Create embedded-5_0-branch branch for development on ARM embedded cores.
[official-gcc.git] / embedded-5_0-branch / libgo / go / crypto / rand / rand_unix.go
blob62d0fbdb350c4d7013186893b3d065e1ce5b8a02
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // +build darwin dragonfly freebsd linux nacl netbsd openbsd plan9 solaris
7 // Unix cryptographically secure pseudorandom number
8 // generator.
10 package rand
12 import (
13 "bufio"
14 "crypto/aes"
15 "crypto/cipher"
16 "io"
17 "os"
18 "runtime"
19 "sync"
20 "time"
23 const urandomDevice = "/dev/urandom"
25 // Easy implementation: read from /dev/urandom.
26 // This is sufficient on Linux, OS X, and FreeBSD.
28 func init() {
29 if runtime.GOOS == "plan9" {
30 Reader = newReader(nil)
31 } else {
32 Reader = &devReader{name: urandomDevice}
36 // A devReader satisfies reads by reading the file named name.
37 type devReader struct {
38 name string
39 f io.Reader
40 mu sync.Mutex
43 // altGetRandom if non-nil specifies an OS-specific function to get
44 // urandom-style randomness.
45 var altGetRandom func([]byte) (ok bool)
47 func (r *devReader) Read(b []byte) (n int, err error) {
48 if altGetRandom != nil && r.name == urandomDevice && altGetRandom(b) {
49 return len(b), nil
51 r.mu.Lock()
52 defer r.mu.Unlock()
53 if r.f == nil {
54 f, err := os.Open(r.name)
55 if f == nil {
56 return 0, err
58 if runtime.GOOS == "plan9" {
59 r.f = f
60 } else {
61 r.f = bufio.NewReader(f)
64 return r.f.Read(b)
67 // Alternate pseudo-random implementation for use on
68 // systems without a reliable /dev/urandom.
70 // newReader returns a new pseudorandom generator that
71 // seeds itself by reading from entropy. If entropy == nil,
72 // the generator seeds itself by reading from the system's
73 // random number generator, typically /dev/random.
74 // The Read method on the returned reader always returns
75 // the full amount asked for, or else it returns an error.
77 // The generator uses the X9.31 algorithm with AES-128,
78 // reseeding after every 1 MB of generated data.
79 func newReader(entropy io.Reader) io.Reader {
80 if entropy == nil {
81 entropy = &devReader{name: "/dev/random"}
83 return &reader{entropy: entropy}
86 type reader struct {
87 mu sync.Mutex
88 budget int // number of bytes that can be generated
89 cipher cipher.Block
90 entropy io.Reader
91 time, seed, dst, key [aes.BlockSize]byte
94 func (r *reader) Read(b []byte) (n int, err error) {
95 r.mu.Lock()
96 defer r.mu.Unlock()
97 n = len(b)
99 for len(b) > 0 {
100 if r.budget == 0 {
101 _, err := io.ReadFull(r.entropy, r.seed[0:])
102 if err != nil {
103 return n - len(b), err
105 _, err = io.ReadFull(r.entropy, r.key[0:])
106 if err != nil {
107 return n - len(b), err
109 r.cipher, err = aes.NewCipher(r.key[0:])
110 if err != nil {
111 return n - len(b), err
113 r.budget = 1 << 20 // reseed after generating 1MB
115 r.budget -= aes.BlockSize
117 // ANSI X9.31 (== X9.17) algorithm, but using AES in place of 3DES.
119 // single block:
120 // t = encrypt(time)
121 // dst = encrypt(t^seed)
122 // seed = encrypt(t^dst)
123 ns := time.Now().UnixNano()
124 r.time[0] = byte(ns >> 56)
125 r.time[1] = byte(ns >> 48)
126 r.time[2] = byte(ns >> 40)
127 r.time[3] = byte(ns >> 32)
128 r.time[4] = byte(ns >> 24)
129 r.time[5] = byte(ns >> 16)
130 r.time[6] = byte(ns >> 8)
131 r.time[7] = byte(ns)
132 r.cipher.Encrypt(r.time[0:], r.time[0:])
133 for i := 0; i < aes.BlockSize; i++ {
134 r.dst[i] = r.time[i] ^ r.seed[i]
136 r.cipher.Encrypt(r.dst[0:], r.dst[0:])
137 for i := 0; i < aes.BlockSize; i++ {
138 r.seed[i] = r.time[i] ^ r.dst[i]
140 r.cipher.Encrypt(r.seed[0:], r.seed[0:])
142 m := copy(b, r.dst[0:])
143 b = b[m:]
146 return n, nil