2015-05-22 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch13.adb
blobe985e93f10d547e7a8187fd572f37c12d85e3d40
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Rtsfind; use Rtsfind;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Case; use Sem_Case;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Sinput; use Sinput;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Sinfo; use Sinfo;
64 with Stringt; use Stringt;
65 with Targparm; use Targparm;
66 with Ttypes; use Ttypes;
67 with Tbuild; use Tbuild;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 with GNAT.Heap_Sort_G;
73 package body Sem_Ch13 is
75 SSU : constant Pos := System_Storage_Unit;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Discrete_Static_Predicate
89 (Typ : Entity_Id;
90 Expr : Node_Id;
91 Nam : Name_Id);
92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
96 -- predicate expression have been replaced by identifier references to this
97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
103 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
115 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks (N : Node_Id);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value (Expr : Node_Id) return Uint;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item (N : Node_Id) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
135 -- attributes.
137 function Is_Predicate_Static
138 (Expr : Node_Id;
139 Nam : Name_Id) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
155 -- "ABC" < "DEF"
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
160 -- subtype S is String with Static_Predicate => S < "DEF"
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
165 procedure New_Stream_Subprogram
166 (N : Node_Id;
167 Ent : Entity_Id;
168 Subp : Entity_Id;
169 Nam : TSS_Name_Type);
170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
172 -- primitive operation, or in the untagged case make an appropriate TSS
173 -- entry. This is more properly an expansion activity than just semantics,
174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
183 -- primitive specs.
185 procedure Resolve_Iterable_Operation
186 (N : Node_Id;
187 Cursor : Entity_Id;
188 Typ : Entity_Id;
189 Nam : Name_Id);
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
193 procedure Set_Biased
194 (E : Entity_Id;
195 N : Node_Id;
196 Msg : String;
197 Biased : Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
201 -- causing biasing.
203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
207 -- The following table collects unchecked conversions for validation.
208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
212 -- the back end.
214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
218 type UC_Entry is record
219 Eloc : Source_Ptr; -- node used for posting warnings
220 Source : Entity_Id; -- source type for unchecked conversion
221 Target : Entity_Id; -- target type for unchecked conversion
222 Act_Unit : Entity_Id; -- actual function instantiated
223 end record;
225 package Unchecked_Conversions is new Table.Table (
226 Table_Component_Type => UC_Entry,
227 Table_Index_Type => Int,
228 Table_Low_Bound => 1,
229 Table_Initial => 50,
230 Table_Increment => 200,
231 Table_Name => "Unchecked_Conversions");
233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
237 -- If an address clause has the form
239 -- for X'Address use Expr
241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
249 type Address_Clause_Check_Record is record
250 N : Node_Id;
251 -- The address clause
253 X : Entity_Id;
254 -- The entity of the object overlaying Y
256 Y : Entity_Id;
257 -- The entity of the object being overlaid
259 Off : Boolean;
260 -- Whether the address is offset within Y
261 end record;
263 package Address_Clause_Checks is new Table.Table (
264 Table_Component_Type => Address_Clause_Check_Record,
265 Table_Index_Type => Int,
266 Table_Low_Bound => 1,
267 Table_Initial => 20,
268 Table_Increment => 200,
269 Table_Name => "Address_Clause_Checks");
271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
275 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
276 Comp : Node_Id;
277 CC : Node_Id;
279 begin
280 -- Processing depends on version of Ada
282 -- For Ada 95, we just renumber bits within a storage unit. We do the
283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
284 -- Ada 83, and are free to add this extension.
286 if Ada_Version < Ada_2005 then
287 Comp := First_Component_Or_Discriminant (R);
288 while Present (Comp) loop
289 CC := Component_Clause (Comp);
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
298 if Present (CC) and then Ekind (R) = E_Record_Type then
299 declare
300 CFB : constant Uint := Component_Bit_Offset (Comp);
301 CSZ : constant Uint := Esize (Comp);
302 CLC : constant Node_Id := Component_Clause (Comp);
303 Pos : constant Node_Id := Position (CLC);
304 FB : constant Node_Id := First_Bit (CLC);
306 Storage_Unit_Offset : constant Uint :=
307 CFB / System_Storage_Unit;
309 Start_Bit : constant Uint :=
310 CFB mod System_Storage_Unit;
312 begin
313 -- Cases where field goes over storage unit boundary
315 if Start_Bit + CSZ > System_Storage_Unit then
317 -- Allow multi-byte field but generate warning
319 if Start_Bit mod System_Storage_Unit = 0
320 and then CSZ mod System_Storage_Unit = 0
321 then
322 Error_Msg_N
323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC);
326 if Bytes_Big_Endian then
327 Error_Msg_N
328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC);
330 else
331 Error_Msg_N
332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC);
334 end if;
336 -- Do not allow non-contiguous field
338 else
339 Error_Msg_N
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC);
342 Error_Msg_N
343 ("\caused by non-standard Bit_Order "
344 & "specified", CLC);
345 Error_Msg_N
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC);
348 end if;
350 -- Case where field fits in one storage unit
352 else
353 -- Give warning if suspicious component clause
355 if Intval (FB) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
357 then
358 Error_Msg_N
359 ("info: Bit_Order clause does not affect " &
360 "byte ordering?V?", Pos);
361 Error_Msg_Uint_1 :=
362 Intval (Pos) + Intval (FB) /
363 System_Storage_Unit;
364 Error_Msg_N
365 ("info: position normalized to ^ before bit " &
366 "order interpreted?V?", Pos);
367 end if;
369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
373 -- First_Bit .. Last_Bit Component_Bit_Offset
374 -- old new old new
376 -- 0 .. 0 7 .. 7 0 7
377 -- 0 .. 1 6 .. 7 0 6
378 -- 0 .. 2 5 .. 7 0 5
379 -- 0 .. 7 0 .. 7 0 4
381 -- 1 .. 1 6 .. 6 1 6
382 -- 1 .. 4 3 .. 6 1 3
383 -- 4 .. 7 0 .. 3 4 0
385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
388 Set_Component_Bit_Offset
389 (Comp,
390 (Storage_Unit_Offset * System_Storage_Unit) +
391 (System_Storage_Unit - 1) -
392 (Start_Bit + CSZ - 1));
394 Set_Normalized_First_Bit
395 (Comp,
396 Component_Bit_Offset (Comp) mod
397 System_Storage_Unit);
398 end if;
399 end;
400 end if;
402 Next_Component_Or_Discriminant (Comp);
403 end loop;
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
410 else
411 declare
412 Max_Machine_Scalar_Size : constant Uint :=
413 UI_From_Int
414 (Standard_Long_Long_Integer_Size);
415 -- We use this as the maximum machine scalar size
417 Num_CC : Natural;
418 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
420 begin
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
428 Num_CC := 0;
429 Comp := First_Component_Or_Discriminant (R);
430 while Present (Comp) loop
431 CC := Component_Clause (Comp);
433 if Present (CC) then
434 declare
435 Fbit : constant Uint := Static_Integer (First_Bit (CC));
436 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
438 begin
439 -- Case of component with last bit >= max machine scalar
441 if Lbit >= Max_Machine_Scalar_Size then
443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
446 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
448 -- This is the case to give a warning if enabled
450 if Warn_On_Reverse_Bit_Order then
451 Error_Msg_N
452 ("info: multi-byte field specified with "
453 & " non-standard Bit_Order?V?", CC);
455 if Bytes_Big_Endian then
456 Error_Msg_N
457 ("\bytes are not reversed "
458 & "(component is big-endian)?V?", CC);
459 else
460 Error_Msg_N
461 ("\bytes are not reversed "
462 & "(component is little-endian)?V?", CC);
463 end if;
464 end if;
466 -- Give error message for RM 13.5.1(10) violation
468 else
469 Error_Msg_FE
470 ("machine scalar rules not followed for&",
471 First_Bit (CC), Comp);
473 Error_Msg_Uint_1 := Lbit;
474 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
475 Error_Msg_F
476 ("\last bit (^) exceeds maximum machine "
477 & "scalar size (^)",
478 First_Bit (CC));
480 if (Lbit + 1) mod SSU /= 0 then
481 Error_Msg_Uint_1 := SSU;
482 Error_Msg_F
483 ("\and is not a multiple of Storage_Unit (^) "
484 & "(RM 13.4.1(10))",
485 First_Bit (CC));
487 else
488 Error_Msg_Uint_1 := Fbit;
489 Error_Msg_F
490 ("\and first bit (^) is non-zero "
491 & "(RM 13.4.1(10))",
492 First_Bit (CC));
493 end if;
494 end if;
496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
499 else
500 Num_CC := Num_CC + 1;
501 end if;
502 end;
503 end if;
505 Next_Component_Or_Discriminant (Comp);
506 end loop;
508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
510 -- the same Position together to determine the relevant machine
511 -- scalar size.
513 Sort_CC : declare
514 Comps : array (0 .. Num_CC) of Entity_Id;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
517 -- routine.
519 function CP_Lt (Op1, Op2 : Natural) return Boolean;
520 -- Compare routine for Sort
522 procedure CP_Move (From : Natural; To : Natural);
523 -- Move routine for Sort
525 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
527 Start : Natural;
528 Stop : Natural;
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
533 MaxL : Uint;
534 -- Maximum last bit value of any component in this set
536 MSS : Uint;
537 -- Corresponding machine scalar size
539 -----------
540 -- CP_Lt --
541 -----------
543 function CP_Lt (Op1, Op2 : Natural) return Boolean is
544 begin
545 return Position (Component_Clause (Comps (Op1))) <
546 Position (Component_Clause (Comps (Op2)));
547 end CP_Lt;
549 -------------
550 -- CP_Move --
551 -------------
553 procedure CP_Move (From : Natural; To : Natural) is
554 begin
555 Comps (To) := Comps (From);
556 end CP_Move;
558 -- Start of processing for Sort_CC
560 begin
561 -- Collect the machine scalar relevant component clauses
563 Num_CC := 0;
564 Comp := First_Component_Or_Discriminant (R);
565 while Present (Comp) loop
566 declare
567 CC : constant Node_Id := Component_Clause (Comp);
569 begin
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
577 if Present (CC)
578 and then not Error_Posted (Last_Bit (CC))
579 and then Static_Integer (Last_Bit (CC)) <
580 Max_Machine_Scalar_Size
581 then
582 Num_CC := Num_CC + 1;
583 Comps (Num_CC) := Comp;
584 end if;
585 end;
587 Next_Component_Or_Discriminant (Comp);
588 end loop;
590 -- Sort by ascending position number
592 Sorting.Sort (Num_CC);
594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
599 Stop := 0;
600 while Stop < Num_CC loop
601 Start := Stop + 1;
602 Stop := Start;
603 MaxL :=
604 Static_Integer
605 (Last_Bit (Component_Clause (Comps (Start))));
606 while Stop < Num_CC loop
607 if Static_Integer
608 (Position (Component_Clause (Comps (Stop + 1)))) =
609 Static_Integer
610 (Position (Component_Clause (Comps (Stop))))
611 then
612 Stop := Stop + 1;
613 MaxL :=
614 UI_Max
615 (MaxL,
616 Static_Integer
617 (Last_Bit
618 (Component_Clause (Comps (Stop)))));
619 else
620 exit;
621 end if;
622 end loop;
624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
633 MSS := Max_Machine_Scalar_Size;
634 while MSS mod 2 = 0
635 and then (MSS / 2) >= SSU
636 and then (MSS / 2) > MaxL
637 loop
638 MSS := MSS / 2;
639 end loop;
641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
644 -- size of 8 are:
646 -- First_Bit .. Last_Bit Component_Bit_Offset
647 -- old new old new
649 -- 0 .. 0 7 .. 7 0 7
650 -- 0 .. 1 6 .. 7 0 6
651 -- 0 .. 2 5 .. 7 0 5
652 -- 0 .. 7 0 .. 7 0 4
654 -- 1 .. 1 6 .. 6 1 6
655 -- 1 .. 4 3 .. 6 1 3
656 -- 4 .. 7 0 .. 3 4 0
658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
661 for C in Start .. Stop loop
662 declare
663 Comp : constant Entity_Id := Comps (C);
664 CC : constant Node_Id := Component_Clause (Comp);
666 LB : constant Uint := Static_Integer (Last_Bit (CC));
667 NFB : constant Uint := MSS - Uint_1 - LB;
668 NLB : constant Uint := NFB + Esize (Comp) - 1;
669 Pos : constant Uint := Static_Integer (Position (CC));
671 begin
672 if Warn_On_Reverse_Bit_Order then
673 Error_Msg_Uint_1 := MSS;
674 Error_Msg_N
675 ("info: reverse bit order in machine " &
676 "scalar of length^?V?", First_Bit (CC));
677 Error_Msg_Uint_1 := NFB;
678 Error_Msg_Uint_2 := NLB;
680 if Bytes_Big_Endian then
681 Error_Msg_NE
682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
684 else
685 Error_Msg_NE
686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
688 end if;
689 end if;
691 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
692 Set_Normalized_First_Bit (Comp, NFB mod SSU);
693 end;
694 end loop;
695 end loop;
696 end Sort_CC;
697 end;
698 end if;
699 end Adjust_Record_For_Reverse_Bit_Order;
701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
705 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
706 begin
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
712 if Known_Alignment (Typ)
713 and then not Has_Alignment_Clause (Typ)
714 and then Size mod (Alignment (Typ) * SSU) /= 0
715 then
716 Init_Alignment (Typ);
717 end if;
718 end Alignment_Check_For_Size_Change;
720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
724 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
725 ASN : Node_Id;
726 A_Id : Aspect_Id;
727 Ritem : Node_Id;
729 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
733 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
740 -- ..
741 -- type B is new A;
742 -- ..
743 -- Not_Defined_Yet : constant := 64;
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
752 -- of all delayed aspects from the parent type. The derived type is E,
753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
756 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
765 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
766 Ent : constant Entity_Id := Entity (ASN);
767 Expr : constant Node_Id := Expression (ASN);
768 Id : constant Node_Id := Identifier (ASN);
770 begin
771 Error_Msg_Name_1 := Chars (Id);
773 if not Is_Type (Ent) then
774 Error_Msg_N ("aspect% can only apply to a type", Id);
775 return;
777 elsif not Is_First_Subtype (Ent) then
778 Error_Msg_N ("aspect% cannot apply to subtype", Id);
779 return;
781 elsif A_Id = Aspect_Default_Value
782 and then not Is_Scalar_Type (Ent)
783 then
784 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
785 return;
787 elsif A_Id = Aspect_Default_Component_Value then
788 if not Is_Array_Type (Ent) then
789 Error_Msg_N ("aspect% can only be applied to array type", Id);
790 return;
792 elsif not Is_Scalar_Type (Component_Type (Ent)) then
793 Error_Msg_N ("aspect% requires scalar components", Id);
794 return;
795 end if;
796 end if;
798 Set_Has_Default_Aspect (Base_Type (Ent));
800 if Is_Scalar_Type (Ent) then
801 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
802 else
803 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
804 end if;
805 end Analyze_Aspect_Default_Value;
807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
811 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
812 P : constant Entity_Id := Entity (ASN);
813 -- Entithy for parent type
815 N : Node_Id;
816 -- Item from Rep_Item chain
818 A : Aspect_Id;
820 begin
821 -- Loop through delayed aspects for the parent type
823 N := ASN;
824 while Present (N) loop
825 if Nkind (N) = N_Aspect_Specification then
826 exit when Entity (N) /= P;
828 if Is_Delayed_Aspect (N) then
829 A := Get_Aspect_Id (Chars (Identifier (N)));
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
838 case A is
840 -- Alignment
842 when Aspect_Alignment =>
843 if not Has_Alignment_Clause (E) then
844 Set_Alignment (E, Alignment (P));
845 end if;
847 -- Atomic
849 when Aspect_Atomic =>
850 if Is_Atomic (P) then
851 Set_Is_Atomic (E);
852 end if;
854 -- Atomic_Components
856 when Aspect_Atomic_Components =>
857 if Has_Atomic_Components (P) then
858 Set_Has_Atomic_Components (Base_Type (E));
859 end if;
861 -- Bit_Order
863 when Aspect_Bit_Order =>
864 if Is_Record_Type (E)
865 and then No (Get_Attribute_Definition_Clause
866 (E, Attribute_Bit_Order))
867 and then Reverse_Bit_Order (P)
868 then
869 Set_Reverse_Bit_Order (Base_Type (E));
870 end if;
872 -- Component_Size
874 when Aspect_Component_Size =>
875 if Is_Array_Type (E)
876 and then not Has_Component_Size_Clause (E)
877 then
878 Set_Component_Size
879 (Base_Type (E), Component_Size (P));
880 end if;
882 -- Machine_Radix
884 when Aspect_Machine_Radix =>
885 if Is_Decimal_Fixed_Point_Type (E)
886 and then not Has_Machine_Radix_Clause (E)
887 then
888 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
889 end if;
891 -- Object_Size (also Size which also sets Object_Size)
893 when Aspect_Object_Size | Aspect_Size =>
894 if not Has_Size_Clause (E)
895 and then
896 No (Get_Attribute_Definition_Clause
897 (E, Attribute_Object_Size))
898 then
899 Set_Esize (E, Esize (P));
900 end if;
902 -- Pack
904 when Aspect_Pack =>
905 if not Is_Packed (E) then
906 Set_Is_Packed (Base_Type (E));
908 if Is_Bit_Packed_Array (P) then
909 Set_Is_Bit_Packed_Array (Base_Type (E));
910 Set_Packed_Array_Impl_Type
911 (E, Packed_Array_Impl_Type (P));
912 end if;
913 end if;
915 -- Scalar_Storage_Order
917 when Aspect_Scalar_Storage_Order =>
918 if (Is_Record_Type (E) or else Is_Array_Type (E))
919 and then No (Get_Attribute_Definition_Clause
920 (E, Attribute_Scalar_Storage_Order))
921 and then Reverse_Storage_Order (P)
922 then
923 Set_Reverse_Storage_Order (Base_Type (E));
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
928 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
929 Set_SSO_Set_High_By_Default (Base_Type (E), False);
930 end if;
932 -- Small
934 when Aspect_Small =>
935 if Is_Fixed_Point_Type (E)
936 and then not Has_Small_Clause (E)
937 then
938 Set_Small_Value (E, Small_Value (P));
939 end if;
941 -- Storage_Size
943 when Aspect_Storage_Size =>
944 if (Is_Access_Type (E) or else Is_Task_Type (E))
945 and then not Has_Storage_Size_Clause (E)
946 then
947 Set_Storage_Size_Variable
948 (Base_Type (E), Storage_Size_Variable (P));
949 end if;
951 -- Value_Size
953 when Aspect_Value_Size =>
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
959 null;
961 -- Volatile
963 when Aspect_Volatile =>
964 if Is_Volatile (P) then
965 Set_Is_Volatile (E);
966 end if;
968 -- Volatile_Components
970 when Aspect_Volatile_Components =>
971 if Has_Volatile_Components (P) then
972 Set_Has_Volatile_Components (Base_Type (E));
973 end if;
975 -- That should be all the Rep Aspects
977 when others =>
978 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
979 null;
981 end case;
982 end if;
983 end if;
985 N := Next_Rep_Item (N);
986 end loop;
987 end Inherit_Delayed_Rep_Aspects;
989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
993 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
994 Ident : constant Node_Id := Identifier (ASN);
995 A_Name : constant Name_Id := Chars (Ident);
996 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
997 Ent : constant Entity_Id := Entity (ASN);
998 Expr : constant Node_Id := Expression (ASN);
999 Loc : constant Source_Ptr := Sloc (ASN);
1001 Prag : Node_Id;
1003 procedure Check_False_Aspect_For_Derived_Type;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1006 -- the parent.
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1012 procedure Check_False_Aspect_For_Derived_Type is
1013 Par : Node_Id;
1015 begin
1016 -- We are only checking derived types
1018 if not Is_Derived_Type (E) then
1019 return;
1020 end if;
1022 Par := Nearest_Ancestor (E);
1024 case A_Id is
1025 when Aspect_Atomic | Aspect_Shared =>
1026 if not Is_Atomic (Par) then
1027 return;
1028 end if;
1030 when Aspect_Atomic_Components =>
1031 if not Has_Atomic_Components (Par) then
1032 return;
1033 end if;
1035 when Aspect_Discard_Names =>
1036 if not Discard_Names (Par) then
1037 return;
1038 end if;
1040 when Aspect_Pack =>
1041 if not Is_Packed (Par) then
1042 return;
1043 end if;
1045 when Aspect_Unchecked_Union =>
1046 if not Is_Unchecked_Union (Par) then
1047 return;
1048 end if;
1050 when Aspect_Volatile =>
1051 if not Is_Volatile (Par) then
1052 return;
1053 end if;
1055 when Aspect_Volatile_Components =>
1056 if not Has_Volatile_Components (Par) then
1057 return;
1058 end if;
1060 when others =>
1061 return;
1062 end case;
1064 -- Fall through means we are canceling an inherited aspect
1066 Error_Msg_Name_1 := A_Name;
1067 Error_Msg_NE
1068 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1070 end Check_False_Aspect_For_Derived_Type;
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1074 begin
1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1079 if Is_False (Static_Boolean (Expr)) then
1080 Check_False_Aspect_For_Derived_Type;
1082 else
1083 Prag :=
1084 Make_Pragma (Loc,
1085 Pragma_Argument_Associations => New_List (
1086 Make_Pragma_Argument_Association (Sloc (Ident),
1087 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1089 Pragma_Identifier =>
1090 Make_Identifier (Sloc (Ident), Chars (Ident)));
1092 Set_From_Aspect_Specification (Prag, True);
1093 Set_Corresponding_Aspect (Prag, ASN);
1094 Set_Aspect_Rep_Item (ASN, Prag);
1095 Set_Is_Delayed_Aspect (Prag);
1096 Set_Parent (Prag, ASN);
1097 end if;
1098 end Make_Pragma_From_Boolean_Aspect;
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1102 begin
1103 -- Must be visible in current scope
1105 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1106 return;
1107 end if;
1109 -- Look for aspect specification entries for this entity
1111 ASN := First_Rep_Item (E);
1112 while Present (ASN) loop
1113 if Nkind (ASN) = N_Aspect_Specification then
1114 exit when Entity (ASN) /= E;
1116 if Is_Delayed_Aspect (ASN) then
1117 A_Id := Get_Aspect_Id (ASN);
1119 case A_Id is
1121 -- For aspects whose expression is an optional Boolean, make
1122 -- the corresponding pragma at the freeze point.
1124 when Boolean_Aspects |
1125 Library_Unit_Aspects =>
1126 Make_Pragma_From_Boolean_Aspect (ASN);
1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value =>
1134 -- Do not inherit aspect for anonymous base type of a
1135 -- scalar or array type, because they apply to the first
1136 -- subtype of the type, and will be processed when that
1137 -- first subtype is frozen.
1139 if Is_Derived_Type (E)
1140 and then not Comes_From_Source (E)
1141 and then E /= First_Subtype (E)
1142 then
1143 null;
1144 else
1145 Analyze_Aspect_Default_Value (ASN);
1146 end if;
1148 -- Ditto for iterator aspects, because the corresponding
1149 -- attributes may not have been analyzed yet.
1151 when Aspect_Constant_Indexing |
1152 Aspect_Variable_Indexing |
1153 Aspect_Default_Iterator |
1154 Aspect_Iterator_Element =>
1155 Analyze (Expression (ASN));
1157 if Etype (Expression (ASN)) = Any_Type then
1158 Error_Msg_NE
1159 ("\aspect must be fully defined before & is frozen",
1160 ASN, E);
1161 end if;
1163 when Aspect_Iterable =>
1164 Validate_Iterable_Aspect (E, ASN);
1166 when others =>
1167 null;
1168 end case;
1170 Ritem := Aspect_Rep_Item (ASN);
1172 if Present (Ritem) then
1173 Analyze (Ritem);
1174 end if;
1175 end if;
1176 end if;
1178 Next_Rep_Item (ASN);
1179 end loop;
1181 -- This is where we inherit delayed rep aspects from our parent. Note
1182 -- that if we fell out of the above loop with ASN non-empty, it means
1183 -- we hit an aspect for an entity other than E, and it must be the
1184 -- type from which we were derived.
1186 if May_Inherit_Delayed_Rep_Aspects (E) then
1187 Inherit_Delayed_Rep_Aspects (ASN);
1188 end if;
1189 end Analyze_Aspects_At_Freeze_Point;
1191 -----------------------------------
1192 -- Analyze_Aspect_Specifications --
1193 -----------------------------------
1195 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1196 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1197 -- Establish linkages between an aspect and its corresponding
1198 -- pragma.
1200 procedure Insert_After_SPARK_Mode
1201 (Prag : Node_Id;
1202 Ins_Nod : Node_Id;
1203 Decls : List_Id);
1204 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1205 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1206 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1207 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1208 -- reside.
1210 procedure Insert_Pragma (Prag : Node_Id);
1211 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1212 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1213 -- Insert pragma Prag such that it mimics the placement of a source
1214 -- pragma of the same kind.
1216 -- procedure Proc (Formal : ...) with Global => ...;
1218 -- procedure Proc (Formal : ...);
1219 -- pragma Global (...);
1221 --------------
1222 -- Decorate --
1223 --------------
1225 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1226 begin
1227 Set_Aspect_Rep_Item (Asp, Prag);
1228 Set_Corresponding_Aspect (Prag, Asp);
1229 Set_From_Aspect_Specification (Prag);
1230 Set_Parent (Prag, Asp);
1231 end Decorate;
1233 -----------------------------
1234 -- Insert_After_SPARK_Mode --
1235 -----------------------------
1237 procedure Insert_After_SPARK_Mode
1238 (Prag : Node_Id;
1239 Ins_Nod : Node_Id;
1240 Decls : List_Id)
1242 Decl : Node_Id := Ins_Nod;
1244 begin
1245 -- Skip SPARK_Mode
1247 if Present (Decl)
1248 and then Nkind (Decl) = N_Pragma
1249 and then Pragma_Name (Decl) = Name_SPARK_Mode
1250 then
1251 Decl := Next (Decl);
1252 end if;
1254 if Present (Decl) then
1255 Insert_Before (Decl, Prag);
1257 -- Aitem acts as the last declaration
1259 else
1260 Append_To (Decls, Prag);
1261 end if;
1262 end Insert_After_SPARK_Mode;
1264 -------------------
1265 -- Insert_Pragma --
1266 -------------------
1268 procedure Insert_Pragma (Prag : Node_Id) is
1269 Aux : Node_Id;
1270 Decl : Node_Id;
1272 begin
1273 if Nkind (N) = N_Subprogram_Body then
1274 if Present (Declarations (N)) then
1276 -- Skip other internally generated pragmas from aspects to find
1277 -- the proper insertion point. As a result the order of pragmas
1278 -- is the same as the order of aspects.
1280 -- As precondition pragmas generated from conjuncts in the
1281 -- precondition aspect are presented in reverse order to
1282 -- Insert_Pragma, insert them in the correct order here by not
1283 -- skipping previously inserted precondition pragmas when the
1284 -- current pragma is a precondition.
1286 Decl := First (Declarations (N));
1287 while Present (Decl) loop
1288 if Nkind (Decl) = N_Pragma
1289 and then From_Aspect_Specification (Decl)
1290 and then not (Get_Pragma_Id (Decl) = Pragma_Precondition
1291 and then
1292 Get_Pragma_Id (Prag) = Pragma_Precondition)
1293 then
1294 Next (Decl);
1295 else
1296 exit;
1297 end if;
1298 end loop;
1300 if Present (Decl) then
1301 Insert_Before (Decl, Prag);
1302 else
1303 Append (Prag, Declarations (N));
1304 end if;
1305 else
1306 Set_Declarations (N, New_List (Prag));
1307 end if;
1309 -- When the context is a library unit, the pragma is added to the
1310 -- Pragmas_After list.
1312 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1313 Aux := Aux_Decls_Node (Parent (N));
1315 if No (Pragmas_After (Aux)) then
1316 Set_Pragmas_After (Aux, New_List);
1317 end if;
1319 Prepend (Prag, Pragmas_After (Aux));
1321 -- Default
1323 else
1324 Insert_After (N, Prag);
1325 end if;
1326 end Insert_Pragma;
1328 -- Local variables
1330 Aspect : Node_Id;
1331 Aitem : Node_Id;
1332 Ent : Node_Id;
1334 L : constant List_Id := Aspect_Specifications (N);
1336 Ins_Node : Node_Id := N;
1337 -- Insert pragmas/attribute definition clause after this node when no
1338 -- delayed analysis is required.
1340 -- Start of processing for Analyze_Aspect_Specifications
1342 -- The general processing involves building an attribute definition
1343 -- clause or a pragma node that corresponds to the aspect. Then in order
1344 -- to delay the evaluation of this aspect to the freeze point, we attach
1345 -- the corresponding pragma/attribute definition clause to the aspect
1346 -- specification node, which is then placed in the Rep Item chain. In
1347 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1348 -- and we evaluate the rep item at the freeze point. When the aspect
1349 -- doesn't have a corresponding pragma/attribute definition clause, then
1350 -- its analysis is simply delayed at the freeze point.
1352 -- Some special cases don't require delay analysis, thus the aspect is
1353 -- analyzed right now.
1355 -- Note that there is a special handling for Pre, Post, Test_Case,
1356 -- Contract_Cases aspects. In these cases, we do not have to worry
1357 -- about delay issues, since the pragmas themselves deal with delay
1358 -- of visibility for the expression analysis. Thus, we just insert
1359 -- the pragma after the node N.
1361 begin
1362 pragma Assert (Present (L));
1364 -- Loop through aspects
1366 Aspect := First (L);
1367 Aspect_Loop : while Present (Aspect) loop
1368 Analyze_One_Aspect : declare
1369 Expr : constant Node_Id := Expression (Aspect);
1370 Id : constant Node_Id := Identifier (Aspect);
1371 Loc : constant Source_Ptr := Sloc (Aspect);
1372 Nam : constant Name_Id := Chars (Id);
1373 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1374 Anod : Node_Id;
1376 Delay_Required : Boolean;
1377 -- Set False if delay is not required
1379 Eloc : Source_Ptr := No_Location;
1380 -- Source location of expression, modified when we split PPC's. It
1381 -- is set below when Expr is present.
1383 procedure Analyze_Aspect_External_Or_Link_Name;
1384 -- Perform analysis of the External_Name or Link_Name aspects
1386 procedure Analyze_Aspect_Implicit_Dereference;
1387 -- Perform analysis of the Implicit_Dereference aspects
1389 procedure Make_Aitem_Pragma
1390 (Pragma_Argument_Associations : List_Id;
1391 Pragma_Name : Name_Id);
1392 -- This is a wrapper for Make_Pragma used for converting aspects
1393 -- to pragmas. It takes care of Sloc (set from Loc) and building
1394 -- the pragma identifier from the given name. In addition the
1395 -- flags Class_Present and Split_PPC are set from the aspect
1396 -- node, as well as Is_Ignored. This routine also sets the
1397 -- From_Aspect_Specification in the resulting pragma node to
1398 -- True, and sets Corresponding_Aspect to point to the aspect.
1399 -- The resulting pragma is assigned to Aitem.
1401 ------------------------------------------
1402 -- Analyze_Aspect_External_Or_Link_Name --
1403 ------------------------------------------
1405 procedure Analyze_Aspect_External_Or_Link_Name is
1406 begin
1407 -- Verify that there is an Import/Export aspect defined for the
1408 -- entity. The processing of that aspect in turn checks that
1409 -- there is a Convention aspect declared. The pragma is
1410 -- constructed when processing the Convention aspect.
1412 declare
1413 A : Node_Id;
1415 begin
1416 A := First (L);
1417 while Present (A) loop
1418 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1419 Name_Import);
1420 Next (A);
1421 end loop;
1423 if No (A) then
1424 Error_Msg_N
1425 ("missing Import/Export for Link/External name",
1426 Aspect);
1427 end if;
1428 end;
1429 end Analyze_Aspect_External_Or_Link_Name;
1431 -----------------------------------------
1432 -- Analyze_Aspect_Implicit_Dereference --
1433 -----------------------------------------
1435 procedure Analyze_Aspect_Implicit_Dereference is
1436 begin
1437 if not Is_Type (E) or else not Has_Discriminants (E) then
1438 Error_Msg_N
1439 ("aspect must apply to a type with discriminants", N);
1441 else
1442 declare
1443 Disc : Entity_Id;
1445 begin
1446 Disc := First_Discriminant (E);
1447 while Present (Disc) loop
1448 if Chars (Expr) = Chars (Disc)
1449 and then Ekind (Etype (Disc)) =
1450 E_Anonymous_Access_Type
1451 then
1452 Set_Has_Implicit_Dereference (E);
1453 Set_Has_Implicit_Dereference (Disc);
1454 return;
1455 end if;
1457 Next_Discriminant (Disc);
1458 end loop;
1460 -- Error if no proper access discriminant.
1462 Error_Msg_NE
1463 ("not an access discriminant of&", Expr, E);
1464 end;
1465 end if;
1466 end Analyze_Aspect_Implicit_Dereference;
1468 -----------------------
1469 -- Make_Aitem_Pragma --
1470 -----------------------
1472 procedure Make_Aitem_Pragma
1473 (Pragma_Argument_Associations : List_Id;
1474 Pragma_Name : Name_Id)
1476 Args : List_Id := Pragma_Argument_Associations;
1478 begin
1479 -- We should never get here if aspect was disabled
1481 pragma Assert (not Is_Disabled (Aspect));
1483 -- Certain aspects allow for an optional name or expression. Do
1484 -- not generate a pragma with empty argument association list.
1486 if No (Args) or else No (Expression (First (Args))) then
1487 Args := No_List;
1488 end if;
1490 -- Build the pragma
1492 Aitem :=
1493 Make_Pragma (Loc,
1494 Pragma_Argument_Associations => Args,
1495 Pragma_Identifier =>
1496 Make_Identifier (Sloc (Id), Pragma_Name),
1497 Class_Present => Class_Present (Aspect),
1498 Split_PPC => Split_PPC (Aspect));
1500 -- Set additional semantic fields
1502 if Is_Ignored (Aspect) then
1503 Set_Is_Ignored (Aitem);
1504 elsif Is_Checked (Aspect) then
1505 Set_Is_Checked (Aitem);
1506 end if;
1508 Set_Corresponding_Aspect (Aitem, Aspect);
1509 Set_From_Aspect_Specification (Aitem, True);
1510 end Make_Aitem_Pragma;
1512 -- Start of processing for Analyze_One_Aspect
1514 begin
1515 -- Skip aspect if already analyzed, to avoid looping in some cases
1517 if Analyzed (Aspect) then
1518 goto Continue;
1519 end if;
1521 -- Skip looking at aspect if it is totally disabled. Just mark it
1522 -- as such for later reference in the tree. This also sets the
1523 -- Is_Ignored and Is_Checked flags appropriately.
1525 Check_Applicable_Policy (Aspect);
1527 if Is_Disabled (Aspect) then
1528 goto Continue;
1529 end if;
1531 -- Set the source location of expression, used in the case of
1532 -- a failed precondition/postcondition or invariant. Note that
1533 -- the source location of the expression is not usually the best
1534 -- choice here. For example, it gets located on the last AND
1535 -- keyword in a chain of boolean expressiond AND'ed together.
1536 -- It is best to put the message on the first character of the
1537 -- assertion, which is the effect of the First_Node call here.
1539 if Present (Expr) then
1540 Eloc := Sloc (First_Node (Expr));
1541 end if;
1543 -- Check restriction No_Implementation_Aspect_Specifications
1545 if Implementation_Defined_Aspect (A_Id) then
1546 Check_Restriction
1547 (No_Implementation_Aspect_Specifications, Aspect);
1548 end if;
1550 -- Check restriction No_Specification_Of_Aspect
1552 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1554 -- Mark aspect analyzed (actual analysis is delayed till later)
1556 Set_Analyzed (Aspect);
1557 Set_Entity (Aspect, E);
1558 Ent := New_Occurrence_Of (E, Sloc (Id));
1560 -- Check for duplicate aspect. Note that the Comes_From_Source
1561 -- test allows duplicate Pre/Post's that we generate internally
1562 -- to escape being flagged here.
1564 if No_Duplicates_Allowed (A_Id) then
1565 Anod := First (L);
1566 while Anod /= Aspect loop
1567 if Comes_From_Source (Aspect)
1568 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1569 then
1570 Error_Msg_Name_1 := Nam;
1571 Error_Msg_Sloc := Sloc (Anod);
1573 -- Case of same aspect specified twice
1575 if Class_Present (Anod) = Class_Present (Aspect) then
1576 if not Class_Present (Anod) then
1577 Error_Msg_NE
1578 ("aspect% for & previously given#",
1579 Id, E);
1580 else
1581 Error_Msg_NE
1582 ("aspect `%''Class` for & previously given#",
1583 Id, E);
1584 end if;
1585 end if;
1586 end if;
1588 Next (Anod);
1589 end loop;
1590 end if;
1592 -- Check some general restrictions on language defined aspects
1594 if not Implementation_Defined_Aspect (A_Id) then
1595 Error_Msg_Name_1 := Nam;
1597 -- Not allowed for renaming declarations
1599 if Nkind (N) in N_Renaming_Declaration then
1600 Error_Msg_N
1601 ("aspect % not allowed for renaming declaration",
1602 Aspect);
1603 end if;
1605 -- Not allowed for formal type declarations
1607 if Nkind (N) = N_Formal_Type_Declaration then
1608 Error_Msg_N
1609 ("aspect % not allowed for formal type declaration",
1610 Aspect);
1611 end if;
1612 end if;
1614 -- Copy expression for later processing by the procedures
1615 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1617 Set_Entity (Id, New_Copy_Tree (Expr));
1619 -- Set Delay_Required as appropriate to aspect
1621 case Aspect_Delay (A_Id) is
1622 when Always_Delay =>
1623 Delay_Required := True;
1625 when Never_Delay =>
1626 Delay_Required := False;
1628 when Rep_Aspect =>
1630 -- If expression has the form of an integer literal, then
1631 -- do not delay, since we know the value cannot change.
1632 -- This optimization catches most rep clause cases.
1634 -- For Boolean aspects, don't delay if no expression
1636 if A_Id in Boolean_Aspects and then No (Expr) then
1637 Delay_Required := False;
1639 -- For non-Boolean aspects, don't delay if integer literal
1641 elsif A_Id not in Boolean_Aspects
1642 and then Present (Expr)
1643 and then Nkind (Expr) = N_Integer_Literal
1644 then
1645 Delay_Required := False;
1647 -- All other cases are delayed
1649 else
1650 Delay_Required := True;
1651 Set_Has_Delayed_Rep_Aspects (E);
1652 end if;
1653 end case;
1655 -- Processing based on specific aspect
1657 case A_Id is
1658 when Aspect_Unimplemented =>
1659 null; -- ??? temp for now
1661 -- No_Aspect should be impossible
1663 when No_Aspect =>
1664 raise Program_Error;
1666 -- Case 1: Aspects corresponding to attribute definition
1667 -- clauses.
1669 when Aspect_Address |
1670 Aspect_Alignment |
1671 Aspect_Bit_Order |
1672 Aspect_Component_Size |
1673 Aspect_Constant_Indexing |
1674 Aspect_Default_Iterator |
1675 Aspect_Dispatching_Domain |
1676 Aspect_External_Tag |
1677 Aspect_Input |
1678 Aspect_Iterable |
1679 Aspect_Iterator_Element |
1680 Aspect_Machine_Radix |
1681 Aspect_Object_Size |
1682 Aspect_Output |
1683 Aspect_Read |
1684 Aspect_Scalar_Storage_Order |
1685 Aspect_Size |
1686 Aspect_Small |
1687 Aspect_Simple_Storage_Pool |
1688 Aspect_Storage_Pool |
1689 Aspect_Stream_Size |
1690 Aspect_Value_Size |
1691 Aspect_Variable_Indexing |
1692 Aspect_Write =>
1694 -- Indexing aspects apply only to tagged type
1696 if (A_Id = Aspect_Constant_Indexing
1697 or else
1698 A_Id = Aspect_Variable_Indexing)
1699 and then not (Is_Type (E)
1700 and then Is_Tagged_Type (E))
1701 then
1702 Error_Msg_N
1703 ("indexing aspect can only apply to a tagged type",
1704 Aspect);
1705 goto Continue;
1706 end if;
1708 -- For the case of aspect Address, we don't consider that we
1709 -- know the entity is never set in the source, since it is
1710 -- is likely aliasing is occurring.
1712 -- Note: one might think that the analysis of the resulting
1713 -- attribute definition clause would take care of that, but
1714 -- that's not the case since it won't be from source.
1716 if A_Id = Aspect_Address then
1717 Set_Never_Set_In_Source (E, False);
1718 end if;
1720 -- Correctness of the profile of a stream operation is
1721 -- verified at the freeze point, but we must detect the
1722 -- illegal specification of this aspect for a subtype now,
1723 -- to prevent malformed rep_item chains.
1725 if A_Id = Aspect_Input or else
1726 A_Id = Aspect_Output or else
1727 A_Id = Aspect_Read or else
1728 A_Id = Aspect_Write
1729 then
1730 if not Is_First_Subtype (E) then
1731 Error_Msg_N
1732 ("local name must be a first subtype", Aspect);
1733 goto Continue;
1735 -- If stream aspect applies to the class-wide type,
1736 -- the generated attribute definition applies to the
1737 -- class-wide type as well.
1739 elsif Class_Present (Aspect) then
1740 Ent :=
1741 Make_Attribute_Reference (Loc,
1742 Prefix => Ent,
1743 Attribute_Name => Name_Class);
1744 end if;
1745 end if;
1747 -- Construct the attribute definition clause
1749 Aitem :=
1750 Make_Attribute_Definition_Clause (Loc,
1751 Name => Ent,
1752 Chars => Chars (Id),
1753 Expression => Relocate_Node (Expr));
1755 -- If the address is specified, then we treat the entity as
1756 -- referenced, to avoid spurious warnings. This is analogous
1757 -- to what is done with an attribute definition clause, but
1758 -- here we don't want to generate a reference because this
1759 -- is the point of definition of the entity.
1761 if A_Id = Aspect_Address then
1762 Set_Referenced (E);
1763 end if;
1765 -- Case 2: Aspects corresponding to pragmas
1767 -- Case 2a: Aspects corresponding to pragmas with two
1768 -- arguments, where the first argument is a local name
1769 -- referring to the entity, and the second argument is the
1770 -- aspect definition expression.
1772 -- Linker_Section/Suppress/Unsuppress
1774 when Aspect_Linker_Section |
1775 Aspect_Suppress |
1776 Aspect_Unsuppress =>
1778 Make_Aitem_Pragma
1779 (Pragma_Argument_Associations => New_List (
1780 Make_Pragma_Argument_Association (Loc,
1781 Expression => New_Occurrence_Of (E, Loc)),
1782 Make_Pragma_Argument_Association (Sloc (Expr),
1783 Expression => Relocate_Node (Expr))),
1784 Pragma_Name => Chars (Id));
1786 -- Synchronization
1788 -- Corresponds to pragma Implemented, construct the pragma
1790 when Aspect_Synchronization =>
1791 Make_Aitem_Pragma
1792 (Pragma_Argument_Associations => New_List (
1793 Make_Pragma_Argument_Association (Loc,
1794 Expression => New_Occurrence_Of (E, Loc)),
1795 Make_Pragma_Argument_Association (Sloc (Expr),
1796 Expression => Relocate_Node (Expr))),
1797 Pragma_Name => Name_Implemented);
1799 -- Attach_Handler
1801 when Aspect_Attach_Handler =>
1802 Make_Aitem_Pragma
1803 (Pragma_Argument_Associations => New_List (
1804 Make_Pragma_Argument_Association (Sloc (Ent),
1805 Expression => Ent),
1806 Make_Pragma_Argument_Association (Sloc (Expr),
1807 Expression => Relocate_Node (Expr))),
1808 Pragma_Name => Name_Attach_Handler);
1810 -- We need to insert this pragma into the tree to get proper
1811 -- processing and to look valid from a placement viewpoint.
1813 Insert_Pragma (Aitem);
1814 goto Continue;
1816 -- Dynamic_Predicate, Predicate, Static_Predicate
1818 when Aspect_Dynamic_Predicate |
1819 Aspect_Predicate |
1820 Aspect_Static_Predicate =>
1822 -- These aspects apply only to subtypes
1824 if not Is_Type (E) then
1825 Error_Msg_N
1826 ("predicate can only be specified for a subtype",
1827 Aspect);
1828 goto Continue;
1830 elsif Is_Incomplete_Type (E) then
1831 Error_Msg_N
1832 ("predicate cannot apply to incomplete view", Aspect);
1833 goto Continue;
1834 end if;
1836 -- Construct the pragma (always a pragma Predicate, with
1837 -- flags recording whether it is static/dynamic). We also
1838 -- set flags recording this in the type itself.
1840 Make_Aitem_Pragma
1841 (Pragma_Argument_Associations => New_List (
1842 Make_Pragma_Argument_Association (Sloc (Ent),
1843 Expression => Ent),
1844 Make_Pragma_Argument_Association (Sloc (Expr),
1845 Expression => Relocate_Node (Expr))),
1846 Pragma_Name => Name_Predicate);
1848 -- Mark type has predicates, and remember what kind of
1849 -- aspect lead to this predicate (we need this to access
1850 -- the right set of check policies later on).
1852 Set_Has_Predicates (E);
1854 if A_Id = Aspect_Dynamic_Predicate then
1855 Set_Has_Dynamic_Predicate_Aspect (E);
1856 elsif A_Id = Aspect_Static_Predicate then
1857 Set_Has_Static_Predicate_Aspect (E);
1858 end if;
1860 -- If the type is private, indicate that its completion
1861 -- has a freeze node, because that is the one that will
1862 -- be visible at freeze time.
1864 if Is_Private_Type (E) and then Present (Full_View (E)) then
1865 Set_Has_Predicates (Full_View (E));
1867 if A_Id = Aspect_Dynamic_Predicate then
1868 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1869 elsif A_Id = Aspect_Static_Predicate then
1870 Set_Has_Static_Predicate_Aspect (Full_View (E));
1871 end if;
1873 Set_Has_Delayed_Aspects (Full_View (E));
1874 Ensure_Freeze_Node (Full_View (E));
1875 end if;
1877 -- Case 2b: Aspects corresponding to pragmas with two
1878 -- arguments, where the second argument is a local name
1879 -- referring to the entity, and the first argument is the
1880 -- aspect definition expression.
1882 -- Convention
1884 when Aspect_Convention =>
1886 -- The aspect may be part of the specification of an import
1887 -- or export pragma. Scan the aspect list to gather the
1888 -- other components, if any. The name of the generated
1889 -- pragma is one of Convention/Import/Export.
1891 declare
1892 Args : constant List_Id := New_List (
1893 Make_Pragma_Argument_Association (Sloc (Expr),
1894 Expression => Relocate_Node (Expr)),
1895 Make_Pragma_Argument_Association (Sloc (Ent),
1896 Expression => Ent));
1898 Imp_Exp_Seen : Boolean := False;
1899 -- Flag set when aspect Import or Export has been seen
1901 Imp_Seen : Boolean := False;
1902 -- Flag set when aspect Import has been seen
1904 Asp : Node_Id;
1905 Asp_Nam : Name_Id;
1906 Extern_Arg : Node_Id;
1907 Link_Arg : Node_Id;
1908 Prag_Nam : Name_Id;
1910 begin
1911 Extern_Arg := Empty;
1912 Link_Arg := Empty;
1913 Prag_Nam := Chars (Id);
1915 Asp := First (L);
1916 while Present (Asp) loop
1917 Asp_Nam := Chars (Identifier (Asp));
1919 -- Aspects Import and Export take precedence over
1920 -- aspect Convention. As a result the generated pragma
1921 -- must carry the proper interfacing aspect's name.
1923 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
1924 if Imp_Exp_Seen then
1925 Error_Msg_N ("conflicting", Asp);
1926 else
1927 Imp_Exp_Seen := True;
1929 if Asp_Nam = Name_Import then
1930 Imp_Seen := True;
1931 end if;
1932 end if;
1934 Prag_Nam := Asp_Nam;
1936 -- Aspect External_Name adds an extra argument to the
1937 -- generated pragma.
1939 elsif Asp_Nam = Name_External_Name then
1940 Extern_Arg :=
1941 Make_Pragma_Argument_Association (Loc,
1942 Chars => Asp_Nam,
1943 Expression => Relocate_Node (Expression (Asp)));
1945 -- Aspect Link_Name adds an extra argument to the
1946 -- generated pragma.
1948 elsif Asp_Nam = Name_Link_Name then
1949 Link_Arg :=
1950 Make_Pragma_Argument_Association (Loc,
1951 Chars => Asp_Nam,
1952 Expression => Relocate_Node (Expression (Asp)));
1953 end if;
1955 Next (Asp);
1956 end loop;
1958 -- Assemble the full argument list
1960 if Present (Extern_Arg) then
1961 Append_To (Args, Extern_Arg);
1962 end if;
1964 if Present (Link_Arg) then
1965 Append_To (Args, Link_Arg);
1966 end if;
1968 Make_Aitem_Pragma
1969 (Pragma_Argument_Associations => Args,
1970 Pragma_Name => Prag_Nam);
1972 -- Store the generated pragma Import in the related
1973 -- subprogram.
1975 if Imp_Seen and then Is_Subprogram (E) then
1976 Set_Import_Pragma (E, Aitem);
1977 end if;
1978 end;
1980 -- CPU, Interrupt_Priority, Priority
1982 -- These three aspects can be specified for a subprogram spec
1983 -- or body, in which case we analyze the expression and export
1984 -- the value of the aspect.
1986 -- Previously, we generated an equivalent pragma for bodies
1987 -- (note that the specs cannot contain these pragmas). The
1988 -- pragma was inserted ahead of local declarations, rather than
1989 -- after the body. This leads to a certain duplication between
1990 -- the processing performed for the aspect and the pragma, but
1991 -- given the straightforward handling required it is simpler
1992 -- to duplicate than to translate the aspect in the spec into
1993 -- a pragma in the declarative part of the body.
1995 when Aspect_CPU |
1996 Aspect_Interrupt_Priority |
1997 Aspect_Priority =>
1999 if Nkind_In (N, N_Subprogram_Body,
2000 N_Subprogram_Declaration)
2001 then
2002 -- Analyze the aspect expression
2004 Analyze_And_Resolve (Expr, Standard_Integer);
2006 -- Interrupt_Priority aspect not allowed for main
2007 -- subprograms. ARM D.1 does not forbid this explicitly,
2008 -- but ARM J.15.11 (6/3) does not permit pragma
2009 -- Interrupt_Priority for subprograms.
2011 if A_Id = Aspect_Interrupt_Priority then
2012 Error_Msg_N
2013 ("Interrupt_Priority aspect cannot apply to "
2014 & "subprogram", Expr);
2016 -- The expression must be static
2018 elsif not Is_OK_Static_Expression (Expr) then
2019 Flag_Non_Static_Expr
2020 ("aspect requires static expression!", Expr);
2022 -- Check whether this is the main subprogram. Issue a
2023 -- warning only if it is obviously not a main program
2024 -- (when it has parameters or when the subprogram is
2025 -- within a package).
2027 elsif Present (Parameter_Specifications
2028 (Specification (N)))
2029 or else not Is_Compilation_Unit (Defining_Entity (N))
2030 then
2031 -- See ARM D.1 (14/3) and D.16 (12/3)
2033 Error_Msg_N
2034 ("aspect applied to subprogram other than the "
2035 & "main subprogram has no effect??", Expr);
2037 -- Otherwise check in range and export the value
2039 -- For the CPU aspect
2041 elsif A_Id = Aspect_CPU then
2042 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2044 -- Value is correct so we export the value to make
2045 -- it available at execution time.
2047 Set_Main_CPU
2048 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2050 else
2051 Error_Msg_N
2052 ("main subprogram CPU is out of range", Expr);
2053 end if;
2055 -- For the Priority aspect
2057 elsif A_Id = Aspect_Priority then
2058 if Is_In_Range (Expr, RTE (RE_Priority)) then
2060 -- Value is correct so we export the value to make
2061 -- it available at execution time.
2063 Set_Main_Priority
2064 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2066 -- Ignore pragma if Relaxed_RM_Semantics to support
2067 -- other targets/non GNAT compilers.
2069 elsif not Relaxed_RM_Semantics then
2070 Error_Msg_N
2071 ("main subprogram priority is out of range",
2072 Expr);
2073 end if;
2074 end if;
2076 -- Load an arbitrary entity from System.Tasking.Stages
2077 -- or System.Tasking.Restricted.Stages (depending on
2078 -- the supported profile) to make sure that one of these
2079 -- packages is implicitly with'ed, since we need to have
2080 -- the tasking run time active for the pragma Priority to
2081 -- have any effect. Previously we with'ed the package
2082 -- System.Tasking, but this package does not trigger the
2083 -- required initialization of the run-time library.
2085 declare
2086 Discard : Entity_Id;
2087 begin
2088 if Restricted_Profile then
2089 Discard := RTE (RE_Activate_Restricted_Tasks);
2090 else
2091 Discard := RTE (RE_Activate_Tasks);
2092 end if;
2093 end;
2095 -- Handling for these Aspects in subprograms is complete
2097 goto Continue;
2099 -- For tasks
2101 else
2102 -- Pass the aspect as an attribute
2104 Aitem :=
2105 Make_Attribute_Definition_Clause (Loc,
2106 Name => Ent,
2107 Chars => Chars (Id),
2108 Expression => Relocate_Node (Expr));
2109 end if;
2111 -- Warnings
2113 when Aspect_Warnings =>
2114 Make_Aitem_Pragma
2115 (Pragma_Argument_Associations => New_List (
2116 Make_Pragma_Argument_Association (Sloc (Expr),
2117 Expression => Relocate_Node (Expr)),
2118 Make_Pragma_Argument_Association (Loc,
2119 Expression => New_Occurrence_Of (E, Loc))),
2120 Pragma_Name => Chars (Id));
2122 -- Case 2c: Aspects corresponding to pragmas with three
2123 -- arguments.
2125 -- Invariant aspects have a first argument that references the
2126 -- entity, a second argument that is the expression and a third
2127 -- argument that is an appropriate message.
2129 -- Invariant, Type_Invariant
2131 when Aspect_Invariant |
2132 Aspect_Type_Invariant =>
2134 -- Analysis of the pragma will verify placement legality:
2135 -- an invariant must apply to a private type, or appear in
2136 -- the private part of a spec and apply to a completion.
2138 Make_Aitem_Pragma
2139 (Pragma_Argument_Associations => New_List (
2140 Make_Pragma_Argument_Association (Sloc (Ent),
2141 Expression => Ent),
2142 Make_Pragma_Argument_Association (Sloc (Expr),
2143 Expression => Relocate_Node (Expr))),
2144 Pragma_Name => Name_Invariant);
2146 -- Add message unless exception messages are suppressed
2148 if not Opt.Exception_Locations_Suppressed then
2149 Append_To (Pragma_Argument_Associations (Aitem),
2150 Make_Pragma_Argument_Association (Eloc,
2151 Chars => Name_Message,
2152 Expression =>
2153 Make_String_Literal (Eloc,
2154 Strval => "failed invariant from "
2155 & Build_Location_String (Eloc))));
2156 end if;
2158 -- For Invariant case, insert immediately after the entity
2159 -- declaration. We do not have to worry about delay issues
2160 -- since the pragma processing takes care of this.
2162 Delay_Required := False;
2164 -- Case 2d : Aspects that correspond to a pragma with one
2165 -- argument.
2167 -- Abstract_State
2169 -- Aspect Abstract_State introduces implicit declarations for
2170 -- all state abstraction entities it defines. To emulate this
2171 -- behavior, insert the pragma at the beginning of the visible
2172 -- declarations of the related package so that it is analyzed
2173 -- immediately.
2175 when Aspect_Abstract_State => Abstract_State : declare
2176 Context : Node_Id := N;
2177 Decl : Node_Id;
2178 Decls : List_Id;
2180 begin
2181 -- When aspect Abstract_State appears on a generic package,
2182 -- it is propageted to the package instance. The context in
2183 -- this case is the instance spec.
2185 if Nkind (Context) = N_Package_Instantiation then
2186 Context := Instance_Spec (Context);
2187 end if;
2189 if Nkind_In (Context, N_Generic_Package_Declaration,
2190 N_Package_Declaration)
2191 then
2192 Make_Aitem_Pragma
2193 (Pragma_Argument_Associations => New_List (
2194 Make_Pragma_Argument_Association (Loc,
2195 Expression => Relocate_Node (Expr))),
2196 Pragma_Name => Name_Abstract_State);
2197 Decorate (Aspect, Aitem);
2199 Decls := Visible_Declarations (Specification (Context));
2201 -- In general pragma Abstract_State must be at the top
2202 -- of the existing visible declarations to emulate its
2203 -- source counterpart. The only exception to this is a
2204 -- generic instance in which case the pragma must be
2205 -- inserted after the association renamings.
2207 if Present (Decls) then
2208 Decl := First (Decls);
2210 -- The visible declarations of a generic instance have
2211 -- the following structure:
2213 -- <renamings of generic formals>
2214 -- <renamings of internally-generated spec and body>
2215 -- <first source declaration>
2217 -- The pragma must be inserted before the first source
2218 -- declaration, skip the instance "header".
2220 if Is_Generic_Instance (Defining_Entity (Context)) then
2221 while Present (Decl)
2222 and then not Comes_From_Source (Decl)
2223 loop
2224 Decl := Next (Decl);
2225 end loop;
2226 end if;
2228 -- When aspects Abstract_State, Ghost,
2229 -- Initial_Condition and Initializes are out of order,
2230 -- ensure that pragma SPARK_Mode is always at the top
2231 -- of the declarations to properly enabled/suppress
2232 -- errors.
2234 Insert_After_SPARK_Mode
2235 (Prag => Aitem,
2236 Ins_Nod => Decl,
2237 Decls => Decls);
2239 -- Otherwise the pragma forms a new declarative list
2241 else
2242 Set_Visible_Declarations
2243 (Specification (Context), New_List (Aitem));
2244 end if;
2246 else
2247 Error_Msg_NE
2248 ("aspect & must apply to a package declaration",
2249 Aspect, Id);
2250 end if;
2252 goto Continue;
2253 end Abstract_State;
2255 -- Aspect Default_Internal_Condition is never delayed because
2256 -- it is equivalent to a source pragma which appears after the
2257 -- related private type. To deal with forward references, the
2258 -- generated pragma is stored in the rep chain of the related
2259 -- private type as types do not carry contracts. The pragma is
2260 -- wrapped inside of a procedure at the freeze point of the
2261 -- private type's full view.
2263 when Aspect_Default_Initial_Condition =>
2264 Make_Aitem_Pragma
2265 (Pragma_Argument_Associations => New_List (
2266 Make_Pragma_Argument_Association (Loc,
2267 Expression => Relocate_Node (Expr))),
2268 Pragma_Name =>
2269 Name_Default_Initial_Condition);
2271 Decorate (Aspect, Aitem);
2272 Insert_Pragma (Aitem);
2273 goto Continue;
2275 -- Default_Storage_Pool
2277 when Aspect_Default_Storage_Pool =>
2278 Make_Aitem_Pragma
2279 (Pragma_Argument_Associations => New_List (
2280 Make_Pragma_Argument_Association (Loc,
2281 Expression => Relocate_Node (Expr))),
2282 Pragma_Name =>
2283 Name_Default_Storage_Pool);
2285 Decorate (Aspect, Aitem);
2286 Insert_Pragma (Aitem);
2287 goto Continue;
2289 -- Depends
2291 -- Aspect Depends is never delayed because it is equivalent to
2292 -- a source pragma which appears after the related subprogram.
2293 -- To deal with forward references, the generated pragma is
2294 -- stored in the contract of the related subprogram and later
2295 -- analyzed at the end of the declarative region. See routine
2296 -- Analyze_Depends_In_Decl_Part for details.
2298 when Aspect_Depends =>
2299 Make_Aitem_Pragma
2300 (Pragma_Argument_Associations => New_List (
2301 Make_Pragma_Argument_Association (Loc,
2302 Expression => Relocate_Node (Expr))),
2303 Pragma_Name => Name_Depends);
2305 Decorate (Aspect, Aitem);
2306 Insert_Pragma (Aitem);
2307 goto Continue;
2309 -- Aspect Extensions_Visible is never delayed because it is
2310 -- equivalent to a source pragma which appears after the
2311 -- related subprogram.
2313 when Aspect_Extensions_Visible =>
2314 Make_Aitem_Pragma
2315 (Pragma_Argument_Associations => New_List (
2316 Make_Pragma_Argument_Association (Loc,
2317 Expression => Relocate_Node (Expr))),
2318 Pragma_Name => Name_Extensions_Visible);
2320 Decorate (Aspect, Aitem);
2321 Insert_Pragma (Aitem);
2322 goto Continue;
2324 -- Aspect Ghost is never delayed because it is equivalent to a
2325 -- source pragma which appears at the top of [generic] package
2326 -- declarations or after an object, a [generic] subprogram, or
2327 -- a type declaration.
2329 when Aspect_Ghost => Ghost : declare
2330 Decls : List_Id;
2332 begin
2333 Make_Aitem_Pragma
2334 (Pragma_Argument_Associations => New_List (
2335 Make_Pragma_Argument_Association (Loc,
2336 Expression => Relocate_Node (Expr))),
2337 Pragma_Name => Name_Ghost);
2339 Decorate (Aspect, Aitem);
2341 -- When the aspect applies to a [generic] package, insert
2342 -- the pragma at the top of the visible declarations. This
2343 -- emulates the placement of a source pragma.
2345 if Nkind_In (N, N_Generic_Package_Declaration,
2346 N_Package_Declaration)
2347 then
2348 Decls := Visible_Declarations (Specification (N));
2350 if No (Decls) then
2351 Decls := New_List;
2352 Set_Visible_Declarations (N, Decls);
2353 end if;
2355 -- When aspects Abstract_State, Ghost, Initial_Condition
2356 -- and Initializes are out of order, ensure that pragma
2357 -- SPARK_Mode is always at the top of the declarations to
2358 -- properly enabled/suppress errors.
2360 Insert_After_SPARK_Mode
2361 (Prag => Aitem,
2362 Ins_Nod => First (Decls),
2363 Decls => Decls);
2365 -- Otherwise the context is an object, [generic] subprogram
2366 -- or type declaration.
2368 else
2369 Insert_Pragma (Aitem);
2370 end if;
2372 goto Continue;
2373 end Ghost;
2375 -- Global
2377 -- Aspect Global is never delayed because it is equivalent to
2378 -- a source pragma which appears after the related subprogram.
2379 -- To deal with forward references, the generated pragma is
2380 -- stored in the contract of the related subprogram and later
2381 -- analyzed at the end of the declarative region. See routine
2382 -- Analyze_Global_In_Decl_Part for details.
2384 when Aspect_Global =>
2385 Make_Aitem_Pragma
2386 (Pragma_Argument_Associations => New_List (
2387 Make_Pragma_Argument_Association (Loc,
2388 Expression => Relocate_Node (Expr))),
2389 Pragma_Name => Name_Global);
2391 Decorate (Aspect, Aitem);
2392 Insert_Pragma (Aitem);
2393 goto Continue;
2395 -- Initial_Condition
2397 -- Aspect Initial_Condition is never delayed because it is
2398 -- equivalent to a source pragma which appears after the
2399 -- related package. To deal with forward references, the
2400 -- generated pragma is stored in the contract of the related
2401 -- package and later analyzed at the end of the declarative
2402 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2403 -- for details.
2405 when Aspect_Initial_Condition => Initial_Condition : declare
2406 Context : Node_Id := N;
2407 Decls : List_Id;
2409 begin
2410 -- When aspect Initial_Condition appears on a generic
2411 -- package, it is propageted to the package instance. The
2412 -- context in this case is the instance spec.
2414 if Nkind (Context) = N_Package_Instantiation then
2415 Context := Instance_Spec (Context);
2416 end if;
2418 if Nkind_In (Context, N_Generic_Package_Declaration,
2419 N_Package_Declaration)
2420 then
2421 Decls := Visible_Declarations (Specification (Context));
2423 Make_Aitem_Pragma
2424 (Pragma_Argument_Associations => New_List (
2425 Make_Pragma_Argument_Association (Loc,
2426 Expression => Relocate_Node (Expr))),
2427 Pragma_Name =>
2428 Name_Initial_Condition);
2429 Decorate (Aspect, Aitem);
2431 if No (Decls) then
2432 Decls := New_List;
2433 Set_Visible_Declarations (Context, Decls);
2434 end if;
2436 -- When aspects Abstract_State, Ghost, Initial_Condition
2437 -- and Initializes are out of order, ensure that pragma
2438 -- SPARK_Mode is always at the top of the declarations to
2439 -- properly enabled/suppress errors.
2441 Insert_After_SPARK_Mode
2442 (Prag => Aitem,
2443 Ins_Nod => First (Decls),
2444 Decls => Decls);
2446 else
2447 Error_Msg_NE
2448 ("aspect & must apply to a package declaration",
2449 Aspect, Id);
2450 end if;
2452 goto Continue;
2453 end Initial_Condition;
2455 -- Initializes
2457 -- Aspect Initializes is never delayed because it is equivalent
2458 -- to a source pragma appearing after the related package. To
2459 -- deal with forward references, the generated pragma is stored
2460 -- in the contract of the related package and later analyzed at
2461 -- the end of the declarative region. For details, see routine
2462 -- Analyze_Initializes_In_Decl_Part.
2464 when Aspect_Initializes => Initializes : declare
2465 Context : Node_Id := N;
2466 Decls : List_Id;
2468 begin
2469 -- When aspect Initializes appears on a generic package,
2470 -- it is propageted to the package instance. The context
2471 -- in this case is the instance spec.
2473 if Nkind (Context) = N_Package_Instantiation then
2474 Context := Instance_Spec (Context);
2475 end if;
2477 if Nkind_In (Context, N_Generic_Package_Declaration,
2478 N_Package_Declaration)
2479 then
2480 Decls := Visible_Declarations (Specification (Context));
2482 Make_Aitem_Pragma
2483 (Pragma_Argument_Associations => New_List (
2484 Make_Pragma_Argument_Association (Loc,
2485 Expression => Relocate_Node (Expr))),
2486 Pragma_Name => Name_Initializes);
2487 Decorate (Aspect, Aitem);
2489 if No (Decls) then
2490 Decls := New_List;
2491 Set_Visible_Declarations (Context, Decls);
2492 end if;
2494 -- When aspects Abstract_State, Ghost, Initial_Condition
2495 -- and Initializes are out of order, ensure that pragma
2496 -- SPARK_Mode is always at the top of the declarations to
2497 -- properly enabled/suppress errors.
2499 Insert_After_SPARK_Mode
2500 (Prag => Aitem,
2501 Ins_Nod => First (Decls),
2502 Decls => Decls);
2504 else
2505 Error_Msg_NE
2506 ("aspect & must apply to a package declaration",
2507 Aspect, Id);
2508 end if;
2510 goto Continue;
2511 end Initializes;
2513 -- Obsolescent
2515 when Aspect_Obsolescent => declare
2516 Args : List_Id;
2518 begin
2519 if No (Expr) then
2520 Args := No_List;
2521 else
2522 Args := New_List (
2523 Make_Pragma_Argument_Association (Sloc (Expr),
2524 Expression => Relocate_Node (Expr)));
2525 end if;
2527 Make_Aitem_Pragma
2528 (Pragma_Argument_Associations => Args,
2529 Pragma_Name => Chars (Id));
2530 end;
2532 -- Part_Of
2534 when Aspect_Part_Of =>
2535 if Nkind_In (N, N_Object_Declaration,
2536 N_Package_Instantiation)
2537 then
2538 Make_Aitem_Pragma
2539 (Pragma_Argument_Associations => New_List (
2540 Make_Pragma_Argument_Association (Loc,
2541 Expression => Relocate_Node (Expr))),
2542 Pragma_Name => Name_Part_Of);
2544 else
2545 Error_Msg_NE
2546 ("aspect & must apply to a variable or package "
2547 & "instantiation", Aspect, Id);
2548 end if;
2550 -- SPARK_Mode
2552 when Aspect_SPARK_Mode => SPARK_Mode : declare
2553 Decls : List_Id;
2555 begin
2556 Make_Aitem_Pragma
2557 (Pragma_Argument_Associations => New_List (
2558 Make_Pragma_Argument_Association (Loc,
2559 Expression => Relocate_Node (Expr))),
2560 Pragma_Name => Name_SPARK_Mode);
2562 -- When the aspect appears on a package or a subprogram
2563 -- body, insert the generated pragma at the top of the body
2564 -- declarations to emulate the behavior of a source pragma.
2566 if Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
2567 Decorate (Aspect, Aitem);
2569 Decls := Declarations (N);
2571 if No (Decls) then
2572 Decls := New_List;
2573 Set_Declarations (N, Decls);
2574 end if;
2576 Prepend_To (Decls, Aitem);
2577 goto Continue;
2579 -- When the aspect is associated with a [generic] package
2580 -- declaration, insert the generated pragma at the top of
2581 -- the visible declarations to emulate the behavior of a
2582 -- source pragma.
2584 elsif Nkind_In (N, N_Generic_Package_Declaration,
2585 N_Package_Declaration)
2586 then
2587 Decorate (Aspect, Aitem);
2589 Decls := Visible_Declarations (Specification (N));
2591 if No (Decls) then
2592 Decls := New_List;
2593 Set_Visible_Declarations (Specification (N), Decls);
2594 end if;
2596 Prepend_To (Decls, Aitem);
2597 goto Continue;
2598 end if;
2599 end SPARK_Mode;
2601 -- Refined_Depends
2603 -- Aspect Refined_Depends is never delayed because it is
2604 -- equivalent to a source pragma which appears in the
2605 -- declarations of the related subprogram body. To deal with
2606 -- forward references, the generated pragma is stored in the
2607 -- contract of the related subprogram body and later analyzed
2608 -- at the end of the declarative region. For details, see
2609 -- routine Analyze_Refined_Depends_In_Decl_Part.
2611 when Aspect_Refined_Depends =>
2612 Make_Aitem_Pragma
2613 (Pragma_Argument_Associations => New_List (
2614 Make_Pragma_Argument_Association (Loc,
2615 Expression => Relocate_Node (Expr))),
2616 Pragma_Name => Name_Refined_Depends);
2618 Decorate (Aspect, Aitem);
2619 Insert_Pragma (Aitem);
2620 goto Continue;
2622 -- Refined_Global
2624 -- Aspect Refined_Global is never delayed because it is
2625 -- equivalent to a source pragma which appears in the
2626 -- declarations of the related subprogram body. To deal with
2627 -- forward references, the generated pragma is stored in the
2628 -- contract of the related subprogram body and later analyzed
2629 -- at the end of the declarative region. For details, see
2630 -- routine Analyze_Refined_Global_In_Decl_Part.
2632 when Aspect_Refined_Global =>
2633 Make_Aitem_Pragma
2634 (Pragma_Argument_Associations => New_List (
2635 Make_Pragma_Argument_Association (Loc,
2636 Expression => Relocate_Node (Expr))),
2637 Pragma_Name => Name_Refined_Global);
2639 Decorate (Aspect, Aitem);
2640 Insert_Pragma (Aitem);
2641 goto Continue;
2643 -- Refined_Post
2645 when Aspect_Refined_Post =>
2646 Make_Aitem_Pragma
2647 (Pragma_Argument_Associations => New_List (
2648 Make_Pragma_Argument_Association (Loc,
2649 Expression => Relocate_Node (Expr))),
2650 Pragma_Name => Name_Refined_Post);
2652 -- Refined_State
2654 when Aspect_Refined_State => Refined_State : declare
2655 Decls : List_Id;
2657 begin
2658 -- The corresponding pragma for Refined_State is inserted in
2659 -- the declarations of the related package body. This action
2660 -- synchronizes both the source and from-aspect versions of
2661 -- the pragma.
2663 if Nkind (N) = N_Package_Body then
2664 Decls := Declarations (N);
2666 Make_Aitem_Pragma
2667 (Pragma_Argument_Associations => New_List (
2668 Make_Pragma_Argument_Association (Loc,
2669 Expression => Relocate_Node (Expr))),
2670 Pragma_Name => Name_Refined_State);
2671 Decorate (Aspect, Aitem);
2673 if No (Decls) then
2674 Decls := New_List;
2675 Set_Declarations (N, Decls);
2676 end if;
2678 -- Pragma Refined_State must be inserted after pragma
2679 -- SPARK_Mode in the tree. This ensures that any error
2680 -- messages dependent on SPARK_Mode will be properly
2681 -- enabled/suppressed.
2683 Insert_After_SPARK_Mode
2684 (Prag => Aitem,
2685 Ins_Nod => First (Decls),
2686 Decls => Decls);
2688 else
2689 Error_Msg_NE
2690 ("aspect & must apply to a package body", Aspect, Id);
2691 end if;
2693 goto Continue;
2694 end Refined_State;
2696 -- Relative_Deadline
2698 when Aspect_Relative_Deadline =>
2699 Make_Aitem_Pragma
2700 (Pragma_Argument_Associations => New_List (
2701 Make_Pragma_Argument_Association (Loc,
2702 Expression => Relocate_Node (Expr))),
2703 Pragma_Name => Name_Relative_Deadline);
2705 -- If the aspect applies to a task, the corresponding pragma
2706 -- must appear within its declarations, not after.
2708 if Nkind (N) = N_Task_Type_Declaration then
2709 declare
2710 Def : Node_Id;
2711 V : List_Id;
2713 begin
2714 if No (Task_Definition (N)) then
2715 Set_Task_Definition (N,
2716 Make_Task_Definition (Loc,
2717 Visible_Declarations => New_List,
2718 End_Label => Empty));
2719 end if;
2721 Def := Task_Definition (N);
2722 V := Visible_Declarations (Def);
2723 if not Is_Empty_List (V) then
2724 Insert_Before (First (V), Aitem);
2726 else
2727 Set_Visible_Declarations (Def, New_List (Aitem));
2728 end if;
2730 goto Continue;
2731 end;
2732 end if;
2734 -- Case 2e: Annotate aspect
2736 when Aspect_Annotate =>
2737 declare
2738 Args : List_Id;
2739 Pargs : List_Id;
2740 Arg : Node_Id;
2742 begin
2743 -- The argument can be a single identifier
2745 if Nkind (Expr) = N_Identifier then
2747 -- One level of parens is allowed
2749 if Paren_Count (Expr) > 1 then
2750 Error_Msg_F ("extra parentheses ignored", Expr);
2751 end if;
2753 Set_Paren_Count (Expr, 0);
2755 -- Add the single item to the list
2757 Args := New_List (Expr);
2759 -- Otherwise we must have an aggregate
2761 elsif Nkind (Expr) = N_Aggregate then
2763 -- Must be positional
2765 if Present (Component_Associations (Expr)) then
2766 Error_Msg_F
2767 ("purely positional aggregate required", Expr);
2768 goto Continue;
2769 end if;
2771 -- Must not be parenthesized
2773 if Paren_Count (Expr) /= 0 then
2774 Error_Msg_F ("extra parentheses ignored", Expr);
2775 end if;
2777 -- List of arguments is list of aggregate expressions
2779 Args := Expressions (Expr);
2781 -- Anything else is illegal
2783 else
2784 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2785 goto Continue;
2786 end if;
2788 -- Prepare pragma arguments
2790 Pargs := New_List;
2791 Arg := First (Args);
2792 while Present (Arg) loop
2793 Append_To (Pargs,
2794 Make_Pragma_Argument_Association (Sloc (Arg),
2795 Expression => Relocate_Node (Arg)));
2796 Next (Arg);
2797 end loop;
2799 Append_To (Pargs,
2800 Make_Pragma_Argument_Association (Sloc (Ent),
2801 Chars => Name_Entity,
2802 Expression => Ent));
2804 Make_Aitem_Pragma
2805 (Pragma_Argument_Associations => Pargs,
2806 Pragma_Name => Name_Annotate);
2807 end;
2809 -- Case 3 : Aspects that don't correspond to pragma/attribute
2810 -- definition clause.
2812 -- Case 3a: The aspects listed below don't correspond to
2813 -- pragmas/attributes but do require delayed analysis.
2815 -- Default_Value can only apply to a scalar type
2817 when Aspect_Default_Value =>
2818 if not Is_Scalar_Type (E) then
2819 Error_Msg_N
2820 ("aspect Default_Value must apply to a scalar type", N);
2821 end if;
2823 Aitem := Empty;
2825 -- Default_Component_Value can only apply to an array type
2826 -- with scalar components.
2828 when Aspect_Default_Component_Value =>
2829 if not (Is_Array_Type (E)
2830 and then Is_Scalar_Type (Component_Type (E)))
2831 then
2832 Error_Msg_N ("aspect Default_Component_Value can only "
2833 & "apply to an array of scalar components", N);
2834 end if;
2836 Aitem := Empty;
2838 -- Case 3b: The aspects listed below don't correspond to
2839 -- pragmas/attributes and don't need delayed analysis.
2841 -- Implicit_Dereference
2843 -- For Implicit_Dereference, External_Name and Link_Name, only
2844 -- the legality checks are done during the analysis, thus no
2845 -- delay is required.
2847 when Aspect_Implicit_Dereference =>
2848 Analyze_Aspect_Implicit_Dereference;
2849 goto Continue;
2851 -- External_Name, Link_Name
2853 when Aspect_External_Name |
2854 Aspect_Link_Name =>
2855 Analyze_Aspect_External_Or_Link_Name;
2856 goto Continue;
2858 -- Dimension
2860 when Aspect_Dimension =>
2861 Analyze_Aspect_Dimension (N, Id, Expr);
2862 goto Continue;
2864 -- Dimension_System
2866 when Aspect_Dimension_System =>
2867 Analyze_Aspect_Dimension_System (N, Id, Expr);
2868 goto Continue;
2870 -- Case 4: Aspects requiring special handling
2872 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2873 -- pragmas take care of the delay.
2875 -- Pre/Post
2877 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2878 -- with a first argument that is the expression, and a second
2879 -- argument that is an informative message if the test fails.
2880 -- This is inserted right after the declaration, to get the
2881 -- required pragma placement. The processing for the pragmas
2882 -- takes care of the required delay.
2884 when Pre_Post_Aspects => Pre_Post : declare
2885 Pname : Name_Id;
2887 begin
2888 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
2889 Pname := Name_Precondition;
2890 else
2891 Pname := Name_Postcondition;
2892 end if;
2894 -- If the expressions is of the form A and then B, then
2895 -- we generate separate Pre/Post aspects for the separate
2896 -- clauses. Since we allow multiple pragmas, there is no
2897 -- problem in allowing multiple Pre/Post aspects internally.
2898 -- These should be treated in reverse order (B first and
2899 -- A second) since they are later inserted just after N in
2900 -- the order they are treated. This way, the pragma for A
2901 -- ends up preceding the pragma for B, which may have an
2902 -- importance for the error raised (either constraint error
2903 -- or precondition error).
2905 -- We do not do this for Pre'Class, since we have to put
2906 -- these conditions together in a complex OR expression.
2908 -- We do not do this in ASIS mode, as ASIS relies on the
2909 -- original node representing the complete expression, when
2910 -- retrieving it through the source aspect table.
2912 if not ASIS_Mode
2913 and then (Pname = Name_Postcondition
2914 or else not Class_Present (Aspect))
2915 then
2916 while Nkind (Expr) = N_And_Then loop
2917 Insert_After (Aspect,
2918 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
2919 Identifier => Identifier (Aspect),
2920 Expression => Relocate_Node (Left_Opnd (Expr)),
2921 Class_Present => Class_Present (Aspect),
2922 Split_PPC => True));
2923 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
2924 Eloc := Sloc (Expr);
2925 end loop;
2926 end if;
2928 -- Build the precondition/postcondition pragma
2930 -- Add note about why we do NOT need Copy_Tree here???
2932 Make_Aitem_Pragma
2933 (Pragma_Argument_Associations => New_List (
2934 Make_Pragma_Argument_Association (Eloc,
2935 Chars => Name_Check,
2936 Expression => Relocate_Node (Expr))),
2937 Pragma_Name => Pname);
2939 -- Add message unless exception messages are suppressed
2941 if not Opt.Exception_Locations_Suppressed then
2942 Append_To (Pragma_Argument_Associations (Aitem),
2943 Make_Pragma_Argument_Association (Eloc,
2944 Chars => Name_Message,
2945 Expression =>
2946 Make_String_Literal (Eloc,
2947 Strval => "failed "
2948 & Get_Name_String (Pname)
2949 & " from "
2950 & Build_Location_String (Eloc))));
2951 end if;
2953 Set_Is_Delayed_Aspect (Aspect);
2955 -- For Pre/Post cases, insert immediately after the entity
2956 -- declaration, since that is the required pragma placement.
2957 -- Note that for these aspects, we do not have to worry
2958 -- about delay issues, since the pragmas themselves deal
2959 -- with delay of visibility for the expression analysis.
2961 Insert_Pragma (Aitem);
2963 goto Continue;
2964 end Pre_Post;
2966 -- Test_Case
2968 when Aspect_Test_Case => Test_Case : declare
2969 Args : List_Id;
2970 Comp_Expr : Node_Id;
2971 Comp_Assn : Node_Id;
2972 New_Expr : Node_Id;
2974 begin
2975 Args := New_List;
2977 if Nkind (Parent (N)) = N_Compilation_Unit then
2978 Error_Msg_Name_1 := Nam;
2979 Error_Msg_N ("incorrect placement of aspect `%`", E);
2980 goto Continue;
2981 end if;
2983 if Nkind (Expr) /= N_Aggregate then
2984 Error_Msg_Name_1 := Nam;
2985 Error_Msg_NE
2986 ("wrong syntax for aspect `%` for &", Id, E);
2987 goto Continue;
2988 end if;
2990 -- Make pragma expressions refer to the original aspect
2991 -- expressions through the Original_Node link. This is used
2992 -- in semantic analysis for ASIS mode, so that the original
2993 -- expression also gets analyzed.
2995 Comp_Expr := First (Expressions (Expr));
2996 while Present (Comp_Expr) loop
2997 New_Expr := Relocate_Node (Comp_Expr);
2998 Append_To (Args,
2999 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3000 Expression => New_Expr));
3001 Next (Comp_Expr);
3002 end loop;
3004 Comp_Assn := First (Component_Associations (Expr));
3005 while Present (Comp_Assn) loop
3006 if List_Length (Choices (Comp_Assn)) /= 1
3007 or else
3008 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3009 then
3010 Error_Msg_Name_1 := Nam;
3011 Error_Msg_NE
3012 ("wrong syntax for aspect `%` for &", Id, E);
3013 goto Continue;
3014 end if;
3016 Append_To (Args,
3017 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3018 Chars => Chars (First (Choices (Comp_Assn))),
3019 Expression =>
3020 Relocate_Node (Expression (Comp_Assn))));
3021 Next (Comp_Assn);
3022 end loop;
3024 -- Build the test-case pragma
3026 Make_Aitem_Pragma
3027 (Pragma_Argument_Associations => Args,
3028 Pragma_Name => Nam);
3029 end Test_Case;
3031 -- Contract_Cases
3033 when Aspect_Contract_Cases =>
3034 Make_Aitem_Pragma
3035 (Pragma_Argument_Associations => New_List (
3036 Make_Pragma_Argument_Association (Loc,
3037 Expression => Relocate_Node (Expr))),
3038 Pragma_Name => Nam);
3040 Decorate (Aspect, Aitem);
3041 Insert_Pragma (Aitem);
3042 goto Continue;
3044 -- Case 5: Special handling for aspects with an optional
3045 -- boolean argument.
3047 -- In the general case, the corresponding pragma cannot be
3048 -- generated yet because the evaluation of the boolean needs
3049 -- to be delayed till the freeze point.
3051 when Boolean_Aspects |
3052 Library_Unit_Aspects =>
3054 Set_Is_Boolean_Aspect (Aspect);
3056 -- Lock_Free aspect only apply to protected objects
3058 if A_Id = Aspect_Lock_Free then
3059 if Ekind (E) /= E_Protected_Type then
3060 Error_Msg_Name_1 := Nam;
3061 Error_Msg_N
3062 ("aspect % only applies to a protected object",
3063 Aspect);
3065 else
3066 -- Set the Uses_Lock_Free flag to True if there is no
3067 -- expression or if the expression is True. The
3068 -- evaluation of this aspect should be delayed to the
3069 -- freeze point (why???)
3071 if No (Expr)
3072 or else Is_True (Static_Boolean (Expr))
3073 then
3074 Set_Uses_Lock_Free (E);
3075 end if;
3077 Record_Rep_Item (E, Aspect);
3078 end if;
3080 goto Continue;
3082 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
3084 -- For the case of aspects Import and Export, we don't
3085 -- consider that we know the entity is never set in the
3086 -- source, since it is is likely modified outside the
3087 -- program.
3089 -- Note: one might think that the analysis of the
3090 -- resulting pragma would take care of that, but
3091 -- that's not the case since it won't be from source.
3093 if Ekind (E) = E_Variable then
3094 Set_Never_Set_In_Source (E, False);
3095 end if;
3097 -- In older versions of Ada the corresponding pragmas
3098 -- specified a Convention. In Ada 2012 the convention is
3099 -- specified as a separate aspect, and it is optional,
3100 -- given that it defaults to Convention_Ada. The code
3101 -- that verifed that there was a matching convention
3102 -- is now obsolete.
3104 -- Resolve the expression of an Import or Export here,
3105 -- and require it to be of type Boolean and static. This
3106 -- is not quite right, because in general this should be
3107 -- delayed, but that seems tricky for these, because
3108 -- normally Boolean aspects are replaced with pragmas at
3109 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3110 -- but in the case of these aspects we can't generate
3111 -- a simple pragma with just the entity name. ???
3113 if not Present (Expr)
3114 or else Is_True (Static_Boolean (Expr))
3115 then
3116 if A_Id = Aspect_Import then
3117 Set_Is_Imported (E);
3119 -- An imported entity cannot have an explicit
3120 -- initialization.
3122 if Nkind (N) = N_Object_Declaration
3123 and then Present (Expression (N))
3124 then
3125 Error_Msg_N
3126 ("imported entities cannot be initialized "
3127 & "(RM B.1(24))", Expression (N));
3128 end if;
3130 elsif A_Id = Aspect_Export then
3131 Set_Is_Exported (E);
3132 end if;
3133 end if;
3135 goto Continue;
3136 end if;
3138 -- Library unit aspects require special handling in the case
3139 -- of a package declaration, the pragma needs to be inserted
3140 -- in the list of declarations for the associated package.
3141 -- There is no issue of visibility delay for these aspects.
3143 if A_Id in Library_Unit_Aspects
3144 and then
3145 Nkind_In (N, N_Package_Declaration,
3146 N_Generic_Package_Declaration)
3147 and then Nkind (Parent (N)) /= N_Compilation_Unit
3149 -- Aspect is legal on a local instantiation of a library-
3150 -- level generic unit.
3152 and then not Is_Generic_Instance (Defining_Entity (N))
3153 then
3154 Error_Msg_N
3155 ("incorrect context for library unit aspect&", Id);
3156 goto Continue;
3157 end if;
3159 -- External property aspects are Boolean by nature, but
3160 -- their pragmas must contain two arguments, the second
3161 -- being the optional Boolean expression.
3163 if A_Id = Aspect_Async_Readers or else
3164 A_Id = Aspect_Async_Writers or else
3165 A_Id = Aspect_Effective_Reads or else
3166 A_Id = Aspect_Effective_Writes
3167 then
3168 declare
3169 Args : List_Id;
3171 begin
3172 -- The first argument of the external property pragma
3173 -- is the related object.
3175 Args :=
3176 New_List (
3177 Make_Pragma_Argument_Association (Sloc (Ent),
3178 Expression => Ent));
3180 -- The second argument is the optional Boolean
3181 -- expression which must be propagated even if it
3182 -- evaluates to False as this has special semantic
3183 -- meaning.
3185 if Present (Expr) then
3186 Append_To (Args,
3187 Make_Pragma_Argument_Association (Loc,
3188 Expression => Relocate_Node (Expr)));
3189 end if;
3191 Make_Aitem_Pragma
3192 (Pragma_Argument_Associations => Args,
3193 Pragma_Name => Nam);
3194 end;
3196 -- Cases where we do not delay, includes all cases where the
3197 -- expression is missing other than the above cases.
3199 elsif not Delay_Required or else No (Expr) then
3200 Make_Aitem_Pragma
3201 (Pragma_Argument_Associations => New_List (
3202 Make_Pragma_Argument_Association (Sloc (Ent),
3203 Expression => Ent)),
3204 Pragma_Name => Chars (Id));
3205 Delay_Required := False;
3207 -- In general cases, the corresponding pragma/attribute
3208 -- definition clause will be inserted later at the freezing
3209 -- point, and we do not need to build it now.
3211 else
3212 Aitem := Empty;
3213 end if;
3215 -- Storage_Size
3217 -- This is special because for access types we need to generate
3218 -- an attribute definition clause. This also works for single
3219 -- task declarations, but it does not work for task type
3220 -- declarations, because we have the case where the expression
3221 -- references a discriminant of the task type. That can't use
3222 -- an attribute definition clause because we would not have
3223 -- visibility on the discriminant. For that case we must
3224 -- generate a pragma in the task definition.
3226 when Aspect_Storage_Size =>
3228 -- Task type case
3230 if Ekind (E) = E_Task_Type then
3231 declare
3232 Decl : constant Node_Id := Declaration_Node (E);
3234 begin
3235 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3237 -- If no task definition, create one
3239 if No (Task_Definition (Decl)) then
3240 Set_Task_Definition (Decl,
3241 Make_Task_Definition (Loc,
3242 Visible_Declarations => Empty_List,
3243 End_Label => Empty));
3244 end if;
3246 -- Create a pragma and put it at the start of the task
3247 -- definition for the task type declaration.
3249 Make_Aitem_Pragma
3250 (Pragma_Argument_Associations => New_List (
3251 Make_Pragma_Argument_Association (Loc,
3252 Expression => Relocate_Node (Expr))),
3253 Pragma_Name => Name_Storage_Size);
3255 Prepend
3256 (Aitem,
3257 Visible_Declarations (Task_Definition (Decl)));
3258 goto Continue;
3259 end;
3261 -- All other cases, generate attribute definition
3263 else
3264 Aitem :=
3265 Make_Attribute_Definition_Clause (Loc,
3266 Name => Ent,
3267 Chars => Chars (Id),
3268 Expression => Relocate_Node (Expr));
3269 end if;
3270 end case;
3272 -- Attach the corresponding pragma/attribute definition clause to
3273 -- the aspect specification node.
3275 if Present (Aitem) then
3276 Set_From_Aspect_Specification (Aitem);
3277 end if;
3279 -- In the context of a compilation unit, we directly put the
3280 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3281 -- node (no delay is required here) except for aspects on a
3282 -- subprogram body (see below) and a generic package, for which we
3283 -- need to introduce the pragma before building the generic copy
3284 -- (see sem_ch12), and for package instantiations, where the
3285 -- library unit pragmas are better handled early.
3287 if Nkind (Parent (N)) = N_Compilation_Unit
3288 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3289 then
3290 declare
3291 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3293 begin
3294 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3296 -- For a Boolean aspect, create the corresponding pragma if
3297 -- no expression or if the value is True.
3299 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3300 if Is_True (Static_Boolean (Expr)) then
3301 Make_Aitem_Pragma
3302 (Pragma_Argument_Associations => New_List (
3303 Make_Pragma_Argument_Association (Sloc (Ent),
3304 Expression => Ent)),
3305 Pragma_Name => Chars (Id));
3307 Set_From_Aspect_Specification (Aitem, True);
3308 Set_Corresponding_Aspect (Aitem, Aspect);
3310 else
3311 goto Continue;
3312 end if;
3313 end if;
3315 -- If the aspect is on a subprogram body (relevant aspect
3316 -- is Inline), add the pragma in front of the declarations.
3318 if Nkind (N) = N_Subprogram_Body then
3319 if No (Declarations (N)) then
3320 Set_Declarations (N, New_List);
3321 end if;
3323 Prepend (Aitem, Declarations (N));
3325 elsif Nkind (N) = N_Generic_Package_Declaration then
3326 if No (Visible_Declarations (Specification (N))) then
3327 Set_Visible_Declarations (Specification (N), New_List);
3328 end if;
3330 Prepend (Aitem,
3331 Visible_Declarations (Specification (N)));
3333 elsif Nkind (N) = N_Package_Instantiation then
3334 declare
3335 Spec : constant Node_Id :=
3336 Specification (Instance_Spec (N));
3337 begin
3338 if No (Visible_Declarations (Spec)) then
3339 Set_Visible_Declarations (Spec, New_List);
3340 end if;
3342 Prepend (Aitem, Visible_Declarations (Spec));
3343 end;
3345 else
3346 if No (Pragmas_After (Aux)) then
3347 Set_Pragmas_After (Aux, New_List);
3348 end if;
3350 Append (Aitem, Pragmas_After (Aux));
3351 end if;
3353 goto Continue;
3354 end;
3355 end if;
3357 -- The evaluation of the aspect is delayed to the freezing point.
3358 -- The pragma or attribute clause if there is one is then attached
3359 -- to the aspect specification which is put in the rep item list.
3361 if Delay_Required then
3362 if Present (Aitem) then
3363 Set_Is_Delayed_Aspect (Aitem);
3364 Set_Aspect_Rep_Item (Aspect, Aitem);
3365 Set_Parent (Aitem, Aspect);
3366 end if;
3368 Set_Is_Delayed_Aspect (Aspect);
3370 -- In the case of Default_Value, link the aspect to base type
3371 -- as well, even though it appears on a first subtype. This is
3372 -- mandated by the semantics of the aspect. Do not establish
3373 -- the link when processing the base type itself as this leads
3374 -- to a rep item circularity. Verify that we are dealing with
3375 -- a scalar type to prevent cascaded errors.
3377 if A_Id = Aspect_Default_Value
3378 and then Is_Scalar_Type (E)
3379 and then Base_Type (E) /= E
3380 then
3381 Set_Has_Delayed_Aspects (Base_Type (E));
3382 Record_Rep_Item (Base_Type (E), Aspect);
3383 end if;
3385 Set_Has_Delayed_Aspects (E);
3386 Record_Rep_Item (E, Aspect);
3388 -- When delay is not required and the context is a package or a
3389 -- subprogram body, insert the pragma in the body declarations.
3391 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3392 if No (Declarations (N)) then
3393 Set_Declarations (N, New_List);
3394 end if;
3396 -- The pragma is added before source declarations
3398 Prepend_To (Declarations (N), Aitem);
3400 -- When delay is not required and the context is not a compilation
3401 -- unit, we simply insert the pragma/attribute definition clause
3402 -- in sequence.
3404 else
3405 Insert_After (Ins_Node, Aitem);
3406 Ins_Node := Aitem;
3407 end if;
3408 end Analyze_One_Aspect;
3410 <<Continue>>
3411 Next (Aspect);
3412 end loop Aspect_Loop;
3414 if Has_Delayed_Aspects (E) then
3415 Ensure_Freeze_Node (E);
3416 end if;
3417 end Analyze_Aspect_Specifications;
3419 ---------------------------------------------------
3420 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3421 ---------------------------------------------------
3423 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3424 Body_Id : constant Entity_Id := Defining_Entity (N);
3426 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3427 -- Subprogram body [stub] N has aspects, but they are not properly
3428 -- placed. Emit an error message depending on the aspects involved.
3429 -- Spec_Id is the entity of the corresponding spec.
3431 --------------------------------
3432 -- Diagnose_Misplaced_Aspects --
3433 --------------------------------
3435 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3436 procedure Misplaced_Aspect_Error
3437 (Asp : Node_Id;
3438 Ref_Nam : Name_Id);
3439 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3440 -- the name of the refined version of the aspect.
3442 ----------------------------
3443 -- Misplaced_Aspect_Error --
3444 ----------------------------
3446 procedure Misplaced_Aspect_Error
3447 (Asp : Node_Id;
3448 Ref_Nam : Name_Id)
3450 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3451 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3453 begin
3454 -- The corresponding spec already contains the aspect in question
3455 -- and the one appearing on the body must be the refined form:
3457 -- procedure P with Global ...;
3458 -- procedure P with Global ... is ... end P;
3459 -- ^
3460 -- Refined_Global
3462 if Has_Aspect (Spec_Id, Asp_Id) then
3463 Error_Msg_Name_1 := Asp_Nam;
3465 -- Subunits cannot carry aspects that apply to a subprogram
3466 -- declaration.
3468 if Nkind (Parent (N)) = N_Subunit then
3469 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3471 -- Otherwise suggest the refined form
3473 else
3474 Error_Msg_Name_2 := Ref_Nam;
3475 Error_Msg_N ("aspect % should be %", Asp);
3476 end if;
3478 -- Otherwise the aspect must appear on the spec, not on the body
3480 -- procedure P;
3481 -- procedure P with Global ... is ... end P;
3483 else
3484 Error_Msg_N
3485 ("aspect specification must appear in subprogram declaration",
3486 Asp);
3487 end if;
3488 end Misplaced_Aspect_Error;
3490 -- Local variables
3492 Asp : Node_Id;
3493 Asp_Nam : Name_Id;
3495 -- Start of processing for Diagnose_Misplaced_Aspects
3497 begin
3498 -- Iterate over the aspect specifications and emit specific errors
3499 -- where applicable.
3501 Asp := First (Aspect_Specifications (N));
3502 while Present (Asp) loop
3503 Asp_Nam := Chars (Identifier (Asp));
3505 -- Do not emit errors on aspects that can appear on a subprogram
3506 -- body. This scenario occurs when the aspect specification list
3507 -- contains both misplaced and properly placed aspects.
3509 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3510 null;
3512 -- Special diagnostics for SPARK aspects
3514 elsif Asp_Nam = Name_Depends then
3515 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3517 elsif Asp_Nam = Name_Global then
3518 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3520 elsif Asp_Nam = Name_Post then
3521 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3523 -- Otherwise a language-defined aspect is misplaced
3525 else
3526 Error_Msg_N
3527 ("aspect specification must appear in subprogram declaration",
3528 Asp);
3529 end if;
3531 Next (Asp);
3532 end loop;
3533 end Diagnose_Misplaced_Aspects;
3535 -- Local variables
3537 Spec_Id : Entity_Id;
3539 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3541 begin
3542 if Nkind (N) = N_Subprogram_Body_Stub then
3543 Spec_Id := Corresponding_Spec_Of_Stub (N);
3544 else
3545 Spec_Id := Corresponding_Spec (N);
3546 end if;
3548 -- Language-defined aspects cannot be associated with a subprogram body
3549 -- [stub] if the subprogram has a spec. Certain implementation defined
3550 -- aspects are allowed to break this rule (for all applicable cases, see
3551 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3553 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
3554 Diagnose_Misplaced_Aspects (Spec_Id);
3555 else
3556 Analyze_Aspect_Specifications (N, Body_Id);
3557 end if;
3558 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3560 -----------------------
3561 -- Analyze_At_Clause --
3562 -----------------------
3564 -- An at clause is replaced by the corresponding Address attribute
3565 -- definition clause that is the preferred approach in Ada 95.
3567 procedure Analyze_At_Clause (N : Node_Id) is
3568 CS : constant Boolean := Comes_From_Source (N);
3570 begin
3571 -- This is an obsolescent feature
3573 Check_Restriction (No_Obsolescent_Features, N);
3575 if Warn_On_Obsolescent_Feature then
3576 Error_Msg_N
3577 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3578 Error_Msg_N
3579 ("\?j?use address attribute definition clause instead", N);
3580 end if;
3582 -- Rewrite as address clause
3584 Rewrite (N,
3585 Make_Attribute_Definition_Clause (Sloc (N),
3586 Name => Identifier (N),
3587 Chars => Name_Address,
3588 Expression => Expression (N)));
3590 -- We preserve Comes_From_Source, since logically the clause still comes
3591 -- from the source program even though it is changed in form.
3593 Set_Comes_From_Source (N, CS);
3595 -- Analyze rewritten clause
3597 Analyze_Attribute_Definition_Clause (N);
3598 end Analyze_At_Clause;
3600 -----------------------------------------
3601 -- Analyze_Attribute_Definition_Clause --
3602 -----------------------------------------
3604 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3605 Loc : constant Source_Ptr := Sloc (N);
3606 Nam : constant Node_Id := Name (N);
3607 Attr : constant Name_Id := Chars (N);
3608 Expr : constant Node_Id := Expression (N);
3609 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
3611 Ent : Entity_Id;
3612 -- The entity of Nam after it is analyzed. In the case of an incomplete
3613 -- type, this is the underlying type.
3615 U_Ent : Entity_Id;
3616 -- The underlying entity to which the attribute applies. Generally this
3617 -- is the Underlying_Type of Ent, except in the case where the clause
3618 -- applies to full view of incomplete type or private type in which case
3619 -- U_Ent is just a copy of Ent.
3621 FOnly : Boolean := False;
3622 -- Reset to True for subtype specific attribute (Alignment, Size)
3623 -- and for stream attributes, i.e. those cases where in the call to
3624 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3625 -- are checked. Note that the case of stream attributes is not clear
3626 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3627 -- Storage_Size for derived task types, but that is also clearly
3628 -- unintentional.
3630 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3631 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3632 -- definition clauses.
3634 function Duplicate_Clause return Boolean;
3635 -- This routine checks if the aspect for U_Ent being given by attribute
3636 -- definition clause N is for an aspect that has already been specified,
3637 -- and if so gives an error message. If there is a duplicate, True is
3638 -- returned, otherwise if there is no error, False is returned.
3640 procedure Check_Indexing_Functions;
3641 -- Check that the function in Constant_Indexing or Variable_Indexing
3642 -- attribute has the proper type structure. If the name is overloaded,
3643 -- check that some interpretation is legal.
3645 procedure Check_Iterator_Functions;
3646 -- Check that there is a single function in Default_Iterator attribute
3647 -- has the proper type structure.
3649 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
3650 -- Common legality check for the previous two
3652 -----------------------------------
3653 -- Analyze_Stream_TSS_Definition --
3654 -----------------------------------
3656 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3657 Subp : Entity_Id := Empty;
3658 I : Interp_Index;
3659 It : Interp;
3660 Pnam : Entity_Id;
3662 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
3663 -- True for Read attribute, false for other attributes
3665 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3666 -- Return true if the entity is a subprogram with an appropriate
3667 -- profile for the attribute being defined.
3669 ----------------------
3670 -- Has_Good_Profile --
3671 ----------------------
3673 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3674 F : Entity_Id;
3675 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3676 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3677 (False => E_Procedure, True => E_Function);
3678 Typ : Entity_Id;
3680 begin
3681 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3682 return False;
3683 end if;
3685 F := First_Formal (Subp);
3687 if No (F)
3688 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3689 or else Designated_Type (Etype (F)) /=
3690 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3691 then
3692 return False;
3693 end if;
3695 if not Is_Function then
3696 Next_Formal (F);
3698 declare
3699 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3700 (False => E_In_Parameter,
3701 True => E_Out_Parameter);
3702 begin
3703 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3704 return False;
3705 end if;
3706 end;
3708 Typ := Etype (F);
3710 -- If the attribute specification comes from an aspect
3711 -- specification for a class-wide stream, the parameter must be
3712 -- a class-wide type of the entity to which the aspect applies.
3714 if From_Aspect_Specification (N)
3715 and then Class_Present (Parent (N))
3716 and then Is_Class_Wide_Type (Typ)
3717 then
3718 Typ := Etype (Typ);
3719 end if;
3721 else
3722 Typ := Etype (Subp);
3723 end if;
3725 -- Verify that the prefix of the attribute and the local name for
3726 -- the type of the formal match, or one is the class-wide of the
3727 -- other, in the case of a class-wide stream operation.
3729 if Base_Type (Typ) = Base_Type (Ent)
3730 or else (Is_Class_Wide_Type (Typ)
3731 and then Typ = Class_Wide_Type (Base_Type (Ent)))
3732 or else (Is_Class_Wide_Type (Ent)
3733 and then Ent = Class_Wide_Type (Base_Type (Typ)))
3734 then
3735 null;
3736 else
3737 return False;
3738 end if;
3740 if Present ((Next_Formal (F)))
3741 then
3742 return False;
3744 elsif not Is_Scalar_Type (Typ)
3745 and then not Is_First_Subtype (Typ)
3746 and then not Is_Class_Wide_Type (Typ)
3747 then
3748 return False;
3750 else
3751 return True;
3752 end if;
3753 end Has_Good_Profile;
3755 -- Start of processing for Analyze_Stream_TSS_Definition
3757 begin
3758 FOnly := True;
3760 if not Is_Type (U_Ent) then
3761 Error_Msg_N ("local name must be a subtype", Nam);
3762 return;
3764 elsif not Is_First_Subtype (U_Ent) then
3765 Error_Msg_N ("local name must be a first subtype", Nam);
3766 return;
3767 end if;
3769 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3771 -- If Pnam is present, it can be either inherited from an ancestor
3772 -- type (in which case it is legal to redefine it for this type), or
3773 -- be a previous definition of the attribute for the same type (in
3774 -- which case it is illegal).
3776 -- In the first case, it will have been analyzed already, and we
3777 -- can check that its profile does not match the expected profile
3778 -- for a stream attribute of U_Ent. In the second case, either Pnam
3779 -- has been analyzed (and has the expected profile), or it has not
3780 -- been analyzed yet (case of a type that has not been frozen yet
3781 -- and for which the stream attribute has been set using Set_TSS).
3783 if Present (Pnam)
3784 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3785 then
3786 Error_Msg_Sloc := Sloc (Pnam);
3787 Error_Msg_Name_1 := Attr;
3788 Error_Msg_N ("% attribute already defined #", Nam);
3789 return;
3790 end if;
3792 Analyze (Expr);
3794 if Is_Entity_Name (Expr) then
3795 if not Is_Overloaded (Expr) then
3796 if Has_Good_Profile (Entity (Expr)) then
3797 Subp := Entity (Expr);
3798 end if;
3800 else
3801 Get_First_Interp (Expr, I, It);
3802 while Present (It.Nam) loop
3803 if Has_Good_Profile (It.Nam) then
3804 Subp := It.Nam;
3805 exit;
3806 end if;
3808 Get_Next_Interp (I, It);
3809 end loop;
3810 end if;
3811 end if;
3813 if Present (Subp) then
3814 if Is_Abstract_Subprogram (Subp) then
3815 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3816 return;
3818 -- A stream subprogram for an interface type must be a null
3819 -- procedure (RM 13.13.2 (38/3)).
3821 elsif Is_Interface (U_Ent)
3822 and then not Is_Class_Wide_Type (U_Ent)
3823 and then not Inside_A_Generic
3824 and then
3825 (Ekind (Subp) = E_Function
3826 or else
3827 not Null_Present
3828 (Specification
3829 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
3830 then
3831 Error_Msg_N
3832 ("stream subprogram for interface type "
3833 & "must be null procedure", Expr);
3834 end if;
3836 Set_Entity (Expr, Subp);
3837 Set_Etype (Expr, Etype (Subp));
3839 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
3841 else
3842 Error_Msg_Name_1 := Attr;
3843 Error_Msg_N ("incorrect expression for% attribute", Expr);
3844 end if;
3845 end Analyze_Stream_TSS_Definition;
3847 ------------------------------
3848 -- Check_Indexing_Functions --
3849 ------------------------------
3851 procedure Check_Indexing_Functions is
3852 Indexing_Found : Boolean := False;
3854 procedure Check_One_Function (Subp : Entity_Id);
3855 -- Check one possible interpretation. Sets Indexing_Found True if a
3856 -- legal indexing function is found.
3858 procedure Illegal_Indexing (Msg : String);
3859 -- Diagnose illegal indexing function if not overloaded. In the
3860 -- overloaded case indicate that no legal interpretation exists.
3862 ------------------------
3863 -- Check_One_Function --
3864 ------------------------
3866 procedure Check_One_Function (Subp : Entity_Id) is
3867 Default_Element : Node_Id;
3868 Ret_Type : constant Entity_Id := Etype (Subp);
3870 begin
3871 if not Is_Overloadable (Subp) then
3872 Illegal_Indexing ("illegal indexing function for type&");
3873 return;
3875 elsif Scope (Subp) /= Scope (Ent) then
3876 if Nkind (Expr) = N_Expanded_Name then
3878 -- Indexing function can't be declared elsewhere
3880 Illegal_Indexing
3881 ("indexing function must be declared in scope of type&");
3882 end if;
3884 return;
3886 elsif No (First_Formal (Subp)) then
3887 Illegal_Indexing
3888 ("Indexing requires a function that applies to type&");
3889 return;
3891 elsif No (Next_Formal (First_Formal (Subp))) then
3892 Illegal_Indexing
3893 ("indexing function must have at least two parameters");
3894 return;
3896 elsif Is_Derived_Type (Ent) then
3897 declare
3898 Inherited : Node_Id;
3900 begin
3901 if Attr = Name_Constant_Indexing then
3902 Inherited :=
3903 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
3904 elsif Attr = Name_Variable_Indexing then
3905 Inherited :=
3906 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
3907 end if;
3909 -- What if neither branch taken above ???
3911 if Present (Inherited) then
3912 if Debug_Flag_Dot_XX then
3913 null;
3915 -- Indicate the operation that must be overridden,
3916 -- rather than redefining the indexing aspect
3918 else
3919 Illegal_Indexing
3920 ("indexing function already inherited "
3921 & "from parent type");
3922 Error_Msg_NE
3923 ("!override& instead",
3924 N, Entity (Expression (Inherited)));
3925 return;
3926 end if;
3927 end if;
3928 end;
3929 end if;
3931 if not Check_Primitive_Function (Subp) then
3932 Illegal_Indexing
3933 ("Indexing aspect requires a function that applies to type&");
3934 return;
3935 end if;
3937 -- If partial declaration exists, verify that it is not tagged.
3939 if Ekind (Current_Scope) = E_Package
3940 and then Has_Private_Declaration (Ent)
3941 and then From_Aspect_Specification (N)
3942 and then
3943 List_Containing (Parent (Ent)) =
3944 Private_Declarations
3945 (Specification (Unit_Declaration_Node (Current_Scope)))
3946 and then Nkind (N) = N_Attribute_Definition_Clause
3947 then
3948 declare
3949 Decl : Node_Id;
3951 begin
3952 Decl :=
3953 First (Visible_Declarations
3954 (Specification
3955 (Unit_Declaration_Node (Current_Scope))));
3957 while Present (Decl) loop
3958 if Nkind (Decl) = N_Private_Type_Declaration
3959 and then Ent = Full_View (Defining_Identifier (Decl))
3960 and then Tagged_Present (Decl)
3961 and then No (Aspect_Specifications (Decl))
3962 then
3963 Illegal_Indexing
3964 ("Indexing aspect cannot be specified on full view "
3965 & "if partial view is tagged");
3966 return;
3967 end if;
3969 Next (Decl);
3970 end loop;
3971 end;
3972 end if;
3974 -- An indexing function must return either the default element of
3975 -- the container, or a reference type. For variable indexing it
3976 -- must be the latter.
3978 Default_Element :=
3979 Find_Value_Of_Aspect
3980 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
3982 if Present (Default_Element) then
3983 Analyze (Default_Element);
3985 if Is_Entity_Name (Default_Element)
3986 and then not Covers (Entity (Default_Element), Ret_Type)
3987 and then False
3988 then
3989 Illegal_Indexing
3990 ("wrong return type for indexing function");
3991 return;
3992 end if;
3993 end if;
3995 -- For variable_indexing the return type must be a reference type
3997 if Attr = Name_Variable_Indexing then
3998 if not Has_Implicit_Dereference (Ret_Type) then
3999 Illegal_Indexing
4000 ("variable indexing must return a reference type");
4001 return;
4003 elsif Is_Access_Constant
4004 (Etype (First_Discriminant (Ret_Type)))
4005 then
4006 Illegal_Indexing
4007 ("variable indexing must return an access to variable");
4008 return;
4009 end if;
4011 else
4012 if Has_Implicit_Dereference (Ret_Type)
4013 and then not
4014 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4015 then
4016 Illegal_Indexing
4017 ("constant indexing must return an access to constant");
4018 return;
4020 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4021 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4022 then
4023 Illegal_Indexing
4024 ("constant indexing must apply to an access to constant");
4025 return;
4026 end if;
4027 end if;
4029 -- All checks succeeded.
4031 Indexing_Found := True;
4032 end Check_One_Function;
4034 -----------------------
4035 -- Illegal_Indexing --
4036 -----------------------
4038 procedure Illegal_Indexing (Msg : String) is
4039 begin
4040 Error_Msg_NE (Msg, N, Ent);
4041 end Illegal_Indexing;
4043 -- Start of processing for Check_Indexing_Functions
4045 begin
4046 if In_Instance then
4047 return;
4048 end if;
4050 Analyze (Expr);
4052 if not Is_Overloaded (Expr) then
4053 Check_One_Function (Entity (Expr));
4055 else
4056 declare
4057 I : Interp_Index;
4058 It : Interp;
4060 begin
4061 Indexing_Found := False;
4062 Get_First_Interp (Expr, I, It);
4063 while Present (It.Nam) loop
4065 -- Note that analysis will have added the interpretation
4066 -- that corresponds to the dereference. We only check the
4067 -- subprogram itself.
4069 if Is_Overloadable (It.Nam) then
4070 Check_One_Function (It.Nam);
4071 end if;
4073 Get_Next_Interp (I, It);
4074 end loop;
4075 end;
4076 end if;
4078 if not Indexing_Found and then not Error_Posted (N) then
4079 Error_Msg_NE
4080 ("aspect Indexing requires a local function that "
4081 & "applies to type&", Expr, Ent);
4082 end if;
4083 end Check_Indexing_Functions;
4085 ------------------------------
4086 -- Check_Iterator_Functions --
4087 ------------------------------
4089 procedure Check_Iterator_Functions is
4090 Default : Entity_Id;
4092 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4093 -- Check one possible interpretation for validity
4095 ----------------------------
4096 -- Valid_Default_Iterator --
4097 ----------------------------
4099 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4100 Formal : Entity_Id;
4102 begin
4103 if not Check_Primitive_Function (Subp) then
4104 return False;
4105 else
4106 Formal := First_Formal (Subp);
4107 end if;
4109 -- False if any subsequent formal has no default expression
4111 Formal := Next_Formal (Formal);
4112 while Present (Formal) loop
4113 if No (Expression (Parent (Formal))) then
4114 return False;
4115 end if;
4117 Next_Formal (Formal);
4118 end loop;
4120 -- True if all subsequent formals have default expressions
4122 return True;
4123 end Valid_Default_Iterator;
4125 -- Start of processing for Check_Iterator_Functions
4127 begin
4128 Analyze (Expr);
4130 if not Is_Entity_Name (Expr) then
4131 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4132 end if;
4134 if not Is_Overloaded (Expr) then
4135 if not Check_Primitive_Function (Entity (Expr)) then
4136 Error_Msg_NE
4137 ("aspect Indexing requires a function that applies to type&",
4138 Entity (Expr), Ent);
4139 end if;
4141 -- Flag the default_iterator as well as the denoted function.
4143 if not Valid_Default_Iterator (Entity (Expr)) then
4144 Error_Msg_N ("improper function for default iterator!", Expr);
4145 end if;
4147 else
4148 Default := Empty;
4149 declare
4150 I : Interp_Index;
4151 It : Interp;
4153 begin
4154 Get_First_Interp (Expr, I, It);
4155 while Present (It.Nam) loop
4156 if not Check_Primitive_Function (It.Nam)
4157 or else not Valid_Default_Iterator (It.Nam)
4158 then
4159 Remove_Interp (I);
4161 elsif Present (Default) then
4162 Error_Msg_N ("default iterator must be unique", Expr);
4164 else
4165 Default := It.Nam;
4166 end if;
4168 Get_Next_Interp (I, It);
4169 end loop;
4170 end;
4172 if Present (Default) then
4173 Set_Entity (Expr, Default);
4174 Set_Is_Overloaded (Expr, False);
4175 end if;
4176 end if;
4177 end Check_Iterator_Functions;
4179 -------------------------------
4180 -- Check_Primitive_Function --
4181 -------------------------------
4183 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4184 Ctrl : Entity_Id;
4186 begin
4187 if Ekind (Subp) /= E_Function then
4188 return False;
4189 end if;
4191 if No (First_Formal (Subp)) then
4192 return False;
4193 else
4194 Ctrl := Etype (First_Formal (Subp));
4195 end if;
4197 -- To be a primitive operation subprogram has to be in same scope.
4199 if Scope (Ctrl) /= Scope (Subp) then
4200 return False;
4201 end if;
4203 -- Type of formal may be the class-wide type, an access to such,
4204 -- or an incomplete view.
4206 if Ctrl = Ent
4207 or else Ctrl = Class_Wide_Type (Ent)
4208 or else
4209 (Ekind (Ctrl) = E_Anonymous_Access_Type
4210 and then (Designated_Type (Ctrl) = Ent
4211 or else
4212 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4213 or else
4214 (Ekind (Ctrl) = E_Incomplete_Type
4215 and then Full_View (Ctrl) = Ent)
4216 then
4217 null;
4218 else
4219 return False;
4220 end if;
4222 return True;
4223 end Check_Primitive_Function;
4225 ----------------------
4226 -- Duplicate_Clause --
4227 ----------------------
4229 function Duplicate_Clause return Boolean is
4230 A : Node_Id;
4232 begin
4233 -- Nothing to do if this attribute definition clause comes from
4234 -- an aspect specification, since we could not be duplicating an
4235 -- explicit clause, and we dealt with the case of duplicated aspects
4236 -- in Analyze_Aspect_Specifications.
4238 if From_Aspect_Specification (N) then
4239 return False;
4240 end if;
4242 -- Otherwise current clause may duplicate previous clause, or a
4243 -- previously given pragma or aspect specification for the same
4244 -- aspect.
4246 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4248 if Present (A) then
4249 Error_Msg_Name_1 := Chars (N);
4250 Error_Msg_Sloc := Sloc (A);
4252 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4253 return True;
4254 end if;
4256 return False;
4257 end Duplicate_Clause;
4259 -- Start of processing for Analyze_Attribute_Definition_Clause
4261 begin
4262 -- The following code is a defense against recursion. Not clear that
4263 -- this can happen legitimately, but perhaps some error situations can
4264 -- cause it, and we did see this recursion during testing.
4266 if Analyzed (N) then
4267 return;
4268 else
4269 Set_Analyzed (N, True);
4270 end if;
4272 -- Ignore some selected attributes in CodePeer mode since they are not
4273 -- relevant in this context.
4275 if CodePeer_Mode then
4276 case Id is
4278 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4279 -- internal representation of types by implicitly packing them.
4281 when Attribute_Component_Size =>
4282 Rewrite (N, Make_Null_Statement (Sloc (N)));
4283 return;
4285 when others =>
4286 null;
4287 end case;
4288 end if;
4290 -- Process Ignore_Rep_Clauses option
4292 if Ignore_Rep_Clauses then
4293 case Id is
4295 -- The following should be ignored. They do not affect legality
4296 -- and may be target dependent. The basic idea of -gnatI is to
4297 -- ignore any rep clauses that may be target dependent but do not
4298 -- affect legality (except possibly to be rejected because they
4299 -- are incompatible with the compilation target).
4301 when Attribute_Alignment |
4302 Attribute_Bit_Order |
4303 Attribute_Component_Size |
4304 Attribute_Machine_Radix |
4305 Attribute_Object_Size |
4306 Attribute_Size |
4307 Attribute_Small |
4308 Attribute_Stream_Size |
4309 Attribute_Value_Size =>
4310 Kill_Rep_Clause (N);
4311 return;
4313 -- The following should not be ignored, because in the first place
4314 -- they are reasonably portable, and should not cause problems
4315 -- in compiling code from another target, and also they do affect
4316 -- legality, e.g. failing to provide a stream attribute for a type
4317 -- may make a program illegal.
4319 when Attribute_External_Tag |
4320 Attribute_Input |
4321 Attribute_Output |
4322 Attribute_Read |
4323 Attribute_Simple_Storage_Pool |
4324 Attribute_Storage_Pool |
4325 Attribute_Storage_Size |
4326 Attribute_Write =>
4327 null;
4329 -- We do not do anything here with address clauses, they will be
4330 -- removed by Freeze later on, but for now, it works better to
4331 -- keep then in the tree.
4333 when Attribute_Address =>
4334 null;
4336 -- Other cases are errors ("attribute& cannot be set with
4337 -- definition clause"), which will be caught below.
4339 when others =>
4340 null;
4341 end case;
4342 end if;
4344 Analyze (Nam);
4345 Ent := Entity (Nam);
4347 if Rep_Item_Too_Early (Ent, N) then
4348 return;
4349 end if;
4351 -- Rep clause applies to full view of incomplete type or private type if
4352 -- we have one (if not, this is a premature use of the type). However,
4353 -- certain semantic checks need to be done on the specified entity (i.e.
4354 -- the private view), so we save it in Ent.
4356 if Is_Private_Type (Ent)
4357 and then Is_Derived_Type (Ent)
4358 and then not Is_Tagged_Type (Ent)
4359 and then No (Full_View (Ent))
4360 then
4361 -- If this is a private type whose completion is a derivation from
4362 -- another private type, there is no full view, and the attribute
4363 -- belongs to the type itself, not its underlying parent.
4365 U_Ent := Ent;
4367 elsif Ekind (Ent) = E_Incomplete_Type then
4369 -- The attribute applies to the full view, set the entity of the
4370 -- attribute definition accordingly.
4372 Ent := Underlying_Type (Ent);
4373 U_Ent := Ent;
4374 Set_Entity (Nam, Ent);
4376 else
4377 U_Ent := Underlying_Type (Ent);
4378 end if;
4380 -- Avoid cascaded error
4382 if Etype (Nam) = Any_Type then
4383 return;
4385 -- Must be declared in current scope or in case of an aspect
4386 -- specification, must be visible in current scope.
4388 elsif Scope (Ent) /= Current_Scope
4389 and then
4390 not (From_Aspect_Specification (N)
4391 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4392 then
4393 Error_Msg_N ("entity must be declared in this scope", Nam);
4394 return;
4396 -- Must not be a source renaming (we do have some cases where the
4397 -- expander generates a renaming, and those cases are OK, in such
4398 -- cases any attribute applies to the renamed object as well).
4400 elsif Is_Object (Ent)
4401 and then Present (Renamed_Object (Ent))
4402 then
4403 -- Case of renamed object from source, this is an error
4405 if Comes_From_Source (Renamed_Object (Ent)) then
4406 Get_Name_String (Chars (N));
4407 Error_Msg_Strlen := Name_Len;
4408 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4409 Error_Msg_N
4410 ("~ clause not allowed for a renaming declaration "
4411 & "(RM 13.1(6))", Nam);
4412 return;
4414 -- For the case of a compiler generated renaming, the attribute
4415 -- definition clause applies to the renamed object created by the
4416 -- expander. The easiest general way to handle this is to create a
4417 -- copy of the attribute definition clause for this object.
4419 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4420 Insert_Action (N,
4421 Make_Attribute_Definition_Clause (Loc,
4422 Name =>
4423 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4424 Chars => Chars (N),
4425 Expression => Duplicate_Subexpr (Expression (N))));
4427 -- If the renamed object is not an entity, it must be a dereference
4428 -- of an unconstrained function call, and we must introduce a new
4429 -- declaration to capture the expression. This is needed in the case
4430 -- of 'Alignment, where the original declaration must be rewritten.
4432 else
4433 pragma Assert
4434 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4435 null;
4436 end if;
4438 -- If no underlying entity, use entity itself, applies to some
4439 -- previously detected error cases ???
4441 elsif No (U_Ent) then
4442 U_Ent := Ent;
4444 -- Cannot specify for a subtype (exception Object/Value_Size)
4446 elsif Is_Type (U_Ent)
4447 and then not Is_First_Subtype (U_Ent)
4448 and then Id /= Attribute_Object_Size
4449 and then Id /= Attribute_Value_Size
4450 and then not From_At_Mod (N)
4451 then
4452 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4453 return;
4454 end if;
4456 Set_Entity (N, U_Ent);
4457 Check_Restriction_No_Use_Of_Attribute (N);
4459 -- Switch on particular attribute
4461 case Id is
4463 -------------
4464 -- Address --
4465 -------------
4467 -- Address attribute definition clause
4469 when Attribute_Address => Address : begin
4471 -- A little error check, catch for X'Address use X'Address;
4473 if Nkind (Nam) = N_Identifier
4474 and then Nkind (Expr) = N_Attribute_Reference
4475 and then Attribute_Name (Expr) = Name_Address
4476 and then Nkind (Prefix (Expr)) = N_Identifier
4477 and then Chars (Nam) = Chars (Prefix (Expr))
4478 then
4479 Error_Msg_NE
4480 ("address for & is self-referencing", Prefix (Expr), Ent);
4481 return;
4482 end if;
4484 -- Not that special case, carry on with analysis of expression
4486 Analyze_And_Resolve (Expr, RTE (RE_Address));
4488 -- Even when ignoring rep clauses we need to indicate that the
4489 -- entity has an address clause and thus it is legal to declare
4490 -- it imported. Freeze will get rid of the address clause later.
4492 if Ignore_Rep_Clauses then
4493 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4494 Record_Rep_Item (U_Ent, N);
4495 end if;
4497 return;
4498 end if;
4500 if Duplicate_Clause then
4501 null;
4503 -- Case of address clause for subprogram
4505 elsif Is_Subprogram (U_Ent) then
4506 if Has_Homonym (U_Ent) then
4507 Error_Msg_N
4508 ("address clause cannot be given " &
4509 "for overloaded subprogram",
4510 Nam);
4511 return;
4512 end if;
4514 -- For subprograms, all address clauses are permitted, and we
4515 -- mark the subprogram as having a deferred freeze so that Gigi
4516 -- will not elaborate it too soon.
4518 -- Above needs more comments, what is too soon about???
4520 Set_Has_Delayed_Freeze (U_Ent);
4522 -- Case of address clause for entry
4524 elsif Ekind (U_Ent) = E_Entry then
4525 if Nkind (Parent (N)) = N_Task_Body then
4526 Error_Msg_N
4527 ("entry address must be specified in task spec", Nam);
4528 return;
4529 end if;
4531 -- For entries, we require a constant address
4533 Check_Constant_Address_Clause (Expr, U_Ent);
4535 -- Special checks for task types
4537 if Is_Task_Type (Scope (U_Ent))
4538 and then Comes_From_Source (Scope (U_Ent))
4539 then
4540 Error_Msg_N
4541 ("??entry address declared for entry in task type", N);
4542 Error_Msg_N
4543 ("\??only one task can be declared of this type", N);
4544 end if;
4546 -- Entry address clauses are obsolescent
4548 Check_Restriction (No_Obsolescent_Features, N);
4550 if Warn_On_Obsolescent_Feature then
4551 Error_Msg_N
4552 ("?j?attaching interrupt to task entry is an " &
4553 "obsolescent feature (RM J.7.1)", N);
4554 Error_Msg_N
4555 ("\?j?use interrupt procedure instead", N);
4556 end if;
4558 -- Case of an address clause for a controlled object which we
4559 -- consider to be erroneous.
4561 elsif Is_Controlled (Etype (U_Ent))
4562 or else Has_Controlled_Component (Etype (U_Ent))
4563 then
4564 Error_Msg_NE
4565 ("??controlled object& must not be overlaid", Nam, U_Ent);
4566 Error_Msg_N
4567 ("\??Program_Error will be raised at run time", Nam);
4568 Insert_Action (Declaration_Node (U_Ent),
4569 Make_Raise_Program_Error (Loc,
4570 Reason => PE_Overlaid_Controlled_Object));
4571 return;
4573 -- Case of address clause for a (non-controlled) object
4575 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
4576 declare
4577 Expr : constant Node_Id := Expression (N);
4578 O_Ent : Entity_Id;
4579 Off : Boolean;
4581 begin
4582 -- Exported variables cannot have an address clause, because
4583 -- this cancels the effect of the pragma Export.
4585 if Is_Exported (U_Ent) then
4586 Error_Msg_N
4587 ("cannot export object with address clause", Nam);
4588 return;
4589 end if;
4591 Find_Overlaid_Entity (N, O_Ent, Off);
4593 -- Overlaying controlled objects is erroneous
4595 if Present (O_Ent)
4596 and then (Has_Controlled_Component (Etype (O_Ent))
4597 or else Is_Controlled (Etype (O_Ent)))
4598 then
4599 Error_Msg_N
4600 ("??cannot overlay with controlled object", Expr);
4601 Error_Msg_N
4602 ("\??Program_Error will be raised at run time", Expr);
4603 Insert_Action (Declaration_Node (U_Ent),
4604 Make_Raise_Program_Error (Loc,
4605 Reason => PE_Overlaid_Controlled_Object));
4606 return;
4608 elsif Present (O_Ent)
4609 and then Ekind (U_Ent) = E_Constant
4610 and then not Is_Constant_Object (O_Ent)
4611 then
4612 Error_Msg_N ("??constant overlays a variable", Expr);
4614 -- Imported variables can have an address clause, but then
4615 -- the import is pretty meaningless except to suppress
4616 -- initializations, so we do not need such variables to
4617 -- be statically allocated (and in fact it causes trouble
4618 -- if the address clause is a local value).
4620 elsif Is_Imported (U_Ent) then
4621 Set_Is_Statically_Allocated (U_Ent, False);
4622 end if;
4624 -- We mark a possible modification of a variable with an
4625 -- address clause, since it is likely aliasing is occurring.
4627 Note_Possible_Modification (Nam, Sure => False);
4629 -- Here we are checking for explicit overlap of one variable
4630 -- by another, and if we find this then mark the overlapped
4631 -- variable as also being volatile to prevent unwanted
4632 -- optimizations. This is a significant pessimization so
4633 -- avoid it when there is an offset, i.e. when the object
4634 -- is composite; they cannot be optimized easily anyway.
4636 if Present (O_Ent)
4637 and then Is_Object (O_Ent)
4638 and then not Off
4640 -- The following test is an expedient solution to what
4641 -- is really a problem in CodePeer. Suppressing the
4642 -- Set_Treat_As_Volatile call here prevents later
4643 -- generation (in some cases) of trees that CodePeer
4644 -- should, but currently does not, handle correctly.
4645 -- This test should probably be removed when CodePeer
4646 -- is improved, just because we want the tree CodePeer
4647 -- analyzes to match the tree for which we generate code
4648 -- as closely as is practical. ???
4650 and then not CodePeer_Mode
4651 then
4652 -- ??? O_Ent might not be in current unit
4654 Set_Treat_As_Volatile (O_Ent);
4655 end if;
4657 -- Legality checks on the address clause for initialized
4658 -- objects is deferred until the freeze point, because
4659 -- a subsequent pragma might indicate that the object
4660 -- is imported and thus not initialized. Also, the address
4661 -- clause might involve entities that have yet to be
4662 -- elaborated.
4664 Set_Has_Delayed_Freeze (U_Ent);
4666 -- If an initialization call has been generated for this
4667 -- object, it needs to be deferred to after the freeze node
4668 -- we have just now added, otherwise GIGI will see a
4669 -- reference to the variable (as actual to the IP call)
4670 -- before its definition.
4672 declare
4673 Init_Call : constant Node_Id :=
4674 Remove_Init_Call (U_Ent, N);
4676 begin
4677 if Present (Init_Call) then
4678 Append_Freeze_Action (U_Ent, Init_Call);
4680 -- Reset Initialization_Statements pointer so that
4681 -- if there is a pragma Import further down, it can
4682 -- clear any default initialization.
4684 Set_Initialization_Statements (U_Ent, Init_Call);
4685 end if;
4686 end;
4688 if Is_Exported (U_Ent) then
4689 Error_Msg_N
4690 ("& cannot be exported if an address clause is given",
4691 Nam);
4692 Error_Msg_N
4693 ("\define and export a variable "
4694 & "that holds its address instead", Nam);
4695 end if;
4697 -- Entity has delayed freeze, so we will generate an
4698 -- alignment check at the freeze point unless suppressed.
4700 if not Range_Checks_Suppressed (U_Ent)
4701 and then not Alignment_Checks_Suppressed (U_Ent)
4702 then
4703 Set_Check_Address_Alignment (N);
4704 end if;
4706 -- Kill the size check code, since we are not allocating
4707 -- the variable, it is somewhere else.
4709 Kill_Size_Check_Code (U_Ent);
4711 -- If the address clause is of the form:
4713 -- for Y'Address use X'Address
4715 -- or
4717 -- Const : constant Address := X'Address;
4718 -- ...
4719 -- for Y'Address use Const;
4721 -- then we make an entry in the table for checking the size
4722 -- and alignment of the overlaying variable. We defer this
4723 -- check till after code generation to take full advantage
4724 -- of the annotation done by the back end.
4726 -- If the entity has a generic type, the check will be
4727 -- performed in the instance if the actual type justifies
4728 -- it, and we do not insert the clause in the table to
4729 -- prevent spurious warnings.
4731 -- Note: we used to test Comes_From_Source and only give
4732 -- this warning for source entities, but we have removed
4733 -- this test. It really seems bogus to generate overlays
4734 -- that would trigger this warning in generated code.
4735 -- Furthermore, by removing the test, we handle the
4736 -- aspect case properly.
4738 if Address_Clause_Overlay_Warnings
4739 and then Present (O_Ent)
4740 and then Is_Object (O_Ent)
4741 then
4742 if not Is_Generic_Type (Etype (U_Ent)) then
4743 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4744 end if;
4746 -- If variable overlays a constant view, and we are
4747 -- warning on overlays, then mark the variable as
4748 -- overlaying a constant (we will give warnings later
4749 -- if this variable is assigned).
4751 if Is_Constant_Object (O_Ent)
4752 and then Ekind (U_Ent) = E_Variable
4753 then
4754 Set_Overlays_Constant (U_Ent);
4755 end if;
4756 end if;
4757 end;
4759 -- Not a valid entity for an address clause
4761 else
4762 Error_Msg_N ("address cannot be given for &", Nam);
4763 end if;
4764 end Address;
4766 ---------------
4767 -- Alignment --
4768 ---------------
4770 -- Alignment attribute definition clause
4772 when Attribute_Alignment => Alignment : declare
4773 Align : constant Uint := Get_Alignment_Value (Expr);
4774 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
4776 begin
4777 FOnly := True;
4779 if not Is_Type (U_Ent)
4780 and then Ekind (U_Ent) /= E_Variable
4781 and then Ekind (U_Ent) /= E_Constant
4782 then
4783 Error_Msg_N ("alignment cannot be given for &", Nam);
4785 elsif Duplicate_Clause then
4786 null;
4788 elsif Align /= No_Uint then
4789 Set_Has_Alignment_Clause (U_Ent);
4791 -- Tagged type case, check for attempt to set alignment to a
4792 -- value greater than Max_Align, and reset if so.
4794 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
4795 Error_Msg_N
4796 ("alignment for & set to Maximum_Aligment??", Nam);
4797 Set_Alignment (U_Ent, Max_Align);
4799 -- All other cases
4801 else
4802 Set_Alignment (U_Ent, Align);
4803 end if;
4805 -- For an array type, U_Ent is the first subtype. In that case,
4806 -- also set the alignment of the anonymous base type so that
4807 -- other subtypes (such as the itypes for aggregates of the
4808 -- type) also receive the expected alignment.
4810 if Is_Array_Type (U_Ent) then
4811 Set_Alignment (Base_Type (U_Ent), Align);
4812 end if;
4813 end if;
4814 end Alignment;
4816 ---------------
4817 -- Bit_Order --
4818 ---------------
4820 -- Bit_Order attribute definition clause
4822 when Attribute_Bit_Order => Bit_Order : declare
4823 begin
4824 if not Is_Record_Type (U_Ent) then
4825 Error_Msg_N
4826 ("Bit_Order can only be defined for record type", Nam);
4828 elsif Duplicate_Clause then
4829 null;
4831 else
4832 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4834 if Etype (Expr) = Any_Type then
4835 return;
4837 elsif not Is_OK_Static_Expression (Expr) then
4838 Flag_Non_Static_Expr
4839 ("Bit_Order requires static expression!", Expr);
4841 else
4842 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
4843 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
4844 end if;
4845 end if;
4846 end if;
4847 end Bit_Order;
4849 --------------------
4850 -- Component_Size --
4851 --------------------
4853 -- Component_Size attribute definition clause
4855 when Attribute_Component_Size => Component_Size_Case : declare
4856 Csize : constant Uint := Static_Integer (Expr);
4857 Ctyp : Entity_Id;
4858 Btype : Entity_Id;
4859 Biased : Boolean;
4860 New_Ctyp : Entity_Id;
4861 Decl : Node_Id;
4863 begin
4864 if not Is_Array_Type (U_Ent) then
4865 Error_Msg_N ("component size requires array type", Nam);
4866 return;
4867 end if;
4869 Btype := Base_Type (U_Ent);
4870 Ctyp := Component_Type (Btype);
4872 if Duplicate_Clause then
4873 null;
4875 elsif Rep_Item_Too_Early (Btype, N) then
4876 null;
4878 elsif Csize /= No_Uint then
4879 Check_Size (Expr, Ctyp, Csize, Biased);
4881 -- For the biased case, build a declaration for a subtype that
4882 -- will be used to represent the biased subtype that reflects
4883 -- the biased representation of components. We need the subtype
4884 -- to get proper conversions on referencing elements of the
4885 -- array. Note: component size clauses are ignored in VM mode.
4887 if VM_Target = No_VM then
4888 if Biased then
4889 New_Ctyp :=
4890 Make_Defining_Identifier (Loc,
4891 Chars =>
4892 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4894 Decl :=
4895 Make_Subtype_Declaration (Loc,
4896 Defining_Identifier => New_Ctyp,
4897 Subtype_Indication =>
4898 New_Occurrence_Of (Component_Type (Btype), Loc));
4900 Set_Parent (Decl, N);
4901 Analyze (Decl, Suppress => All_Checks);
4903 Set_Has_Delayed_Freeze (New_Ctyp, False);
4904 Set_Esize (New_Ctyp, Csize);
4905 Set_RM_Size (New_Ctyp, Csize);
4906 Init_Alignment (New_Ctyp);
4907 Set_Is_Itype (New_Ctyp, True);
4908 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
4910 Set_Component_Type (Btype, New_Ctyp);
4911 Set_Biased (New_Ctyp, N, "component size clause");
4912 end if;
4914 Set_Component_Size (Btype, Csize);
4916 -- For VM case, we ignore component size clauses
4918 else
4919 -- Give a warning unless we are in GNAT mode, in which case
4920 -- the warning is suppressed since it is not useful.
4922 if not GNAT_Mode then
4923 Error_Msg_N
4924 ("component size ignored in this configuration??", N);
4925 end if;
4926 end if;
4928 -- Deal with warning on overridden size
4930 if Warn_On_Overridden_Size
4931 and then Has_Size_Clause (Ctyp)
4932 and then RM_Size (Ctyp) /= Csize
4933 then
4934 Error_Msg_NE
4935 ("component size overrides size clause for&?S?", N, Ctyp);
4936 end if;
4938 Set_Has_Component_Size_Clause (Btype, True);
4939 Set_Has_Non_Standard_Rep (Btype, True);
4940 end if;
4941 end Component_Size_Case;
4943 -----------------------
4944 -- Constant_Indexing --
4945 -----------------------
4947 when Attribute_Constant_Indexing =>
4948 Check_Indexing_Functions;
4950 ---------
4951 -- CPU --
4952 ---------
4954 when Attribute_CPU => CPU :
4955 begin
4956 -- CPU attribute definition clause not allowed except from aspect
4957 -- specification.
4959 if From_Aspect_Specification (N) then
4960 if not Is_Task_Type (U_Ent) then
4961 Error_Msg_N ("CPU can only be defined for task", Nam);
4963 elsif Duplicate_Clause then
4964 null;
4966 else
4967 -- The expression must be analyzed in the special manner
4968 -- described in "Handling of Default and Per-Object
4969 -- Expressions" in sem.ads.
4971 -- The visibility to the discriminants must be restored
4973 Push_Scope_And_Install_Discriminants (U_Ent);
4974 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
4975 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4977 if not Is_OK_Static_Expression (Expr) then
4978 Check_Restriction (Static_Priorities, Expr);
4979 end if;
4980 end if;
4982 else
4983 Error_Msg_N
4984 ("attribute& cannot be set with definition clause", N);
4985 end if;
4986 end CPU;
4988 ----------------------
4989 -- Default_Iterator --
4990 ----------------------
4992 when Attribute_Default_Iterator => Default_Iterator : declare
4993 Func : Entity_Id;
4994 Typ : Entity_Id;
4996 begin
4997 -- If target type is untagged, further checks are irrelevant
4999 if not Is_Tagged_Type (U_Ent) then
5000 Error_Msg_N
5001 ("aspect Default_Iterator applies to tagged type", Nam);
5002 return;
5003 end if;
5005 Check_Iterator_Functions;
5007 Analyze (Expr);
5009 if not Is_Entity_Name (Expr)
5010 or else Ekind (Entity (Expr)) /= E_Function
5011 then
5012 Error_Msg_N ("aspect Iterator must be a function", Expr);
5013 return;
5014 else
5015 Func := Entity (Expr);
5016 end if;
5018 -- The type of the first parameter must be T, T'class, or a
5019 -- corresponding access type (5.5.1 (8/3). If function is
5020 -- parameterless label type accordingly.
5022 if No (First_Formal (Func)) then
5023 Typ := Any_Type;
5024 else
5025 Typ := Etype (First_Formal (Func));
5026 end if;
5028 if Typ = U_Ent
5029 or else Typ = Class_Wide_Type (U_Ent)
5030 or else (Is_Access_Type (Typ)
5031 and then Designated_Type (Typ) = U_Ent)
5032 or else (Is_Access_Type (Typ)
5033 and then Designated_Type (Typ) =
5034 Class_Wide_Type (U_Ent))
5035 then
5036 null;
5038 else
5039 Error_Msg_NE
5040 ("Default Iterator must be a primitive of&", Func, U_Ent);
5041 end if;
5042 end Default_Iterator;
5044 ------------------------
5045 -- Dispatching_Domain --
5046 ------------------------
5048 when Attribute_Dispatching_Domain => Dispatching_Domain :
5049 begin
5050 -- Dispatching_Domain attribute definition clause not allowed
5051 -- except from aspect specification.
5053 if From_Aspect_Specification (N) then
5054 if not Is_Task_Type (U_Ent) then
5055 Error_Msg_N
5056 ("Dispatching_Domain can only be defined for task", Nam);
5058 elsif Duplicate_Clause then
5059 null;
5061 else
5062 -- The expression must be analyzed in the special manner
5063 -- described in "Handling of Default and Per-Object
5064 -- Expressions" in sem.ads.
5066 -- The visibility to the discriminants must be restored
5068 Push_Scope_And_Install_Discriminants (U_Ent);
5070 Preanalyze_Spec_Expression
5071 (Expr, RTE (RE_Dispatching_Domain));
5073 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5074 end if;
5076 else
5077 Error_Msg_N
5078 ("attribute& cannot be set with definition clause", N);
5079 end if;
5080 end Dispatching_Domain;
5082 ------------------
5083 -- External_Tag --
5084 ------------------
5086 when Attribute_External_Tag => External_Tag :
5087 begin
5088 if not Is_Tagged_Type (U_Ent) then
5089 Error_Msg_N ("should be a tagged type", Nam);
5090 end if;
5092 if Duplicate_Clause then
5093 null;
5095 else
5096 Analyze_And_Resolve (Expr, Standard_String);
5098 if not Is_OK_Static_Expression (Expr) then
5099 Flag_Non_Static_Expr
5100 ("static string required for tag name!", Nam);
5101 end if;
5103 if VM_Target /= No_VM then
5104 Error_Msg_Name_1 := Attr;
5105 Error_Msg_N
5106 ("% attribute unsupported in this configuration", Nam);
5107 end if;
5109 if not Is_Library_Level_Entity (U_Ent) then
5110 Error_Msg_NE
5111 ("??non-unique external tag supplied for &", N, U_Ent);
5112 Error_Msg_N
5113 ("\??same external tag applies to all "
5114 & "subprogram calls", N);
5115 Error_Msg_N
5116 ("\??corresponding internal tag cannot be obtained", N);
5117 end if;
5118 end if;
5119 end External_Tag;
5121 --------------------------
5122 -- Implicit_Dereference --
5123 --------------------------
5125 when Attribute_Implicit_Dereference =>
5127 -- Legality checks already performed at the point of the type
5128 -- declaration, aspect is not delayed.
5130 null;
5132 -----------
5133 -- Input --
5134 -----------
5136 when Attribute_Input =>
5137 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5138 Set_Has_Specified_Stream_Input (Ent);
5140 ------------------------
5141 -- Interrupt_Priority --
5142 ------------------------
5144 when Attribute_Interrupt_Priority => Interrupt_Priority :
5145 begin
5146 -- Interrupt_Priority attribute definition clause not allowed
5147 -- except from aspect specification.
5149 if From_Aspect_Specification (N) then
5150 if not Is_Concurrent_Type (U_Ent) then
5151 Error_Msg_N
5152 ("Interrupt_Priority can only be defined for task "
5153 & "and protected object", Nam);
5155 elsif Duplicate_Clause then
5156 null;
5158 else
5159 -- The expression must be analyzed in the special manner
5160 -- described in "Handling of Default and Per-Object
5161 -- Expressions" in sem.ads.
5163 -- The visibility to the discriminants must be restored
5165 Push_Scope_And_Install_Discriminants (U_Ent);
5167 Preanalyze_Spec_Expression
5168 (Expr, RTE (RE_Interrupt_Priority));
5170 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5171 end if;
5173 else
5174 Error_Msg_N
5175 ("attribute& cannot be set with definition clause", N);
5176 end if;
5177 end Interrupt_Priority;
5179 --------------
5180 -- Iterable --
5181 --------------
5183 when Attribute_Iterable =>
5184 Analyze (Expr);
5186 if Nkind (Expr) /= N_Aggregate then
5187 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5188 end if;
5190 declare
5191 Assoc : Node_Id;
5193 begin
5194 Assoc := First (Component_Associations (Expr));
5195 while Present (Assoc) loop
5196 if not Is_Entity_Name (Expression (Assoc)) then
5197 Error_Msg_N ("value must be a function", Assoc);
5198 end if;
5200 Next (Assoc);
5201 end loop;
5202 end;
5204 ----------------------
5205 -- Iterator_Element --
5206 ----------------------
5208 when Attribute_Iterator_Element =>
5209 Analyze (Expr);
5211 if not Is_Entity_Name (Expr)
5212 or else not Is_Type (Entity (Expr))
5213 then
5214 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5215 end if;
5217 -------------------
5218 -- Machine_Radix --
5219 -------------------
5221 -- Machine radix attribute definition clause
5223 when Attribute_Machine_Radix => Machine_Radix : declare
5224 Radix : constant Uint := Static_Integer (Expr);
5226 begin
5227 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5228 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5230 elsif Duplicate_Clause then
5231 null;
5233 elsif Radix /= No_Uint then
5234 Set_Has_Machine_Radix_Clause (U_Ent);
5235 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5237 if Radix = 2 then
5238 null;
5239 elsif Radix = 10 then
5240 Set_Machine_Radix_10 (U_Ent);
5241 else
5242 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5243 end if;
5244 end if;
5245 end Machine_Radix;
5247 -----------------
5248 -- Object_Size --
5249 -----------------
5251 -- Object_Size attribute definition clause
5253 when Attribute_Object_Size => Object_Size : declare
5254 Size : constant Uint := Static_Integer (Expr);
5256 Biased : Boolean;
5257 pragma Warnings (Off, Biased);
5259 begin
5260 if not Is_Type (U_Ent) then
5261 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5263 elsif Duplicate_Clause then
5264 null;
5266 else
5267 Check_Size (Expr, U_Ent, Size, Biased);
5269 if Is_Scalar_Type (U_Ent) then
5270 if Size /= 8 and then Size /= 16 and then Size /= 32
5271 and then UI_Mod (Size, 64) /= 0
5272 then
5273 Error_Msg_N
5274 ("Object_Size must be 8, 16, 32, or multiple of 64",
5275 Expr);
5276 end if;
5278 elsif Size mod 8 /= 0 then
5279 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5280 end if;
5282 Set_Esize (U_Ent, Size);
5283 Set_Has_Object_Size_Clause (U_Ent);
5284 Alignment_Check_For_Size_Change (U_Ent, Size);
5285 end if;
5286 end Object_Size;
5288 ------------
5289 -- Output --
5290 ------------
5292 when Attribute_Output =>
5293 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5294 Set_Has_Specified_Stream_Output (Ent);
5296 --------------
5297 -- Priority --
5298 --------------
5300 when Attribute_Priority => Priority :
5301 begin
5302 -- Priority attribute definition clause not allowed except from
5303 -- aspect specification.
5305 if From_Aspect_Specification (N) then
5306 if not (Is_Concurrent_Type (U_Ent)
5307 or else Ekind (U_Ent) = E_Procedure)
5308 then
5309 Error_Msg_N
5310 ("Priority can only be defined for task and protected "
5311 & "object", Nam);
5313 elsif Duplicate_Clause then
5314 null;
5316 else
5317 -- The expression must be analyzed in the special manner
5318 -- described in "Handling of Default and Per-Object
5319 -- Expressions" in sem.ads.
5321 -- The visibility to the discriminants must be restored
5323 Push_Scope_And_Install_Discriminants (U_Ent);
5324 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5325 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5327 if not Is_OK_Static_Expression (Expr) then
5328 Check_Restriction (Static_Priorities, Expr);
5329 end if;
5330 end if;
5332 else
5333 Error_Msg_N
5334 ("attribute& cannot be set with definition clause", N);
5335 end if;
5336 end Priority;
5338 ----------
5339 -- Read --
5340 ----------
5342 when Attribute_Read =>
5343 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5344 Set_Has_Specified_Stream_Read (Ent);
5346 --------------------------
5347 -- Scalar_Storage_Order --
5348 --------------------------
5350 -- Scalar_Storage_Order attribute definition clause
5352 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5353 begin
5354 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5355 Error_Msg_N
5356 ("Scalar_Storage_Order can only be defined for "
5357 & "record or array type", Nam);
5359 elsif Duplicate_Clause then
5360 null;
5362 else
5363 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5365 if Etype (Expr) = Any_Type then
5366 return;
5368 elsif not Is_OK_Static_Expression (Expr) then
5369 Flag_Non_Static_Expr
5370 ("Scalar_Storage_Order requires static expression!", Expr);
5372 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5374 -- Here for the case of a non-default (i.e. non-confirming)
5375 -- Scalar_Storage_Order attribute definition.
5377 if Support_Nondefault_SSO_On_Target then
5378 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5379 else
5380 Error_Msg_N
5381 ("non-default Scalar_Storage_Order "
5382 & "not supported on target", Expr);
5383 end if;
5384 end if;
5386 -- Clear SSO default indications since explicit setting of the
5387 -- order overrides the defaults.
5389 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5390 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5391 end if;
5392 end Scalar_Storage_Order;
5394 ----------
5395 -- Size --
5396 ----------
5398 -- Size attribute definition clause
5400 when Attribute_Size => Size : declare
5401 Size : constant Uint := Static_Integer (Expr);
5402 Etyp : Entity_Id;
5403 Biased : Boolean;
5405 begin
5406 FOnly := True;
5408 if Duplicate_Clause then
5409 null;
5411 elsif not Is_Type (U_Ent)
5412 and then Ekind (U_Ent) /= E_Variable
5413 and then Ekind (U_Ent) /= E_Constant
5414 then
5415 Error_Msg_N ("size cannot be given for &", Nam);
5417 elsif Is_Array_Type (U_Ent)
5418 and then not Is_Constrained (U_Ent)
5419 then
5420 Error_Msg_N
5421 ("size cannot be given for unconstrained array", Nam);
5423 elsif Size /= No_Uint then
5424 if VM_Target /= No_VM and then not GNAT_Mode then
5426 -- Size clause is not handled properly on VM targets.
5427 -- Display a warning unless we are in GNAT mode, in which
5428 -- case this is useless.
5430 Error_Msg_N
5431 ("size clauses are ignored in this configuration??", N);
5432 end if;
5434 if Is_Type (U_Ent) then
5435 Etyp := U_Ent;
5436 else
5437 Etyp := Etype (U_Ent);
5438 end if;
5440 -- Check size, note that Gigi is in charge of checking that the
5441 -- size of an array or record type is OK. Also we do not check
5442 -- the size in the ordinary fixed-point case, since it is too
5443 -- early to do so (there may be subsequent small clause that
5444 -- affects the size). We can check the size if a small clause
5445 -- has already been given.
5447 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5448 or else Has_Small_Clause (U_Ent)
5449 then
5450 Check_Size (Expr, Etyp, Size, Biased);
5451 Set_Biased (U_Ent, N, "size clause", Biased);
5452 end if;
5454 -- For types set RM_Size and Esize if possible
5456 if Is_Type (U_Ent) then
5457 Set_RM_Size (U_Ent, Size);
5459 -- For elementary types, increase Object_Size to power of 2,
5460 -- but not less than a storage unit in any case (normally
5461 -- this means it will be byte addressable).
5463 -- For all other types, nothing else to do, we leave Esize
5464 -- (object size) unset, the back end will set it from the
5465 -- size and alignment in an appropriate manner.
5467 -- In both cases, we check whether the alignment must be
5468 -- reset in the wake of the size change.
5470 if Is_Elementary_Type (U_Ent) then
5471 if Size <= System_Storage_Unit then
5472 Init_Esize (U_Ent, System_Storage_Unit);
5473 elsif Size <= 16 then
5474 Init_Esize (U_Ent, 16);
5475 elsif Size <= 32 then
5476 Init_Esize (U_Ent, 32);
5477 else
5478 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5479 end if;
5481 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5482 else
5483 Alignment_Check_For_Size_Change (U_Ent, Size);
5484 end if;
5486 -- For objects, set Esize only
5488 else
5489 if Is_Elementary_Type (Etyp) then
5490 if Size /= System_Storage_Unit
5491 and then
5492 Size /= System_Storage_Unit * 2
5493 and then
5494 Size /= System_Storage_Unit * 4
5495 and then
5496 Size /= System_Storage_Unit * 8
5497 then
5498 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5499 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5500 Error_Msg_N
5501 ("size for primitive object must be a power of 2"
5502 & " in the range ^-^", N);
5503 end if;
5504 end if;
5506 Set_Esize (U_Ent, Size);
5507 end if;
5509 Set_Has_Size_Clause (U_Ent);
5510 end if;
5511 end Size;
5513 -----------
5514 -- Small --
5515 -----------
5517 -- Small attribute definition clause
5519 when Attribute_Small => Small : declare
5520 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5521 Small : Ureal;
5523 begin
5524 Analyze_And_Resolve (Expr, Any_Real);
5526 if Etype (Expr) = Any_Type then
5527 return;
5529 elsif not Is_OK_Static_Expression (Expr) then
5530 Flag_Non_Static_Expr
5531 ("small requires static expression!", Expr);
5532 return;
5534 else
5535 Small := Expr_Value_R (Expr);
5537 if Small <= Ureal_0 then
5538 Error_Msg_N ("small value must be greater than zero", Expr);
5539 return;
5540 end if;
5542 end if;
5544 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5545 Error_Msg_N
5546 ("small requires an ordinary fixed point type", Nam);
5548 elsif Has_Small_Clause (U_Ent) then
5549 Error_Msg_N ("small already given for &", Nam);
5551 elsif Small > Delta_Value (U_Ent) then
5552 Error_Msg_N
5553 ("small value must not be greater than delta value", Nam);
5555 else
5556 Set_Small_Value (U_Ent, Small);
5557 Set_Small_Value (Implicit_Base, Small);
5558 Set_Has_Small_Clause (U_Ent);
5559 Set_Has_Small_Clause (Implicit_Base);
5560 Set_Has_Non_Standard_Rep (Implicit_Base);
5561 end if;
5562 end Small;
5564 ------------------
5565 -- Storage_Pool --
5566 ------------------
5568 -- Storage_Pool attribute definition clause
5570 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
5571 Pool : Entity_Id;
5572 T : Entity_Id;
5574 begin
5575 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5576 Error_Msg_N
5577 ("storage pool cannot be given for access-to-subprogram type",
5578 Nam);
5579 return;
5581 elsif not
5582 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
5583 then
5584 Error_Msg_N
5585 ("storage pool can only be given for access types", Nam);
5586 return;
5588 elsif Is_Derived_Type (U_Ent) then
5589 Error_Msg_N
5590 ("storage pool cannot be given for a derived access type",
5591 Nam);
5593 elsif Duplicate_Clause then
5594 return;
5596 elsif Present (Associated_Storage_Pool (U_Ent)) then
5597 Error_Msg_N ("storage pool already given for &", Nam);
5598 return;
5599 end if;
5601 -- Check for Storage_Size previously given
5603 declare
5604 SS : constant Node_Id :=
5605 Get_Attribute_Definition_Clause
5606 (U_Ent, Attribute_Storage_Size);
5607 begin
5608 if Present (SS) then
5609 Check_Pool_Size_Clash (U_Ent, N, SS);
5610 end if;
5611 end;
5613 -- Storage_Pool case
5615 if Id = Attribute_Storage_Pool then
5616 Analyze_And_Resolve
5617 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5619 -- In the Simple_Storage_Pool case, we allow a variable of any
5620 -- simple storage pool type, so we Resolve without imposing an
5621 -- expected type.
5623 else
5624 Analyze_And_Resolve (Expr);
5626 if not Present (Get_Rep_Pragma
5627 (Etype (Expr), Name_Simple_Storage_Pool_Type))
5628 then
5629 Error_Msg_N
5630 ("expression must be of a simple storage pool type", Expr);
5631 end if;
5632 end if;
5634 if not Denotes_Variable (Expr) then
5635 Error_Msg_N ("storage pool must be a variable", Expr);
5636 return;
5637 end if;
5639 if Nkind (Expr) = N_Type_Conversion then
5640 T := Etype (Expression (Expr));
5641 else
5642 T := Etype (Expr);
5643 end if;
5645 -- The Stack_Bounded_Pool is used internally for implementing
5646 -- access types with a Storage_Size. Since it only work properly
5647 -- when used on one specific type, we need to check that it is not
5648 -- hijacked improperly:
5650 -- type T is access Integer;
5651 -- for T'Storage_Size use n;
5652 -- type Q is access Float;
5653 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5655 if RTE_Available (RE_Stack_Bounded_Pool)
5656 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5657 then
5658 Error_Msg_N ("non-shareable internal Pool", Expr);
5659 return;
5660 end if;
5662 -- If the argument is a name that is not an entity name, then
5663 -- we construct a renaming operation to define an entity of
5664 -- type storage pool.
5666 if not Is_Entity_Name (Expr)
5667 and then Is_Object_Reference (Expr)
5668 then
5669 Pool := Make_Temporary (Loc, 'P', Expr);
5671 declare
5672 Rnode : constant Node_Id :=
5673 Make_Object_Renaming_Declaration (Loc,
5674 Defining_Identifier => Pool,
5675 Subtype_Mark =>
5676 New_Occurrence_Of (Etype (Expr), Loc),
5677 Name => Expr);
5679 begin
5680 -- If the attribute definition clause comes from an aspect
5681 -- clause, then insert the renaming before the associated
5682 -- entity's declaration, since the attribute clause has
5683 -- not yet been appended to the declaration list.
5685 if From_Aspect_Specification (N) then
5686 Insert_Before (Parent (Entity (N)), Rnode);
5687 else
5688 Insert_Before (N, Rnode);
5689 end if;
5691 Analyze (Rnode);
5692 Set_Associated_Storage_Pool (U_Ent, Pool);
5693 end;
5695 elsif Is_Entity_Name (Expr) then
5696 Pool := Entity (Expr);
5698 -- If pool is a renamed object, get original one. This can
5699 -- happen with an explicit renaming, and within instances.
5701 while Present (Renamed_Object (Pool))
5702 and then Is_Entity_Name (Renamed_Object (Pool))
5703 loop
5704 Pool := Entity (Renamed_Object (Pool));
5705 end loop;
5707 if Present (Renamed_Object (Pool))
5708 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5709 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5710 then
5711 Pool := Entity (Expression (Renamed_Object (Pool)));
5712 end if;
5714 Set_Associated_Storage_Pool (U_Ent, Pool);
5716 elsif Nkind (Expr) = N_Type_Conversion
5717 and then Is_Entity_Name (Expression (Expr))
5718 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5719 then
5720 Pool := Entity (Expression (Expr));
5721 Set_Associated_Storage_Pool (U_Ent, Pool);
5723 else
5724 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5725 return;
5726 end if;
5727 end;
5729 ------------------
5730 -- Storage_Size --
5731 ------------------
5733 -- Storage_Size attribute definition clause
5735 when Attribute_Storage_Size => Storage_Size : declare
5736 Btype : constant Entity_Id := Base_Type (U_Ent);
5738 begin
5739 if Is_Task_Type (U_Ent) then
5741 -- Check obsolescent (but never obsolescent if from aspect)
5743 if not From_Aspect_Specification (N) then
5744 Check_Restriction (No_Obsolescent_Features, N);
5746 if Warn_On_Obsolescent_Feature then
5747 Error_Msg_N
5748 ("?j?storage size clause for task is an " &
5749 "obsolescent feature (RM J.9)", N);
5750 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5751 end if;
5752 end if;
5754 FOnly := True;
5755 end if;
5757 if not Is_Access_Type (U_Ent)
5758 and then Ekind (U_Ent) /= E_Task_Type
5759 then
5760 Error_Msg_N ("storage size cannot be given for &", Nam);
5762 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5763 Error_Msg_N
5764 ("storage size cannot be given for a derived access type",
5765 Nam);
5767 elsif Duplicate_Clause then
5768 null;
5770 else
5771 Analyze_And_Resolve (Expr, Any_Integer);
5773 if Is_Access_Type (U_Ent) then
5775 -- Check for Storage_Pool previously given
5777 declare
5778 SP : constant Node_Id :=
5779 Get_Attribute_Definition_Clause
5780 (U_Ent, Attribute_Storage_Pool);
5782 begin
5783 if Present (SP) then
5784 Check_Pool_Size_Clash (U_Ent, SP, N);
5785 end if;
5786 end;
5788 -- Special case of for x'Storage_Size use 0
5790 if Is_OK_Static_Expression (Expr)
5791 and then Expr_Value (Expr) = 0
5792 then
5793 Set_No_Pool_Assigned (Btype);
5794 end if;
5795 end if;
5797 Set_Has_Storage_Size_Clause (Btype);
5798 end if;
5799 end Storage_Size;
5801 -----------------
5802 -- Stream_Size --
5803 -----------------
5805 when Attribute_Stream_Size => Stream_Size : declare
5806 Size : constant Uint := Static_Integer (Expr);
5808 begin
5809 if Ada_Version <= Ada_95 then
5810 Check_Restriction (No_Implementation_Attributes, N);
5811 end if;
5813 if Duplicate_Clause then
5814 null;
5816 elsif Is_Elementary_Type (U_Ent) then
5817 if Size /= System_Storage_Unit
5818 and then
5819 Size /= System_Storage_Unit * 2
5820 and then
5821 Size /= System_Storage_Unit * 4
5822 and then
5823 Size /= System_Storage_Unit * 8
5824 then
5825 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5826 Error_Msg_N
5827 ("stream size for elementary type must be a"
5828 & " power of 2 and at least ^", N);
5830 elsif RM_Size (U_Ent) > Size then
5831 Error_Msg_Uint_1 := RM_Size (U_Ent);
5832 Error_Msg_N
5833 ("stream size for elementary type must be a"
5834 & " power of 2 and at least ^", N);
5835 end if;
5837 Set_Has_Stream_Size_Clause (U_Ent);
5839 else
5840 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5841 end if;
5842 end Stream_Size;
5844 ----------------
5845 -- Value_Size --
5846 ----------------
5848 -- Value_Size attribute definition clause
5850 when Attribute_Value_Size => Value_Size : declare
5851 Size : constant Uint := Static_Integer (Expr);
5852 Biased : Boolean;
5854 begin
5855 if not Is_Type (U_Ent) then
5856 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5858 elsif Duplicate_Clause then
5859 null;
5861 elsif Is_Array_Type (U_Ent)
5862 and then not Is_Constrained (U_Ent)
5863 then
5864 Error_Msg_N
5865 ("Value_Size cannot be given for unconstrained array", Nam);
5867 else
5868 if Is_Elementary_Type (U_Ent) then
5869 Check_Size (Expr, U_Ent, Size, Biased);
5870 Set_Biased (U_Ent, N, "value size clause", Biased);
5871 end if;
5873 Set_RM_Size (U_Ent, Size);
5874 end if;
5875 end Value_Size;
5877 -----------------------
5878 -- Variable_Indexing --
5879 -----------------------
5881 when Attribute_Variable_Indexing =>
5882 Check_Indexing_Functions;
5884 -----------
5885 -- Write --
5886 -----------
5888 when Attribute_Write =>
5889 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
5890 Set_Has_Specified_Stream_Write (Ent);
5892 -- All other attributes cannot be set
5894 when others =>
5895 Error_Msg_N
5896 ("attribute& cannot be set with definition clause", N);
5897 end case;
5899 -- The test for the type being frozen must be performed after any
5900 -- expression the clause has been analyzed since the expression itself
5901 -- might cause freezing that makes the clause illegal.
5903 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
5904 return;
5905 end if;
5906 end Analyze_Attribute_Definition_Clause;
5908 ----------------------------
5909 -- Analyze_Code_Statement --
5910 ----------------------------
5912 procedure Analyze_Code_Statement (N : Node_Id) is
5913 HSS : constant Node_Id := Parent (N);
5914 SBody : constant Node_Id := Parent (HSS);
5915 Subp : constant Entity_Id := Current_Scope;
5916 Stmt : Node_Id;
5917 Decl : Node_Id;
5918 StmtO : Node_Id;
5919 DeclO : Node_Id;
5921 begin
5922 -- Analyze and check we get right type, note that this implements the
5923 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5924 -- is the only way that Asm_Insn could possibly be visible.
5926 Analyze_And_Resolve (Expression (N));
5928 if Etype (Expression (N)) = Any_Type then
5929 return;
5930 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
5931 Error_Msg_N ("incorrect type for code statement", N);
5932 return;
5933 end if;
5935 Check_Code_Statement (N);
5937 -- Make sure we appear in the handled statement sequence of a
5938 -- subprogram (RM 13.8(3)).
5940 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
5941 or else Nkind (SBody) /= N_Subprogram_Body
5942 then
5943 Error_Msg_N
5944 ("code statement can only appear in body of subprogram", N);
5945 return;
5946 end if;
5948 -- Do remaining checks (RM 13.8(3)) if not already done
5950 if not Is_Machine_Code_Subprogram (Subp) then
5951 Set_Is_Machine_Code_Subprogram (Subp);
5953 -- No exception handlers allowed
5955 if Present (Exception_Handlers (HSS)) then
5956 Error_Msg_N
5957 ("exception handlers not permitted in machine code subprogram",
5958 First (Exception_Handlers (HSS)));
5959 end if;
5961 -- No declarations other than use clauses and pragmas (we allow
5962 -- certain internally generated declarations as well).
5964 Decl := First (Declarations (SBody));
5965 while Present (Decl) loop
5966 DeclO := Original_Node (Decl);
5967 if Comes_From_Source (DeclO)
5968 and not Nkind_In (DeclO, N_Pragma,
5969 N_Use_Package_Clause,
5970 N_Use_Type_Clause,
5971 N_Implicit_Label_Declaration)
5972 then
5973 Error_Msg_N
5974 ("this declaration not allowed in machine code subprogram",
5975 DeclO);
5976 end if;
5978 Next (Decl);
5979 end loop;
5981 -- No statements other than code statements, pragmas, and labels.
5982 -- Again we allow certain internally generated statements.
5984 -- In Ada 2012, qualified expressions are names, and the code
5985 -- statement is initially parsed as a procedure call.
5987 Stmt := First (Statements (HSS));
5988 while Present (Stmt) loop
5989 StmtO := Original_Node (Stmt);
5991 -- A procedure call transformed into a code statement is OK.
5993 if Ada_Version >= Ada_2012
5994 and then Nkind (StmtO) = N_Procedure_Call_Statement
5995 and then Nkind (Name (StmtO)) = N_Qualified_Expression
5996 then
5997 null;
5999 elsif Comes_From_Source (StmtO)
6000 and then not Nkind_In (StmtO, N_Pragma,
6001 N_Label,
6002 N_Code_Statement)
6003 then
6004 Error_Msg_N
6005 ("this statement is not allowed in machine code subprogram",
6006 StmtO);
6007 end if;
6009 Next (Stmt);
6010 end loop;
6011 end if;
6012 end Analyze_Code_Statement;
6014 -----------------------------------------------
6015 -- Analyze_Enumeration_Representation_Clause --
6016 -----------------------------------------------
6018 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6019 Ident : constant Node_Id := Identifier (N);
6020 Aggr : constant Node_Id := Array_Aggregate (N);
6021 Enumtype : Entity_Id;
6022 Elit : Entity_Id;
6023 Expr : Node_Id;
6024 Assoc : Node_Id;
6025 Choice : Node_Id;
6026 Val : Uint;
6028 Err : Boolean := False;
6029 -- Set True to avoid cascade errors and crashes on incorrect source code
6031 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6032 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6033 -- Allowed range of universal integer (= allowed range of enum lit vals)
6035 Min : Uint;
6036 Max : Uint;
6037 -- Minimum and maximum values of entries
6039 Max_Node : Node_Id;
6040 -- Pointer to node for literal providing max value
6042 begin
6043 if Ignore_Rep_Clauses then
6044 Kill_Rep_Clause (N);
6045 return;
6046 end if;
6048 -- Ignore enumeration rep clauses by default in CodePeer mode,
6049 -- unless -gnatd.I is specified, as a work around for potential false
6050 -- positive messages.
6052 if CodePeer_Mode and not Debug_Flag_Dot_II then
6053 return;
6054 end if;
6056 -- First some basic error checks
6058 Find_Type (Ident);
6059 Enumtype := Entity (Ident);
6061 if Enumtype = Any_Type
6062 or else Rep_Item_Too_Early (Enumtype, N)
6063 then
6064 return;
6065 else
6066 Enumtype := Underlying_Type (Enumtype);
6067 end if;
6069 if not Is_Enumeration_Type (Enumtype) then
6070 Error_Msg_NE
6071 ("enumeration type required, found}",
6072 Ident, First_Subtype (Enumtype));
6073 return;
6074 end if;
6076 -- Ignore rep clause on generic actual type. This will already have
6077 -- been flagged on the template as an error, and this is the safest
6078 -- way to ensure we don't get a junk cascaded message in the instance.
6080 if Is_Generic_Actual_Type (Enumtype) then
6081 return;
6083 -- Type must be in current scope
6085 elsif Scope (Enumtype) /= Current_Scope then
6086 Error_Msg_N ("type must be declared in this scope", Ident);
6087 return;
6089 -- Type must be a first subtype
6091 elsif not Is_First_Subtype (Enumtype) then
6092 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6093 return;
6095 -- Ignore duplicate rep clause
6097 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6098 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6099 return;
6101 -- Don't allow rep clause for standard [wide_[wide_]]character
6103 elsif Is_Standard_Character_Type (Enumtype) then
6104 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6105 return;
6107 -- Check that the expression is a proper aggregate (no parentheses)
6109 elsif Paren_Count (Aggr) /= 0 then
6110 Error_Msg
6111 ("extra parentheses surrounding aggregate not allowed",
6112 First_Sloc (Aggr));
6113 return;
6115 -- All tests passed, so set rep clause in place
6117 else
6118 Set_Has_Enumeration_Rep_Clause (Enumtype);
6119 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6120 end if;
6122 -- Now we process the aggregate. Note that we don't use the normal
6123 -- aggregate code for this purpose, because we don't want any of the
6124 -- normal expansion activities, and a number of special semantic
6125 -- rules apply (including the component type being any integer type)
6127 Elit := First_Literal (Enumtype);
6129 -- First the positional entries if any
6131 if Present (Expressions (Aggr)) then
6132 Expr := First (Expressions (Aggr));
6133 while Present (Expr) loop
6134 if No (Elit) then
6135 Error_Msg_N ("too many entries in aggregate", Expr);
6136 return;
6137 end if;
6139 Val := Static_Integer (Expr);
6141 -- Err signals that we found some incorrect entries processing
6142 -- the list. The final checks for completeness and ordering are
6143 -- skipped in this case.
6145 if Val = No_Uint then
6146 Err := True;
6148 elsif Val < Lo or else Hi < Val then
6149 Error_Msg_N ("value outside permitted range", Expr);
6150 Err := True;
6151 end if;
6153 Set_Enumeration_Rep (Elit, Val);
6154 Set_Enumeration_Rep_Expr (Elit, Expr);
6155 Next (Expr);
6156 Next (Elit);
6157 end loop;
6158 end if;
6160 -- Now process the named entries if present
6162 if Present (Component_Associations (Aggr)) then
6163 Assoc := First (Component_Associations (Aggr));
6164 while Present (Assoc) loop
6165 Choice := First (Choices (Assoc));
6167 if Present (Next (Choice)) then
6168 Error_Msg_N
6169 ("multiple choice not allowed here", Next (Choice));
6170 Err := True;
6171 end if;
6173 if Nkind (Choice) = N_Others_Choice then
6174 Error_Msg_N ("others choice not allowed here", Choice);
6175 Err := True;
6177 elsif Nkind (Choice) = N_Range then
6179 -- ??? should allow zero/one element range here
6181 Error_Msg_N ("range not allowed here", Choice);
6182 Err := True;
6184 else
6185 Analyze_And_Resolve (Choice, Enumtype);
6187 if Error_Posted (Choice) then
6188 Err := True;
6189 end if;
6191 if not Err then
6192 if Is_Entity_Name (Choice)
6193 and then Is_Type (Entity (Choice))
6194 then
6195 Error_Msg_N ("subtype name not allowed here", Choice);
6196 Err := True;
6198 -- ??? should allow static subtype with zero/one entry
6200 elsif Etype (Choice) = Base_Type (Enumtype) then
6201 if not Is_OK_Static_Expression (Choice) then
6202 Flag_Non_Static_Expr
6203 ("non-static expression used for choice!", Choice);
6204 Err := True;
6206 else
6207 Elit := Expr_Value_E (Choice);
6209 if Present (Enumeration_Rep_Expr (Elit)) then
6210 Error_Msg_Sloc :=
6211 Sloc (Enumeration_Rep_Expr (Elit));
6212 Error_Msg_NE
6213 ("representation for& previously given#",
6214 Choice, Elit);
6215 Err := True;
6216 end if;
6218 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6220 Expr := Expression (Assoc);
6221 Val := Static_Integer (Expr);
6223 if Val = No_Uint then
6224 Err := True;
6226 elsif Val < Lo or else Hi < Val then
6227 Error_Msg_N ("value outside permitted range", Expr);
6228 Err := True;
6229 end if;
6231 Set_Enumeration_Rep (Elit, Val);
6232 end if;
6233 end if;
6234 end if;
6235 end if;
6237 Next (Assoc);
6238 end loop;
6239 end if;
6241 -- Aggregate is fully processed. Now we check that a full set of
6242 -- representations was given, and that they are in range and in order.
6243 -- These checks are only done if no other errors occurred.
6245 if not Err then
6246 Min := No_Uint;
6247 Max := No_Uint;
6249 Elit := First_Literal (Enumtype);
6250 while Present (Elit) loop
6251 if No (Enumeration_Rep_Expr (Elit)) then
6252 Error_Msg_NE ("missing representation for&!", N, Elit);
6254 else
6255 Val := Enumeration_Rep (Elit);
6257 if Min = No_Uint then
6258 Min := Val;
6259 end if;
6261 if Val /= No_Uint then
6262 if Max /= No_Uint and then Val <= Max then
6263 Error_Msg_NE
6264 ("enumeration value for& not ordered!",
6265 Enumeration_Rep_Expr (Elit), Elit);
6266 end if;
6268 Max_Node := Enumeration_Rep_Expr (Elit);
6269 Max := Val;
6270 end if;
6272 -- If there is at least one literal whose representation is not
6273 -- equal to the Pos value, then note that this enumeration type
6274 -- has a non-standard representation.
6276 if Val /= Enumeration_Pos (Elit) then
6277 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6278 end if;
6279 end if;
6281 Next (Elit);
6282 end loop;
6284 -- Now set proper size information
6286 declare
6287 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6289 begin
6290 if Has_Size_Clause (Enumtype) then
6292 -- All OK, if size is OK now
6294 if RM_Size (Enumtype) >= Minsize then
6295 null;
6297 else
6298 -- Try if we can get by with biasing
6300 Minsize :=
6301 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6303 -- Error message if even biasing does not work
6305 if RM_Size (Enumtype) < Minsize then
6306 Error_Msg_Uint_1 := RM_Size (Enumtype);
6307 Error_Msg_Uint_2 := Max;
6308 Error_Msg_N
6309 ("previously given size (^) is too small "
6310 & "for this value (^)", Max_Node);
6312 -- If biasing worked, indicate that we now have biased rep
6314 else
6315 Set_Biased
6316 (Enumtype, Size_Clause (Enumtype), "size clause");
6317 end if;
6318 end if;
6320 else
6321 Set_RM_Size (Enumtype, Minsize);
6322 Set_Enum_Esize (Enumtype);
6323 end if;
6325 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6326 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6327 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6328 end;
6329 end if;
6331 -- We repeat the too late test in case it froze itself
6333 if Rep_Item_Too_Late (Enumtype, N) then
6334 null;
6335 end if;
6336 end Analyze_Enumeration_Representation_Clause;
6338 ----------------------------
6339 -- Analyze_Free_Statement --
6340 ----------------------------
6342 procedure Analyze_Free_Statement (N : Node_Id) is
6343 begin
6344 Analyze (Expression (N));
6345 end Analyze_Free_Statement;
6347 ---------------------------
6348 -- Analyze_Freeze_Entity --
6349 ---------------------------
6351 procedure Analyze_Freeze_Entity (N : Node_Id) is
6352 begin
6353 Freeze_Entity_Checks (N);
6354 end Analyze_Freeze_Entity;
6356 -----------------------------------
6357 -- Analyze_Freeze_Generic_Entity --
6358 -----------------------------------
6360 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6361 begin
6362 Freeze_Entity_Checks (N);
6363 end Analyze_Freeze_Generic_Entity;
6365 ------------------------------------------
6366 -- Analyze_Record_Representation_Clause --
6367 ------------------------------------------
6369 -- Note: we check as much as we can here, but we can't do any checks
6370 -- based on the position values (e.g. overlap checks) until freeze time
6371 -- because especially in Ada 2005 (machine scalar mode), the processing
6372 -- for non-standard bit order can substantially change the positions.
6373 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6374 -- for the remainder of this processing.
6376 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6377 Ident : constant Node_Id := Identifier (N);
6378 Biased : Boolean;
6379 CC : Node_Id;
6380 Comp : Entity_Id;
6381 Fbit : Uint;
6382 Hbit : Uint := Uint_0;
6383 Lbit : Uint;
6384 Ocomp : Entity_Id;
6385 Posit : Uint;
6386 Rectype : Entity_Id;
6387 Recdef : Node_Id;
6389 function Is_Inherited (Comp : Entity_Id) return Boolean;
6390 -- True if Comp is an inherited component in a record extension
6392 ------------------
6393 -- Is_Inherited --
6394 ------------------
6396 function Is_Inherited (Comp : Entity_Id) return Boolean is
6397 Comp_Base : Entity_Id;
6399 begin
6400 if Ekind (Rectype) = E_Record_Subtype then
6401 Comp_Base := Original_Record_Component (Comp);
6402 else
6403 Comp_Base := Comp;
6404 end if;
6406 return Comp_Base /= Original_Record_Component (Comp_Base);
6407 end Is_Inherited;
6409 -- Local variables
6411 Is_Record_Extension : Boolean;
6412 -- True if Rectype is a record extension
6414 CR_Pragma : Node_Id := Empty;
6415 -- Points to N_Pragma node if Complete_Representation pragma present
6417 -- Start of processing for Analyze_Record_Representation_Clause
6419 begin
6420 if Ignore_Rep_Clauses then
6421 Kill_Rep_Clause (N);
6422 return;
6423 end if;
6425 Find_Type (Ident);
6426 Rectype := Entity (Ident);
6428 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6429 return;
6430 else
6431 Rectype := Underlying_Type (Rectype);
6432 end if;
6434 -- First some basic error checks
6436 if not Is_Record_Type (Rectype) then
6437 Error_Msg_NE
6438 ("record type required, found}", Ident, First_Subtype (Rectype));
6439 return;
6441 elsif Scope (Rectype) /= Current_Scope then
6442 Error_Msg_N ("type must be declared in this scope", N);
6443 return;
6445 elsif not Is_First_Subtype (Rectype) then
6446 Error_Msg_N ("cannot give record rep clause for subtype", N);
6447 return;
6449 elsif Has_Record_Rep_Clause (Rectype) then
6450 Error_Msg_N ("duplicate record rep clause ignored", N);
6451 return;
6453 elsif Rep_Item_Too_Late (Rectype, N) then
6454 return;
6455 end if;
6457 -- We know we have a first subtype, now possibly go the the anonymous
6458 -- base type to determine whether Rectype is a record extension.
6460 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6461 Is_Record_Extension :=
6462 Nkind (Recdef) = N_Derived_Type_Definition
6463 and then Present (Record_Extension_Part (Recdef));
6465 if Present (Mod_Clause (N)) then
6466 declare
6467 Loc : constant Source_Ptr := Sloc (N);
6468 M : constant Node_Id := Mod_Clause (N);
6469 P : constant List_Id := Pragmas_Before (M);
6470 AtM_Nod : Node_Id;
6472 Mod_Val : Uint;
6473 pragma Warnings (Off, Mod_Val);
6475 begin
6476 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6478 if Warn_On_Obsolescent_Feature then
6479 Error_Msg_N
6480 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6481 Error_Msg_N
6482 ("\?j?use alignment attribute definition clause instead", N);
6483 end if;
6485 if Present (P) then
6486 Analyze_List (P);
6487 end if;
6489 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6490 -- the Mod clause into an alignment clause anyway, so that the
6491 -- back-end can compute and back-annotate properly the size and
6492 -- alignment of types that may include this record.
6494 -- This seems dubious, this destroys the source tree in a manner
6495 -- not detectable by ASIS ???
6497 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6498 AtM_Nod :=
6499 Make_Attribute_Definition_Clause (Loc,
6500 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6501 Chars => Name_Alignment,
6502 Expression => Relocate_Node (Expression (M)));
6504 Set_From_At_Mod (AtM_Nod);
6505 Insert_After (N, AtM_Nod);
6506 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6507 Set_Mod_Clause (N, Empty);
6509 else
6510 -- Get the alignment value to perform error checking
6512 Mod_Val := Get_Alignment_Value (Expression (M));
6513 end if;
6514 end;
6515 end if;
6517 -- For untagged types, clear any existing component clauses for the
6518 -- type. If the type is derived, this is what allows us to override
6519 -- a rep clause for the parent. For type extensions, the representation
6520 -- of the inherited components is inherited, so we want to keep previous
6521 -- component clauses for completeness.
6523 if not Is_Tagged_Type (Rectype) then
6524 Comp := First_Component_Or_Discriminant (Rectype);
6525 while Present (Comp) loop
6526 Set_Component_Clause (Comp, Empty);
6527 Next_Component_Or_Discriminant (Comp);
6528 end loop;
6529 end if;
6531 -- All done if no component clauses
6533 CC := First (Component_Clauses (N));
6535 if No (CC) then
6536 return;
6537 end if;
6539 -- A representation like this applies to the base type
6541 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6542 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6543 Set_Has_Specified_Layout (Base_Type (Rectype));
6545 -- Process the component clauses
6547 while Present (CC) loop
6549 -- Pragma
6551 if Nkind (CC) = N_Pragma then
6552 Analyze (CC);
6554 -- The only pragma of interest is Complete_Representation
6556 if Pragma_Name (CC) = Name_Complete_Representation then
6557 CR_Pragma := CC;
6558 end if;
6560 -- Processing for real component clause
6562 else
6563 Posit := Static_Integer (Position (CC));
6564 Fbit := Static_Integer (First_Bit (CC));
6565 Lbit := Static_Integer (Last_Bit (CC));
6567 if Posit /= No_Uint
6568 and then Fbit /= No_Uint
6569 and then Lbit /= No_Uint
6570 then
6571 if Posit < 0 then
6572 Error_Msg_N
6573 ("position cannot be negative", Position (CC));
6575 elsif Fbit < 0 then
6576 Error_Msg_N
6577 ("first bit cannot be negative", First_Bit (CC));
6579 -- The Last_Bit specified in a component clause must not be
6580 -- less than the First_Bit minus one (RM-13.5.1(10)).
6582 elsif Lbit < Fbit - 1 then
6583 Error_Msg_N
6584 ("last bit cannot be less than first bit minus one",
6585 Last_Bit (CC));
6587 -- Values look OK, so find the corresponding record component
6588 -- Even though the syntax allows an attribute reference for
6589 -- implementation-defined components, GNAT does not allow the
6590 -- tag to get an explicit position.
6592 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6593 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6594 Error_Msg_N ("position of tag cannot be specified", CC);
6595 else
6596 Error_Msg_N ("illegal component name", CC);
6597 end if;
6599 else
6600 Comp := First_Entity (Rectype);
6601 while Present (Comp) loop
6602 exit when Chars (Comp) = Chars (Component_Name (CC));
6603 Next_Entity (Comp);
6604 end loop;
6606 if No (Comp) then
6608 -- Maybe component of base type that is absent from
6609 -- statically constrained first subtype.
6611 Comp := First_Entity (Base_Type (Rectype));
6612 while Present (Comp) loop
6613 exit when Chars (Comp) = Chars (Component_Name (CC));
6614 Next_Entity (Comp);
6615 end loop;
6616 end if;
6618 if No (Comp) then
6619 Error_Msg_N
6620 ("component clause is for non-existent field", CC);
6622 -- Ada 2012 (AI05-0026): Any name that denotes a
6623 -- discriminant of an object of an unchecked union type
6624 -- shall not occur within a record_representation_clause.
6626 -- The general restriction of using record rep clauses on
6627 -- Unchecked_Union types has now been lifted. Since it is
6628 -- possible to introduce a record rep clause which mentions
6629 -- the discriminant of an Unchecked_Union in non-Ada 2012
6630 -- code, this check is applied to all versions of the
6631 -- language.
6633 elsif Ekind (Comp) = E_Discriminant
6634 and then Is_Unchecked_Union (Rectype)
6635 then
6636 Error_Msg_N
6637 ("cannot reference discriminant of unchecked union",
6638 Component_Name (CC));
6640 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6641 Error_Msg_NE
6642 ("component clause not allowed for inherited "
6643 & "component&", CC, Comp);
6645 elsif Present (Component_Clause (Comp)) then
6647 -- Diagnose duplicate rep clause, or check consistency
6648 -- if this is an inherited component. In a double fault,
6649 -- there may be a duplicate inconsistent clause for an
6650 -- inherited component.
6652 if Scope (Original_Record_Component (Comp)) = Rectype
6653 or else Parent (Component_Clause (Comp)) = N
6654 then
6655 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6656 Error_Msg_N ("component clause previously given#", CC);
6658 else
6659 declare
6660 Rep1 : constant Node_Id := Component_Clause (Comp);
6661 begin
6662 if Intval (Position (Rep1)) /=
6663 Intval (Position (CC))
6664 or else Intval (First_Bit (Rep1)) /=
6665 Intval (First_Bit (CC))
6666 or else Intval (Last_Bit (Rep1)) /=
6667 Intval (Last_Bit (CC))
6668 then
6669 Error_Msg_N
6670 ("component clause inconsistent "
6671 & "with representation of ancestor", CC);
6673 elsif Warn_On_Redundant_Constructs then
6674 Error_Msg_N
6675 ("?r?redundant confirming component clause "
6676 & "for component!", CC);
6677 end if;
6678 end;
6679 end if;
6681 -- Normal case where this is the first component clause we
6682 -- have seen for this entity, so set it up properly.
6684 else
6685 -- Make reference for field in record rep clause and set
6686 -- appropriate entity field in the field identifier.
6688 Generate_Reference
6689 (Comp, Component_Name (CC), Set_Ref => False);
6690 Set_Entity (Component_Name (CC), Comp);
6692 -- Update Fbit and Lbit to the actual bit number
6694 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6695 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6697 if Has_Size_Clause (Rectype)
6698 and then RM_Size (Rectype) <= Lbit
6699 then
6700 Error_Msg_N
6701 ("bit number out of range of specified size",
6702 Last_Bit (CC));
6703 else
6704 Set_Component_Clause (Comp, CC);
6705 Set_Component_Bit_Offset (Comp, Fbit);
6706 Set_Esize (Comp, 1 + (Lbit - Fbit));
6707 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6708 Set_Normalized_Position (Comp, Fbit / SSU);
6710 if Warn_On_Overridden_Size
6711 and then Has_Size_Clause (Etype (Comp))
6712 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6713 then
6714 Error_Msg_NE
6715 ("?S?component size overrides size clause for&",
6716 Component_Name (CC), Etype (Comp));
6717 end if;
6719 -- This information is also set in the corresponding
6720 -- component of the base type, found by accessing the
6721 -- Original_Record_Component link if it is present.
6723 Ocomp := Original_Record_Component (Comp);
6725 if Hbit < Lbit then
6726 Hbit := Lbit;
6727 end if;
6729 Check_Size
6730 (Component_Name (CC),
6731 Etype (Comp),
6732 Esize (Comp),
6733 Biased);
6735 Set_Biased
6736 (Comp, First_Node (CC), "component clause", Biased);
6738 if Present (Ocomp) then
6739 Set_Component_Clause (Ocomp, CC);
6740 Set_Component_Bit_Offset (Ocomp, Fbit);
6741 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6742 Set_Normalized_Position (Ocomp, Fbit / SSU);
6743 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6745 Set_Normalized_Position_Max
6746 (Ocomp, Normalized_Position (Ocomp));
6748 -- Note: we don't use Set_Biased here, because we
6749 -- already gave a warning above if needed, and we
6750 -- would get a duplicate for the same name here.
6752 Set_Has_Biased_Representation
6753 (Ocomp, Has_Biased_Representation (Comp));
6754 end if;
6756 if Esize (Comp) < 0 then
6757 Error_Msg_N ("component size is negative", CC);
6758 end if;
6759 end if;
6760 end if;
6761 end if;
6762 end if;
6763 end if;
6765 Next (CC);
6766 end loop;
6768 -- Check missing components if Complete_Representation pragma appeared
6770 if Present (CR_Pragma) then
6771 Comp := First_Component_Or_Discriminant (Rectype);
6772 while Present (Comp) loop
6773 if No (Component_Clause (Comp)) then
6774 Error_Msg_NE
6775 ("missing component clause for &", CR_Pragma, Comp);
6776 end if;
6778 Next_Component_Or_Discriminant (Comp);
6779 end loop;
6781 -- Give missing components warning if required
6783 elsif Warn_On_Unrepped_Components then
6784 declare
6785 Num_Repped_Components : Nat := 0;
6786 Num_Unrepped_Components : Nat := 0;
6788 begin
6789 -- First count number of repped and unrepped components
6791 Comp := First_Component_Or_Discriminant (Rectype);
6792 while Present (Comp) loop
6793 if Present (Component_Clause (Comp)) then
6794 Num_Repped_Components := Num_Repped_Components + 1;
6795 else
6796 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6797 end if;
6799 Next_Component_Or_Discriminant (Comp);
6800 end loop;
6802 -- We are only interested in the case where there is at least one
6803 -- unrepped component, and at least half the components have rep
6804 -- clauses. We figure that if less than half have them, then the
6805 -- partial rep clause is really intentional. If the component
6806 -- type has no underlying type set at this point (as for a generic
6807 -- formal type), we don't know enough to give a warning on the
6808 -- component.
6810 if Num_Unrepped_Components > 0
6811 and then Num_Unrepped_Components < Num_Repped_Components
6812 then
6813 Comp := First_Component_Or_Discriminant (Rectype);
6814 while Present (Comp) loop
6815 if No (Component_Clause (Comp))
6816 and then Comes_From_Source (Comp)
6817 and then Present (Underlying_Type (Etype (Comp)))
6818 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
6819 or else Size_Known_At_Compile_Time
6820 (Underlying_Type (Etype (Comp))))
6821 and then not Has_Warnings_Off (Rectype)
6823 -- Ignore discriminant in unchecked union, since it is
6824 -- not there, and cannot have a component clause.
6826 and then (not Is_Unchecked_Union (Rectype)
6827 or else Ekind (Comp) /= E_Discriminant)
6828 then
6829 Error_Msg_Sloc := Sloc (Comp);
6830 Error_Msg_NE
6831 ("?C?no component clause given for & declared #",
6832 N, Comp);
6833 end if;
6835 Next_Component_Or_Discriminant (Comp);
6836 end loop;
6837 end if;
6838 end;
6839 end if;
6840 end Analyze_Record_Representation_Clause;
6842 -------------------------------------
6843 -- Build_Discrete_Static_Predicate --
6844 -------------------------------------
6846 procedure Build_Discrete_Static_Predicate
6847 (Typ : Entity_Id;
6848 Expr : Node_Id;
6849 Nam : Name_Id)
6851 Loc : constant Source_Ptr := Sloc (Expr);
6853 Non_Static : exception;
6854 -- Raised if something non-static is found
6856 Btyp : constant Entity_Id := Base_Type (Typ);
6858 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6859 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6860 -- Low bound and high bound value of base type of Typ
6862 TLo : Uint;
6863 THi : Uint;
6864 -- Bounds for constructing the static predicate. We use the bound of the
6865 -- subtype if it is static, otherwise the corresponding base type bound.
6866 -- Note: a non-static subtype can have a static predicate.
6868 type REnt is record
6869 Lo, Hi : Uint;
6870 end record;
6871 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6872 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6873 -- value.
6875 type RList is array (Nat range <>) of REnt;
6876 -- A list of ranges. The ranges are sorted in increasing order, and are
6877 -- disjoint (there is a gap of at least one value between each range in
6878 -- the table). A value is in the set of ranges in Rlist if it lies
6879 -- within one of these ranges.
6881 False_Range : constant RList :=
6882 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6883 -- An empty set of ranges represents a range list that can never be
6884 -- satisfied, since there are no ranges in which the value could lie,
6885 -- so it does not lie in any of them. False_Range is a canonical value
6886 -- for this empty set, but general processing should test for an Rlist
6887 -- with length zero (see Is_False predicate), since other null ranges
6888 -- may appear which must be treated as False.
6890 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6891 -- Range representing True, value must be in the base range
6893 function "and" (Left : RList; Right : RList) return RList;
6894 -- And's together two range lists, returning a range list. This is a set
6895 -- intersection operation.
6897 function "or" (Left : RList; Right : RList) return RList;
6898 -- Or's together two range lists, returning a range list. This is a set
6899 -- union operation.
6901 function "not" (Right : RList) return RList;
6902 -- Returns complement of a given range list, i.e. a range list
6903 -- representing all the values in TLo .. THi that are not in the input
6904 -- operand Right.
6906 function Build_Val (V : Uint) return Node_Id;
6907 -- Return an analyzed N_Identifier node referencing this value, suitable
6908 -- for use as an entry in the Static_Discrte_Predicate list. This node
6909 -- is typed with the base type.
6911 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6912 -- Return an analyzed N_Range node referencing this range, suitable for
6913 -- use as an entry in the Static_Discrete_Predicate list. This node is
6914 -- typed with the base type.
6916 function Get_RList (Exp : Node_Id) return RList;
6917 -- This is a recursive routine that converts the given expression into a
6918 -- list of ranges, suitable for use in building the static predicate.
6920 function Is_False (R : RList) return Boolean;
6921 pragma Inline (Is_False);
6922 -- Returns True if the given range list is empty, and thus represents a
6923 -- False list of ranges that can never be satisfied.
6925 function Is_True (R : RList) return Boolean;
6926 -- Returns True if R trivially represents the True predicate by having a
6927 -- single range from BLo to BHi.
6929 function Is_Type_Ref (N : Node_Id) return Boolean;
6930 pragma Inline (Is_Type_Ref);
6931 -- Returns if True if N is a reference to the type for the predicate in
6932 -- the expression (i.e. if it is an identifier whose Chars field matches
6933 -- the Nam given in the call). N must not be parenthesized, if the type
6934 -- name appears in parens, this routine will return False.
6936 function Lo_Val (N : Node_Id) return Uint;
6937 -- Given an entry from a Static_Discrete_Predicate list that is either
6938 -- a static expression or static range, gets either the expression value
6939 -- or the low bound of the range.
6941 function Hi_Val (N : Node_Id) return Uint;
6942 -- Given an entry from a Static_Discrete_Predicate list that is either
6943 -- a static expression or static range, gets either the expression value
6944 -- or the high bound of the range.
6946 function Membership_Entry (N : Node_Id) return RList;
6947 -- Given a single membership entry (range, value, or subtype), returns
6948 -- the corresponding range list. Raises Static_Error if not static.
6950 function Membership_Entries (N : Node_Id) return RList;
6951 -- Given an element on an alternatives list of a membership operation,
6952 -- returns the range list corresponding to this entry and all following
6953 -- entries (i.e. returns the "or" of this list of values).
6955 function Stat_Pred (Typ : Entity_Id) return RList;
6956 -- Given a type, if it has a static predicate, then return the predicate
6957 -- as a range list, otherwise raise Non_Static.
6959 -----------
6960 -- "and" --
6961 -----------
6963 function "and" (Left : RList; Right : RList) return RList is
6964 FEnt : REnt;
6965 -- First range of result
6967 SLeft : Nat := Left'First;
6968 -- Start of rest of left entries
6970 SRight : Nat := Right'First;
6971 -- Start of rest of right entries
6973 begin
6974 -- If either range is True, return the other
6976 if Is_True (Left) then
6977 return Right;
6978 elsif Is_True (Right) then
6979 return Left;
6980 end if;
6982 -- If either range is False, return False
6984 if Is_False (Left) or else Is_False (Right) then
6985 return False_Range;
6986 end if;
6988 -- Loop to remove entries at start that are disjoint, and thus just
6989 -- get discarded from the result entirely.
6991 loop
6992 -- If no operands left in either operand, result is false
6994 if SLeft > Left'Last or else SRight > Right'Last then
6995 return False_Range;
6997 -- Discard first left operand entry if disjoint with right
6999 elsif Left (SLeft).Hi < Right (SRight).Lo then
7000 SLeft := SLeft + 1;
7002 -- Discard first right operand entry if disjoint with left
7004 elsif Right (SRight).Hi < Left (SLeft).Lo then
7005 SRight := SRight + 1;
7007 -- Otherwise we have an overlapping entry
7009 else
7010 exit;
7011 end if;
7012 end loop;
7014 -- Now we have two non-null operands, and first entries overlap. The
7015 -- first entry in the result will be the overlapping part of these
7016 -- two entries.
7018 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7019 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7021 -- Now we can remove the entry that ended at a lower value, since its
7022 -- contribution is entirely contained in Fent.
7024 if Left (SLeft).Hi <= Right (SRight).Hi then
7025 SLeft := SLeft + 1;
7026 else
7027 SRight := SRight + 1;
7028 end if;
7030 -- Compute result by concatenating this first entry with the "and" of
7031 -- the remaining parts of the left and right operands. Note that if
7032 -- either of these is empty, "and" will yield empty, so that we will
7033 -- end up with just Fent, which is what we want in that case.
7035 return
7036 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7037 end "and";
7039 -----------
7040 -- "not" --
7041 -----------
7043 function "not" (Right : RList) return RList is
7044 begin
7045 -- Return True if False range
7047 if Is_False (Right) then
7048 return True_Range;
7049 end if;
7051 -- Return False if True range
7053 if Is_True (Right) then
7054 return False_Range;
7055 end if;
7057 -- Here if not trivial case
7059 declare
7060 Result : RList (1 .. Right'Length + 1);
7061 -- May need one more entry for gap at beginning and end
7063 Count : Nat := 0;
7064 -- Number of entries stored in Result
7066 begin
7067 -- Gap at start
7069 if Right (Right'First).Lo > TLo then
7070 Count := Count + 1;
7071 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7072 end if;
7074 -- Gaps between ranges
7076 for J in Right'First .. Right'Last - 1 loop
7077 Count := Count + 1;
7078 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7079 end loop;
7081 -- Gap at end
7083 if Right (Right'Last).Hi < THi then
7084 Count := Count + 1;
7085 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7086 end if;
7088 return Result (1 .. Count);
7089 end;
7090 end "not";
7092 ----------
7093 -- "or" --
7094 ----------
7096 function "or" (Left : RList; Right : RList) return RList is
7097 FEnt : REnt;
7098 -- First range of result
7100 SLeft : Nat := Left'First;
7101 -- Start of rest of left entries
7103 SRight : Nat := Right'First;
7104 -- Start of rest of right entries
7106 begin
7107 -- If either range is True, return True
7109 if Is_True (Left) or else Is_True (Right) then
7110 return True_Range;
7111 end if;
7113 -- If either range is False (empty), return the other
7115 if Is_False (Left) then
7116 return Right;
7117 elsif Is_False (Right) then
7118 return Left;
7119 end if;
7121 -- Initialize result first entry from left or right operand depending
7122 -- on which starts with the lower range.
7124 if Left (SLeft).Lo < Right (SRight).Lo then
7125 FEnt := Left (SLeft);
7126 SLeft := SLeft + 1;
7127 else
7128 FEnt := Right (SRight);
7129 SRight := SRight + 1;
7130 end if;
7132 -- This loop eats ranges from left and right operands that are
7133 -- contiguous with the first range we are gathering.
7135 loop
7136 -- Eat first entry in left operand if contiguous or overlapped by
7137 -- gathered first operand of result.
7139 if SLeft <= Left'Last
7140 and then Left (SLeft).Lo <= FEnt.Hi + 1
7141 then
7142 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7143 SLeft := SLeft + 1;
7145 -- Eat first entry in right operand if contiguous or overlapped by
7146 -- gathered right operand of result.
7148 elsif SRight <= Right'Last
7149 and then Right (SRight).Lo <= FEnt.Hi + 1
7150 then
7151 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7152 SRight := SRight + 1;
7154 -- All done if no more entries to eat
7156 else
7157 exit;
7158 end if;
7159 end loop;
7161 -- Obtain result as the first entry we just computed, concatenated
7162 -- to the "or" of the remaining results (if one operand is empty,
7163 -- this will just concatenate with the other
7165 return
7166 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7167 end "or";
7169 -----------------
7170 -- Build_Range --
7171 -----------------
7173 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7174 Result : Node_Id;
7175 begin
7176 Result :=
7177 Make_Range (Loc,
7178 Low_Bound => Build_Val (Lo),
7179 High_Bound => Build_Val (Hi));
7180 Set_Etype (Result, Btyp);
7181 Set_Analyzed (Result);
7182 return Result;
7183 end Build_Range;
7185 ---------------
7186 -- Build_Val --
7187 ---------------
7189 function Build_Val (V : Uint) return Node_Id is
7190 Result : Node_Id;
7192 begin
7193 if Is_Enumeration_Type (Typ) then
7194 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7195 else
7196 Result := Make_Integer_Literal (Loc, V);
7197 end if;
7199 Set_Etype (Result, Btyp);
7200 Set_Is_Static_Expression (Result);
7201 Set_Analyzed (Result);
7202 return Result;
7203 end Build_Val;
7205 ---------------
7206 -- Get_RList --
7207 ---------------
7209 function Get_RList (Exp : Node_Id) return RList is
7210 Op : Node_Kind;
7211 Val : Uint;
7213 begin
7214 -- Static expression can only be true or false
7216 if Is_OK_Static_Expression (Exp) then
7217 if Expr_Value (Exp) = 0 then
7218 return False_Range;
7219 else
7220 return True_Range;
7221 end if;
7222 end if;
7224 -- Otherwise test node type
7226 Op := Nkind (Exp);
7228 case Op is
7230 -- And
7232 when N_Op_And | N_And_Then =>
7233 return Get_RList (Left_Opnd (Exp))
7235 Get_RList (Right_Opnd (Exp));
7237 -- Or
7239 when N_Op_Or | N_Or_Else =>
7240 return Get_RList (Left_Opnd (Exp))
7242 Get_RList (Right_Opnd (Exp));
7244 -- Not
7246 when N_Op_Not =>
7247 return not Get_RList (Right_Opnd (Exp));
7249 -- Comparisons of type with static value
7251 when N_Op_Compare =>
7253 -- Type is left operand
7255 if Is_Type_Ref (Left_Opnd (Exp))
7256 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7257 then
7258 Val := Expr_Value (Right_Opnd (Exp));
7260 -- Typ is right operand
7262 elsif Is_Type_Ref (Right_Opnd (Exp))
7263 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7264 then
7265 Val := Expr_Value (Left_Opnd (Exp));
7267 -- Invert sense of comparison
7269 case Op is
7270 when N_Op_Gt => Op := N_Op_Lt;
7271 when N_Op_Lt => Op := N_Op_Gt;
7272 when N_Op_Ge => Op := N_Op_Le;
7273 when N_Op_Le => Op := N_Op_Ge;
7274 when others => null;
7275 end case;
7277 -- Other cases are non-static
7279 else
7280 raise Non_Static;
7281 end if;
7283 -- Construct range according to comparison operation
7285 case Op is
7286 when N_Op_Eq =>
7287 return RList'(1 => REnt'(Val, Val));
7289 when N_Op_Ge =>
7290 return RList'(1 => REnt'(Val, BHi));
7292 when N_Op_Gt =>
7293 return RList'(1 => REnt'(Val + 1, BHi));
7295 when N_Op_Le =>
7296 return RList'(1 => REnt'(BLo, Val));
7298 when N_Op_Lt =>
7299 return RList'(1 => REnt'(BLo, Val - 1));
7301 when N_Op_Ne =>
7302 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7304 when others =>
7305 raise Program_Error;
7306 end case;
7308 -- Membership (IN)
7310 when N_In =>
7311 if not Is_Type_Ref (Left_Opnd (Exp)) then
7312 raise Non_Static;
7313 end if;
7315 if Present (Right_Opnd (Exp)) then
7316 return Membership_Entry (Right_Opnd (Exp));
7317 else
7318 return Membership_Entries (First (Alternatives (Exp)));
7319 end if;
7321 -- Negative membership (NOT IN)
7323 when N_Not_In =>
7324 if not Is_Type_Ref (Left_Opnd (Exp)) then
7325 raise Non_Static;
7326 end if;
7328 if Present (Right_Opnd (Exp)) then
7329 return not Membership_Entry (Right_Opnd (Exp));
7330 else
7331 return not Membership_Entries (First (Alternatives (Exp)));
7332 end if;
7334 -- Function call, may be call to static predicate
7336 when N_Function_Call =>
7337 if Is_Entity_Name (Name (Exp)) then
7338 declare
7339 Ent : constant Entity_Id := Entity (Name (Exp));
7340 begin
7341 if Is_Predicate_Function (Ent)
7342 or else
7343 Is_Predicate_Function_M (Ent)
7344 then
7345 return Stat_Pred (Etype (First_Formal (Ent)));
7346 end if;
7347 end;
7348 end if;
7350 -- Other function call cases are non-static
7352 raise Non_Static;
7354 -- Qualified expression, dig out the expression
7356 when N_Qualified_Expression =>
7357 return Get_RList (Expression (Exp));
7359 when N_Case_Expression =>
7360 declare
7361 Alt : Node_Id;
7362 Choices : List_Id;
7363 Dep : Node_Id;
7365 begin
7366 if not Is_Entity_Name (Expression (Expr))
7367 or else Etype (Expression (Expr)) /= Typ
7368 then
7369 Error_Msg_N
7370 ("expression must denaote subtype", Expression (Expr));
7371 return False_Range;
7372 end if;
7374 -- Collect discrete choices in all True alternatives
7376 Choices := New_List;
7377 Alt := First (Alternatives (Exp));
7378 while Present (Alt) loop
7379 Dep := Expression (Alt);
7381 if not Is_OK_Static_Expression (Dep) then
7382 raise Non_Static;
7384 elsif Is_True (Expr_Value (Dep)) then
7385 Append_List_To (Choices,
7386 New_Copy_List (Discrete_Choices (Alt)));
7387 end if;
7389 Next (Alt);
7390 end loop;
7392 return Membership_Entries (First (Choices));
7393 end;
7395 -- Expression with actions: if no actions, dig out expression
7397 when N_Expression_With_Actions =>
7398 if Is_Empty_List (Actions (Exp)) then
7399 return Get_RList (Expression (Exp));
7400 else
7401 raise Non_Static;
7402 end if;
7404 -- Xor operator
7406 when N_Op_Xor =>
7407 return (Get_RList (Left_Opnd (Exp))
7408 and not Get_RList (Right_Opnd (Exp)))
7409 or (Get_RList (Right_Opnd (Exp))
7410 and not Get_RList (Left_Opnd (Exp)));
7412 -- Any other node type is non-static
7414 when others =>
7415 raise Non_Static;
7416 end case;
7417 end Get_RList;
7419 ------------
7420 -- Hi_Val --
7421 ------------
7423 function Hi_Val (N : Node_Id) return Uint is
7424 begin
7425 if Is_OK_Static_Expression (N) then
7426 return Expr_Value (N);
7427 else
7428 pragma Assert (Nkind (N) = N_Range);
7429 return Expr_Value (High_Bound (N));
7430 end if;
7431 end Hi_Val;
7433 --------------
7434 -- Is_False --
7435 --------------
7437 function Is_False (R : RList) return Boolean is
7438 begin
7439 return R'Length = 0;
7440 end Is_False;
7442 -------------
7443 -- Is_True --
7444 -------------
7446 function Is_True (R : RList) return Boolean is
7447 begin
7448 return R'Length = 1
7449 and then R (R'First).Lo = BLo
7450 and then R (R'First).Hi = BHi;
7451 end Is_True;
7453 -----------------
7454 -- Is_Type_Ref --
7455 -----------------
7457 function Is_Type_Ref (N : Node_Id) return Boolean is
7458 begin
7459 return Nkind (N) = N_Identifier
7460 and then Chars (N) = Nam
7461 and then Paren_Count (N) = 0;
7462 end Is_Type_Ref;
7464 ------------
7465 -- Lo_Val --
7466 ------------
7468 function Lo_Val (N : Node_Id) return Uint is
7469 begin
7470 if Is_OK_Static_Expression (N) then
7471 return Expr_Value (N);
7472 else
7473 pragma Assert (Nkind (N) = N_Range);
7474 return Expr_Value (Low_Bound (N));
7475 end if;
7476 end Lo_Val;
7478 ------------------------
7479 -- Membership_Entries --
7480 ------------------------
7482 function Membership_Entries (N : Node_Id) return RList is
7483 begin
7484 if No (Next (N)) then
7485 return Membership_Entry (N);
7486 else
7487 return Membership_Entry (N) or Membership_Entries (Next (N));
7488 end if;
7489 end Membership_Entries;
7491 ----------------------
7492 -- Membership_Entry --
7493 ----------------------
7495 function Membership_Entry (N : Node_Id) return RList is
7496 Val : Uint;
7497 SLo : Uint;
7498 SHi : Uint;
7500 begin
7501 -- Range case
7503 if Nkind (N) = N_Range then
7504 if not Is_OK_Static_Expression (Low_Bound (N))
7505 or else
7506 not Is_OK_Static_Expression (High_Bound (N))
7507 then
7508 raise Non_Static;
7509 else
7510 SLo := Expr_Value (Low_Bound (N));
7511 SHi := Expr_Value (High_Bound (N));
7512 return RList'(1 => REnt'(SLo, SHi));
7513 end if;
7515 -- Static expression case
7517 elsif Is_OK_Static_Expression (N) then
7518 Val := Expr_Value (N);
7519 return RList'(1 => REnt'(Val, Val));
7521 -- Identifier (other than static expression) case
7523 else pragma Assert (Nkind (N) = N_Identifier);
7525 -- Type case
7527 if Is_Type (Entity (N)) then
7529 -- If type has predicates, process them
7531 if Has_Predicates (Entity (N)) then
7532 return Stat_Pred (Entity (N));
7534 -- For static subtype without predicates, get range
7536 elsif Is_OK_Static_Subtype (Entity (N)) then
7537 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7538 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7539 return RList'(1 => REnt'(SLo, SHi));
7541 -- Any other type makes us non-static
7543 else
7544 raise Non_Static;
7545 end if;
7547 -- Any other kind of identifier in predicate (e.g. a non-static
7548 -- expression value) means this is not a static predicate.
7550 else
7551 raise Non_Static;
7552 end if;
7553 end if;
7554 end Membership_Entry;
7556 ---------------
7557 -- Stat_Pred --
7558 ---------------
7560 function Stat_Pred (Typ : Entity_Id) return RList is
7561 begin
7562 -- Not static if type does not have static predicates
7564 if not Has_Static_Predicate (Typ) then
7565 raise Non_Static;
7566 end if;
7568 -- Otherwise we convert the predicate list to a range list
7570 declare
7571 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7572 Result : RList (1 .. List_Length (Spred));
7573 P : Node_Id;
7575 begin
7576 P := First (Static_Discrete_Predicate (Typ));
7577 for J in Result'Range loop
7578 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7579 Next (P);
7580 end loop;
7582 return Result;
7583 end;
7584 end Stat_Pred;
7586 -- Start of processing for Build_Discrete_Static_Predicate
7588 begin
7589 -- Establish bounds for the predicate
7591 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
7592 TLo := Expr_Value (Type_Low_Bound (Typ));
7593 else
7594 TLo := BLo;
7595 end if;
7597 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
7598 THi := Expr_Value (Type_High_Bound (Typ));
7599 else
7600 THi := BHi;
7601 end if;
7603 -- Analyze the expression to see if it is a static predicate
7605 declare
7606 Ranges : constant RList := Get_RList (Expr);
7607 -- Range list from expression if it is static
7609 Plist : List_Id;
7611 begin
7612 -- Convert range list into a form for the static predicate. In the
7613 -- Ranges array, we just have raw ranges, these must be converted
7614 -- to properly typed and analyzed static expressions or range nodes.
7616 -- Note: here we limit ranges to the ranges of the subtype, so that
7617 -- a predicate is always false for values outside the subtype. That
7618 -- seems fine, such values are invalid anyway, and considering them
7619 -- to fail the predicate seems allowed and friendly, and furthermore
7620 -- simplifies processing for case statements and loops.
7622 Plist := New_List;
7624 for J in Ranges'Range loop
7625 declare
7626 Lo : Uint := Ranges (J).Lo;
7627 Hi : Uint := Ranges (J).Hi;
7629 begin
7630 -- Ignore completely out of range entry
7632 if Hi < TLo or else Lo > THi then
7633 null;
7635 -- Otherwise process entry
7637 else
7638 -- Adjust out of range value to subtype range
7640 if Lo < TLo then
7641 Lo := TLo;
7642 end if;
7644 if Hi > THi then
7645 Hi := THi;
7646 end if;
7648 -- Convert range into required form
7650 Append_To (Plist, Build_Range (Lo, Hi));
7651 end if;
7652 end;
7653 end loop;
7655 -- Processing was successful and all entries were static, so now we
7656 -- can store the result as the predicate list.
7658 Set_Static_Discrete_Predicate (Typ, Plist);
7660 -- The processing for static predicates put the expression into
7661 -- canonical form as a series of ranges. It also eliminated
7662 -- duplicates and collapsed and combined ranges. We might as well
7663 -- replace the alternatives list of the right operand of the
7664 -- membership test with the static predicate list, which will
7665 -- usually be more efficient.
7667 declare
7668 New_Alts : constant List_Id := New_List;
7669 Old_Node : Node_Id;
7670 New_Node : Node_Id;
7672 begin
7673 Old_Node := First (Plist);
7674 while Present (Old_Node) loop
7675 New_Node := New_Copy (Old_Node);
7677 if Nkind (New_Node) = N_Range then
7678 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7679 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7680 end if;
7682 Append_To (New_Alts, New_Node);
7683 Next (Old_Node);
7684 end loop;
7686 -- If empty list, replace by False
7688 if Is_Empty_List (New_Alts) then
7689 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
7691 -- Else replace by set membership test
7693 else
7694 Rewrite (Expr,
7695 Make_In (Loc,
7696 Left_Opnd => Make_Identifier (Loc, Nam),
7697 Right_Opnd => Empty,
7698 Alternatives => New_Alts));
7700 -- Resolve new expression in function context
7702 Install_Formals (Predicate_Function (Typ));
7703 Push_Scope (Predicate_Function (Typ));
7704 Analyze_And_Resolve (Expr, Standard_Boolean);
7705 Pop_Scope;
7706 end if;
7707 end;
7708 end;
7710 -- If non-static, return doing nothing
7712 exception
7713 when Non_Static =>
7714 return;
7715 end Build_Discrete_Static_Predicate;
7717 -------------------------------------------
7718 -- Build_Invariant_Procedure_Declaration --
7719 -------------------------------------------
7721 function Build_Invariant_Procedure_Declaration
7722 (Typ : Entity_Id) return Node_Id
7724 Loc : constant Source_Ptr := Sloc (Typ);
7725 Object_Entity : constant Entity_Id :=
7726 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7727 Spec : Node_Id;
7728 SId : Entity_Id;
7730 begin
7731 Set_Etype (Object_Entity, Typ);
7733 -- Check for duplicate definiations.
7735 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7736 return Empty;
7737 end if;
7739 SId :=
7740 Make_Defining_Identifier (Loc,
7741 Chars => New_External_Name (Chars (Typ), "Invariant"));
7742 Set_Has_Invariants (Typ);
7743 Set_Ekind (SId, E_Procedure);
7744 Set_Etype (SId, Standard_Void_Type);
7745 Set_Is_Invariant_Procedure (SId);
7746 Set_Invariant_Procedure (Typ, SId);
7748 Spec :=
7749 Make_Procedure_Specification (Loc,
7750 Defining_Unit_Name => SId,
7751 Parameter_Specifications => New_List (
7752 Make_Parameter_Specification (Loc,
7753 Defining_Identifier => Object_Entity,
7754 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
7756 return Make_Subprogram_Declaration (Loc, Specification => Spec);
7757 end Build_Invariant_Procedure_Declaration;
7759 -------------------------------
7760 -- Build_Invariant_Procedure --
7761 -------------------------------
7763 -- The procedure that is constructed here has the form
7765 -- procedure typInvariant (Ixxx : typ) is
7766 -- begin
7767 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7768 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7769 -- ...
7770 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7771 -- ...
7772 -- end typInvariant;
7774 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
7775 Loc : constant Source_Ptr := Sloc (Typ);
7776 Stmts : List_Id;
7777 Spec : Node_Id;
7778 SId : Entity_Id;
7779 PDecl : Node_Id;
7780 PBody : Node_Id;
7782 Nam : Name_Id;
7783 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7784 -- if we come from a Type_Invariant aspect, we make sure to build the
7785 -- Check pragma with the right name, so that Check_Policy works right.
7787 Visible_Decls : constant List_Id := Visible_Declarations (N);
7788 Private_Decls : constant List_Id := Private_Declarations (N);
7790 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
7791 -- Appends statements to Stmts for any invariants in the rep item chain
7792 -- of the given type. If Inherit is False, then we only process entries
7793 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7794 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7795 -- "inherited" to the exception message and generating an informational
7796 -- message about the inheritance of an invariant.
7798 Object_Name : Name_Id;
7799 -- Name for argument of invariant procedure
7801 Object_Entity : Node_Id;
7802 -- The entity of the formal for the procedure
7804 --------------------
7805 -- Add_Invariants --
7806 --------------------
7808 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
7809 Ritem : Node_Id;
7810 Arg1 : Node_Id;
7811 Arg2 : Node_Id;
7812 Arg3 : Node_Id;
7813 Exp : Node_Id;
7814 Loc : Source_Ptr;
7815 Assoc : List_Id;
7816 Str : String_Id;
7818 procedure Replace_Type_Reference (N : Node_Id);
7819 -- Replace a single occurrence N of the subtype name with a reference
7820 -- to the formal of the predicate function. N can be an identifier
7821 -- referencing the subtype, or a selected component, representing an
7822 -- appropriately qualified occurrence of the subtype name.
7824 procedure Replace_Type_References is
7825 new Replace_Type_References_Generic (Replace_Type_Reference);
7826 -- Traverse an expression replacing all occurrences of the subtype
7827 -- name with appropriate references to the object that is the formal
7828 -- parameter of the predicate function. Note that we must ensure
7829 -- that the type and entity information is properly set in the
7830 -- replacement node, since we will do a Preanalyze call of this
7831 -- expression without proper visibility of the procedure argument.
7833 ----------------------------
7834 -- Replace_Type_Reference --
7835 ----------------------------
7837 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7838 -- regarding handling of Sloc and Comes_From_Source.
7840 procedure Replace_Type_Reference (N : Node_Id) is
7841 begin
7843 -- Add semantic information to node to be rewritten, for ASIS
7844 -- navigation needs.
7846 if Nkind (N) = N_Identifier then
7847 Set_Entity (N, T);
7848 Set_Etype (N, T);
7850 elsif Nkind (N) = N_Selected_Component then
7851 Analyze (Prefix (N));
7852 Set_Entity (Selector_Name (N), T);
7853 Set_Etype (Selector_Name (N), T);
7854 end if;
7856 -- Invariant'Class, replace with T'Class (obj)
7857 -- In ASIS mode, an inherited item is analyzed already, and the
7858 -- replacement has been done, so do not repeat transformation
7859 -- to prevent ill-formed tree.
7861 if Class_Present (Ritem) then
7862 if ASIS_Mode
7863 and then Nkind (Parent (N)) = N_Attribute_Reference
7864 and then Attribute_Name (Parent (N)) = Name_Class
7865 then
7866 null;
7868 else
7869 Rewrite (N,
7870 Make_Type_Conversion (Sloc (N),
7871 Subtype_Mark =>
7872 Make_Attribute_Reference (Sloc (N),
7873 Prefix => New_Occurrence_Of (T, Sloc (N)),
7874 Attribute_Name => Name_Class),
7875 Expression =>
7876 Make_Identifier (Sloc (N), Object_Name)));
7878 Set_Entity (Expression (N), Object_Entity);
7879 Set_Etype (Expression (N), Typ);
7880 end if;
7882 -- Invariant, replace with obj
7884 else
7885 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
7886 Set_Entity (N, Object_Entity);
7887 Set_Etype (N, Typ);
7888 end if;
7890 Set_Comes_From_Source (N, True);
7891 end Replace_Type_Reference;
7893 -- Start of processing for Add_Invariants
7895 begin
7896 Ritem := First_Rep_Item (T);
7897 while Present (Ritem) loop
7898 if Nkind (Ritem) = N_Pragma
7899 and then Pragma_Name (Ritem) = Name_Invariant
7900 then
7901 Arg1 := First (Pragma_Argument_Associations (Ritem));
7902 Arg2 := Next (Arg1);
7903 Arg3 := Next (Arg2);
7905 Arg1 := Get_Pragma_Arg (Arg1);
7906 Arg2 := Get_Pragma_Arg (Arg2);
7908 -- For Inherit case, ignore Invariant, process only Class case
7910 if Inherit then
7911 if not Class_Present (Ritem) then
7912 goto Continue;
7913 end if;
7915 -- For Inherit false, process only item for right type
7917 else
7918 if Entity (Arg1) /= Typ then
7919 goto Continue;
7920 end if;
7921 end if;
7923 if No (Stmts) then
7924 Stmts := Empty_List;
7925 end if;
7927 Exp := New_Copy_Tree (Arg2);
7929 -- Preserve sloc of original pragma Invariant
7931 Loc := Sloc (Ritem);
7933 -- We need to replace any occurrences of the name of the type
7934 -- with references to the object, converted to type'Class in
7935 -- the case of Invariant'Class aspects.
7937 Replace_Type_References (Exp, T);
7939 -- If this invariant comes from an aspect, find the aspect
7940 -- specification, and replace the saved expression because
7941 -- we need the subtype references replaced for the calls to
7942 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7943 -- and Check_Aspect_At_End_Of_Declarations.
7945 if From_Aspect_Specification (Ritem) then
7946 declare
7947 Aitem : Node_Id;
7949 begin
7950 -- Loop to find corresponding aspect, note that this
7951 -- must be present given the pragma is marked delayed.
7953 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7954 -- this loop does nothing. Furthermore, why isn't this
7955 -- simply Corresponding_Aspect ???
7957 Aitem := Next_Rep_Item (Ritem);
7958 while Present (Aitem) loop
7959 if Nkind (Aitem) = N_Aspect_Specification
7960 and then Aspect_Rep_Item (Aitem) = Ritem
7961 then
7962 Set_Entity
7963 (Identifier (Aitem), New_Copy_Tree (Exp));
7964 exit;
7965 end if;
7967 Aitem := Next_Rep_Item (Aitem);
7968 end loop;
7969 end;
7970 end if;
7972 -- Now we need to preanalyze the expression to properly capture
7973 -- the visibility in the visible part. The expression will not
7974 -- be analyzed for real until the body is analyzed, but that is
7975 -- at the end of the private part and has the wrong visibility.
7977 Set_Parent (Exp, N);
7978 Preanalyze_Assert_Expression (Exp, Any_Boolean);
7980 -- A class-wide invariant may be inherited in a separate unit,
7981 -- where the corresponding expression cannot be resolved by
7982 -- visibility, because it refers to a local function. Propagate
7983 -- semantic information to the original representation item, to
7984 -- be used when an invariant procedure for a derived type is
7985 -- constructed.
7987 -- Unclear how to handle class-wide invariants that are not
7988 -- function calls ???
7990 if not Inherit
7991 and then Class_Present (Ritem)
7992 and then Nkind (Exp) = N_Function_Call
7993 and then Nkind (Arg2) = N_Indexed_Component
7994 then
7995 Rewrite (Arg2,
7996 Make_Function_Call (Loc,
7997 Name =>
7998 New_Occurrence_Of (Entity (Name (Exp)), Loc),
7999 Parameter_Associations =>
8000 New_Copy_List (Expressions (Arg2))));
8001 end if;
8003 -- In ASIS mode, even if assertions are not enabled, we must
8004 -- analyze the original expression in the aspect specification
8005 -- because it is part of the original tree.
8007 if ASIS_Mode and then From_Aspect_Specification (Ritem) then
8008 declare
8009 Inv : constant Node_Id :=
8010 Expression (Corresponding_Aspect (Ritem));
8011 begin
8012 Replace_Type_References (Inv, T);
8013 Preanalyze_Assert_Expression (Inv, Standard_Boolean);
8014 end;
8015 end if;
8017 -- Get name to be used for Check pragma
8019 if not From_Aspect_Specification (Ritem) then
8020 Nam := Name_Invariant;
8021 else
8022 Nam := Chars (Identifier (Corresponding_Aspect (Ritem)));
8023 end if;
8025 -- Build first two arguments for Check pragma
8027 Assoc :=
8028 New_List (
8029 Make_Pragma_Argument_Association (Loc,
8030 Expression => Make_Identifier (Loc, Chars => Nam)),
8031 Make_Pragma_Argument_Association (Loc,
8032 Expression => Exp));
8034 -- Add message if present in Invariant pragma
8036 if Present (Arg3) then
8037 Str := Strval (Get_Pragma_Arg (Arg3));
8039 -- If inherited case, and message starts "failed invariant",
8040 -- change it to be "failed inherited invariant".
8042 if Inherit then
8043 String_To_Name_Buffer (Str);
8045 if Name_Buffer (1 .. 16) = "failed invariant" then
8046 Insert_Str_In_Name_Buffer ("inherited ", 8);
8047 Str := String_From_Name_Buffer;
8048 end if;
8049 end if;
8051 Append_To (Assoc,
8052 Make_Pragma_Argument_Association (Loc,
8053 Expression => Make_String_Literal (Loc, Str)));
8054 end if;
8056 -- Add Check pragma to list of statements
8058 Append_To (Stmts,
8059 Make_Pragma (Loc,
8060 Pragma_Identifier =>
8061 Make_Identifier (Loc, Name_Check),
8062 Pragma_Argument_Associations => Assoc));
8064 -- If Inherited case and option enabled, output info msg. Note
8065 -- that we know this is a case of Invariant'Class.
8067 if Inherit and Opt.List_Inherited_Aspects then
8068 Error_Msg_Sloc := Sloc (Ritem);
8069 Error_Msg_N
8070 ("info: & inherits `Invariant''Class` aspect from #?L?",
8071 Typ);
8072 end if;
8073 end if;
8075 <<Continue>>
8076 Next_Rep_Item (Ritem);
8077 end loop;
8078 end Add_Invariants;
8080 -- Start of processing for Build_Invariant_Procedure
8082 begin
8083 Stmts := No_List;
8084 PDecl := Empty;
8085 PBody := Empty;
8086 SId := Empty;
8088 -- If the aspect specification exists for some view of the type, the
8089 -- declaration for the procedure has been created.
8091 if Has_Invariants (Typ) then
8092 SId := Invariant_Procedure (Typ);
8093 end if;
8095 -- If the body is already present, nothing to do. This will occur when
8096 -- the type is already frozen, which is the case when the invariant
8097 -- appears in a private part, and the freezing takes place before the
8098 -- final pass over full declarations.
8100 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
8102 if Present (SId) then
8103 PDecl := Unit_Declaration_Node (SId);
8105 if Present (PDecl)
8106 and then Nkind (PDecl) = N_Subprogram_Declaration
8107 and then Present (Corresponding_Body (PDecl))
8108 then
8109 return;
8110 end if;
8112 else
8113 PDecl := Build_Invariant_Procedure_Declaration (Typ);
8114 end if;
8116 -- Recover formal of procedure, for use in the calls to invariant
8117 -- functions (including inherited ones).
8119 Object_Entity :=
8120 Defining_Identifier
8121 (First (Parameter_Specifications (Specification (PDecl))));
8122 Object_Name := Chars (Object_Entity);
8124 -- Add invariants for the current type
8126 Add_Invariants (Typ, Inherit => False);
8128 -- Add invariants for parent types
8130 declare
8131 Current_Typ : Entity_Id;
8132 Parent_Typ : Entity_Id;
8134 begin
8135 Current_Typ := Typ;
8136 loop
8137 Parent_Typ := Etype (Current_Typ);
8139 if Is_Private_Type (Parent_Typ)
8140 and then Present (Full_View (Base_Type (Parent_Typ)))
8141 then
8142 Parent_Typ := Full_View (Base_Type (Parent_Typ));
8143 end if;
8145 exit when Parent_Typ = Current_Typ;
8147 Current_Typ := Parent_Typ;
8148 Add_Invariants (Current_Typ, Inherit => True);
8149 end loop;
8150 end;
8152 -- Add invariants of progenitors
8154 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
8155 declare
8156 Ifaces_List : Elist_Id;
8157 AI : Elmt_Id;
8158 Iface : Entity_Id;
8160 begin
8161 Collect_Interfaces (Typ, Ifaces_List);
8163 AI := First_Elmt (Ifaces_List);
8164 while Present (AI) loop
8165 Iface := Node (AI);
8167 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8168 Add_Invariants (Iface, Inherit => True);
8169 end if;
8171 Next_Elmt (AI);
8172 end loop;
8173 end;
8174 end if;
8176 -- Build the procedure if we generated at least one Check pragma
8178 if Stmts /= No_List then
8179 Spec := Copy_Separate_Tree (Specification (PDecl));
8181 PBody :=
8182 Make_Subprogram_Body (Loc,
8183 Specification => Spec,
8184 Declarations => Empty_List,
8185 Handled_Statement_Sequence =>
8186 Make_Handled_Sequence_Of_Statements (Loc,
8187 Statements => Stmts));
8189 -- Insert procedure declaration and spec at the appropriate points.
8190 -- If declaration is already analyzed, it was processed by the
8191 -- generated pragma.
8193 if Present (Private_Decls) then
8195 -- The spec goes at the end of visible declarations, but they have
8196 -- already been analyzed, so we need to explicitly do the analyze.
8198 if not Analyzed (PDecl) then
8199 Append_To (Visible_Decls, PDecl);
8200 Analyze (PDecl);
8201 end if;
8203 -- The body goes at the end of the private declarations, which we
8204 -- have not analyzed yet, so we do not need to perform an explicit
8205 -- analyze call. We skip this if there are no private declarations
8206 -- (this is an error that will be caught elsewhere);
8208 Append_To (Private_Decls, PBody);
8210 -- If the invariant appears on the full view of a type, the
8211 -- analysis of the private part is complete, and we must
8212 -- analyze the new body explicitly.
8214 if In_Private_Part (Current_Scope) then
8215 Analyze (PBody);
8216 end if;
8218 -- If there are no private declarations this may be an error that
8219 -- will be diagnosed elsewhere. However, if this is a non-private
8220 -- type that inherits invariants, it needs no completion and there
8221 -- may be no private part. In this case insert invariant procedure
8222 -- at end of current declarative list, and analyze at once, given
8223 -- that the type is about to be frozen.
8225 elsif not Is_Private_Type (Typ) then
8226 Append_To (Visible_Decls, PDecl);
8227 Append_To (Visible_Decls, PBody);
8228 Analyze (PDecl);
8229 Analyze (PBody);
8230 end if;
8231 end if;
8232 end Build_Invariant_Procedure;
8234 -------------------------------
8235 -- Build_Predicate_Functions --
8236 -------------------------------
8238 -- The procedures that are constructed here have the form:
8240 -- function typPredicate (Ixxx : typ) return Boolean is
8241 -- begin
8242 -- return
8243 -- exp1 and then exp2 and then ...
8244 -- and then typ1Predicate (typ1 (Ixxx))
8245 -- and then typ2Predicate (typ2 (Ixxx))
8246 -- and then ...;
8247 -- end typPredicate;
8249 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8250 -- this is the point at which these expressions get analyzed, providing the
8251 -- required delay, and typ1, typ2, are entities from which predicates are
8252 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8253 -- use this function even if checks are off, e.g. for membership tests.
8255 -- If the expression has at least one Raise_Expression, then we also build
8256 -- the typPredicateM version of the function, in which any occurrence of a
8257 -- Raise_Expression is converted to "return False".
8259 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8260 Loc : constant Source_Ptr := Sloc (Typ);
8262 Expr : Node_Id;
8263 -- This is the expression for the result of the function. It is
8264 -- is build by connecting the component predicates with AND THEN.
8266 Expr_M : Node_Id;
8267 -- This is the corresponding return expression for the Predicate_M
8268 -- function. It differs in that raise expressions are marked for
8269 -- special expansion (see Process_REs).
8271 Object_Name : constant Name_Id := New_Internal_Name ('I');
8272 -- Name for argument of Predicate procedure. Note that we use the same
8273 -- name for both predicate functions. That way the reference within the
8274 -- predicate expression is the same in both functions.
8276 Object_Entity : constant Entity_Id :=
8277 Make_Defining_Identifier (Loc, Chars => Object_Name);
8278 -- Entity for argument of Predicate procedure
8280 Object_Entity_M : constant Entity_Id :=
8281 Make_Defining_Identifier (Loc, Chars => Object_Name);
8282 -- Entity for argument of Predicate_M procedure
8284 Raise_Expression_Present : Boolean := False;
8285 -- Set True if Expr has at least one Raise_Expression
8287 procedure Add_Call (T : Entity_Id);
8288 -- Includes a call to the predicate function for type T in Expr if T
8289 -- has predicates and Predicate_Function (T) is non-empty.
8291 procedure Add_Predicates;
8292 -- Appends expressions for any Predicate pragmas in the rep item chain
8293 -- Typ to Expr. Note that we look only at items for this exact entity.
8294 -- Inheritance of predicates for the parent type is done by calling the
8295 -- Predicate_Function of the parent type, using Add_Call above.
8297 function Test_RE (N : Node_Id) return Traverse_Result;
8298 -- Used in Test_REs, tests one node for being a raise expression, and if
8299 -- so sets Raise_Expression_Present True.
8301 procedure Test_REs is new Traverse_Proc (Test_RE);
8302 -- Tests to see if Expr contains any raise expressions
8304 function Process_RE (N : Node_Id) return Traverse_Result;
8305 -- Used in Process REs, tests if node N is a raise expression, and if
8306 -- so, marks it to be converted to return False.
8308 procedure Process_REs is new Traverse_Proc (Process_RE);
8309 -- Marks any raise expressions in Expr_M to return False
8311 --------------
8312 -- Add_Call --
8313 --------------
8315 procedure Add_Call (T : Entity_Id) is
8316 Exp : Node_Id;
8318 begin
8319 if Present (T) and then Present (Predicate_Function (T)) then
8320 Set_Has_Predicates (Typ);
8322 -- Build the call to the predicate function of T
8324 Exp :=
8325 Make_Predicate_Call
8326 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
8328 -- Add call to evolving expression, using AND THEN if needed
8330 if No (Expr) then
8331 Expr := Exp;
8333 else
8334 Expr :=
8335 Make_And_Then (Sloc (Expr),
8336 Left_Opnd => Relocate_Node (Expr),
8337 Right_Opnd => Exp);
8338 end if;
8340 -- Output info message on inheritance if required. Note we do not
8341 -- give this information for generic actual types, since it is
8342 -- unwelcome noise in that case in instantiations. We also
8343 -- generally suppress the message in instantiations, and also
8344 -- if it involves internal names.
8346 if Opt.List_Inherited_Aspects
8347 and then not Is_Generic_Actual_Type (Typ)
8348 and then Instantiation_Depth (Sloc (Typ)) = 0
8349 and then not Is_Internal_Name (Chars (T))
8350 and then not Is_Internal_Name (Chars (Typ))
8351 then
8352 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8353 Error_Msg_Node_2 := T;
8354 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8355 end if;
8356 end if;
8357 end Add_Call;
8359 --------------------
8360 -- Add_Predicates --
8361 --------------------
8363 procedure Add_Predicates is
8364 Ritem : Node_Id;
8365 Arg1 : Node_Id;
8366 Arg2 : Node_Id;
8368 procedure Replace_Type_Reference (N : Node_Id);
8369 -- Replace a single occurrence N of the subtype name with a reference
8370 -- to the formal of the predicate function. N can be an identifier
8371 -- referencing the subtype, or a selected component, representing an
8372 -- appropriately qualified occurrence of the subtype name.
8374 procedure Replace_Type_References is
8375 new Replace_Type_References_Generic (Replace_Type_Reference);
8376 -- Traverse an expression changing every occurrence of an identifier
8377 -- whose name matches the name of the subtype with a reference to
8378 -- the formal parameter of the predicate function.
8380 ----------------------------
8381 -- Replace_Type_Reference --
8382 ----------------------------
8384 procedure Replace_Type_Reference (N : Node_Id) is
8385 begin
8386 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8387 -- Use the Sloc of the usage name, not the defining name
8389 Set_Etype (N, Typ);
8390 Set_Entity (N, Object_Entity);
8392 -- We want to treat the node as if it comes from source, so that
8393 -- ASIS will not ignore it
8395 Set_Comes_From_Source (N, True);
8396 end Replace_Type_Reference;
8398 -- Start of processing for Add_Predicates
8400 begin
8401 Ritem := First_Rep_Item (Typ);
8402 while Present (Ritem) loop
8403 if Nkind (Ritem) = N_Pragma
8404 and then Pragma_Name (Ritem) = Name_Predicate
8405 then
8406 -- Acquire arguments
8408 Arg1 := First (Pragma_Argument_Associations (Ritem));
8409 Arg2 := Next (Arg1);
8411 Arg1 := Get_Pragma_Arg (Arg1);
8412 Arg2 := Get_Pragma_Arg (Arg2);
8414 -- See if this predicate pragma is for the current type or for
8415 -- its full view. A predicate on a private completion is placed
8416 -- on the partial view beause this is the visible entity that
8417 -- is frozen.
8419 if Entity (Arg1) = Typ
8420 or else Full_View (Entity (Arg1)) = Typ
8421 then
8422 -- We have a match, this entry is for our subtype
8424 -- We need to replace any occurrences of the name of the
8425 -- type with references to the object.
8427 Replace_Type_References (Arg2, Typ);
8429 -- If this predicate comes from an aspect, find the aspect
8430 -- specification, and replace the saved expression because
8431 -- we need the subtype references replaced for the calls to
8432 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8433 -- and Check_Aspect_At_End_Of_Declarations.
8435 if From_Aspect_Specification (Ritem) then
8436 declare
8437 Aitem : Node_Id;
8439 begin
8440 -- Loop to find corresponding aspect, note that this
8441 -- must be present given the pragma is marked delayed.
8443 Aitem := Next_Rep_Item (Ritem);
8444 loop
8445 if Nkind (Aitem) = N_Aspect_Specification
8446 and then Aspect_Rep_Item (Aitem) = Ritem
8447 then
8448 Set_Entity
8449 (Identifier (Aitem), New_Copy_Tree (Arg2));
8450 exit;
8451 end if;
8453 Aitem := Next_Rep_Item (Aitem);
8454 end loop;
8455 end;
8456 end if;
8458 -- Now we can add the expression
8460 if No (Expr) then
8461 Expr := Relocate_Node (Arg2);
8463 -- There already was a predicate, so add to it
8465 else
8466 Expr :=
8467 Make_And_Then (Loc,
8468 Left_Opnd => Relocate_Node (Expr),
8469 Right_Opnd => Relocate_Node (Arg2));
8470 end if;
8471 end if;
8472 end if;
8474 Next_Rep_Item (Ritem);
8475 end loop;
8476 end Add_Predicates;
8478 ----------------
8479 -- Process_RE --
8480 ----------------
8482 function Process_RE (N : Node_Id) return Traverse_Result is
8483 begin
8484 if Nkind (N) = N_Raise_Expression then
8485 Set_Convert_To_Return_False (N);
8486 return Skip;
8487 else
8488 return OK;
8489 end if;
8490 end Process_RE;
8492 -------------
8493 -- Test_RE --
8494 -------------
8496 function Test_RE (N : Node_Id) return Traverse_Result is
8497 begin
8498 if Nkind (N) = N_Raise_Expression then
8499 Raise_Expression_Present := True;
8500 return Abandon;
8501 else
8502 return OK;
8503 end if;
8504 end Test_RE;
8506 -- Start of processing for Build_Predicate_Functions
8508 begin
8509 -- Return if already built or if type does not have predicates
8511 if not Has_Predicates (Typ)
8512 or else Present (Predicate_Function (Typ))
8513 then
8514 return;
8515 end if;
8517 -- Prepare to construct predicate expression
8519 Expr := Empty;
8521 -- Add Predicates for the current type
8523 Add_Predicates;
8525 -- Add predicates for ancestor if present
8527 declare
8528 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
8529 begin
8530 if Present (Atyp) then
8531 Add_Call (Atyp);
8532 end if;
8533 end;
8535 -- Case where predicates are present
8537 if Present (Expr) then
8539 -- Test for raise expression present
8541 Test_REs (Expr);
8543 -- If raise expression is present, capture a copy of Expr for use
8544 -- in building the predicateM function version later on. For this
8545 -- copy we replace references to Object_Entity by Object_Entity_M.
8547 if Raise_Expression_Present then
8548 declare
8549 Map : constant Elist_Id := New_Elmt_List;
8550 New_V : Entity_Id := Empty;
8552 -- The unanalyzed expression will be copied and appear in
8553 -- both functions. Normally expressions do not declare new
8554 -- entities, but quantified expressions do, so we need to
8555 -- create new entities for their bound variables, to prevent
8556 -- multiple definitions in gigi.
8558 function Reset_Loop_Variable (N : Node_Id)
8559 return Traverse_Result;
8561 procedure Collect_Loop_Variables is
8562 new Traverse_Proc (Reset_Loop_Variable);
8564 ------------------------
8565 -- Reset_Loop_Variable --
8566 ------------------------
8568 function Reset_Loop_Variable (N : Node_Id)
8569 return Traverse_Result
8571 begin
8572 if Nkind (N) = N_Iterator_Specification then
8573 New_V := Make_Defining_Identifier
8574 (Sloc (N), Chars (Defining_Identifier (N)));
8576 Set_Defining_Identifier (N, New_V);
8577 end if;
8579 return OK;
8580 end Reset_Loop_Variable;
8582 begin
8583 Append_Elmt (Object_Entity, Map);
8584 Append_Elmt (Object_Entity_M, Map);
8585 Expr_M := New_Copy_Tree (Expr, Map => Map);
8586 Collect_Loop_Variables (Expr_M);
8587 end;
8588 end if;
8590 -- Build the main predicate function
8592 declare
8593 SId : constant Entity_Id :=
8594 Make_Defining_Identifier (Loc,
8595 Chars => New_External_Name (Chars (Typ), "Predicate"));
8596 -- The entity for the the function spec
8598 SIdB : constant Entity_Id :=
8599 Make_Defining_Identifier (Loc,
8600 Chars => New_External_Name (Chars (Typ), "Predicate"));
8601 -- The entity for the function body
8603 Spec : Node_Id;
8604 FDecl : Node_Id;
8605 FBody : Node_Id;
8607 begin
8608 -- Build function declaration
8610 Set_Ekind (SId, E_Function);
8611 Set_Is_Internal (SId);
8612 Set_Is_Predicate_Function (SId);
8613 Set_Predicate_Function (Typ, SId);
8615 -- The predicate function is shared between views of a type
8617 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8618 Set_Predicate_Function (Full_View (Typ), SId);
8619 end if;
8621 Spec :=
8622 Make_Function_Specification (Loc,
8623 Defining_Unit_Name => SId,
8624 Parameter_Specifications => New_List (
8625 Make_Parameter_Specification (Loc,
8626 Defining_Identifier => Object_Entity,
8627 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8628 Result_Definition =>
8629 New_Occurrence_Of (Standard_Boolean, Loc));
8631 FDecl :=
8632 Make_Subprogram_Declaration (Loc,
8633 Specification => Spec);
8635 -- Build function body
8637 Spec :=
8638 Make_Function_Specification (Loc,
8639 Defining_Unit_Name => SIdB,
8640 Parameter_Specifications => New_List (
8641 Make_Parameter_Specification (Loc,
8642 Defining_Identifier =>
8643 Make_Defining_Identifier (Loc, Object_Name),
8644 Parameter_Type =>
8645 New_Occurrence_Of (Typ, Loc))),
8646 Result_Definition =>
8647 New_Occurrence_Of (Standard_Boolean, Loc));
8649 FBody :=
8650 Make_Subprogram_Body (Loc,
8651 Specification => Spec,
8652 Declarations => Empty_List,
8653 Handled_Statement_Sequence =>
8654 Make_Handled_Sequence_Of_Statements (Loc,
8655 Statements => New_List (
8656 Make_Simple_Return_Statement (Loc,
8657 Expression => Expr))));
8659 -- Insert declaration before freeze node and body after
8661 Insert_Before_And_Analyze (N, FDecl);
8662 Insert_After_And_Analyze (N, FBody);
8663 end;
8665 -- Test for raise expressions present and if so build M version
8667 if Raise_Expression_Present then
8668 declare
8669 SId : constant Entity_Id :=
8670 Make_Defining_Identifier (Loc,
8671 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8672 -- The entity for the the function spec
8674 SIdB : constant Entity_Id :=
8675 Make_Defining_Identifier (Loc,
8676 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8677 -- The entity for the function body
8679 Spec : Node_Id;
8680 FDecl : Node_Id;
8681 FBody : Node_Id;
8682 BTemp : Entity_Id;
8684 begin
8685 -- Mark any raise expressions for special expansion
8687 Process_REs (Expr_M);
8689 -- Build function declaration
8691 Set_Ekind (SId, E_Function);
8692 Set_Is_Predicate_Function_M (SId);
8693 Set_Predicate_Function_M (Typ, SId);
8695 -- The predicate function is shared between views of a type
8697 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8698 Set_Predicate_Function_M (Full_View (Typ), SId);
8699 end if;
8701 Spec :=
8702 Make_Function_Specification (Loc,
8703 Defining_Unit_Name => SId,
8704 Parameter_Specifications => New_List (
8705 Make_Parameter_Specification (Loc,
8706 Defining_Identifier => Object_Entity_M,
8707 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8708 Result_Definition =>
8709 New_Occurrence_Of (Standard_Boolean, Loc));
8711 FDecl :=
8712 Make_Subprogram_Declaration (Loc,
8713 Specification => Spec);
8715 -- Build function body
8717 Spec :=
8718 Make_Function_Specification (Loc,
8719 Defining_Unit_Name => SIdB,
8720 Parameter_Specifications => New_List (
8721 Make_Parameter_Specification (Loc,
8722 Defining_Identifier =>
8723 Make_Defining_Identifier (Loc, Object_Name),
8724 Parameter_Type =>
8725 New_Occurrence_Of (Typ, Loc))),
8726 Result_Definition =>
8727 New_Occurrence_Of (Standard_Boolean, Loc));
8729 -- Build the body, we declare the boolean expression before
8730 -- doing the return, because we are not really confident of
8731 -- what happens if a return appears within a return.
8733 BTemp :=
8734 Make_Defining_Identifier (Loc,
8735 Chars => New_Internal_Name ('B'));
8737 FBody :=
8738 Make_Subprogram_Body (Loc,
8739 Specification => Spec,
8741 Declarations => New_List (
8742 Make_Object_Declaration (Loc,
8743 Defining_Identifier => BTemp,
8744 Constant_Present => True,
8745 Object_Definition =>
8746 New_Occurrence_Of (Standard_Boolean, Loc),
8747 Expression => Expr_M)),
8749 Handled_Statement_Sequence =>
8750 Make_Handled_Sequence_Of_Statements (Loc,
8751 Statements => New_List (
8752 Make_Simple_Return_Statement (Loc,
8753 Expression => New_Occurrence_Of (BTemp, Loc)))));
8755 -- Insert declaration before freeze node and body after
8757 Insert_Before_And_Analyze (N, FDecl);
8758 Insert_After_And_Analyze (N, FBody);
8759 end;
8760 end if;
8762 -- See if we have a static predicate. Note that the answer may be
8763 -- yes even if we have an explicit Dynamic_Predicate present.
8765 declare
8766 PS : Boolean;
8767 EN : Node_Id;
8769 begin
8770 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8771 PS := False;
8772 else
8773 PS := Is_Predicate_Static (Expr, Object_Name);
8774 end if;
8776 -- Case where we have a predicate-static aspect
8778 if PS then
8780 -- We don't set Has_Static_Predicate_Aspect, since we can have
8781 -- any of the three cases (Predicate, Dynamic_Predicate, or
8782 -- Static_Predicate) generating a predicate with an expression
8783 -- that is predicate-static. We just indicate that we have a
8784 -- predicate that can be treated as static.
8786 Set_Has_Static_Predicate (Typ);
8788 -- For discrete subtype, build the static predicate list
8790 if Is_Discrete_Type (Typ) then
8791 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8793 -- If we don't get a static predicate list, it means that we
8794 -- have a case where this is not possible, most typically in
8795 -- the case where we inherit a dynamic predicate. We do not
8796 -- consider this an error, we just leave the predicate as
8797 -- dynamic. But if we do succeed in building the list, then
8798 -- we mark the predicate as static.
8800 if No (Static_Discrete_Predicate (Typ)) then
8801 Set_Has_Static_Predicate (Typ, False);
8802 end if;
8804 -- For real or string subtype, save predicate expression
8806 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8807 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8808 end if;
8810 -- Case of dynamic predicate (expression is not predicate-static)
8812 else
8813 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8814 -- is only set if we have an explicit Dynamic_Predicate aspect
8815 -- given. Here we may simply have a Predicate aspect where the
8816 -- expression happens not to be predicate-static.
8818 -- Emit an error when the predicate is categorized as static
8819 -- but its expression is not predicate-static.
8821 -- First a little fiddling to get a nice location for the
8822 -- message. If the expression is of the form (A and then B),
8823 -- then use the left operand for the Sloc. This avoids getting
8824 -- confused by a call to a higher-level predicate with a less
8825 -- convenient source location.
8827 EN := Expr;
8828 while Nkind (EN) = N_And_Then loop
8829 EN := Left_Opnd (EN);
8830 end loop;
8832 -- Now post appropriate message
8834 if Has_Static_Predicate_Aspect (Typ) then
8835 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
8836 Error_Msg_F
8837 ("expression is not predicate-static (RM 3.2.4(16-22))",
8838 EN);
8839 else
8840 Error_Msg_F
8841 ("static predicate requires scalar or string type", EN);
8842 end if;
8843 end if;
8844 end if;
8845 end;
8846 end if;
8847 end Build_Predicate_Functions;
8849 -----------------------------------------
8850 -- Check_Aspect_At_End_Of_Declarations --
8851 -----------------------------------------
8853 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8854 Ent : constant Entity_Id := Entity (ASN);
8855 Ident : constant Node_Id := Identifier (ASN);
8856 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
8858 End_Decl_Expr : constant Node_Id := Entity (Ident);
8859 -- Expression to be analyzed at end of declarations
8861 Freeze_Expr : constant Node_Id := Expression (ASN);
8862 -- Expression from call to Check_Aspect_At_Freeze_Point
8864 T : constant Entity_Id := Etype (Freeze_Expr);
8865 -- Type required for preanalyze call
8867 Err : Boolean;
8868 -- Set False if error
8870 -- On entry to this procedure, Entity (Ident) contains a copy of the
8871 -- original expression from the aspect, saved for this purpose, and
8872 -- but Expression (Ident) is a preanalyzed copy of the expression,
8873 -- preanalyzed just after the freeze point.
8875 procedure Check_Overloaded_Name;
8876 -- For aspects whose expression is simply a name, this routine checks if
8877 -- the name is overloaded or not. If so, it verifies there is an
8878 -- interpretation that matches the entity obtained at the freeze point,
8879 -- otherwise the compiler complains.
8881 ---------------------------
8882 -- Check_Overloaded_Name --
8883 ---------------------------
8885 procedure Check_Overloaded_Name is
8886 begin
8887 if not Is_Overloaded (End_Decl_Expr) then
8888 Err := not Is_Entity_Name (End_Decl_Expr)
8889 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
8891 else
8892 Err := True;
8894 declare
8895 Index : Interp_Index;
8896 It : Interp;
8898 begin
8899 Get_First_Interp (End_Decl_Expr, Index, It);
8900 while Present (It.Typ) loop
8901 if It.Nam = Entity (Freeze_Expr) then
8902 Err := False;
8903 exit;
8904 end if;
8906 Get_Next_Interp (Index, It);
8907 end loop;
8908 end;
8909 end if;
8910 end Check_Overloaded_Name;
8912 -- Start of processing for Check_Aspect_At_End_Of_Declarations
8914 begin
8915 -- Case of aspects Dimension, Dimension_System and Synchronization
8917 if A_Id = Aspect_Synchronization then
8918 return;
8920 -- Case of stream attributes, just have to compare entities. However,
8921 -- the expression is just a name (possibly overloaded), and there may
8922 -- be stream operations declared for unrelated types, so we just need
8923 -- to verify that one of these interpretations is the one available at
8924 -- at the freeze point.
8926 elsif A_Id = Aspect_Input or else
8927 A_Id = Aspect_Output or else
8928 A_Id = Aspect_Read or else
8929 A_Id = Aspect_Write
8930 then
8931 Analyze (End_Decl_Expr);
8932 Check_Overloaded_Name;
8934 elsif A_Id = Aspect_Variable_Indexing or else
8935 A_Id = Aspect_Constant_Indexing or else
8936 A_Id = Aspect_Default_Iterator or else
8937 A_Id = Aspect_Iterator_Element
8938 then
8939 -- Make type unfrozen before analysis, to prevent spurious errors
8940 -- about late attributes.
8942 Set_Is_Frozen (Ent, False);
8943 Analyze (End_Decl_Expr);
8944 Set_Is_Frozen (Ent, True);
8946 -- If the end of declarations comes before any other freeze
8947 -- point, the Freeze_Expr is not analyzed: no check needed.
8949 if Analyzed (Freeze_Expr) and then not In_Instance then
8950 Check_Overloaded_Name;
8951 else
8952 Err := False;
8953 end if;
8955 -- All other cases
8957 else
8958 -- Indicate that the expression comes from an aspect specification,
8959 -- which is used in subsequent analysis even if expansion is off.
8961 Set_Parent (End_Decl_Expr, ASN);
8963 -- In a generic context the aspect expressions have not been
8964 -- preanalyzed, so do it now. There are no conformance checks
8965 -- to perform in this case.
8967 if No (T) then
8968 Check_Aspect_At_Freeze_Point (ASN);
8969 return;
8971 -- The default values attributes may be defined in the private part,
8972 -- and the analysis of the expression may take place when only the
8973 -- partial view is visible. The expression must be scalar, so use
8974 -- the full view to resolve.
8976 elsif (A_Id = Aspect_Default_Value
8977 or else
8978 A_Id = Aspect_Default_Component_Value)
8979 and then Is_Private_Type (T)
8980 then
8981 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
8983 else
8984 Preanalyze_Spec_Expression (End_Decl_Expr, T);
8985 end if;
8987 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
8988 end if;
8990 -- Output error message if error. Force error on aspect specification
8991 -- even if there is an error on the expression itself.
8993 if Err then
8994 Error_Msg_NE
8995 ("!visibility of aspect for& changes after freeze point",
8996 ASN, Ent);
8997 Error_Msg_NE
8998 ("info: & is frozen here, aspects evaluated at this point??",
8999 Freeze_Node (Ent), Ent);
9000 end if;
9001 end Check_Aspect_At_End_Of_Declarations;
9003 ----------------------------------
9004 -- Check_Aspect_At_Freeze_Point --
9005 ----------------------------------
9007 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9008 Ident : constant Node_Id := Identifier (ASN);
9009 -- Identifier (use Entity field to save expression)
9011 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9013 T : Entity_Id := Empty;
9014 -- Type required for preanalyze call
9016 begin
9017 -- On entry to this procedure, Entity (Ident) contains a copy of the
9018 -- original expression from the aspect, saved for this purpose.
9020 -- On exit from this procedure Entity (Ident) is unchanged, still
9021 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9022 -- of the expression, preanalyzed just after the freeze point.
9024 -- Make a copy of the expression to be preanalyzed
9026 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9028 -- Find type for preanalyze call
9030 case A_Id is
9032 -- No_Aspect should be impossible
9034 when No_Aspect =>
9035 raise Program_Error;
9037 -- Aspects taking an optional boolean argument
9039 when Boolean_Aspects |
9040 Library_Unit_Aspects =>
9042 T := Standard_Boolean;
9044 -- Aspects corresponding to attribute definition clauses
9046 when Aspect_Address =>
9047 T := RTE (RE_Address);
9049 when Aspect_Attach_Handler =>
9050 T := RTE (RE_Interrupt_ID);
9052 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
9053 T := RTE (RE_Bit_Order);
9055 when Aspect_Convention =>
9056 return;
9058 when Aspect_CPU =>
9059 T := RTE (RE_CPU_Range);
9061 -- Default_Component_Value is resolved with the component type
9063 when Aspect_Default_Component_Value =>
9064 T := Component_Type (Entity (ASN));
9066 when Aspect_Default_Storage_Pool =>
9067 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9069 -- Default_Value is resolved with the type entity in question
9071 when Aspect_Default_Value =>
9072 T := Entity (ASN);
9074 when Aspect_Dispatching_Domain =>
9075 T := RTE (RE_Dispatching_Domain);
9077 when Aspect_External_Tag =>
9078 T := Standard_String;
9080 when Aspect_External_Name =>
9081 T := Standard_String;
9083 when Aspect_Link_Name =>
9084 T := Standard_String;
9086 when Aspect_Priority | Aspect_Interrupt_Priority =>
9087 T := Standard_Integer;
9089 when Aspect_Relative_Deadline =>
9090 T := RTE (RE_Time_Span);
9092 when Aspect_Small =>
9093 T := Universal_Real;
9095 -- For a simple storage pool, we have to retrieve the type of the
9096 -- pool object associated with the aspect's corresponding attribute
9097 -- definition clause.
9099 when Aspect_Simple_Storage_Pool =>
9100 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9102 when Aspect_Storage_Pool =>
9103 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9105 when Aspect_Alignment |
9106 Aspect_Component_Size |
9107 Aspect_Machine_Radix |
9108 Aspect_Object_Size |
9109 Aspect_Size |
9110 Aspect_Storage_Size |
9111 Aspect_Stream_Size |
9112 Aspect_Value_Size =>
9113 T := Any_Integer;
9115 when Aspect_Linker_Section =>
9116 T := Standard_String;
9118 when Aspect_Synchronization =>
9119 return;
9121 -- Special case, the expression of these aspects is just an entity
9122 -- that does not need any resolution, so just analyze.
9124 when Aspect_Input |
9125 Aspect_Output |
9126 Aspect_Read |
9127 Aspect_Suppress |
9128 Aspect_Unsuppress |
9129 Aspect_Warnings |
9130 Aspect_Write =>
9131 Analyze (Expression (ASN));
9132 return;
9134 -- Same for Iterator aspects, where the expression is a function
9135 -- name. Legality rules are checked separately.
9137 when Aspect_Constant_Indexing |
9138 Aspect_Default_Iterator |
9139 Aspect_Iterator_Element |
9140 Aspect_Variable_Indexing =>
9141 Analyze (Expression (ASN));
9142 return;
9144 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9146 when Aspect_Iterable =>
9147 T := Entity (ASN);
9149 declare
9150 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9151 Assoc : Node_Id;
9152 Expr : Node_Id;
9154 begin
9155 if Cursor = Any_Type then
9156 return;
9157 end if;
9159 Assoc := First (Component_Associations (Expression (ASN)));
9160 while Present (Assoc) loop
9161 Expr := Expression (Assoc);
9162 Analyze (Expr);
9164 if not Error_Posted (Expr) then
9165 Resolve_Iterable_Operation
9166 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9167 end if;
9169 Next (Assoc);
9170 end loop;
9171 end;
9173 return;
9175 -- Invariant/Predicate take boolean expressions
9177 when Aspect_Dynamic_Predicate |
9178 Aspect_Invariant |
9179 Aspect_Predicate |
9180 Aspect_Static_Predicate |
9181 Aspect_Type_Invariant =>
9182 T := Standard_Boolean;
9184 -- Here is the list of aspects that don't require delay analysis
9186 when Aspect_Abstract_State |
9187 Aspect_Annotate |
9188 Aspect_Contract_Cases |
9189 Aspect_Default_Initial_Condition |
9190 Aspect_Depends |
9191 Aspect_Dimension |
9192 Aspect_Dimension_System |
9193 Aspect_Extensions_Visible |
9194 Aspect_Ghost |
9195 Aspect_Global |
9196 Aspect_Implicit_Dereference |
9197 Aspect_Initial_Condition |
9198 Aspect_Initializes |
9199 Aspect_Obsolescent |
9200 Aspect_Part_Of |
9201 Aspect_Post |
9202 Aspect_Postcondition |
9203 Aspect_Pre |
9204 Aspect_Precondition |
9205 Aspect_Refined_Depends |
9206 Aspect_Refined_Global |
9207 Aspect_Refined_Post |
9208 Aspect_Refined_State |
9209 Aspect_SPARK_Mode |
9210 Aspect_Test_Case |
9211 Aspect_Unimplemented =>
9212 raise Program_Error;
9214 end case;
9216 -- Do the preanalyze call
9218 Preanalyze_Spec_Expression (Expression (ASN), T);
9219 end Check_Aspect_At_Freeze_Point;
9221 -----------------------------------
9222 -- Check_Constant_Address_Clause --
9223 -----------------------------------
9225 procedure Check_Constant_Address_Clause
9226 (Expr : Node_Id;
9227 U_Ent : Entity_Id)
9229 procedure Check_At_Constant_Address (Nod : Node_Id);
9230 -- Checks that the given node N represents a name whose 'Address is
9231 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9232 -- address value is the same at the point of declaration of U_Ent and at
9233 -- the time of elaboration of the address clause.
9235 procedure Check_Expr_Constants (Nod : Node_Id);
9236 -- Checks that Nod meets the requirements for a constant address clause
9237 -- in the sense of the enclosing procedure.
9239 procedure Check_List_Constants (Lst : List_Id);
9240 -- Check that all elements of list Lst meet the requirements for a
9241 -- constant address clause in the sense of the enclosing procedure.
9243 -------------------------------
9244 -- Check_At_Constant_Address --
9245 -------------------------------
9247 procedure Check_At_Constant_Address (Nod : Node_Id) is
9248 begin
9249 if Is_Entity_Name (Nod) then
9250 if Present (Address_Clause (Entity ((Nod)))) then
9251 Error_Msg_NE
9252 ("invalid address clause for initialized object &!",
9253 Nod, U_Ent);
9254 Error_Msg_NE
9255 ("address for& cannot" &
9256 " depend on another address clause! (RM 13.1(22))!",
9257 Nod, U_Ent);
9259 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9260 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9261 then
9262 Error_Msg_NE
9263 ("invalid address clause for initialized object &!",
9264 Nod, U_Ent);
9265 Error_Msg_Node_2 := U_Ent;
9266 Error_Msg_NE
9267 ("\& must be defined before & (RM 13.1(22))!",
9268 Nod, Entity (Nod));
9269 end if;
9271 elsif Nkind (Nod) = N_Selected_Component then
9272 declare
9273 T : constant Entity_Id := Etype (Prefix (Nod));
9275 begin
9276 if (Is_Record_Type (T)
9277 and then Has_Discriminants (T))
9278 or else
9279 (Is_Access_Type (T)
9280 and then Is_Record_Type (Designated_Type (T))
9281 and then Has_Discriminants (Designated_Type (T)))
9282 then
9283 Error_Msg_NE
9284 ("invalid address clause for initialized object &!",
9285 Nod, U_Ent);
9286 Error_Msg_N
9287 ("\address cannot depend on component" &
9288 " of discriminated record (RM 13.1(22))!",
9289 Nod);
9290 else
9291 Check_At_Constant_Address (Prefix (Nod));
9292 end if;
9293 end;
9295 elsif Nkind (Nod) = N_Indexed_Component then
9296 Check_At_Constant_Address (Prefix (Nod));
9297 Check_List_Constants (Expressions (Nod));
9299 else
9300 Check_Expr_Constants (Nod);
9301 end if;
9302 end Check_At_Constant_Address;
9304 --------------------------
9305 -- Check_Expr_Constants --
9306 --------------------------
9308 procedure Check_Expr_Constants (Nod : Node_Id) is
9309 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9310 Ent : Entity_Id := Empty;
9312 begin
9313 if Nkind (Nod) in N_Has_Etype
9314 and then Etype (Nod) = Any_Type
9315 then
9316 return;
9317 end if;
9319 case Nkind (Nod) is
9320 when N_Empty | N_Error =>
9321 return;
9323 when N_Identifier | N_Expanded_Name =>
9324 Ent := Entity (Nod);
9326 -- We need to look at the original node if it is different
9327 -- from the node, since we may have rewritten things and
9328 -- substituted an identifier representing the rewrite.
9330 if Original_Node (Nod) /= Nod then
9331 Check_Expr_Constants (Original_Node (Nod));
9333 -- If the node is an object declaration without initial
9334 -- value, some code has been expanded, and the expression
9335 -- is not constant, even if the constituents might be
9336 -- acceptable, as in A'Address + offset.
9338 if Ekind (Ent) = E_Variable
9339 and then
9340 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9341 and then
9342 No (Expression (Declaration_Node (Ent)))
9343 then
9344 Error_Msg_NE
9345 ("invalid address clause for initialized object &!",
9346 Nod, U_Ent);
9348 -- If entity is constant, it may be the result of expanding
9349 -- a check. We must verify that its declaration appears
9350 -- before the object in question, else we also reject the
9351 -- address clause.
9353 elsif Ekind (Ent) = E_Constant
9354 and then In_Same_Source_Unit (Ent, U_Ent)
9355 and then Sloc (Ent) > Loc_U_Ent
9356 then
9357 Error_Msg_NE
9358 ("invalid address clause for initialized object &!",
9359 Nod, U_Ent);
9360 end if;
9362 return;
9363 end if;
9365 -- Otherwise look at the identifier and see if it is OK
9367 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9368 or else Is_Type (Ent)
9369 then
9370 return;
9372 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9374 -- This is the case where we must have Ent defined before
9375 -- U_Ent. Clearly if they are in different units this
9376 -- requirement is met since the unit containing Ent is
9377 -- already processed.
9379 if not In_Same_Source_Unit (Ent, U_Ent) then
9380 return;
9382 -- Otherwise location of Ent must be before the location
9383 -- of U_Ent, that's what prior defined means.
9385 elsif Sloc (Ent) < Loc_U_Ent then
9386 return;
9388 else
9389 Error_Msg_NE
9390 ("invalid address clause for initialized object &!",
9391 Nod, U_Ent);
9392 Error_Msg_Node_2 := U_Ent;
9393 Error_Msg_NE
9394 ("\& must be defined before & (RM 13.1(22))!",
9395 Nod, Ent);
9396 end if;
9398 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9399 Check_Expr_Constants (Original_Node (Nod));
9401 else
9402 Error_Msg_NE
9403 ("invalid address clause for initialized object &!",
9404 Nod, U_Ent);
9406 if Comes_From_Source (Ent) then
9407 Error_Msg_NE
9408 ("\reference to variable& not allowed"
9409 & " (RM 13.1(22))!", Nod, Ent);
9410 else
9411 Error_Msg_N
9412 ("non-static expression not allowed"
9413 & " (RM 13.1(22))!", Nod);
9414 end if;
9415 end if;
9417 when N_Integer_Literal =>
9419 -- If this is a rewritten unchecked conversion, in a system
9420 -- where Address is an integer type, always use the base type
9421 -- for a literal value. This is user-friendly and prevents
9422 -- order-of-elaboration issues with instances of unchecked
9423 -- conversion.
9425 if Nkind (Original_Node (Nod)) = N_Function_Call then
9426 Set_Etype (Nod, Base_Type (Etype (Nod)));
9427 end if;
9429 when N_Real_Literal |
9430 N_String_Literal |
9431 N_Character_Literal =>
9432 return;
9434 when N_Range =>
9435 Check_Expr_Constants (Low_Bound (Nod));
9436 Check_Expr_Constants (High_Bound (Nod));
9438 when N_Explicit_Dereference =>
9439 Check_Expr_Constants (Prefix (Nod));
9441 when N_Indexed_Component =>
9442 Check_Expr_Constants (Prefix (Nod));
9443 Check_List_Constants (Expressions (Nod));
9445 when N_Slice =>
9446 Check_Expr_Constants (Prefix (Nod));
9447 Check_Expr_Constants (Discrete_Range (Nod));
9449 when N_Selected_Component =>
9450 Check_Expr_Constants (Prefix (Nod));
9452 when N_Attribute_Reference =>
9453 if Nam_In (Attribute_Name (Nod), Name_Address,
9454 Name_Access,
9455 Name_Unchecked_Access,
9456 Name_Unrestricted_Access)
9457 then
9458 Check_At_Constant_Address (Prefix (Nod));
9460 else
9461 Check_Expr_Constants (Prefix (Nod));
9462 Check_List_Constants (Expressions (Nod));
9463 end if;
9465 when N_Aggregate =>
9466 Check_List_Constants (Component_Associations (Nod));
9467 Check_List_Constants (Expressions (Nod));
9469 when N_Component_Association =>
9470 Check_Expr_Constants (Expression (Nod));
9472 when N_Extension_Aggregate =>
9473 Check_Expr_Constants (Ancestor_Part (Nod));
9474 Check_List_Constants (Component_Associations (Nod));
9475 Check_List_Constants (Expressions (Nod));
9477 when N_Null =>
9478 return;
9480 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9481 Check_Expr_Constants (Left_Opnd (Nod));
9482 Check_Expr_Constants (Right_Opnd (Nod));
9484 when N_Unary_Op =>
9485 Check_Expr_Constants (Right_Opnd (Nod));
9487 when N_Type_Conversion |
9488 N_Qualified_Expression |
9489 N_Allocator |
9490 N_Unchecked_Type_Conversion =>
9491 Check_Expr_Constants (Expression (Nod));
9493 when N_Function_Call =>
9494 if not Is_Pure (Entity (Name (Nod))) then
9495 Error_Msg_NE
9496 ("invalid address clause for initialized object &!",
9497 Nod, U_Ent);
9499 Error_Msg_NE
9500 ("\function & is not pure (RM 13.1(22))!",
9501 Nod, Entity (Name (Nod)));
9503 else
9504 Check_List_Constants (Parameter_Associations (Nod));
9505 end if;
9507 when N_Parameter_Association =>
9508 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9510 when others =>
9511 Error_Msg_NE
9512 ("invalid address clause for initialized object &!",
9513 Nod, U_Ent);
9514 Error_Msg_NE
9515 ("\must be constant defined before& (RM 13.1(22))!",
9516 Nod, U_Ent);
9517 end case;
9518 end Check_Expr_Constants;
9520 --------------------------
9521 -- Check_List_Constants --
9522 --------------------------
9524 procedure Check_List_Constants (Lst : List_Id) is
9525 Nod1 : Node_Id;
9527 begin
9528 if Present (Lst) then
9529 Nod1 := First (Lst);
9530 while Present (Nod1) loop
9531 Check_Expr_Constants (Nod1);
9532 Next (Nod1);
9533 end loop;
9534 end if;
9535 end Check_List_Constants;
9537 -- Start of processing for Check_Constant_Address_Clause
9539 begin
9540 -- If rep_clauses are to be ignored, no need for legality checks. In
9541 -- particular, no need to pester user about rep clauses that violate the
9542 -- rule on constant addresses, given that these clauses will be removed
9543 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9544 -- we want to relax these checks.
9546 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9547 Check_Expr_Constants (Expr);
9548 end if;
9549 end Check_Constant_Address_Clause;
9551 ---------------------------
9552 -- Check_Pool_Size_Clash --
9553 ---------------------------
9555 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9556 Post : Node_Id;
9558 begin
9559 -- We need to find out which one came first. Note that in the case of
9560 -- aspects mixed with pragmas there are cases where the processing order
9561 -- is reversed, which is why we do the check here.
9563 if Sloc (SP) < Sloc (SS) then
9564 Error_Msg_Sloc := Sloc (SP);
9565 Post := SS;
9566 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9568 else
9569 Error_Msg_Sloc := Sloc (SS);
9570 Post := SP;
9571 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9572 end if;
9574 Error_Msg_N
9575 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9576 end Check_Pool_Size_Clash;
9578 ----------------------------------------
9579 -- Check_Record_Representation_Clause --
9580 ----------------------------------------
9582 procedure Check_Record_Representation_Clause (N : Node_Id) is
9583 Loc : constant Source_Ptr := Sloc (N);
9584 Ident : constant Node_Id := Identifier (N);
9585 Rectype : Entity_Id;
9586 Fent : Entity_Id;
9587 CC : Node_Id;
9588 Fbit : Uint;
9589 Lbit : Uint;
9590 Hbit : Uint := Uint_0;
9591 Comp : Entity_Id;
9592 Pcomp : Entity_Id;
9594 Max_Bit_So_Far : Uint;
9595 -- Records the maximum bit position so far. If all field positions
9596 -- are monotonically increasing, then we can skip the circuit for
9597 -- checking for overlap, since no overlap is possible.
9599 Tagged_Parent : Entity_Id := Empty;
9600 -- This is set in the case of a derived tagged type for which we have
9601 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9602 -- positioned by record representation clauses). In this case we must
9603 -- check for overlap between components of this tagged type, and the
9604 -- components of its parent. Tagged_Parent will point to this parent
9605 -- type. For all other cases Tagged_Parent is left set to Empty.
9607 Parent_Last_Bit : Uint;
9608 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9609 -- last bit position for any field in the parent type. We only need to
9610 -- check overlap for fields starting below this point.
9612 Overlap_Check_Required : Boolean;
9613 -- Used to keep track of whether or not an overlap check is required
9615 Overlap_Detected : Boolean := False;
9616 -- Set True if an overlap is detected
9618 Ccount : Natural := 0;
9619 -- Number of component clauses in record rep clause
9621 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9622 -- Given two entities for record components or discriminants, checks
9623 -- if they have overlapping component clauses and issues errors if so.
9625 procedure Find_Component;
9626 -- Finds component entity corresponding to current component clause (in
9627 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9628 -- start/stop bits for the field. If there is no matching component or
9629 -- if the matching component does not have a component clause, then
9630 -- that's an error and Comp is set to Empty, but no error message is
9631 -- issued, since the message was already given. Comp is also set to
9632 -- Empty if the current "component clause" is in fact a pragma.
9634 -----------------------------
9635 -- Check_Component_Overlap --
9636 -----------------------------
9638 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9639 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9640 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9642 begin
9643 if Present (CC1) and then Present (CC2) then
9645 -- Exclude odd case where we have two tag components in the same
9646 -- record, both at location zero. This seems a bit strange, but
9647 -- it seems to happen in some circumstances, perhaps on an error.
9649 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9650 return;
9651 end if;
9653 -- Here we check if the two fields overlap
9655 declare
9656 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9657 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9658 E1 : constant Uint := S1 + Esize (C1_Ent);
9659 E2 : constant Uint := S2 + Esize (C2_Ent);
9661 begin
9662 if E2 <= S1 or else E1 <= S2 then
9663 null;
9664 else
9665 Error_Msg_Node_2 := Component_Name (CC2);
9666 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9667 Error_Msg_Node_1 := Component_Name (CC1);
9668 Error_Msg_N
9669 ("component& overlaps & #", Component_Name (CC1));
9670 Overlap_Detected := True;
9671 end if;
9672 end;
9673 end if;
9674 end Check_Component_Overlap;
9676 --------------------
9677 -- Find_Component --
9678 --------------------
9680 procedure Find_Component is
9682 procedure Search_Component (R : Entity_Id);
9683 -- Search components of R for a match. If found, Comp is set
9685 ----------------------
9686 -- Search_Component --
9687 ----------------------
9689 procedure Search_Component (R : Entity_Id) is
9690 begin
9691 Comp := First_Component_Or_Discriminant (R);
9692 while Present (Comp) loop
9694 -- Ignore error of attribute name for component name (we
9695 -- already gave an error message for this, so no need to
9696 -- complain here)
9698 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9699 null;
9700 else
9701 exit when Chars (Comp) = Chars (Component_Name (CC));
9702 end if;
9704 Next_Component_Or_Discriminant (Comp);
9705 end loop;
9706 end Search_Component;
9708 -- Start of processing for Find_Component
9710 begin
9711 -- Return with Comp set to Empty if we have a pragma
9713 if Nkind (CC) = N_Pragma then
9714 Comp := Empty;
9715 return;
9716 end if;
9718 -- Search current record for matching component
9720 Search_Component (Rectype);
9722 -- If not found, maybe component of base type discriminant that is
9723 -- absent from statically constrained first subtype.
9725 if No (Comp) then
9726 Search_Component (Base_Type (Rectype));
9727 end if;
9729 -- If no component, or the component does not reference the component
9730 -- clause in question, then there was some previous error for which
9731 -- we already gave a message, so just return with Comp Empty.
9733 if No (Comp) or else Component_Clause (Comp) /= CC then
9734 Check_Error_Detected;
9735 Comp := Empty;
9737 -- Normal case where we have a component clause
9739 else
9740 Fbit := Component_Bit_Offset (Comp);
9741 Lbit := Fbit + Esize (Comp) - 1;
9742 end if;
9743 end Find_Component;
9745 -- Start of processing for Check_Record_Representation_Clause
9747 begin
9748 Find_Type (Ident);
9749 Rectype := Entity (Ident);
9751 if Rectype = Any_Type then
9752 return;
9753 else
9754 Rectype := Underlying_Type (Rectype);
9755 end if;
9757 -- See if we have a fully repped derived tagged type
9759 declare
9760 PS : constant Entity_Id := Parent_Subtype (Rectype);
9762 begin
9763 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9764 Tagged_Parent := PS;
9766 -- Find maximum bit of any component of the parent type
9768 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9769 Pcomp := First_Entity (Tagged_Parent);
9770 while Present (Pcomp) loop
9771 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9772 if Component_Bit_Offset (Pcomp) /= No_Uint
9773 and then Known_Static_Esize (Pcomp)
9774 then
9775 Parent_Last_Bit :=
9776 UI_Max
9777 (Parent_Last_Bit,
9778 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9779 end if;
9781 Next_Entity (Pcomp);
9782 end if;
9783 end loop;
9784 end if;
9785 end;
9787 -- All done if no component clauses
9789 CC := First (Component_Clauses (N));
9791 if No (CC) then
9792 return;
9793 end if;
9795 -- If a tag is present, then create a component clause that places it
9796 -- at the start of the record (otherwise gigi may place it after other
9797 -- fields that have rep clauses).
9799 Fent := First_Entity (Rectype);
9801 if Nkind (Fent) = N_Defining_Identifier
9802 and then Chars (Fent) = Name_uTag
9803 then
9804 Set_Component_Bit_Offset (Fent, Uint_0);
9805 Set_Normalized_Position (Fent, Uint_0);
9806 Set_Normalized_First_Bit (Fent, Uint_0);
9807 Set_Normalized_Position_Max (Fent, Uint_0);
9808 Init_Esize (Fent, System_Address_Size);
9810 Set_Component_Clause (Fent,
9811 Make_Component_Clause (Loc,
9812 Component_Name => Make_Identifier (Loc, Name_uTag),
9814 Position => Make_Integer_Literal (Loc, Uint_0),
9815 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9816 Last_Bit =>
9817 Make_Integer_Literal (Loc,
9818 UI_From_Int (System_Address_Size))));
9820 Ccount := Ccount + 1;
9821 end if;
9823 Max_Bit_So_Far := Uint_Minus_1;
9824 Overlap_Check_Required := False;
9826 -- Process the component clauses
9828 while Present (CC) loop
9829 Find_Component;
9831 if Present (Comp) then
9832 Ccount := Ccount + 1;
9834 -- We need a full overlap check if record positions non-monotonic
9836 if Fbit <= Max_Bit_So_Far then
9837 Overlap_Check_Required := True;
9838 end if;
9840 Max_Bit_So_Far := Lbit;
9842 -- Check bit position out of range of specified size
9844 if Has_Size_Clause (Rectype)
9845 and then RM_Size (Rectype) <= Lbit
9846 then
9847 Error_Msg_N
9848 ("bit number out of range of specified size",
9849 Last_Bit (CC));
9851 -- Check for overlap with tag component
9853 else
9854 if Is_Tagged_Type (Rectype)
9855 and then Fbit < System_Address_Size
9856 then
9857 Error_Msg_NE
9858 ("component overlaps tag field of&",
9859 Component_Name (CC), Rectype);
9860 Overlap_Detected := True;
9861 end if;
9863 if Hbit < Lbit then
9864 Hbit := Lbit;
9865 end if;
9866 end if;
9868 -- Check parent overlap if component might overlap parent field
9870 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
9871 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
9872 while Present (Pcomp) loop
9873 if not Is_Tag (Pcomp)
9874 and then Chars (Pcomp) /= Name_uParent
9875 then
9876 Check_Component_Overlap (Comp, Pcomp);
9877 end if;
9879 Next_Component_Or_Discriminant (Pcomp);
9880 end loop;
9881 end if;
9882 end if;
9884 Next (CC);
9885 end loop;
9887 -- Now that we have processed all the component clauses, check for
9888 -- overlap. We have to leave this till last, since the components can
9889 -- appear in any arbitrary order in the representation clause.
9891 -- We do not need this check if all specified ranges were monotonic,
9892 -- as recorded by Overlap_Check_Required being False at this stage.
9894 -- This first section checks if there are any overlapping entries at
9895 -- all. It does this by sorting all entries and then seeing if there are
9896 -- any overlaps. If there are none, then that is decisive, but if there
9897 -- are overlaps, they may still be OK (they may result from fields in
9898 -- different variants).
9900 if Overlap_Check_Required then
9901 Overlap_Check1 : declare
9903 OC_Fbit : array (0 .. Ccount) of Uint;
9904 -- First-bit values for component clauses, the value is the offset
9905 -- of the first bit of the field from start of record. The zero
9906 -- entry is for use in sorting.
9908 OC_Lbit : array (0 .. Ccount) of Uint;
9909 -- Last-bit values for component clauses, the value is the offset
9910 -- of the last bit of the field from start of record. The zero
9911 -- entry is for use in sorting.
9913 OC_Count : Natural := 0;
9914 -- Count of entries in OC_Fbit and OC_Lbit
9916 function OC_Lt (Op1, Op2 : Natural) return Boolean;
9917 -- Compare routine for Sort
9919 procedure OC_Move (From : Natural; To : Natural);
9920 -- Move routine for Sort
9922 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
9924 -----------
9925 -- OC_Lt --
9926 -----------
9928 function OC_Lt (Op1, Op2 : Natural) return Boolean is
9929 begin
9930 return OC_Fbit (Op1) < OC_Fbit (Op2);
9931 end OC_Lt;
9933 -------------
9934 -- OC_Move --
9935 -------------
9937 procedure OC_Move (From : Natural; To : Natural) is
9938 begin
9939 OC_Fbit (To) := OC_Fbit (From);
9940 OC_Lbit (To) := OC_Lbit (From);
9941 end OC_Move;
9943 -- Start of processing for Overlap_Check
9945 begin
9946 CC := First (Component_Clauses (N));
9947 while Present (CC) loop
9949 -- Exclude component clause already marked in error
9951 if not Error_Posted (CC) then
9952 Find_Component;
9954 if Present (Comp) then
9955 OC_Count := OC_Count + 1;
9956 OC_Fbit (OC_Count) := Fbit;
9957 OC_Lbit (OC_Count) := Lbit;
9958 end if;
9959 end if;
9961 Next (CC);
9962 end loop;
9964 Sorting.Sort (OC_Count);
9966 Overlap_Check_Required := False;
9967 for J in 1 .. OC_Count - 1 loop
9968 if OC_Lbit (J) >= OC_Fbit (J + 1) then
9969 Overlap_Check_Required := True;
9970 exit;
9971 end if;
9972 end loop;
9973 end Overlap_Check1;
9974 end if;
9976 -- If Overlap_Check_Required is still True, then we have to do the full
9977 -- scale overlap check, since we have at least two fields that do
9978 -- overlap, and we need to know if that is OK since they are in
9979 -- different variant, or whether we have a definite problem.
9981 if Overlap_Check_Required then
9982 Overlap_Check2 : declare
9983 C1_Ent, C2_Ent : Entity_Id;
9984 -- Entities of components being checked for overlap
9986 Clist : Node_Id;
9987 -- Component_List node whose Component_Items are being checked
9989 Citem : Node_Id;
9990 -- Component declaration for component being checked
9992 begin
9993 C1_Ent := First_Entity (Base_Type (Rectype));
9995 -- Loop through all components in record. For each component check
9996 -- for overlap with any of the preceding elements on the component
9997 -- list containing the component and also, if the component is in
9998 -- a variant, check against components outside the case structure.
9999 -- This latter test is repeated recursively up the variant tree.
10001 Main_Component_Loop : while Present (C1_Ent) loop
10002 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10003 goto Continue_Main_Component_Loop;
10004 end if;
10006 -- Skip overlap check if entity has no declaration node. This
10007 -- happens with discriminants in constrained derived types.
10008 -- Possibly we are missing some checks as a result, but that
10009 -- does not seem terribly serious.
10011 if No (Declaration_Node (C1_Ent)) then
10012 goto Continue_Main_Component_Loop;
10013 end if;
10015 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10017 -- Loop through component lists that need checking. Check the
10018 -- current component list and all lists in variants above us.
10020 Component_List_Loop : loop
10022 -- If derived type definition, go to full declaration
10023 -- If at outer level, check discriminants if there are any.
10025 if Nkind (Clist) = N_Derived_Type_Definition then
10026 Clist := Parent (Clist);
10027 end if;
10029 -- Outer level of record definition, check discriminants
10031 if Nkind_In (Clist, N_Full_Type_Declaration,
10032 N_Private_Type_Declaration)
10033 then
10034 if Has_Discriminants (Defining_Identifier (Clist)) then
10035 C2_Ent :=
10036 First_Discriminant (Defining_Identifier (Clist));
10037 while Present (C2_Ent) loop
10038 exit when C1_Ent = C2_Ent;
10039 Check_Component_Overlap (C1_Ent, C2_Ent);
10040 Next_Discriminant (C2_Ent);
10041 end loop;
10042 end if;
10044 -- Record extension case
10046 elsif Nkind (Clist) = N_Derived_Type_Definition then
10047 Clist := Empty;
10049 -- Otherwise check one component list
10051 else
10052 Citem := First (Component_Items (Clist));
10053 while Present (Citem) loop
10054 if Nkind (Citem) = N_Component_Declaration then
10055 C2_Ent := Defining_Identifier (Citem);
10056 exit when C1_Ent = C2_Ent;
10057 Check_Component_Overlap (C1_Ent, C2_Ent);
10058 end if;
10060 Next (Citem);
10061 end loop;
10062 end if;
10064 -- Check for variants above us (the parent of the Clist can
10065 -- be a variant, in which case its parent is a variant part,
10066 -- and the parent of the variant part is a component list
10067 -- whose components must all be checked against the current
10068 -- component for overlap).
10070 if Nkind (Parent (Clist)) = N_Variant then
10071 Clist := Parent (Parent (Parent (Clist)));
10073 -- Check for possible discriminant part in record, this
10074 -- is treated essentially as another level in the
10075 -- recursion. For this case the parent of the component
10076 -- list is the record definition, and its parent is the
10077 -- full type declaration containing the discriminant
10078 -- specifications.
10080 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10081 Clist := Parent (Parent ((Clist)));
10083 -- If neither of these two cases, we are at the top of
10084 -- the tree.
10086 else
10087 exit Component_List_Loop;
10088 end if;
10089 end loop Component_List_Loop;
10091 <<Continue_Main_Component_Loop>>
10092 Next_Entity (C1_Ent);
10094 end loop Main_Component_Loop;
10095 end Overlap_Check2;
10096 end if;
10098 -- The following circuit deals with warning on record holes (gaps). We
10099 -- skip this check if overlap was detected, since it makes sense for the
10100 -- programmer to fix this illegality before worrying about warnings.
10102 if not Overlap_Detected and Warn_On_Record_Holes then
10103 Record_Hole_Check : declare
10104 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10105 -- Full declaration of record type
10107 procedure Check_Component_List
10108 (CL : Node_Id;
10109 Sbit : Uint;
10110 DS : List_Id);
10111 -- Check component list CL for holes. The starting bit should be
10112 -- Sbit. which is zero for the main record component list and set
10113 -- appropriately for recursive calls for variants. DS is set to
10114 -- a list of discriminant specifications to be included in the
10115 -- consideration of components. It is No_List if none to consider.
10117 --------------------------
10118 -- Check_Component_List --
10119 --------------------------
10121 procedure Check_Component_List
10122 (CL : Node_Id;
10123 Sbit : Uint;
10124 DS : List_Id)
10126 Compl : Integer;
10128 begin
10129 Compl := Integer (List_Length (Component_Items (CL)));
10131 if DS /= No_List then
10132 Compl := Compl + Integer (List_Length (DS));
10133 end if;
10135 declare
10136 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10137 -- Gather components (zero entry is for sort routine)
10139 Ncomps : Natural := 0;
10140 -- Number of entries stored in Comps (starting at Comps (1))
10142 Citem : Node_Id;
10143 -- One component item or discriminant specification
10145 Nbit : Uint;
10146 -- Starting bit for next component
10148 CEnt : Entity_Id;
10149 -- Component entity
10151 Variant : Node_Id;
10152 -- One variant
10154 function Lt (Op1, Op2 : Natural) return Boolean;
10155 -- Compare routine for Sort
10157 procedure Move (From : Natural; To : Natural);
10158 -- Move routine for Sort
10160 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10162 --------
10163 -- Lt --
10164 --------
10166 function Lt (Op1, Op2 : Natural) return Boolean is
10167 begin
10168 return Component_Bit_Offset (Comps (Op1))
10170 Component_Bit_Offset (Comps (Op2));
10171 end Lt;
10173 ----------
10174 -- Move --
10175 ----------
10177 procedure Move (From : Natural; To : Natural) is
10178 begin
10179 Comps (To) := Comps (From);
10180 end Move;
10182 begin
10183 -- Gather discriminants into Comp
10185 if DS /= No_List then
10186 Citem := First (DS);
10187 while Present (Citem) loop
10188 if Nkind (Citem) = N_Discriminant_Specification then
10189 declare
10190 Ent : constant Entity_Id :=
10191 Defining_Identifier (Citem);
10192 begin
10193 if Ekind (Ent) = E_Discriminant then
10194 Ncomps := Ncomps + 1;
10195 Comps (Ncomps) := Ent;
10196 end if;
10197 end;
10198 end if;
10200 Next (Citem);
10201 end loop;
10202 end if;
10204 -- Gather component entities into Comp
10206 Citem := First (Component_Items (CL));
10207 while Present (Citem) loop
10208 if Nkind (Citem) = N_Component_Declaration then
10209 Ncomps := Ncomps + 1;
10210 Comps (Ncomps) := Defining_Identifier (Citem);
10211 end if;
10213 Next (Citem);
10214 end loop;
10216 -- Now sort the component entities based on the first bit.
10217 -- Note we already know there are no overlapping components.
10219 Sorting.Sort (Ncomps);
10221 -- Loop through entries checking for holes
10223 Nbit := Sbit;
10224 for J in 1 .. Ncomps loop
10225 CEnt := Comps (J);
10226 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
10228 if Error_Msg_Uint_1 > 0 then
10229 Error_Msg_NE
10230 ("?H?^-bit gap before component&",
10231 Component_Name (Component_Clause (CEnt)), CEnt);
10232 end if;
10234 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
10235 end loop;
10237 -- Process variant parts recursively if present
10239 if Present (Variant_Part (CL)) then
10240 Variant := First (Variants (Variant_Part (CL)));
10241 while Present (Variant) loop
10242 Check_Component_List
10243 (Component_List (Variant), Nbit, No_List);
10244 Next (Variant);
10245 end loop;
10246 end if;
10247 end;
10248 end Check_Component_List;
10250 -- Start of processing for Record_Hole_Check
10252 begin
10253 declare
10254 Sbit : Uint;
10256 begin
10257 if Is_Tagged_Type (Rectype) then
10258 Sbit := UI_From_Int (System_Address_Size);
10259 else
10260 Sbit := Uint_0;
10261 end if;
10263 if Nkind (Decl) = N_Full_Type_Declaration
10264 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10265 then
10266 Check_Component_List
10267 (Component_List (Type_Definition (Decl)),
10268 Sbit,
10269 Discriminant_Specifications (Decl));
10270 end if;
10271 end;
10272 end Record_Hole_Check;
10273 end if;
10275 -- For records that have component clauses for all components, and whose
10276 -- size is less than or equal to 32, we need to know the size in the
10277 -- front end to activate possible packed array processing where the
10278 -- component type is a record.
10280 -- At this stage Hbit + 1 represents the first unused bit from all the
10281 -- component clauses processed, so if the component clauses are
10282 -- complete, then this is the length of the record.
10284 -- For records longer than System.Storage_Unit, and for those where not
10285 -- all components have component clauses, the back end determines the
10286 -- length (it may for example be appropriate to round up the size
10287 -- to some convenient boundary, based on alignment considerations, etc).
10289 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10291 -- Nothing to do if at least one component has no component clause
10293 Comp := First_Component_Or_Discriminant (Rectype);
10294 while Present (Comp) loop
10295 exit when No (Component_Clause (Comp));
10296 Next_Component_Or_Discriminant (Comp);
10297 end loop;
10299 -- If we fall out of loop, all components have component clauses
10300 -- and so we can set the size to the maximum value.
10302 if No (Comp) then
10303 Set_RM_Size (Rectype, Hbit + 1);
10304 end if;
10305 end if;
10306 end Check_Record_Representation_Clause;
10308 ----------------
10309 -- Check_Size --
10310 ----------------
10312 procedure Check_Size
10313 (N : Node_Id;
10314 T : Entity_Id;
10315 Siz : Uint;
10316 Biased : out Boolean)
10318 UT : constant Entity_Id := Underlying_Type (T);
10319 M : Uint;
10321 begin
10322 Biased := False;
10324 -- Reject patently improper size values.
10326 if Is_Elementary_Type (T)
10327 and then Siz > UI_From_Int (Int'Last)
10328 then
10329 Error_Msg_N ("Size value too large for elementary type", N);
10331 if Nkind (Original_Node (N)) = N_Op_Expon then
10332 Error_Msg_N
10333 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10334 end if;
10335 end if;
10337 -- Dismiss generic types
10339 if Is_Generic_Type (T)
10340 or else
10341 Is_Generic_Type (UT)
10342 or else
10343 Is_Generic_Type (Root_Type (UT))
10344 then
10345 return;
10347 -- Guard against previous errors
10349 elsif No (UT) or else UT = Any_Type then
10350 Check_Error_Detected;
10351 return;
10353 -- Check case of bit packed array
10355 elsif Is_Array_Type (UT)
10356 and then Known_Static_Component_Size (UT)
10357 and then Is_Bit_Packed_Array (UT)
10358 then
10359 declare
10360 Asiz : Uint;
10361 Indx : Node_Id;
10362 Ityp : Entity_Id;
10364 begin
10365 Asiz := Component_Size (UT);
10366 Indx := First_Index (UT);
10367 loop
10368 Ityp := Etype (Indx);
10370 -- If non-static bound, then we are not in the business of
10371 -- trying to check the length, and indeed an error will be
10372 -- issued elsewhere, since sizes of non-static array types
10373 -- cannot be set implicitly or explicitly.
10375 if not Is_OK_Static_Subtype (Ityp) then
10376 return;
10377 end if;
10379 -- Otherwise accumulate next dimension
10381 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10382 Expr_Value (Type_Low_Bound (Ityp)) +
10383 Uint_1);
10385 Next_Index (Indx);
10386 exit when No (Indx);
10387 end loop;
10389 if Asiz <= Siz then
10390 return;
10392 else
10393 Error_Msg_Uint_1 := Asiz;
10394 Error_Msg_NE
10395 ("size for& too small, minimum allowed is ^", N, T);
10396 Set_Esize (T, Asiz);
10397 Set_RM_Size (T, Asiz);
10398 end if;
10399 end;
10401 -- All other composite types are ignored
10403 elsif Is_Composite_Type (UT) then
10404 return;
10406 -- For fixed-point types, don't check minimum if type is not frozen,
10407 -- since we don't know all the characteristics of the type that can
10408 -- affect the size (e.g. a specified small) till freeze time.
10410 elsif Is_Fixed_Point_Type (UT)
10411 and then not Is_Frozen (UT)
10412 then
10413 null;
10415 -- Cases for which a minimum check is required
10417 else
10418 -- Ignore if specified size is correct for the type
10420 if Known_Esize (UT) and then Siz = Esize (UT) then
10421 return;
10422 end if;
10424 -- Otherwise get minimum size
10426 M := UI_From_Int (Minimum_Size (UT));
10428 if Siz < M then
10430 -- Size is less than minimum size, but one possibility remains
10431 -- that we can manage with the new size if we bias the type.
10433 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10435 if Siz < M then
10436 Error_Msg_Uint_1 := M;
10437 Error_Msg_NE
10438 ("size for& too small, minimum allowed is ^", N, T);
10439 Set_Esize (T, M);
10440 Set_RM_Size (T, M);
10441 else
10442 Biased := True;
10443 end if;
10444 end if;
10445 end if;
10446 end Check_Size;
10448 --------------------------
10449 -- Freeze_Entity_Checks --
10450 --------------------------
10452 procedure Freeze_Entity_Checks (N : Node_Id) is
10453 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10454 -- Inspect the primitive operations of type Typ and hide all pairs of
10455 -- implicitly declared non-overridden non-fully conformant homographs
10456 -- (Ada RM 8.3 12.3/2).
10458 -------------------------------------
10459 -- Hide_Non_Overridden_Subprograms --
10460 -------------------------------------
10462 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10463 procedure Hide_Matching_Homographs
10464 (Subp_Id : Entity_Id;
10465 Start_Elmt : Elmt_Id);
10466 -- Inspect a list of primitive operations starting with Start_Elmt
10467 -- and find matching implicitly declared non-overridden non-fully
10468 -- conformant homographs of Subp_Id. If found, all matches along
10469 -- with Subp_Id are hidden from all visibility.
10471 function Is_Non_Overridden_Or_Null_Procedure
10472 (Subp_Id : Entity_Id) return Boolean;
10473 -- Determine whether subprogram Subp_Id is implicitly declared non-
10474 -- overridden subprogram or an implicitly declared null procedure.
10476 ------------------------------
10477 -- Hide_Matching_Homographs --
10478 ------------------------------
10480 procedure Hide_Matching_Homographs
10481 (Subp_Id : Entity_Id;
10482 Start_Elmt : Elmt_Id)
10484 Prim : Entity_Id;
10485 Prim_Elmt : Elmt_Id;
10487 begin
10488 Prim_Elmt := Start_Elmt;
10489 while Present (Prim_Elmt) loop
10490 Prim := Node (Prim_Elmt);
10492 -- The current primitive is implicitly declared non-overridden
10493 -- non-fully conformant homograph of Subp_Id. Both subprograms
10494 -- must be hidden from visibility.
10496 if Chars (Prim) = Chars (Subp_Id)
10497 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10498 and then not Fully_Conformant (Prim, Subp_Id)
10499 then
10500 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10501 Set_Is_Immediately_Visible (Prim, False);
10502 Set_Is_Potentially_Use_Visible (Prim, False);
10504 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10505 Set_Is_Immediately_Visible (Subp_Id, False);
10506 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10507 end if;
10509 Next_Elmt (Prim_Elmt);
10510 end loop;
10511 end Hide_Matching_Homographs;
10513 -----------------------------------------
10514 -- Is_Non_Overridden_Or_Null_Procedure --
10515 -----------------------------------------
10517 function Is_Non_Overridden_Or_Null_Procedure
10518 (Subp_Id : Entity_Id) return Boolean
10520 Alias_Id : Entity_Id;
10522 begin
10523 -- The subprogram is inherited (implicitly declared), it does not
10524 -- override and does not cover a primitive of an interface.
10526 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10527 and then Present (Alias (Subp_Id))
10528 and then No (Interface_Alias (Subp_Id))
10529 and then No (Overridden_Operation (Subp_Id))
10530 then
10531 Alias_Id := Alias (Subp_Id);
10533 if Requires_Overriding (Alias_Id) then
10534 return True;
10536 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10537 and then Null_Present (Parent (Alias_Id))
10538 then
10539 return True;
10540 end if;
10541 end if;
10543 return False;
10544 end Is_Non_Overridden_Or_Null_Procedure;
10546 -- Local variables
10548 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10549 Prim : Entity_Id;
10550 Prim_Elmt : Elmt_Id;
10552 -- Start of processing for Hide_Non_Overridden_Subprograms
10554 begin
10555 -- Inspect the list of primitives looking for non-overridden
10556 -- subprograms.
10558 if Present (Prim_Ops) then
10559 Prim_Elmt := First_Elmt (Prim_Ops);
10560 while Present (Prim_Elmt) loop
10561 Prim := Node (Prim_Elmt);
10562 Next_Elmt (Prim_Elmt);
10564 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10565 Hide_Matching_Homographs
10566 (Subp_Id => Prim,
10567 Start_Elmt => Prim_Elmt);
10568 end if;
10569 end loop;
10570 end if;
10571 end Hide_Non_Overridden_Subprograms;
10573 ---------------------
10574 -- Local variables --
10575 ---------------------
10577 E : constant Entity_Id := Entity (N);
10579 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10580 -- True in non-generic case. Some of the processing here is skipped
10581 -- for the generic case since it is not needed. Basically in the
10582 -- generic case, we only need to do stuff that might generate error
10583 -- messages or warnings.
10585 -- Start of processing for Freeze_Entity_Checks
10587 begin
10588 -- Remember that we are processing a freezing entity. Required to
10589 -- ensure correct decoration of internal entities associated with
10590 -- interfaces (see New_Overloaded_Entity).
10592 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10594 -- For tagged types covering interfaces add internal entities that link
10595 -- the primitives of the interfaces with the primitives that cover them.
10596 -- Note: These entities were originally generated only when generating
10597 -- code because their main purpose was to provide support to initialize
10598 -- the secondary dispatch tables. They are now generated also when
10599 -- compiling with no code generation to provide ASIS the relationship
10600 -- between interface primitives and tagged type primitives. They are
10601 -- also used to locate primitives covering interfaces when processing
10602 -- generics (see Derive_Subprograms).
10604 -- This is not needed in the generic case
10606 if Ada_Version >= Ada_2005
10607 and then Non_Generic_Case
10608 and then Ekind (E) = E_Record_Type
10609 and then Is_Tagged_Type (E)
10610 and then not Is_Interface (E)
10611 and then Has_Interfaces (E)
10612 then
10613 -- This would be a good common place to call the routine that checks
10614 -- overriding of interface primitives (and thus factorize calls to
10615 -- Check_Abstract_Overriding located at different contexts in the
10616 -- compiler). However, this is not possible because it causes
10617 -- spurious errors in case of late overriding.
10619 Add_Internal_Interface_Entities (E);
10620 end if;
10622 -- After all forms of overriding have been resolved, a tagged type may
10623 -- be left with a set of implicitly declared and possibly erroneous
10624 -- abstract subprograms, null procedures and subprograms that require
10625 -- overriding. If this set contains fully conformat homographs, then one
10626 -- is chosen arbitrarily (already done during resolution), otherwise all
10627 -- remaining non-fully conformant homographs are hidden from visibility
10628 -- (Ada RM 8.3 12.3/2).
10630 if Is_Tagged_Type (E) then
10631 Hide_Non_Overridden_Subprograms (E);
10632 end if;
10634 -- Check CPP types
10636 if Ekind (E) = E_Record_Type
10637 and then Is_CPP_Class (E)
10638 and then Is_Tagged_Type (E)
10639 and then Tagged_Type_Expansion
10640 then
10641 if CPP_Num_Prims (E) = 0 then
10643 -- If the CPP type has user defined components then it must import
10644 -- primitives from C++. This is required because if the C++ class
10645 -- has no primitives then the C++ compiler does not added the _tag
10646 -- component to the type.
10648 if First_Entity (E) /= Last_Entity (E) then
10649 Error_Msg_N
10650 ("'C'P'P type must import at least one primitive from C++??",
10652 end if;
10653 end if;
10655 -- Check that all its primitives are abstract or imported from C++.
10656 -- Check also availability of the C++ constructor.
10658 declare
10659 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10660 Elmt : Elmt_Id;
10661 Error_Reported : Boolean := False;
10662 Prim : Node_Id;
10664 begin
10665 Elmt := First_Elmt (Primitive_Operations (E));
10666 while Present (Elmt) loop
10667 Prim := Node (Elmt);
10669 if Comes_From_Source (Prim) then
10670 if Is_Abstract_Subprogram (Prim) then
10671 null;
10673 elsif not Is_Imported (Prim)
10674 or else Convention (Prim) /= Convention_CPP
10675 then
10676 Error_Msg_N
10677 ("primitives of 'C'P'P types must be imported from C++ "
10678 & "or abstract??", Prim);
10680 elsif not Has_Constructors
10681 and then not Error_Reported
10682 then
10683 Error_Msg_Name_1 := Chars (E);
10684 Error_Msg_N
10685 ("??'C'P'P constructor required for type %", Prim);
10686 Error_Reported := True;
10687 end if;
10688 end if;
10690 Next_Elmt (Elmt);
10691 end loop;
10692 end;
10693 end if;
10695 -- Check Ada derivation of CPP type
10697 if Expander_Active -- why? losing errors in -gnatc mode???
10698 and then Present (Etype (E)) -- defend against errors
10699 and then Tagged_Type_Expansion
10700 and then Ekind (E) = E_Record_Type
10701 and then Etype (E) /= E
10702 and then Is_CPP_Class (Etype (E))
10703 and then CPP_Num_Prims (Etype (E)) > 0
10704 and then not Is_CPP_Class (E)
10705 and then not Has_CPP_Constructors (Etype (E))
10706 then
10707 -- If the parent has C++ primitives but it has no constructor then
10708 -- check that all the primitives are overridden in this derivation;
10709 -- otherwise the constructor of the parent is needed to build the
10710 -- dispatch table.
10712 declare
10713 Elmt : Elmt_Id;
10714 Prim : Node_Id;
10716 begin
10717 Elmt := First_Elmt (Primitive_Operations (E));
10718 while Present (Elmt) loop
10719 Prim := Node (Elmt);
10721 if not Is_Abstract_Subprogram (Prim)
10722 and then No (Interface_Alias (Prim))
10723 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
10724 then
10725 Error_Msg_Name_1 := Chars (Etype (E));
10726 Error_Msg_N
10727 ("'C'P'P constructor required for parent type %", E);
10728 exit;
10729 end if;
10731 Next_Elmt (Elmt);
10732 end loop;
10733 end;
10734 end if;
10736 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
10738 -- If we have a type with predicates, build predicate function. This
10739 -- is not needed in the generic case, and is not needed within TSS
10740 -- subprograms and other predefined primitives.
10742 if Non_Generic_Case
10743 and then Is_Type (E)
10744 and then Has_Predicates (E)
10745 and then not Within_Internal_Subprogram
10746 then
10747 Build_Predicate_Functions (E, N);
10748 end if;
10750 -- If type has delayed aspects, this is where we do the preanalysis at
10751 -- the freeze point, as part of the consistent visibility check. Note
10752 -- that this must be done after calling Build_Predicate_Functions or
10753 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10754 -- the subtype name in the saved expression so that they will not cause
10755 -- trouble in the preanalysis.
10757 -- This is also not needed in the generic case
10759 if Non_Generic_Case
10760 and then Has_Delayed_Aspects (E)
10761 and then Scope (E) = Current_Scope
10762 then
10763 -- Retrieve the visibility to the discriminants in order to properly
10764 -- analyze the aspects.
10766 Push_Scope_And_Install_Discriminants (E);
10768 declare
10769 Ritem : Node_Id;
10771 begin
10772 -- Look for aspect specification entries for this entity
10774 Ritem := First_Rep_Item (E);
10775 while Present (Ritem) loop
10776 if Nkind (Ritem) = N_Aspect_Specification
10777 and then Entity (Ritem) = E
10778 and then Is_Delayed_Aspect (Ritem)
10779 then
10780 Check_Aspect_At_Freeze_Point (Ritem);
10781 end if;
10783 Next_Rep_Item (Ritem);
10784 end loop;
10785 end;
10787 Uninstall_Discriminants_And_Pop_Scope (E);
10788 end if;
10790 -- For a record type, deal with variant parts. This has to be delayed
10791 -- to this point, because of the issue of statically predicated
10792 -- subtypes, which we have to ensure are frozen before checking
10793 -- choices, since we need to have the static choice list set.
10795 if Is_Record_Type (E) then
10796 Check_Variant_Part : declare
10797 D : constant Node_Id := Declaration_Node (E);
10798 T : Node_Id;
10799 C : Node_Id;
10800 VP : Node_Id;
10802 Others_Present : Boolean;
10803 pragma Warnings (Off, Others_Present);
10804 -- Indicates others present, not used in this case
10806 procedure Non_Static_Choice_Error (Choice : Node_Id);
10807 -- Error routine invoked by the generic instantiation below when
10808 -- the variant part has a non static choice.
10810 procedure Process_Declarations (Variant : Node_Id);
10811 -- Processes declarations associated with a variant. We analyzed
10812 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10813 -- but we still need the recursive call to Check_Choices for any
10814 -- nested variant to get its choices properly processed. This is
10815 -- also where we expand out the choices if expansion is active.
10817 package Variant_Choices_Processing is new
10818 Generic_Check_Choices
10819 (Process_Empty_Choice => No_OP,
10820 Process_Non_Static_Choice => Non_Static_Choice_Error,
10821 Process_Associated_Node => Process_Declarations);
10822 use Variant_Choices_Processing;
10824 -----------------------------
10825 -- Non_Static_Choice_Error --
10826 -----------------------------
10828 procedure Non_Static_Choice_Error (Choice : Node_Id) is
10829 begin
10830 Flag_Non_Static_Expr
10831 ("choice given in variant part is not static!", Choice);
10832 end Non_Static_Choice_Error;
10834 --------------------------
10835 -- Process_Declarations --
10836 --------------------------
10838 procedure Process_Declarations (Variant : Node_Id) is
10839 CL : constant Node_Id := Component_List (Variant);
10840 VP : Node_Id;
10842 begin
10843 -- Check for static predicate present in this variant
10845 if Has_SP_Choice (Variant) then
10847 -- Here we expand. You might expect to find this call in
10848 -- Expand_N_Variant_Part, but that is called when we first
10849 -- see the variant part, and we cannot do this expansion
10850 -- earlier than the freeze point, since for statically
10851 -- predicated subtypes, the predicate is not known till
10852 -- the freeze point.
10854 -- Furthermore, we do this expansion even if the expander
10855 -- is not active, because other semantic processing, e.g.
10856 -- for aggregates, requires the expanded list of choices.
10858 -- If the expander is not active, then we can't just clobber
10859 -- the list since it would invalidate the ASIS -gnatct tree.
10860 -- So we have to rewrite the variant part with a Rewrite
10861 -- call that replaces it with a copy and clobber the copy.
10863 if not Expander_Active then
10864 declare
10865 NewV : constant Node_Id := New_Copy (Variant);
10866 begin
10867 Set_Discrete_Choices
10868 (NewV, New_Copy_List (Discrete_Choices (Variant)));
10869 Rewrite (Variant, NewV);
10870 end;
10871 end if;
10873 Expand_Static_Predicates_In_Choices (Variant);
10874 end if;
10876 -- We don't need to worry about the declarations in the variant
10877 -- (since they were analyzed by Analyze_Choices when we first
10878 -- encountered the variant), but we do need to take care of
10879 -- expansion of any nested variants.
10881 if not Null_Present (CL) then
10882 VP := Variant_Part (CL);
10884 if Present (VP) then
10885 Check_Choices
10886 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10887 end if;
10888 end if;
10889 end Process_Declarations;
10891 -- Start of processing for Check_Variant_Part
10893 begin
10894 -- Find component list
10896 C := Empty;
10898 if Nkind (D) = N_Full_Type_Declaration then
10899 T := Type_Definition (D);
10901 if Nkind (T) = N_Record_Definition then
10902 C := Component_List (T);
10904 elsif Nkind (T) = N_Derived_Type_Definition
10905 and then Present (Record_Extension_Part (T))
10906 then
10907 C := Component_List (Record_Extension_Part (T));
10908 end if;
10909 end if;
10911 -- Case of variant part present
10913 if Present (C) and then Present (Variant_Part (C)) then
10914 VP := Variant_Part (C);
10916 -- Check choices
10918 Check_Choices
10919 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10921 -- If the last variant does not contain the Others choice,
10922 -- replace it with an N_Others_Choice node since Gigi always
10923 -- wants an Others. Note that we do not bother to call Analyze
10924 -- on the modified variant part, since its only effect would be
10925 -- to compute the Others_Discrete_Choices node laboriously, and
10926 -- of course we already know the list of choices corresponding
10927 -- to the others choice (it's the list we're replacing).
10929 -- We only want to do this if the expander is active, since
10930 -- we do not want to clobber the ASIS tree.
10932 if Expander_Active then
10933 declare
10934 Last_Var : constant Node_Id :=
10935 Last_Non_Pragma (Variants (VP));
10937 Others_Node : Node_Id;
10939 begin
10940 if Nkind (First (Discrete_Choices (Last_Var))) /=
10941 N_Others_Choice
10942 then
10943 Others_Node := Make_Others_Choice (Sloc (Last_Var));
10944 Set_Others_Discrete_Choices
10945 (Others_Node, Discrete_Choices (Last_Var));
10946 Set_Discrete_Choices
10947 (Last_Var, New_List (Others_Node));
10948 end if;
10949 end;
10950 end if;
10951 end if;
10952 end Check_Variant_Part;
10953 end if;
10954 end Freeze_Entity_Checks;
10956 -------------------------
10957 -- Get_Alignment_Value --
10958 -------------------------
10960 function Get_Alignment_Value (Expr : Node_Id) return Uint is
10961 Align : constant Uint := Static_Integer (Expr);
10963 begin
10964 if Align = No_Uint then
10965 return No_Uint;
10967 elsif Align <= 0 then
10968 Error_Msg_N ("alignment value must be positive", Expr);
10969 return No_Uint;
10971 else
10972 for J in Int range 0 .. 64 loop
10973 declare
10974 M : constant Uint := Uint_2 ** J;
10976 begin
10977 exit when M = Align;
10979 if M > Align then
10980 Error_Msg_N
10981 ("alignment value must be power of 2", Expr);
10982 return No_Uint;
10983 end if;
10984 end;
10985 end loop;
10987 return Align;
10988 end if;
10989 end Get_Alignment_Value;
10991 -------------------------------------
10992 -- Inherit_Aspects_At_Freeze_Point --
10993 -------------------------------------
10995 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
10996 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10997 (Rep_Item : Node_Id) return Boolean;
10998 -- This routine checks if Rep_Item is either a pragma or an aspect
10999 -- specification node whose correponding pragma (if any) is present in
11000 -- the Rep Item chain of the entity it has been specified to.
11002 --------------------------------------------------
11003 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11004 --------------------------------------------------
11006 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11007 (Rep_Item : Node_Id) return Boolean
11009 begin
11010 return
11011 Nkind (Rep_Item) = N_Pragma
11012 or else Present_In_Rep_Item
11013 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11014 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11016 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11018 begin
11019 -- A representation item is either subtype-specific (Size and Alignment
11020 -- clauses) or type-related (all others). Subtype-specific aspects may
11021 -- differ for different subtypes of the same type (RM 13.1.8).
11023 -- A derived type inherits each type-related representation aspect of
11024 -- its parent type that was directly specified before the declaration of
11025 -- the derived type (RM 13.1.15).
11027 -- A derived subtype inherits each subtype-specific representation
11028 -- aspect of its parent subtype that was directly specified before the
11029 -- declaration of the derived type (RM 13.1.15).
11031 -- The general processing involves inheriting a representation aspect
11032 -- from a parent type whenever the first rep item (aspect specification,
11033 -- attribute definition clause, pragma) corresponding to the given
11034 -- representation aspect in the rep item chain of Typ, if any, isn't
11035 -- directly specified to Typ but to one of its parents.
11037 -- ??? Note that, for now, just a limited number of representation
11038 -- aspects have been inherited here so far. Many of them are
11039 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11040 -- a non- exhaustive list of aspects that likely also need to
11041 -- be moved to this routine: Alignment, Component_Alignment,
11042 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11043 -- Preelaborable_Initialization, RM_Size and Small.
11045 -- In addition, Convention must be propagated from base type to subtype,
11046 -- because the subtype may have been declared on an incomplete view.
11048 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11049 return;
11050 end if;
11052 -- Ada_05/Ada_2005
11054 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11055 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11056 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11057 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11058 then
11059 Set_Is_Ada_2005_Only (Typ);
11060 end if;
11062 -- Ada_12/Ada_2012
11064 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11065 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11066 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11067 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11068 then
11069 Set_Is_Ada_2012_Only (Typ);
11070 end if;
11072 -- Atomic/Shared
11074 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11075 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11076 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11077 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11078 then
11079 Set_Is_Atomic (Typ);
11080 Set_Treat_As_Volatile (Typ);
11081 Set_Is_Volatile (Typ);
11082 end if;
11084 -- Convention
11086 if Is_Record_Type (Typ)
11087 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11088 then
11089 Set_Convention (Typ, Convention (Base_Type (Typ)));
11090 end if;
11092 -- Default_Component_Value
11094 -- Verify that there is no rep_item declared for the type, and there
11095 -- is one coming from an ancestor.
11097 if Is_Array_Type (Typ)
11098 and then Is_Base_Type (Typ)
11099 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11100 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11101 then
11102 Set_Default_Aspect_Component_Value (Typ,
11103 Default_Aspect_Component_Value
11104 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11105 end if;
11107 -- Default_Value
11109 if Is_Scalar_Type (Typ)
11110 and then Is_Base_Type (Typ)
11111 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11112 and then Has_Rep_Item (Typ, Name_Default_Value)
11113 then
11114 Set_Has_Default_Aspect (Typ);
11115 Set_Default_Aspect_Value (Typ,
11116 Default_Aspect_Value
11117 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11118 end if;
11120 -- Discard_Names
11122 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11123 and then Has_Rep_Item (Typ, Name_Discard_Names)
11124 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11125 (Get_Rep_Item (Typ, Name_Discard_Names))
11126 then
11127 Set_Discard_Names (Typ);
11128 end if;
11130 -- Invariants
11132 if not Has_Rep_Item (Typ, Name_Invariant, False)
11133 and then Has_Rep_Item (Typ, Name_Invariant)
11134 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11135 (Get_Rep_Item (Typ, Name_Invariant))
11136 then
11137 Set_Has_Invariants (Typ);
11139 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
11140 Set_Has_Inheritable_Invariants (Typ);
11141 end if;
11143 -- If we have a subtype with invariants, whose base type does not have
11144 -- invariants, copy these invariants to the base type. This happens for
11145 -- the case of implicit base types created for scalar and array types.
11147 elsif Has_Invariants (Typ)
11148 and then not Has_Invariants (Base_Type (Typ))
11149 then
11150 Set_Has_Invariants (Base_Type (Typ));
11151 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
11152 end if;
11154 -- Volatile
11156 if not Has_Rep_Item (Typ, Name_Volatile, False)
11157 and then Has_Rep_Item (Typ, Name_Volatile)
11158 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11159 (Get_Rep_Item (Typ, Name_Volatile))
11160 then
11161 Set_Treat_As_Volatile (Typ);
11162 Set_Is_Volatile (Typ);
11163 end if;
11165 -- Inheritance for derived types only
11167 if Is_Derived_Type (Typ) then
11168 declare
11169 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11170 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11172 begin
11173 -- Atomic_Components
11175 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11176 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11177 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11178 (Get_Rep_Item (Typ, Name_Atomic_Components))
11179 then
11180 Set_Has_Atomic_Components (Imp_Bas_Typ);
11181 end if;
11183 -- Volatile_Components
11185 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11186 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11187 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11188 (Get_Rep_Item (Typ, Name_Volatile_Components))
11189 then
11190 Set_Has_Volatile_Components (Imp_Bas_Typ);
11191 end if;
11193 -- Finalize_Storage_Only
11195 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11196 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11197 then
11198 Set_Finalize_Storage_Only (Bas_Typ);
11199 end if;
11201 -- Universal_Aliasing
11203 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11204 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11205 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11206 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11207 then
11208 Set_Universal_Aliasing (Imp_Bas_Typ);
11209 end if;
11211 -- Bit_Order
11213 if Is_Record_Type (Typ) then
11214 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11215 and then Has_Rep_Item (Typ, Name_Bit_Order)
11216 then
11217 Set_Reverse_Bit_Order (Bas_Typ,
11218 Reverse_Bit_Order (Entity (Name
11219 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11220 end if;
11221 end if;
11223 -- Scalar_Storage_Order
11225 -- Note: the aspect is specified on a first subtype, but recorded
11226 -- in a flag of the base type!
11228 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11229 and then Typ = Bas_Typ
11230 then
11231 -- For a type extension, always inherit from parent; otherwise
11232 -- inherit if no default applies. Note: we do not check for
11233 -- an explicit rep item on the parent type when inheriting,
11234 -- because the parent SSO may itself have been set by default.
11236 if not Has_Rep_Item (First_Subtype (Typ),
11237 Name_Scalar_Storage_Order, False)
11238 and then (Is_Tagged_Type (Bas_Typ)
11239 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11240 or else
11241 SSO_Set_High_By_Default (Bas_Typ)))
11242 then
11243 Set_Reverse_Storage_Order (Bas_Typ,
11244 Reverse_Storage_Order
11245 (Implementation_Base_Type (Etype (Bas_Typ))));
11247 -- Clear default SSO indications, since the inherited aspect
11248 -- which was set explicitly overrides the default.
11250 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11251 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11252 end if;
11253 end if;
11254 end;
11255 end if;
11256 end Inherit_Aspects_At_Freeze_Point;
11258 ----------------
11259 -- Initialize --
11260 ----------------
11262 procedure Initialize is
11263 begin
11264 Address_Clause_Checks.Init;
11265 Unchecked_Conversions.Init;
11267 if VM_Target /= No_VM or else AAMP_On_Target then
11268 Independence_Checks.Init;
11269 end if;
11270 end Initialize;
11272 ---------------------------
11273 -- Install_Discriminants --
11274 ---------------------------
11276 procedure Install_Discriminants (E : Entity_Id) is
11277 Disc : Entity_Id;
11278 Prev : Entity_Id;
11279 begin
11280 Disc := First_Discriminant (E);
11281 while Present (Disc) loop
11282 Prev := Current_Entity (Disc);
11283 Set_Current_Entity (Disc);
11284 Set_Is_Immediately_Visible (Disc);
11285 Set_Homonym (Disc, Prev);
11286 Next_Discriminant (Disc);
11287 end loop;
11288 end Install_Discriminants;
11290 -------------------------
11291 -- Is_Operational_Item --
11292 -------------------------
11294 function Is_Operational_Item (N : Node_Id) return Boolean is
11295 begin
11296 if Nkind (N) /= N_Attribute_Definition_Clause then
11297 return False;
11299 else
11300 declare
11301 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11302 begin
11303 return Id = Attribute_Input
11304 or else Id = Attribute_Output
11305 or else Id = Attribute_Read
11306 or else Id = Attribute_Write
11307 or else Id = Attribute_External_Tag;
11308 end;
11309 end if;
11310 end Is_Operational_Item;
11312 -------------------------
11313 -- Is_Predicate_Static --
11314 -------------------------
11316 -- Note: the basic legality of the expression has already been checked, so
11317 -- we don't need to worry about cases or ranges on strings for example.
11319 function Is_Predicate_Static
11320 (Expr : Node_Id;
11321 Nam : Name_Id) return Boolean
11323 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11324 -- Given a list of case expression alternatives, returns True if all
11325 -- the alternatives are static (have all static choices, and a static
11326 -- expression).
11328 function All_Static_Choices (L : List_Id) return Boolean;
11329 -- Returns true if all elements of the list are OK static choices
11330 -- as defined below for Is_Static_Choice. Used for case expression
11331 -- alternatives and for the right operand of a membership test. An
11332 -- others_choice is static if the corresponding expression is static.
11333 -- The staticness of the bounds is checked separately.
11335 function Is_Static_Choice (N : Node_Id) return Boolean;
11336 -- Returns True if N represents a static choice (static subtype, or
11337 -- static subtype indication, or static expression, or static range).
11339 -- Note that this is a bit more inclusive than we actually need
11340 -- (in particular membership tests do not allow the use of subtype
11341 -- indications). But that doesn't matter, we have already checked
11342 -- that the construct is legal to get this far.
11344 function Is_Type_Ref (N : Node_Id) return Boolean;
11345 pragma Inline (Is_Type_Ref);
11346 -- Returns True if N is a reference to the type for the predicate in the
11347 -- expression (i.e. if it is an identifier whose Chars field matches the
11348 -- Nam given in the call). N must not be parenthesized, if the type name
11349 -- appears in parens, this routine will return False.
11351 ----------------------------------
11352 -- All_Static_Case_Alternatives --
11353 ----------------------------------
11355 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11356 N : Node_Id;
11358 begin
11359 N := First (L);
11360 while Present (N) loop
11361 if not (All_Static_Choices (Discrete_Choices (N))
11362 and then Is_OK_Static_Expression (Expression (N)))
11363 then
11364 return False;
11365 end if;
11367 Next (N);
11368 end loop;
11370 return True;
11371 end All_Static_Case_Alternatives;
11373 ------------------------
11374 -- All_Static_Choices --
11375 ------------------------
11377 function All_Static_Choices (L : List_Id) return Boolean is
11378 N : Node_Id;
11380 begin
11381 N := First (L);
11382 while Present (N) loop
11383 if not Is_Static_Choice (N) then
11384 return False;
11385 end if;
11387 Next (N);
11388 end loop;
11390 return True;
11391 end All_Static_Choices;
11393 ----------------------
11394 -- Is_Static_Choice --
11395 ----------------------
11397 function Is_Static_Choice (N : Node_Id) return Boolean is
11398 begin
11399 return Nkind (N) = N_Others_Choice
11400 or else Is_OK_Static_Expression (N)
11401 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11402 and then Is_OK_Static_Subtype (Entity (N)))
11403 or else (Nkind (N) = N_Subtype_Indication
11404 and then Is_OK_Static_Subtype (Entity (N)))
11405 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11406 end Is_Static_Choice;
11408 -----------------
11409 -- Is_Type_Ref --
11410 -----------------
11412 function Is_Type_Ref (N : Node_Id) return Boolean is
11413 begin
11414 return Nkind (N) = N_Identifier
11415 and then Chars (N) = Nam
11416 and then Paren_Count (N) = 0;
11417 end Is_Type_Ref;
11419 -- Start of processing for Is_Predicate_Static
11421 begin
11422 -- Predicate_Static means one of the following holds. Numbers are the
11423 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11425 -- 16: A static expression
11427 if Is_OK_Static_Expression (Expr) then
11428 return True;
11430 -- 17: A membership test whose simple_expression is the current
11431 -- instance, and whose membership_choice_list meets the requirements
11432 -- for a static membership test.
11434 elsif Nkind (Expr) in N_Membership_Test
11435 and then ((Present (Right_Opnd (Expr))
11436 and then Is_Static_Choice (Right_Opnd (Expr)))
11437 or else
11438 (Present (Alternatives (Expr))
11439 and then All_Static_Choices (Alternatives (Expr))))
11440 then
11441 return True;
11443 -- 18. A case_expression whose selecting_expression is the current
11444 -- instance, and whose dependent expressions are static expressions.
11446 elsif Nkind (Expr) = N_Case_Expression
11447 and then Is_Type_Ref (Expression (Expr))
11448 and then All_Static_Case_Alternatives (Alternatives (Expr))
11449 then
11450 return True;
11452 -- 19. A call to a predefined equality or ordering operator, where one
11453 -- operand is the current instance, and the other is a static
11454 -- expression.
11456 -- Note: the RM is clearly wrong here in not excluding string types.
11457 -- Without this exclusion, we would allow expressions like X > "ABC"
11458 -- to be considered as predicate-static, which is clearly not intended,
11459 -- since the idea is for predicate-static to be a subset of normal
11460 -- static expressions (and "DEF" > "ABC" is not a static expression).
11462 -- However, we do allow internally generated (not from source) equality
11463 -- and inequality operations to be valid on strings (this helps deal
11464 -- with cases where we transform A in "ABC" to A = "ABC).
11466 elsif Nkind (Expr) in N_Op_Compare
11467 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11468 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11469 and then not Comes_From_Source (Expr)))
11470 and then ((Is_Type_Ref (Left_Opnd (Expr))
11471 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11472 or else
11473 (Is_Type_Ref (Right_Opnd (Expr))
11474 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11475 then
11476 return True;
11478 -- 20. A call to a predefined boolean logical operator, where each
11479 -- operand is predicate-static.
11481 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11482 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11483 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11484 or else
11485 (Nkind (Expr) = N_Op_Not
11486 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11487 then
11488 return True;
11490 -- 21. A short-circuit control form where both operands are
11491 -- predicate-static.
11493 elsif Nkind (Expr) in N_Short_Circuit
11494 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11495 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11496 then
11497 return True;
11499 -- 22. A parenthesized predicate-static expression. This does not
11500 -- require any special test, since we just ignore paren levels in
11501 -- all the cases above.
11503 -- One more test that is an implementation artifact caused by the fact
11504 -- that we are analyzing not the original expression, but the generated
11505 -- expression in the body of the predicate function. This can include
11506 -- references to inherited predicates, so that the expression we are
11507 -- processing looks like:
11509 -- expression and then xxPredicate (typ (Inns))
11511 -- Where the call is to a Predicate function for an inherited predicate.
11512 -- We simply ignore such a call, which could be to either a dynamic or
11513 -- a static predicate. Note that if the parent predicate is dynamic then
11514 -- eventually this type will be marked as dynamic, but you are allowed
11515 -- to specify a static predicate for a subtype which is inheriting a
11516 -- dynamic predicate, so the static predicate validation here ignores
11517 -- the inherited predicate even if it is dynamic.
11519 elsif Nkind (Expr) = N_Function_Call
11520 and then Is_Predicate_Function (Entity (Name (Expr)))
11521 then
11522 return True;
11524 -- That's an exhaustive list of tests, all other cases are not
11525 -- predicate-static, so we return False.
11527 else
11528 return False;
11529 end if;
11530 end Is_Predicate_Static;
11532 ---------------------
11533 -- Kill_Rep_Clause --
11534 ---------------------
11536 procedure Kill_Rep_Clause (N : Node_Id) is
11537 begin
11538 pragma Assert (Ignore_Rep_Clauses);
11540 -- Note: we use Replace rather than Rewrite, because we don't want
11541 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11542 -- rep clause that is being replaced.
11544 Replace (N, Make_Null_Statement (Sloc (N)));
11546 -- The null statement must be marked as not coming from source. This is
11547 -- so that ASIS ignores it, and also the back end does not expect bogus
11548 -- "from source" null statements in weird places (e.g. in declarative
11549 -- regions where such null statements are not allowed).
11551 Set_Comes_From_Source (N, False);
11552 end Kill_Rep_Clause;
11554 ------------------
11555 -- Minimum_Size --
11556 ------------------
11558 function Minimum_Size
11559 (T : Entity_Id;
11560 Biased : Boolean := False) return Nat
11562 Lo : Uint := No_Uint;
11563 Hi : Uint := No_Uint;
11564 LoR : Ureal := No_Ureal;
11565 HiR : Ureal := No_Ureal;
11566 LoSet : Boolean := False;
11567 HiSet : Boolean := False;
11568 B : Uint;
11569 S : Nat;
11570 Ancest : Entity_Id;
11571 R_Typ : constant Entity_Id := Root_Type (T);
11573 begin
11574 -- If bad type, return 0
11576 if T = Any_Type then
11577 return 0;
11579 -- For generic types, just return zero. There cannot be any legitimate
11580 -- need to know such a size, but this routine may be called with a
11581 -- generic type as part of normal processing.
11583 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11584 return 0;
11586 -- Access types (cannot have size smaller than System.Address)
11588 elsif Is_Access_Type (T) then
11589 return System_Address_Size;
11591 -- Floating-point types
11593 elsif Is_Floating_Point_Type (T) then
11594 return UI_To_Int (Esize (R_Typ));
11596 -- Discrete types
11598 elsif Is_Discrete_Type (T) then
11600 -- The following loop is looking for the nearest compile time known
11601 -- bounds following the ancestor subtype chain. The idea is to find
11602 -- the most restrictive known bounds information.
11604 Ancest := T;
11605 loop
11606 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11607 return 0;
11608 end if;
11610 if not LoSet then
11611 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11612 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11613 LoSet := True;
11614 exit when HiSet;
11615 end if;
11616 end if;
11618 if not HiSet then
11619 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11620 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11621 HiSet := True;
11622 exit when LoSet;
11623 end if;
11624 end if;
11626 Ancest := Ancestor_Subtype (Ancest);
11628 if No (Ancest) then
11629 Ancest := Base_Type (T);
11631 if Is_Generic_Type (Ancest) then
11632 return 0;
11633 end if;
11634 end if;
11635 end loop;
11637 -- Fixed-point types. We can't simply use Expr_Value to get the
11638 -- Corresponding_Integer_Value values of the bounds, since these do not
11639 -- get set till the type is frozen, and this routine can be called
11640 -- before the type is frozen. Similarly the test for bounds being static
11641 -- needs to include the case where we have unanalyzed real literals for
11642 -- the same reason.
11644 elsif Is_Fixed_Point_Type (T) then
11646 -- The following loop is looking for the nearest compile time known
11647 -- bounds following the ancestor subtype chain. The idea is to find
11648 -- the most restrictive known bounds information.
11650 Ancest := T;
11651 loop
11652 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11653 return 0;
11654 end if;
11656 -- Note: In the following two tests for LoSet and HiSet, it may
11657 -- seem redundant to test for N_Real_Literal here since normally
11658 -- one would assume that the test for the value being known at
11659 -- compile time includes this case. However, there is a glitch.
11660 -- If the real literal comes from folding a non-static expression,
11661 -- then we don't consider any non- static expression to be known
11662 -- at compile time if we are in configurable run time mode (needed
11663 -- in some cases to give a clearer definition of what is and what
11664 -- is not accepted). So the test is indeed needed. Without it, we
11665 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11667 if not LoSet then
11668 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11669 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11670 then
11671 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11672 LoSet := True;
11673 exit when HiSet;
11674 end if;
11675 end if;
11677 if not HiSet then
11678 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11679 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11680 then
11681 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11682 HiSet := True;
11683 exit when LoSet;
11684 end if;
11685 end if;
11687 Ancest := Ancestor_Subtype (Ancest);
11689 if No (Ancest) then
11690 Ancest := Base_Type (T);
11692 if Is_Generic_Type (Ancest) then
11693 return 0;
11694 end if;
11695 end if;
11696 end loop;
11698 Lo := UR_To_Uint (LoR / Small_Value (T));
11699 Hi := UR_To_Uint (HiR / Small_Value (T));
11701 -- No other types allowed
11703 else
11704 raise Program_Error;
11705 end if;
11707 -- Fall through with Hi and Lo set. Deal with biased case
11709 if (Biased
11710 and then not Is_Fixed_Point_Type (T)
11711 and then not (Is_Enumeration_Type (T)
11712 and then Has_Non_Standard_Rep (T)))
11713 or else Has_Biased_Representation (T)
11714 then
11715 Hi := Hi - Lo;
11716 Lo := Uint_0;
11717 end if;
11719 -- Signed case. Note that we consider types like range 1 .. -1 to be
11720 -- signed for the purpose of computing the size, since the bounds have
11721 -- to be accommodated in the base type.
11723 if Lo < 0 or else Hi < 0 then
11724 S := 1;
11725 B := Uint_1;
11727 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11728 -- Note that we accommodate the case where the bounds cross. This
11729 -- can happen either because of the way the bounds are declared
11730 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11732 while Lo < -B
11733 or else Hi < -B
11734 or else Lo >= B
11735 or else Hi >= B
11736 loop
11737 B := Uint_2 ** S;
11738 S := S + 1;
11739 end loop;
11741 -- Unsigned case
11743 else
11744 -- If both bounds are positive, make sure that both are represen-
11745 -- table in the case where the bounds are crossed. This can happen
11746 -- either because of the way the bounds are declared, or because of
11747 -- the algorithm in Freeze_Fixed_Point_Type.
11749 if Lo > Hi then
11750 Hi := Lo;
11751 end if;
11753 -- S = size, (can accommodate 0 .. (2**size - 1))
11755 S := 0;
11756 while Hi >= Uint_2 ** S loop
11757 S := S + 1;
11758 end loop;
11759 end if;
11761 return S;
11762 end Minimum_Size;
11764 ---------------------------
11765 -- New_Stream_Subprogram --
11766 ---------------------------
11768 procedure New_Stream_Subprogram
11769 (N : Node_Id;
11770 Ent : Entity_Id;
11771 Subp : Entity_Id;
11772 Nam : TSS_Name_Type)
11774 Loc : constant Source_Ptr := Sloc (N);
11775 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
11776 Subp_Id : Entity_Id;
11777 Subp_Decl : Node_Id;
11778 F : Entity_Id;
11779 Etyp : Entity_Id;
11781 Defer_Declaration : constant Boolean :=
11782 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
11783 -- For a tagged type, there is a declaration for each stream attribute
11784 -- at the freeze point, and we must generate only a completion of this
11785 -- declaration. We do the same for private types, because the full view
11786 -- might be tagged. Otherwise we generate a declaration at the point of
11787 -- the attribute definition clause.
11789 function Build_Spec return Node_Id;
11790 -- Used for declaration and renaming declaration, so that this is
11791 -- treated as a renaming_as_body.
11793 ----------------
11794 -- Build_Spec --
11795 ----------------
11797 function Build_Spec return Node_Id is
11798 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
11799 Formals : List_Id;
11800 Spec : Node_Id;
11801 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
11803 begin
11804 Subp_Id := Make_Defining_Identifier (Loc, Sname);
11806 -- S : access Root_Stream_Type'Class
11808 Formals := New_List (
11809 Make_Parameter_Specification (Loc,
11810 Defining_Identifier =>
11811 Make_Defining_Identifier (Loc, Name_S),
11812 Parameter_Type =>
11813 Make_Access_Definition (Loc,
11814 Subtype_Mark =>
11815 New_Occurrence_Of (
11816 Designated_Type (Etype (F)), Loc))));
11818 if Nam = TSS_Stream_Input then
11819 Spec :=
11820 Make_Function_Specification (Loc,
11821 Defining_Unit_Name => Subp_Id,
11822 Parameter_Specifications => Formals,
11823 Result_Definition => T_Ref);
11824 else
11825 -- V : [out] T
11827 Append_To (Formals,
11828 Make_Parameter_Specification (Loc,
11829 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
11830 Out_Present => Out_P,
11831 Parameter_Type => T_Ref));
11833 Spec :=
11834 Make_Procedure_Specification (Loc,
11835 Defining_Unit_Name => Subp_Id,
11836 Parameter_Specifications => Formals);
11837 end if;
11839 return Spec;
11840 end Build_Spec;
11842 -- Start of processing for New_Stream_Subprogram
11844 begin
11845 F := First_Formal (Subp);
11847 if Ekind (Subp) = E_Procedure then
11848 Etyp := Etype (Next_Formal (F));
11849 else
11850 Etyp := Etype (Subp);
11851 end if;
11853 -- Prepare subprogram declaration and insert it as an action on the
11854 -- clause node. The visibility for this entity is used to test for
11855 -- visibility of the attribute definition clause (in the sense of
11856 -- 8.3(23) as amended by AI-195).
11858 if not Defer_Declaration then
11859 Subp_Decl :=
11860 Make_Subprogram_Declaration (Loc,
11861 Specification => Build_Spec);
11863 -- For a tagged type, there is always a visible declaration for each
11864 -- stream TSS (it is a predefined primitive operation), and the
11865 -- completion of this declaration occurs at the freeze point, which is
11866 -- not always visible at places where the attribute definition clause is
11867 -- visible. So, we create a dummy entity here for the purpose of
11868 -- tracking the visibility of the attribute definition clause itself.
11870 else
11871 Subp_Id :=
11872 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
11873 Subp_Decl :=
11874 Make_Object_Declaration (Loc,
11875 Defining_Identifier => Subp_Id,
11876 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
11877 end if;
11879 Insert_Action (N, Subp_Decl);
11880 Set_Entity (N, Subp_Id);
11882 Subp_Decl :=
11883 Make_Subprogram_Renaming_Declaration (Loc,
11884 Specification => Build_Spec,
11885 Name => New_Occurrence_Of (Subp, Loc));
11887 if Defer_Declaration then
11888 Set_TSS (Base_Type (Ent), Subp_Id);
11889 else
11890 Insert_Action (N, Subp_Decl);
11891 Copy_TSS (Subp_Id, Base_Type (Ent));
11892 end if;
11893 end New_Stream_Subprogram;
11895 ------------------------------------------
11896 -- Push_Scope_And_Install_Discriminants --
11897 ------------------------------------------
11899 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
11900 begin
11901 if Has_Discriminants (E) then
11902 Push_Scope (E);
11904 -- Make discriminants visible for type declarations and protected
11905 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11907 if Nkind (Parent (E)) /= N_Subtype_Declaration then
11908 Install_Discriminants (E);
11909 end if;
11910 end if;
11911 end Push_Scope_And_Install_Discriminants;
11913 ------------------------
11914 -- Rep_Item_Too_Early --
11915 ------------------------
11917 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
11918 begin
11919 -- Cannot apply non-operational rep items to generic types
11921 if Is_Operational_Item (N) then
11922 return False;
11924 elsif Is_Type (T)
11925 and then Is_Generic_Type (Root_Type (T))
11926 and then (Nkind (N) /= N_Pragma
11927 or else Get_Pragma_Id (N) /= Pragma_Convention)
11928 then
11929 Error_Msg_N ("representation item not allowed for generic type", N);
11930 return True;
11931 end if;
11933 -- Otherwise check for incomplete type
11935 if Is_Incomplete_Or_Private_Type (T)
11936 and then No (Underlying_Type (T))
11937 and then
11938 (Nkind (N) /= N_Pragma
11939 or else Get_Pragma_Id (N) /= Pragma_Import)
11940 then
11941 Error_Msg_N
11942 ("representation item must be after full type declaration", N);
11943 return True;
11945 -- If the type has incomplete components, a representation clause is
11946 -- illegal but stream attributes and Convention pragmas are correct.
11948 elsif Has_Private_Component (T) then
11949 if Nkind (N) = N_Pragma then
11950 return False;
11952 else
11953 Error_Msg_N
11954 ("representation item must appear after type is fully defined",
11956 return True;
11957 end if;
11958 else
11959 return False;
11960 end if;
11961 end Rep_Item_Too_Early;
11963 -----------------------
11964 -- Rep_Item_Too_Late --
11965 -----------------------
11967 function Rep_Item_Too_Late
11968 (T : Entity_Id;
11969 N : Node_Id;
11970 FOnly : Boolean := False) return Boolean
11972 S : Entity_Id;
11973 Parent_Type : Entity_Id;
11975 procedure No_Type_Rep_Item;
11976 -- Output message indicating that no type-related aspects can be
11977 -- specified due to some property of the parent type.
11979 procedure Too_Late;
11980 -- Output message for an aspect being specified too late
11982 -- Note that neither of the above errors is considered a serious one,
11983 -- since the effect is simply that we ignore the representation clause
11984 -- in these cases.
11985 -- Is this really true? In any case if we make this change we must
11986 -- document the requirement in the spec of Rep_Item_Too_Late that
11987 -- if True is returned, then the rep item must be completely ignored???
11989 ----------------------
11990 -- No_Type_Rep_Item --
11991 ----------------------
11993 procedure No_Type_Rep_Item is
11994 begin
11995 Error_Msg_N ("|type-related representation item not permitted!", N);
11996 end No_Type_Rep_Item;
11998 --------------
11999 -- Too_Late --
12000 --------------
12002 procedure Too_Late is
12003 begin
12004 -- Other compilers seem more relaxed about rep items appearing too
12005 -- late. Since analysis tools typically don't care about rep items
12006 -- anyway, no reason to be too strict about this.
12008 if not Relaxed_RM_Semantics then
12009 Error_Msg_N ("|representation item appears too late!", N);
12010 end if;
12011 end Too_Late;
12013 -- Start of processing for Rep_Item_Too_Late
12015 begin
12016 -- First make sure entity is not frozen (RM 13.1(9))
12018 if Is_Frozen (T)
12020 -- Exclude imported types, which may be frozen if they appear in a
12021 -- representation clause for a local type.
12023 and then not From_Limited_With (T)
12025 -- Exclude generated entities (not coming from source). The common
12026 -- case is when we generate a renaming which prematurely freezes the
12027 -- renamed internal entity, but we still want to be able to set copies
12028 -- of attribute values such as Size/Alignment.
12030 and then Comes_From_Source (T)
12031 then
12032 Too_Late;
12033 S := First_Subtype (T);
12035 if Present (Freeze_Node (S)) then
12036 if not Relaxed_RM_Semantics then
12037 Error_Msg_NE
12038 ("??no more representation items for }", Freeze_Node (S), S);
12039 end if;
12040 end if;
12042 return True;
12044 -- Check for case of untagged derived type whose parent either has
12045 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12046 -- this case we do not output a Too_Late message, since there is no
12047 -- earlier point where the rep item could be placed to make it legal.
12049 elsif Is_Type (T)
12050 and then not FOnly
12051 and then Is_Derived_Type (T)
12052 and then not Is_Tagged_Type (T)
12053 then
12054 Parent_Type := Etype (Base_Type (T));
12056 if Has_Primitive_Operations (Parent_Type) then
12057 No_Type_Rep_Item;
12059 if not Relaxed_RM_Semantics then
12060 Error_Msg_NE
12061 ("\parent type & has primitive operations!", N, Parent_Type);
12062 end if;
12064 return True;
12066 elsif Is_By_Reference_Type (Parent_Type) then
12067 No_Type_Rep_Item;
12069 if not Relaxed_RM_Semantics then
12070 Error_Msg_NE
12071 ("\parent type & is a by reference type!", N, Parent_Type);
12072 end if;
12074 return True;
12075 end if;
12076 end if;
12078 -- No error, but one more warning to consider. The RM (surprisingly)
12079 -- allows this pattern:
12081 -- type S is ...
12082 -- primitive operations for S
12083 -- type R is new S;
12084 -- rep clause for S
12086 -- Meaning that calls on the primitive operations of S for values of
12087 -- type R may require possibly expensive implicit conversion operations.
12088 -- This is not an error, but is worth a warning.
12090 if not Relaxed_RM_Semantics and then Is_Type (T) then
12091 declare
12092 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12094 begin
12095 if Present (DTL)
12096 and then Has_Primitive_Operations (Base_Type (T))
12098 -- For now, do not generate this warning for the case of aspect
12099 -- specification using Ada 2012 syntax, since we get wrong
12100 -- messages we do not understand. The whole business of derived
12101 -- types and rep items seems a bit confused when aspects are
12102 -- used, since the aspects are not evaluated till freeze time.
12104 and then not From_Aspect_Specification (N)
12105 then
12106 Error_Msg_Sloc := Sloc (DTL);
12107 Error_Msg_N
12108 ("representation item for& appears after derived type "
12109 & "declaration#??", N);
12110 Error_Msg_NE
12111 ("\may result in implicit conversions for primitive "
12112 & "operations of&??", N, T);
12113 Error_Msg_NE
12114 ("\to change representations when called with arguments "
12115 & "of type&??", N, DTL);
12116 end if;
12117 end;
12118 end if;
12120 -- No error, link item into head of chain of rep items for the entity,
12121 -- but avoid chaining if we have an overloadable entity, and the pragma
12122 -- is one that can apply to multiple overloaded entities.
12124 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12125 declare
12126 Pname : constant Name_Id := Pragma_Name (N);
12127 begin
12128 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12129 Name_External, Name_Interface)
12130 then
12131 return False;
12132 end if;
12133 end;
12134 end if;
12136 Record_Rep_Item (T, N);
12137 return False;
12138 end Rep_Item_Too_Late;
12140 -------------------------------------
12141 -- Replace_Type_References_Generic --
12142 -------------------------------------
12144 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12145 TName : constant Name_Id := Chars (T);
12147 function Replace_Node (N : Node_Id) return Traverse_Result;
12148 -- Processes a single node in the traversal procedure below, checking
12149 -- if node N should be replaced, and if so, doing the replacement.
12151 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
12152 -- This instantiation provides the body of Replace_Type_References
12154 ------------------
12155 -- Replace_Node --
12156 ------------------
12158 function Replace_Node (N : Node_Id) return Traverse_Result is
12159 S : Entity_Id;
12160 P : Node_Id;
12162 begin
12163 -- Case of identifier
12165 if Nkind (N) = N_Identifier then
12167 -- If not the type name, check whether it is a reference to
12168 -- some other type, which must be frozen before the predicate
12169 -- function is analyzed, i.e. before the freeze node of the
12170 -- type to which the predicate applies.
12172 if Chars (N) /= TName then
12173 if Present (Current_Entity (N))
12174 and then Is_Type (Current_Entity (N))
12175 then
12176 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12177 end if;
12179 return Skip;
12181 -- Otherwise do the replacement and we are done with this node
12183 else
12184 Replace_Type_Reference (N);
12185 return Skip;
12186 end if;
12188 -- Case of selected component (which is what a qualification
12189 -- looks like in the unanalyzed tree, which is what we have.
12191 elsif Nkind (N) = N_Selected_Component then
12193 -- If selector name is not our type, keeping going (we might
12194 -- still have an occurrence of the type in the prefix).
12196 if Nkind (Selector_Name (N)) /= N_Identifier
12197 or else Chars (Selector_Name (N)) /= TName
12198 then
12199 return OK;
12201 -- Selector name is our type, check qualification
12203 else
12204 -- Loop through scopes and prefixes, doing comparison
12206 S := Current_Scope;
12207 P := Prefix (N);
12208 loop
12209 -- Continue if no more scopes or scope with no name
12211 if No (S) or else Nkind (S) not in N_Has_Chars then
12212 return OK;
12213 end if;
12215 -- Do replace if prefix is an identifier matching the
12216 -- scope that we are currently looking at.
12218 if Nkind (P) = N_Identifier
12219 and then Chars (P) = Chars (S)
12220 then
12221 Replace_Type_Reference (N);
12222 return Skip;
12223 end if;
12225 -- Go check scope above us if prefix is itself of the
12226 -- form of a selected component, whose selector matches
12227 -- the scope we are currently looking at.
12229 if Nkind (P) = N_Selected_Component
12230 and then Nkind (Selector_Name (P)) = N_Identifier
12231 and then Chars (Selector_Name (P)) = Chars (S)
12232 then
12233 S := Scope (S);
12234 P := Prefix (P);
12236 -- For anything else, we don't have a match, so keep on
12237 -- going, there are still some weird cases where we may
12238 -- still have a replacement within the prefix.
12240 else
12241 return OK;
12242 end if;
12243 end loop;
12244 end if;
12246 -- Continue for any other node kind
12248 else
12249 return OK;
12250 end if;
12251 end Replace_Node;
12253 begin
12254 Replace_Type_Refs (N);
12255 end Replace_Type_References_Generic;
12257 -------------------------
12258 -- Same_Representation --
12259 -------------------------
12261 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12262 T1 : constant Entity_Id := Underlying_Type (Typ1);
12263 T2 : constant Entity_Id := Underlying_Type (Typ2);
12265 begin
12266 -- A quick check, if base types are the same, then we definitely have
12267 -- the same representation, because the subtype specific representation
12268 -- attributes (Size and Alignment) do not affect representation from
12269 -- the point of view of this test.
12271 if Base_Type (T1) = Base_Type (T2) then
12272 return True;
12274 elsif Is_Private_Type (Base_Type (T2))
12275 and then Base_Type (T1) = Full_View (Base_Type (T2))
12276 then
12277 return True;
12278 end if;
12280 -- Tagged types never have differing representations
12282 if Is_Tagged_Type (T1) then
12283 return True;
12284 end if;
12286 -- Representations are definitely different if conventions differ
12288 if Convention (T1) /= Convention (T2) then
12289 return False;
12290 end if;
12292 -- Representations are different if component alignments or scalar
12293 -- storage orders differ.
12295 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
12296 and then
12297 (Is_Record_Type (T2) or else Is_Array_Type (T2))
12298 and then
12299 (Component_Alignment (T1) /= Component_Alignment (T2)
12300 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
12301 then
12302 return False;
12303 end if;
12305 -- For arrays, the only real issue is component size. If we know the
12306 -- component size for both arrays, and it is the same, then that's
12307 -- good enough to know we don't have a change of representation.
12309 if Is_Array_Type (T1) then
12310 if Known_Component_Size (T1)
12311 and then Known_Component_Size (T2)
12312 and then Component_Size (T1) = Component_Size (T2)
12313 then
12314 if VM_Target = No_VM then
12315 return True;
12317 -- In VM targets the representation of arrays with aliased
12318 -- components differs from arrays with non-aliased components
12320 else
12321 return Has_Aliased_Components (Base_Type (T1))
12323 Has_Aliased_Components (Base_Type (T2));
12324 end if;
12325 end if;
12326 end if;
12328 -- Types definitely have same representation if neither has non-standard
12329 -- representation since default representations are always consistent.
12330 -- If only one has non-standard representation, and the other does not,
12331 -- then we consider that they do not have the same representation. They
12332 -- might, but there is no way of telling early enough.
12334 if Has_Non_Standard_Rep (T1) then
12335 if not Has_Non_Standard_Rep (T2) then
12336 return False;
12337 end if;
12338 else
12339 return not Has_Non_Standard_Rep (T2);
12340 end if;
12342 -- Here the two types both have non-standard representation, and we need
12343 -- to determine if they have the same non-standard representation.
12345 -- For arrays, we simply need to test if the component sizes are the
12346 -- same. Pragma Pack is reflected in modified component sizes, so this
12347 -- check also deals with pragma Pack.
12349 if Is_Array_Type (T1) then
12350 return Component_Size (T1) = Component_Size (T2);
12352 -- Tagged types always have the same representation, because it is not
12353 -- possible to specify different representations for common fields.
12355 elsif Is_Tagged_Type (T1) then
12356 return True;
12358 -- Case of record types
12360 elsif Is_Record_Type (T1) then
12362 -- Packed status must conform
12364 if Is_Packed (T1) /= Is_Packed (T2) then
12365 return False;
12367 -- Otherwise we must check components. Typ2 maybe a constrained
12368 -- subtype with fewer components, so we compare the components
12369 -- of the base types.
12371 else
12372 Record_Case : declare
12373 CD1, CD2 : Entity_Id;
12375 function Same_Rep return Boolean;
12376 -- CD1 and CD2 are either components or discriminants. This
12377 -- function tests whether they have the same representation.
12379 --------------
12380 -- Same_Rep --
12381 --------------
12383 function Same_Rep return Boolean is
12384 begin
12385 if No (Component_Clause (CD1)) then
12386 return No (Component_Clause (CD2));
12387 else
12388 -- Note: at this point, component clauses have been
12389 -- normalized to the default bit order, so that the
12390 -- comparison of Component_Bit_Offsets is meaningful.
12392 return
12393 Present (Component_Clause (CD2))
12394 and then
12395 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12396 and then
12397 Esize (CD1) = Esize (CD2);
12398 end if;
12399 end Same_Rep;
12401 -- Start of processing for Record_Case
12403 begin
12404 if Has_Discriminants (T1) then
12406 -- The number of discriminants may be different if the
12407 -- derived type has fewer (constrained by values). The
12408 -- invisible discriminants retain the representation of
12409 -- the original, so the discrepancy does not per se
12410 -- indicate a different representation.
12412 CD1 := First_Discriminant (T1);
12413 CD2 := First_Discriminant (T2);
12414 while Present (CD1) and then Present (CD2) loop
12415 if not Same_Rep then
12416 return False;
12417 else
12418 Next_Discriminant (CD1);
12419 Next_Discriminant (CD2);
12420 end if;
12421 end loop;
12422 end if;
12424 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12425 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
12426 while Present (CD1) loop
12427 if not Same_Rep then
12428 return False;
12429 else
12430 Next_Component (CD1);
12431 Next_Component (CD2);
12432 end if;
12433 end loop;
12435 return True;
12436 end Record_Case;
12437 end if;
12439 -- For enumeration types, we must check each literal to see if the
12440 -- representation is the same. Note that we do not permit enumeration
12441 -- representation clauses for Character and Wide_Character, so these
12442 -- cases were already dealt with.
12444 elsif Is_Enumeration_Type (T1) then
12445 Enumeration_Case : declare
12446 L1, L2 : Entity_Id;
12448 begin
12449 L1 := First_Literal (T1);
12450 L2 := First_Literal (T2);
12451 while Present (L1) loop
12452 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12453 return False;
12454 else
12455 Next_Literal (L1);
12456 Next_Literal (L2);
12457 end if;
12458 end loop;
12460 return True;
12461 end Enumeration_Case;
12463 -- Any other types have the same representation for these purposes
12465 else
12466 return True;
12467 end if;
12468 end Same_Representation;
12470 --------------------------------
12471 -- Resolve_Iterable_Operation --
12472 --------------------------------
12474 procedure Resolve_Iterable_Operation
12475 (N : Node_Id;
12476 Cursor : Entity_Id;
12477 Typ : Entity_Id;
12478 Nam : Name_Id)
12480 Ent : Entity_Id;
12481 F1 : Entity_Id;
12482 F2 : Entity_Id;
12484 begin
12485 if not Is_Overloaded (N) then
12486 if not Is_Entity_Name (N)
12487 or else Ekind (Entity (N)) /= E_Function
12488 or else Scope (Entity (N)) /= Scope (Typ)
12489 or else No (First_Formal (Entity (N)))
12490 or else Etype (First_Formal (Entity (N))) /= Typ
12491 then
12492 Error_Msg_N ("iterable primitive must be local function name "
12493 & "whose first formal is an iterable type", N);
12494 return;
12495 end if;
12497 Ent := Entity (N);
12498 F1 := First_Formal (Ent);
12499 if Nam = Name_First then
12501 -- First (Container) => Cursor
12503 if Etype (Ent) /= Cursor then
12504 Error_Msg_N ("primitive for First must yield a curosr", N);
12505 end if;
12507 elsif Nam = Name_Next then
12509 -- Next (Container, Cursor) => Cursor
12511 F2 := Next_Formal (F1);
12513 if Etype (F2) /= Cursor
12514 or else Etype (Ent) /= Cursor
12515 or else Present (Next_Formal (F2))
12516 then
12517 Error_Msg_N ("no match for Next iterable primitive", N);
12518 end if;
12520 elsif Nam = Name_Has_Element then
12522 -- Has_Element (Container, Cursor) => Boolean
12524 F2 := Next_Formal (F1);
12525 if Etype (F2) /= Cursor
12526 or else Etype (Ent) /= Standard_Boolean
12527 or else Present (Next_Formal (F2))
12528 then
12529 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12530 end if;
12532 elsif Nam = Name_Element then
12533 F2 := Next_Formal (F1);
12535 if No (F2)
12536 or else Etype (F2) /= Cursor
12537 or else Present (Next_Formal (F2))
12538 then
12539 Error_Msg_N ("no match for Element iterable primitive", N);
12540 end if;
12541 null;
12543 else
12544 raise Program_Error;
12545 end if;
12547 else
12548 -- Overloaded case: find subprogram with proper signature.
12549 -- Caller will report error if no match is found.
12551 declare
12552 I : Interp_Index;
12553 It : Interp;
12555 begin
12556 Get_First_Interp (N, I, It);
12557 while Present (It.Typ) loop
12558 if Ekind (It.Nam) = E_Function
12559 and then Scope (It.Nam) = Scope (Typ)
12560 and then Etype (First_Formal (It.Nam)) = Typ
12561 then
12562 F1 := First_Formal (It.Nam);
12564 if Nam = Name_First then
12565 if Etype (It.Nam) = Cursor
12566 and then No (Next_Formal (F1))
12567 then
12568 Set_Entity (N, It.Nam);
12569 exit;
12570 end if;
12572 elsif Nam = Name_Next then
12573 F2 := Next_Formal (F1);
12575 if Present (F2)
12576 and then No (Next_Formal (F2))
12577 and then Etype (F2) = Cursor
12578 and then Etype (It.Nam) = Cursor
12579 then
12580 Set_Entity (N, It.Nam);
12581 exit;
12582 end if;
12584 elsif Nam = Name_Has_Element then
12585 F2 := Next_Formal (F1);
12587 if Present (F2)
12588 and then No (Next_Formal (F2))
12589 and then Etype (F2) = Cursor
12590 and then Etype (It.Nam) = Standard_Boolean
12591 then
12592 Set_Entity (N, It.Nam);
12593 F2 := Next_Formal (F1);
12594 exit;
12595 end if;
12597 elsif Nam = Name_Element then
12598 F2 := Next_Formal (F1);
12600 if Present (F2)
12601 and then No (Next_Formal (F2))
12602 and then Etype (F2) = Cursor
12603 then
12604 Set_Entity (N, It.Nam);
12605 exit;
12606 end if;
12607 end if;
12608 end if;
12610 Get_Next_Interp (I, It);
12611 end loop;
12612 end;
12613 end if;
12614 end Resolve_Iterable_Operation;
12616 ----------------
12617 -- Set_Biased --
12618 ----------------
12620 procedure Set_Biased
12621 (E : Entity_Id;
12622 N : Node_Id;
12623 Msg : String;
12624 Biased : Boolean := True)
12626 begin
12627 if Biased then
12628 Set_Has_Biased_Representation (E);
12630 if Warn_On_Biased_Representation then
12631 Error_Msg_NE
12632 ("?B?" & Msg & " forces biased representation for&", N, E);
12633 end if;
12634 end if;
12635 end Set_Biased;
12637 --------------------
12638 -- Set_Enum_Esize --
12639 --------------------
12641 procedure Set_Enum_Esize (T : Entity_Id) is
12642 Lo : Uint;
12643 Hi : Uint;
12644 Sz : Nat;
12646 begin
12647 Init_Alignment (T);
12649 -- Find the minimum standard size (8,16,32,64) that fits
12651 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12652 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12654 if Lo < 0 then
12655 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
12656 Sz := Standard_Character_Size; -- May be > 8 on some targets
12658 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12659 Sz := 16;
12661 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12662 Sz := 32;
12664 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12665 Sz := 64;
12666 end if;
12668 else
12669 if Hi < Uint_2**08 then
12670 Sz := Standard_Character_Size; -- May be > 8 on some targets
12672 elsif Hi < Uint_2**16 then
12673 Sz := 16;
12675 elsif Hi < Uint_2**32 then
12676 Sz := 32;
12678 else pragma Assert (Hi < Uint_2**63);
12679 Sz := 64;
12680 end if;
12681 end if;
12683 -- That minimum is the proper size unless we have a foreign convention
12684 -- and the size required is 32 or less, in which case we bump the size
12685 -- up to 32. This is required for C and C++ and seems reasonable for
12686 -- all other foreign conventions.
12688 if Has_Foreign_Convention (T)
12689 and then Esize (T) < Standard_Integer_Size
12691 -- Don't do this if Short_Enums on target
12693 and then not Target_Short_Enums
12694 then
12695 Init_Esize (T, Standard_Integer_Size);
12696 else
12697 Init_Esize (T, Sz);
12698 end if;
12699 end Set_Enum_Esize;
12701 -----------------------------
12702 -- Uninstall_Discriminants --
12703 -----------------------------
12705 procedure Uninstall_Discriminants (E : Entity_Id) is
12706 Disc : Entity_Id;
12707 Prev : Entity_Id;
12708 Outer : Entity_Id;
12710 begin
12711 -- Discriminants have been made visible for type declarations and
12712 -- protected type declarations, not for subtype declarations.
12714 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12715 Disc := First_Discriminant (E);
12716 while Present (Disc) loop
12717 if Disc /= Current_Entity (Disc) then
12718 Prev := Current_Entity (Disc);
12719 while Present (Prev)
12720 and then Present (Homonym (Prev))
12721 and then Homonym (Prev) /= Disc
12722 loop
12723 Prev := Homonym (Prev);
12724 end loop;
12725 else
12726 Prev := Empty;
12727 end if;
12729 Set_Is_Immediately_Visible (Disc, False);
12731 Outer := Homonym (Disc);
12732 while Present (Outer) and then Scope (Outer) = E loop
12733 Outer := Homonym (Outer);
12734 end loop;
12736 -- Reset homonym link of other entities, but do not modify link
12737 -- between entities in current scope, so that the back-end can
12738 -- have a proper count of local overloadings.
12740 if No (Prev) then
12741 Set_Name_Entity_Id (Chars (Disc), Outer);
12743 elsif Scope (Prev) /= Scope (Disc) then
12744 Set_Homonym (Prev, Outer);
12745 end if;
12747 Next_Discriminant (Disc);
12748 end loop;
12749 end if;
12750 end Uninstall_Discriminants;
12752 -------------------------------------------
12753 -- Uninstall_Discriminants_And_Pop_Scope --
12754 -------------------------------------------
12756 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
12757 begin
12758 if Has_Discriminants (E) then
12759 Uninstall_Discriminants (E);
12760 Pop_Scope;
12761 end if;
12762 end Uninstall_Discriminants_And_Pop_Scope;
12764 ------------------------------
12765 -- Validate_Address_Clauses --
12766 ------------------------------
12768 procedure Validate_Address_Clauses is
12769 begin
12770 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
12771 declare
12772 ACCR : Address_Clause_Check_Record
12773 renames Address_Clause_Checks.Table (J);
12775 Expr : Node_Id;
12777 X_Alignment : Uint;
12778 Y_Alignment : Uint;
12780 X_Size : Uint;
12781 Y_Size : Uint;
12783 begin
12784 -- Skip processing of this entry if warning already posted
12786 if not Address_Warning_Posted (ACCR.N) then
12787 Expr := Original_Node (Expression (ACCR.N));
12789 -- Get alignments
12791 X_Alignment := Alignment (ACCR.X);
12792 Y_Alignment := Alignment (ACCR.Y);
12794 -- Similarly obtain sizes
12796 X_Size := Esize (ACCR.X);
12797 Y_Size := Esize (ACCR.Y);
12799 -- Check for large object overlaying smaller one
12801 if Y_Size > Uint_0
12802 and then X_Size > Uint_0
12803 and then X_Size > Y_Size
12804 then
12805 Error_Msg_NE
12806 ("??& overlays smaller object", ACCR.N, ACCR.X);
12807 Error_Msg_N
12808 ("\??program execution may be erroneous", ACCR.N);
12809 Error_Msg_Uint_1 := X_Size;
12810 Error_Msg_NE
12811 ("\??size of & is ^", ACCR.N, ACCR.X);
12812 Error_Msg_Uint_1 := Y_Size;
12813 Error_Msg_NE
12814 ("\??size of & is ^", ACCR.N, ACCR.Y);
12816 -- Check for inadequate alignment, both of the base object
12817 -- and of the offset, if any. We only do this check if the
12818 -- run-time Alignment_Check is active. No point in warning
12819 -- if this check has been suppressed (or is suppressed by
12820 -- default in the non-strict alignment machine case).
12822 -- Note: we do not check the alignment if we gave a size
12823 -- warning, since it would likely be redundant.
12825 elsif not Alignment_Checks_Suppressed (ACCR.Y)
12826 and then Y_Alignment /= Uint_0
12827 and then (Y_Alignment < X_Alignment
12828 or else (ACCR.Off
12829 and then
12830 Nkind (Expr) = N_Attribute_Reference
12831 and then
12832 Attribute_Name (Expr) = Name_Address
12833 and then
12834 Has_Compatible_Alignment
12835 (ACCR.X, Prefix (Expr))
12836 /= Known_Compatible))
12837 then
12838 Error_Msg_NE
12839 ("??specified address for& may be inconsistent "
12840 & "with alignment", ACCR.N, ACCR.X);
12841 Error_Msg_N
12842 ("\??program execution may be erroneous (RM 13.3(27))",
12843 ACCR.N);
12844 Error_Msg_Uint_1 := X_Alignment;
12845 Error_Msg_NE
12846 ("\??alignment of & is ^", ACCR.N, ACCR.X);
12847 Error_Msg_Uint_1 := Y_Alignment;
12848 Error_Msg_NE
12849 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
12850 if Y_Alignment >= X_Alignment then
12851 Error_Msg_N
12852 ("\??but offset is not multiple of alignment", ACCR.N);
12853 end if;
12854 end if;
12855 end if;
12856 end;
12857 end loop;
12858 end Validate_Address_Clauses;
12860 ---------------------------
12861 -- Validate_Independence --
12862 ---------------------------
12864 procedure Validate_Independence is
12865 SU : constant Uint := UI_From_Int (System_Storage_Unit);
12866 N : Node_Id;
12867 E : Entity_Id;
12868 IC : Boolean;
12869 Comp : Entity_Id;
12870 Addr : Node_Id;
12871 P : Node_Id;
12873 procedure Check_Array_Type (Atyp : Entity_Id);
12874 -- Checks if the array type Atyp has independent components, and
12875 -- if not, outputs an appropriate set of error messages.
12877 procedure No_Independence;
12878 -- Output message that independence cannot be guaranteed
12880 function OK_Component (C : Entity_Id) return Boolean;
12881 -- Checks one component to see if it is independently accessible, and
12882 -- if so yields True, otherwise yields False if independent access
12883 -- cannot be guaranteed. This is a conservative routine, it only
12884 -- returns True if it knows for sure, it returns False if it knows
12885 -- there is a problem, or it cannot be sure there is no problem.
12887 procedure Reason_Bad_Component (C : Entity_Id);
12888 -- Outputs continuation message if a reason can be determined for
12889 -- the component C being bad.
12891 ----------------------
12892 -- Check_Array_Type --
12893 ----------------------
12895 procedure Check_Array_Type (Atyp : Entity_Id) is
12896 Ctyp : constant Entity_Id := Component_Type (Atyp);
12898 begin
12899 -- OK if no alignment clause, no pack, and no component size
12901 if not Has_Component_Size_Clause (Atyp)
12902 and then not Has_Alignment_Clause (Atyp)
12903 and then not Is_Packed (Atyp)
12904 then
12905 return;
12906 end if;
12908 -- Case of component size is greater than or equal to 64 and the
12909 -- alignment of the array is at least as large as the alignment
12910 -- of the component. We are definitely OK in this situation.
12912 if Known_Component_Size (Atyp)
12913 and then Component_Size (Atyp) >= 64
12914 and then Known_Alignment (Atyp)
12915 and then Known_Alignment (Ctyp)
12916 and then Alignment (Atyp) >= Alignment (Ctyp)
12917 then
12918 return;
12919 end if;
12921 -- Check actual component size
12923 if not Known_Component_Size (Atyp)
12924 or else not (Addressable (Component_Size (Atyp))
12925 and then Component_Size (Atyp) < 64)
12926 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
12927 then
12928 No_Independence;
12930 -- Bad component size, check reason
12932 if Has_Component_Size_Clause (Atyp) then
12933 P := Get_Attribute_Definition_Clause
12934 (Atyp, Attribute_Component_Size);
12936 if Present (P) then
12937 Error_Msg_Sloc := Sloc (P);
12938 Error_Msg_N ("\because of Component_Size clause#", N);
12939 return;
12940 end if;
12941 end if;
12943 if Is_Packed (Atyp) then
12944 P := Get_Rep_Pragma (Atyp, Name_Pack);
12946 if Present (P) then
12947 Error_Msg_Sloc := Sloc (P);
12948 Error_Msg_N ("\because of pragma Pack#", N);
12949 return;
12950 end if;
12951 end if;
12953 -- No reason found, just return
12955 return;
12956 end if;
12958 -- Array type is OK independence-wise
12960 return;
12961 end Check_Array_Type;
12963 ---------------------
12964 -- No_Independence --
12965 ---------------------
12967 procedure No_Independence is
12968 begin
12969 if Pragma_Name (N) = Name_Independent then
12970 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
12971 else
12972 Error_Msg_NE
12973 ("independent components cannot be guaranteed for&", N, E);
12974 end if;
12975 end No_Independence;
12977 ------------------
12978 -- OK_Component --
12979 ------------------
12981 function OK_Component (C : Entity_Id) return Boolean is
12982 Rec : constant Entity_Id := Scope (C);
12983 Ctyp : constant Entity_Id := Etype (C);
12985 begin
12986 -- OK if no component clause, no Pack, and no alignment clause
12988 if No (Component_Clause (C))
12989 and then not Is_Packed (Rec)
12990 and then not Has_Alignment_Clause (Rec)
12991 then
12992 return True;
12993 end if;
12995 -- Here we look at the actual component layout. A component is
12996 -- addressable if its size is a multiple of the Esize of the
12997 -- component type, and its starting position in the record has
12998 -- appropriate alignment, and the record itself has appropriate
12999 -- alignment to guarantee the component alignment.
13001 -- Make sure sizes are static, always assume the worst for any
13002 -- cases where we cannot check static values.
13004 if not (Known_Static_Esize (C)
13005 and then
13006 Known_Static_Esize (Ctyp))
13007 then
13008 return False;
13009 end if;
13011 -- Size of component must be addressable or greater than 64 bits
13012 -- and a multiple of bytes.
13014 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13015 return False;
13016 end if;
13018 -- Check size is proper multiple
13020 if Esize (C) mod Esize (Ctyp) /= 0 then
13021 return False;
13022 end if;
13024 -- Check alignment of component is OK
13026 if not Known_Component_Bit_Offset (C)
13027 or else Component_Bit_Offset (C) < Uint_0
13028 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13029 then
13030 return False;
13031 end if;
13033 -- Check alignment of record type is OK
13035 if not Known_Alignment (Rec)
13036 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13037 then
13038 return False;
13039 end if;
13041 -- All tests passed, component is addressable
13043 return True;
13044 end OK_Component;
13046 --------------------------
13047 -- Reason_Bad_Component --
13048 --------------------------
13050 procedure Reason_Bad_Component (C : Entity_Id) is
13051 Rec : constant Entity_Id := Scope (C);
13052 Ctyp : constant Entity_Id := Etype (C);
13054 begin
13055 -- If component clause present assume that's the problem
13057 if Present (Component_Clause (C)) then
13058 Error_Msg_Sloc := Sloc (Component_Clause (C));
13059 Error_Msg_N ("\because of Component_Clause#", N);
13060 return;
13061 end if;
13063 -- If pragma Pack clause present, assume that's the problem
13065 if Is_Packed (Rec) then
13066 P := Get_Rep_Pragma (Rec, Name_Pack);
13068 if Present (P) then
13069 Error_Msg_Sloc := Sloc (P);
13070 Error_Msg_N ("\because of pragma Pack#", N);
13071 return;
13072 end if;
13073 end if;
13075 -- See if record has bad alignment clause
13077 if Has_Alignment_Clause (Rec)
13078 and then Known_Alignment (Rec)
13079 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13080 then
13081 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13083 if Present (P) then
13084 Error_Msg_Sloc := Sloc (P);
13085 Error_Msg_N ("\because of Alignment clause#", N);
13086 end if;
13087 end if;
13089 -- Couldn't find a reason, so return without a message
13091 return;
13092 end Reason_Bad_Component;
13094 -- Start of processing for Validate_Independence
13096 begin
13097 for J in Independence_Checks.First .. Independence_Checks.Last loop
13098 N := Independence_Checks.Table (J).N;
13099 E := Independence_Checks.Table (J).E;
13100 IC := Pragma_Name (N) = Name_Independent_Components;
13102 -- Deal with component case
13104 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13105 if not OK_Component (E) then
13106 No_Independence;
13107 Reason_Bad_Component (E);
13108 goto Continue;
13109 end if;
13110 end if;
13112 -- Deal with record with Independent_Components
13114 if IC and then Is_Record_Type (E) then
13115 Comp := First_Component_Or_Discriminant (E);
13116 while Present (Comp) loop
13117 if not OK_Component (Comp) then
13118 No_Independence;
13119 Reason_Bad_Component (Comp);
13120 goto Continue;
13121 end if;
13123 Next_Component_Or_Discriminant (Comp);
13124 end loop;
13125 end if;
13127 -- Deal with address clause case
13129 if Is_Object (E) then
13130 Addr := Address_Clause (E);
13132 if Present (Addr) then
13133 No_Independence;
13134 Error_Msg_Sloc := Sloc (Addr);
13135 Error_Msg_N ("\because of Address clause#", N);
13136 goto Continue;
13137 end if;
13138 end if;
13140 -- Deal with independent components for array type
13142 if IC and then Is_Array_Type (E) then
13143 Check_Array_Type (E);
13144 end if;
13146 -- Deal with independent components for array object
13148 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13149 Check_Array_Type (Etype (E));
13150 end if;
13152 <<Continue>> null;
13153 end loop;
13154 end Validate_Independence;
13156 ------------------------------
13157 -- Validate_Iterable_Aspect --
13158 ------------------------------
13160 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
13161 Assoc : Node_Id;
13162 Expr : Node_Id;
13164 Prim : Node_Id;
13165 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
13167 First_Id : Entity_Id;
13168 Next_Id : Entity_Id;
13169 Has_Element_Id : Entity_Id;
13170 Element_Id : Entity_Id;
13172 begin
13173 -- If previous error aspect is unusable
13175 if Cursor = Any_Type then
13176 return;
13177 end if;
13179 First_Id := Empty;
13180 Next_Id := Empty;
13181 Has_Element_Id := Empty;
13182 Element_Id := Empty;
13184 -- Each expression must resolve to a function with the proper signature
13186 Assoc := First (Component_Associations (Expression (ASN)));
13187 while Present (Assoc) loop
13188 Expr := Expression (Assoc);
13189 Analyze (Expr);
13191 Prim := First (Choices (Assoc));
13193 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
13194 Error_Msg_N ("illegal name in association", Prim);
13196 elsif Chars (Prim) = Name_First then
13197 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
13198 First_Id := Entity (Expr);
13200 elsif Chars (Prim) = Name_Next then
13201 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
13202 Next_Id := Entity (Expr);
13204 elsif Chars (Prim) = Name_Has_Element then
13205 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
13206 Has_Element_Id := Entity (Expr);
13208 elsif Chars (Prim) = Name_Element then
13209 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
13210 Element_Id := Entity (Expr);
13212 else
13213 Error_Msg_N ("invalid name for iterable function", Prim);
13214 end if;
13216 Next (Assoc);
13217 end loop;
13219 if No (First_Id) then
13220 Error_Msg_N ("match for First primitive not found", ASN);
13222 elsif No (Next_Id) then
13223 Error_Msg_N ("match for Next primitive not found", ASN);
13225 elsif No (Has_Element_Id) then
13226 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13228 elsif No (Element_Id) then
13229 null; -- Optional.
13230 end if;
13231 end Validate_Iterable_Aspect;
13233 -----------------------------------
13234 -- Validate_Unchecked_Conversion --
13235 -----------------------------------
13237 procedure Validate_Unchecked_Conversion
13238 (N : Node_Id;
13239 Act_Unit : Entity_Id)
13241 Source : Entity_Id;
13242 Target : Entity_Id;
13243 Vnode : Node_Id;
13245 begin
13246 -- Obtain source and target types. Note that we call Ancestor_Subtype
13247 -- here because the processing for generic instantiation always makes
13248 -- subtypes, and we want the original frozen actual types.
13250 -- If we are dealing with private types, then do the check on their
13251 -- fully declared counterparts if the full declarations have been
13252 -- encountered (they don't have to be visible, but they must exist).
13254 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13256 if Is_Private_Type (Source)
13257 and then Present (Underlying_Type (Source))
13258 then
13259 Source := Underlying_Type (Source);
13260 end if;
13262 Target := Ancestor_Subtype (Etype (Act_Unit));
13264 -- If either type is generic, the instantiation happens within a generic
13265 -- unit, and there is nothing to check. The proper check will happen
13266 -- when the enclosing generic is instantiated.
13268 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
13269 return;
13270 end if;
13272 if Is_Private_Type (Target)
13273 and then Present (Underlying_Type (Target))
13274 then
13275 Target := Underlying_Type (Target);
13276 end if;
13278 -- Source may be unconstrained array, but not target
13280 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
13281 Error_Msg_N
13282 ("unchecked conversion to unconstrained array not allowed", N);
13283 return;
13284 end if;
13286 -- Warn if conversion between two different convention pointers
13288 if Is_Access_Type (Target)
13289 and then Is_Access_Type (Source)
13290 and then Convention (Target) /= Convention (Source)
13291 and then Warn_On_Unchecked_Conversion
13292 then
13293 -- Give warnings for subprogram pointers only on most targets
13295 if Is_Access_Subprogram_Type (Target)
13296 or else Is_Access_Subprogram_Type (Source)
13297 then
13298 Error_Msg_N
13299 ("?z?conversion between pointers with different conventions!",
13301 end if;
13302 end if;
13304 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13305 -- warning when compiling GNAT-related sources.
13307 if Warn_On_Unchecked_Conversion
13308 and then not In_Predefined_Unit (N)
13309 and then RTU_Loaded (Ada_Calendar)
13310 and then (Chars (Source) = Name_Time
13311 or else
13312 Chars (Target) = Name_Time)
13313 then
13314 -- If Ada.Calendar is loaded and the name of one of the operands is
13315 -- Time, there is a good chance that this is Ada.Calendar.Time.
13317 declare
13318 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
13319 begin
13320 pragma Assert (Present (Calendar_Time));
13322 if Source = Calendar_Time or else Target = Calendar_Time then
13323 Error_Msg_N
13324 ("?z?representation of 'Time values may change between "
13325 & "'G'N'A'T versions", N);
13326 end if;
13327 end;
13328 end if;
13330 -- Make entry in unchecked conversion table for later processing by
13331 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13332 -- (using values set by the back-end where possible). This is only done
13333 -- if the appropriate warning is active.
13335 if Warn_On_Unchecked_Conversion then
13336 Unchecked_Conversions.Append
13337 (New_Val => UC_Entry'(Eloc => Sloc (N),
13338 Source => Source,
13339 Target => Target,
13340 Act_Unit => Act_Unit));
13342 -- If both sizes are known statically now, then back end annotation
13343 -- is not required to do a proper check but if either size is not
13344 -- known statically, then we need the annotation.
13346 if Known_Static_RM_Size (Source)
13347 and then
13348 Known_Static_RM_Size (Target)
13349 then
13350 null;
13351 else
13352 Back_Annotate_Rep_Info := True;
13353 end if;
13354 end if;
13356 -- If unchecked conversion to access type, and access type is declared
13357 -- in the same unit as the unchecked conversion, then set the flag
13358 -- No_Strict_Aliasing (no strict aliasing is implicit here)
13360 if Is_Access_Type (Target) and then
13361 In_Same_Source_Unit (Target, N)
13362 then
13363 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13364 end if;
13366 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13367 -- the back end needs to perform special validation checks.
13369 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13370 -- have full expansion and the back end is called ???
13372 Vnode :=
13373 Make_Validate_Unchecked_Conversion (Sloc (N));
13374 Set_Source_Type (Vnode, Source);
13375 Set_Target_Type (Vnode, Target);
13377 -- If the unchecked conversion node is in a list, just insert before it.
13378 -- If not we have some strange case, not worth bothering about.
13380 if Is_List_Member (N) then
13381 Insert_After (N, Vnode);
13382 end if;
13383 end Validate_Unchecked_Conversion;
13385 ------------------------------------
13386 -- Validate_Unchecked_Conversions --
13387 ------------------------------------
13389 procedure Validate_Unchecked_Conversions is
13390 begin
13391 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13392 declare
13393 T : UC_Entry renames Unchecked_Conversions.Table (N);
13395 Eloc : constant Source_Ptr := T.Eloc;
13396 Source : constant Entity_Id := T.Source;
13397 Target : constant Entity_Id := T.Target;
13398 Act_Unit : constant Entity_Id := T.Act_Unit;
13400 Source_Siz : Uint;
13401 Target_Siz : Uint;
13403 begin
13404 -- Skip if function marked as warnings off
13406 if Warnings_Off (Act_Unit) then
13407 goto Continue;
13408 end if;
13410 -- This validation check, which warns if we have unequal sizes for
13411 -- unchecked conversion, and thus potentially implementation
13412 -- dependent semantics, is one of the few occasions on which we
13413 -- use the official RM size instead of Esize. See description in
13414 -- Einfo "Handling of Type'Size Values" for details.
13416 if Serious_Errors_Detected = 0
13417 and then Known_Static_RM_Size (Source)
13418 and then Known_Static_RM_Size (Target)
13420 -- Don't do the check if warnings off for either type, note the
13421 -- deliberate use of OR here instead of OR ELSE to get the flag
13422 -- Warnings_Off_Used set for both types if appropriate.
13424 and then not (Has_Warnings_Off (Source)
13426 Has_Warnings_Off (Target))
13427 then
13428 Source_Siz := RM_Size (Source);
13429 Target_Siz := RM_Size (Target);
13431 if Source_Siz /= Target_Siz then
13432 Error_Msg
13433 ("?z?types for unchecked conversion have different sizes!",
13434 Eloc);
13436 if All_Errors_Mode then
13437 Error_Msg_Name_1 := Chars (Source);
13438 Error_Msg_Uint_1 := Source_Siz;
13439 Error_Msg_Name_2 := Chars (Target);
13440 Error_Msg_Uint_2 := Target_Siz;
13441 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13443 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13445 if Is_Discrete_Type (Source)
13446 and then
13447 Is_Discrete_Type (Target)
13448 then
13449 if Source_Siz > Target_Siz then
13450 Error_Msg
13451 ("\?z?^ high order bits of source will "
13452 & "be ignored!", Eloc);
13454 elsif Is_Unsigned_Type (Source) then
13455 Error_Msg
13456 ("\?z?source will be extended with ^ high order "
13457 & "zero bits!", Eloc);
13459 else
13460 Error_Msg
13461 ("\?z?source will be extended with ^ high order "
13462 & "sign bits!", Eloc);
13463 end if;
13465 elsif Source_Siz < Target_Siz then
13466 if Is_Discrete_Type (Target) then
13467 if Bytes_Big_Endian then
13468 Error_Msg
13469 ("\?z?target value will include ^ undefined "
13470 & "low order bits!", Eloc);
13471 else
13472 Error_Msg
13473 ("\?z?target value will include ^ undefined "
13474 & "high order bits!", Eloc);
13475 end if;
13477 else
13478 Error_Msg
13479 ("\?z?^ trailing bits of target value will be "
13480 & "undefined!", Eloc);
13481 end if;
13483 else pragma Assert (Source_Siz > Target_Siz);
13484 Error_Msg
13485 ("\?z?^ trailing bits of source will be ignored!",
13486 Eloc);
13487 end if;
13488 end if;
13489 end if;
13490 end if;
13492 -- If both types are access types, we need to check the alignment.
13493 -- If the alignment of both is specified, we can do it here.
13495 if Serious_Errors_Detected = 0
13496 and then Is_Access_Type (Source)
13497 and then Is_Access_Type (Target)
13498 and then Target_Strict_Alignment
13499 and then Present (Designated_Type (Source))
13500 and then Present (Designated_Type (Target))
13501 then
13502 declare
13503 D_Source : constant Entity_Id := Designated_Type (Source);
13504 D_Target : constant Entity_Id := Designated_Type (Target);
13506 begin
13507 if Known_Alignment (D_Source)
13508 and then
13509 Known_Alignment (D_Target)
13510 then
13511 declare
13512 Source_Align : constant Uint := Alignment (D_Source);
13513 Target_Align : constant Uint := Alignment (D_Target);
13515 begin
13516 if Source_Align < Target_Align
13517 and then not Is_Tagged_Type (D_Source)
13519 -- Suppress warning if warnings suppressed on either
13520 -- type or either designated type. Note the use of
13521 -- OR here instead of OR ELSE. That is intentional,
13522 -- we would like to set flag Warnings_Off_Used in
13523 -- all types for which warnings are suppressed.
13525 and then not (Has_Warnings_Off (D_Source)
13527 Has_Warnings_Off (D_Target)
13529 Has_Warnings_Off (Source)
13531 Has_Warnings_Off (Target))
13532 then
13533 Error_Msg_Uint_1 := Target_Align;
13534 Error_Msg_Uint_2 := Source_Align;
13535 Error_Msg_Node_1 := D_Target;
13536 Error_Msg_Node_2 := D_Source;
13537 Error_Msg
13538 ("?z?alignment of & (^) is stricter than "
13539 & "alignment of & (^)!", Eloc);
13540 Error_Msg
13541 ("\?z?resulting access value may have invalid "
13542 & "alignment!", Eloc);
13543 end if;
13544 end;
13545 end if;
13546 end;
13547 end if;
13548 end;
13550 <<Continue>>
13551 null;
13552 end loop;
13553 end Validate_Unchecked_Conversions;
13555 end Sem_Ch13;