = block;
6184 current_block = block;
6186 VARRAY_PUSH_TREE (*p_block_stack, block);
6188 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6190 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6191 VARRAY_POP (*p_block_stack);
6192 BLOCK_SUBBLOCKS (current_block)
6193 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6194 current_block = BLOCK_SUPERCONTEXT (current_block);
6197 else if (GET_CODE (insn) == CALL_INSN
6198 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6200 rtx cp = PATTERN (insn);
6201 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6202 if (XEXP (cp, 1))
6203 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6204 if (XEXP (cp, 2))
6205 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6210 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6211 appears in the block tree, select one of the fragments to become
6212 the new origin block. */
6214 static void
6215 reorder_fix_fragments (tree block)
6217 while (block)
6219 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6220 tree new_origin = NULL_TREE;
6222 if (dup_origin)
6224 if (! TREE_ASM_WRITTEN (dup_origin))
6226 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6228 /* Find the first of the remaining fragments. There must
6229 be at least one -- the current block. */
6230 while (! TREE_ASM_WRITTEN (new_origin))
6231 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6232 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6235 else if (! dup_origin)
6236 new_origin = block;
6238 /* Re-root the rest of the fragments to the new origin. In the
6239 case that DUP_ORIGIN was null, that means BLOCK was the origin
6240 of a chain of fragments and we want to remove those fragments
6241 that didn't make it to the output. */
6242 if (new_origin)
6244 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6245 tree chain = *pp;
6247 while (chain)
6249 if (TREE_ASM_WRITTEN (chain))
6251 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6252 *pp = chain;
6253 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6255 chain = BLOCK_FRAGMENT_CHAIN (chain);
6257 *pp = NULL_TREE;
6260 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6261 block = BLOCK_CHAIN (block);
6265 /* Reverse the order of elements in the chain T of blocks,
6266 and return the new head of the chain (old last element). */
6268 static tree
6269 blocks_nreverse (tree t)
6271 tree prev = 0, decl, next;
6272 for (decl = t; decl; decl = next)
6274 next = BLOCK_CHAIN (decl);
6275 BLOCK_CHAIN (decl) = prev;
6276 prev = decl;
6278 return prev;
6281 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6282 non-NULL, list them all into VECTOR, in a depth-first preorder
6283 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6284 blocks. */
6286 static int
6287 all_blocks (tree block, tree *vector)
6289 int n_blocks = 0;
6291 while (block)
6293 TREE_ASM_WRITTEN (block) = 0;
6295 /* Record this block. */
6296 if (vector)
6297 vector[n_blocks] = block;
6299 ++n_blocks;
6301 /* Record the subblocks, and their subblocks... */
6302 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6303 vector ? vector + n_blocks : 0);
6304 block = BLOCK_CHAIN (block);
6307 return n_blocks;
6310 /* Return a vector containing all the blocks rooted at BLOCK. The
6311 number of elements in the vector is stored in N_BLOCKS_P. The
6312 vector is dynamically allocated; it is the caller's responsibility
6313 to call `free' on the pointer returned. */
6315 static tree *
6316 get_block_vector (tree block, int *n_blocks_p)
6318 tree *block_vector;
6320 *n_blocks_p = all_blocks (block, NULL);
6321 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6322 all_blocks (block, block_vector);
6324 return block_vector;
6327 static GTY(()) int next_block_index = 2;
6329 /* Set BLOCK_NUMBER for all the blocks in FN. */
6331 void
6332 number_blocks (tree fn)
6334 int i;
6335 int n_blocks;
6336 tree *block_vector;
6338 /* For SDB and XCOFF debugging output, we start numbering the blocks
6339 from 1 within each function, rather than keeping a running
6340 count. */
6341 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6342 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6343 next_block_index = 1;
6344 #endif
6346 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6348 /* The top-level BLOCK isn't numbered at all. */
6349 for (i = 1; i < n_blocks; ++i)
6350 /* We number the blocks from two. */
6351 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6353 free (block_vector);
6355 return;
6358 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6360 tree
6361 debug_find_var_in_block_tree (tree var, tree block)
6363 tree t;
6365 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6366 if (t == var)
6367 return block;
6369 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6371 tree ret = debug_find_var_in_block_tree (var, t);
6372 if (ret)
6373 return ret;
6376 return NULL_TREE;
6379 /* Allocate a function structure for FNDECL and set its contents
6380 to the defaults. */
6382 void
6383 allocate_struct_function (tree fndecl)
6385 tree result;
6387 cfun = ggc_alloc_cleared (sizeof (struct function));
6389 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6391 cfun->stack_alignment_needed = STACK_BOUNDARY;
6392 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6394 current_function_funcdef_no = funcdef_no++;
6396 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6398 init_stmt_for_function ();
6399 init_eh_for_function ();
6401 (*lang_hooks.function.init) (cfun);
6402 if (init_machine_status)
6403 cfun->machine = (*init_machine_status) ();
6405 if (fndecl == NULL)
6406 return;
6408 DECL_SAVED_INSNS (fndecl) = cfun;
6409 cfun->decl = fndecl;
6411 result = DECL_RESULT (fndecl);
6412 if (aggregate_value_p (result, fndecl))
6414 #ifdef PCC_STATIC_STRUCT_RETURN
6415 current_function_returns_pcc_struct = 1;
6416 #endif
6417 current_function_returns_struct = 1;
6420 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6422 current_function_needs_context
6423 = (decl_function_context (current_function_decl) != 0
6424 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6427 /* Reset cfun, and other non-struct-function variables to defaults as
6428 appropriate for emitting rtl at the start of a function. */
6430 static void
6431 prepare_function_start (tree fndecl)
6433 if (fndecl && DECL_SAVED_INSNS (fndecl))
6434 cfun = DECL_SAVED_INSNS (fndecl);
6435 else
6436 allocate_struct_function (fndecl);
6437 init_emit ();
6438 init_varasm_status (cfun);
6439 init_expr ();
6441 cse_not_expected = ! optimize;
6443 /* Caller save not needed yet. */
6444 caller_save_needed = 0;
6446 /* We haven't done register allocation yet. */
6447 reg_renumber = 0;
6449 /* Indicate that we need to distinguish between the return value of the
6450 present function and the return value of a function being called. */
6451 rtx_equal_function_value_matters = 1;
6453 /* Indicate that we have not instantiated virtual registers yet. */
6454 virtuals_instantiated = 0;
6456 /* Indicate that we want CONCATs now. */
6457 generating_concat_p = 1;
6459 /* Indicate we have no need of a frame pointer yet. */
6460 frame_pointer_needed = 0;
6463 /* Initialize the rtl expansion mechanism so that we can do simple things
6464 like generate sequences. This is used to provide a context during global
6465 initialization of some passes. */
6466 void
6467 init_dummy_function_start (void)
6469 prepare_function_start (NULL);
6472 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6473 and initialize static variables for generating RTL for the statements
6474 of the function. */
6476 void
6477 init_function_start (tree subr)
6479 prepare_function_start (subr);
6481 /* Within function body, compute a type's size as soon it is laid out. */
6482 immediate_size_expand++;
6484 /* Prevent ever trying to delete the first instruction of a
6485 function. Also tell final how to output a linenum before the
6486 function prologue. Note linenums could be missing, e.g. when
6487 compiling a Java .class file. */
6488 if (DECL_SOURCE_LINE (subr))
6489 emit_line_note (DECL_SOURCE_LOCATION (subr));
6491 /* Make sure first insn is a note even if we don't want linenums.
6492 This makes sure the first insn will never be deleted.
6493 Also, final expects a note to appear there. */
6494 emit_note (NOTE_INSN_DELETED);
6496 /* Warn if this value is an aggregate type,
6497 regardless of which calling convention we are using for it. */
6498 if (warn_aggregate_return
6499 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6500 warning ("function returns an aggregate");
6503 /* Make sure all values used by the optimization passes have sane
6504 defaults. */
6505 void
6506 init_function_for_compilation (void)
6508 reg_renumber = 0;
6510 /* No prologue/epilogue insns yet. */
6511 VARRAY_GROW (prologue, 0);
6512 VARRAY_GROW (epilogue, 0);
6513 VARRAY_GROW (sibcall_epilogue, 0);
6516 /* Expand a call to __main at the beginning of a possible main function. */
6518 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6519 #undef HAS_INIT_SECTION
6520 #define HAS_INIT_SECTION
6521 #endif
6523 void
6524 expand_main_function (void)
6526 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6527 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6529 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6530 rtx tmp, seq;
6532 start_sequence ();
6533 /* Forcibly align the stack. */
6534 #ifdef STACK_GROWS_DOWNWARD
6535 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6536 stack_pointer_rtx, 1, OPTAB_WIDEN);
6537 #else
6538 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6539 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6540 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6541 stack_pointer_rtx, 1, OPTAB_WIDEN);
6542 #endif
6543 if (tmp != stack_pointer_rtx)
6544 emit_move_insn (stack_pointer_rtx, tmp);
6546 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6547 tmp = force_reg (Pmode, const0_rtx);
6548 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6549 seq = get_insns ();
6550 end_sequence ();
6552 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6553 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6554 break;
6555 if (tmp)
6556 emit_insn_before (seq, tmp);
6557 else
6558 emit_insn (seq);
6560 #endif
6562 #ifndef HAS_INIT_SECTION
6563 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6564 #endif
6567 /* The PENDING_SIZES represent the sizes of variable-sized types.
6568 Create RTL for the various sizes now (using temporary variables),
6569 so that we can refer to the sizes from the RTL we are generating
6570 for the current function. The PENDING_SIZES are a TREE_LIST. The
6571 TREE_VALUE of each node is a SAVE_EXPR. */
6573 void
6574 expand_pending_sizes (tree pending_sizes)
6576 tree tem;
6578 /* Evaluate now the sizes of any types declared among the arguments. */
6579 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6581 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6582 /* Flush the queue in case this parameter declaration has
6583 side-effects. */
6584 emit_queue ();
6588 /* Start the RTL for a new function, and set variables used for
6589 emitting RTL.
6590 SUBR is the FUNCTION_DECL node.
6591 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6592 the function's parameters, which must be run at any return statement. */
6594 void
6595 expand_function_start (tree subr, int parms_have_cleanups)
6597 tree tem;
6598 rtx last_ptr = NULL_RTX;
6600 /* Make sure volatile mem refs aren't considered
6601 valid operands of arithmetic insns. */
6602 init_recog_no_volatile ();
6604 current_function_instrument_entry_exit
6605 = (flag_instrument_function_entry_exit
6606 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6608 current_function_profile
6609 = (profile_flag
6610 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6612 current_function_limit_stack
6613 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6615 /* If function gets a static chain arg, store it in the stack frame.
6616 Do this first, so it gets the first stack slot offset. */
6617 if (current_function_needs_context)
6619 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6621 /* Delay copying static chain if it is not a register to avoid
6622 conflicts with regs used for parameters. */
6623 if (! SMALL_REGISTER_CLASSES
6624 || GET_CODE (static_chain_incoming_rtx) == REG)
6625 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6628 /* If the parameters of this function need cleaning up, get a label
6629 for the beginning of the code which executes those cleanups. This must
6630 be done before doing anything with return_label. */
6631 if (parms_have_cleanups)
6632 cleanup_label = gen_label_rtx ();
6633 else
6634 cleanup_label = 0;
6636 /* Make the label for return statements to jump to. Do not special
6637 case machines with special return instructions -- they will be
6638 handled later during jump, ifcvt, or epilogue creation. */
6639 return_label = gen_label_rtx ();
6641 /* Initialize rtx used to return the value. */
6642 /* Do this before assign_parms so that we copy the struct value address
6643 before any library calls that assign parms might generate. */
6645 /* Decide whether to return the value in memory or in a register. */
6646 if (aggregate_value_p (DECL_RESULT (subr), subr))
6648 /* Returning something that won't go in a register. */
6649 rtx value_address = 0;
6651 #ifdef PCC_STATIC_STRUCT_RETURN
6652 if (current_function_returns_pcc_struct)
6654 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6655 value_address = assemble_static_space (size);
6657 else
6658 #endif
6660 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6661 /* Expect to be passed the address of a place to store the value.
6662 If it is passed as an argument, assign_parms will take care of
6663 it. */
6664 if (sv)
6666 value_address = gen_reg_rtx (Pmode);
6667 emit_move_insn (value_address, sv);
6670 if (value_address)
6672 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6673 set_mem_attributes (x, DECL_RESULT (subr), 1);
6674 SET_DECL_RTL (DECL_RESULT (subr), x);
6677 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6678 /* If return mode is void, this decl rtl should not be used. */
6679 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6680 else
6682 /* Compute the return values into a pseudo reg, which we will copy
6683 into the true return register after the cleanups are done. */
6685 /* In order to figure out what mode to use for the pseudo, we
6686 figure out what the mode of the eventual return register will
6687 actually be, and use that. */
6688 rtx hard_reg
6689 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6690 subr, 1);
6692 /* Structures that are returned in registers are not aggregate_value_p,
6693 so we may see a PARALLEL or a REG. */
6694 if (REG_P (hard_reg))
6695 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6696 else if (GET_CODE (hard_reg) == PARALLEL)
6697 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6698 else
6699 abort ();
6701 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6702 result to the real return register(s). */
6703 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6706 /* Initialize rtx for parameters and local variables.
6707 In some cases this requires emitting insns. */
6709 assign_parms (subr);
6711 /* Copy the static chain now if it wasn't a register. The delay is to
6712 avoid conflicts with the parameter passing registers. */
6714 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6715 if (GET_CODE (static_chain_incoming_rtx) != REG)
6716 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6718 /* The following was moved from init_function_start.
6719 The move is supposed to make sdb output more accurate. */
6720 /* Indicate the beginning of the function body,
6721 as opposed to parm setup. */
6722 emit_note (NOTE_INSN_FUNCTION_BEG);
6724 if (GET_CODE (get_last_insn ()) != NOTE)
6725 emit_note (NOTE_INSN_DELETED);
6726 parm_birth_insn = get_last_insn ();
6728 context_display = 0;
6729 if (current_function_needs_context)
6731 /* Fetch static chain values for containing functions. */
6732 tem = decl_function_context (current_function_decl);
6733 /* Copy the static chain pointer into a pseudo. If we have
6734 small register classes, copy the value from memory if
6735 static_chain_incoming_rtx is a REG. */
6736 if (tem)
6738 /* If the static chain originally came in a register, put it back
6739 there, then move it out in the next insn. The reason for
6740 this peculiar code is to satisfy function integration. */
6741 if (SMALL_REGISTER_CLASSES
6742 && GET_CODE (static_chain_incoming_rtx) == REG)
6743 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6744 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6747 while (tem)
6749 tree rtlexp = make_node (RTL_EXPR);
6751 RTL_EXPR_RTL (rtlexp) = last_ptr;
6752 context_display = tree_cons (tem, rtlexp, context_display);
6753 tem = decl_function_context (tem);
6754 if (tem == 0)
6755 break;
6756 /* Chain through stack frames, assuming pointer to next lexical frame
6757 is found at the place we always store it. */
6758 #ifdef FRAME_GROWS_DOWNWARD
6759 last_ptr = plus_constant (last_ptr,
6760 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6761 #endif
6762 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6763 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6764 last_ptr = copy_to_reg (last_ptr);
6766 /* If we are not optimizing, ensure that we know that this
6767 piece of context is live over the entire function. */
6768 if (! optimize)
6769 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6770 save_expr_regs);
6774 if (current_function_instrument_entry_exit)
6776 rtx fun = DECL_RTL (current_function_decl);
6777 if (GET_CODE (fun) == MEM)
6778 fun = XEXP (fun, 0);
6779 else
6780 abort ();
6781 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6782 2, fun, Pmode,
6783 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6785 hard_frame_pointer_rtx),
6786 Pmode);
6789 if (current_function_profile)
6791 #ifdef PROFILE_HOOK
6792 PROFILE_HOOK (current_function_funcdef_no);
6793 #endif
6796 /* After the display initializations is where the tail-recursion label
6797 should go, if we end up needing one. Ensure we have a NOTE here
6798 since some things (like trampolines) get placed before this. */
6799 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6801 /* Evaluate now the sizes of any types declared among the arguments. */
6802 expand_pending_sizes (nreverse (get_pending_sizes ()));
6804 /* Make sure there is a line number after the function entry setup code. */
6805 force_next_line_note ();
6808 /* Undo the effects of init_dummy_function_start. */
6809 void
6810 expand_dummy_function_end (void)
6812 /* End any sequences that failed to be closed due to syntax errors. */
6813 while (in_sequence_p ())
6814 end_sequence ();
6816 /* Outside function body, can't compute type's actual size
6817 until next function's body starts. */
6819 free_after_parsing (cfun);
6820 free_after_compilation (cfun);
6821 cfun = 0;
6824 /* Call DOIT for each hard register used as a return value from
6825 the current function. */
6827 void
6828 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6830 rtx outgoing = current_function_return_rtx;
6832 if (! outgoing)
6833 return;
6835 if (GET_CODE (outgoing) == REG)
6836 (*doit) (outgoing, arg);
6837 else if (GET_CODE (outgoing) == PARALLEL)
6839 int i;
6841 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6843 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6845 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6846 (*doit) (x, arg);
6851 static void
6852 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6854 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6857 void
6858 clobber_return_register (void)
6860 diddle_return_value (do_clobber_return_reg, NULL);
6862 /* In case we do use pseudo to return value, clobber it too. */
6863 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6865 tree decl_result = DECL_RESULT (current_function_decl);
6866 rtx decl_rtl = DECL_RTL (decl_result);
6867 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6869 do_clobber_return_reg (decl_rtl, NULL);
6874 static void
6875 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6877 emit_insn (gen_rtx_USE (VOIDmode, reg));
6880 void
6881 use_return_register (void)
6883 diddle_return_value (do_use_return_reg, NULL);
6886 static GTY(()) rtx initial_trampoline;
6888 /* Generate RTL for the end of the current function. */
6890 void
6891 expand_function_end (void)
6893 tree link;
6894 rtx clobber_after;
6896 finish_expr_for_function ();
6898 /* If arg_pointer_save_area was referenced only from a nested
6899 function, we will not have initialized it yet. Do that now. */
6900 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6901 get_arg_pointer_save_area (cfun);
6903 #ifdef NON_SAVING_SETJMP
6904 /* Don't put any variables in registers if we call setjmp
6905 on a machine that fails to restore the registers. */
6906 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6908 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6909 setjmp_protect (DECL_INITIAL (current_function_decl));
6911 setjmp_protect_args ();
6913 #endif
6915 /* Initialize any trampolines required by this function. */
6916 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6918 tree function = TREE_PURPOSE (link);
6919 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6920 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6921 #ifdef TRAMPOLINE_TEMPLATE
6922 rtx blktramp;
6923 #endif
6924 rtx seq;
6926 #ifdef TRAMPOLINE_TEMPLATE
6927 /* First make sure this compilation has a template for
6928 initializing trampolines. */
6929 if (initial_trampoline == 0)
6931 initial_trampoline
6932 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6933 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6935 #endif
6937 /* Generate insns to initialize the trampoline. */
6938 start_sequence ();
6939 tramp = round_trampoline_addr (XEXP (tramp, 0));
6940 #ifdef TRAMPOLINE_TEMPLATE
6941 blktramp = replace_equiv_address (initial_trampoline, tramp);
6942 emit_block_move (blktramp, initial_trampoline,
6943 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6944 #endif
6945 trampolines_created = 1;
6946 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6947 seq = get_insns ();
6948 end_sequence ();
6950 /* Put those insns at entry to the containing function (this one). */
6951 emit_insn_before (seq, tail_recursion_reentry);
6954 /* If we are doing stack checking and this function makes calls,
6955 do a stack probe at the start of the function to ensure we have enough
6956 space for another stack frame. */
6957 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6959 rtx insn, seq;
6961 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6962 if (GET_CODE (insn) == CALL_INSN)
6964 start_sequence ();
6965 probe_stack_range (STACK_CHECK_PROTECT,
6966 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6967 seq = get_insns ();
6968 end_sequence ();
6969 emit_insn_before (seq, tail_recursion_reentry);
6970 break;
6974 /* Possibly warn about unused parameters. */
6975 if (warn_unused_parameter)
6977 tree decl;
6979 for (decl = DECL_ARGUMENTS (current_function_decl);
6980 decl; decl = TREE_CHAIN (decl))
6981 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6982 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6983 warning ("%Junused parameter '%D'", decl, decl);
6986 /* Delete handlers for nonlocal gotos if nothing uses them. */
6987 if (nonlocal_goto_handler_slots != 0
6988 && ! current_function_has_nonlocal_label)
6989 delete_handlers ();
6991 /* End any sequences that failed to be closed due to syntax errors. */
6992 while (in_sequence_p ())
6993 end_sequence ();
6995 /* Outside function body, can't compute type's actual size
6996 until next function's body starts. */
6997 immediate_size_expand--;
6999 clear_pending_stack_adjust ();
7000 do_pending_stack_adjust ();
7002 /* Mark the end of the function body.
7003 If control reaches this insn, the function can drop through
7004 without returning a value. */
7005 emit_note (NOTE_INSN_FUNCTION_END);
7007 /* Must mark the last line number note in the function, so that the test
7008 coverage code can avoid counting the last line twice. This just tells
7009 the code to ignore the immediately following line note, since there
7010 already exists a copy of this note somewhere above. This line number
7011 note is still needed for debugging though, so we can't delete it. */
7012 if (flag_test_coverage)
7013 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
7015 /* Output a linenumber for the end of the function.
7016 SDB depends on this. */
7017 force_next_line_note ();
7018 emit_line_note (input_location);
7020 /* Before the return label (if any), clobber the return
7021 registers so that they are not propagated live to the rest of
7022 the function. This can only happen with functions that drop
7023 through; if there had been a return statement, there would
7024 have either been a return rtx, or a jump to the return label.
7026 We delay actual code generation after the current_function_value_rtx
7027 is computed. */
7028 clobber_after = get_last_insn ();
7030 /* Output the label for the actual return from the function,
7031 if one is expected. This happens either because a function epilogue
7032 is used instead of a return instruction, or because a return was done
7033 with a goto in order to run local cleanups, or because of pcc-style
7034 structure returning. */
7035 if (return_label)
7036 emit_label (return_label);
7038 if (current_function_instrument_entry_exit)
7040 rtx fun = DECL_RTL (current_function_decl);
7041 if (GET_CODE (fun) == MEM)
7042 fun = XEXP (fun, 0);
7043 else
7044 abort ();
7045 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
7046 2, fun, Pmode,
7047 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
7049 hard_frame_pointer_rtx),
7050 Pmode);
7053 /* Let except.c know where it should emit the call to unregister
7054 the function context for sjlj exceptions. */
7055 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
7056 sjlj_emit_function_exit_after (get_last_insn ());
7058 /* If we had calls to alloca, and this machine needs
7059 an accurate stack pointer to exit the function,
7060 insert some code to save and restore the stack pointer. */
7061 if (! EXIT_IGNORE_STACK
7062 && current_function_calls_alloca)
7064 rtx tem = 0;
7066 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7067 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7070 /* If scalar return value was computed in a pseudo-reg, or was a named
7071 return value that got dumped to the stack, copy that to the hard
7072 return register. */
7073 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7075 tree decl_result = DECL_RESULT (current_function_decl);
7076 rtx decl_rtl = DECL_RTL (decl_result);
7078 if (REG_P (decl_rtl)
7079 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7080 : DECL_REGISTER (decl_result))
7082 rtx real_decl_rtl = current_function_return_rtx;
7084 /* This should be set in assign_parms. */
7085 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7086 abort ();
7088 /* If this is a BLKmode structure being returned in registers,
7089 then use the mode computed in expand_return. Note that if
7090 decl_rtl is memory, then its mode may have been changed,
7091 but that current_function_return_rtx has not. */
7092 if (GET_MODE (real_decl_rtl) == BLKmode)
7093 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7095 /* If a named return value dumped decl_return to memory, then
7096 we may need to re-do the PROMOTE_MODE signed/unsigned
7097 extension. */
7098 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7100 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7102 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
7103 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7104 &unsignedp, 1);
7106 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7108 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7110 /* If expand_function_start has created a PARALLEL for decl_rtl,
7111 move the result to the real return registers. Otherwise, do
7112 a group load from decl_rtl for a named return. */
7113 if (GET_CODE (decl_rtl) == PARALLEL)
7114 emit_group_move (real_decl_rtl, decl_rtl);
7115 else
7116 emit_group_load (real_decl_rtl, decl_rtl,
7117 TREE_TYPE (decl_result),
7118 int_size_in_bytes (TREE_TYPE (decl_result)));
7120 else
7121 emit_move_insn (real_decl_rtl, decl_rtl);
7125 /* If returning a structure, arrange to return the address of the value
7126 in a place where debuggers expect to find it.
7128 If returning a structure PCC style,
7129 the caller also depends on this value.
7130 And current_function_returns_pcc_struct is not necessarily set. */
7131 if (current_function_returns_struct
7132 || current_function_returns_pcc_struct)
7134 rtx value_address
7135 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7136 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7137 #ifdef FUNCTION_OUTGOING_VALUE
7138 rtx outgoing
7139 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7140 current_function_decl);
7141 #else
7142 rtx outgoing
7143 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7144 #endif
7146 /* Mark this as a function return value so integrate will delete the
7147 assignment and USE below when inlining this function. */
7148 REG_FUNCTION_VALUE_P (outgoing) = 1;
7150 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7151 value_address = convert_memory_address (GET_MODE (outgoing),
7152 value_address);
7154 emit_move_insn (outgoing, value_address);
7156 /* Show return register used to hold result (in this case the address
7157 of the result. */
7158 current_function_return_rtx = outgoing;
7161 /* If this is an implementation of throw, do what's necessary to
7162 communicate between __builtin_eh_return and the epilogue. */
7163 expand_eh_return ();
7165 /* Emit the actual code to clobber return register. */
7167 rtx seq, after;
7169 start_sequence ();
7170 clobber_return_register ();
7171 seq = get_insns ();
7172 end_sequence ();
7174 after = emit_insn_after (seq, clobber_after);
7176 if (clobber_after != after)
7177 cfun->x_clobber_return_insn = after;
7180 /* Output the label for the naked return from the function, if one is
7181 expected. This is currently used only by __builtin_return. */
7182 if (naked_return_label)
7183 emit_label (naked_return_label);
7185 /* ??? This should no longer be necessary since stupid is no longer with
7186 us, but there are some parts of the compiler (eg reload_combine, and
7187 sh mach_dep_reorg) that still try and compute their own lifetime info
7188 instead of using the general framework. */
7189 use_return_register ();
7191 /* Fix up any gotos that jumped out to the outermost
7192 binding level of the function.
7193 Must follow emitting RETURN_LABEL. */
7195 /* If you have any cleanups to do at this point,
7196 and they need to create temporary variables,
7197 then you will lose. */
7198 expand_fixups (get_insns ());
7202 get_arg_pointer_save_area (struct function *f)
7204 rtx ret = f->x_arg_pointer_save_area;
7206 if (! ret)
7208 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7209 f->x_arg_pointer_save_area = ret;
7212 if (f == cfun && ! f->arg_pointer_save_area_init)
7214 rtx seq;
7216 /* Save the arg pointer at the beginning of the function. The
7217 generated stack slot may not be a valid memory address, so we
7218 have to check it and fix it if necessary. */
7219 start_sequence ();
7220 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7221 seq = get_insns ();
7222 end_sequence ();
7224 push_topmost_sequence ();
7225 emit_insn_after (seq, get_insns ());
7226 pop_topmost_sequence ();
7229 return ret;
7232 /* Extend a vector that records the INSN_UIDs of INSNS
7233 (a list of one or more insns). */
7235 static void
7236 record_insns (rtx insns, varray_type *vecp)
7238 int i, len;
7239 rtx tmp;
7241 tmp = insns;
7242 len = 0;
7243 while (tmp != NULL_RTX)
7245 len++;
7246 tmp = NEXT_INSN (tmp);
7249 i = VARRAY_SIZE (*vecp);
7250 VARRAY_GROW (*vecp, i + len);
7251 tmp = insns;
7252 while (tmp != NULL_RTX)
7254 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7255 i++;
7256 tmp = NEXT_INSN (tmp);
7260 /* Set the locator of the insn chain starting at INSN to LOC. */
7261 static void
7262 set_insn_locators (rtx insn, int loc)
7264 while (insn != NULL_RTX)
7266 if (INSN_P (insn))
7267 INSN_LOCATOR (insn) = loc;
7268 insn = NEXT_INSN (insn);
7272 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7273 be running after reorg, SEQUENCE rtl is possible. */
7275 static int
7276 contains (rtx insn, varray_type vec)
7278 int i, j;
7280 if (GET_CODE (insn) == INSN
7281 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7283 int count = 0;
7284 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7285 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7286 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7287 count++;
7288 return count;
7290 else
7292 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7293 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7294 return 1;
7296 return 0;
7300 prologue_epilogue_contains (rtx insn)
7302 if (contains (insn, prologue))
7303 return 1;
7304 if (contains (insn, epilogue))
7305 return 1;
7306 return 0;
7310 sibcall_epilogue_contains (rtx insn)
7312 if (sibcall_epilogue)
7313 return contains (insn, sibcall_epilogue);
7314 return 0;
7317 #ifdef HAVE_return
7318 /* Insert gen_return at the end of block BB. This also means updating
7319 block_for_insn appropriately. */
7321 static void
7322 emit_return_into_block (basic_block bb, rtx line_note)
7324 emit_jump_insn_after (gen_return (), BB_END (bb));
7325 if (line_note)
7326 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
7328 #endif /* HAVE_return */
7330 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7332 /* These functions convert the epilogue into a variant that does not modify the
7333 stack pointer. This is used in cases where a function returns an object
7334 whose size is not known until it is computed. The called function leaves the
7335 object on the stack, leaves the stack depressed, and returns a pointer to
7336 the object.
7338 What we need to do is track all modifications and references to the stack
7339 pointer, deleting the modifications and changing the references to point to
7340 the location the stack pointer would have pointed to had the modifications
7341 taken place.
7343 These functions need to be portable so we need to make as few assumptions
7344 about the epilogue as we can. However, the epilogue basically contains
7345 three things: instructions to reset the stack pointer, instructions to
7346 reload registers, possibly including the frame pointer, and an
7347 instruction to return to the caller.
7349 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7350 We also make no attempt to validate the insns we make since if they are
7351 invalid, we probably can't do anything valid. The intent is that these
7352 routines get "smarter" as more and more machines start to use them and
7353 they try operating on different epilogues.
7355 We use the following structure to track what the part of the epilogue that
7356 we've already processed has done. We keep two copies of the SP equivalence,
7357 one for use during the insn we are processing and one for use in the next
7358 insn. The difference is because one part of a PARALLEL may adjust SP
7359 and the other may use it. */
7361 struct epi_info
7363 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7364 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7365 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7366 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7367 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7368 should be set to once we no longer need
7369 its value. */
7370 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
7371 for registers. */
7374 static void handle_epilogue_set (rtx, struct epi_info *);
7375 static void update_epilogue_consts (rtx, rtx, void *);
7376 static void emit_equiv_load (struct epi_info *);
7378 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7379 no modifications to the stack pointer. Return the new list of insns. */
7381 static rtx
7382 keep_stack_depressed (rtx insns)
7384 int j;
7385 struct epi_info info;
7386 rtx insn, next;
7388 /* If the epilogue is just a single instruction, it must be OK as is. */
7389 if (NEXT_INSN (insns) == NULL_RTX)
7390 return insns;
7392 /* Otherwise, start a sequence, initialize the information we have, and
7393 process all the insns we were given. */
7394 start_sequence ();
7396 info.sp_equiv_reg = stack_pointer_rtx;
7397 info.sp_offset = 0;
7398 info.equiv_reg_src = 0;
7400 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
7401 info.const_equiv[j] = 0;
7403 insn = insns;
7404 next = NULL_RTX;
7405 while (insn != NULL_RTX)
7407 next = NEXT_INSN (insn);
7409 if (!INSN_P (insn))
7411 add_insn (insn);
7412 insn = next;
7413 continue;
7416 /* If this insn references the register that SP is equivalent to and
7417 we have a pending load to that register, we must force out the load
7418 first and then indicate we no longer know what SP's equivalent is. */
7419 if (info.equiv_reg_src != 0
7420 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7422 emit_equiv_load (&info);
7423 info.sp_equiv_reg = 0;
7426 info.new_sp_equiv_reg = info.sp_equiv_reg;
7427 info.new_sp_offset = info.sp_offset;
7429 /* If this is a (RETURN) and the return address is on the stack,
7430 update the address and change to an indirect jump. */
7431 if (GET_CODE (PATTERN (insn)) == RETURN
7432 || (GET_CODE (PATTERN (insn)) == PARALLEL
7433 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7435 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7436 rtx base = 0;
7437 HOST_WIDE_INT offset = 0;
7438 rtx jump_insn, jump_set;
7440 /* If the return address is in a register, we can emit the insn
7441 unchanged. Otherwise, it must be a MEM and we see what the
7442 base register and offset are. In any case, we have to emit any
7443 pending load to the equivalent reg of SP, if any. */
7444 if (GET_CODE (retaddr) == REG)
7446 emit_equiv_load (&info);
7447 add_insn (insn);
7448 insn = next;
7449 continue;
7451 else if (GET_CODE (retaddr) == MEM
7452 && GET_CODE (XEXP (retaddr, 0)) == REG)
7453 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7454 else if (GET_CODE (retaddr) == MEM
7455 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7456 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7457 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7459 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7460 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7462 else
7463 abort ();
7465 /* If the base of the location containing the return pointer
7466 is SP, we must update it with the replacement address. Otherwise,
7467 just build the necessary MEM. */
7468 retaddr = plus_constant (base, offset);
7469 if (base == stack_pointer_rtx)
7470 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7471 plus_constant (info.sp_equiv_reg,
7472 info.sp_offset));
7474 retaddr = gen_rtx_MEM (Pmode, retaddr);
7476 /* If there is a pending load to the equivalent register for SP
7477 and we reference that register, we must load our address into
7478 a scratch register and then do that load. */
7479 if (info.equiv_reg_src
7480 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7482 unsigned int regno;
7483 rtx reg;
7485 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7486 if (HARD_REGNO_MODE_OK (regno, Pmode)
7487 && !fixed_regs[regno]
7488 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7489 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7490 regno)
7491 && !refers_to_regno_p (regno,
7492 regno + hard_regno_nregs[regno]
7493 [Pmode],
7494 info.equiv_reg_src, NULL)
7495 && info.const_equiv[regno] == 0)
7496 break;
7498 if (regno == FIRST_PSEUDO_REGISTER)
7499 abort ();
7501 reg = gen_rtx_REG (Pmode, regno);
7502 emit_move_insn (reg, retaddr);
7503 retaddr = reg;
7506 emit_equiv_load (&info);
7507 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7509 /* Show the SET in the above insn is a RETURN. */
7510 jump_set = single_set (jump_insn);
7511 if (jump_set == 0)
7512 abort ();
7513 else
7514 SET_IS_RETURN_P (jump_set) = 1;
7517 /* If SP is not mentioned in the pattern and its equivalent register, if
7518 any, is not modified, just emit it. Otherwise, if neither is set,
7519 replace the reference to SP and emit the insn. If none of those are
7520 true, handle each SET individually. */
7521 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7522 && (info.sp_equiv_reg == stack_pointer_rtx
7523 || !reg_set_p (info.sp_equiv_reg, insn)))
7524 add_insn (insn);
7525 else if (! reg_set_p (stack_pointer_rtx, insn)
7526 && (info.sp_equiv_reg == stack_pointer_rtx
7527 || !reg_set_p (info.sp_equiv_reg, insn)))
7529 if (! validate_replace_rtx (stack_pointer_rtx,
7530 plus_constant (info.sp_equiv_reg,
7531 info.sp_offset),
7532 insn))
7533 abort ();
7535 add_insn (insn);
7537 else if (GET_CODE (PATTERN (insn)) == SET)
7538 handle_epilogue_set (PATTERN (insn), &info);
7539 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7541 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7542 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7543 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7545 else
7546 add_insn (insn);
7548 info.sp_equiv_reg = info.new_sp_equiv_reg;
7549 info.sp_offset = info.new_sp_offset;
7551 /* Now update any constants this insn sets. */
7552 note_stores (PATTERN (insn), update_epilogue_consts, &info);
7553 insn = next;
7556 insns = get_insns ();
7557 end_sequence ();
7558 return insns;
7561 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7562 structure that contains information about what we've seen so far. We
7563 process this SET by either updating that data or by emitting one or
7564 more insns. */
7566 static void
7567 handle_epilogue_set (rtx set, struct epi_info *p)
7569 /* First handle the case where we are setting SP. Record what it is being
7570 set from. If unknown, abort. */
7571 if (reg_set_p (stack_pointer_rtx, set))
7573 if (SET_DEST (set) != stack_pointer_rtx)
7574 abort ();
7576 if (GET_CODE (SET_SRC (set)) == PLUS)
7578 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7579 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7580 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7581 else if (GET_CODE (XEXP (SET_SRC (set), 1)) == REG
7582 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
7583 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
7584 p->new_sp_offset
7585 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
7586 else
7587 abort ();
7589 else
7590 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7592 /* If we are adjusting SP, we adjust from the old data. */
7593 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7595 p->new_sp_equiv_reg = p->sp_equiv_reg;
7596 p->new_sp_offset += p->sp_offset;
7599 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7600 abort ();
7602 return;
7605 /* Next handle the case where we are setting SP's equivalent register.
7606 If we already have a value to set it to, abort. We could update, but
7607 there seems little point in handling that case. Note that we have
7608 to allow for the case where we are setting the register set in
7609 the previous part of a PARALLEL inside a single insn. But use the
7610 old offset for any updates within this insn. We must allow for the case
7611 where the register is being set in a different (usually wider) mode than
7612 Pmode). */
7613 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7615 if (p->equiv_reg_src != 0
7616 || GET_CODE (p->new_sp_equiv_reg) != REG
7617 || GET_CODE (SET_DEST (set)) != REG
7618 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
7619 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
7620 abort ();
7621 else
7622 p->equiv_reg_src
7623 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7624 plus_constant (p->sp_equiv_reg,
7625 p->sp_offset));
7628 /* Otherwise, replace any references to SP in the insn to its new value
7629 and emit the insn. */
7630 else
7632 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7633 plus_constant (p->sp_equiv_reg,
7634 p->sp_offset));
7635 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7636 plus_constant (p->sp_equiv_reg,
7637 p->sp_offset));
7638 emit_insn (set);
7642 /* Update the tracking information for registers set to constants. */
7644 static void
7645 update_epilogue_consts (rtx dest, rtx x, void *data)
7647 struct epi_info *p = (struct epi_info *) data;
7649 if (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
7650 return;
7651 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x))
7652 || GET_CODE (SET_SRC (x)) != CONST_INT)
7653 p->const_equiv[REGNO (dest)] = 0;
7654 else
7655 p->const_equiv[REGNO (dest)] = SET_SRC (x);
7658 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7660 static void
7661 emit_equiv_load (struct epi_info *p)
7663 if (p->equiv_reg_src != 0)
7665 rtx dest = p->sp_equiv_reg;
7667 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
7668 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
7669 REGNO (p->sp_equiv_reg));
7671 emit_move_insn (dest, p->equiv_reg_src);
7672 p->equiv_reg_src = 0;
7675 #endif
7677 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7678 this into place with notes indicating where the prologue ends and where
7679 the epilogue begins. Update the basic block information when possible. */
7681 void
7682 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7684 int inserted = 0;
7685 edge e;
7686 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7687 rtx seq;
7688 #endif
7689 #ifdef HAVE_prologue
7690 rtx prologue_end = NULL_RTX;
7691 #endif
7692 #if defined (HAVE_epilogue) || defined(HAVE_return)
7693 rtx epilogue_end = NULL_RTX;
7694 #endif
7696 #ifdef HAVE_prologue
7697 if (HAVE_prologue)
7699 start_sequence ();
7700 seq = gen_prologue ();
7701 emit_insn (seq);
7703 /* Retain a map of the prologue insns. */
7704 record_insns (seq, &prologue);
7705 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7707 seq = get_insns ();
7708 end_sequence ();
7709 set_insn_locators (seq, prologue_locator);
7711 /* Can't deal with multiple successors of the entry block
7712 at the moment. Function should always have at least one
7713 entry point. */
7714 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7715 abort ();
7717 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7718 inserted = 1;
7720 #endif
7722 /* If the exit block has no non-fake predecessors, we don't need
7723 an epilogue. */
7724 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7725 if ((e->flags & EDGE_FAKE) == 0)
7726 break;
7727 if (e == NULL)
7728 goto epilogue_done;
7730 #ifdef HAVE_return
7731 if (optimize && HAVE_return)
7733 /* If we're allowed to generate a simple return instruction,
7734 then by definition we don't need a full epilogue. Examine
7735 the block that falls through to EXIT. If it does not
7736 contain any code, examine its predecessors and try to
7737 emit (conditional) return instructions. */
7739 basic_block last;
7740 edge e_next;
7741 rtx label;
7743 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7744 if (e->flags & EDGE_FALLTHRU)
7745 break;
7746 if (e == NULL)
7747 goto epilogue_done;
7748 last = e->src;
7750 /* Verify that there are no active instructions in the last block. */
7751 label = BB_END (last);
7752 while (label && GET_CODE (label) != CODE_LABEL)
7754 if (active_insn_p (label))
7755 break;
7756 label = PREV_INSN (label);
7759 if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL)
7761 rtx epilogue_line_note = NULL_RTX;
7763 /* Locate the line number associated with the closing brace,
7764 if we can find one. */
7765 for (seq = get_last_insn ();
7766 seq && ! active_insn_p (seq);
7767 seq = PREV_INSN (seq))
7768 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7770 epilogue_line_note = seq;
7771 break;
7774 for (e = last->pred; e; e = e_next)
7776 basic_block bb = e->src;
7777 rtx jump;
7779 e_next = e->pred_next;
7780 if (bb == ENTRY_BLOCK_PTR)
7781 continue;
7783 jump = BB_END (bb);
7784 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7785 continue;
7787 /* If we have an unconditional jump, we can replace that
7788 with a simple return instruction. */
7789 if (simplejump_p (jump))
7791 emit_return_into_block (bb, epilogue_line_note);
7792 delete_insn (jump);
7795 /* If we have a conditional jump, we can try to replace
7796 that with a conditional return instruction. */
7797 else if (condjump_p (jump))
7799 if (! redirect_jump (jump, 0, 0))
7800 continue;
7802 /* If this block has only one successor, it both jumps
7803 and falls through to the fallthru block, so we can't
7804 delete the edge. */
7805 if (bb->succ->succ_next == NULL)
7806 continue;
7808 else
7809 continue;
7811 /* Fix up the CFG for the successful change we just made. */
7812 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7815 /* Emit a return insn for the exit fallthru block. Whether
7816 this is still reachable will be determined later. */
7818 emit_barrier_after (BB_END (last));
7819 emit_return_into_block (last, epilogue_line_note);
7820 epilogue_end = BB_END (last);
7821 last->succ->flags &= ~EDGE_FALLTHRU;
7822 goto epilogue_done;
7825 #endif
7826 #ifdef HAVE_epilogue
7827 if (HAVE_epilogue)
7829 /* Find the edge that falls through to EXIT. Other edges may exist
7830 due to RETURN instructions, but those don't need epilogues.
7831 There really shouldn't be a mixture -- either all should have
7832 been converted or none, however... */
7834 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7835 if (e->flags & EDGE_FALLTHRU)
7836 break;
7837 if (e == NULL)
7838 goto epilogue_done;
7840 start_sequence ();
7841 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7843 seq = gen_epilogue ();
7845 #ifdef INCOMING_RETURN_ADDR_RTX
7846 /* If this function returns with the stack depressed and we can support
7847 it, massage the epilogue to actually do that. */
7848 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7849 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7850 seq = keep_stack_depressed (seq);
7851 #endif
7853 emit_jump_insn (seq);
7855 /* Retain a map of the epilogue insns. */
7856 record_insns (seq, &epilogue);
7857 set_insn_locators (seq, epilogue_locator);
7859 seq = get_insns ();
7860 end_sequence ();
7862 insert_insn_on_edge (seq, e);
7863 inserted = 1;
7865 #endif
7866 epilogue_done:
7868 if (inserted)
7869 commit_edge_insertions ();
7871 #ifdef HAVE_sibcall_epilogue
7872 /* Emit sibling epilogues before any sibling call sites. */
7873 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7875 basic_block bb = e->src;
7876 rtx insn = BB_END (bb);
7877 rtx i;
7878 rtx newinsn;
7880 if (GET_CODE (insn) != CALL_INSN
7881 || ! SIBLING_CALL_P (insn))
7882 continue;
7884 start_sequence ();
7885 emit_insn (gen_sibcall_epilogue ());
7886 seq = get_insns ();
7887 end_sequence ();
7889 /* Retain a map of the epilogue insns. Used in life analysis to
7890 avoid getting rid of sibcall epilogue insns. Do this before we
7891 actually emit the sequence. */
7892 record_insns (seq, &sibcall_epilogue);
7893 set_insn_locators (seq, epilogue_locator);
7895 i = PREV_INSN (insn);
7896 newinsn = emit_insn_before (seq, insn);
7898 #endif
7900 #ifdef HAVE_prologue
7901 /* This is probably all useless now that we use locators. */
7902 if (prologue_end)
7904 rtx insn, prev;
7906 /* GDB handles `break f' by setting a breakpoint on the first
7907 line note after the prologue. Which means (1) that if
7908 there are line number notes before where we inserted the
7909 prologue we should move them, and (2) we should generate a
7910 note before the end of the first basic block, if there isn't
7911 one already there.
7913 ??? This behavior is completely broken when dealing with
7914 multiple entry functions. We simply place the note always
7915 into first basic block and let alternate entry points
7916 to be missed.
7919 for (insn = prologue_end; insn; insn = prev)
7921 prev = PREV_INSN (insn);
7922 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7924 /* Note that we cannot reorder the first insn in the
7925 chain, since rest_of_compilation relies on that
7926 remaining constant. */
7927 if (prev == NULL)
7928 break;
7929 reorder_insns (insn, insn, prologue_end);
7933 /* Find the last line number note in the first block. */
7934 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
7935 insn != prologue_end && insn;
7936 insn = PREV_INSN (insn))
7937 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7938 break;
7940 /* If we didn't find one, make a copy of the first line number
7941 we run across. */
7942 if (! insn)
7944 for (insn = next_active_insn (prologue_end);
7945 insn;
7946 insn = PREV_INSN (insn))
7947 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7949 emit_note_copy_after (insn, prologue_end);
7950 break;
7954 #endif
7955 #ifdef HAVE_epilogue
7956 if (epilogue_end)
7958 rtx insn, next;
7960 /* Similarly, move any line notes that appear after the epilogue.
7961 There is no need, however, to be quite so anal about the existence
7962 of such a note. */
7963 for (insn = epilogue_end; insn; insn = next)
7965 next = NEXT_INSN (insn);
7966 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7967 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7970 #endif
7973 /* Reposition the prologue-end and epilogue-begin notes after instruction
7974 scheduling and delayed branch scheduling. */
7976 void
7977 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7979 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7980 rtx insn, last, note;
7981 int len;
7983 if ((len = VARRAY_SIZE (prologue)) > 0)
7985 last = 0, note = 0;
7987 /* Scan from the beginning until we reach the last prologue insn.
7988 We apparently can't depend on basic_block_{head,end} after
7989 reorg has run. */
7990 for (insn = f; insn; insn = NEXT_INSN (insn))
7992 if (GET_CODE (insn) == NOTE)
7994 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7995 note = insn;
7997 else if (contains (insn, prologue))
7999 last = insn;
8000 if (--len == 0)
8001 break;
8005 if (last)
8007 /* Find the prologue-end note if we haven't already, and
8008 move it to just after the last prologue insn. */
8009 if (note == 0)
8011 for (note = last; (note = NEXT_INSN (note));)
8012 if (GET_CODE (note) == NOTE
8013 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
8014 break;
8017 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
8018 if (GET_CODE (last) == CODE_LABEL)
8019 last = NEXT_INSN (last);
8020 reorder_insns (note, note, last);
8024 if ((len = VARRAY_SIZE (epilogue)) > 0)
8026 last = 0, note = 0;
8028 /* Scan from the end until we reach the first epilogue insn.
8029 We apparently can't depend on basic_block_{head,end} after
8030 reorg has run. */
8031 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8033 if (GET_CODE (insn) == NOTE)
8035 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
8036 note = insn;
8038 else if (contains (insn, epilogue))
8040 last = insn;
8041 if (--len == 0)
8042 break;
8046 if (last)
8048 /* Find the epilogue-begin note if we haven't already, and
8049 move it to just before the first epilogue insn. */
8050 if (note == 0)
8052 for (note = insn; (note = PREV_INSN (note));)
8053 if (GET_CODE (note) == NOTE
8054 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
8055 break;
8058 if (PREV_INSN (last) != note)
8059 reorder_insns (note, note, PREV_INSN (last));
8062 #endif /* HAVE_prologue or HAVE_epilogue */
8065 /* Called once, at initialization, to initialize function.c. */
8067 void
8068 init_function_once (void)
8070 VARRAY_INT_INIT (prologue, 0, "prologue");
8071 VARRAY_INT_INIT (epilogue, 0, "epilogue");
8072 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
8075 /* Returns the name of the current function. */
8076 const char *
8077 current_function_name (void)
8079 return (*lang_hooks.decl_printable_name) (cfun->decl, 2);
8082 #include "gt-function.h"