* doc/tm.texi (INIT_CUMULATIVE_ARGS): Update doco.
[official-gcc.git] / gcc / config / frv / frv.h
blob828e8a326d1c30282bb7a0bff18a1652aef0ea76
1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Red Hat Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #ifndef __FRV_H__
24 #define __FRV_H__
26 /* Frv general purpose macros. */
27 /* Align an address. */
28 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
30 /* Return true if a value is inside a range. */
31 #define IN_RANGE_P(VALUE, LOW, HIGH) \
32 ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
33 && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
36 /* Driver configuration. */
38 /* A C expression which determines whether the option `-CHAR' takes arguments.
39 The value should be the number of arguments that option takes-zero, for many
40 options.
42 By default, this macro is defined to handle the standard options properly.
43 You need not define it unless you wish to add additional options which take
44 arguments.
46 Defined in svr4.h. */
47 #undef SWITCH_TAKES_ARG
48 #define SWITCH_TAKES_ARG(CHAR) \
49 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
51 /* A C expression which determines whether the option `-NAME' takes arguments.
52 The value should be the number of arguments that option takes-zero, for many
53 options. This macro rather than `SWITCH_TAKES_ARG' is used for
54 multi-character option names.
56 By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
57 handles the standard options properly. You need not define
58 `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
59 arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
60 then check for additional options.
62 Defined in svr4.h. */
63 #undef WORD_SWITCH_TAKES_ARG
65 /* A C string constant that tells the GCC driver program options to pass to
66 the assembler. It can also specify how to translate options you give to GNU
67 CC into options for GCC to pass to the assembler. See the file `sun3.h'
68 for an example of this.
70 Do not define this macro if it does not need to do anything.
72 Defined in svr4.h. */
73 #undef ASM_SPEC
74 #define ASM_SPEC "\
75 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
76 %{mtomcat-stats} \
77 %{!mno-eflags: \
78 %{mcpu=*} \
79 %{mgpr-*} %{mfpr-*} \
80 %{msoft-float} %{mhard-float} \
81 %{mdword} %{mno-dword} \
82 %{mdouble} %{mno-double} \
83 %{mmedia} %{mno-media} \
84 %{mmuladd} %{mno-muladd} \
85 %{mpack} %{mno-pack} \
86 %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
88 /* Another C string constant used much like `LINK_SPEC'. The difference
89 between the two is that `STARTFILE_SPEC' is used at the very beginning of
90 the command given to the linker.
92 If this macro is not defined, a default is provided that loads the standard
93 C startup file from the usual place. See `gcc.c'.
95 Defined in svr4.h. */
96 #undef STARTFILE_SPEC
97 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
99 /* Another C string constant used much like `LINK_SPEC'. The difference
100 between the two is that `ENDFILE_SPEC' is used at the very end of the
101 command given to the linker.
103 Do not define this macro if it does not need to do anything.
105 Defined in svr4.h. */
106 #undef ENDFILE_SPEC
107 #define ENDFILE_SPEC "frvend%O%s"
109 /* A C string constant that tells the GCC driver program options to pass to
110 CPP. It can also specify how to translate options you give to GCC into
111 options for GCC to pass to the CPP.
113 Do not define this macro if it does not need to do anything. */
115 /* The idea here is to use the -mcpu option to define macros based on the
116 processor's features, using the features of the default processor if
117 no -mcpu option is given. These macros can then be overridden by
118 other -m options. */
119 #define CPP_SPEC "\
120 %{mcpu=frv: %(cpp_frv)} \
121 %{mcpu=fr500: %(cpp_fr500)} \
122 %{mcpu=fr400: %(cpp_fr400)} \
123 %{mcpu=fr300: %(cpp_simple)} \
124 %{mcpu=tomcat: %(cpp_fr500)} \
125 %{mcpu=simple: %(cpp_simple)} \
126 %{!mcpu*: %(cpp_cpu_default)} \
127 %{mno-media: -D__FRV_ACC__=0 %{msoft-float: -D__FRV_FPR__=0}} \
128 %{mhard-float: -D__FRV_HARD_FLOAT__} \
129 %{msoft-float: -U__FRV_HARD_FLOAT__} \
130 %{mgpr-32: -U__FRV_GPR__ -D__FRV_GPR__=32} \
131 %{mgpr-64: -U__FRV_GPR__ -D__FRV_GPR__=64} \
132 %{mfpr-32: -U__FRV_FPR__ -D__FRV_FPR__=32} \
133 %{mfpr-64: -U__FRV_FPR__ -D__FRV_FPR__=64} \
134 %{macc-4: -U__FRV_ACC__ -D__FRV_ACC__=4} \
135 %{macc-8: -U__FRV_ACC__ -D__FRV_ACC__=8} \
136 %{mdword: -D__FRV_DWORD__} \
137 %{mno-dword: -U__FRV_DWORD__} \
138 %{mno-pack: -U__FRV_VLIW__} \
139 %{fleading-underscore: -D__FRV_UNDERSCORE__}"
141 /* CPU defaults. Each CPU has its own CPP spec that defines the default
142 macros for that CPU. Each CPU also has its own default target mask.
144 CPU GPRs FPRs ACCs FPU MulAdd ldd/std Issue rate
145 --- ---- ---- ---- --- ------ ------- ----------
146 FRV 64 64 8 double yes yes 4
147 FR500 64 64 8 single no yes 4
148 FR400 32 32 4 none no yes 2
149 Simple 32 0 0 none no no 1 */
152 #define CPP_FRV_SPEC "\
153 -D__FRV_GPR__=64 \
154 -D__FRV_FPR__=64 \
155 -D__FRV_ACC__=8 \
156 -D__FRV_HARD_FLOAT__ \
157 -D__FRV_DWORD__ \
158 -D__FRV_VLIW__=4"
160 #define CPP_FR500_SPEC "\
161 -D__FRV_GPR__=64 \
162 -D__FRV_FPR__=64 \
163 -D__FRV_ACC__=8 \
164 -D__FRV_HARD_FLOAT__ \
165 -D__FRV_DWORD__ \
166 -D__FRV_VLIW__=4"
168 #define CPP_FR400_SPEC "\
169 -D__FRV_GPR__=32 \
170 -D__FRV_FPR__=32 \
171 -D__FRV_ACC__=4 \
172 -D__FRV_DWORD__ \
173 -D__FRV_VLIW__=2"
175 #define CPP_SIMPLE_SPEC "\
176 -D__FRV_GPR__=32 \
177 -D__FRV_FPR__=0 \
178 -D__FRV_ACC__=0 \
179 %{mmedia: -D__FRV_ACC__=8} \
180 %{mhard-float|mmedia: -D__FRV_FPR__=64}"
182 #define MASK_DEFAULT_FRV \
183 (MASK_MEDIA \
184 | MASK_DOUBLE \
185 | MASK_MULADD \
186 | MASK_DWORD \
187 | MASK_PACK)
189 #define MASK_DEFAULT_FR500 \
190 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
192 #define MASK_DEFAULT_FR400 \
193 (MASK_GPR_32 \
194 | MASK_FPR_32 \
195 | MASK_MEDIA \
196 | MASK_ACC_4 \
197 | MASK_SOFT_FLOAT \
198 | MASK_DWORD \
199 | MASK_PACK)
201 #define MASK_DEFAULT_SIMPLE \
202 (MASK_GPR_32 | MASK_SOFT_FLOAT)
204 /* A C string constant that tells the GCC driver program options to pass to
205 `cc1'. It can also specify how to translate options you give to GCC into
206 options for GCC to pass to the `cc1'.
208 Do not define this macro if it does not need to do anything. */
209 /* For ABI compliance, we need to put bss data into the normal data section. */
210 #define CC1_SPEC "%{G*}"
212 /* A C string constant that tells the GCC driver program options to pass to
213 the linker. It can also specify how to translate options you give to GCC
214 into options for GCC to pass to the linker.
216 Do not define this macro if it does not need to do anything.
218 Defined in svr4.h. */
219 /* Override the svr4.h version with one that dispenses without the svr4
220 shared library options, notably -G. */
221 #undef LINK_SPEC
222 #define LINK_SPEC "\
223 %{h*} %{v:-V} \
224 %{b} %{Wl,*:%*} \
225 %{static:-dn -Bstatic} \
226 %{shared:-Bdynamic} \
227 %{symbolic:-Bsymbolic} \
228 %{G*} \
229 %{YP,*} \
230 %{Qy:} %{!Qn:-Qy}"
232 /* Another C string constant used much like `LINK_SPEC'. The difference
233 between the two is that `LIB_SPEC' is used at the end of the command given
234 to the linker.
236 If this macro is not defined, a default is provided that loads the standard
237 C library from the usual place. See `gcc.c'.
239 Defined in svr4.h. */
241 #undef LIB_SPEC
242 #define LIB_SPEC "--start-group -lc -lsim --end-group"
244 /* This macro defines names of additional specifications to put in the specs
245 that can be used in various specifications like CC1_SPEC. Its definition
246 is an initializer with a subgrouping for each command option.
248 Each subgrouping contains a string constant, that defines the
249 specification name, and a string constant that used by the GCC driver
250 program.
252 Do not define this macro if it does not need to do anything. */
254 #ifndef SUBTARGET_EXTRA_SPECS
255 #define SUBTARGET_EXTRA_SPECS
256 #endif
258 #define EXTRA_SPECS \
259 { "cpp_frv", CPP_FRV_SPEC }, \
260 { "cpp_fr500", CPP_FR500_SPEC }, \
261 { "cpp_fr400", CPP_FR400_SPEC }, \
262 { "cpp_simple", CPP_SIMPLE_SPEC }, \
263 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
264 SUBTARGET_EXTRA_SPECS
266 #ifndef CPP_CPU_DEFAULT_SPEC
267 #define CPP_CPU_DEFAULT_SPEC CPP_FR500_SPEC
268 #define CPU_TYPE FRV_CPU_FR500
269 #endif
271 /* Allow us to easily change the default for -malloc-cc. */
272 #ifndef DEFAULT_NO_ALLOC_CC
273 #define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC
274 #else
275 #define MASK_DEFAULT_ALLOC_CC 0
276 #endif
278 /* Run-time target specifications */
280 #define TARGET_CPU_CPP_BUILTINS() \
281 do \
283 builtin_define ("__frv__"); \
284 builtin_assert ("machine=frv"); \
286 while (0)
289 /* This declaration should be present. */
290 extern int target_flags;
292 /* This series of macros is to allow compiler command arguments to enable or
293 disable the use of optional features of the target machine. For example,
294 one machine description serves both the 68000 and the 68020; a command
295 argument tells the compiler whether it should use 68020-only instructions or
296 not. This command argument works by means of a macro `TARGET_68020' that
297 tests a bit in `target_flags'.
299 Define a macro `TARGET_FEATURENAME' for each such option. Its definition
300 should test a bit in `target_flags'; for example:
302 #define TARGET_68020 (target_flags & 1)
304 One place where these macros are used is in the condition-expressions of
305 instruction patterns. Note how `TARGET_68020' appears frequently in the
306 68000 machine description file, `m68k.md'. Another place they are used is
307 in the definitions of the other macros in the `MACHINE.h' file. */
309 #define MASK_GPR_32 0x00000001 /* Limit gprs to 32 registers */
310 #define MASK_FPR_32 0x00000002 /* Limit fprs to 32 registers */
311 #define MASK_SOFT_FLOAT 0x00000004 /* Use software floating point */
312 #define MASK_ALLOC_CC 0x00000008 /* Dynamically allocate icc/fcc's */
313 #define MASK_DWORD 0x00000010 /* Change ABi to allow dbl word insns*/
314 #define MASK_DOUBLE 0x00000020 /* Use double precision instructions */
315 #define MASK_MEDIA 0x00000040 /* Use media instructions */
316 #define MASK_MULADD 0x00000080 /* Use multiply add/subtract insns */
317 #define MASK_LIBPIC 0x00000100 /* -fpic that can be linked w/o pic */
318 #define MASK_ACC_4 0x00000200 /* Only use four media accumulators */
319 #define MASK_PACK 0x00000400 /* Set to enable packed output */
321 /* put debug masks up high */
322 #define MASK_DEBUG_ARG 0x40000000 /* debug argument handling */
323 #define MASK_DEBUG_ADDR 0x20000000 /* debug go_if_legitimate_address */
324 #define MASK_DEBUG_STACK 0x10000000 /* debug stack frame */
325 #define MASK_DEBUG 0x08000000 /* general debugging switch */
326 #define MASK_DEBUG_LOC 0x04000000 /* optimize line # table */
327 #define MASK_DEBUG_COND_EXEC 0x02000000 /* debug cond exec code */
328 #define MASK_NO_COND_MOVE 0x01000000 /* disable conditional moves */
329 #define MASK_NO_SCC 0x00800000 /* disable set conditional codes */
330 #define MASK_NO_COND_EXEC 0x00400000 /* disable conditional execution */
331 #define MASK_NO_VLIW_BRANCH 0x00200000 /* disable repacking branches */
332 #define MASK_NO_MULTI_CE 0x00100000 /* disable multi-level cond exec */
333 #define MASK_NO_NESTED_CE 0x00080000 /* disable nested cond exec */
335 #define MASK_DEFAULT MASK_DEFAULT_ALLOC_CC
337 #define TARGET_GPR_32 ((target_flags & MASK_GPR_32) != 0)
338 #define TARGET_FPR_32 ((target_flags & MASK_FPR_32) != 0)
339 #define TARGET_SOFT_FLOAT ((target_flags & MASK_SOFT_FLOAT) != 0)
340 #define TARGET_ALLOC_CC ((target_flags & MASK_ALLOC_CC) != 0)
341 #define TARGET_DWORD ((target_flags & MASK_DWORD) != 0)
342 #define TARGET_DOUBLE ((target_flags & MASK_DOUBLE) != 0)
343 #define TARGET_MEDIA ((target_flags & MASK_MEDIA) != 0)
344 #define TARGET_MULADD ((target_flags & MASK_MULADD) != 0)
345 #define TARGET_LIBPIC ((target_flags & MASK_LIBPIC) != 0)
346 #define TARGET_ACC_4 ((target_flags & MASK_ACC_4) != 0)
347 #define TARGET_DEBUG_ARG ((target_flags & MASK_DEBUG_ARG) != 0)
348 #define TARGET_DEBUG_ADDR ((target_flags & MASK_DEBUG_ADDR) != 0)
349 #define TARGET_DEBUG_STACK ((target_flags & MASK_DEBUG_STACK) != 0)
350 #define TARGET_DEBUG ((target_flags & MASK_DEBUG) != 0)
351 #define TARGET_DEBUG_LOC ((target_flags & MASK_DEBUG_LOC) != 0)
352 #define TARGET_DEBUG_COND_EXEC ((target_flags & MASK_DEBUG_COND_EXEC) != 0)
353 #define TARGET_NO_COND_MOVE ((target_flags & MASK_NO_COND_MOVE) != 0)
354 #define TARGET_NO_SCC ((target_flags & MASK_NO_SCC) != 0)
355 #define TARGET_NO_COND_EXEC ((target_flags & MASK_NO_COND_EXEC) != 0)
356 #define TARGET_NO_VLIW_BRANCH ((target_flags & MASK_NO_VLIW_BRANCH) != 0)
357 #define TARGET_NO_MULTI_CE ((target_flags & MASK_NO_MULTI_CE) != 0)
358 #define TARGET_NO_NESTED_CE ((target_flags & MASK_NO_NESTED_CE) != 0)
359 #define TARGET_PACK ((target_flags & MASK_PACK) != 0)
361 #define TARGET_GPR_64 (! TARGET_GPR_32)
362 #define TARGET_FPR_64 (! TARGET_FPR_32)
363 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
364 #define TARGET_FIXED_CC (! TARGET_ALLOC_CC)
365 #define TARGET_COND_MOVE (! TARGET_NO_COND_MOVE)
366 #define TARGET_SCC (! TARGET_NO_SCC)
367 #define TARGET_COND_EXEC (! TARGET_NO_COND_EXEC)
368 #define TARGET_VLIW_BRANCH (! TARGET_NO_VLIW_BRANCH)
369 #define TARGET_MULTI_CE (! TARGET_NO_MULTI_CE)
370 #define TARGET_NESTED_CE (! TARGET_NO_NESTED_CE)
371 #define TARGET_ACC_8 (! TARGET_ACC_4)
373 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
375 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
376 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
377 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
379 /* Macros to identify the blend of media instructions available. Revision 1
380 is the one found on the FR500. Revision 2 includes the changes made for
381 the FR400.
383 Treat the generic processor as a revision 1 machine for now, for
384 compatibility with earlier releases. */
386 #define TARGET_MEDIA_REV1 \
387 (TARGET_MEDIA \
388 && (frv_cpu_type == FRV_CPU_GENERIC \
389 || frv_cpu_type == FRV_CPU_FR500))
391 #define TARGET_MEDIA_REV2 \
392 (TARGET_MEDIA && frv_cpu_type == FRV_CPU_FR400)
394 /* This macro defines names of command options to set and clear bits in
395 `target_flags'. Its definition is an initializer with a subgrouping for
396 each command option.
398 Each subgrouping contains a string constant, that defines the option name,
399 a number, which contains the bits to set in `target_flags', and an optional
400 second string which is the textual description that will be displayed when
401 the user passes --help on the command line. If the number entry is negative
402 then the specified bits will be cleared instead of being set. If the second
403 string entry is present but empty, then no help information will be displayed
404 for that option, but it will not count as an undocumented option. The actual
405 option name, asseen on the command line is made by appending `-m' to the
406 specified name.
408 One of the subgroupings should have a null string. The number in this
409 grouping is the default value for `target_flags'. Any target options act
410 starting with that value.
412 Here is an example which defines `-m68000' and `-m68020' with opposite
413 meanings, and picks the latter as the default:
415 #define TARGET_SWITCHES \
416 { { "68020", 1, ""}, \
417 { "68000", -1, "Compile for the m68000"}, \
418 { "", 1, }}
420 This declaration must be present. */
422 #define TARGET_SWITCHES \
423 {{ "gpr-32", MASK_GPR_32, "Only use 32 gprs"}, \
424 { "gpr-64", -MASK_GPR_32, "Use 64 gprs"}, \
425 { "fpr-32", MASK_FPR_32, "Only use 32 fprs"}, \
426 { "fpr-64", -MASK_FPR_32, "Use 64 fprs"}, \
427 { "hard-float", -MASK_SOFT_FLOAT, "Use hardware floating point" },\
428 { "soft-float", MASK_SOFT_FLOAT, "Use software floating point" },\
429 { "alloc-cc", MASK_ALLOC_CC, "Dynamically allocate cc's" }, \
430 { "fixed-cc", -MASK_ALLOC_CC, "Just use icc0/fcc0" }, \
431 { "dword", MASK_DWORD, "Change ABI to allow double word insns" }, \
432 { "no-dword", -MASK_DWORD, "Do not use double word insns" }, \
433 { "double", MASK_DOUBLE, "Use fp double instructions" }, \
434 { "no-double", -MASK_DOUBLE, "Do not use fp double insns" }, \
435 { "media", MASK_MEDIA, "Use media instructions" }, \
436 { "no-media", -MASK_MEDIA, "Do not use media insns" }, \
437 { "muladd", MASK_MULADD, "Use multiply add/subtract instructions" }, \
438 { "no-muladd", -MASK_MULADD, "Do not use multiply add/subtract insns" }, \
439 { "library-pic", MASK_LIBPIC, "PIC support for building libraries" }, \
440 { "acc-4", MASK_ACC_4, "Use 4 media accumulators" }, \
441 { "acc-8", -MASK_ACC_4, "Use 8 media accumulators" }, \
442 { "pack", MASK_PACK, "Pack VLIW instructions" }, \
443 { "no-pack", -MASK_PACK, "Do not pack VLIW instructions" }, \
444 { "no-eflags", 0, "Do not mark ABI switches in e_flags" }, \
445 { "debug-arg", MASK_DEBUG_ARG, "Internal debug switch" }, \
446 { "debug-addr", MASK_DEBUG_ADDR, "Internal debug switch" }, \
447 { "debug-stack", MASK_DEBUG_STACK, "Internal debug switch" }, \
448 { "debug", MASK_DEBUG, "Internal debug switch" }, \
449 { "debug-cond-exec", MASK_DEBUG_COND_EXEC, "Internal debug switch" }, \
450 { "debug-loc", MASK_DEBUG_LOC, "Internal debug switch" }, \
451 { "cond-move", -MASK_NO_COND_MOVE, "Enable conditional moves" }, \
452 { "no-cond-move", MASK_NO_COND_MOVE, "Disable conditional moves" }, \
453 { "scc", -MASK_NO_SCC, "Enable setting gprs to the result of comparisons" }, \
454 { "no-scc", MASK_NO_SCC, "Disable setting gprs to the result of comparisons" }, \
455 { "cond-exec", -MASK_NO_COND_EXEC, "Enable conditional execution other than moves/scc" }, \
456 { "no-cond-exec", MASK_NO_COND_EXEC, "Disable conditional execution other than moves/scc" }, \
457 { "vliw-branch", -MASK_NO_VLIW_BRANCH, "Run pass to pack branches into VLIW insns" }, \
458 { "no-vliw-branch", MASK_NO_VLIW_BRANCH, "Do not run pass to pack branches into VLIW insns" }, \
459 { "multi-cond-exec", -MASK_NO_MULTI_CE, "Disable optimizing &&/|| in conditional execution" }, \
460 { "no-multi-cond-exec", MASK_NO_MULTI_CE, "Enable optimizing &&/|| in conditional execution" }, \
461 { "nested-cond-exec", -MASK_NO_NESTED_CE, "Enable nested conditional execution optimizations" }, \
462 { "no-nested-cond-exec" ,MASK_NO_NESTED_CE, "Disable nested conditional execution optimizations" }, \
463 { "tomcat-stats", 0, "Cause gas to print tomcat statistics" }, \
464 { "", MASK_DEFAULT, "" }} \
466 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
467 options that have values. Its definition is an initializer with a
468 subgrouping for each command option.
470 Each subgrouping contains a string constant, that defines the fixed part of
471 the option name, the address of a variable, and an optional description string.
472 The variable, of type `char *', is set to the text following the fixed part of
473 the option as it is specified on the command line. The actual option name is
474 made by appending `-m' to the specified name.
476 Here is an example which defines `-mshort-data-NUMBER'. If the given option
477 is `-mshort-data-512', the variable `m88k_short_data' will be set to the
478 string `"512"'.
480 extern char *m88k_short_data;
481 #define TARGET_OPTIONS \
482 { { "short-data-", & m88k_short_data, \
483 "Specify the size of the short data section" } }
485 This declaration is optional. */
486 #define TARGET_OPTIONS \
488 { "cpu=", &frv_cpu_string, "Set cpu type", 0}, \
489 { "branch-cost=", &frv_branch_cost_string, "Internal debug switch", 0}, \
490 { "cond-exec-insns=", &frv_condexec_insns_str, "Internal debug switch", 0}, \
491 { "cond-exec-temps=", &frv_condexec_temps_str, "Internal debug switch", 0}, \
492 { "sched-lookahead=", &frv_sched_lookahead_str,"Internal debug switch", 0}, \
495 /* This macro is a C statement to print on `stderr' a string describing the
496 particular machine description choice. Every machine description should
497 define `TARGET_VERSION'. For example:
499 #ifdef MOTOROLA
500 #define TARGET_VERSION \
501 fprintf (stderr, " (68k, Motorola syntax)");
502 #else
503 #define TARGET_VERSION \
504 fprintf (stderr, " (68k, MIT syntax)");
505 #endif */
506 #define TARGET_VERSION fprintf (stderr, _(" (frv)"))
508 /* Sometimes certain combinations of command options do not make sense on a
509 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
510 take account of this. This macro, if defined, is executed once just after
511 all the command options have been parsed.
513 Don't use this macro to turn on various extra optimizations for `-O'. That
514 is what `OPTIMIZATION_OPTIONS' is for. */
516 #define OVERRIDE_OPTIONS frv_override_options ()
518 /* Some machines may desire to change what optimizations are performed for
519 various optimization levels. This macro, if defined, is executed once just
520 after the optimization level is determined and before the remainder of the
521 command options have been parsed. Values set in this macro are used as the
522 default values for the other command line options.
524 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
525 `-O' is specified, and 0 if neither is specified.
527 SIZE is nonzero if `-Os' is specified, 0 otherwise.
529 You should not use this macro to change options that are not
530 machine-specific. These should uniformly selected by the same optimization
531 level on all supported machines. Use this macro to enable machbine-specific
532 optimizations.
534 *Do not examine `write_symbols' in this macro!* The debugging options are
535 *not supposed to alter the generated code. */
536 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
539 /* Define this macro if debugging can be performed even without a frame
540 pointer. If this macro is defined, GCC will turn on the
541 `-fomit-frame-pointer' option whenever `-O' is specified. */
542 /* Frv needs a specific frame layout that includes the frame pointer. */
544 #define CAN_DEBUG_WITHOUT_FP
547 /* Small Data Area Support. */
548 /* Maximum size of variables that go in .sdata/.sbss.
549 The -msdata=foo switch also controls how small variables are handled. */
550 #ifndef SDATA_DEFAULT_SIZE
551 #define SDATA_DEFAULT_SIZE 8
552 #endif
555 /* Storage Layout */
557 /* Define this macro to have the value 1 if the most significant bit in a byte
558 has the lowest number; otherwise define it to have the value zero. This
559 means that bit-field instructions count from the most significant bit. If
560 the machine has no bit-field instructions, then this must still be defined,
561 but it doesn't matter which value it is defined to. This macro need not be
562 a constant.
564 This macro does not affect the way structure fields are packed into bytes or
565 words; that is controlled by `BYTES_BIG_ENDIAN'. */
566 #define BITS_BIG_ENDIAN 1
568 /* Define this macro to have the value 1 if the most significant byte in a word
569 has the lowest number. This macro need not be a constant. */
570 #define BYTES_BIG_ENDIAN 1
572 /* Define this macro to have the value 1 if, in a multiword object, the most
573 significant word has the lowest number. This applies to both memory
574 locations and registers; GCC fundamentally assumes that the order of
575 words in memory is the same as the order in registers. This macro need not
576 be a constant. */
577 #define WORDS_BIG_ENDIAN 1
579 /* Number of storage units in a word; normally 4. */
580 #define UNITS_PER_WORD 4
582 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
583 which has the specified mode and signedness is to be stored in a register.
584 This macro is only called when TYPE is a scalar type.
586 On most RISC machines, which only have operations that operate on a full
587 register, define this macro to set M to `word_mode' if M is an integer mode
588 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
589 widened because wider-precision floating-point operations are usually more
590 expensive than their narrower counterparts.
592 For most machines, the macro definition does not change UNSIGNEDP. However,
593 some machines, have instructions that preferentially handle either signed or
594 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
595 loads from memory and 32-bit add instructions sign-extend the result to 64
596 bits. On such machines, set UNSIGNEDP according to which kind of extension
597 is more efficient.
599 Do not define this macro if it would never modify MODE. */
600 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
601 do \
603 if (GET_MODE_CLASS (MODE) == MODE_INT \
604 && GET_MODE_SIZE (MODE) < 4) \
605 (MODE) = SImode; \
607 while (0)
609 /* Normal alignment required for function parameters on the stack, in bits.
610 All stack parameters receive at least this much alignment regardless of data
611 type. On most machines, this is the same as the size of an integer. */
612 #define PARM_BOUNDARY 32
614 /* Define this macro if you wish to preserve a certain alignment for the stack
615 pointer. The definition is a C expression for the desired alignment
616 (measured in bits).
618 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
619 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
620 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
621 unaligned while pushing arguments. */
622 #define STACK_BOUNDARY 64
624 /* Alignment required for a function entry point, in bits. */
625 #define FUNCTION_BOUNDARY 128
627 /* Biggest alignment that any data type can require on this machine,
628 in bits. */
629 #define BIGGEST_ALIGNMENT 64
631 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
632 some reason. */
633 #ifdef IN_TARGET_LIBS
634 #define BIGGEST_FIELD_ALIGNMENT 64
635 #else
636 /* An expression for the alignment of a structure field FIELD if the
637 alignment computed in the usual way is COMPUTED. GCC uses this
638 value instead of the value in `BIGGEST_ALIGNMENT' or
639 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
640 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
641 frv_adjust_field_align (FIELD, COMPUTED)
642 #endif
644 /* If defined, a C expression to compute the alignment for a static variable.
645 TYPE is the data type, and ALIGN is the alignment that the object
646 would ordinarily have. The value of this macro is used instead of that
647 alignment to align the object.
649 If this macro is not defined, then ALIGN is used.
651 One use of this macro is to increase alignment of medium-size data to make
652 it all fit in fewer cache lines. Another is to cause character arrays to be
653 word-aligned so that `strcpy' calls that copy constants to character arrays
654 can be done inline. */
655 #define DATA_ALIGNMENT(TYPE, ALIGN) \
656 (TREE_CODE (TYPE) == ARRAY_TYPE \
657 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
658 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
660 /* If defined, a C expression to compute the alignment given to a constant that
661 is being placed in memory. CONSTANT is the constant and ALIGN is the
662 alignment that the object would ordinarily have. The value of this macro is
663 used instead of that alignment to align the object.
665 If this macro is not defined, then ALIGN is used.
667 The typical use of this macro is to increase alignment for string constants
668 to be word aligned so that `strcpy' calls that copy constants can be done
669 inline. */
670 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
671 (TREE_CODE (EXP) == STRING_CST \
672 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
674 /* Define this macro to be the value 1 if instructions will fail to work if
675 given data not on the nominal alignment. If instructions will merely go
676 slower in that case, define this macro as 0. */
677 #define STRICT_ALIGNMENT 1
679 /* Define this if you wish to imitate the way many other C compilers handle
680 alignment of bitfields and the structures that contain them.
682 The behavior is that the type written for a bit-field (`int', `short', or
683 other integer type) imposes an alignment for the entire structure, as if the
684 structure really did contain an ordinary field of that type. In addition,
685 the bit-field is placed within the structure so that it would fit within such
686 a field, not crossing a boundary for it.
688 Thus, on most machines, a bit-field whose type is written as `int' would not
689 cross a four-byte boundary, and would force four-byte alignment for the
690 whole structure. (The alignment used may not be four bytes; it is
691 controlled by the other alignment parameters.)
693 If the macro is defined, its definition should be a C expression; a nonzero
694 value for the expression enables this behavior.
696 Note that if this macro is not defined, or its value is zero, some bitfields
697 may cross more than one alignment boundary. The compiler can support such
698 references if there are `insv', `extv', and `extzv' insns that can directly
699 reference memory.
701 The other known way of making bitfields work is to define
702 `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
703 structure can be accessed with fullwords.
705 Unless the machine has bit-field instructions or you define
706 `STRUCTURE_SIZE_BOUNDARY' that way, you must define
707 `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
709 If your aim is to make GCC use the same conventions for laying out
710 bitfields as are used by another compiler, here is how to investigate what
711 the other compiler does. Compile and run this program:
713 struct foo1
715 char x;
716 char :0;
717 char y;
720 struct foo2
722 char x;
723 int :0;
724 char y;
727 main ()
729 printf ("Size of foo1 is %d\n",
730 sizeof (struct foo1));
731 printf ("Size of foo2 is %d\n",
732 sizeof (struct foo2));
733 exit (0);
736 If this prints 2 and 5, then the compiler's behavior is what you would get
737 from `PCC_BITFIELD_TYPE_MATTERS'.
739 Defined in svr4.h. */
740 #define PCC_BITFIELD_TYPE_MATTERS 1
743 /* Layout of Source Language Data Types. */
745 #define CHAR_TYPE_SIZE 8
746 #define SHORT_TYPE_SIZE 16
747 #define INT_TYPE_SIZE 32
748 #define LONG_TYPE_SIZE 32
749 #define LONG_LONG_TYPE_SIZE 64
750 #define FLOAT_TYPE_SIZE 32
751 #define DOUBLE_TYPE_SIZE 64
752 #define LONG_DOUBLE_TYPE_SIZE 64
754 /* An expression whose value is 1 or 0, according to whether the type `char'
755 should be signed or unsigned by default. The user can always override this
756 default with the options `-fsigned-char' and `-funsigned-char'. */
757 #define DEFAULT_SIGNED_CHAR 1
760 /* General purpose registers. */
761 #define GPR_FIRST 0 /* First gpr */
762 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
763 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
764 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
765 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
766 /* small data register */
767 #define SDA_BASE_REG ((unsigned)(flag_pic ? PIC_REGNO : (GPR_FIRST+16)))
768 #define PIC_REGNO (GPR_FIRST + 17) /* PIC register */
770 #define FPR_FIRST 64 /* First FP reg */
771 #define FPR_LAST 127 /* Last FP reg */
773 #define DEFAULT_CONDEXEC_TEMPS 4 /* reserve 4 regs by default */
774 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
776 /* We reserve the last CR and CCR in each category to be used as a reload
777 register to reload the CR/CCR registers. This is a kludge. */
778 #define CC_FIRST 128 /* First ICC/FCC reg */
779 #define CC_LAST 135 /* Last ICC/FCC reg */
780 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
781 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
782 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
783 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
784 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
786 /* Amount to shift a value to locate a ICC or FCC register in the CCR
787 register and shift it to the bottom 4 bits. */
788 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
790 /* Mask to isolate a single ICC/FCC value. */
791 #define CC_MASK 0xf
793 /* Masks to isolate the various bits in an ICC field. */
794 #define ICC_MASK_N 0x8 /* negative */
795 #define ICC_MASK_Z 0x4 /* zero */
796 #define ICC_MASK_V 0x2 /* overflow */
797 #define ICC_MASK_C 0x1 /* carry */
799 /* Mask to isolate the N/Z flags in an ICC. */
800 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
802 /* Mask to isolate the Z/C flags in an ICC. */
803 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
805 /* Masks to isolate the various bits in a FCC field. */
806 #define FCC_MASK_E 0x8 /* equal */
807 #define FCC_MASK_L 0x4 /* less than */
808 #define FCC_MASK_G 0x2 /* greater than */
809 #define FCC_MASK_U 0x1 /* unordered */
811 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
812 code and CR0..CR3 to be used for floating point. */
813 #define CR_FIRST 136 /* First CCR */
814 #define CR_LAST 143 /* Last CCR */
815 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
816 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
817 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
818 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
819 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
820 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
822 /* Amount to shift a value to locate a CR register in the CCCR special purpose
823 register and shift it to the bottom 2 bits. */
824 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
826 /* Mask to isolate a single CR value. */
827 #define CR_MASK 0x3
829 #define ACC_FIRST 144 /* First acc register */
830 #define ACC_LAST 151 /* Last acc register */
832 #define ACCG_FIRST 152 /* First accg register */
833 #define ACCG_LAST 159 /* Last accg register */
835 #define AP_FIRST 160 /* fake argument pointer */
837 #define SPR_FIRST 161
838 #define SPR_LAST 162
839 #define LR_REGNO (SPR_FIRST)
840 #define LCR_REGNO (SPR_FIRST + 1)
842 #define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
843 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
844 #define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
845 #define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
846 #define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
847 #define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
848 #define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
849 #define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
850 #define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
851 #define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
852 #define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
853 #define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
855 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
856 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
857 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
858 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
859 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
860 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
861 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
862 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
863 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
864 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
865 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
867 #define MAX_STACK_IMMEDIATE_OFFSET 2047
870 /* Register Basics. */
872 /* Number of hardware registers known to the compiler. They receive numbers 0
873 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
874 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
875 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
877 /* The first/last register that can contain the arguments to a function. */
878 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
879 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
881 /* Registers used by the exception handling functions. These should be
882 registers that are not otherwised used by the calling sequence. */
883 #define FIRST_EH_REGNUM 14
884 #define LAST_EH_REGNUM 15
886 /* Scratch registers used in the prologue, epilogue and thunks.
887 OFFSET_REGNO is for loading constant addends that are too big for a
888 single instruction. TEMP_REGNO is used for transferring SPRs to and from
889 the stack, and various other activities. */
890 #define OFFSET_REGNO 4
891 #define TEMP_REGNO 5
893 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
894 which is sometimes used to set up the frame pointer. */
895 #define OLD_SP_REGNO 6
897 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
898 handler's stack adjustment. */
899 #define STACKADJ_REGNO 6
901 /* Registers used in thunks. JMP_REGNO is used for loading the target
902 address. */
903 #define JUMP_REGNO 6
905 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
906 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
907 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
908 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
910 /* An initializer that says which registers are used for fixed purposes all
911 throughout the compiled code and are therefore not available for general
912 allocation. These would include the stack pointer, the frame pointer
913 (except on machines where that can be used as a general register when no
914 frame pointer is needed), the program counter on machines where that is
915 considered one of the addressable registers, and any other numbered register
916 with a standard use.
918 This information is expressed as a sequence of numbers, separated by commas
919 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
920 otherwise.
922 The table initialized from this macro, and the table initialized by the
923 following one, may be overridden at run time either automatically, by the
924 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
925 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
927 /* gr0 -- Hard Zero
928 gr1 -- Stack Pointer
929 gr2 -- Frame Pointer
930 gr3 -- Hidden Parameter
931 gr16 -- Small Data reserved
932 gr17 -- Pic reserved
933 gr28 -- OS reserved
934 gr29 -- OS reserved
935 gr30 -- OS reserved
936 gr31 -- OS reserved
937 cr3 -- reserved to reload FCC registers.
938 cr7 -- reserved to reload ICC registers. */
939 #define FIXED_REGISTERS \
940 { /* Integer Registers */ \
941 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
942 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
943 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
944 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
945 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
946 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
947 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
948 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
949 /* Float Registers */ \
950 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
951 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
952 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
953 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
954 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
955 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
956 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
957 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
958 /* Condition Code Registers */ \
959 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
960 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
961 /* Conditional execution Registers (CCR) */ \
962 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
963 /* Accumulators */ \
964 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
965 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
966 /* Other registers */ \
967 1, /* 160, AP - fake arg ptr */ \
968 0, /* 161, LR - Link register*/ \
969 0, /* 162, LCR - Loop count reg*/ \
972 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
973 general) by function calls as well as for fixed registers. This macro
974 therefore identifies the registers that are not available for general
975 allocation of values that must live across function calls.
977 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
978 saves it on function entry and restores it on function exit, if the register
979 is used within the function. */
980 #define CALL_USED_REGISTERS \
981 { /* Integer Registers */ \
982 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
983 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
984 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
985 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
986 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
987 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
988 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
989 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
990 /* Float Registers */ \
991 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
992 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
993 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
994 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
995 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
996 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
997 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
998 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
999 /* Condition Code Registers */ \
1000 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
1001 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
1002 /* Conditional execution Registers (CCR) */ \
1003 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
1004 /* Accumulators */ \
1005 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
1006 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
1007 /* Other registers */ \
1008 1, /* 160, AP - fake arg ptr */ \
1009 1, /* 161, LR - Link register*/ \
1010 1, /* 162, LCR - Loop count reg */ \
1013 /* Zero or more C statements that may conditionally modify two variables
1014 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
1015 been initialized from the two preceding macros.
1017 This is necessary in case the fixed or call-clobbered registers depend on
1018 target flags.
1020 You need not define this macro if it has no work to do.
1022 If the usage of an entire class of registers depends on the target flags,
1023 you may indicate this to GCC by using this macro to modify `fixed_regs' and
1024 `call_used_regs' to 1 for each of the registers in the classes which should
1025 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
1026 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
1028 (However, if this class is not included in `GENERAL_REGS' and all of the
1029 insn patterns whose constraints permit this class are controlled by target
1030 switches, then GCC will automatically avoid using these registers when the
1031 target switches are opposed to them.) */
1033 #define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
1036 /* Order of allocation of registers. */
1038 /* If defined, an initializer for a vector of integers, containing the numbers
1039 of hard registers in the order in which GCC should prefer to use them
1040 (from most preferred to least).
1042 If this macro is not defined, registers are used lowest numbered first (all
1043 else being equal).
1045 One use of this macro is on machines where the highest numbered registers
1046 must always be saved and the save-multiple-registers instruction supports
1047 only sequences of consecutive registers. On such machines, define
1048 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
1049 allocatable register first. */
1051 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
1052 have a better chance of allocating 2 registers at a time and can use the
1053 double word load/store instructions in the prologue. */
1054 #define REG_ALLOC_ORDER \
1056 /* volatile registers */ \
1057 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
1058 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
1059 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
1060 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
1061 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
1062 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
1063 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
1065 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
1066 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
1067 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
1068 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
1069 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
1070 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
1071 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
1072 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
1074 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
1075 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
1076 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
1077 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
1079 /* saved registers */ \
1080 GPR_FIRST + 18, GPR_FIRST + 19, \
1081 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
1082 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
1083 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
1084 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
1085 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
1086 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
1087 GPR_FIRST + 16, GPR_FIRST + 17, \
1089 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
1090 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
1091 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
1092 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
1093 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
1094 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
1095 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
1096 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
1098 /* special or fixed registers */ \
1099 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
1100 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
1101 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
1102 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
1103 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
1104 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
1105 AP_FIRST, LR_REGNO, LCR_REGNO \
1109 /* How Values Fit in Registers. */
1111 /* A C expression for the number of consecutive hard registers, starting at
1112 register number REGNO, required to hold a value of mode MODE.
1114 On a machine where all registers are exactly one word, a suitable definition
1115 of this macro is
1117 #define HARD_REGNO_NREGS(REGNO, MODE) \
1118 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
1119 / UNITS_PER_WORD)) */
1121 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
1122 we can build the appropriate instructions to properly reload the values. */
1123 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
1125 /* A C expression that is nonzero if it is permissible to store a value of mode
1126 MODE in hard register number REGNO (or in several registers starting with
1127 that one). For a machine where all registers are equivalent, a suitable
1128 definition is
1130 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
1132 It is not necessary for this macro to check for the numbers of fixed
1133 registers, because the allocation mechanism considers them to be always
1134 occupied.
1136 On some machines, double-precision values must be kept in even/odd register
1137 pairs. The way to implement that is to define this macro to reject odd
1138 register numbers for such modes.
1140 The minimum requirement for a mode to be OK in a register is that the
1141 `movMODE' instruction pattern support moves between the register and any
1142 other hard register for which the mode is OK; and that moving a value into
1143 the register and back out not alter it.
1145 Since the same instruction used to move `SImode' will work for all narrower
1146 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
1147 to distinguish between these modes, provided you define patterns `movhi',
1148 etc., to take advantage of this. This is useful because of the interaction
1149 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
1150 all integer modes to be tieable.
1152 Many machines have special registers for floating point arithmetic. Often
1153 people assume that floating point machine modes are allowed only in floating
1154 point registers. This is not true. Any registers that can hold integers
1155 can safely *hold* a floating point machine mode, whether or not floating
1156 arithmetic can be done on it in those registers. Integer move instructions
1157 can be used to move the values.
1159 On some machines, though, the converse is true: fixed-point machine modes
1160 may not go in floating registers. This is true if the floating registers
1161 normalize any value stored in them, because storing a non-floating value
1162 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
1163 fixed-point machine modes in floating registers. But if the floating
1164 registers do not automatically normalize, if you can store any bit pattern
1165 in one and retrieve it unchanged without a trap, then any machine mode may
1166 go in a floating register, so you can define this macro to say so.
1168 The primary significance of special floating registers is rather that they
1169 are the registers acceptable in floating point arithmetic instructions.
1170 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
1171 writing the proper constraints for those instructions.
1173 On some machines, the floating registers are especially slow to access, so
1174 that it is better to store a value in a stack frame than in such a register
1175 if floating point arithmetic is not being done. As long as the floating
1176 registers are not in class `GENERAL_REGS', they will not be used unless some
1177 pattern's constraint asks for one. */
1178 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1180 /* A C expression that is nonzero if it is desirable to choose register
1181 allocation so as to avoid move instructions between a value of mode MODE1
1182 and a value of mode MODE2.
1184 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1185 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1186 zero. */
1187 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1189 /* Define this macro if the compiler should avoid copies to/from CCmode
1190 registers. You should only define this macro if support fo copying to/from
1191 CCmode is incomplete. */
1192 #define AVOID_CCMODE_COPIES
1195 /* Register Classes. */
1197 /* An enumeral type that must be defined with all the register class names as
1198 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
1199 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1200 which is not a register class but rather tells how many classes there are.
1202 Each register class has a number, which is the value of casting the class
1203 name to type `int'. The number serves as an index in many of the tables
1204 described below. */
1205 enum reg_class
1207 NO_REGS,
1208 ICC_REGS,
1209 FCC_REGS,
1210 CC_REGS,
1211 ICR_REGS,
1212 FCR_REGS,
1213 CR_REGS,
1214 LCR_REG,
1215 LR_REG,
1216 SPR_REGS,
1217 QUAD_ACC_REGS,
1218 EVEN_ACC_REGS,
1219 ACC_REGS,
1220 ACCG_REGS,
1221 QUAD_FPR_REGS,
1222 FEVEN_REGS,
1223 FPR_REGS,
1224 QUAD_REGS,
1225 EVEN_REGS,
1226 GPR_REGS,
1227 ALL_REGS,
1228 LIM_REG_CLASSES
1231 #define GENERAL_REGS GPR_REGS
1233 /* The number of distinct register classes, defined as follows:
1235 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
1236 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1238 /* An initializer containing the names of the register classes as C string
1239 constants. These names are used in writing some of the debugging dumps. */
1240 #define REG_CLASS_NAMES { \
1241 "NO_REGS", \
1242 "ICC_REGS", \
1243 "FCC_REGS", \
1244 "CC_REGS", \
1245 "ICR_REGS", \
1246 "FCR_REGS", \
1247 "CR_REGS", \
1248 "LCR_REG", \
1249 "LR_REG", \
1250 "SPR_REGS", \
1251 "QUAD_ACC_REGS", \
1252 "EVEN_ACC_REGS", \
1253 "ACC_REGS", \
1254 "ACCG_REGS", \
1255 "QUAD_FPR_REGS", \
1256 "FEVEN_REGS", \
1257 "FPR_REGS", \
1258 "QUAD_REGS", \
1259 "EVEN_REGS", \
1260 "GPR_REGS", \
1261 "ALL_REGS" \
1264 /* An initializer containing the contents of the register classes, as integers
1265 which are bit masks. The Nth integer specifies the contents of class N.
1266 The way the integer MASK is interpreted is that register R is in the class
1267 if `MASK & (1 << R)' is 1.
1269 When the machine has more than 32 registers, an integer does not suffice.
1270 Then the integers are replaced by sub-initializers, braced groupings
1271 containing several integers. Each sub-initializer must be suitable as an
1272 initializer for the type `HARD_REG_SET' which is defined in
1273 `hard-reg-set.h'. */
1274 #define REG_CLASS_CONTENTS \
1275 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
1276 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
1277 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1278 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1279 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
1280 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1281 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1282 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
1283 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x4}, /* LCR_REGS */\
1284 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x2}, /* LR_REGS */\
1285 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x6}, /* SPR_REGS */\
1286 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* QUAD_ACC */\
1287 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* EVEN_ACC */\
1288 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* ACC_REGS */\
1289 { 0x00000000,0x00000000,0x00000000,0x00000000,0xff000000,0x0}, /* ACCG_REGS*/\
1290 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1291 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1292 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1293 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1294 { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1295 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x1}, /* GPR_REGS */\
1296 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x7}, /* ALL_REGS */\
1299 /* A C expression whose value is a register class containing hard register
1300 REGNO. In general there is more than one such class; choose a class which
1301 is "minimal", meaning that no smaller class also contains the register. */
1303 extern enum reg_class regno_reg_class[];
1304 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1306 /* A macro whose definition is the name of the class to which a valid base
1307 register must belong. A base register is one used in an address which is
1308 the register value plus a displacement. */
1309 #define BASE_REG_CLASS GPR_REGS
1311 /* A macro whose definition is the name of the class to which a valid index
1312 register must belong. An index register is one used in an address where its
1313 value is either multiplied by a scale factor or added to another register
1314 (as well as added to a displacement). */
1315 #define INDEX_REG_CLASS GPR_REGS
1317 /* A C expression which defines the machine-dependent operand constraint
1318 letters for register classes. If CHAR is such a letter, the value should be
1319 the register class corresponding to it. Otherwise, the value should be
1320 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1321 will not be passed to this macro; you do not need to handle it.
1323 The following letters are unavailable, due to being used as
1324 constraints:
1325 '0'..'9'
1326 '<', '>'
1327 'E', 'F', 'G', 'H'
1328 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1329 'Q', 'R', 'S', 'T', 'U'
1330 'V', 'X'
1331 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1333 extern enum reg_class reg_class_from_letter[];
1334 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1336 /* A C expression which is nonzero if register number NUM is suitable for use
1337 as a base register in operand addresses. It may be either a suitable hard
1338 register or a pseudo register that has been allocated such a hard register. */
1339 #define REGNO_OK_FOR_BASE_P(NUM) \
1340 ((NUM) < FIRST_PSEUDO_REGISTER \
1341 ? GPR_P (NUM) \
1342 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1344 /* A C expression which is nonzero if register number NUM is suitable for use
1345 as an index register in operand addresses. It may be either a suitable hard
1346 register or a pseudo register that has been allocated such a hard register.
1348 The difference between an index register and a base register is that the
1349 index register may be scaled. If an address involves the sum of two
1350 registers, neither one of them scaled, then either one may be labeled the
1351 "base" and the other the "index"; but whichever labeling is used must fit
1352 the machine's constraints of which registers may serve in each capacity.
1353 The compiler will try both labelings, looking for one that is valid, and
1354 will reload one or both registers only if neither labeling works. */
1355 #define REGNO_OK_FOR_INDEX_P(NUM) \
1356 ((NUM) < FIRST_PSEUDO_REGISTER \
1357 ? GPR_P (NUM) \
1358 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1360 /* A C expression that places additional restrictions on the register class to
1361 use when it is necessary to copy value X into a register in class CLASS.
1362 The value is a register class; perhaps CLASS, or perhaps another, smaller
1363 class. On many machines, the following definition is safe:
1365 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1367 Sometimes returning a more restrictive class makes better code. For
1368 example, on the 68000, when X is an integer constant that is in range for a
1369 `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1370 as CLASS includes the data registers. Requiring a data register guarantees
1371 that a `moveq' will be used.
1373 If X is a `const_double', by returning `NO_REGS' you can force X into a
1374 memory constant. This is useful on certain machines where immediate
1375 floating values cannot be loaded into certain kinds of registers.
1377 This declaration must be present. */
1378 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1380 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1381 frv_secondary_reload_class (CLASS, MODE, X, TRUE)
1383 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1384 frv_secondary_reload_class (CLASS, MODE, X, FALSE)
1386 /* A C expression whose value is nonzero if pseudos that have been assigned to
1387 registers of class CLASS would likely be spilled because registers of CLASS
1388 are needed for spill registers.
1390 The default value of this macro returns 1 if CLASS has exactly one register
1391 and zero otherwise. On most machines, this default should be used. Only
1392 define this macro to some other expression if pseudo allocated by
1393 `local-alloc.c' end up in memory because their hard registers were needed
1394 for spill registers. If this macro returns nonzero for those classes, those
1395 pseudos will only be allocated by `global.c', which knows how to reallocate
1396 the pseudo to another register. If there would not be another register
1397 available for reallocation, you should not change the definition of this
1398 macro since the only effect of such a definition would be to slow down
1399 register allocation. */
1400 #define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1402 /* A C expression for the maximum number of consecutive registers of
1403 class CLASS needed to hold a value of mode MODE.
1405 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
1406 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1407 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1409 This macro helps control the handling of multiple-word values in
1410 the reload pass.
1412 This declaration is required. */
1413 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1415 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1417 /* 6 bit signed immediate. */
1418 #define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1419 /* 10 bit signed immediate. */
1420 #define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1421 /* Unused */
1422 #define CONST_OK_FOR_K(VALUE) 0
1423 /* 16 bit signed immediate. */
1424 #define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1425 /* 16 bit unsigned immediate. */
1426 #define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
1427 /* 12 bit signed immediate that is negative. */
1428 #define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1429 /* Zero */
1430 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1431 /* 12 bit signed immediate that is negative. */
1432 #define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1434 /* A C expression that defines the machine-dependent operand constraint letters
1435 (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1436 If C is one of those letters, the expression should check that VALUE, an
1437 integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
1438 is not one of those letters, the value should be 0 regardless of VALUE. */
1439 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1440 ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1441 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1442 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1443 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1444 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1445 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1446 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1447 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1448 : 0)
1451 /* A C expression that defines the machine-dependent operand constraint letters
1452 (`G', `H') that specify particular ranges of `const_double' values.
1454 If C is one of those letters, the expression should check that VALUE, an RTX
1455 of code `const_double', is in the appropriate range and return 1 if so, 0
1456 otherwise. If C is not one of those letters, the value should be 0
1457 regardless of VALUE.
1459 `const_double' is used for all floating-point constants and for `DImode'
1460 fixed-point constants. A given letter can accept either or both kinds of
1461 values. It can use `GET_MODE' to distinguish between these kinds. */
1463 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1464 ((GET_MODE (VALUE) == VOIDmode \
1465 && CONST_DOUBLE_LOW (VALUE) == 0 \
1466 && CONST_DOUBLE_HIGH (VALUE) == 0) \
1467 || ((GET_MODE (VALUE) == SFmode \
1468 || GET_MODE (VALUE) == DFmode) \
1469 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1471 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1473 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1474 ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
1475 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
1476 : 0)
1478 /* A C expression that defines the optional machine-dependent constraint
1479 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1480 types of operands, usually memory references, for the target machine.
1481 Normally this macro will not be defined. If it is required for a particular
1482 target machine, it should return 1 if VALUE corresponds to the operand type
1483 represented by the constraint letter C. If C is not defined as an extra
1484 constraint, the value returned should be 0 regardless of VALUE.
1486 For example, on the ROMP, load instructions cannot have their output in r0
1487 if the memory reference contains a symbolic address. Constraint letter `Q'
1488 is defined as representing a memory address that does *not* contain a
1489 symbolic address. An alternative is specified with a `Q' constraint on the
1490 input and `r' on the output. The next alternative specifies `m' on the
1491 input and a register class that does not include r0 on the output. */
1493 /* Small data references */
1494 #define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
1495 (small_data_symbolic_operand (VALUE, GET_MODE (VALUE)))
1497 /* Double word memory ops that take one instruction. */
1498 #define EXTRA_CONSTRAINT_FOR_R(VALUE) \
1499 (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1501 /* SYMBOL_REF */
1502 #define EXTRA_CONSTRAINT_FOR_S(VALUE) (GET_CODE (VALUE) == SYMBOL_REF)
1504 /* Double word memory ops that take two instructions. */
1505 #define EXTRA_CONSTRAINT_FOR_T(VALUE) \
1506 (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1508 /* Memory operand for conditional execution. */
1509 #define EXTRA_CONSTRAINT_FOR_U(VALUE) \
1510 (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1512 #define EXTRA_CONSTRAINT(VALUE, C) \
1513 ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
1514 : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
1515 : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
1516 : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
1517 : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
1518 : 0)
1521 /* Basic Stack Layout. */
1523 /* Structure to describe information about a saved range of registers */
1525 typedef struct frv_stack_regs {
1526 const char * name; /* name of the register ranges */
1527 int first; /* first register in the range */
1528 int last; /* last register in the range */
1529 int size_1word; /* # of bytes to be stored via 1 word stores */
1530 int size_2words; /* # of bytes to be stored via 2 word stores */
1531 unsigned char field_p; /* true if the registers are a single SPR */
1532 unsigned char dword_p; /* true if we can do dword stores */
1533 unsigned char special_p; /* true if the regs have a fixed save loc. */
1534 } frv_stack_regs_t;
1536 /* Register ranges to look into saving. */
1537 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
1538 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
1539 #define STACK_REGS_LR 2 /* LR register */
1540 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
1541 #define STACK_REGS_LCR 5 /* lcr register */
1542 #define STACK_REGS_STDARG 6 /* stdarg registers */
1543 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
1544 #define STACK_REGS_FP 8 /* FP register */
1545 #define STACK_REGS_MAX 9 /* # of register ranges */
1547 /* Values for save_p field. */
1548 #define REG_SAVE_NO_SAVE 0 /* register not saved */
1549 #define REG_SAVE_1WORD 1 /* save the register */
1550 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
1552 /* Structure used to define the frv stack. */
1554 typedef struct frv_stack {
1555 int total_size; /* total bytes allocated for stack */
1556 int vars_size; /* variable save area size */
1557 int parameter_size; /* outgoing parameter size */
1558 int stdarg_size; /* size of regs needed to be saved for stdarg */
1559 int regs_size; /* size of the saved registers */
1560 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
1561 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
1562 int header_size; /* size of the old FP, struct ret., LR save */
1563 int pretend_size; /* size of pretend args */
1564 int vars_offset; /* offset to save local variables from new SP*/
1565 int regs_offset; /* offset to save registers from new SP */
1566 /* register range information */
1567 frv_stack_regs_t regs[STACK_REGS_MAX];
1568 /* offset to store each register */
1569 int reg_offset[FIRST_PSEUDO_REGISTER];
1570 /* whether to save register (& reg+1) */
1571 unsigned char save_p[FIRST_PSEUDO_REGISTER];
1572 } frv_stack_t;
1574 /* Define this macro if pushing a word onto the stack moves the stack pointer
1575 to a smaller address. */
1576 #define STACK_GROWS_DOWNWARD 1
1578 /* Define this macro if the addresses of local variable slots are at negative
1579 offsets from the frame pointer. */
1580 #define FRAME_GROWS_DOWNWARD
1582 /* Offset from the frame pointer to the first local variable slot to be
1583 allocated.
1585 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1586 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
1587 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
1588 #define STARTING_FRAME_OFFSET 0
1590 /* Offset from the stack pointer register to the first location at which
1591 outgoing arguments are placed. If not specified, the default value of zero
1592 is used. This is the proper value for most machines.
1594 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1595 location at which outgoing arguments are placed. */
1596 #define STACK_POINTER_OFFSET 0
1598 /* Offset from the argument pointer register to the first argument's address.
1599 On some machines it may depend on the data type of the function.
1601 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1602 argument's address. */
1603 #define FIRST_PARM_OFFSET(FUNDECL) 0
1605 /* A C expression whose value is RTL representing the address in a stack frame
1606 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1607 an RTL expression for the address of the stack frame itself.
1609 If you don't define this macro, the default is to return the value of
1610 FRAMEADDR--that is, the stack frame address is also the address of the stack
1611 word that points to the previous frame. */
1612 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1614 /* A C expression whose value is RTL representing the value of the return
1615 address for the frame COUNT steps up from the current frame, after the
1616 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1617 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1618 defined.
1620 The value of the expression must always be the correct address when COUNT is
1621 zero, but may be `NULL_RTX' if there is not way to determine the return
1622 address of other frames. */
1623 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1625 /* This function contains machine specific function data. */
1626 struct machine_function GTY(())
1628 /* True if we have created an rtx that relies on the stack frame. */
1629 int frame_needed;
1632 #define RETURN_POINTER_REGNUM LR_REGNO
1634 /* A C expression whose value is RTL representing the location of the incoming
1635 return address at the beginning of any function, before the prologue. This
1636 RTL is either a `REG', indicating that the return value is saved in `REG',
1637 or a `MEM' representing a location in the stack.
1639 You only need to define this macro if you want to support call frame
1640 debugging information like that provided by DWARF 2. */
1641 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1644 /* Register That Address the Stack Frame. */
1646 /* The register number of the stack pointer register, which must also be a
1647 fixed register according to `FIXED_REGISTERS'. On most machines, the
1648 hardware determines which register this is. */
1649 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1651 /* The register number of the frame pointer register, which is used to access
1652 automatic variables in the stack frame. On some machines, the hardware
1653 determines which register this is. On other machines, you can choose any
1654 register you wish for this purpose. */
1655 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1657 /* The register number of the arg pointer register, which is used to access the
1658 function's argument list. On some machines, this is the same as the frame
1659 pointer register. On some machines, the hardware determines which register
1660 this is. On other machines, you can choose any register you wish for this
1661 purpose. If this is not the same register as the frame pointer register,
1662 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1663 arrange to be able to eliminate it. */
1665 /* On frv this is a fake register that is eliminated in
1666 terms of either the frame pointer or stack pointer. */
1667 #define ARG_POINTER_REGNUM AP_FIRST
1669 /* Register numbers used for passing a function's static chain pointer. If
1670 register windows are used, the register number as seen by the called
1671 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1672 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1673 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1675 The static chain register need not be a fixed register.
1677 If the static chain is passed in memory, these macros should not be defined;
1678 instead, the next two macros should be defined. */
1679 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1680 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1683 /* Eliminating the Frame Pointer and the Arg Pointer. */
1685 /* A C expression which is nonzero if a function must have and use a frame
1686 pointer. This expression is evaluated in the reload pass. If its value is
1687 nonzero the function will have a frame pointer.
1689 The expression can in principle examine the current function and decide
1690 according to the facts, but on most machines the constant 0 or the constant
1691 1 suffices. Use 0 when the machine allows code to be generated with no
1692 frame pointer, and doing so saves some time or space. Use 1 when there is
1693 no possible advantage to avoiding a frame pointer.
1695 In certain cases, the compiler does not know how to produce valid code
1696 without a frame pointer. The compiler recognizes those cases and
1697 automatically gives the function a frame pointer regardless of what
1698 `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
1700 In a function that does not require a frame pointer, the frame pointer
1701 register can be allocated for ordinary usage, unless you mark it as a fixed
1702 register. See `FIXED_REGISTERS' for more information. */
1703 #define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
1705 /* If defined, this macro specifies a table of register pairs used to eliminate
1706 unneeded registers that point into the stack frame. If it is not defined,
1707 the only elimination attempted by the compiler is to replace references to
1708 the frame pointer with references to the stack pointer.
1710 The definition of this macro is a list of structure initializations, each of
1711 which specifies an original and replacement register.
1713 On some machines, the position of the argument pointer is not known until
1714 the compilation is completed. In such a case, a separate hard register must
1715 be used for the argument pointer. This register can be eliminated by
1716 replacing it with either the frame pointer or the argument pointer,
1717 depending on whether or not the frame pointer has been eliminated.
1719 In this case, you might specify:
1720 #define ELIMINABLE_REGS \
1721 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1722 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1723 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1725 Note that the elimination of the argument pointer with the stack pointer is
1726 specified first since that is the preferred elimination. */
1728 #define ELIMINABLE_REGS \
1730 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1731 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1732 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1735 /* A C expression that returns nonzero if the compiler is allowed to try to
1736 replace register number FROM with register number TO. This macro need only
1737 be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
1738 1, since most of the cases preventing register elimination are things that
1739 the compiler already knows about. */
1741 #define CAN_ELIMINATE(FROM, TO) \
1742 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1743 ? ! frame_pointer_needed \
1744 : 1)
1746 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
1747 initial difference between the specified pair of registers. This macro must
1748 be defined if `ELIMINABLE_REGS' is defined. */
1750 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1751 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1754 /* Passing Function Arguments on the Stack. */
1756 /* If defined, the maximum amount of space required for outgoing arguments will
1757 be computed and placed into the variable
1758 `current_function_outgoing_args_size'. No space will be pushed onto the
1759 stack for each call; instead, the function prologue should increase the
1760 stack frame size by this amount.
1762 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1763 proper. */
1764 #define ACCUMULATE_OUTGOING_ARGS 1
1766 /* A C expression that should indicate the number of bytes of its own arguments
1767 that a function pops on returning, or 0 if the function pops no arguments
1768 and the caller must therefore pop them all after the function returns.
1770 FUNDECL is a C variable whose value is a tree node that describes the
1771 function in question. Normally it is a node of type `FUNCTION_DECL' that
1772 describes the declaration of the function. From this it is possible to
1773 obtain the DECL_ATTRIBUTES of the function.
1775 FUNTYPE is a C variable whose value is a tree node that describes the
1776 function in question. Normally it is a node of type `FUNCTION_TYPE' that
1777 describes the data type of the function. From this it is possible to obtain
1778 the data types of the value and arguments (if known).
1780 When a call to a library function is being considered, FUNTYPE will contain
1781 an identifier node for the library function. Thus, if you need to
1782 distinguish among various library functions, you can do so by their names.
1783 Note that "library function" in this context means a function used to
1784 perform arithmetic, whose name is known specially in the compiler and was
1785 not mentioned in the C code being compiled.
1787 STACK-SIZE is the number of bytes of arguments passed on the stack. If a
1788 variable number of bytes is passed, it is zero, and argument popping will
1789 always be the responsibility of the calling function.
1791 On the VAX, all functions always pop their arguments, so the definition of
1792 this macro is STACK-SIZE. On the 68000, using the standard calling
1793 convention, no functions pop their arguments, so the value of the macro is
1794 always 0 in this case. But an alternative calling convention is available
1795 in which functions that take a fixed number of arguments pop them but other
1796 functions (such as `printf') pop nothing (the caller pops all). When this
1797 convention is in use, FUNTYPE is examined to determine whether a function
1798 takes a fixed number of arguments. */
1799 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1802 /* Function Arguments in Registers. */
1804 /* Nonzero if we do not know how to pass TYPE solely in registers.
1805 We cannot do so in the following cases:
1807 - if the type has variable size
1808 - if the type is marked as addressable (it is required to be constructed
1809 into the stack)
1810 - if the type is a structure or union. */
1812 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1813 (((MODE) == BLKmode) \
1814 || ((TYPE) != 0 \
1815 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1816 || TREE_CODE (TYPE) == RECORD_TYPE \
1817 || TREE_CODE (TYPE) == UNION_TYPE \
1818 || TREE_CODE (TYPE) == QUAL_UNION_TYPE \
1819 || TREE_ADDRESSABLE (TYPE))))
1821 /* The number of register assigned to holding function arguments. */
1823 #define FRV_NUM_ARG_REGS 6
1825 /* A C expression that controls whether a function argument is passed in a
1826 register, and which register.
1828 The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
1829 defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
1830 arguments so far passed in registers; MODE, the machine mode of the argument;
1831 TYPE, the data type of the argument as a tree node or 0 if that is not known
1832 (which happens for C support library functions); and NAMED, which is 1 for an
1833 ordinary argument and 0 for nameless arguments that correspond to `...' in the
1834 called function's prototype.
1836 The value of the expression should either be a `reg' RTX for the hard
1837 register in which to pass the argument, or zero to pass the argument on the
1838 stack.
1840 For machines like the VAX and 68000, where normally all arguments are
1841 pushed, zero suffices as a definition.
1843 The usual way to make the ANSI library `stdarg.h' work on a machine where
1844 some arguments are usually passed in registers, is to cause nameless
1845 arguments to be passed on the stack instead. This is done by making
1846 `FUNCTION_ARG' return 0 whenever NAMED is 0.
1848 You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
1849 this macro to determine if this argument is of a type that must be passed in
1850 the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
1851 returns nonzero for such an argument, the compiler will abort. If
1852 `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
1853 stack and then loaded into a register. */
1854 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1855 frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1857 /* Define this macro if the target machine has "register windows", so that the
1858 register in which a function sees an arguments is not necessarily the same
1859 as the one in which the caller passed the argument.
1861 For such machines, `FUNCTION_ARG' computes the register in which the caller
1862 passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1863 fashion to tell the function being called where the arguments will arrive.
1865 If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1866 purposes. */
1868 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1869 frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1871 /* A C expression for the number of words, at the beginning of an argument,
1872 must be put in registers. The value must be zero for arguments that are
1873 passed entirely in registers or that are entirely pushed on the stack.
1875 On some machines, certain arguments must be passed partially in registers
1876 and partially in memory. On these machines, typically the first N words of
1877 arguments are passed in registers, and the rest on the stack. If a
1878 multi-word argument (a `double' or a structure) crosses that boundary, its
1879 first few words must be passed in registers and the rest must be pushed.
1880 This macro tells the compiler when this occurs, and how many of the words
1881 should go in registers.
1883 `FUNCTION_ARG' for these arguments should return the first register to be
1884 used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
1885 the called function. */
1886 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1887 frv_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1889 /* extern int frv_function_arg_partial_nregs (CUMULATIVE_ARGS, int, Tree, int); */
1891 /* A C expression that indicates when an argument must be passed by reference.
1892 If nonzero for an argument, a copy of that argument is made in memory and a
1893 pointer to the argument is passed instead of the argument itself. The
1894 pointer is passed in whatever way is appropriate for passing a pointer to
1895 that type.
1897 On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
1898 definition of this macro might be
1899 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1900 MUST_PASS_IN_STACK (MODE, TYPE) */
1901 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1902 frv_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1904 /* If defined, a C expression that indicates when it is the called function's
1905 responsibility to make a copy of arguments passed by invisible reference.
1906 Normally, the caller makes a copy and passes the address of the copy to the
1907 routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
1908 nonzero, the caller does not make a copy. Instead, it passes a pointer to
1909 the "live" value. The called function must not modify this value. If it
1910 can be determined that the value won't be modified, it need not make a copy;
1911 otherwise a copy must be made. */
1912 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1913 frv_function_arg_callee_copies (&CUM, MODE, TYPE, NAMED)
1915 /* A C type for declaring a variable that is used as the first argument of
1916 `FUNCTION_ARG' and other related values. For some target machines, the type
1917 `int' suffices and can hold the number of bytes of argument so far.
1919 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1920 that have been passed on the stack. The compiler has other variables to
1921 keep track of that. For target machines on which all arguments are passed
1922 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1923 however, the data structure must exist and should not be empty, so use
1924 `int'. */
1925 #define CUMULATIVE_ARGS int
1927 /* A C statement (sans semicolon) for initializing the variable CUM for the
1928 state at the beginning of the argument list. The variable has type
1929 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1930 of the function which will receive the args, or 0 if the args are to a
1931 compiler support library function. The value of INDIRECT is nonzero when
1932 processing an indirect call, for example a call through a function pointer.
1933 The value of INDIRECT is zero for a call to an explicitly named function, a
1934 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1935 arguments for the function being compiled.
1937 When processing a call to a compiler support library function, LIBNAME
1938 identifies which one. It is a `symbol_ref' rtx which contains the name of
1939 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1940 being processed. Thus, each time this macro is called, either LIBNAME or
1941 FNTYPE is nonzero, but never both of them at once. */
1943 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1944 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1946 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1947 arguments for the function being compiled. If this macro is undefined,
1948 `INIT_CUMULATIVE_ARGS' is used instead.
1950 The value passed for LIBNAME is always 0, since library routines with
1951 special calling conventions are never compiled with GCC. The argument
1952 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1954 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1955 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1957 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1958 advance past an argument in the argument list. The values MODE, TYPE and
1959 NAMED describe that argument. Once this is done, the variable CUM is
1960 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1962 This macro need not do anything if the argument in question was passed on
1963 the stack. The compiler knows how to track the amount of stack space used
1964 for arguments without any special help. */
1965 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1966 frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1968 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1969 argument with the specified mode and type. If it is not defined,
1970 `PARM_BOUNDARY' is used for all arguments. */
1972 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1973 frv_function_arg_boundary (MODE, TYPE)
1975 /* A C expression that is nonzero if REGNO is the number of a hard register in
1976 which function arguments are sometimes passed. This does *not* include
1977 implicit arguments such as the static chain and the structure-value address.
1978 On many machines, no registers can be used for this purpose since all
1979 function arguments are pushed on the stack. */
1980 #define FUNCTION_ARG_REGNO_P(REGNO) \
1981 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1984 /* How Scalar Function Values are Returned. */
1986 /* The number of the hard register that is used to return a scalar value from a
1987 function call. */
1988 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1990 /* A C expression to create an RTX representing the place where a function
1991 returns a value of data type VALTYPE. VALTYPE is a tree node representing a
1992 data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1993 represent that type. On many machines, only the mode is relevant.
1994 (Actually, on most machines, scalar values are returned in the same place
1995 regardless of mode).
1997 If `TARGET_PROMOTE_FUNCTION_RETURN' is defined to return true, you
1998 must apply the same promotion rules specified in `PROMOTE_MODE' if
1999 VALTYPE is a scalar type.
2001 If the precise function being called is known, FUNC is a tree node
2002 (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
2003 possible to use a different value-returning convention for specific
2004 functions when all their calls are known.
2006 `FUNCTION_VALUE' is not used for return vales with aggregate data types,
2007 because these are returned in another way. See
2008 `TARGET_STRUCT_VALUE_RTX' and related macros, below. */
2009 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2010 gen_rtx_REG (TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
2012 /* A C expression to create an RTX representing the place where a library
2013 function returns a value of mode MODE.
2015 Note that "library function" in this context means a compiler support
2016 routine, used to perform arithmetic, whose name is known specially by the
2017 compiler and was not mentioned in the C code being compiled.
2019 The definition of `LIBRARY_VALUE' need not be concerned aggregate data
2020 types, because none of the library functions returns such types. */
2021 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, RETURN_VALUE_REGNUM)
2023 /* A C expression that is nonzero if REGNO is the number of a hard register in
2024 which the values of called function may come back.
2026 A register whose use for returning values is limited to serving as the
2027 second of a pair (for a value of type `double', say) need not be recognized
2028 by this macro. So for most machines, this definition suffices:
2030 #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
2032 If the machine has register windows, so that the caller and the called
2033 function use different registers for the return value, this macro should
2034 recognize only the caller's register numbers. */
2035 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
2038 /* How Large Values are Returned. */
2040 /* The number of the register that is used to to pass the structure
2041 value address. */
2042 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
2045 /* Function Entry and Exit. */
2047 /* Define this macro as a C expression that is nonzero if the return
2048 instruction or the function epilogue ignores the value of the stack pointer;
2049 in other words, if it is safe to delete an instruction to adjust the stack
2050 pointer before a return from the function.
2052 Note that this macro's value is relevant only for functions for which frame
2053 pointers are maintained. It is never safe to delete a final stack
2054 adjustment in a function that has no frame pointer, and the compiler knows
2055 this regardless of `EXIT_IGNORE_STACK'. */
2056 #define EXIT_IGNORE_STACK 1
2058 /* Generating Code for Profiling. */
2060 /* A C statement or compound statement to output to FILE some assembler code to
2061 call the profiling subroutine `mcount'. Before calling, the assembler code
2062 must load the address of a counter variable into a register where `mcount'
2063 expects to find the address. The name of this variable is `LP' followed by
2064 the number LABELNO, so you would generate the name using `LP%d' in a
2065 `fprintf'.
2067 The details of how the address should be passed to `mcount' are determined
2068 by your operating system environment, not by GCC. To figure them out,
2069 compile a small program for profiling using the system's installed C
2070 compiler and look at the assembler code that results.
2072 This declaration must be present, but it can be an abort if profiling is
2073 not implemented. */
2075 #define FUNCTION_PROFILER(FILE, LABELNO)
2078 /* Implementing the Varargs Macros. */
2080 /* Implement the stdarg/varargs va_start macro. STDARG_P is nonzero if this
2081 is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
2082 variable to initialize. NEXTARG is the machine independent notion of the
2083 'next' argument after the variable arguments. If not defined, a standard
2084 implementation will be defined that works for arguments passed on the stack. */
2086 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
2087 (frv_expand_builtin_va_start(VALIST, NEXTARG))
2089 /* Implement the stdarg/varargs va_arg macro. VALIST is the variable of type
2090 va_list as a tree, TYPE is the type passed to va_arg. */
2092 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
2093 (frv_expand_builtin_va_arg (VALIST, TYPE))
2096 /* Trampolines for Nested Functions. */
2098 /* A C expression for the size in bytes of the trampoline, as an integer. */
2099 #define TRAMPOLINE_SIZE frv_trampoline_size ()
2101 /* Alignment required for trampolines, in bits.
2103 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
2104 aligning trampolines. */
2105 #define TRAMPOLINE_ALIGNMENT 32
2107 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
2108 RTX for the address of the trampoline; FNADDR is an RTX for the address of
2109 the nested function; STATIC_CHAIN is an RTX for the static chain value that
2110 should be passed to the function when it is called. */
2111 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
2112 frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
2114 /* Define this macro if trampolines need a special subroutine to do their work.
2115 The macro should expand to a series of `asm' statements which will be
2116 compiled with GCC. They go in a library function named
2117 `__transfer_from_trampoline'.
2119 If you need to avoid executing the ordinary prologue code of a compiled C
2120 function when you jump to the subroutine, you can do so by placing a special
2121 label of your own in the assembler code. Use one `asm' statement to
2122 generate an assembler label, and another to make the label global. Then
2123 trampolines can use that label to jump directly to your special assembler
2124 code. */
2126 #ifdef __FRV_UNDERSCORE__
2127 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
2128 #else
2129 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
2130 #endif
2132 #define TRANSFER_FROM_TRAMPOLINE \
2133 extern int _write (int, const void *, unsigned); \
2135 void \
2136 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
2138 extern short __trampoline_template[]; \
2139 short * to = addr; \
2140 short * from = &__trampoline_template[0]; \
2141 int i; \
2143 if (size < 20) \
2145 _write (2, "__trampoline_setup bad size\n", \
2146 sizeof ("__trampoline_setup bad size\n") - 1); \
2147 exit (-1); \
2150 to[0] = from[0]; \
2151 to[1] = (short)(fnaddr); \
2152 to[2] = from[2]; \
2153 to[3] = (short)(sc); \
2154 to[4] = from[4]; \
2155 to[5] = (short)(fnaddr >> 16); \
2156 to[6] = from[6]; \
2157 to[7] = (short)(sc >> 16); \
2158 to[8] = from[8]; \
2159 to[9] = from[9]; \
2161 for (i = 0; i < 20; i++) \
2162 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
2165 __asm__("\n" \
2166 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
2167 "\t.text\n" \
2168 TRAMPOLINE_TEMPLATE_NAME ":\n" \
2169 "\tsetlos #0, gr6\n" /* jump register */ \
2170 "\tsetlos #0, gr7\n" /* static chain */ \
2171 "\tsethi #0, gr6\n" \
2172 "\tsethi #0, gr7\n" \
2173 "\tjmpl @(gr0,gr6)\n");
2176 /* Addressing Modes. */
2178 /* A C expression that is 1 if the RTX X is a constant which is a valid
2179 address. On most machines, this can be defined as `CONSTANT_P (X)', but a
2180 few machines are more restrictive in which constant addresses are supported.
2182 `CONSTANT_P' accepts integer-values expressions whose values are not
2183 explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2184 and `const' arithmetic expressions, in addition to `const_int' and
2185 `const_double' expressions. */
2186 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2188 /* A number, the maximum number of registers that can appear in a valid memory
2189 address. Note that it is up to you to specify a value equal to the maximum
2190 number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
2191 #define MAX_REGS_PER_ADDRESS 2
2193 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
2194 RTX) is a legitimate memory address on the target machine for a memory
2195 operand of mode MODE.
2197 It usually pays to define several simpler macros to serve as subroutines for
2198 this one. Otherwise it may be too complicated to understand.
2200 This macro must exist in two variants: a strict variant and a non-strict
2201 one. The strict variant is used in the reload pass. It must be defined so
2202 that any pseudo-register that has not been allocated a hard register is
2203 considered a memory reference. In contexts where some kind of register is
2204 required, a pseudo-register with no hard register must be rejected.
2206 The non-strict variant is used in other passes. It must be defined to
2207 accept all pseudo-registers in every context where some kind of register is
2208 required.
2210 Compiler source files that want to use the strict variant of this macro
2211 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
2212 conditional to define the strict variant in that case and the non-strict
2213 variant otherwise.
2215 Subroutines to check for acceptable registers for various purposes (one for
2216 base registers, one for index registers, and so on) are typically among the
2217 subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
2218 subroutine macros need have two variants; the higher levels of macros may be
2219 the same whether strict or not.
2221 Normally, constant addresses which are the sum of a `symbol_ref' and an
2222 integer are stored inside a `const' RTX to mark them as constant.
2223 Therefore, there is no need to recognize such sums specifically as
2224 legitimate addresses. Normally you would simply recognize any `const' as
2225 legitimate.
2227 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
2228 are not marked with `const'. It assumes that a naked `plus' indicates
2229 indexing. If so, then you *must* reject such naked constant sums as
2230 illegitimate addresses, so that none of them will be given to
2231 `PRINT_OPERAND_ADDRESS'.
2233 On some machines, whether a symbolic address is legitimate depends on the
2234 section that the address refers to. On these machines, define the macro
2235 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2236 then check for it here. When you see a `const', you will have to look
2237 inside it to find the `symbol_ref' in order to determine the section.
2239 The best way to modify the name string is by adding text to the beginning,
2240 with suitable punctuation to prevent any ambiguity. Allocate the new name
2241 in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
2242 remove and decode the added text and output the name accordingly, and define
2243 `(* targetm.strip_name_encoding)' to access the original name string.
2245 You can check the information stored here into the `symbol_ref' in the
2246 definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
2247 `PRINT_OPERAND_ADDRESS'. */
2249 #ifdef REG_OK_STRICT
2250 #define REG_OK_STRICT_P 1
2251 #else
2252 #define REG_OK_STRICT_P 0
2253 #endif
2255 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2256 do \
2258 if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, FALSE)) \
2259 goto LABEL; \
2261 while (0)
2263 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2264 use as a base register. For hard registers, it should always accept those
2265 which the hardware permits and reject the others. Whether the macro accepts
2266 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2267 described above. This usually requires two variant definitions, of which
2268 `REG_OK_STRICT' controls the one actually used. */
2269 #ifdef REG_OK_STRICT
2270 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
2271 #else
2272 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
2273 #endif
2275 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2276 use as an index register.
2278 The difference between an index register and a base register is that the
2279 index register may be scaled. If an address involves the sum of two
2280 registers, neither one of them scaled, then either one may be labeled the
2281 "base" and the other the "index"; but whichever labeling is used must fit
2282 the machine's constraints of which registers may serve in each capacity.
2283 The compiler will try both labelings, looking for one that is valid, and
2284 will reload one or both registers only if neither labeling works. */
2285 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2287 /* A C compound statement that attempts to replace X with a valid memory
2288 address for an operand of mode MODE. WIN will be a C statement label
2289 elsewhere in the code; the macro definition may use
2291 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2293 to avoid further processing if the address has become legitimate.
2295 X will always be the result of a call to `break_out_memory_refs', and OLDX
2296 will be the operand that was given to that function to produce X.
2298 The code generated by this macro should not alter the substructure of X. If
2299 it transforms X into a more legitimate form, it should assign X (which will
2300 always be a C variable) a new value.
2302 It is not necessary for this macro to come up with a legitimate address.
2303 The compiler has standard ways of doing so in all cases. In fact, it is
2304 safe for this macro to do nothing. But often a machine-dependent strategy
2305 can generate better code. */
2307 /* On the FRV, we use it to convert small data and pic references into using
2308 the appropriate pointer in the address. */
2309 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2310 do \
2312 rtx newx = frv_legitimize_address (X, OLDX, MODE); \
2314 if (newx) \
2316 (X) = newx; \
2317 goto WIN; \
2320 while (0)
2322 /* A C statement or compound statement with a conditional `goto LABEL;'
2323 executed if memory address X (an RTX) can have different meanings depending
2324 on the machine mode of the memory reference it is used for or if the address
2325 is valid for some modes but not others.
2327 Autoincrement and autodecrement addresses typically have mode-dependent
2328 effects because the amount of the increment or decrement is the size of the
2329 operand being addressed. Some machines have other mode-dependent addresses.
2330 Many RISC machines have no mode-dependent addresses.
2332 You may assume that ADDR is a valid address for the machine. */
2333 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
2335 /* A C expression that is nonzero if X is a legitimate constant for an
2336 immediate operand on the target machine. You can assume that X satisfies
2337 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
2338 definition for this macro on machines where anything `CONSTANT_P' is valid. */
2339 #define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
2341 /* The load-and-update commands allow pre-modification in addresses.
2342 The index has to be in a register. */
2343 #define HAVE_PRE_MODIFY_REG 1
2346 /* Returns a mode from class `MODE_CC' to be used when comparison operation
2347 code OP is applied to rtx X and Y. For example, on the SPARC,
2348 `SELECT_CC_MODE' is defined as (see *note Jump Patterns::. for a
2349 description of the reason for this definition)
2351 #define SELECT_CC_MODE(OP,X,Y) \
2352 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2353 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2354 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2355 || GET_CODE (X) == NEG) \
2356 ? CC_NOOVmode : CCmode))
2358 You need not define this macro if `EXTRA_CC_MODES' is not defined. */
2359 #define SELECT_CC_MODE(OP, X, Y) \
2360 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2361 ? CC_FPmode \
2362 : (((OP) == LEU || (OP) == GTU || (OP) == LTU || (OP) == GEU) \
2363 ? CC_UNSmode \
2364 : CCmode))
2366 /* A C expression whose value is one if it is always safe to reverse a
2367 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
2368 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2369 must be zero.
2371 You need not define this macro if it would always returns zero or if the
2372 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
2373 example, here is the definition used on the SPARC, where floating-point
2374 inequality comparisons are always given `CCFPEmode':
2376 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
2378 /* On frv, don't consider floating point comparisons to be reversible. In
2379 theory, fp equality comparisons can be reversible. */
2380 #define REVERSIBLE_CC_MODE(MODE) ((MODE) == CCmode || (MODE) == CC_UNSmode)
2382 /* Frv CCR_MODE's are not reversible. */
2383 #define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
2386 /* Describing Relative Costs of Operations. */
2388 /* A C expression for the cost of moving data from a register in class FROM to
2389 one in class TO. The classes are expressed using the enumeration values
2390 such as `GENERAL_REGS'. A value of 4 is the default; other values are
2391 interpreted relative to that.
2393 It is not required that the cost always equal 2 when FROM is the same as TO;
2394 on some machines it is expensive to move between registers if they are not
2395 general registers.
2397 If reload sees an insn consisting of a single `set' between two hard
2398 registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2399 value of 2, reload does not check to ensure that the constraints of the insn
2400 are met. Setting a cost of other than 2 will allow reload to verify that
2401 the constraints are met. You should do this if the `movM' pattern's
2402 constraints do not allow such copying. */
2403 #define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2405 /* A C expression for the cost of moving data of mode M between a register and
2406 memory. A value of 2 is the default; this cost is relative to those in
2407 `REGISTER_MOVE_COST'.
2409 If moving between registers and memory is more expensive than between two
2410 registers, you should define this macro to express the relative cost. */
2411 #define MEMORY_MOVE_COST(M,C,I) 4
2413 /* A C expression for the cost of a branch instruction. A value of 1 is the
2414 default; other values are interpreted relative to that. */
2416 /* Here are additional macros which do not specify precise relative costs, but
2417 only that certain actions are more expensive than GCC would ordinarily
2418 expect. */
2420 /* We used to default the branch cost to 2, but I changed it to 1, to avoid
2421 generating SCC instructions and or/and-ing them together, and then doing the
2422 branch on the result, which collectively generate much worse code. */
2423 #ifndef DEFAULT_BRANCH_COST
2424 #define DEFAULT_BRANCH_COST 1
2425 #endif
2427 #define BRANCH_COST frv_branch_cost_int
2429 /* Define this macro as a C expression which is nonzero if accessing less than
2430 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2431 word of memory, i.e., if such access require more than one instruction or if
2432 there is no difference in cost between byte and (aligned) word loads.
2434 When this macro is not defined, the compiler will access a field by finding
2435 the smallest containing object; when it is defined, a fullword load will be
2436 used if alignment permits. Unless bytes accesses are faster than word
2437 accesses, using word accesses is preferable since it may eliminate
2438 subsequent memory access if subsequent accesses occur to other fields in the
2439 same word of the structure, but to different bytes. */
2440 #define SLOW_BYTE_ACCESS 1
2442 /* Define this macro if it is as good or better to call a constant function
2443 address than to call an address kept in a register. */
2444 #define NO_FUNCTION_CSE
2446 /* Define this macro if it is as good or better for a function to call itself
2447 with an explicit address than to call an address kept in a register. */
2448 #define NO_RECURSIVE_FUNCTION_CSE
2451 /* Dividing the output into sections. */
2453 /* A C expression whose value is a string containing the assembler operation
2454 that should precede instructions and read-only data. Normally `".text"' is
2455 right. */
2456 #define TEXT_SECTION_ASM_OP "\t.text"
2458 /* A C expression whose value is a string containing the assembler operation to
2459 identify the following data as writable initialized data. Normally
2460 `".data"' is right. */
2461 #define DATA_SECTION_ASM_OP "\t.data"
2463 /* If defined, a C expression whose value is a string containing the
2464 assembler operation to identify the following data as
2465 uninitialized global data. If not defined, and neither
2466 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2467 uninitialized global data will be output in the data section if
2468 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2469 used. */
2470 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2472 /* Short Data Support */
2473 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
2475 /* On svr4, we *do* have support for the .init and .fini sections, and we
2476 can put stuff in there to be executed before and after `main'. We let
2477 crtstuff.c and other files know this by defining the following symbols.
2478 The definitions say how to change sections to the .init and .fini
2479 sections. This is the same for all known svr4 assemblers.
2481 The standard System V.4 macros will work, but they look ugly in the
2482 assembly output, so redefine them. */
2484 #undef INIT_SECTION_ASM_OP
2485 #undef FINI_SECTION_ASM_OP
2486 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
2487 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
2489 #undef CTORS_SECTION_ASM_OP
2490 #undef DTORS_SECTION_ASM_OP
2491 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
2492 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
2494 /* A C expression whose value is a string containing the assembler operation to
2495 switch to the fixup section that records all initialized pointers in a -fpic
2496 program so they can be changed program startup time if the program is loaded
2497 at a different address than linked for. */
2498 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
2500 /* A list of names for sections other than the standard two, which are
2501 `in_text' and `in_data'. You need not define this macro
2502 on a system with no other sections (that GCC needs to use). */
2503 #undef EXTRA_SECTIONS
2504 #define EXTRA_SECTIONS in_sdata, in_const, in_fixup
2506 /* One or more functions to be defined in "varasm.c". These
2507 functions should do jobs analogous to those of `text_section' and
2508 `data_section', for your additional sections. Do not define this
2509 macro if you do not define `EXTRA_SECTIONS'. */
2510 #undef EXTRA_SECTION_FUNCTIONS
2511 #define EXTRA_SECTION_FUNCTIONS \
2512 SDATA_SECTION_FUNCTION \
2513 FIXUP_SECTION_FUNCTION
2515 #define SDATA_SECTION_FUNCTION \
2516 void \
2517 sdata_section (void) \
2519 if (in_section != in_sdata) \
2521 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
2522 in_section = in_sdata; \
2526 #define FIXUP_SECTION_FUNCTION \
2527 void \
2528 fixup_section (void) \
2530 if (in_section != in_fixup) \
2532 fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP); \
2533 in_section = in_fixup; \
2537 /* Position Independent Code. */
2539 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2540 target machine when generating position independent code. You can assume
2541 that X satisfies `CONSTANT_P', so you need not check this. You can also
2542 assume FLAG_PIC is true, so you need not check it either. You need not
2543 define this macro if all constants (including `SYMBOL_REF') can be immediate
2544 operands when generating position independent code. */
2545 #define LEGITIMATE_PIC_OPERAND_P(X) \
2546 ( GET_CODE (X) == CONST_INT \
2547 || GET_CODE (X) == CONST_DOUBLE \
2548 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
2549 || GET_CODE (X) == CONSTANT_P_RTX)
2552 /* The Overall Framework of an Assembler File. */
2554 /* A C string constant describing how to begin a comment in the target
2555 assembler language. The compiler assumes that the comment will end at the
2556 end of the line. */
2557 #define ASM_COMMENT_START ";"
2559 /* A C string constant for text to be output before each `asm' statement or
2560 group of consecutive ones. Normally this is `"#APP"', which is a comment
2561 that has no effect on most assemblers but tells the GNU assembler that it
2562 must check the lines that follow for all valid assembler constructs. */
2563 #define ASM_APP_ON "#APP\n"
2565 /* A C string constant for text to be output after each `asm' statement or
2566 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
2567 GNU assembler to resume making the time-saving assumptions that are valid
2568 for ordinary compiler output. */
2569 #define ASM_APP_OFF "#NO_APP\n"
2572 /* Output of Data. */
2574 /* This is how to output a label to dwarf/dwarf2. */
2575 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
2576 do { \
2577 fprintf (STREAM, "\t.picptr\t"); \
2578 assemble_name (STREAM, LABEL); \
2579 } while (0)
2581 /* Whether to emit the gas specific dwarf2 line number support. */
2582 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2584 /* Output of Uninitialized Variables. */
2586 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2587 assembler definition of a local-common-label named NAME whose size is SIZE
2588 bytes. The variable ROUNDED is the size rounded up to whatever alignment
2589 the caller wants.
2591 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2592 before and after that, output the additional assembler syntax for defining
2593 the name, and a newline.
2595 This macro controls how the assembler definitions of uninitialized static
2596 variables are output. */
2597 #undef ASM_OUTPUT_LOCAL
2599 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2600 explicit argument. If you define this macro, it is used in place of
2601 `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2602 alignment of the variable. The alignment is specified as the number of
2603 bits.
2605 Defined in svr4.h. */
2606 #undef ASM_OUTPUT_ALIGNED_LOCAL
2608 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
2609 extern int size_directive_output;
2611 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2612 parameter - the DECL of variable to be output, if there is one.
2613 This macro can be called with DECL == NULL_TREE. If you define
2614 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2615 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2616 handling the destination of the variable. */
2617 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2618 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
2619 do { \
2620 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
2621 named_section (0, ".sbss", 0); \
2622 else \
2623 bss_section (); \
2624 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
2625 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
2626 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
2627 } while (0)
2630 /* Output and Generation of Labels. */
2632 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2633 assembler definition of a label named NAME. Use the expression
2634 `assemble_name (STREAM, NAME)' to output the name itself; before and after
2635 that, output the additional assembler syntax for defining the name, and a
2636 newline. */
2637 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2638 do { \
2639 assemble_name (STREAM, NAME); \
2640 fputs (":\n", STREAM); \
2641 } while (0)
2643 /* Globalizing directive for a label. */
2644 #define GLOBAL_ASM_OP "\t.globl "
2646 /* A C statement to store into the string STRING a label whose name is made
2647 from the string PREFIX and the number NUM.
2649 This string, when output subsequently by `assemble_name', should produce the
2650 output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2651 and NUM.
2653 If the string begins with `*', then `assemble_name' will output the rest of
2654 the string unchanged. It is often convenient for
2655 `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
2656 start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2657 may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2658 machine description, so you should know what it does on your machine.)
2660 Defined in svr4.h. */
2661 #undef ASM_GENERATE_INTERNAL_LABEL
2662 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2663 do { \
2664 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
2665 } while (0)
2668 /* Macros Controlling Initialization Routines. */
2670 /* If defined, a C string constant for the assembler operation to identify the
2671 following data as initialization code. If not defined, GCC will assume
2672 such a section does not exist. When you are using special sections for
2673 initialization and termination functions, this macro also controls how
2674 `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2676 Defined in svr4.h. */
2677 #undef INIT_SECTION_ASM_OP
2679 /* If defined, `main' will call `__main' despite the presence of
2680 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
2681 init section is not actually run automatically, but is still useful for
2682 collecting the lists of constructors and destructors. */
2683 #define INVOKE__main
2685 /* Output of Assembler Instructions. */
2687 /* A C initializer containing the assembler's names for the machine registers,
2688 each one as a C string constant. This is what translates register numbers
2689 in the compiler into assembler language. */
2690 #define REGISTER_NAMES \
2692 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
2693 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
2694 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
2695 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
2696 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
2697 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
2698 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
2699 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
2701 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
2702 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
2703 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
2704 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
2705 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
2706 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
2707 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
2708 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
2710 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
2711 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
2712 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
2713 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
2714 "ap", "lr", "lcr" \
2717 /* Define this macro if you are using an unusual assembler that
2718 requires different names for the machine instructions.
2720 The definition is a C statement or statements which output an
2721 assembler instruction opcode to the stdio stream STREAM. The
2722 macro-operand PTR is a variable of type `char *' which points to
2723 the opcode name in its "internal" form--the form that is written
2724 in the machine description. The definition should output the
2725 opcode name to STREAM, performing any translation you desire, and
2726 increment the variable PTR to point at the end of the opcode so
2727 that it will not be output twice.
2729 In fact, your macro definition may process less than the entire
2730 opcode name, or more than the opcode name; but if you want to
2731 process text that includes `%'-sequences to substitute operands,
2732 you must take care of the substitution yourself. Just be sure to
2733 increment PTR over whatever text should not be output normally.
2735 If you need to look at the operand values, they can be found as the
2736 elements of `recog_operand'.
2738 If the macro definition does nothing, the instruction is output in
2739 the usual way. */
2741 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2742 (PTR) = frv_asm_output_opcode (STREAM, PTR)
2744 /* If defined, a C statement to be executed just prior to the output
2745 of assembler code for INSN, to modify the extracted operands so
2746 they will be output differently.
2748 Here the argument OPVEC is the vector containing the operands
2749 extracted from INSN, and NOPERANDS is the number of elements of
2750 the vector which contain meaningful data for this insn. The
2751 contents of this vector are what will be used to convert the insn
2752 template into assembler code, so you can change the assembler
2753 output by changing the contents of the vector.
2755 This macro is useful when various assembler syntaxes share a single
2756 file of instruction patterns; by defining this macro differently,
2757 you can cause a large class of instructions to be output
2758 differently (such as with rearranged operands). Naturally,
2759 variations in assembler syntax affecting individual insn patterns
2760 ought to be handled by writing conditional output routines in
2761 those patterns.
2763 If this macro is not defined, it is equivalent to a null statement. */
2765 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2766 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2769 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2770 for an instruction operand X. X is an RTL expression.
2772 CODE is a value that can be used to specify one of several ways of printing
2773 the operand. It is used when identical operands must be printed differently
2774 depending on the context. CODE comes from the `%' specification that was
2775 used to request printing of the operand. If the specification was just
2776 `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2777 the ASCII code for LTR.
2779 If X is a register, this macro should print the register's name. The names
2780 can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
2781 is initialized from `REGISTER_NAMES'.
2783 When the machine description has a specification `%PUNCT' (a `%' followed by
2784 a punctuation character), this macro is called with a null pointer for X and
2785 the punctuation character for CODE. */
2786 #define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2788 /* A C expression which evaluates to true if CODE is a valid punctuation
2789 character for use in the `PRINT_OPERAND' macro. If
2790 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2791 characters (except for the standard one, `%') are used in this way. */
2792 /* . == gr0
2793 # == hint operand -- always zero for now
2794 @ == small data base register (gr16)
2795 ~ == pic register (gr17)
2796 * == temporary integer CCR register (cr3)
2797 & == temporary integer ICC register (icc3) */
2798 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2799 ((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~' \
2800 || (CODE) == '*' || (CODE) == '&')
2802 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2803 for an instruction operand that is a memory reference whose address is X. X
2804 is an RTL expression.
2806 On some machines, the syntax for a symbolic address depends on the section
2807 that the address refers to. On these machines, define the macro
2808 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2809 then check for it here.
2811 This declaration must be present. */
2812 #define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2814 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2815 `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
2816 single `md' file must support multiple assembler formats. In that case, the
2817 various `tm.h' files can define these macros differently.
2819 USER_LABEL_PREFIX is defined in svr4.h. */
2820 #undef USER_LABEL_PREFIX
2821 #define USER_LABEL_PREFIX ""
2822 #define REGISTER_PREFIX ""
2823 #define LOCAL_LABEL_PREFIX "."
2824 #define IMMEDIATE_PREFIX "#"
2827 /* Output of dispatch tables. */
2829 /* This macro should be provided on machines where the addresses in a dispatch
2830 table are relative to the table's own address.
2832 The definition should be a C statement to output to the stdio stream STREAM
2833 an assembler pseudo-instruction to generate a difference between two labels.
2834 VALUE and REL are the numbers of two internal labels. The definitions of
2835 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2836 printed in the same way here. For example,
2838 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
2839 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2840 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2842 /* This macro should be provided on machines where the addresses in a dispatch
2843 table are absolute.
2845 The definition should be a C statement to output to the stdio stream STREAM
2846 an assembler pseudo-instruction to generate a reference to a label. VALUE
2847 is the number of an internal label whose definition is output using
2848 `(*targetm.asm_out.internal_label)'. For example,
2850 fprintf (STREAM, "\t.word L%d\n", VALUE) */
2851 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2852 fprintf (STREAM, "\t.word .L%d\n", VALUE)
2854 /* Define this if the label before a jump-table needs to be output specially.
2855 The first three arguments are the same as for `(*targetm.asm_out.internal_label)';
2856 the fourth argument is the jump-table which follows (a `jump_insn'
2857 containing an `addr_vec' or `addr_diff_vec').
2859 This feature is used on system V to output a `swbeg' statement for the
2860 table.
2862 If this macro is not defined, these labels are output with
2863 `(*targetm.asm_out.internal_label)'.
2865 Defined in svr4.h. */
2866 /* When generating embedded PIC or mips16 code we want to put the jump
2867 table in the .text section. In all other cases, we want to put the
2868 jump table in the .rdata section. Unfortunately, we can't use
2869 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
2870 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
2871 section if appropriate. */
2873 #undef ASM_OUTPUT_CASE_LABEL
2874 #define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
2875 do { \
2876 if (flag_pic) \
2877 function_section (current_function_decl); \
2878 (*targetm.asm_out.internal_label) (STREAM, PREFIX, NUM); \
2879 } while (0)
2881 /* Define this to determine whether case statement labels are relative to
2882 the start of the case statement or not. */
2884 #define CASE_VECTOR_PC_RELATIVE (flag_pic)
2887 /* Assembler Commands for Exception Regions. */
2889 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2890 information, but it does not yet work with exception handling. Otherwise,
2891 if your target supports this information (if it defines
2892 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2893 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2895 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2896 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2897 default.
2899 If this macro is defined to anything, the DWARF 2 unwinder will be used
2900 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2901 #define DWARF2_UNWIND_INFO 1
2903 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2905 /* Assembler Commands for Alignment. */
2907 /* A C statement to output to the stdio stream STREAM an assembler instruction
2908 to advance the location counter by NBYTES bytes. Those bytes should be zero
2909 when loaded. NBYTES will be a C expression of type `int'.
2911 Defined in svr4.h. */
2912 #undef ASM_OUTPUT_SKIP
2913 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2914 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2916 /* A C statement to output to the stdio stream STREAM an assembler command to
2917 advance the location counter to a multiple of 2 to the POWER bytes. POWER
2918 will be a C expression of type `int'. */
2919 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2920 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2922 /* Inside the text section, align with unpacked nops rather than zeros. */
2923 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2924 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2926 /* Macros Affecting all Debug Formats. */
2928 /* A C expression that returns the DBX register number for the compiler
2929 register number REGNO. In simple cases, the value of this expression may be
2930 REGNO itself. But sometimes there are some registers that the compiler
2931 knows about and DBX does not, or vice versa. In such cases, some register
2932 may need to have one number in the compiler and another for DBX.
2934 If two registers have consecutive numbers inside GCC, and they can be
2935 used as a pair to hold a multiword value, then they *must* have consecutive
2936 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
2937 will be unable to access such a pair, because they expect register pairs to
2938 be consecutive in their own numbering scheme.
2940 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2941 preserve register pairs, then what you must do instead is redefine the
2942 actual register numbering scheme.
2944 This declaration is required. */
2945 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2947 /* A C expression that returns the type of debugging output GCC produces
2948 when the user specifies `-g' or `-ggdb'. Define this if you have arranged
2949 for GCC to support more than one format of debugging output. Currently,
2950 the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2951 `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2953 The value of this macro only affects the default debugging output; the user
2954 can always get a specific type of output by using `-gstabs', `-gcoff',
2955 `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2957 Defined in svr4.h. */
2958 #undef PREFERRED_DEBUGGING_TYPE
2959 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2961 /* Miscellaneous Parameters. */
2963 /* Define this if you have defined special-purpose predicates in the file
2964 `MACHINE.c'. This macro is called within an initializer of an array of
2965 structures. The first field in the structure is the name of a predicate and
2966 the second field is an array of rtl codes. For each predicate, list all rtl
2967 codes that can be in expressions matched by the predicate. The list should
2968 have a trailing comma. Here is an example of two entries in the list for a
2969 typical RISC machine:
2971 #define PREDICATE_CODES \
2972 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
2973 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
2975 Defining this macro does not affect the generated code (however, incorrect
2976 definitions that omit an rtl code that may be matched by the predicate can
2977 cause the compiler to malfunction). Instead, it allows the table built by
2978 `genrecog' to be more compact and efficient, thus speeding up the compiler.
2979 The most important predicates to include in the list specified by this macro
2980 are thoses used in the most insn patterns. */
2981 #define PREDICATE_CODES \
2982 { "integer_register_operand", { REG, SUBREG }}, \
2983 { "frv_load_operand", { REG, SUBREG, MEM }}, \
2984 { "gpr_no_subreg_operand", { REG }}, \
2985 { "gpr_or_fpr_operand", { REG, SUBREG }}, \
2986 { "gpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
2987 { "gpr_fpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
2988 { "gpr_or_int10_operand", { REG, SUBREG, CONST_INT }}, \
2989 { "gpr_or_int_operand", { REG, SUBREG, CONST_INT }}, \
2990 { "move_source_operand", { REG, SUBREG, CONST_INT, MEM, \
2991 CONST_DOUBLE, CONST, \
2992 SYMBOL_REF, LABEL_REF }}, \
2993 { "move_destination_operand", { REG, SUBREG, MEM }}, \
2994 { "condexec_source_operand", { REG, SUBREG, CONST_INT, MEM, \
2995 CONST_DOUBLE }}, \
2996 { "condexec_dest_operand", { REG, SUBREG, MEM }}, \
2997 { "reg_or_0_operand", { REG, SUBREG, CONST_INT }}, \
2998 { "lr_operand", { REG }}, \
2999 { "gpr_or_memory_operand", { REG, SUBREG, MEM }}, \
3000 { "fpr_or_memory_operand", { REG, SUBREG, MEM }}, \
3001 { "int12_operand", { CONST_INT }}, \
3002 { "int_2word_operand", { CONST_INT, CONST_DOUBLE, \
3003 SYMBOL_REF, LABEL_REF, CONST }}, \
3004 { "pic_register_operand", { REG }}, \
3005 { "pic_symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
3006 { "small_data_register_operand", { REG }}, \
3007 { "small_data_symbolic_operand", { SYMBOL_REF, CONST }}, \
3008 { "icc_operand", { REG }}, \
3009 { "fcc_operand", { REG }}, \
3010 { "cc_operand", { REG }}, \
3011 { "icr_operand", { REG }}, \
3012 { "fcr_operand", { REG }}, \
3013 { "cr_operand", { REG }}, \
3014 { "fpr_operand", { REG, SUBREG }}, \
3015 { "even_reg_operand", { REG, SUBREG }}, \
3016 { "odd_reg_operand", { REG, SUBREG }}, \
3017 { "even_gpr_operand", { REG, SUBREG }}, \
3018 { "odd_gpr_operand", { REG, SUBREG }}, \
3019 { "quad_fpr_operand", { REG, SUBREG }}, \
3020 { "even_fpr_operand", { REG, SUBREG }}, \
3021 { "odd_fpr_operand", { REG, SUBREG }}, \
3022 { "dbl_memory_one_insn_operand", { MEM }}, \
3023 { "dbl_memory_two_insn_operand", { MEM }}, \
3024 { "call_operand", { REG, SUBREG, PLUS, CONST_INT, \
3025 SYMBOL_REF, LABEL_REF, CONST }}, \
3026 { "upper_int16_operand", { CONST_INT }}, \
3027 { "uint16_operand", { CONST_INT }}, \
3028 { "relational_operator", { EQ, NE, LE, LT, GE, GT, \
3029 LEU, LTU, GEU, GTU }}, \
3030 { "signed_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
3031 { "unsigned_relational_operator", { LEU, LTU, GEU, GTU }}, \
3032 { "float_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
3033 { "ccr_eqne_operator", { EQ, NE }}, \
3034 { "minmax_operator", { SMIN, SMAX, UMIN, UMAX }}, \
3035 { "condexec_si_binary_operator", { PLUS, MINUS, AND, IOR, XOR, \
3036 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3037 { "condexec_si_media_operator", { AND, IOR, XOR }}, \
3038 { "condexec_si_divide_operator", { DIV, UDIV }}, \
3039 { "condexec_si_unary_operator", { NOT, NEG }}, \
3040 { "condexec_sf_add_operator", { PLUS, MINUS }}, \
3041 { "condexec_sf_conv_operator", { ABS, NEG }}, \
3042 { "intop_compare_operator", { PLUS, MINUS, AND, IOR, XOR, \
3043 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3044 { "condexec_intop_cmp_operator", { PLUS, MINUS, AND, IOR, XOR, \
3045 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3046 { "fpr_or_int6_operand", { REG, SUBREG, CONST_INT }}, \
3047 { "int6_operand", { CONST_INT }}, \
3048 { "int5_operand", { CONST_INT }}, \
3049 { "uint5_operand", { CONST_INT }}, \
3050 { "uint4_operand", { CONST_INT }}, \
3051 { "uint1_operand", { CONST_INT }}, \
3052 { "acc_operand", { REG, SUBREG }}, \
3053 { "even_acc_operand", { REG, SUBREG }}, \
3054 { "quad_acc_operand", { REG, SUBREG }}, \
3055 { "accg_operand", { REG, SUBREG }},
3057 /* An alias for a machine mode name. This is the machine mode that elements of
3058 a jump-table should have. */
3059 #define CASE_VECTOR_MODE SImode
3061 /* Define this macro if operations between registers with integral mode smaller
3062 than a word are always performed on the entire register. Most RISC machines
3063 have this property and most CISC machines do not. */
3064 #define WORD_REGISTER_OPERATIONS
3066 /* Define this macro to be a C expression indicating when insns that read
3067 memory in MODE, an integral mode narrower than a word, set the bits outside
3068 of MODE to be either the sign-extension or the zero-extension of the data
3069 read. Return `SIGN_EXTEND' for values of MODE for which the insn
3070 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `NIL' for other
3071 modes.
3073 This macro is not called with MODE non-integral or with a width greater than
3074 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
3075 not define this macro if it would always return `NIL'. On machines where
3076 this macro is defined, you will normally define it as the constant
3077 `SIGN_EXTEND' or `ZERO_EXTEND'. */
3078 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
3080 /* Define if loading short immediate values into registers sign extends. */
3081 #define SHORT_IMMEDIATES_SIGN_EXTEND
3083 /* The maximum number of bytes that a single instruction can move quickly from
3084 memory to memory. */
3085 #define MOVE_MAX 8
3087 /* A C expression which is nonzero if on this machine it is safe to "convert"
3088 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
3089 than INPREC) by merely operating on it as if it had only OUTPREC bits.
3091 On many machines, this expression can be 1.
3093 When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
3094 which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
3095 case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
3096 things. */
3097 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
3099 /* An alias for the machine mode for pointers. On most machines, define this
3100 to be the integer mode corresponding to the width of a hardware pointer;
3101 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
3102 you must define this to be one of the partial integer modes, such as
3103 `PSImode'.
3105 The width of `Pmode' must be at least as large as the value of
3106 `POINTER_SIZE'. If it is not equal, you must define the macro
3107 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
3108 #define Pmode SImode
3110 /* An alias for the machine mode used for memory references to functions being
3111 called, in `call' RTL expressions. On most machines this should be
3112 `QImode'. */
3113 #define FUNCTION_MODE QImode
3115 /* Define this macro to handle System V style pragmas: #pragma pack and
3116 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
3117 defined.
3119 Defined in svr4.h. */
3120 #define HANDLE_SYSV_PRAGMA 1
3122 /* A C expression for the maximum number of instructions to execute via
3123 conditional execution instructions instead of a branch. A value of
3124 BRANCH_COST+1 is the default if the machine does not use
3125 cc0, and 1 if it does use cc0. */
3126 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
3128 /* Default value of MAX_CONDITIONAL_EXECUTE if no -mcond-exec-insns= */
3129 #define DEFAULT_CONDEXEC_INSNS 8
3131 /* A C expression to modify the code described by the conditional if
3132 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
3133 FALSE_EXPR for converting if-then and if-then-else code to conditional
3134 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
3135 tests cannot be converted. */
3136 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
3137 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
3139 /* A C expression to modify the code described by the conditional if
3140 information CE_INFO, for the basic block BB, possibly updating the tests in
3141 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
3142 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
3143 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
3144 the tests cannot be converted. */
3145 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
3146 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
3148 /* A C expression to modify the code described by the conditional if
3149 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
3150 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
3151 insn cannot be converted to be executed conditionally. */
3152 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
3153 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
3155 /* A C expression to perform any final machine dependent modifications in
3156 converting code to conditional execution in the code described by the
3157 conditional if information CE_INFO. */
3158 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
3160 /* A C expression to cancel any machine dependent modifications in converting
3161 code to conditional execution in the code described by the conditional if
3162 information CE_INFO. */
3163 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
3165 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
3166 #define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
3168 /* Indicate how many instructions can be issued at the same time. */
3169 #define ISSUE_RATE \
3170 (! TARGET_PACK ? 1 \
3171 : (frv_cpu_type == FRV_CPU_GENERIC \
3172 || frv_cpu_type == FRV_CPU_FR500 \
3173 || frv_cpu_type == FRV_CPU_TOMCAT) ? 4 \
3174 : frv_cpu_type == FRV_CPU_FR400 ? 2 : 1)
3176 /* Set and clear whether this insn begins a VLIW insn. */
3177 #define CLEAR_VLIW_START(INSN) PUT_MODE (INSN, VOIDmode)
3178 #define SET_VLIW_START(INSN) PUT_MODE (INSN, TImode)
3180 /* The definition of the following macro results in that the 2nd jump
3181 optimization (after the 2nd insn scheduling) is minimal. It is
3182 necessary to define when start cycle marks of insns (TImode is used
3183 for this) is used for VLIW insn packing. Some jump optimizations
3184 make such marks invalid. These marks are corrected for some
3185 (minimal) optimizations. ??? Probably the macro is temporary.
3186 Final solution could making the 2nd jump optimizations before the
3187 2nd instruction scheduling or corrections of the marks for all jump
3188 optimizations. Although some jump optimizations are actually
3189 deoptimizations for VLIW (super-scalar) processors. */
3191 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
3193 /* Return true if parallel operations are expected to be emitted via the
3194 packing flag. */
3195 #define PACKING_FLAG_USED_P() \
3196 (optimize && flag_schedule_insns_after_reload && ISSUE_RATE > 1)
3198 /* If the following macro is defined and nonzero and deterministic
3199 finite state automata are used for pipeline hazard recognition, the
3200 code making resource-constrained software pipelining is on. */
3201 #define RCSP_SOFTWARE_PIPELINING 1
3203 /* If the following macro is defined and nonzero and deterministic
3204 finite state automata are used for pipeline hazard recognition, we
3205 will try to exchange insns in queue ready to improve the schedule.
3206 The more macro value, the more tries will be made. */
3207 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
3209 /* The following macro is used only when value of
3210 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
3211 the more tries will be made to choose better schedule. If the
3212 macro value is zero or negative there will be no multi-pass
3213 scheduling. */
3214 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
3216 enum frv_builtins
3218 FRV_BUILTIN_MAND,
3219 FRV_BUILTIN_MOR,
3220 FRV_BUILTIN_MXOR,
3221 FRV_BUILTIN_MNOT,
3222 FRV_BUILTIN_MAVEH,
3223 FRV_BUILTIN_MSATHS,
3224 FRV_BUILTIN_MSATHU,
3225 FRV_BUILTIN_MADDHSS,
3226 FRV_BUILTIN_MADDHUS,
3227 FRV_BUILTIN_MSUBHSS,
3228 FRV_BUILTIN_MSUBHUS,
3229 FRV_BUILTIN_MPACKH,
3230 FRV_BUILTIN_MQADDHSS,
3231 FRV_BUILTIN_MQADDHUS,
3232 FRV_BUILTIN_MQSUBHSS,
3233 FRV_BUILTIN_MQSUBHUS,
3234 FRV_BUILTIN_MUNPACKH,
3235 FRV_BUILTIN_MDPACKH,
3236 FRV_BUILTIN_MBTOH,
3237 FRV_BUILTIN_MHTOB,
3238 FRV_BUILTIN_MCOP1,
3239 FRV_BUILTIN_MCOP2,
3240 FRV_BUILTIN_MROTLI,
3241 FRV_BUILTIN_MROTRI,
3242 FRV_BUILTIN_MWCUT,
3243 FRV_BUILTIN_MSLLHI,
3244 FRV_BUILTIN_MSRLHI,
3245 FRV_BUILTIN_MSRAHI,
3246 FRV_BUILTIN_MEXPDHW,
3247 FRV_BUILTIN_MEXPDHD,
3248 FRV_BUILTIN_MMULHS,
3249 FRV_BUILTIN_MMULHU,
3250 FRV_BUILTIN_MMULXHS,
3251 FRV_BUILTIN_MMULXHU,
3252 FRV_BUILTIN_MMACHS,
3253 FRV_BUILTIN_MMACHU,
3254 FRV_BUILTIN_MMRDHS,
3255 FRV_BUILTIN_MMRDHU,
3256 FRV_BUILTIN_MQMULHS,
3257 FRV_BUILTIN_MQMULHU,
3258 FRV_BUILTIN_MQMULXHU,
3259 FRV_BUILTIN_MQMULXHS,
3260 FRV_BUILTIN_MQMACHS,
3261 FRV_BUILTIN_MQMACHU,
3262 FRV_BUILTIN_MCPXRS,
3263 FRV_BUILTIN_MCPXRU,
3264 FRV_BUILTIN_MCPXIS,
3265 FRV_BUILTIN_MCPXIU,
3266 FRV_BUILTIN_MQCPXRS,
3267 FRV_BUILTIN_MQCPXRU,
3268 FRV_BUILTIN_MQCPXIS,
3269 FRV_BUILTIN_MQCPXIU,
3270 FRV_BUILTIN_MCUT,
3271 FRV_BUILTIN_MCUTSS,
3272 FRV_BUILTIN_MWTACC,
3273 FRV_BUILTIN_MWTACCG,
3274 FRV_BUILTIN_MRDACC,
3275 FRV_BUILTIN_MRDACCG,
3276 FRV_BUILTIN_MTRAP,
3277 FRV_BUILTIN_MCLRACC,
3278 FRV_BUILTIN_MCLRACCA,
3279 FRV_BUILTIN_MDUNPACKH,
3280 FRV_BUILTIN_MBTOHE,
3281 FRV_BUILTIN_MQXMACHS,
3282 FRV_BUILTIN_MQXMACXHS,
3283 FRV_BUILTIN_MQMACXHS,
3284 FRV_BUILTIN_MADDACCS,
3285 FRV_BUILTIN_MSUBACCS,
3286 FRV_BUILTIN_MASACCS,
3287 FRV_BUILTIN_MDADDACCS,
3288 FRV_BUILTIN_MDSUBACCS,
3289 FRV_BUILTIN_MDASACCS,
3290 FRV_BUILTIN_MABSHS,
3291 FRV_BUILTIN_MDROTLI,
3292 FRV_BUILTIN_MCPLHI,
3293 FRV_BUILTIN_MCPLI,
3294 FRV_BUILTIN_MDCUTSSI,
3295 FRV_BUILTIN_MQSATHS,
3296 FRV_BUILTIN_MHSETLOS,
3297 FRV_BUILTIN_MHSETLOH,
3298 FRV_BUILTIN_MHSETHIS,
3299 FRV_BUILTIN_MHSETHIH,
3300 FRV_BUILTIN_MHDSETS,
3301 FRV_BUILTIN_MHDSETH
3304 /* Enable prototypes on the call rtl functions. */
3305 #define MD_CALL_PROTOTYPES 1
3307 extern GTY(()) rtx frv_compare_op0; /* operand save for */
3308 extern GTY(()) rtx frv_compare_op1; /* comparison generation */
3310 #endif /* __FRV_H__ */