* doc/tm.texi (INIT_CUMULATIVE_ARGS): Update doco.
[official-gcc.git] / gcc / config / v850 / v850.h
blob74a080c83cb1879ff83458f2f13732ace0afa66d
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #ifndef GCC_V850_H
24 #define GCC_V850_H
26 /* These are defined in svr4.h but we want to override them. */
27 #undef LIB_SPEC
28 #undef ENDFILE_SPEC
29 #undef LINK_SPEC
30 #undef STARTFILE_SPEC
31 #undef ASM_SPEC
33 #define TARGET_CPU_generic 1
34 #define TARGET_CPU_v850e 2
35 #define TARGET_CPU_v850e1 3
37 #ifndef TARGET_CPU_DEFAULT
38 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
39 #endif
41 #define MASK_DEFAULT MASK_V850
42 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
43 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
44 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
46 /* Choose which processor will be the default.
47 We must pass a -mv850xx option to the assembler if no explicit -mv* option
48 is given, because the assembler's processor default may not be correct. */
49 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
50 #undef MASK_DEFAULT
51 #define MASK_DEFAULT MASK_V850E
52 #undef SUBTARGET_ASM_SPEC
53 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
54 #undef SUBTARGET_CPP_SPEC
55 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
56 #undef TARGET_VERSION
57 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
58 #endif
60 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
61 #undef MASK_DEFAULT
62 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
63 #undef SUBTARGET_ASM_SPEC
64 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
65 #undef SUBTARGET_CPP_SPEC
66 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
67 #undef TARGET_VERSION
68 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
69 #endif
71 #define ASM_SPEC "%{mv*:-mv%*}"
72 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
74 #define EXTRA_SPECS \
75 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
76 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
78 /* Names to predefine in the preprocessor for this target machine. */
79 #define TARGET_CPU_CPP_BUILTINS() do { \
80 builtin_define( "__v851__" ); \
81 builtin_define( "__v850" ); \
82 builtin_assert( "machine=v850" ); \
83 builtin_assert( "cpu=v850" ); \
84 } while(0)
86 /* Run-time compilation parameters selecting different hardware subsets. */
88 extern int target_flags;
90 /* Target flags bits, see below for an explanation of the bits. */
91 #define MASK_GHS 0x00000001
92 #define MASK_LONG_CALLS 0x00000002
93 #define MASK_EP 0x00000004
94 #define MASK_PROLOG_FUNCTION 0x00000008
95 #define MASK_DEBUG 0x40000000
97 #define MASK_CPU 0x00000030
98 #define MASK_V850 0x00000010
99 #define MASK_V850E 0x00000020
100 #define MASK_SMALL_SLD 0x00000040
102 #define MASK_BIG_SWITCH 0x00000100
103 #define MASK_NO_APP_REGS 0x00000200
104 #define MASK_DISABLE_CALLT 0x00000400
105 #define MASK_STRICT_ALIGN 0x00000800
107 #define MASK_US_BIT_SET 0x00001000
108 #define MASK_US_MASK_SET 0x00002000
110 /* Macros used in the machine description to test the flags. */
112 /* The GHS calling convention support doesn't really work,
113 mostly due to a lack of documentation. Outstanding issues:
115 * How do varargs & stdarg really work. How to they handle
116 passing structures (if at all).
118 * Doubles are normally 4 byte aligned, except in argument
119 lists where they are 8 byte aligned. Is the alignment
120 in the argument list based on the first parameter,
121 first stack parameter, etc etc.
123 * Passing/returning of large structures probably isn't the same
124 as GHS. We don't have enough documentation on their conventions
125 to be compatible.
127 * Tests of TARGET_SETUP_INCOMING_VARARGS need to be made runtime checks
128 since it depends on TARGET_GHS. */
129 #define TARGET_GHS (target_flags & MASK_GHS)
131 /* Don't do PC-relative calls, instead load the address of the target
132 function into a register and perform a register indirect call. */
133 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
135 /* Whether to optimize space by using ep (r30) for pointers with small offsets
136 in basic blocks. */
137 #define TARGET_EP (target_flags & MASK_EP)
139 /* Whether to call out-of-line functions to save registers or not. */
140 #define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)
142 #define TARGET_V850 ((target_flags & MASK_CPU) == MASK_V850)
144 /* Whether to emit 2 byte per entry or 4 byte per entry switch tables. */
145 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
147 /* General debug flag. */
148 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
149 #define TARGET_V850E ((target_flags & MASK_V850E) == MASK_V850E)
151 #define TARGET_US_BIT_SET (target_flags & MASK_US_BIT_SET)
153 /* Whether to assume that the SLD.B and SLD.H instructions only have small
154 displacement fields, thus allowing the generated code to run on any of
155 the V850 range of processors. */
156 #define TARGET_SMALL_SLD (target_flags & MASK_SMALL_SLD)
158 /* True if callt will not be used for function prolog & epilog. */
159 #define TARGET_DISABLE_CALLT (target_flags & MASK_DISABLE_CALLT)
161 /* False if r2 and r5 can be used by the compiler. True if r2
162 and r5 are to be fixed registers (for compatibility with GHS). */
163 #define TARGET_NO_APP_REGS (target_flags & MASK_NO_APP_REGS)
165 #define TARGET_STRICT_ALIGN (target_flags & MASK_STRICT_ALIGN)
167 /* Macro to define tables used to set the flags.
168 This is a list in braces of pairs in braces,
169 each pair being { "NAME", VALUE }
170 where VALUE is the bits to set or minus the bits to clear.
171 An empty string NAME is used to identify the default VALUE. */
173 #define TARGET_SWITCHES \
174 {{ "ghs", MASK_GHS, N_("Support Green Hills ABI") }, \
175 { "no-ghs", -MASK_GHS, "" }, \
176 { "long-calls", MASK_LONG_CALLS, \
177 N_("Prohibit PC relative function calls") },\
178 { "no-long-calls", -MASK_LONG_CALLS, "" }, \
179 { "ep", MASK_EP, \
180 N_("Reuse r30 on a per function basis") }, \
181 { "no-ep", -MASK_EP, "" }, \
182 { "prolog-function", MASK_PROLOG_FUNCTION, \
183 N_("Use stubs for function prologues") }, \
184 { "no-prolog-function", -MASK_PROLOG_FUNCTION, "" }, \
185 { "space", MASK_EP | MASK_PROLOG_FUNCTION, \
186 N_("Same as: -mep -mprolog-function") }, \
187 { "debug", MASK_DEBUG, N_("Enable backend debugging") }, \
188 { "v850", MASK_V850, \
189 N_("Compile for the v850 processor") }, \
190 { "v850", -(MASK_V850 ^ MASK_CPU), "" }, \
191 { "v850e1", MASK_V850E, N_("Compile for v850e1 processor") }, \
192 { "v850e1", -(MASK_V850E ^ MASK_CPU), "" }, /* Make sure that the other bits are cleared. */ \
193 { "v850e", MASK_V850E, N_("Compile for v850e processor") }, \
194 { "v850e", -(MASK_V850E ^ MASK_CPU), "" }, /* Make sure that the other bits are cleared. */ \
195 { "small-sld", MASK_SMALL_SLD, N_("Enable the use of the short load instructions") }, \
196 { "no-small-sld", -MASK_SMALL_SLD, "" }, \
197 { "disable-callt", MASK_DISABLE_CALLT, \
198 N_("Do not use the callt instruction") }, \
199 { "no-disable-callt", -MASK_DISABLE_CALLT, "" }, \
200 { "US-bit-set", (MASK_US_BIT_SET | MASK_US_MASK_SET), "" }, \
201 { "no-US-bit-set", -MASK_US_BIT_SET, "" }, \
202 { "no-US-bit-set", MASK_US_MASK_SET, "" }, \
203 { "app-regs", -MASK_NO_APP_REGS, "" }, \
204 { "no-app-regs", MASK_NO_APP_REGS, \
205 N_("Do not use registers r2 and r5") }, \
206 { "strict-align", MASK_STRICT_ALIGN, \
207 N_("Enforce strict alignment") }, \
208 { "no-strict-align", -MASK_STRICT_ALIGN, "" }, \
209 { "big-switch", MASK_BIG_SWITCH, \
210 N_("Use 4 byte entries in switch tables") },\
211 { "", MASK_DEFAULT, ""}}
213 /* Information about the various small memory areas. */
214 struct small_memory_info {
215 const char *name;
216 const char *value;
217 long max;
218 long physical_max;
221 enum small_memory_type {
222 /* tiny data area, using EP as base register */
223 SMALL_MEMORY_TDA = 0,
224 /* small data area using dp as base register */
225 SMALL_MEMORY_SDA,
226 /* zero data area using r0 as base register */
227 SMALL_MEMORY_ZDA,
228 SMALL_MEMORY_max
231 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
233 #define TARGET_OPTIONS \
235 { "tda=", &small_memory[ (int)SMALL_MEMORY_TDA ].value, \
236 N_("Set the max size of data eligible for the TDA area"), 0}, \
237 { "tda-", &small_memory[ (int)SMALL_MEMORY_TDA ].value, "", 0}, \
238 { "sda=", &small_memory[ (int)SMALL_MEMORY_SDA ].value, \
239 N_("Set the max size of data eligible for the SDA area"), 0}, \
240 { "sda-", &small_memory[ (int)SMALL_MEMORY_SDA ].value, "", 0}, \
241 { "zda=", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, \
242 N_("Set the max size of data eligible for the ZDA area"), 0}, \
243 { "zda-", &small_memory[ (int)SMALL_MEMORY_ZDA ].value, "", 0}, \
246 /* Sometimes certain combinations of command options do not make
247 sense on a particular target machine. You can define a macro
248 `OVERRIDE_OPTIONS' to take account of this. This macro, if
249 defined, is executed once just after all the command options have
250 been parsed.
252 Don't use this macro to turn on various extra optimizations for
253 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
254 #define OVERRIDE_OPTIONS override_options ()
257 /* Show we can debug even without a frame pointer. */
258 #define CAN_DEBUG_WITHOUT_FP
260 /* Some machines may desire to change what optimizations are
261 performed for various optimization levels. This macro, if
262 defined, is executed once just after the optimization level is
263 determined and before the remainder of the command options have
264 been parsed. Values set in this macro are used as the default
265 values for the other command line options.
267 LEVEL is the optimization level specified; 2 if `-O2' is
268 specified, 1 if `-O' is specified, and 0 if neither is specified.
270 SIZE is nonzero if `-Os' is specified, 0 otherwise.
272 You should not use this macro to change options that are not
273 machine-specific. These should uniformly selected by the same
274 optimization level on all supported machines. Use this macro to
275 enable machine-specific optimizations.
277 *Do not examine `write_symbols' in this macro!* The debugging
278 options are not supposed to alter the generated code. */
280 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
282 target_flags |= MASK_STRICT_ALIGN; \
283 if (LEVEL) \
284 target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION); \
288 /* Target machine storage layout */
290 /* Define this if most significant bit is lowest numbered
291 in instructions that operate on numbered bit-fields.
292 This is not true on the NEC V850. */
293 #define BITS_BIG_ENDIAN 0
295 /* Define this if most significant byte of a word is the lowest numbered. */
296 /* This is not true on the NEC V850. */
297 #define BYTES_BIG_ENDIAN 0
299 /* Define this if most significant word of a multiword number is lowest
300 numbered.
301 This is not true on the NEC V850. */
302 #define WORDS_BIG_ENDIAN 0
304 /* Width of a word, in units (bytes). */
305 #define UNITS_PER_WORD 4
307 /* Define this macro if it is advisable to hold scalars in registers
308 in a wider mode than that declared by the program. In such cases,
309 the value is constrained to be within the bounds of the declared
310 type, but kept valid in the wider mode. The signedness of the
311 extension may differ from that of the type.
313 Some simple experiments have shown that leaving UNSIGNEDP alone
314 generates the best overall code. */
316 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
317 if (GET_MODE_CLASS (MODE) == MODE_INT \
318 && GET_MODE_SIZE (MODE) < 4) \
319 { (MODE) = SImode; }
321 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
322 #define PARM_BOUNDARY 32
324 /* The stack goes in 32 bit lumps. */
325 #define STACK_BOUNDARY 32
327 /* Allocation boundary (in *bits*) for the code of a function.
328 16 is the minimum boundary; 32 would give better performance. */
329 #define FUNCTION_BOUNDARY 16
331 /* No data type wants to be aligned rounder than this. */
332 #define BIGGEST_ALIGNMENT 32
334 /* Alignment of field after `int : 0' in a structure. */
335 #define EMPTY_FIELD_BOUNDARY 32
337 /* No structure field wants to be aligned rounder than this. */
338 #define BIGGEST_FIELD_ALIGNMENT 32
340 /* Define this if move instructions will actually fail to work
341 when given unaligned data. */
342 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
344 /* Define this as 1 if `char' should by default be signed; else as 0.
346 On the NEC V850, loads do sign extension, so make this default. */
347 #define DEFAULT_SIGNED_CHAR 1
349 /* Standard register usage. */
351 /* Number of actual hardware registers.
352 The hardware registers are assigned numbers for the compiler
353 from 0 to just below FIRST_PSEUDO_REGISTER.
355 All registers that the compiler knows about must be given numbers,
356 even those that are not normally considered general registers. */
358 #define FIRST_PSEUDO_REGISTER 34
360 /* 1 for registers that have pervasive standard uses
361 and are not available for the register allocator. */
363 #define FIXED_REGISTERS \
364 { 1, 1, 0, 1, 1, 0, 0, 0, \
365 0, 0, 0, 0, 0, 0, 0, 0, \
366 0, 0, 0, 0, 0, 0, 0, 0, \
367 0, 0, 0, 0, 0, 0, 1, 0, \
368 1, 1}
370 /* 1 for registers not available across function calls.
371 These must include the FIXED_REGISTERS and also any
372 registers that can be used without being saved.
373 The latter must include the registers where values are returned
374 and the register where structure-value addresses are passed.
375 Aside from that, you can include as many other registers as you
376 like. */
378 #define CALL_USED_REGISTERS \
379 { 1, 1, 0, 1, 1, 1, 1, 1, \
380 1, 1, 1, 1, 1, 1, 1, 1, \
381 1, 1, 1, 1, 0, 0, 0, 0, \
382 0, 0, 0, 0, 0, 0, 1, 1, \
383 1, 1}
385 /* List the order in which to allocate registers. Each register must be
386 listed once, even those in FIXED_REGISTERS.
388 On the 850, we make the return registers first, then all of the volatile
389 registers, then the saved registers in reverse order to better save the
390 registers with an out of line function, and finally the fixed
391 registers. */
393 #define REG_ALLOC_ORDER \
395 10, 11, /* return registers */ \
396 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
397 6, 7, 8, 9, 31, /* argument registers */ \
398 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
399 21, 20, 2, \
400 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
403 /* If TARGET_NO_APP_REGS is not defined then add r2 and r5 to
404 the pool of fixed registers. See PR 14505. */
405 #define CONDITIONAL_REGISTER_USAGE \
407 if (TARGET_NO_APP_REGS) \
409 fixed_regs[2] = 1; call_used_regs[2] = 1; \
410 fixed_regs[5] = 1; call_used_regs[5] = 1; \
414 /* Return number of consecutive hard regs needed starting at reg REGNO
415 to hold something of mode MODE.
417 This is ordinarily the length in words of a value of mode MODE
418 but can be less for certain modes in special long registers. */
420 #define HARD_REGNO_NREGS(REGNO, MODE) \
421 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
423 /* Value is 1 if hard register REGNO can hold a value of machine-mode
424 MODE. */
426 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
427 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
429 /* Value is 1 if it is a good idea to tie two pseudo registers
430 when one has mode MODE1 and one has mode MODE2.
431 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
432 for any hard reg, then this must be 0 for correct output. */
433 #define MODES_TIEABLE_P(MODE1, MODE2) \
434 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
437 /* Define the classes of registers for register constraints in the
438 machine description. Also define ranges of constants.
440 One of the classes must always be named ALL_REGS and include all hard regs.
441 If there is more than one class, another class must be named NO_REGS
442 and contain no registers.
444 The name GENERAL_REGS must be the name of a class (or an alias for
445 another name such as ALL_REGS). This is the class of registers
446 that is allowed by "g" or "r" in a register constraint.
447 Also, registers outside this class are allocated only when
448 instructions express preferences for them.
450 The classes must be numbered in nondecreasing order; that is,
451 a larger-numbered class must never be contained completely
452 in a smaller-numbered class.
454 For any two classes, it is very desirable that there be another
455 class that represents their union. */
457 enum reg_class
459 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
462 #define N_REG_CLASSES (int) LIM_REG_CLASSES
464 /* Give names of register classes as strings for dump file. */
466 #define REG_CLASS_NAMES \
467 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
469 /* Define which registers fit in which classes.
470 This is an initializer for a vector of HARD_REG_SET
471 of length N_REG_CLASSES. */
473 #define REG_CLASS_CONTENTS \
475 { 0x00000000 }, /* NO_REGS */ \
476 { 0xffffffff }, /* GENERAL_REGS */ \
477 { 0xffffffff }, /* ALL_REGS */ \
480 /* The same information, inverted:
481 Return the class number of the smallest class containing
482 reg number REGNO. This could be a conditional expression
483 or could index an array. */
485 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
487 /* The class value for index registers, and the one for base regs. */
489 #define INDEX_REG_CLASS NO_REGS
490 #define BASE_REG_CLASS GENERAL_REGS
492 /* Get reg_class from a letter such as appears in the machine description. */
494 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
496 /* Macros to check register numbers against specific register classes. */
498 /* These assume that REGNO is a hard or pseudo reg number.
499 They give nonzero only if REGNO is a hard reg of the suitable class
500 or a pseudo reg currently allocated to a suitable hard reg.
501 Since they use reg_renumber, they are safe only once reg_renumber
502 has been allocated, which happens in local-alloc.c. */
504 #define REGNO_OK_FOR_BASE_P(regno) \
505 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
507 #define REGNO_OK_FOR_INDEX_P(regno) 0
509 /* Given an rtx X being reloaded into a reg required to be
510 in class CLASS, return the class of reg to actually use.
511 In general this is just CLASS; but on some machines
512 in some cases it is preferable to use a more restrictive class. */
514 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
516 /* Return the maximum number of consecutive registers
517 needed to represent mode MODE in a register of class CLASS. */
519 #define CLASS_MAX_NREGS(CLASS, MODE) \
520 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
522 /* The letters I, J, K, L, M, N, O, P in a register constraint string
523 can be used to stand for particular ranges of immediate operands.
524 This macro defines what the ranges are.
525 C is the letter, and VALUE is a constant value.
526 Return 1 if VALUE is in the range specified by C. */
528 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
529 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
530 /* zero */
531 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
532 /* 5 bit signed immediate */
533 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
534 /* 16 bit signed immediate */
535 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
536 /* valid constant for movhi instruction. */
537 #define CONST_OK_FOR_L(VALUE) \
538 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
539 && CONST_OK_FOR_I ((VALUE & 0xffff)))
540 /* 16 bit unsigned immediate */
541 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
542 /* 5 bit unsigned immediate in shift instructions */
543 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
544 /* 9 bit signed immediate for word multiply instruction. */
545 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
547 #define CONST_OK_FOR_P(VALUE) 0
549 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
550 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
551 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
552 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
553 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
554 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
555 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
556 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
557 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
560 /* Similar, but for floating constants, and defining letters G and H.
561 Here VALUE is the CONST_DOUBLE rtx itself.
563 `G' is a zero of some form. */
565 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
566 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
567 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
568 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
569 && CONST_DOUBLE_LOW (VALUE) == 0 \
570 && CONST_DOUBLE_HIGH (VALUE) == 0))
572 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
574 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
575 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
576 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
577 : 0)
580 /* Stack layout; function entry, exit and calling. */
582 /* Define this if pushing a word on the stack
583 makes the stack pointer a smaller address. */
585 #define STACK_GROWS_DOWNWARD
587 /* Define this if the nominal address of the stack frame
588 is at the high-address end of the local variables;
589 that is, each additional local variable allocated
590 goes at a more negative offset in the frame. */
592 #define FRAME_GROWS_DOWNWARD
594 /* Offset within stack frame to start allocating local variables at.
595 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
596 first local allocated. Otherwise, it is the offset to the BEGINNING
597 of the first local allocated. */
599 #define STARTING_FRAME_OFFSET 0
601 /* Offset of first parameter from the argument pointer register value. */
602 /* Is equal to the size of the saved fp + pc, even if an fp isn't
603 saved since the value is used before we know. */
605 #define FIRST_PARM_OFFSET(FNDECL) 0
607 /* Specify the registers used for certain standard purposes.
608 The values of these macros are register numbers. */
610 /* Register to use for pushing function arguments. */
611 #define STACK_POINTER_REGNUM 3
613 /* Base register for access to local variables of the function. */
614 #define FRAME_POINTER_REGNUM 32
616 /* Register containing return address from latest function call. */
617 #define LINK_POINTER_REGNUM 31
619 /* On some machines the offset between the frame pointer and starting
620 offset of the automatic variables is not known until after register
621 allocation has been done (for example, because the saved registers
622 are between these two locations). On those machines, define
623 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
624 be used internally until the offset is known, and define
625 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
626 used for the frame pointer.
628 You should define this macro only in the very rare circumstances
629 when it is not possible to calculate the offset between the frame
630 pointer and the automatic variables until after register
631 allocation has been completed. When this macro is defined, you
632 must also indicate in your definition of `ELIMINABLE_REGS' how to
633 eliminate `FRAME_POINTER_REGNUM' into either
634 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
636 Do not define this macro if it would be the same as
637 `FRAME_POINTER_REGNUM'. */
638 #undef HARD_FRAME_POINTER_REGNUM
639 #define HARD_FRAME_POINTER_REGNUM 29
641 /* Base register for access to arguments of the function. */
642 #define ARG_POINTER_REGNUM 33
644 /* Register in which static-chain is passed to a function. */
645 #define STATIC_CHAIN_REGNUM 20
647 /* Value should be nonzero if functions must have frame pointers.
648 Zero means the frame pointer need not be set up (and parms
649 may be accessed via the stack pointer) in functions that seem suitable.
650 This is computed in `reload', in reload1.c. */
651 #define FRAME_POINTER_REQUIRED 0
653 /* If defined, this macro specifies a table of register pairs used to
654 eliminate unneeded registers that point into the stack frame. If
655 it is not defined, the only elimination attempted by the compiler
656 is to replace references to the frame pointer with references to
657 the stack pointer.
659 The definition of this macro is a list of structure
660 initializations, each of which specifies an original and
661 replacement register.
663 On some machines, the position of the argument pointer is not
664 known until the compilation is completed. In such a case, a
665 separate hard register must be used for the argument pointer.
666 This register can be eliminated by replacing it with either the
667 frame pointer or the argument pointer, depending on whether or not
668 the frame pointer has been eliminated.
670 In this case, you might specify:
671 #define ELIMINABLE_REGS \
672 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
673 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
674 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
676 Note that the elimination of the argument pointer with the stack
677 pointer is specified first since that is the preferred elimination. */
679 #define ELIMINABLE_REGS \
680 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
681 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
682 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
683 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
685 /* A C expression that returns nonzero if the compiler is allowed to
686 try to replace register number FROM-REG with register number
687 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
688 defined, and will usually be the constant 1, since most of the
689 cases preventing register elimination are things that the compiler
690 already knows about. */
692 #define CAN_ELIMINATE(FROM, TO) \
693 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
695 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
696 specifies the initial difference between the specified pair of
697 registers. This macro must be defined if `ELIMINABLE_REGS' is
698 defined. */
700 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
702 if ((FROM) == FRAME_POINTER_REGNUM) \
703 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
704 else if ((FROM) == ARG_POINTER_REGNUM) \
705 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
706 else \
707 abort (); \
710 /* Keep the stack pointer constant throughout the function. */
711 #define ACCUMULATE_OUTGOING_ARGS 1
713 /* Value is the number of bytes of arguments automatically
714 popped when returning from a subroutine call.
715 FUNDECL is the declaration node of the function (as a tree),
716 FUNTYPE is the data type of the function (as a tree),
717 or for a library call it is an identifier node for the subroutine name.
718 SIZE is the number of bytes of arguments passed on the stack. */
720 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
722 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
724 /* Define a data type for recording info about an argument list
725 during the scan of that argument list. This data type should
726 hold all necessary information about the function itself
727 and about the args processed so far, enough to enable macros
728 such as FUNCTION_ARG to determine where the next arg should go. */
730 #define CUMULATIVE_ARGS struct cum_arg
731 struct cum_arg { int nbytes; int anonymous_args; };
733 /* Define where to put the arguments to a function.
734 Value is zero to push the argument on the stack,
735 or a hard register in which to store the argument.
737 MODE is the argument's machine mode.
738 TYPE is the data type of the argument (as a tree).
739 This is null for libcalls where that information may
740 not be available.
741 CUM is a variable of type CUMULATIVE_ARGS which gives info about
742 the preceding args and about the function being called.
743 NAMED is nonzero if this argument is a named parameter
744 (otherwise it is an extra parameter matching an ellipsis). */
746 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
747 function_arg (&CUM, MODE, TYPE, NAMED)
749 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
750 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
752 /* Initialize a variable CUM of type CUMULATIVE_ARGS
753 for a call to a function whose data type is FNTYPE.
754 For a library call, FNTYPE is 0. */
756 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
757 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
759 /* Update the data in CUM to advance over an argument
760 of mode MODE and data type TYPE.
761 (TYPE is null for libcalls where that information may not be available.) */
763 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
764 ((CUM).nbytes += ((MODE) != BLKmode \
765 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
766 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
768 /* When a parameter is passed in a register, stack space is still
769 allocated for it. */
770 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
772 /* Define this if the above stack space is to be considered part of the
773 space allocated by the caller. */
774 #define OUTGOING_REG_PARM_STACK_SPACE
776 /* Implement `va_arg'. */
777 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
778 v850_va_arg (valist, type)
780 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
781 ((TYPE) && int_size_in_bytes (TYPE) > 8)
783 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
784 ((TYPE) && int_size_in_bytes (TYPE) > 8)
786 /* 1 if N is a possible register number for function argument passing. */
788 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
790 /* Define how to find the value returned by a function.
791 VALTYPE is the data type of the value (as a tree).
792 If the precise function being called is known, FUNC is its FUNCTION_DECL;
793 otherwise, FUNC is 0. */
795 #define FUNCTION_VALUE(VALTYPE, FUNC) \
796 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
798 /* Define how to find the value returned by a library function
799 assuming the value has mode MODE. */
801 #define LIBCALL_VALUE(MODE) \
802 gen_rtx_REG (MODE, 10)
804 /* 1 if N is a possible register number for a function value. */
806 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
808 #define DEFAULT_PCC_STRUCT_RETURN 0
810 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
811 the stack pointer does not matter. The value is tested only in
812 functions that have frame pointers.
813 No definition is equivalent to always zero. */
815 #define EXIT_IGNORE_STACK 1
817 /* Define this macro as a C expression that is nonzero for registers
818 used by the epilogue or the `return' pattern. */
820 #define EPILOGUE_USES(REGNO) \
821 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
823 /* Output assembler code to FILE to increment profiler label # LABELNO
824 for profiling a function entry. */
826 #define FUNCTION_PROFILER(FILE, LABELNO) ;
828 #define TRAMPOLINE_TEMPLATE(FILE) \
829 do { \
830 fprintf (FILE, "\tjarl .+4,r12\n"); \
831 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
832 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
833 fprintf (FILE, "\tjmp [r12]\n"); \
834 fprintf (FILE, "\tnop\n"); \
835 fprintf (FILE, "\t.long 0\n"); \
836 fprintf (FILE, "\t.long 0\n"); \
837 } while (0)
839 /* Length in units of the trampoline for entering a nested function. */
841 #define TRAMPOLINE_SIZE 24
843 /* Emit RTL insns to initialize the variable parts of a trampoline.
844 FNADDR is an RTX for the address of the function's pure code.
845 CXT is an RTX for the static chain value for the function. */
847 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
849 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
850 (CXT)); \
851 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
852 (FNADDR)); \
855 /* Addressing modes, and classification of registers for them. */
858 /* 1 if X is an rtx for a constant that is a valid address. */
860 /* ??? This seems too exclusive. May get better code by accepting more
861 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
863 #define CONSTANT_ADDRESS_P(X) \
864 (GET_CODE (X) == CONST_INT \
865 && CONST_OK_FOR_K (INTVAL (X)))
867 /* Maximum number of registers that can appear in a valid memory address. */
869 #define MAX_REGS_PER_ADDRESS 1
871 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
872 and check its validity for a certain class.
873 We have two alternate definitions for each of them.
874 The usual definition accepts all pseudo regs; the other rejects
875 them unless they have been allocated suitable hard regs.
876 The symbol REG_OK_STRICT causes the latter definition to be used.
878 Most source files want to accept pseudo regs in the hope that
879 they will get allocated to the class that the insn wants them to be in.
880 Source files for reload pass need to be strict.
881 After reload, it makes no difference, since pseudo regs have
882 been eliminated by then. */
884 #ifndef REG_OK_STRICT
886 /* Nonzero if X is a hard reg that can be used as an index
887 or if it is a pseudo reg. */
888 #define REG_OK_FOR_INDEX_P(X) 0
889 /* Nonzero if X is a hard reg that can be used as a base reg
890 or if it is a pseudo reg. */
891 #define REG_OK_FOR_BASE_P(X) 1
892 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
893 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
894 #define STRICT 0
896 #else
898 /* Nonzero if X is a hard reg that can be used as an index. */
899 #define REG_OK_FOR_INDEX_P(X) 0
900 /* Nonzero if X is a hard reg that can be used as a base reg. */
901 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
902 #define STRICT 1
904 #endif
906 /* A C expression that defines the optional machine-dependent
907 constraint letters that can be used to segregate specific types of
908 operands, usually memory references, for the target machine.
909 Normally this macro will not be defined. If it is required for a
910 particular target machine, it should return 1 if VALUE corresponds
911 to the operand type represented by the constraint letter C. If C
912 is not defined as an extra constraint, the value returned should
913 be 0 regardless of VALUE.
915 For example, on the ROMP, load instructions cannot have their
916 output in r0 if the memory reference contains a symbolic address.
917 Constraint letter `Q' is defined as representing a memory address
918 that does *not* contain a symbolic address. An alternative is
919 specified with a `Q' constraint on the input and `r' on the
920 output. The next alternative specifies `m' on the input and a
921 register class that does not include r0 on the output. */
923 #define EXTRA_CONSTRAINT(OP, C) \
924 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), 0) \
925 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
926 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
927 && !SYMBOL_REF_ZDA_P (OP)) \
928 : (C) == 'T' ? ep_memory_operand(OP,GET_MODE(OP),TRUE) \
929 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
930 && SYMBOL_REF_ZDA_P (OP)) \
931 || (GET_CODE (OP) == CONST \
932 && GET_CODE (XEXP (OP, 0)) == PLUS \
933 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
934 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
935 : 0)
937 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
938 that is a valid memory address for an instruction.
939 The MODE argument is the machine mode for the MEM expression
940 that wants to use this address.
942 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
943 except for CONSTANT_ADDRESS_P which is actually
944 machine-independent. */
946 /* Accept either REG or SUBREG where a register is valid. */
948 #define RTX_OK_FOR_BASE_P(X) \
949 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
950 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
951 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
953 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
954 do { \
955 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
956 if (CONSTANT_ADDRESS_P (X) \
957 && (MODE == QImode || INTVAL (X) % 2 == 0) \
958 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
959 goto ADDR; \
960 if (GET_CODE (X) == LO_SUM \
961 && GET_CODE (XEXP (X, 0)) == REG \
962 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
963 && CONSTANT_P (XEXP (X, 1)) \
964 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
965 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
966 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
967 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
968 goto ADDR; \
969 if (special_symbolref_operand (X, MODE) \
970 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
971 goto ADDR; \
972 if (GET_CODE (X) == PLUS \
973 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
974 && (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
975 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR; \
976 } while (0)
979 /* Try machine-dependent ways of modifying an illegitimate address
980 to be legitimate. If we find one, return the new, valid address.
981 This macro is used in only one place: `memory_address' in explow.c.
983 OLDX is the address as it was before break_out_memory_refs was called.
984 In some cases it is useful to look at this to decide what needs to be done.
986 MODE and WIN are passed so that this macro can use
987 GO_IF_LEGITIMATE_ADDRESS.
989 It is always safe for this macro to do nothing. It exists to recognize
990 opportunities to optimize the output. */
992 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
994 /* Go to LABEL if ADDR (a legitimate address expression)
995 has an effect that depends on the machine mode it is used for. */
997 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
999 /* Nonzero if the constant value X is a legitimate general operand.
1000 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1002 #define LEGITIMATE_CONSTANT_P(X) \
1003 (GET_CODE (X) == CONST_DOUBLE \
1004 || !(GET_CODE (X) == CONST \
1005 && GET_CODE (XEXP (X, 0)) == PLUS \
1006 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1007 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1008 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
1010 /* Tell final.c how to eliminate redundant test instructions. */
1012 /* Here we define machine-dependent flags and fields in cc_status
1013 (see `conditions.h'). No extra ones are needed for the VAX. */
1015 /* Store in cc_status the expressions
1016 that the condition codes will describe
1017 after execution of an instruction whose pattern is EXP.
1018 Do not alter them if the instruction would not alter the cc's. */
1020 #define CC_OVERFLOW_UNUSABLE 0x200
1021 #define CC_NO_CARRY CC_NO_OVERFLOW
1022 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
1024 /* Nonzero if access to memory by bytes or half words is no faster
1025 than accessing full words. */
1026 #define SLOW_BYTE_ACCESS 1
1028 /* According expr.c, a value of around 6 should minimize code size, and
1029 for the V850 series, that's our primary concern. */
1030 #define MOVE_RATIO 6
1032 /* Indirect calls are expensive, never turn a direct call
1033 into an indirect call. */
1034 #define NO_FUNCTION_CSE
1036 /* The four different data regions on the v850. */
1037 typedef enum
1039 DATA_AREA_NORMAL,
1040 DATA_AREA_SDA,
1041 DATA_AREA_TDA,
1042 DATA_AREA_ZDA
1043 } v850_data_area;
1045 /* A list of names for sections other than the standard two, which are
1046 `in_text' and `in_data'. You need not define this macro on a
1047 system with no other sections (that GCC needs to use). */
1048 #undef EXTRA_SECTIONS
1049 #define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
1050 in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon
1052 /* One or more functions to be defined in `varasm.c'. These
1053 functions should do jobs analogous to those of `text_section' and
1054 `data_section', for your additional sections. Do not define this
1055 macro if you do not define `EXTRA_SECTIONS'. */
1056 #undef EXTRA_SECTION_FUNCTIONS
1058 /* This could be done a lot more cleanly using ANSI C.... */
1059 #define EXTRA_SECTION_FUNCTIONS \
1060 void \
1061 sdata_section () \
1063 if (in_section != in_sdata) \
1065 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1066 in_section = in_sdata; \
1070 void \
1071 rosdata_section () \
1073 if (in_section != in_rosdata) \
1075 fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP); \
1076 in_section = in_sdata; \
1080 void \
1081 sbss_section () \
1083 if (in_section != in_sbss) \
1085 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
1086 in_section = in_sbss; \
1090 void \
1091 tdata_section () \
1093 if (in_section != in_tdata) \
1095 fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
1096 in_section = in_tdata; \
1100 void \
1101 zdata_section () \
1103 if (in_section != in_zdata) \
1105 fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
1106 in_section = in_zdata; \
1110 void \
1111 rozdata_section () \
1113 if (in_section != in_rozdata) \
1115 fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP); \
1116 in_section = in_rozdata; \
1120 void \
1121 zbss_section () \
1123 if (in_section != in_zbss) \
1125 fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP); \
1126 in_section = in_zbss; \
1130 #define TEXT_SECTION_ASM_OP "\t.section .text"
1131 #define DATA_SECTION_ASM_OP "\t.section .data"
1132 #define BSS_SECTION_ASM_OP "\t.section .bss"
1133 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
1134 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
1135 #define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
1136 #define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
1137 #define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
1138 #define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
1139 #define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""
1141 #define SCOMMON_ASM_OP "\t.scomm\t"
1142 #define ZCOMMON_ASM_OP "\t.zcomm\t"
1143 #define TCOMMON_ASM_OP "\t.tcomm\t"
1145 #define ASM_COMMENT_START "#"
1147 /* Output to assembler file text saying following lines
1148 may contain character constants, extra white space, comments, etc. */
1150 #define ASM_APP_ON "#APP\n"
1152 /* Output to assembler file text saying following lines
1153 no longer contain unusual constructs. */
1155 #define ASM_APP_OFF "#NO_APP\n"
1157 #undef USER_LABEL_PREFIX
1158 #define USER_LABEL_PREFIX "_"
1160 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
1161 if (! v850_output_addr_const_extra (FILE, X)) \
1162 goto FAIL
1164 /* This says how to output the assembler to define a global
1165 uninitialized but not common symbol. */
1167 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1168 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
1170 #undef ASM_OUTPUT_ALIGNED_BSS
1171 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1172 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1174 /* This says how to output the assembler to define a global
1175 uninitialized, common symbol. */
1176 #undef ASM_OUTPUT_ALIGNED_COMMON
1177 #undef ASM_OUTPUT_COMMON
1178 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
1179 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
1181 /* This says how to output the assembler to define a local
1182 uninitialized symbol. */
1183 #undef ASM_OUTPUT_ALIGNED_LOCAL
1184 #undef ASM_OUTPUT_LOCAL
1185 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
1186 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
1188 /* Globalizing directive for a label. */
1189 #define GLOBAL_ASM_OP "\t.global "
1191 #define ASM_PN_FORMAT "%s___%lu"
1193 /* This is how we tell the assembler that two symbols have the same value. */
1195 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1196 do { assemble_name(FILE, NAME1); \
1197 fputs(" = ", FILE); \
1198 assemble_name(FILE, NAME2); \
1199 fputc('\n', FILE); } while (0)
1202 /* How to refer to registers in assembler output.
1203 This sequence is indexed by compiler's hard-register-number (see above). */
1205 #define REGISTER_NAMES \
1206 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
1207 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1208 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1209 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
1210 ".fp", ".ap"}
1212 #define ADDITIONAL_REGISTER_NAMES \
1213 { { "zero", 0 }, \
1214 { "hp", 2 }, \
1215 { "r3", 3 }, \
1216 { "r4", 4 }, \
1217 { "tp", 5 }, \
1218 { "fp", 29 }, \
1219 { "r30", 30 }, \
1220 { "lp", 31} }
1222 /* Print an instruction operand X on file FILE.
1223 look in v850.c for details */
1225 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1227 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1228 ((CODE) == '.')
1230 /* Print a memory operand whose address is X, on file FILE.
1231 This uses a function in output-vax.c. */
1233 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1235 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1236 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1238 /* This is how to output an element of a case-vector that is absolute. */
1240 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1241 fprintf (FILE, "\t%s .L%d\n", \
1242 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
1244 /* This is how to output an element of a case-vector that is relative. */
1246 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1247 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
1248 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
1249 (! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
1250 VALUE, REL, \
1251 (! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
1253 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1254 if ((LOG) != 0) \
1255 fprintf (FILE, "\t.align %d\n", (LOG))
1257 /* We don't have to worry about dbx compatibility for the v850. */
1258 #define DEFAULT_GDB_EXTENSIONS 1
1260 /* Use stabs debugging info by default. */
1261 #undef PREFERRED_DEBUGGING_TYPE
1262 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1264 /* Specify the machine mode that this machine uses
1265 for the index in the tablejump instruction. */
1266 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1268 /* Define this if the case instruction drops through after the table
1269 when the index is out of range. Don't define it if the case insn
1270 jumps to the default label instead. */
1271 /* #define CASE_DROPS_THROUGH */
1273 /* Define as C expression which evaluates to nonzero if the tablejump
1274 instruction expects the table to contain offsets from the address of the
1275 table.
1276 Do not define this if the table should contain absolute addresses. */
1277 #define CASE_VECTOR_PC_RELATIVE 1
1279 /* The switch instruction requires that the jump table immediately follow
1280 it. */
1281 #define JUMP_TABLES_IN_TEXT_SECTION 1
1283 /* svr4.h defines this assuming that 4 byte alignment is required. */
1284 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1285 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1286 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1288 #define WORD_REGISTER_OPERATIONS
1290 /* Byte and short loads sign extend the value to a word. */
1291 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1293 /* This flag, if defined, says the same insns that convert to a signed fixnum
1294 also convert validly to an unsigned one. */
1295 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1297 /* Max number of bytes we can move from memory to memory
1298 in one reasonably fast instruction. */
1299 #define MOVE_MAX 4
1301 /* Define if shifts truncate the shift count
1302 which implies one can omit a sign-extension or zero-extension
1303 of a shift count. */
1304 #define SHIFT_COUNT_TRUNCATED 1
1306 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1307 is done just by pretending it is already truncated. */
1308 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1310 /* Specify the machine mode that pointers have.
1311 After generation of rtl, the compiler makes no further distinction
1312 between pointers and any other objects of this machine mode. */
1313 #define Pmode SImode
1315 /* A function address in a call instruction
1316 is a byte address (for indexing purposes)
1317 so give the MEM rtx a byte's mode. */
1318 #define FUNCTION_MODE QImode
1320 /* Tell compiler we want to support GHS pragmas */
1321 #define REGISTER_TARGET_PRAGMAS() do { \
1322 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1323 c_register_pragma ("ghs", "section", ghs_pragma_section); \
1324 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
1325 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
1326 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
1327 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
1328 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
1329 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
1330 } while (0)
1332 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1333 can appear in the "ghs section" pragma. These names are used to index
1334 into the GHS_default_section_names[] and GHS_current_section_names[]
1335 that are defined in v850.c, and so the ordering of each must remain
1336 consistent.
1338 These arrays give the default and current names for each kind of
1339 section defined by the GHS pragmas. The current names can be changed
1340 by the "ghs section" pragma. If the current names are null, use
1341 the default names. Note that the two arrays have different types.
1343 For the *normal* section kinds (like .data, .text, etc.) we do not
1344 want to explicitly force the name of these sections, but would rather
1345 let the linker (or at least the back end) choose the name of the
1346 section, UNLESS the user has force a specific name for these section
1347 kinds. To accomplish this set the name in ghs_default_section_names
1348 to null. */
1350 enum GHS_section_kind
1352 GHS_SECTION_KIND_DEFAULT,
1354 GHS_SECTION_KIND_TEXT,
1355 GHS_SECTION_KIND_DATA,
1356 GHS_SECTION_KIND_RODATA,
1357 GHS_SECTION_KIND_BSS,
1358 GHS_SECTION_KIND_SDATA,
1359 GHS_SECTION_KIND_ROSDATA,
1360 GHS_SECTION_KIND_TDATA,
1361 GHS_SECTION_KIND_ZDATA,
1362 GHS_SECTION_KIND_ROZDATA,
1364 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1367 /* The following code is for handling pragmas supported by the
1368 v850 compiler produced by Green Hills Software. This is at
1369 the specific request of a customer. */
1371 typedef struct data_area_stack_element
1373 struct data_area_stack_element * prev;
1374 v850_data_area data_area; /* Current default data area. */
1375 } data_area_stack_element;
1377 /* Track the current data area set by the
1378 data area pragma (which can be nested). */
1379 extern data_area_stack_element * data_area_stack;
1381 /* Names of the various data areas used on the v850. */
1382 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1383 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1385 /* The assembler op to start the file. */
1387 #define FILE_ASM_OP "\t.file\n"
1389 /* Enable the register move pass to improve code. */
1390 #define ENABLE_REGMOVE_PASS
1393 /* Implement ZDA, TDA, and SDA */
1395 #define EP_REGNUM 30 /* ep register number */
1397 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1398 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1399 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1400 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1401 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1402 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1404 /* Define this if you have defined special-purpose predicates in the
1405 file `MACHINE.c'. This macro is called within an initializer of an
1406 array of structures. The first field in the structure is the name
1407 of a predicate and the second field is an array of rtl codes. For
1408 each predicate, list all rtl codes that can be in expressions
1409 matched by the predicate. The list should have a trailing comma. */
1411 #define PREDICATE_CODES \
1412 { "reg_or_0_operand", { REG, SUBREG, CONST_INT, CONST_DOUBLE }}, \
1413 { "reg_or_int5_operand", { REG, SUBREG, CONST_INT }}, \
1414 { "reg_or_int9_operand", { REG, SUBREG, CONST_INT }}, \
1415 { "reg_or_const_operand", { REG, CONST_INT }}, \
1416 { "call_address_operand", { REG, SYMBOL_REF }}, \
1417 { "movsi_source_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
1418 CONST_DOUBLE, CONST, HIGH, MEM, \
1419 REG, SUBREG }}, \
1420 { "special_symbolref_operand", { SYMBOL_REF }}, \
1421 { "power_of_two_operand", { CONST_INT }}, \
1422 { "pattern_is_ok_for_prologue", { PARALLEL }}, \
1423 { "pattern_is_ok_for_epilogue", { PARALLEL }}, \
1424 { "register_is_ok_for_epilogue",{ REG }}, \
1425 { "pattern_is_ok_for_dispose", { PARALLEL }}, \
1426 { "pattern_is_ok_for_prepare", { PARALLEL }}, \
1427 { "register_is_ok_for_dispose", { REG }}, \
1428 { "not_power_of_two_operand", { CONST_INT }},
1430 #endif /* ! GCC_V850_H */