Missed one in last change.
[official-gcc.git] / gcc / final.c
blobe3ded5db34a72388ba3400f3a75c3321d57a7bed
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Last insn processed by final_scan_insn. */
115 static rtx debug_insn;
116 rtx current_output_insn;
118 /* Line number of last NOTE. */
119 static int last_linenum;
121 /* Highest line number in current block. */
122 static int high_block_linenum;
124 /* Likewise for function. */
125 static int high_function_linenum;
127 /* Filename of last NOTE. */
128 static const char *last_filename;
130 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
132 /* Nonzero while outputting an `asm' with operands.
133 This means that inconsistencies are the user's fault, so don't abort.
134 The precise value is the insn being output, to pass to error_for_asm. */
135 rtx this_is_asm_operands;
137 /* Number of operands of this insn, for an `asm' with operands. */
138 static unsigned int insn_noperands;
140 /* Compare optimization flag. */
142 static rtx last_ignored_compare = 0;
144 /* Assign a unique number to each insn that is output.
145 This can be used to generate unique local labels. */
147 static int insn_counter = 0;
149 #ifdef HAVE_cc0
150 /* This variable contains machine-dependent flags (defined in tm.h)
151 set and examined by output routines
152 that describe how to interpret the condition codes properly. */
154 CC_STATUS cc_status;
156 /* During output of an insn, this contains a copy of cc_status
157 from before the insn. */
159 CC_STATUS cc_prev_status;
160 #endif
162 /* Indexed by hardware reg number, is 1 if that register is ever
163 used in the current function.
165 In life_analysis, or in stupid_life_analysis, this is set
166 up to record the hard regs used explicitly. Reload adds
167 in the hard regs used for holding pseudo regs. Final uses
168 it to generate the code in the function prologue and epilogue
169 to save and restore registers as needed. */
171 char regs_ever_live[FIRST_PSEUDO_REGISTER];
173 /* Nonzero means current function must be given a frame pointer.
174 Set in stmt.c if anything is allocated on the stack there.
175 Set in reload1.c if anything is allocated on the stack there. */
177 int frame_pointer_needed;
179 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
181 static int block_depth;
183 /* Nonzero if have enabled APP processing of our assembler output. */
185 static int app_on;
187 /* If we are outputting an insn sequence, this contains the sequence rtx.
188 Zero otherwise. */
190 rtx final_sequence;
192 #ifdef ASSEMBLER_DIALECT
194 /* Number of the assembler dialect to use, starting at 0. */
195 static int dialect_number;
196 #endif
198 /* Indexed by line number, nonzero if there is a note for that line. */
200 static char *line_note_exists;
202 #ifdef HAVE_conditional_execution
203 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
204 rtx current_insn_predicate;
205 #endif
207 #ifdef HAVE_ATTR_length
208 static int asm_insn_count (rtx);
209 #endif
210 static void profile_function (FILE *);
211 static void profile_after_prologue (FILE *);
212 static bool notice_source_line (rtx);
213 static rtx walk_alter_subreg (rtx *);
214 static void output_asm_name (void);
215 static void output_alternate_entry_point (FILE *, rtx);
216 static tree get_mem_expr_from_op (rtx, int *);
217 static void output_asm_operand_names (rtx *, int *, int);
218 static void output_operand (rtx, int);
219 #ifdef LEAF_REGISTERS
220 static void leaf_renumber_regs (rtx);
221 #endif
222 #ifdef HAVE_cc0
223 static int alter_cond (rtx);
224 #endif
225 #ifndef ADDR_VEC_ALIGN
226 static int final_addr_vec_align (rtx);
227 #endif
228 #ifdef HAVE_ATTR_length
229 static int align_fuzz (rtx, rtx, int, unsigned);
230 #endif
232 /* Initialize data in final at the beginning of a compilation. */
234 void
235 init_final (const char *filename ATTRIBUTE_UNUSED)
237 app_on = 0;
238 final_sequence = 0;
240 #ifdef ASSEMBLER_DIALECT
241 dialect_number = ASSEMBLER_DIALECT;
242 #endif
245 /* Default target function prologue and epilogue assembler output.
247 If not overridden for epilogue code, then the function body itself
248 contains return instructions wherever needed. */
249 void
250 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
255 /* Default target hook that outputs nothing to a stream. */
256 void
257 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
261 /* Enable APP processing of subsequent output.
262 Used before the output from an `asm' statement. */
264 void
265 app_enable (void)
267 if (! app_on)
269 fputs (ASM_APP_ON, asm_out_file);
270 app_on = 1;
274 /* Disable APP processing of subsequent output.
275 Called from varasm.c before most kinds of output. */
277 void
278 app_disable (void)
280 if (app_on)
282 fputs (ASM_APP_OFF, asm_out_file);
283 app_on = 0;
287 /* Return the number of slots filled in the current
288 delayed branch sequence (we don't count the insn needing the
289 delay slot). Zero if not in a delayed branch sequence. */
291 #ifdef DELAY_SLOTS
293 dbr_sequence_length (void)
295 if (final_sequence != 0)
296 return XVECLEN (final_sequence, 0) - 1;
297 else
298 return 0;
300 #endif
302 /* The next two pages contain routines used to compute the length of an insn
303 and to shorten branches. */
305 /* Arrays for insn lengths, and addresses. The latter is referenced by
306 `insn_current_length'. */
308 static int *insn_lengths;
310 varray_type insn_addresses_;
312 /* Max uid for which the above arrays are valid. */
313 static int insn_lengths_max_uid;
315 /* Address of insn being processed. Used by `insn_current_length'. */
316 int insn_current_address;
318 /* Address of insn being processed in previous iteration. */
319 int insn_last_address;
321 /* known invariant alignment of insn being processed. */
322 int insn_current_align;
324 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
325 gives the next following alignment insn that increases the known
326 alignment, or NULL_RTX if there is no such insn.
327 For any alignment obtained this way, we can again index uid_align with
328 its uid to obtain the next following align that in turn increases the
329 alignment, till we reach NULL_RTX; the sequence obtained this way
330 for each insn we'll call the alignment chain of this insn in the following
331 comments. */
333 struct label_alignment
335 short alignment;
336 short max_skip;
339 static rtx *uid_align;
340 static int *uid_shuid;
341 static struct label_alignment *label_align;
343 /* Indicate that branch shortening hasn't yet been done. */
345 void
346 init_insn_lengths (void)
348 if (uid_shuid)
350 free (uid_shuid);
351 uid_shuid = 0;
353 if (insn_lengths)
355 free (insn_lengths);
356 insn_lengths = 0;
357 insn_lengths_max_uid = 0;
359 #ifdef HAVE_ATTR_length
360 INSN_ADDRESSES_FREE ();
361 #endif
362 if (uid_align)
364 free (uid_align);
365 uid_align = 0;
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, get its maximum length. */
373 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
375 #ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
380 if (insn_lengths_max_uid > INSN_UID (insn))
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
394 case JUMP_INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
401 else
402 length = insn_default_length (insn);
403 break;
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
417 break;
419 default:
420 break;
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425 #endif
426 return length;
427 #else /* not HAVE_ATTR_length */
428 return 0;
429 #endif /* not HAVE_ATTR_length */
432 /* Code to handle alignment inside shorten_branches. */
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
452 The estimated padding is then OX - IX.
454 OX can be safely estimated as
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
479 #endif
481 #ifndef LOOP_ALIGN
482 #define LOOP_ALIGN(LABEL) align_loops_log
483 #endif
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
487 #endif
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
491 #endif
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495 #endif
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
503 #endif
505 #ifndef ADDR_VEC_ALIGN
506 static int
507 final_addr_vec_align (rtx addr_vec)
509 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
511 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
512 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
513 return exact_log2 (align);
517 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
518 #endif
520 #ifndef INSN_LENGTH_ALIGNMENT
521 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
522 #endif
524 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
526 static int min_labelno, max_labelno;
528 #define LABEL_TO_ALIGNMENT(LABEL) \
529 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
531 #define LABEL_TO_MAX_SKIP(LABEL) \
532 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
534 /* For the benefit of port specific code do this also as a function. */
537 label_to_alignment (rtx label)
539 return LABEL_TO_ALIGNMENT (label);
542 #ifdef HAVE_ATTR_length
543 /* The differences in addresses
544 between a branch and its target might grow or shrink depending on
545 the alignment the start insn of the range (the branch for a forward
546 branch or the label for a backward branch) starts out on; if these
547 differences are used naively, they can even oscillate infinitely.
548 We therefore want to compute a 'worst case' address difference that
549 is independent of the alignment the start insn of the range end
550 up on, and that is at least as large as the actual difference.
551 The function align_fuzz calculates the amount we have to add to the
552 naively computed difference, by traversing the part of the alignment
553 chain of the start insn of the range that is in front of the end insn
554 of the range, and considering for each alignment the maximum amount
555 that it might contribute to a size increase.
557 For casesi tables, we also want to know worst case minimum amounts of
558 address difference, in case a machine description wants to introduce
559 some common offset that is added to all offsets in a table.
560 For this purpose, align_fuzz with a growth argument of 0 computes the
561 appropriate adjustment. */
563 /* Compute the maximum delta by which the difference of the addresses of
564 START and END might grow / shrink due to a different address for start
565 which changes the size of alignment insns between START and END.
566 KNOWN_ALIGN_LOG is the alignment known for START.
567 GROWTH should be ~0 if the objective is to compute potential code size
568 increase, and 0 if the objective is to compute potential shrink.
569 The return value is undefined for any other value of GROWTH. */
571 static int
572 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
574 int uid = INSN_UID (start);
575 rtx align_label;
576 int known_align = 1 << known_align_log;
577 int end_shuid = INSN_SHUID (end);
578 int fuzz = 0;
580 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
582 int align_addr, new_align;
584 uid = INSN_UID (align_label);
585 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
586 if (uid_shuid[uid] > end_shuid)
587 break;
588 known_align_log = LABEL_TO_ALIGNMENT (align_label);
589 new_align = 1 << known_align_log;
590 if (new_align < known_align)
591 continue;
592 fuzz += (-align_addr ^ growth) & (new_align - known_align);
593 known_align = new_align;
595 return fuzz;
598 /* Compute a worst-case reference address of a branch so that it
599 can be safely used in the presence of aligned labels. Since the
600 size of the branch itself is unknown, the size of the branch is
601 not included in the range. I.e. for a forward branch, the reference
602 address is the end address of the branch as known from the previous
603 branch shortening pass, minus a value to account for possible size
604 increase due to alignment. For a backward branch, it is the start
605 address of the branch as known from the current pass, plus a value
606 to account for possible size increase due to alignment.
607 NB.: Therefore, the maximum offset allowed for backward branches needs
608 to exclude the branch size. */
611 insn_current_reference_address (rtx branch)
613 rtx dest, seq;
614 int seq_uid;
616 if (! INSN_ADDRESSES_SET_P ())
617 return 0;
619 seq = NEXT_INSN (PREV_INSN (branch));
620 seq_uid = INSN_UID (seq);
621 if (GET_CODE (branch) != JUMP_INSN)
622 /* This can happen for example on the PA; the objective is to know the
623 offset to address something in front of the start of the function.
624 Thus, we can treat it like a backward branch.
625 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
626 any alignment we'd encounter, so we skip the call to align_fuzz. */
627 return insn_current_address;
628 dest = JUMP_LABEL (branch);
630 /* BRANCH has no proper alignment chain set, so use SEQ.
631 BRANCH also has no INSN_SHUID. */
632 if (INSN_SHUID (seq) < INSN_SHUID (dest))
634 /* Forward branch. */
635 return (insn_last_address + insn_lengths[seq_uid]
636 - align_fuzz (seq, dest, length_unit_log, ~0));
638 else
640 /* Backward branch. */
641 return (insn_current_address
642 + align_fuzz (dest, seq, length_unit_log, ~0));
645 #endif /* HAVE_ATTR_length */
647 void
648 compute_alignments (void)
650 int log, max_skip, max_log;
651 basic_block bb;
653 if (label_align)
655 free (label_align);
656 label_align = 0;
659 max_labelno = max_label_num ();
660 min_labelno = get_first_label_num ();
661 label_align = (struct label_alignment *)
662 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
664 /* If not optimizing or optimizing for size, don't assign any alignments. */
665 if (! optimize || optimize_size)
666 return;
668 FOR_EACH_BB (bb)
670 rtx label = bb->head;
671 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
672 edge e;
674 if (GET_CODE (label) != CODE_LABEL
675 || probably_never_executed_bb_p (bb))
676 continue;
677 max_log = LABEL_ALIGN (label);
678 max_skip = LABEL_ALIGN_MAX_SKIP;
680 for (e = bb->pred; e; e = e->pred_next)
682 if (e->flags & EDGE_FALLTHRU)
683 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
684 else
685 branch_frequency += EDGE_FREQUENCY (e);
688 /* There are two purposes to align block with no fallthru incoming edge:
689 1) to avoid fetch stalls when branch destination is near cache boundary
690 2) to improve cache efficiency in case the previous block is not executed
691 (so it does not need to be in the cache).
693 We to catch first case, we align frequently executed blocks.
694 To catch the second, we align blocks that are executed more frequently
695 than the predecessor and the predecessor is likely to not be executed
696 when function is called. */
698 if (!has_fallthru
699 && (branch_frequency > BB_FREQ_MAX / 10
700 || (bb->frequency > bb->prev_bb->frequency * 10
701 && (bb->prev_bb->frequency
702 <= ENTRY_BLOCK_PTR->frequency / 2))))
704 log = JUMP_ALIGN (label);
705 if (max_log < log)
707 max_log = log;
708 max_skip = JUMP_ALIGN_MAX_SKIP;
711 /* In case block is frequent and reached mostly by non-fallthru edge,
712 align it. It is most likely a first block of loop. */
713 if (has_fallthru
714 && maybe_hot_bb_p (bb)
715 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
716 && branch_frequency > fallthru_frequency * 2)
718 log = LOOP_ALIGN (label);
719 if (max_log < log)
721 max_log = log;
722 max_skip = LOOP_ALIGN_MAX_SKIP;
725 LABEL_TO_ALIGNMENT (label) = max_log;
726 LABEL_TO_MAX_SKIP (label) = max_skip;
730 /* Make a pass over all insns and compute their actual lengths by shortening
731 any branches of variable length if possible. */
733 /* Give a default value for the lowest address in a function. */
735 #ifndef FIRST_INSN_ADDRESS
736 #define FIRST_INSN_ADDRESS 0
737 #endif
739 /* shorten_branches might be called multiple times: for example, the SH
740 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
741 In order to do this, it needs proper length information, which it obtains
742 by calling shorten_branches. This cannot be collapsed with
743 shorten_branches itself into a single pass unless we also want to integrate
744 reorg.c, since the branch splitting exposes new instructions with delay
745 slots. */
747 void
748 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 rtx insn;
751 int max_uid;
752 int i;
753 int max_log;
754 int max_skip;
755 #ifdef HAVE_ATTR_length
756 #define MAX_CODE_ALIGN 16
757 rtx seq;
758 int something_changed = 1;
759 char *varying_length;
760 rtx body;
761 int uid;
762 rtx align_tab[MAX_CODE_ALIGN];
764 #endif
766 /* Compute maximum UID and allocate label_align / uid_shuid. */
767 max_uid = get_max_uid ();
769 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
771 if (max_labelno != max_label_num ())
773 int old = max_labelno;
774 int n_labels;
775 int n_old_labels;
777 max_labelno = max_label_num ();
779 n_labels = max_labelno - min_labelno + 1;
780 n_old_labels = old - min_labelno + 1;
782 label_align = (struct label_alignment *) xrealloc
783 (label_align, n_labels * sizeof (struct label_alignment));
785 /* Range of labels grows monotonically in the function. Abort here
786 means that the initialization of array got lost. */
787 if (n_old_labels > n_labels)
788 abort ();
790 memset (label_align + n_old_labels, 0,
791 (n_labels - n_old_labels) * sizeof (struct label_alignment));
794 /* Initialize label_align and set up uid_shuid to be strictly
795 monotonically rising with insn order. */
796 /* We use max_log here to keep track of the maximum alignment we want to
797 impose on the next CODE_LABEL (or the current one if we are processing
798 the CODE_LABEL itself). */
800 max_log = 0;
801 max_skip = 0;
803 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
805 int log;
807 INSN_SHUID (insn) = i++;
808 if (INSN_P (insn))
810 /* reorg might make the first insn of a loop being run once only,
811 and delete the label in front of it. Then we want to apply
812 the loop alignment to the new label created by reorg, which
813 is separated by the former loop start insn from the
814 NOTE_INSN_LOOP_BEG. */
816 else if (GET_CODE (insn) == CODE_LABEL)
818 rtx next;
820 /* Merge in alignments computed by compute_alignments. */
821 log = LABEL_TO_ALIGNMENT (insn);
822 if (max_log < log)
824 max_log = log;
825 max_skip = LABEL_TO_MAX_SKIP (insn);
828 log = LABEL_ALIGN (insn);
829 if (max_log < log)
831 max_log = log;
832 max_skip = LABEL_ALIGN_MAX_SKIP;
834 next = NEXT_INSN (insn);
835 /* ADDR_VECs only take room if read-only data goes into the text
836 section. */
837 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
838 if (next && GET_CODE (next) == JUMP_INSN)
840 rtx nextbody = PATTERN (next);
841 if (GET_CODE (nextbody) == ADDR_VEC
842 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
844 log = ADDR_VEC_ALIGN (next);
845 if (max_log < log)
847 max_log = log;
848 max_skip = LABEL_ALIGN_MAX_SKIP;
852 LABEL_TO_ALIGNMENT (insn) = max_log;
853 LABEL_TO_MAX_SKIP (insn) = max_skip;
854 max_log = 0;
855 max_skip = 0;
857 else if (GET_CODE (insn) == BARRIER)
859 rtx label;
861 for (label = insn; label && ! INSN_P (label);
862 label = NEXT_INSN (label))
863 if (GET_CODE (label) == CODE_LABEL)
865 log = LABEL_ALIGN_AFTER_BARRIER (insn);
866 if (max_log < log)
868 max_log = log;
869 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
871 break;
875 #ifdef HAVE_ATTR_length
877 /* Allocate the rest of the arrays. */
878 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
879 insn_lengths_max_uid = max_uid;
880 /* Syntax errors can lead to labels being outside of the main insn stream.
881 Initialize insn_addresses, so that we get reproducible results. */
882 INSN_ADDRESSES_ALLOC (max_uid);
884 varying_length = (char *) xcalloc (max_uid, sizeof (char));
886 /* Initialize uid_align. We scan instructions
887 from end to start, and keep in align_tab[n] the last seen insn
888 that does an alignment of at least n+1, i.e. the successor
889 in the alignment chain for an insn that does / has a known
890 alignment of n. */
891 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
893 for (i = MAX_CODE_ALIGN; --i >= 0;)
894 align_tab[i] = NULL_RTX;
895 seq = get_last_insn ();
896 for (; seq; seq = PREV_INSN (seq))
898 int uid = INSN_UID (seq);
899 int log;
900 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
901 uid_align[uid] = align_tab[0];
902 if (log)
904 /* Found an alignment label. */
905 uid_align[uid] = align_tab[log];
906 for (i = log - 1; i >= 0; i--)
907 align_tab[i] = seq;
910 #ifdef CASE_VECTOR_SHORTEN_MODE
911 if (optimize)
913 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
914 label fields. */
916 int min_shuid = INSN_SHUID (get_insns ()) - 1;
917 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
918 int rel;
920 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
922 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
923 int len, i, min, max, insn_shuid;
924 int min_align;
925 addr_diff_vec_flags flags;
927 if (GET_CODE (insn) != JUMP_INSN
928 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
929 continue;
930 pat = PATTERN (insn);
931 len = XVECLEN (pat, 1);
932 if (len <= 0)
933 abort ();
934 min_align = MAX_CODE_ALIGN;
935 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
937 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
938 int shuid = INSN_SHUID (lab);
939 if (shuid < min)
941 min = shuid;
942 min_lab = lab;
944 if (shuid > max)
946 max = shuid;
947 max_lab = lab;
949 if (min_align > LABEL_TO_ALIGNMENT (lab))
950 min_align = LABEL_TO_ALIGNMENT (lab);
952 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
953 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
954 insn_shuid = INSN_SHUID (insn);
955 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
956 flags.min_align = min_align;
957 flags.base_after_vec = rel > insn_shuid;
958 flags.min_after_vec = min > insn_shuid;
959 flags.max_after_vec = max > insn_shuid;
960 flags.min_after_base = min > rel;
961 flags.max_after_base = max > rel;
962 ADDR_DIFF_VEC_FLAGS (pat) = flags;
965 #endif /* CASE_VECTOR_SHORTEN_MODE */
967 /* Compute initial lengths, addresses, and varying flags for each insn. */
968 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
969 insn != 0;
970 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
972 uid = INSN_UID (insn);
974 insn_lengths[uid] = 0;
976 if (GET_CODE (insn) == CODE_LABEL)
978 int log = LABEL_TO_ALIGNMENT (insn);
979 if (log)
981 int align = 1 << log;
982 int new_address = (insn_current_address + align - 1) & -align;
983 insn_lengths[uid] = new_address - insn_current_address;
987 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
989 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
990 || GET_CODE (insn) == CODE_LABEL)
991 continue;
992 if (INSN_DELETED_P (insn))
993 continue;
995 body = PATTERN (insn);
996 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
998 /* This only takes room if read-only data goes into the text
999 section. */
1000 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1001 insn_lengths[uid] = (XVECLEN (body,
1002 GET_CODE (body) == ADDR_DIFF_VEC)
1003 * GET_MODE_SIZE (GET_MODE (body)));
1004 /* Alignment is handled by ADDR_VEC_ALIGN. */
1006 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1007 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1008 else if (GET_CODE (body) == SEQUENCE)
1010 int i;
1011 int const_delay_slots;
1012 #ifdef DELAY_SLOTS
1013 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1014 #else
1015 const_delay_slots = 0;
1016 #endif
1017 /* Inside a delay slot sequence, we do not do any branch shortening
1018 if the shortening could change the number of delay slots
1019 of the branch. */
1020 for (i = 0; i < XVECLEN (body, 0); i++)
1022 rtx inner_insn = XVECEXP (body, 0, i);
1023 int inner_uid = INSN_UID (inner_insn);
1024 int inner_length;
1026 if (GET_CODE (body) == ASM_INPUT
1027 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1028 inner_length = (asm_insn_count (PATTERN (inner_insn))
1029 * insn_default_length (inner_insn));
1030 else
1031 inner_length = insn_default_length (inner_insn);
1033 insn_lengths[inner_uid] = inner_length;
1034 if (const_delay_slots)
1036 if ((varying_length[inner_uid]
1037 = insn_variable_length_p (inner_insn)) != 0)
1038 varying_length[uid] = 1;
1039 INSN_ADDRESSES (inner_uid) = (insn_current_address
1040 + insn_lengths[uid]);
1042 else
1043 varying_length[inner_uid] = 0;
1044 insn_lengths[uid] += inner_length;
1047 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1049 insn_lengths[uid] = insn_default_length (insn);
1050 varying_length[uid] = insn_variable_length_p (insn);
1053 /* If needed, do any adjustment. */
1054 #ifdef ADJUST_INSN_LENGTH
1055 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1056 if (insn_lengths[uid] < 0)
1057 fatal_insn ("negative insn length", insn);
1058 #endif
1061 /* Now loop over all the insns finding varying length insns. For each,
1062 get the current insn length. If it has changed, reflect the change.
1063 When nothing changes for a full pass, we are done. */
1065 while (something_changed)
1067 something_changed = 0;
1068 insn_current_align = MAX_CODE_ALIGN - 1;
1069 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1070 insn != 0;
1071 insn = NEXT_INSN (insn))
1073 int new_length;
1074 #ifdef ADJUST_INSN_LENGTH
1075 int tmp_length;
1076 #endif
1077 int length_align;
1079 uid = INSN_UID (insn);
1081 if (GET_CODE (insn) == CODE_LABEL)
1083 int log = LABEL_TO_ALIGNMENT (insn);
1084 if (log > insn_current_align)
1086 int align = 1 << log;
1087 int new_address= (insn_current_address + align - 1) & -align;
1088 insn_lengths[uid] = new_address - insn_current_address;
1089 insn_current_align = log;
1090 insn_current_address = new_address;
1092 else
1093 insn_lengths[uid] = 0;
1094 INSN_ADDRESSES (uid) = insn_current_address;
1095 continue;
1098 length_align = INSN_LENGTH_ALIGNMENT (insn);
1099 if (length_align < insn_current_align)
1100 insn_current_align = length_align;
1102 insn_last_address = INSN_ADDRESSES (uid);
1103 INSN_ADDRESSES (uid) = insn_current_address;
1105 #ifdef CASE_VECTOR_SHORTEN_MODE
1106 if (optimize && GET_CODE (insn) == JUMP_INSN
1107 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1109 rtx body = PATTERN (insn);
1110 int old_length = insn_lengths[uid];
1111 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1112 rtx min_lab = XEXP (XEXP (body, 2), 0);
1113 rtx max_lab = XEXP (XEXP (body, 3), 0);
1114 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1115 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1116 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1117 rtx prev;
1118 int rel_align = 0;
1119 addr_diff_vec_flags flags;
1121 /* Avoid automatic aggregate initialization. */
1122 flags = ADDR_DIFF_VEC_FLAGS (body);
1124 /* Try to find a known alignment for rel_lab. */
1125 for (prev = rel_lab;
1126 prev
1127 && ! insn_lengths[INSN_UID (prev)]
1128 && ! (varying_length[INSN_UID (prev)] & 1);
1129 prev = PREV_INSN (prev))
1130 if (varying_length[INSN_UID (prev)] & 2)
1132 rel_align = LABEL_TO_ALIGNMENT (prev);
1133 break;
1136 /* See the comment on addr_diff_vec_flags in rtl.h for the
1137 meaning of the flags values. base: REL_LAB vec: INSN */
1138 /* Anything after INSN has still addresses from the last
1139 pass; adjust these so that they reflect our current
1140 estimate for this pass. */
1141 if (flags.base_after_vec)
1142 rel_addr += insn_current_address - insn_last_address;
1143 if (flags.min_after_vec)
1144 min_addr += insn_current_address - insn_last_address;
1145 if (flags.max_after_vec)
1146 max_addr += insn_current_address - insn_last_address;
1147 /* We want to know the worst case, i.e. lowest possible value
1148 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1149 its offset is positive, and we have to be wary of code shrink;
1150 otherwise, it is negative, and we have to be vary of code
1151 size increase. */
1152 if (flags.min_after_base)
1154 /* If INSN is between REL_LAB and MIN_LAB, the size
1155 changes we are about to make can change the alignment
1156 within the observed offset, therefore we have to break
1157 it up into two parts that are independent. */
1158 if (! flags.base_after_vec && flags.min_after_vec)
1160 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1161 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1163 else
1164 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1166 else
1168 if (flags.base_after_vec && ! flags.min_after_vec)
1170 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1171 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1173 else
1174 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1176 /* Likewise, determine the highest lowest possible value
1177 for the offset of MAX_LAB. */
1178 if (flags.max_after_base)
1180 if (! flags.base_after_vec && flags.max_after_vec)
1182 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1183 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1185 else
1186 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1188 else
1190 if (flags.base_after_vec && ! flags.max_after_vec)
1192 max_addr += align_fuzz (max_lab, insn, 0, 0);
1193 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1195 else
1196 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1198 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1199 max_addr - rel_addr,
1200 body));
1201 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1203 insn_lengths[uid]
1204 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1205 insn_current_address += insn_lengths[uid];
1206 if (insn_lengths[uid] != old_length)
1207 something_changed = 1;
1210 continue;
1212 #endif /* CASE_VECTOR_SHORTEN_MODE */
1214 if (! (varying_length[uid]))
1216 if (GET_CODE (insn) == INSN
1217 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1219 int i;
1221 body = PATTERN (insn);
1222 for (i = 0; i < XVECLEN (body, 0); i++)
1224 rtx inner_insn = XVECEXP (body, 0, i);
1225 int inner_uid = INSN_UID (inner_insn);
1227 INSN_ADDRESSES (inner_uid) = insn_current_address;
1229 insn_current_address += insn_lengths[inner_uid];
1232 else
1233 insn_current_address += insn_lengths[uid];
1235 continue;
1238 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1240 int i;
1242 body = PATTERN (insn);
1243 new_length = 0;
1244 for (i = 0; i < XVECLEN (body, 0); i++)
1246 rtx inner_insn = XVECEXP (body, 0, i);
1247 int inner_uid = INSN_UID (inner_insn);
1248 int inner_length;
1250 INSN_ADDRESSES (inner_uid) = insn_current_address;
1252 /* insn_current_length returns 0 for insns with a
1253 non-varying length. */
1254 if (! varying_length[inner_uid])
1255 inner_length = insn_lengths[inner_uid];
1256 else
1257 inner_length = insn_current_length (inner_insn);
1259 if (inner_length != insn_lengths[inner_uid])
1261 insn_lengths[inner_uid] = inner_length;
1262 something_changed = 1;
1264 insn_current_address += insn_lengths[inner_uid];
1265 new_length += inner_length;
1268 else
1270 new_length = insn_current_length (insn);
1271 insn_current_address += new_length;
1274 #ifdef ADJUST_INSN_LENGTH
1275 /* If needed, do any adjustment. */
1276 tmp_length = new_length;
1277 ADJUST_INSN_LENGTH (insn, new_length);
1278 insn_current_address += (new_length - tmp_length);
1279 #endif
1281 if (new_length != insn_lengths[uid])
1283 insn_lengths[uid] = new_length;
1284 something_changed = 1;
1287 /* For a non-optimizing compile, do only a single pass. */
1288 if (!optimize)
1289 break;
1292 free (varying_length);
1294 #endif /* HAVE_ATTR_length */
1297 #ifdef HAVE_ATTR_length
1298 /* Given the body of an INSN known to be generated by an ASM statement, return
1299 the number of machine instructions likely to be generated for this insn.
1300 This is used to compute its length. */
1302 static int
1303 asm_insn_count (rtx body)
1305 const char *template;
1306 int count = 1;
1308 if (GET_CODE (body) == ASM_INPUT)
1309 template = XSTR (body, 0);
1310 else
1311 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1313 for (; *template; template++)
1314 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1315 count++;
1317 return count;
1319 #endif
1321 /* Output assembler code for the start of a function,
1322 and initialize some of the variables in this file
1323 for the new function. The label for the function and associated
1324 assembler pseudo-ops have already been output in `assemble_start_function'.
1326 FIRST is the first insn of the rtl for the function being compiled.
1327 FILE is the file to write assembler code to.
1328 OPTIMIZE is nonzero if we should eliminate redundant
1329 test and compare insns. */
1331 void
1332 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1333 int optimize ATTRIBUTE_UNUSED)
1335 block_depth = 0;
1337 this_is_asm_operands = 0;
1339 #ifdef NON_SAVING_SETJMP
1340 /* A function that calls setjmp should save and restore all the
1341 call-saved registers on a system where longjmp clobbers them. */
1342 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1344 int i;
1346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1347 if (!call_used_regs[i])
1348 regs_ever_live[i] = 1;
1350 #endif
1352 last_linenum = 0;
1353 last_filename = 0;
1354 high_block_linenum = high_function_linenum = last_linenum;
1356 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1358 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1359 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1360 dwarf2out_begin_prologue (0, NULL);
1361 #endif
1363 #ifdef LEAF_REG_REMAP
1364 if (current_function_uses_only_leaf_regs)
1365 leaf_renumber_regs (first);
1366 #endif
1368 /* The Sun386i and perhaps other machines don't work right
1369 if the profiling code comes after the prologue. */
1370 #ifdef PROFILE_BEFORE_PROLOGUE
1371 if (current_function_profile)
1372 profile_function (file);
1373 #endif /* PROFILE_BEFORE_PROLOGUE */
1375 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1376 if (dwarf2out_do_frame ())
1377 dwarf2out_frame_debug (NULL_RTX);
1378 #endif
1380 /* If debugging, assign block numbers to all of the blocks in this
1381 function. */
1382 if (write_symbols)
1384 remove_unnecessary_notes ();
1385 reemit_insn_block_notes ();
1386 number_blocks (current_function_decl);
1387 /* We never actually put out begin/end notes for the top-level
1388 block in the function. But, conceptually, that block is
1389 always needed. */
1390 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1393 /* First output the function prologue: code to set up the stack frame. */
1394 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1396 /* If the machine represents the prologue as RTL, the profiling code must
1397 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1398 #ifdef HAVE_prologue
1399 if (! HAVE_prologue)
1400 #endif
1401 profile_after_prologue (file);
1404 static void
1405 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1407 #ifndef PROFILE_BEFORE_PROLOGUE
1408 if (current_function_profile)
1409 profile_function (file);
1410 #endif /* not PROFILE_BEFORE_PROLOGUE */
1413 static void
1414 profile_function (FILE *file ATTRIBUTE_UNUSED)
1416 #ifndef NO_PROFILE_COUNTERS
1417 # define NO_PROFILE_COUNTERS 0
1418 #endif
1419 #if defined(ASM_OUTPUT_REG_PUSH)
1420 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1421 int sval = current_function_returns_struct;
1422 #endif
1423 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1424 int cxt = current_function_needs_context;
1425 #endif
1426 #endif /* ASM_OUTPUT_REG_PUSH */
1428 if (! NO_PROFILE_COUNTERS)
1430 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1431 data_section ();
1432 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1433 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1434 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1437 function_section (current_function_decl);
1439 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (sval)
1441 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1442 #else
1443 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1444 if (sval)
1446 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1448 #endif
1449 #endif
1451 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1452 if (cxt)
1453 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1454 #else
1455 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1456 if (cxt)
1458 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1460 #endif
1461 #endif
1463 FUNCTION_PROFILER (file, current_function_funcdef_no);
1465 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1466 if (cxt)
1467 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1468 #else
1469 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1470 if (cxt)
1472 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1474 #endif
1475 #endif
1477 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1478 if (sval)
1479 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1480 #else
1481 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1482 if (sval)
1484 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1486 #endif
1487 #endif
1490 /* Output assembler code for the end of a function.
1491 For clarity, args are same as those of `final_start_function'
1492 even though not all of them are needed. */
1494 void
1495 final_end_function (void)
1497 app_disable ();
1499 (*debug_hooks->end_function) (high_function_linenum);
1501 /* Finally, output the function epilogue:
1502 code to restore the stack frame and return to the caller. */
1503 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1505 /* And debug output. */
1506 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1508 #if defined (DWARF2_UNWIND_INFO)
1509 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1510 && dwarf2out_do_frame ())
1511 dwarf2out_end_epilogue (last_linenum, last_filename);
1512 #endif
1515 /* Output assembler code for some insns: all or part of a function.
1516 For description of args, see `final_start_function', above.
1518 PRESCAN is 1 if we are not really outputting,
1519 just scanning as if we were outputting.
1520 Prescanning deletes and rearranges insns just like ordinary output.
1521 PRESCAN is -2 if we are outputting after having prescanned.
1522 In this case, don't try to delete or rearrange insns
1523 because that has already been done.
1524 Prescanning is done only on certain machines. */
1526 void
1527 final (rtx first, FILE *file, int optimize, int prescan)
1529 rtx insn;
1530 int max_line = 0;
1531 int max_uid = 0;
1533 last_ignored_compare = 0;
1535 /* Make a map indicating which line numbers appear in this function.
1536 When producing SDB debugging info, delete troublesome line number
1537 notes from inlined functions in other files as well as duplicate
1538 line number notes. */
1539 #ifdef SDB_DEBUGGING_INFO
1540 if (write_symbols == SDB_DEBUG)
1542 rtx last = 0;
1543 for (insn = first; insn; insn = NEXT_INSN (insn))
1544 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1546 if ((RTX_INTEGRATED_P (insn)
1547 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1548 || (last != 0
1549 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1550 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1552 delete_insn (insn); /* Use delete_note. */
1553 continue;
1555 last = insn;
1556 if (NOTE_LINE_NUMBER (insn) > max_line)
1557 max_line = NOTE_LINE_NUMBER (insn);
1560 else
1561 #endif
1563 for (insn = first; insn; insn = NEXT_INSN (insn))
1564 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1565 max_line = NOTE_LINE_NUMBER (insn);
1568 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1570 for (insn = first; insn; insn = NEXT_INSN (insn))
1572 if (INSN_UID (insn) > max_uid) /* find largest UID */
1573 max_uid = INSN_UID (insn);
1574 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1575 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1576 #ifdef HAVE_cc0
1577 /* If CC tracking across branches is enabled, record the insn which
1578 jumps to each branch only reached from one place. */
1579 if (optimize && GET_CODE (insn) == JUMP_INSN)
1581 rtx lab = JUMP_LABEL (insn);
1582 if (lab && LABEL_NUSES (lab) == 1)
1584 LABEL_REFS (lab) = insn;
1587 #endif
1590 init_recog ();
1592 CC_STATUS_INIT;
1594 /* Output the insns. */
1595 for (insn = NEXT_INSN (first); insn;)
1597 #ifdef HAVE_ATTR_length
1598 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1600 /* This can be triggered by bugs elsewhere in the compiler if
1601 new insns are created after init_insn_lengths is called. */
1602 if (GET_CODE (insn) == NOTE)
1603 insn_current_address = -1;
1604 else
1605 abort ();
1607 else
1608 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609 #endif /* HAVE_ATTR_length */
1611 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1614 free (line_note_exists);
1615 line_note_exists = NULL;
1618 const char *
1619 get_insn_template (int code, rtx insn)
1621 const void *output = insn_data[code].output;
1622 switch (insn_data[code].output_format)
1624 case INSN_OUTPUT_FORMAT_SINGLE:
1625 return (const char *) output;
1626 case INSN_OUTPUT_FORMAT_MULTI:
1627 return ((const char *const *) output)[which_alternative];
1628 case INSN_OUTPUT_FORMAT_FUNCTION:
1629 if (insn == NULL)
1630 abort ();
1631 return (*(insn_output_fn) output) (recog_data.operand, insn);
1633 default:
1634 abort ();
1638 /* Emit the appropriate declaration for an alternate-entry-point
1639 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1640 LABEL_KIND != LABEL_NORMAL.
1642 The case fall-through in this function is intentional. */
1643 static void
1644 output_alternate_entry_point (FILE *file, rtx insn)
1646 const char *name = LABEL_NAME (insn);
1648 switch (LABEL_KIND (insn))
1650 case LABEL_WEAK_ENTRY:
1651 #ifdef ASM_WEAKEN_LABEL
1652 ASM_WEAKEN_LABEL (file, name);
1653 #endif
1654 case LABEL_GLOBAL_ENTRY:
1655 (*targetm.asm_out.globalize_label) (file, name);
1656 case LABEL_STATIC_ENTRY:
1657 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1658 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1659 #endif
1660 ASM_OUTPUT_LABEL (file, name);
1661 break;
1663 case LABEL_NORMAL:
1664 default:
1665 abort ();
1669 /* The final scan for one insn, INSN.
1670 Args are same as in `final', except that INSN
1671 is the insn being scanned.
1672 Value returned is the next insn to be scanned.
1674 NOPEEPHOLES is the flag to disallow peephole processing (currently
1675 used for within delayed branch sequence output). */
1678 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1679 int prescan, int nopeepholes ATTRIBUTE_UNUSED)
1681 #ifdef HAVE_cc0
1682 rtx set;
1683 #endif
1685 insn_counter++;
1687 /* Ignore deleted insns. These can occur when we split insns (due to a
1688 template of "#") while not optimizing. */
1689 if (INSN_DELETED_P (insn))
1690 return NEXT_INSN (insn);
1692 switch (GET_CODE (insn))
1694 case NOTE:
1695 if (prescan > 0)
1696 break;
1698 switch (NOTE_LINE_NUMBER (insn))
1700 case NOTE_INSN_DELETED:
1701 case NOTE_INSN_LOOP_BEG:
1702 case NOTE_INSN_LOOP_END:
1703 case NOTE_INSN_LOOP_END_TOP_COND:
1704 case NOTE_INSN_LOOP_CONT:
1705 case NOTE_INSN_LOOP_VTOP:
1706 case NOTE_INSN_FUNCTION_END:
1707 case NOTE_INSN_REPEATED_LINE_NUMBER:
1708 case NOTE_INSN_EXPECTED_VALUE:
1709 break;
1711 case NOTE_INSN_BASIC_BLOCK:
1712 #ifdef IA64_UNWIND_INFO
1713 IA64_UNWIND_EMIT (asm_out_file, insn);
1714 #endif
1715 if (flag_debug_asm)
1716 fprintf (asm_out_file, "\t%s basic block %d\n",
1717 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1718 break;
1720 case NOTE_INSN_EH_REGION_BEG:
1721 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1722 NOTE_EH_HANDLER (insn));
1723 break;
1725 case NOTE_INSN_EH_REGION_END:
1726 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1727 NOTE_EH_HANDLER (insn));
1728 break;
1730 case NOTE_INSN_PROLOGUE_END:
1731 (*targetm.asm_out.function_end_prologue) (file);
1732 profile_after_prologue (file);
1733 break;
1735 case NOTE_INSN_EPILOGUE_BEG:
1736 (*targetm.asm_out.function_begin_epilogue) (file);
1737 break;
1739 case NOTE_INSN_FUNCTION_BEG:
1740 app_disable ();
1741 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1742 break;
1744 case NOTE_INSN_BLOCK_BEG:
1745 if (debug_info_level == DINFO_LEVEL_NORMAL
1746 || debug_info_level == DINFO_LEVEL_VERBOSE
1747 || write_symbols == DWARF_DEBUG
1748 || write_symbols == DWARF2_DEBUG
1749 || write_symbols == VMS_AND_DWARF2_DEBUG
1750 || write_symbols == VMS_DEBUG)
1752 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1754 app_disable ();
1755 ++block_depth;
1756 high_block_linenum = last_linenum;
1758 /* Output debugging info about the symbol-block beginning. */
1759 (*debug_hooks->begin_block) (last_linenum, n);
1761 /* Mark this block as output. */
1762 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1764 break;
1766 case NOTE_INSN_BLOCK_END:
1767 if (debug_info_level == DINFO_LEVEL_NORMAL
1768 || debug_info_level == DINFO_LEVEL_VERBOSE
1769 || write_symbols == DWARF_DEBUG
1770 || write_symbols == DWARF2_DEBUG
1771 || write_symbols == VMS_AND_DWARF2_DEBUG
1772 || write_symbols == VMS_DEBUG)
1774 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1776 app_disable ();
1778 /* End of a symbol-block. */
1779 --block_depth;
1780 if (block_depth < 0)
1781 abort ();
1783 (*debug_hooks->end_block) (high_block_linenum, n);
1785 break;
1787 case NOTE_INSN_DELETED_LABEL:
1788 /* Emit the label. We may have deleted the CODE_LABEL because
1789 the label could be proved to be unreachable, though still
1790 referenced (in the form of having its address taken. */
1791 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1792 break;
1794 case 0:
1795 break;
1797 default:
1798 if (NOTE_LINE_NUMBER (insn) <= 0)
1799 abort ();
1800 break;
1802 break;
1804 case BARRIER:
1805 #if defined (DWARF2_UNWIND_INFO)
1806 if (dwarf2out_do_frame ())
1807 dwarf2out_frame_debug (insn);
1808 #endif
1809 break;
1811 case CODE_LABEL:
1812 /* The target port might emit labels in the output function for
1813 some insn, e.g. sh.c output_branchy_insn. */
1814 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1816 int align = LABEL_TO_ALIGNMENT (insn);
1817 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1818 int max_skip = LABEL_TO_MAX_SKIP (insn);
1819 #endif
1821 if (align && NEXT_INSN (insn))
1823 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1824 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1825 #else
1826 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1827 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1828 #else
1829 ASM_OUTPUT_ALIGN (file, align);
1830 #endif
1831 #endif
1834 #ifdef HAVE_cc0
1835 CC_STATUS_INIT;
1836 /* If this label is reached from only one place, set the condition
1837 codes from the instruction just before the branch. */
1839 /* Disabled because some insns set cc_status in the C output code
1840 and NOTICE_UPDATE_CC alone can set incorrect status. */
1841 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1843 rtx jump = LABEL_REFS (insn);
1844 rtx barrier = prev_nonnote_insn (insn);
1845 rtx prev;
1846 /* If the LABEL_REFS field of this label has been set to point
1847 at a branch, the predecessor of the branch is a regular
1848 insn, and that branch is the only way to reach this label,
1849 set the condition codes based on the branch and its
1850 predecessor. */
1851 if (barrier && GET_CODE (barrier) == BARRIER
1852 && jump && GET_CODE (jump) == JUMP_INSN
1853 && (prev = prev_nonnote_insn (jump))
1854 && GET_CODE (prev) == INSN)
1856 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1857 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1860 #endif
1861 if (prescan > 0)
1862 break;
1864 #ifdef FINAL_PRESCAN_LABEL
1865 FINAL_PRESCAN_INSN (insn, NULL, 0);
1866 #endif
1868 if (LABEL_NAME (insn))
1869 (*debug_hooks->label) (insn);
1871 if (app_on)
1873 fputs (ASM_APP_OFF, file);
1874 app_on = 0;
1876 if (NEXT_INSN (insn) != 0
1877 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1879 rtx nextbody = PATTERN (NEXT_INSN (insn));
1881 /* If this label is followed by a jump-table,
1882 make sure we put the label in the read-only section. Also
1883 possibly write the label and jump table together. */
1885 if (GET_CODE (nextbody) == ADDR_VEC
1886 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1888 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1889 /* In this case, the case vector is being moved by the
1890 target, so don't output the label at all. Leave that
1891 to the back end macros. */
1892 #else
1893 if (! JUMP_TABLES_IN_TEXT_SECTION)
1895 int log_align;
1897 readonly_data_section ();
1899 #ifdef ADDR_VEC_ALIGN
1900 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1901 #else
1902 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1903 #endif
1904 ASM_OUTPUT_ALIGN (file, log_align);
1906 else
1907 function_section (current_function_decl);
1909 #ifdef ASM_OUTPUT_CASE_LABEL
1910 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1911 NEXT_INSN (insn));
1912 #else
1913 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1914 #endif
1915 #endif
1916 break;
1919 if (LABEL_ALT_ENTRY_P (insn))
1920 output_alternate_entry_point (file, insn);
1921 else
1922 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1923 break;
1925 default:
1927 rtx body = PATTERN (insn);
1928 int insn_code_number;
1929 const char *template;
1930 rtx note;
1932 /* An INSN, JUMP_INSN or CALL_INSN.
1933 First check for special kinds that recog doesn't recognize. */
1935 if (GET_CODE (body) == USE /* These are just declarations */
1936 || GET_CODE (body) == CLOBBER)
1937 break;
1939 #ifdef HAVE_cc0
1940 /* If there is a REG_CC_SETTER note on this insn, it means that
1941 the setting of the condition code was done in the delay slot
1942 of the insn that branched here. So recover the cc status
1943 from the insn that set it. */
1945 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1946 if (note)
1948 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1949 cc_prev_status = cc_status;
1951 #endif
1953 /* Detect insns that are really jump-tables
1954 and output them as such. */
1956 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1958 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1959 int vlen, idx;
1960 #endif
1962 if (prescan > 0)
1963 break;
1965 if (app_on)
1967 fputs (ASM_APP_OFF, file);
1968 app_on = 0;
1971 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1972 if (GET_CODE (body) == ADDR_VEC)
1974 #ifdef ASM_OUTPUT_ADDR_VEC
1975 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1976 #else
1977 abort ();
1978 #endif
1980 else
1982 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1983 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1984 #else
1985 abort ();
1986 #endif
1988 #else
1989 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1990 for (idx = 0; idx < vlen; idx++)
1992 if (GET_CODE (body) == ADDR_VEC)
1994 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1995 ASM_OUTPUT_ADDR_VEC_ELT
1996 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1997 #else
1998 abort ();
1999 #endif
2001 else
2003 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2004 ASM_OUTPUT_ADDR_DIFF_ELT
2005 (file,
2006 body,
2007 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2008 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2009 #else
2010 abort ();
2011 #endif
2014 #ifdef ASM_OUTPUT_CASE_END
2015 ASM_OUTPUT_CASE_END (file,
2016 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2017 insn);
2018 #endif
2019 #endif
2021 function_section (current_function_decl);
2023 break;
2025 /* Output this line note if it is the first or the last line
2026 note in a row. */
2027 if (notice_source_line (insn))
2029 (*debug_hooks->source_line) (last_linenum, last_filename);
2032 if (GET_CODE (body) == ASM_INPUT)
2034 const char *string = XSTR (body, 0);
2036 /* There's no telling what that did to the condition codes. */
2037 CC_STATUS_INIT;
2038 if (prescan > 0)
2039 break;
2041 if (string[0])
2043 if (! app_on)
2045 fputs (ASM_APP_ON, file);
2046 app_on = 1;
2048 fprintf (asm_out_file, "\t%s\n", string);
2050 break;
2053 /* Detect `asm' construct with operands. */
2054 if (asm_noperands (body) >= 0)
2056 unsigned int noperands = asm_noperands (body);
2057 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2058 const char *string;
2060 /* There's no telling what that did to the condition codes. */
2061 CC_STATUS_INIT;
2062 if (prescan > 0)
2063 break;
2065 /* Get out the operand values. */
2066 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2067 /* Inhibit aborts on what would otherwise be compiler bugs. */
2068 insn_noperands = noperands;
2069 this_is_asm_operands = insn;
2071 /* Output the insn using them. */
2072 if (string[0])
2074 if (! app_on)
2076 fputs (ASM_APP_ON, file);
2077 app_on = 1;
2079 output_asm_insn (string, ops);
2082 this_is_asm_operands = 0;
2083 break;
2086 if (prescan <= 0 && app_on)
2088 fputs (ASM_APP_OFF, file);
2089 app_on = 0;
2092 if (GET_CODE (body) == SEQUENCE)
2094 /* A delayed-branch sequence */
2095 int i;
2096 rtx next;
2098 if (prescan > 0)
2099 break;
2100 final_sequence = body;
2102 /* Record the delay slots' frame information before the branch.
2103 This is needed for delayed calls: see execute_cfa_program(). */
2104 #if defined (DWARF2_UNWIND_INFO)
2105 if (dwarf2out_do_frame ())
2106 for (i = 1; i < XVECLEN (body, 0); i++)
2107 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2108 #endif
2110 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2111 force the restoration of a comparison that was previously
2112 thought unnecessary. If that happens, cancel this sequence
2113 and cause that insn to be restored. */
2115 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2116 if (next != XVECEXP (body, 0, 1))
2118 final_sequence = 0;
2119 return next;
2122 for (i = 1; i < XVECLEN (body, 0); i++)
2124 rtx insn = XVECEXP (body, 0, i);
2125 rtx next = NEXT_INSN (insn);
2126 /* We loop in case any instruction in a delay slot gets
2127 split. */
2129 insn = final_scan_insn (insn, file, 0, prescan, 1);
2130 while (insn != next);
2132 #ifdef DBR_OUTPUT_SEQEND
2133 DBR_OUTPUT_SEQEND (file);
2134 #endif
2135 final_sequence = 0;
2137 /* If the insn requiring the delay slot was a CALL_INSN, the
2138 insns in the delay slot are actually executed before the
2139 called function. Hence we don't preserve any CC-setting
2140 actions in these insns and the CC must be marked as being
2141 clobbered by the function. */
2142 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2144 CC_STATUS_INIT;
2146 break;
2149 /* We have a real machine instruction as rtl. */
2151 body = PATTERN (insn);
2153 #ifdef HAVE_cc0
2154 set = single_set (insn);
2156 /* Check for redundant test and compare instructions
2157 (when the condition codes are already set up as desired).
2158 This is done only when optimizing; if not optimizing,
2159 it should be possible for the user to alter a variable
2160 with the debugger in between statements
2161 and the next statement should reexamine the variable
2162 to compute the condition codes. */
2164 if (optimize)
2166 #if 0
2167 rtx set = single_set (insn);
2168 #endif
2170 if (set
2171 && GET_CODE (SET_DEST (set)) == CC0
2172 && insn != last_ignored_compare)
2174 if (GET_CODE (SET_SRC (set)) == SUBREG)
2175 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2176 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2178 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2179 XEXP (SET_SRC (set), 0)
2180 = alter_subreg (&XEXP (SET_SRC (set), 0));
2181 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2182 XEXP (SET_SRC (set), 1)
2183 = alter_subreg (&XEXP (SET_SRC (set), 1));
2185 if ((cc_status.value1 != 0
2186 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2187 || (cc_status.value2 != 0
2188 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2190 /* Don't delete insn if it has an addressing side-effect. */
2191 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2192 /* or if anything in it is volatile. */
2193 && ! volatile_refs_p (PATTERN (insn)))
2195 /* We don't really delete the insn; just ignore it. */
2196 last_ignored_compare = insn;
2197 break;
2202 #endif
2204 #ifndef STACK_REGS
2205 /* Don't bother outputting obvious no-ops, even without -O.
2206 This optimization is fast and doesn't interfere with debugging.
2207 Don't do this if the insn is in a delay slot, since this
2208 will cause an improper number of delay insns to be written. */
2209 if (final_sequence == 0
2210 && prescan >= 0
2211 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2212 && GET_CODE (SET_SRC (body)) == REG
2213 && GET_CODE (SET_DEST (body)) == REG
2214 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2215 break;
2216 #endif
2218 #ifdef HAVE_cc0
2219 /* If this is a conditional branch, maybe modify it
2220 if the cc's are in a nonstandard state
2221 so that it accomplishes the same thing that it would
2222 do straightforwardly if the cc's were set up normally. */
2224 if (cc_status.flags != 0
2225 && GET_CODE (insn) == JUMP_INSN
2226 && GET_CODE (body) == SET
2227 && SET_DEST (body) == pc_rtx
2228 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2229 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2230 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2231 /* This is done during prescan; it is not done again
2232 in final scan when prescan has been done. */
2233 && prescan >= 0)
2235 /* This function may alter the contents of its argument
2236 and clear some of the cc_status.flags bits.
2237 It may also return 1 meaning condition now always true
2238 or -1 meaning condition now always false
2239 or 2 meaning condition nontrivial but altered. */
2240 int result = alter_cond (XEXP (SET_SRC (body), 0));
2241 /* If condition now has fixed value, replace the IF_THEN_ELSE
2242 with its then-operand or its else-operand. */
2243 if (result == 1)
2244 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2245 if (result == -1)
2246 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2248 /* The jump is now either unconditional or a no-op.
2249 If it has become a no-op, don't try to output it.
2250 (It would not be recognized.) */
2251 if (SET_SRC (body) == pc_rtx)
2253 delete_insn (insn);
2254 break;
2256 else if (GET_CODE (SET_SRC (body)) == RETURN)
2257 /* Replace (set (pc) (return)) with (return). */
2258 PATTERN (insn) = body = SET_SRC (body);
2260 /* Rerecognize the instruction if it has changed. */
2261 if (result != 0)
2262 INSN_CODE (insn) = -1;
2265 /* Make same adjustments to instructions that examine the
2266 condition codes without jumping and instructions that
2267 handle conditional moves (if this machine has either one). */
2269 if (cc_status.flags != 0
2270 && set != 0)
2272 rtx cond_rtx, then_rtx, else_rtx;
2274 if (GET_CODE (insn) != JUMP_INSN
2275 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2277 cond_rtx = XEXP (SET_SRC (set), 0);
2278 then_rtx = XEXP (SET_SRC (set), 1);
2279 else_rtx = XEXP (SET_SRC (set), 2);
2281 else
2283 cond_rtx = SET_SRC (set);
2284 then_rtx = const_true_rtx;
2285 else_rtx = const0_rtx;
2288 switch (GET_CODE (cond_rtx))
2290 case GTU:
2291 case GT:
2292 case LTU:
2293 case LT:
2294 case GEU:
2295 case GE:
2296 case LEU:
2297 case LE:
2298 case EQ:
2299 case NE:
2301 int result;
2302 if (XEXP (cond_rtx, 0) != cc0_rtx)
2303 break;
2304 result = alter_cond (cond_rtx);
2305 if (result == 1)
2306 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2307 else if (result == -1)
2308 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2309 else if (result == 2)
2310 INSN_CODE (insn) = -1;
2311 if (SET_DEST (set) == SET_SRC (set))
2312 delete_insn (insn);
2314 break;
2316 default:
2317 break;
2321 #endif
2323 #ifdef HAVE_peephole
2324 /* Do machine-specific peephole optimizations if desired. */
2326 if (optimize && !flag_no_peephole && !nopeepholes)
2328 rtx next = peephole (insn);
2329 /* When peepholing, if there were notes within the peephole,
2330 emit them before the peephole. */
2331 if (next != 0 && next != NEXT_INSN (insn))
2333 rtx prev = PREV_INSN (insn);
2335 for (note = NEXT_INSN (insn); note != next;
2336 note = NEXT_INSN (note))
2337 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2339 /* In case this is prescan, put the notes
2340 in proper position for later rescan. */
2341 note = NEXT_INSN (insn);
2342 PREV_INSN (note) = prev;
2343 NEXT_INSN (prev) = note;
2344 NEXT_INSN (PREV_INSN (next)) = insn;
2345 PREV_INSN (insn) = PREV_INSN (next);
2346 NEXT_INSN (insn) = next;
2347 PREV_INSN (next) = insn;
2350 /* PEEPHOLE might have changed this. */
2351 body = PATTERN (insn);
2353 #endif
2355 /* Try to recognize the instruction.
2356 If successful, verify that the operands satisfy the
2357 constraints for the instruction. Crash if they don't,
2358 since `reload' should have changed them so that they do. */
2360 insn_code_number = recog_memoized (insn);
2361 cleanup_subreg_operands (insn);
2363 /* Dump the insn in the assembly for debugging. */
2364 if (flag_dump_rtl_in_asm)
2366 print_rtx_head = ASM_COMMENT_START;
2367 print_rtl_single (asm_out_file, insn);
2368 print_rtx_head = "";
2371 if (! constrain_operands_cached (1))
2372 fatal_insn_not_found (insn);
2374 /* Some target machines need to prescan each insn before
2375 it is output. */
2377 #ifdef FINAL_PRESCAN_INSN
2378 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2379 #endif
2381 #ifdef HAVE_conditional_execution
2382 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2383 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2384 else
2385 current_insn_predicate = NULL_RTX;
2386 #endif
2388 #ifdef HAVE_cc0
2389 cc_prev_status = cc_status;
2391 /* Update `cc_status' for this instruction.
2392 The instruction's output routine may change it further.
2393 If the output routine for a jump insn needs to depend
2394 on the cc status, it should look at cc_prev_status. */
2396 NOTICE_UPDATE_CC (body, insn);
2397 #endif
2399 current_output_insn = debug_insn = insn;
2401 #if defined (DWARF2_UNWIND_INFO)
2402 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2403 dwarf2out_frame_debug (insn);
2404 #endif
2406 /* Find the proper template for this insn. */
2407 template = get_insn_template (insn_code_number, insn);
2409 /* If the C code returns 0, it means that it is a jump insn
2410 which follows a deleted test insn, and that test insn
2411 needs to be reinserted. */
2412 if (template == 0)
2414 rtx prev;
2416 if (prev_nonnote_insn (insn) != last_ignored_compare)
2417 abort ();
2419 /* We have already processed the notes between the setter and
2420 the user. Make sure we don't process them again, this is
2421 particularly important if one of the notes is a block
2422 scope note or an EH note. */
2423 for (prev = insn;
2424 prev != last_ignored_compare;
2425 prev = PREV_INSN (prev))
2427 if (GET_CODE (prev) == NOTE)
2428 delete_insn (prev); /* Use delete_note. */
2431 return prev;
2434 /* If the template is the string "#", it means that this insn must
2435 be split. */
2436 if (template[0] == '#' && template[1] == '\0')
2438 rtx new = try_split (body, insn, 0);
2440 /* If we didn't split the insn, go away. */
2441 if (new == insn && PATTERN (new) == body)
2442 fatal_insn ("could not split insn", insn);
2444 #ifdef HAVE_ATTR_length
2445 /* This instruction should have been split in shorten_branches,
2446 to ensure that we would have valid length info for the
2447 splitees. */
2448 abort ();
2449 #endif
2451 return new;
2454 if (prescan > 0)
2455 break;
2457 #ifdef IA64_UNWIND_INFO
2458 IA64_UNWIND_EMIT (asm_out_file, insn);
2459 #endif
2460 /* Output assembler code from the template. */
2462 output_asm_insn (template, recog_data.operand);
2464 /* If necessary, report the effect that the instruction has on
2465 the unwind info. We've already done this for delay slots
2466 and call instructions. */
2467 #if defined (DWARF2_UNWIND_INFO)
2468 if (GET_CODE (insn) == INSN
2469 #if !defined (HAVE_prologue)
2470 && !ACCUMULATE_OUTGOING_ARGS
2471 #endif
2472 && final_sequence == 0
2473 && dwarf2out_do_frame ())
2474 dwarf2out_frame_debug (insn);
2475 #endif
2477 #if 0
2478 /* It's not at all clear why we did this and doing so used to
2479 interfere with tests that used REG_WAS_0 notes, which are
2480 now gone, so let's try with this out. */
2482 /* Mark this insn as having been output. */
2483 INSN_DELETED_P (insn) = 1;
2484 #endif
2486 /* Emit information for vtable gc. */
2487 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2488 if (note)
2489 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2490 INTVAL (XEXP (XEXP (note, 0), 1)));
2492 current_output_insn = debug_insn = 0;
2495 return NEXT_INSN (insn);
2498 /* Output debugging info to the assembler file FILE
2499 based on the NOTE-insn INSN, assumed to be a line number. */
2501 static bool
2502 notice_source_line (rtx insn)
2504 const char *filename = insn_file (insn);
2505 int linenum = insn_line (insn);
2507 if (filename && (filename != last_filename || last_linenum != linenum))
2509 last_filename = filename;
2510 last_linenum = linenum;
2511 high_block_linenum = MAX (last_linenum, high_block_linenum);
2512 high_function_linenum = MAX (last_linenum, high_function_linenum);
2513 return true;
2515 return false;
2518 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2519 directly to the desired hard register. */
2521 void
2522 cleanup_subreg_operands (rtx insn)
2524 int i;
2525 extract_insn_cached (insn);
2526 for (i = 0; i < recog_data.n_operands; i++)
2528 /* The following test cannot use recog_data.operand when tesing
2529 for a SUBREG: the underlying object might have been changed
2530 already if we are inside a match_operator expression that
2531 matches the else clause. Instead we test the underlying
2532 expression directly. */
2533 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2534 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2535 else if (GET_CODE (recog_data.operand[i]) == PLUS
2536 || GET_CODE (recog_data.operand[i]) == MULT
2537 || GET_CODE (recog_data.operand[i]) == MEM)
2538 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2541 for (i = 0; i < recog_data.n_dups; i++)
2543 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2544 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2545 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2546 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2547 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2548 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2552 /* If X is a SUBREG, replace it with a REG or a MEM,
2553 based on the thing it is a subreg of. */
2556 alter_subreg (rtx *xp)
2558 rtx x = *xp;
2559 rtx y = SUBREG_REG (x);
2561 /* simplify_subreg does not remove subreg from volatile references.
2562 We are required to. */
2563 if (GET_CODE (y) == MEM)
2564 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2565 else
2567 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2568 SUBREG_BYTE (x));
2570 if (new != 0)
2571 *xp = new;
2572 /* Simplify_subreg can't handle some REG cases, but we have to. */
2573 else if (GET_CODE (y) == REG)
2575 unsigned int regno = subreg_hard_regno (x, 1);
2576 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2578 else
2579 abort ();
2582 return *xp;
2585 /* Do alter_subreg on all the SUBREGs contained in X. */
2587 static rtx
2588 walk_alter_subreg (rtx *xp)
2590 rtx x = *xp;
2591 switch (GET_CODE (x))
2593 case PLUS:
2594 case MULT:
2595 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2596 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2597 break;
2599 case MEM:
2600 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2601 break;
2603 case SUBREG:
2604 return alter_subreg (xp);
2606 default:
2607 break;
2610 return *xp;
2613 #ifdef HAVE_cc0
2615 /* Given BODY, the body of a jump instruction, alter the jump condition
2616 as required by the bits that are set in cc_status.flags.
2617 Not all of the bits there can be handled at this level in all cases.
2619 The value is normally 0.
2620 1 means that the condition has become always true.
2621 -1 means that the condition has become always false.
2622 2 means that COND has been altered. */
2624 static int
2625 alter_cond (rtx cond)
2627 int value = 0;
2629 if (cc_status.flags & CC_REVERSED)
2631 value = 2;
2632 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2635 if (cc_status.flags & CC_INVERTED)
2637 value = 2;
2638 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2641 if (cc_status.flags & CC_NOT_POSITIVE)
2642 switch (GET_CODE (cond))
2644 case LE:
2645 case LEU:
2646 case GEU:
2647 /* Jump becomes unconditional. */
2648 return 1;
2650 case GT:
2651 case GTU:
2652 case LTU:
2653 /* Jump becomes no-op. */
2654 return -1;
2656 case GE:
2657 PUT_CODE (cond, EQ);
2658 value = 2;
2659 break;
2661 case LT:
2662 PUT_CODE (cond, NE);
2663 value = 2;
2664 break;
2666 default:
2667 break;
2670 if (cc_status.flags & CC_NOT_NEGATIVE)
2671 switch (GET_CODE (cond))
2673 case GE:
2674 case GEU:
2675 /* Jump becomes unconditional. */
2676 return 1;
2678 case LT:
2679 case LTU:
2680 /* Jump becomes no-op. */
2681 return -1;
2683 case LE:
2684 case LEU:
2685 PUT_CODE (cond, EQ);
2686 value = 2;
2687 break;
2689 case GT:
2690 case GTU:
2691 PUT_CODE (cond, NE);
2692 value = 2;
2693 break;
2695 default:
2696 break;
2699 if (cc_status.flags & CC_NO_OVERFLOW)
2700 switch (GET_CODE (cond))
2702 case GEU:
2703 /* Jump becomes unconditional. */
2704 return 1;
2706 case LEU:
2707 PUT_CODE (cond, EQ);
2708 value = 2;
2709 break;
2711 case GTU:
2712 PUT_CODE (cond, NE);
2713 value = 2;
2714 break;
2716 case LTU:
2717 /* Jump becomes no-op. */
2718 return -1;
2720 default:
2721 break;
2724 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2725 switch (GET_CODE (cond))
2727 default:
2728 abort ();
2730 case NE:
2731 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2732 value = 2;
2733 break;
2735 case EQ:
2736 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2737 value = 2;
2738 break;
2741 if (cc_status.flags & CC_NOT_SIGNED)
2742 /* The flags are valid if signed condition operators are converted
2743 to unsigned. */
2744 switch (GET_CODE (cond))
2746 case LE:
2747 PUT_CODE (cond, LEU);
2748 value = 2;
2749 break;
2751 case LT:
2752 PUT_CODE (cond, LTU);
2753 value = 2;
2754 break;
2756 case GT:
2757 PUT_CODE (cond, GTU);
2758 value = 2;
2759 break;
2761 case GE:
2762 PUT_CODE (cond, GEU);
2763 value = 2;
2764 break;
2766 default:
2767 break;
2770 return value;
2772 #endif
2774 /* Report inconsistency between the assembler template and the operands.
2775 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2777 void
2778 output_operand_lossage (const char *msgid, ...)
2780 char *fmt_string;
2781 char *new_message;
2782 const char *pfx_str;
2783 va_list ap;
2785 va_start (ap, msgid);
2787 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2788 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2789 vasprintf (&new_message, fmt_string, ap);
2791 if (this_is_asm_operands)
2792 error_for_asm (this_is_asm_operands, "%s", new_message);
2793 else
2794 internal_error ("%s", new_message);
2796 free (fmt_string);
2797 free (new_message);
2798 va_end (ap);
2801 /* Output of assembler code from a template, and its subroutines. */
2803 /* Annotate the assembly with a comment describing the pattern and
2804 alternative used. */
2806 static void
2807 output_asm_name (void)
2809 if (debug_insn)
2811 int num = INSN_CODE (debug_insn);
2812 fprintf (asm_out_file, "\t%s %d\t%s",
2813 ASM_COMMENT_START, INSN_UID (debug_insn),
2814 insn_data[num].name);
2815 if (insn_data[num].n_alternatives > 1)
2816 fprintf (asm_out_file, "/%d", which_alternative + 1);
2817 #ifdef HAVE_ATTR_length
2818 fprintf (asm_out_file, "\t[length = %d]",
2819 get_attr_length (debug_insn));
2820 #endif
2821 /* Clear this so only the first assembler insn
2822 of any rtl insn will get the special comment for -dp. */
2823 debug_insn = 0;
2827 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2828 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2829 corresponds to the address of the object and 0 if to the object. */
2831 static tree
2832 get_mem_expr_from_op (rtx op, int *paddressp)
2834 tree expr;
2835 int inner_addressp;
2837 *paddressp = 0;
2839 if (GET_CODE (op) == REG)
2840 return REG_EXPR (op);
2841 else if (GET_CODE (op) != MEM)
2842 return 0;
2844 if (MEM_EXPR (op) != 0)
2845 return MEM_EXPR (op);
2847 /* Otherwise we have an address, so indicate it and look at the address. */
2848 *paddressp = 1;
2849 op = XEXP (op, 0);
2851 /* First check if we have a decl for the address, then look at the right side
2852 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2853 But don't allow the address to itself be indirect. */
2854 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2855 return expr;
2856 else if (GET_CODE (op) == PLUS
2857 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2858 return expr;
2860 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2861 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2862 op = XEXP (op, 0);
2864 expr = get_mem_expr_from_op (op, &inner_addressp);
2865 return inner_addressp ? 0 : expr;
2868 /* Output operand names for assembler instructions. OPERANDS is the
2869 operand vector, OPORDER is the order to write the operands, and NOPS
2870 is the number of operands to write. */
2872 static void
2873 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2875 int wrote = 0;
2876 int i;
2878 for (i = 0; i < nops; i++)
2880 int addressp;
2881 rtx op = operands[oporder[i]];
2882 tree expr = get_mem_expr_from_op (op, &addressp);
2884 fprintf (asm_out_file, "%c%s",
2885 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2886 wrote = 1;
2887 if (expr)
2889 fprintf (asm_out_file, "%s",
2890 addressp ? "*" : "");
2891 print_mem_expr (asm_out_file, expr);
2892 wrote = 1;
2894 else if (REG_P (op) && ORIGINAL_REGNO (op)
2895 && ORIGINAL_REGNO (op) != REGNO (op))
2896 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2900 /* Output text from TEMPLATE to the assembler output file,
2901 obeying %-directions to substitute operands taken from
2902 the vector OPERANDS.
2904 %N (for N a digit) means print operand N in usual manner.
2905 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2906 and print the label name with no punctuation.
2907 %cN means require operand N to be a constant
2908 and print the constant expression with no punctuation.
2909 %aN means expect operand N to be a memory address
2910 (not a memory reference!) and print a reference
2911 to that address.
2912 %nN means expect operand N to be a constant
2913 and print a constant expression for minus the value
2914 of the operand, with no other punctuation. */
2916 void
2917 output_asm_insn (const char *template, rtx *operands)
2919 const char *p;
2920 int c;
2921 #ifdef ASSEMBLER_DIALECT
2922 int dialect = 0;
2923 #endif
2924 int oporder[MAX_RECOG_OPERANDS];
2925 char opoutput[MAX_RECOG_OPERANDS];
2926 int ops = 0;
2928 /* An insn may return a null string template
2929 in a case where no assembler code is needed. */
2930 if (*template == 0)
2931 return;
2933 memset (opoutput, 0, sizeof opoutput);
2934 p = template;
2935 putc ('\t', asm_out_file);
2937 #ifdef ASM_OUTPUT_OPCODE
2938 ASM_OUTPUT_OPCODE (asm_out_file, p);
2939 #endif
2941 while ((c = *p++))
2942 switch (c)
2944 case '\n':
2945 if (flag_verbose_asm)
2946 output_asm_operand_names (operands, oporder, ops);
2947 if (flag_print_asm_name)
2948 output_asm_name ();
2950 ops = 0;
2951 memset (opoutput, 0, sizeof opoutput);
2953 putc (c, asm_out_file);
2954 #ifdef ASM_OUTPUT_OPCODE
2955 while ((c = *p) == '\t')
2957 putc (c, asm_out_file);
2958 p++;
2960 ASM_OUTPUT_OPCODE (asm_out_file, p);
2961 #endif
2962 break;
2964 #ifdef ASSEMBLER_DIALECT
2965 case '{':
2967 int i;
2969 if (dialect)
2970 output_operand_lossage ("nested assembly dialect alternatives");
2971 else
2972 dialect = 1;
2974 /* If we want the first dialect, do nothing. Otherwise, skip
2975 DIALECT_NUMBER of strings ending with '|'. */
2976 for (i = 0; i < dialect_number; i++)
2978 while (*p && *p != '}' && *p++ != '|')
2980 if (*p == '}')
2981 break;
2982 if (*p == '|')
2983 p++;
2986 if (*p == '\0')
2987 output_operand_lossage ("unterminated assembly dialect alternative");
2989 break;
2991 case '|':
2992 if (dialect)
2994 /* Skip to close brace. */
2997 if (*p == '\0')
2999 output_operand_lossage ("unterminated assembly dialect alternative");
3000 break;
3003 while (*p++ != '}');
3004 dialect = 0;
3006 else
3007 putc (c, asm_out_file);
3008 break;
3010 case '}':
3011 if (! dialect)
3012 putc (c, asm_out_file);
3013 dialect = 0;
3014 break;
3015 #endif
3017 case '%':
3018 /* %% outputs a single %. */
3019 if (*p == '%')
3021 p++;
3022 putc (c, asm_out_file);
3024 /* %= outputs a number which is unique to each insn in the entire
3025 compilation. This is useful for making local labels that are
3026 referred to more than once in a given insn. */
3027 else if (*p == '=')
3029 p++;
3030 fprintf (asm_out_file, "%d", insn_counter);
3032 /* % followed by a letter and some digits
3033 outputs an operand in a special way depending on the letter.
3034 Letters `acln' are implemented directly.
3035 Other letters are passed to `output_operand' so that
3036 the PRINT_OPERAND macro can define them. */
3037 else if (ISALPHA (*p))
3039 int letter = *p++;
3040 c = atoi (p);
3042 if (! ISDIGIT (*p))
3043 output_operand_lossage ("operand number missing after %%-letter");
3044 else if (this_is_asm_operands
3045 && (c < 0 || (unsigned int) c >= insn_noperands))
3046 output_operand_lossage ("operand number out of range");
3047 else if (letter == 'l')
3048 output_asm_label (operands[c]);
3049 else if (letter == 'a')
3050 output_address (operands[c]);
3051 else if (letter == 'c')
3053 if (CONSTANT_ADDRESS_P (operands[c]))
3054 output_addr_const (asm_out_file, operands[c]);
3055 else
3056 output_operand (operands[c], 'c');
3058 else if (letter == 'n')
3060 if (GET_CODE (operands[c]) == CONST_INT)
3061 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3062 - INTVAL (operands[c]));
3063 else
3065 putc ('-', asm_out_file);
3066 output_addr_const (asm_out_file, operands[c]);
3069 else
3070 output_operand (operands[c], letter);
3072 if (!opoutput[c])
3073 oporder[ops++] = c;
3074 opoutput[c] = 1;
3076 while (ISDIGIT (c = *p))
3077 p++;
3079 /* % followed by a digit outputs an operand the default way. */
3080 else if (ISDIGIT (*p))
3082 c = atoi (p);
3083 if (this_is_asm_operands
3084 && (c < 0 || (unsigned int) c >= insn_noperands))
3085 output_operand_lossage ("operand number out of range");
3086 else
3087 output_operand (operands[c], 0);
3089 if (!opoutput[c])
3090 oporder[ops++] = c;
3091 opoutput[c] = 1;
3093 while (ISDIGIT (c = *p))
3094 p++;
3096 /* % followed by punctuation: output something for that
3097 punctuation character alone, with no operand.
3098 The PRINT_OPERAND macro decides what is actually done. */
3099 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3100 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3101 output_operand (NULL_RTX, *p++);
3102 #endif
3103 else
3104 output_operand_lossage ("invalid %%-code");
3105 break;
3107 default:
3108 putc (c, asm_out_file);
3111 /* Write out the variable names for operands, if we know them. */
3112 if (flag_verbose_asm)
3113 output_asm_operand_names (operands, oporder, ops);
3114 if (flag_print_asm_name)
3115 output_asm_name ();
3117 putc ('\n', asm_out_file);
3120 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3122 void
3123 output_asm_label (rtx x)
3125 char buf[256];
3127 if (GET_CODE (x) == LABEL_REF)
3128 x = XEXP (x, 0);
3129 if (GET_CODE (x) == CODE_LABEL
3130 || (GET_CODE (x) == NOTE
3131 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3132 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3133 else
3134 output_operand_lossage ("`%%l' operand isn't a label");
3136 assemble_name (asm_out_file, buf);
3139 /* Print operand X using machine-dependent assembler syntax.
3140 The macro PRINT_OPERAND is defined just to control this function.
3141 CODE is a non-digit that preceded the operand-number in the % spec,
3142 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3143 between the % and the digits.
3144 When CODE is a non-letter, X is 0.
3146 The meanings of the letters are machine-dependent and controlled
3147 by PRINT_OPERAND. */
3149 static void
3150 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3152 if (x && GET_CODE (x) == SUBREG)
3153 x = alter_subreg (&x);
3155 /* If X is a pseudo-register, abort now rather than writing trash to the
3156 assembler file. */
3158 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3159 abort ();
3161 PRINT_OPERAND (asm_out_file, x, code);
3164 /* Print a memory reference operand for address X
3165 using machine-dependent assembler syntax.
3166 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3168 void
3169 output_address (rtx x)
3171 walk_alter_subreg (&x);
3172 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3175 /* Print an integer constant expression in assembler syntax.
3176 Addition and subtraction are the only arithmetic
3177 that may appear in these expressions. */
3179 void
3180 output_addr_const (FILE *file, rtx x)
3182 char buf[256];
3184 restart:
3185 switch (GET_CODE (x))
3187 case PC:
3188 putc ('.', file);
3189 break;
3191 case SYMBOL_REF:
3192 #ifdef ASM_OUTPUT_SYMBOL_REF
3193 ASM_OUTPUT_SYMBOL_REF (file, x);
3194 #else
3195 assemble_name (file, XSTR (x, 0));
3196 #endif
3197 break;
3199 case LABEL_REF:
3200 x = XEXP (x, 0);
3201 /* Fall through. */
3202 case CODE_LABEL:
3203 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3204 #ifdef ASM_OUTPUT_LABEL_REF
3205 ASM_OUTPUT_LABEL_REF (file, buf);
3206 #else
3207 assemble_name (file, buf);
3208 #endif
3209 break;
3211 case CONST_INT:
3212 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3213 break;
3215 case CONST:
3216 /* This used to output parentheses around the expression,
3217 but that does not work on the 386 (either ATT or BSD assembler). */
3218 output_addr_const (file, XEXP (x, 0));
3219 break;
3221 case CONST_DOUBLE:
3222 if (GET_MODE (x) == VOIDmode)
3224 /* We can use %d if the number is one word and positive. */
3225 if (CONST_DOUBLE_HIGH (x))
3226 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3227 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3228 else if (CONST_DOUBLE_LOW (x) < 0)
3229 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3230 else
3231 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3233 else
3234 /* We can't handle floating point constants;
3235 PRINT_OPERAND must handle them. */
3236 output_operand_lossage ("floating constant misused");
3237 break;
3239 case PLUS:
3240 /* Some assemblers need integer constants to appear last (eg masm). */
3241 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3243 output_addr_const (file, XEXP (x, 1));
3244 if (INTVAL (XEXP (x, 0)) >= 0)
3245 fprintf (file, "+");
3246 output_addr_const (file, XEXP (x, 0));
3248 else
3250 output_addr_const (file, XEXP (x, 0));
3251 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3252 || INTVAL (XEXP (x, 1)) >= 0)
3253 fprintf (file, "+");
3254 output_addr_const (file, XEXP (x, 1));
3256 break;
3258 case MINUS:
3259 /* Avoid outputting things like x-x or x+5-x,
3260 since some assemblers can't handle that. */
3261 x = simplify_subtraction (x);
3262 if (GET_CODE (x) != MINUS)
3263 goto restart;
3265 output_addr_const (file, XEXP (x, 0));
3266 fprintf (file, "-");
3267 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3268 || GET_CODE (XEXP (x, 1)) == PC
3269 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3270 output_addr_const (file, XEXP (x, 1));
3271 else
3273 fputs (targetm.asm_out.open_paren, file);
3274 output_addr_const (file, XEXP (x, 1));
3275 fputs (targetm.asm_out.close_paren, file);
3277 break;
3279 case ZERO_EXTEND:
3280 case SIGN_EXTEND:
3281 case SUBREG:
3282 output_addr_const (file, XEXP (x, 0));
3283 break;
3285 default:
3286 #ifdef OUTPUT_ADDR_CONST_EXTRA
3287 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3288 break;
3290 fail:
3291 #endif
3292 output_operand_lossage ("invalid expression as operand");
3296 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3297 %R prints the value of REGISTER_PREFIX.
3298 %L prints the value of LOCAL_LABEL_PREFIX.
3299 %U prints the value of USER_LABEL_PREFIX.
3300 %I prints the value of IMMEDIATE_PREFIX.
3301 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3302 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3304 We handle alternate assembler dialects here, just like output_asm_insn. */
3306 void
3307 asm_fprintf (FILE *file, const char *p, ...)
3309 char buf[10];
3310 char *q, c;
3311 va_list argptr;
3313 va_start (argptr, p);
3315 buf[0] = '%';
3317 while ((c = *p++))
3318 switch (c)
3320 #ifdef ASSEMBLER_DIALECT
3321 case '{':
3323 int i;
3325 /* If we want the first dialect, do nothing. Otherwise, skip
3326 DIALECT_NUMBER of strings ending with '|'. */
3327 for (i = 0; i < dialect_number; i++)
3329 while (*p && *p++ != '|')
3332 if (*p == '|')
3333 p++;
3336 break;
3338 case '|':
3339 /* Skip to close brace. */
3340 while (*p && *p++ != '}')
3342 break;
3344 case '}':
3345 break;
3346 #endif
3348 case '%':
3349 c = *p++;
3350 q = &buf[1];
3351 while (strchr ("-+ #0", c))
3353 *q++ = c;
3354 c = *p++;
3356 while (ISDIGIT (c) || c == '.')
3358 *q++ = c;
3359 c = *p++;
3361 switch (c)
3363 case '%':
3364 putc ('%', file);
3365 break;
3367 case 'd': case 'i': case 'u':
3368 case 'x': case 'X': case 'o':
3369 case 'c':
3370 *q++ = c;
3371 *q = 0;
3372 fprintf (file, buf, va_arg (argptr, int));
3373 break;
3375 case 'w':
3376 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3377 'o' cases, but we do not check for those cases. It
3378 means that the value is a HOST_WIDE_INT, which may be
3379 either `long' or `long long'. */
3380 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3381 q += strlen (HOST_WIDE_INT_PRINT);
3382 *q++ = *p++;
3383 *q = 0;
3384 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3385 break;
3387 case 'l':
3388 *q++ = c;
3389 #ifdef HAVE_LONG_LONG
3390 if (*p == 'l')
3392 *q++ = *p++;
3393 *q++ = *p++;
3394 *q = 0;
3395 fprintf (file, buf, va_arg (argptr, long long));
3397 else
3398 #endif
3400 *q++ = *p++;
3401 *q = 0;
3402 fprintf (file, buf, va_arg (argptr, long));
3405 break;
3407 case 's':
3408 *q++ = c;
3409 *q = 0;
3410 fprintf (file, buf, va_arg (argptr, char *));
3411 break;
3413 case 'O':
3414 #ifdef ASM_OUTPUT_OPCODE
3415 ASM_OUTPUT_OPCODE (asm_out_file, p);
3416 #endif
3417 break;
3419 case 'R':
3420 #ifdef REGISTER_PREFIX
3421 fprintf (file, "%s", REGISTER_PREFIX);
3422 #endif
3423 break;
3425 case 'I':
3426 #ifdef IMMEDIATE_PREFIX
3427 fprintf (file, "%s", IMMEDIATE_PREFIX);
3428 #endif
3429 break;
3431 case 'L':
3432 #ifdef LOCAL_LABEL_PREFIX
3433 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3434 #endif
3435 break;
3437 case 'U':
3438 fputs (user_label_prefix, file);
3439 break;
3441 #ifdef ASM_FPRINTF_EXTENSIONS
3442 /* Upper case letters are reserved for general use by asm_fprintf
3443 and so are not available to target specific code. In order to
3444 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3445 they are defined here. As they get turned into real extensions
3446 to asm_fprintf they should be removed from this list. */
3447 case 'A': case 'B': case 'C': case 'D': case 'E':
3448 case 'F': case 'G': case 'H': case 'J': case 'K':
3449 case 'M': case 'N': case 'P': case 'Q': case 'S':
3450 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3451 break;
3453 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3454 #endif
3455 default:
3456 abort ();
3458 break;
3460 default:
3461 putc (c, file);
3463 va_end (argptr);
3466 /* Split up a CONST_DOUBLE or integer constant rtx
3467 into two rtx's for single words,
3468 storing in *FIRST the word that comes first in memory in the target
3469 and in *SECOND the other. */
3471 void
3472 split_double (rtx value, rtx *first, rtx *second)
3474 if (GET_CODE (value) == CONST_INT)
3476 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3478 /* In this case the CONST_INT holds both target words.
3479 Extract the bits from it into two word-sized pieces.
3480 Sign extend each half to HOST_WIDE_INT. */
3481 unsigned HOST_WIDE_INT low, high;
3482 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3484 /* Set sign_bit to the most significant bit of a word. */
3485 sign_bit = 1;
3486 sign_bit <<= BITS_PER_WORD - 1;
3488 /* Set mask so that all bits of the word are set. We could
3489 have used 1 << BITS_PER_WORD instead of basing the
3490 calculation on sign_bit. However, on machines where
3491 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3492 compiler warning, even though the code would never be
3493 executed. */
3494 mask = sign_bit << 1;
3495 mask--;
3497 /* Set sign_extend as any remaining bits. */
3498 sign_extend = ~mask;
3500 /* Pick the lower word and sign-extend it. */
3501 low = INTVAL (value);
3502 low &= mask;
3503 if (low & sign_bit)
3504 low |= sign_extend;
3506 /* Pick the higher word, shifted to the least significant
3507 bits, and sign-extend it. */
3508 high = INTVAL (value);
3509 high >>= BITS_PER_WORD - 1;
3510 high >>= 1;
3511 high &= mask;
3512 if (high & sign_bit)
3513 high |= sign_extend;
3515 /* Store the words in the target machine order. */
3516 if (WORDS_BIG_ENDIAN)
3518 *first = GEN_INT (high);
3519 *second = GEN_INT (low);
3521 else
3523 *first = GEN_INT (low);
3524 *second = GEN_INT (high);
3527 else
3529 /* The rule for using CONST_INT for a wider mode
3530 is that we regard the value as signed.
3531 So sign-extend it. */
3532 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3533 if (WORDS_BIG_ENDIAN)
3535 *first = high;
3536 *second = value;
3538 else
3540 *first = value;
3541 *second = high;
3545 else if (GET_CODE (value) != CONST_DOUBLE)
3547 if (WORDS_BIG_ENDIAN)
3549 *first = const0_rtx;
3550 *second = value;
3552 else
3554 *first = value;
3555 *second = const0_rtx;
3558 else if (GET_MODE (value) == VOIDmode
3559 /* This is the old way we did CONST_DOUBLE integers. */
3560 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3562 /* In an integer, the words are defined as most and least significant.
3563 So order them by the target's convention. */
3564 if (WORDS_BIG_ENDIAN)
3566 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3567 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3569 else
3571 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3572 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3575 else
3577 REAL_VALUE_TYPE r;
3578 long l[2];
3579 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3581 /* Note, this converts the REAL_VALUE_TYPE to the target's
3582 format, splits up the floating point double and outputs
3583 exactly 32 bits of it into each of l[0] and l[1] --
3584 not necessarily BITS_PER_WORD bits. */
3585 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3587 /* If 32 bits is an entire word for the target, but not for the host,
3588 then sign-extend on the host so that the number will look the same
3589 way on the host that it would on the target. See for instance
3590 simplify_unary_operation. The #if is needed to avoid compiler
3591 warnings. */
3593 #if HOST_BITS_PER_LONG > 32
3594 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3596 if (l[0] & ((long) 1 << 31))
3597 l[0] |= ((long) (-1) << 32);
3598 if (l[1] & ((long) 1 << 31))
3599 l[1] |= ((long) (-1) << 32);
3601 #endif
3603 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3604 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3608 /* Return nonzero if this function has no function calls. */
3611 leaf_function_p (void)
3613 rtx insn;
3614 rtx link;
3616 if (current_function_profile || profile_arc_flag)
3617 return 0;
3619 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3621 if (GET_CODE (insn) == CALL_INSN
3622 && ! SIBLING_CALL_P (insn))
3623 return 0;
3624 if (GET_CODE (insn) == INSN
3625 && GET_CODE (PATTERN (insn)) == SEQUENCE
3626 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3627 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3628 return 0;
3630 for (link = current_function_epilogue_delay_list;
3631 link;
3632 link = XEXP (link, 1))
3634 insn = XEXP (link, 0);
3636 if (GET_CODE (insn) == CALL_INSN
3637 && ! SIBLING_CALL_P (insn))
3638 return 0;
3639 if (GET_CODE (insn) == INSN
3640 && GET_CODE (PATTERN (insn)) == SEQUENCE
3641 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3642 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3643 return 0;
3646 return 1;
3649 /* Return 1 if branch is a forward branch.
3650 Uses insn_shuid array, so it works only in the final pass. May be used by
3651 output templates to customary add branch prediction hints.
3654 final_forward_branch_p (rtx insn)
3656 int insn_id, label_id;
3657 if (!uid_shuid)
3658 abort ();
3659 insn_id = INSN_SHUID (insn);
3660 label_id = INSN_SHUID (JUMP_LABEL (insn));
3661 /* We've hit some insns that does not have id information available. */
3662 if (!insn_id || !label_id)
3663 abort ();
3664 return insn_id < label_id;
3667 /* On some machines, a function with no call insns
3668 can run faster if it doesn't create its own register window.
3669 When output, the leaf function should use only the "output"
3670 registers. Ordinarily, the function would be compiled to use
3671 the "input" registers to find its arguments; it is a candidate
3672 for leaf treatment if it uses only the "input" registers.
3673 Leaf function treatment means renumbering so the function
3674 uses the "output" registers instead. */
3676 #ifdef LEAF_REGISTERS
3678 /* Return 1 if this function uses only the registers that can be
3679 safely renumbered. */
3682 only_leaf_regs_used (void)
3684 int i;
3685 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3688 if ((regs_ever_live[i] || global_regs[i])
3689 && ! permitted_reg_in_leaf_functions[i])
3690 return 0;
3692 if (current_function_uses_pic_offset_table
3693 && pic_offset_table_rtx != 0
3694 && GET_CODE (pic_offset_table_rtx) == REG
3695 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3696 return 0;
3698 return 1;
3701 /* Scan all instructions and renumber all registers into those
3702 available in leaf functions. */
3704 static void
3705 leaf_renumber_regs (rtx first)
3707 rtx insn;
3709 /* Renumber only the actual patterns.
3710 The reg-notes can contain frame pointer refs,
3711 and renumbering them could crash, and should not be needed. */
3712 for (insn = first; insn; insn = NEXT_INSN (insn))
3713 if (INSN_P (insn))
3714 leaf_renumber_regs_insn (PATTERN (insn));
3715 for (insn = current_function_epilogue_delay_list;
3716 insn;
3717 insn = XEXP (insn, 1))
3718 if (INSN_P (XEXP (insn, 0)))
3719 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3722 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3723 available in leaf functions. */
3725 void
3726 leaf_renumber_regs_insn (rtx in_rtx)
3728 int i, j;
3729 const char *format_ptr;
3731 if (in_rtx == 0)
3732 return;
3734 /* Renumber all input-registers into output-registers.
3735 renumbered_regs would be 1 for an output-register;
3736 they */
3738 if (GET_CODE (in_rtx) == REG)
3740 int newreg;
3742 /* Don't renumber the same reg twice. */
3743 if (in_rtx->used)
3744 return;
3746 newreg = REGNO (in_rtx);
3747 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3748 to reach here as part of a REG_NOTE. */
3749 if (newreg >= FIRST_PSEUDO_REGISTER)
3751 in_rtx->used = 1;
3752 return;
3754 newreg = LEAF_REG_REMAP (newreg);
3755 if (newreg < 0)
3756 abort ();
3757 regs_ever_live[REGNO (in_rtx)] = 0;
3758 regs_ever_live[newreg] = 1;
3759 REGNO (in_rtx) = newreg;
3760 in_rtx->used = 1;
3763 if (INSN_P (in_rtx))
3765 /* Inside a SEQUENCE, we find insns.
3766 Renumber just the patterns of these insns,
3767 just as we do for the top-level insns. */
3768 leaf_renumber_regs_insn (PATTERN (in_rtx));
3769 return;
3772 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3774 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3775 switch (*format_ptr++)
3777 case 'e':
3778 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3779 break;
3781 case 'E':
3782 if (NULL != XVEC (in_rtx, i))
3784 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3785 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3787 break;
3789 case 'S':
3790 case 's':
3791 case '0':
3792 case 'i':
3793 case 'w':
3794 case 'n':
3795 case 'u':
3796 break;
3798 default:
3799 abort ();
3802 #endif
3805 /* When -gused is used, emit debug info for only used symbols. But in
3806 addition to the standard intercepted debug_hooks there are some direct
3807 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3808 Those routines may also be called from a higher level intercepted routine. So
3809 to prevent recording data for an inner call to one of these for an intercept,
3810 we maintain a intercept nesting counter (debug_nesting). We only save the
3811 intercepted arguments if the nesting is 1. */
3812 int debug_nesting = 0;
3814 static tree *symbol_queue;
3815 int symbol_queue_index = 0;
3816 static int symbol_queue_size = 0;
3818 /* Generate the symbols for any queued up type symbols we encountered
3819 while generating the type info for some originally used symbol.
3820 This might generate additional entries in the queue. Only when
3821 the nesting depth goes to 0 is this routine called. */
3823 void
3824 debug_flush_symbol_queue (void)
3826 int i;
3828 /* Make sure that additionally queued items are not flushed
3829 prematurely. */
3831 ++debug_nesting;
3833 for (i = 0; i < symbol_queue_index; ++i)
3835 /* If we pushed queued symbols then such symbols are must be
3836 output no matter what anyone else says. Specifically,
3837 we need to make sure dbxout_symbol() thinks the symbol was
3838 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3839 which may be set for outside reasons. */
3840 int saved_tree_used = TREE_USED (symbol_queue[i]);
3841 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3842 TREE_USED (symbol_queue[i]) = 1;
3843 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3845 #ifdef DBX_DEBUGGING_INFO
3846 dbxout_symbol (symbol_queue[i], 0);
3847 #endif
3849 TREE_USED (symbol_queue[i]) = saved_tree_used;
3850 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3853 symbol_queue_index = 0;
3854 --debug_nesting;
3857 /* Queue a type symbol needed as part of the definition of a decl
3858 symbol. These symbols are generated when debug_flush_symbol_queue()
3859 is called. */
3861 void
3862 debug_queue_symbol (tree decl)
3864 if (symbol_queue_index >= symbol_queue_size)
3866 symbol_queue_size += 10;
3867 symbol_queue = (tree *) xrealloc (symbol_queue,
3868 symbol_queue_size * sizeof (tree));
3871 symbol_queue[symbol_queue_index++] = decl;
3874 /* Free symbol queue. */
3875 void
3876 debug_free_queue (void)
3878 if (symbol_queue)
3880 free (symbol_queue);
3881 symbol_queue = NULL;
3882 symbol_queue_size = 0;