hppa: Fix LO_SUM DLTIND14R address support in PRINT_OPERAND_ADDRESS
[official-gcc.git] / gcc / tree-ssa-loop-split.cc
blobc0bb1b71d17cefc272e516b1433911d1b016a9e9
1 /* Loop splitting.
2 Copyright (C) 2015-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "tree-pass.h"
27 #include "ssa.h"
28 #include "fold-const.h"
29 #include "tree-cfg.h"
30 #include "tree-ssa.h"
31 #include "tree-ssa-loop-niter.h"
32 #include "tree-ssa-loop.h"
33 #include "tree-ssa-loop-manip.h"
34 #include "tree-into-ssa.h"
35 #include "tree-inline.h"
36 #include "tree-cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "gimple-iterator.h"
40 #include "gimple-pretty-print.h"
41 #include "cfghooks.h"
42 #include "gimple-fold.h"
43 #include "gimplify-me.h"
44 #include "print-tree.h"
45 #include "value-query.h"
46 #include "sreal.h"
48 /* This file implements two kinds of loop splitting.
50 One transformation of loops like:
52 for (i = 0; i < 100; i++)
54 if (i < 50)
56 else
60 into:
62 for (i = 0; i < 50; i++)
66 for (; i < 100; i++)
73 /* Return true when BB inside LOOP is a potential iteration space
74 split point, i.e. ends with a condition like "IV < comp", which
75 is true on one side of the iteration space and false on the other,
76 and the split point can be computed. If so, also return the border
77 point in *BORDER and the comparison induction variable in IV. */
79 static tree
80 split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv,
81 enum tree_code *guard_code)
83 gcond *stmt;
84 affine_iv iv2;
86 /* BB must end in a simple conditional jump. */
87 stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
88 if (!stmt)
89 return NULL_TREE;
91 enum tree_code code = gimple_cond_code (stmt);
93 if (loop_exits_from_bb_p (loop, bb))
94 return NULL_TREE;
96 tree op0 = gimple_cond_lhs (stmt);
97 tree op1 = gimple_cond_rhs (stmt);
98 class loop *useloop = loop_containing_stmt (stmt);
100 if (!simple_iv (loop, useloop, op0, iv, false))
101 return NULL_TREE;
102 if (!simple_iv (loop, useloop, op1, &iv2, false))
103 return NULL_TREE;
105 /* Make it so that the first argument of the condition is
106 the looping one. */
107 if (!integer_zerop (iv2.step))
109 std::swap (op0, op1);
110 std::swap (*iv, iv2);
111 code = swap_tree_comparison (code);
112 gimple_cond_set_condition (stmt, code, op0, op1);
113 update_stmt (stmt);
115 else if (integer_zerop (iv->step))
116 return NULL_TREE;
117 if (!integer_zerop (iv2.step))
118 return NULL_TREE;
119 if (!iv->no_overflow)
120 return NULL_TREE;
122 /* Only handle relational comparisons, for equality and non-equality
123 we'd have to split the loop into two loops and a middle statement. */
124 switch (code)
126 case LT_EXPR:
127 case LE_EXPR:
128 case GT_EXPR:
129 case GE_EXPR:
130 break;
131 case NE_EXPR:
132 case EQ_EXPR:
133 /* If the test check for first iteration, we can handle NE/EQ
134 with only one split loop. */
135 if (operand_equal_p (iv->base, iv2.base, 0))
137 if (code == EQ_EXPR)
138 code = !tree_int_cst_sign_bit (iv->step) ? LE_EXPR : GE_EXPR;
139 else
140 code = !tree_int_cst_sign_bit (iv->step) ? GT_EXPR : LT_EXPR;
141 break;
143 /* Similarly when the test checks for minimal or maximal
144 value range. */
145 else
147 int_range<2> r;
148 get_global_range_query ()->range_of_expr (r, op0, stmt);
149 if (!r.varying_p () && !r.undefined_p ()
150 && TREE_CODE (op1) == INTEGER_CST)
152 wide_int val = wi::to_wide (op1);
153 if (known_eq (val, r.lower_bound ()))
155 code = (code == EQ_EXPR) ? LE_EXPR : GT_EXPR;
156 break;
158 else if (known_eq (val, r.upper_bound ()))
160 code = (code == EQ_EXPR) ? GE_EXPR : LT_EXPR;
161 break;
165 /* TODO: We can compare with exit condition; it seems that testing for
166 last iteration is common case. */
167 return NULL_TREE;
168 default:
169 return NULL_TREE;
172 if (dump_file && (dump_flags & TDF_DETAILS))
174 fprintf (dump_file, "Found potential split point: ");
175 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
176 fprintf (dump_file, " { ");
177 print_generic_expr (dump_file, iv->base, TDF_SLIM);
178 fprintf (dump_file, " + I*");
179 print_generic_expr (dump_file, iv->step, TDF_SLIM);
180 fprintf (dump_file, " } %s ", get_tree_code_name (code));
181 print_generic_expr (dump_file, iv2.base, TDF_SLIM);
182 fprintf (dump_file, "\n");
185 *border = iv2.base;
186 *guard_code = code;
187 return op0;
190 /* Given a GUARD conditional stmt inside LOOP, which we want to make always
191 true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
192 (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
193 exit test statement to loop back only if the GUARD statement will
194 also be true/false in the next iteration. */
196 static void
197 patch_loop_exit (class loop *loop, tree_code guard_code, tree nextval,
198 tree newbound, bool initial_true)
200 edge exit = single_exit (loop);
201 gcond *stmt = as_a <gcond *> (*gsi_last_bb (exit->src));
202 gimple_cond_set_condition (stmt, guard_code, nextval, newbound);
203 update_stmt (stmt);
205 edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
207 exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
208 stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
210 if (initial_true)
212 exit->flags |= EDGE_FALSE_VALUE;
213 stay->flags |= EDGE_TRUE_VALUE;
215 else
217 exit->flags |= EDGE_TRUE_VALUE;
218 stay->flags |= EDGE_FALSE_VALUE;
222 /* Give an induction variable GUARD_IV, and its affine descriptor IV,
223 find the loop phi node in LOOP defining it directly, or create
224 such phi node. Return that phi node. */
226 static gphi *
227 find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/)
229 gimple *def = SSA_NAME_DEF_STMT (guard_iv);
230 gphi *phi;
231 if ((phi = dyn_cast <gphi *> (def))
232 && gimple_bb (phi) == loop->header)
233 return phi;
235 /* XXX Create the PHI instead. */
236 return NULL;
239 /* Returns true if the exit values of all loop phi nodes can be
240 determined easily (i.e. that connect_loop_phis can determine them). */
242 static bool
243 easy_exit_values (class loop *loop)
245 edge exit = single_exit (loop);
246 edge latch = loop_latch_edge (loop);
247 gphi_iterator psi;
249 /* Currently we regard the exit values as easy if they are the same
250 as the value over the backedge. Which is the case if the definition
251 of the backedge value dominates the exit edge. */
252 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
254 gphi *phi = psi.phi ();
255 tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch);
256 basic_block bb;
257 if (TREE_CODE (next) == SSA_NAME
258 && (bb = gimple_bb (SSA_NAME_DEF_STMT (next)))
259 && !dominated_by_p (CDI_DOMINATORS, exit->src, bb))
260 return false;
263 return true;
266 /* This function updates the SSA form after connect_loops made a new
267 edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
268 conditional). I.e. the second loop can now be entered either
269 via the original entry or via NEW_E, so the entry values of LOOP2
270 phi nodes are either the original ones or those at the exit
271 of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting
272 this. The loops need to fulfill easy_exit_values(). */
274 static void
275 connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e)
277 basic_block rest = loop_preheader_edge (loop2)->src;
278 gcc_assert (new_e->dest == rest);
279 edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
281 edge firste = loop_preheader_edge (loop1);
282 edge seconde = loop_preheader_edge (loop2);
283 edge firstn = loop_latch_edge (loop1);
284 gphi_iterator psi_first, psi_second;
285 for (psi_first = gsi_start_phis (loop1->header),
286 psi_second = gsi_start_phis (loop2->header);
287 !gsi_end_p (psi_first);
288 gsi_next (&psi_first), gsi_next (&psi_second))
290 tree init, next, new_init;
291 use_operand_p op;
292 gphi *phi_first = psi_first.phi ();
293 gphi *phi_second = psi_second.phi ();
295 init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
296 next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
297 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
298 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
300 /* Prefer using original variable as a base for the new ssa name.
301 This is necessary for virtual ops, and useful in order to avoid
302 losing debug info for real ops. */
303 if (TREE_CODE (next) == SSA_NAME
304 && useless_type_conversion_p (TREE_TYPE (next),
305 TREE_TYPE (init)))
306 new_init = copy_ssa_name (next);
307 else if (TREE_CODE (init) == SSA_NAME
308 && useless_type_conversion_p (TREE_TYPE (init),
309 TREE_TYPE (next)))
310 new_init = copy_ssa_name (init);
311 else if (useless_type_conversion_p (TREE_TYPE (next),
312 TREE_TYPE (init)))
313 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
314 "unrinittmp");
315 else
316 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
317 "unrinittmp");
319 gphi * newphi = create_phi_node (new_init, rest);
320 add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
321 add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
322 SET_USE (op, new_init);
326 /* The two loops LOOP1 and LOOP2 were just created by loop versioning,
327 they are still equivalent and placed in two arms of a diamond, like so:
329 .------if (cond)------.
331 pre1 pre2
333 .--->h1 h2<----.
334 | | | |
335 | ex1---. .---ex2 |
336 | / | | \ |
337 '---l1 X | l2---'
340 '--->join<---'
342 This function transforms the program such that LOOP1 is conditionally
343 falling through to LOOP2, or skipping it. This is done by splitting
344 the ex1->join edge at X in the diagram above, and inserting a condition
345 whose one arm goes to pre2, resulting in this situation:
347 .------if (cond)------.
349 pre1 .---------->pre2
350 | | |
351 .--->h1 | h2<----.
352 | | | | |
353 | ex1---. | .---ex2 |
354 | / v | | \ |
355 '---l1 skip---' | l2---'
358 '--->join<---'
361 The condition used is the exit condition of LOOP1, which effectively means
362 that when the first loop exits (for whatever reason) but the real original
363 exit expression is still false the second loop will be entered.
364 The function returns the new edge cond->pre2.
366 This doesn't update the SSA form, see connect_loop_phis for that. */
368 static edge
369 connect_loops (class loop *loop1, class loop *loop2)
371 edge exit = single_exit (loop1);
372 basic_block skip_bb = split_edge (exit);
373 gcond *skip_stmt;
374 gimple_stmt_iterator gsi;
375 edge new_e, skip_e;
377 gcond *stmt = as_a <gcond *> (*gsi_last_bb (exit->src));
378 skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
379 gimple_cond_lhs (stmt),
380 gimple_cond_rhs (stmt),
381 NULL_TREE, NULL_TREE);
382 gsi = gsi_last_bb (skip_bb);
383 gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
385 skip_e = EDGE_SUCC (skip_bb, 0);
386 skip_e->flags &= ~EDGE_FALLTHRU;
387 new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
388 if (exit->flags & EDGE_TRUE_VALUE)
390 skip_e->flags |= EDGE_TRUE_VALUE;
391 new_e->flags |= EDGE_FALSE_VALUE;
393 else
395 skip_e->flags |= EDGE_FALSE_VALUE;
396 new_e->flags |= EDGE_TRUE_VALUE;
399 new_e->probability = profile_probability::very_likely ();
400 skip_e->probability = new_e->probability.invert ();
402 return new_e;
405 /* This returns the new bound for iterations given the original iteration
406 space in NITER, an arbitrary new bound BORDER, assumed to be some
407 comparison value with a different IV, the initial value GUARD_INIT of
408 that other IV, and the comparison code GUARD_CODE that compares
409 that other IV with BORDER. We return an SSA name, and place any
410 necessary statements for that computation into *STMTS.
412 For example for such a loop:
414 for (i = beg, j = guard_init; i < end; i++, j++)
415 if (j < border) // this is supposed to be true/false
418 we want to return a new bound (on j) that makes the loop iterate
419 as long as the condition j < border stays true. We also don't want
420 to iterate more often than the original loop, so we have to introduce
421 some cut-off as well (via min/max), effectively resulting in:
423 newend = min (end+guard_init-beg, border)
424 for (i = beg; j = guard_init; j < newend; i++, j++)
425 if (j < c)
428 Depending on the direction of the IVs and if the exit tests
429 are strict or non-strict we need to use MIN or MAX,
430 and add or subtract 1. This routine computes newend above. */
432 static tree
433 compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter,
434 tree border,
435 enum tree_code guard_code, tree guard_init)
437 /* The niter structure contains the after-increment IV, we need
438 the loop-enter base, so subtract STEP once. */
439 tree controlbase = force_gimple_operand (niter->control.base,
440 stmts, true, NULL_TREE);
441 tree controlstep = niter->control.step;
442 tree enddiff;
443 if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
445 controlstep = gimple_build (stmts, NEGATE_EXPR,
446 TREE_TYPE (controlstep), controlstep);
447 enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
448 TREE_TYPE (controlbase),
449 controlbase, controlstep);
451 else
452 enddiff = gimple_build (stmts, MINUS_EXPR,
453 TREE_TYPE (controlbase),
454 controlbase, controlstep);
456 /* Compute end-beg. */
457 gimple_seq stmts2;
458 tree end = force_gimple_operand (niter->bound, &stmts2,
459 true, NULL_TREE);
460 gimple_seq_add_seq_without_update (stmts, stmts2);
461 if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
463 tree tem = gimple_convert (stmts, sizetype, enddiff);
464 tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
465 enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
466 TREE_TYPE (enddiff),
467 end, tem);
469 else
470 enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
471 end, enddiff);
473 /* Compute guard_init + (end-beg). */
474 tree newbound;
475 enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff);
476 if (POINTER_TYPE_P (TREE_TYPE (guard_init)))
478 enddiff = gimple_convert (stmts, sizetype, enddiff);
479 newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
480 TREE_TYPE (guard_init),
481 guard_init, enddiff);
483 else
484 newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init),
485 guard_init, enddiff);
487 /* Depending on the direction of the IVs the new bound for the first
488 loop is the minimum or maximum of old bound and border.
489 Also, if the guard condition isn't strictly less or greater,
490 we need to adjust the bound. */
491 int addbound = 0;
492 enum tree_code minmax;
493 if (niter->cmp == LT_EXPR)
495 /* GT and LE are the same, inverted. */
496 if (guard_code == GT_EXPR || guard_code == LE_EXPR)
497 addbound = -1;
498 minmax = MIN_EXPR;
500 else
502 gcc_assert (niter->cmp == GT_EXPR);
503 if (guard_code == GE_EXPR || guard_code == LT_EXPR)
504 addbound = 1;
505 minmax = MAX_EXPR;
508 if (addbound)
510 tree type2 = TREE_TYPE (newbound);
511 if (POINTER_TYPE_P (type2))
512 type2 = sizetype;
513 newbound = gimple_build (stmts,
514 POINTER_TYPE_P (TREE_TYPE (newbound))
515 ? POINTER_PLUS_EXPR : PLUS_EXPR,
516 TREE_TYPE (newbound),
517 newbound,
518 build_int_cst (type2, addbound));
521 tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
522 border, newbound);
523 return newend;
526 /* Fix the two loop's bb count after split based on the split edge probability,
527 don't adjust the bbs dominated by true branches of that loop to avoid
528 dropping 1s down. */
529 static void
530 fix_loop_bb_probability (class loop *loop1, class loop *loop2, edge true_edge,
531 edge false_edge)
533 /* Proportion first loop's bb counts except those dominated by true
534 branch to avoid drop 1s down. */
535 basic_block *bbs1, *bbs2;
536 bbs1 = get_loop_body (loop1);
537 unsigned j;
538 for (j = 0; j < loop1->num_nodes; j++)
539 if (bbs1[j] == loop1->latch
540 /* Watch for case where the true conditional is empty. */
541 || !single_pred_p (true_edge->dest)
542 || !dominated_by_p (CDI_DOMINATORS, bbs1[j], true_edge->dest))
543 bbs1[j]->count
544 = bbs1[j]->count.apply_probability (true_edge->probability);
545 free (bbs1);
547 /* Proportion second loop's bb counts except those dominated by false
548 branch to avoid drop 1s down. */
549 basic_block bbi_copy = get_bb_copy (false_edge->dest);
550 bbs2 = get_loop_body (loop2);
551 for (j = 0; j < loop2->num_nodes; j++)
552 if (bbs2[j] == loop2->latch
553 /* Watch for case where the flase conditional is empty. */
554 || !single_pred_p (bbi_copy)
555 || !dominated_by_p (CDI_DOMINATORS, bbs2[j], bbi_copy))
556 bbs2[j]->count
557 = bbs2[j]->count.apply_probability (true_edge->probability.invert ());
558 free (bbs2);
561 /* Checks if LOOP contains an conditional block whose condition
562 depends on which side in the iteration space it is, and if so
563 splits the iteration space into two loops. Returns true if the
564 loop was split. NITER must contain the iteration descriptor for the
565 single exit of LOOP. */
567 static bool
568 split_loop (class loop *loop1)
570 class tree_niter_desc niter;
571 basic_block *bbs;
572 unsigned i;
573 bool changed = false;
574 tree guard_iv;
575 tree border = NULL_TREE;
576 affine_iv iv;
577 edge exit1;
579 if (!(exit1 = single_exit (loop1))
580 || EDGE_COUNT (exit1->src->succs) != 2
581 /* ??? We could handle non-empty latches when we split the latch edge
582 (not the exit edge), and put the new exit condition in the new block.
583 OTOH this executes some code unconditionally that might have been
584 skipped by the original exit before. */
585 || !empty_block_p (loop1->latch)
586 || !easy_exit_values (loop1)
587 || !number_of_iterations_exit (loop1, exit1, &niter, false, true)
588 || niter.cmp == ERROR_MARK)
589 return false;
590 if (niter.cmp == NE_EXPR)
592 if (!niter.control.no_overflow)
593 return false;
594 if (tree_int_cst_sign_bit (niter.control.step))
595 niter.cmp = GT_EXPR;
596 else
597 niter.cmp = LT_EXPR;
600 bbs = get_loop_body (loop1);
602 if (!can_copy_bbs_p (bbs, loop1->num_nodes))
604 free (bbs);
605 return false;
608 /* Find a splitting opportunity. */
609 enum tree_code guard_code;
610 for (i = 0; i < loop1->num_nodes; i++)
611 if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv, &guard_code)))
613 /* Handling opposite steps is not implemented yet. Neither
614 is handling different step sizes. */
615 if ((tree_int_cst_sign_bit (iv.step)
616 != tree_int_cst_sign_bit (niter.control.step))
617 || !tree_int_cst_equal (iv.step, niter.control.step))
618 continue;
620 /* Find a loop PHI node that defines guard_iv directly,
621 or create one doing that. */
622 gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
623 if (!phi)
624 continue;
625 gcond *guard_stmt = as_a<gcond *> (*gsi_last_bb (bbs[i]));
626 tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
627 loop_preheader_edge (loop1));
629 /* Loop splitting is implemented by versioning the loop, placing
630 the new loop after the old loop, make the first loop iterate
631 as long as the conditional stays true (or false) and let the
632 second (new) loop handle the rest of the iterations.
634 First we need to determine if the condition will start being true
635 or false in the first loop. */
636 bool initial_true;
637 switch (guard_code)
639 case LT_EXPR:
640 case LE_EXPR:
641 initial_true = !tree_int_cst_sign_bit (iv.step);
642 break;
643 case GT_EXPR:
644 case GE_EXPR:
645 initial_true = tree_int_cst_sign_bit (iv.step);
646 break;
647 default:
648 gcc_unreachable ();
651 /* Build a condition that will skip the first loop when the
652 guard condition won't ever be true (or false). */
653 gimple_seq stmts2;
654 border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
655 if (stmts2)
656 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
657 stmts2);
658 tree cond = fold_build2 (guard_code, boolean_type_node,
659 guard_init, border);
660 if (!initial_true)
661 cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
663 edge true_edge, false_edge;
664 extract_true_false_edges_from_block (bbs[i], &true_edge, &false_edge);
666 /* Now version the loop, placing loop2 after loop1 connecting
667 them, and fix up SSA form for that. */
668 initialize_original_copy_tables ();
669 basic_block cond_bb;
671 profile_probability loop1_prob
672 = integer_onep (cond) ? profile_probability::always ()
673 : true_edge->probability;
674 /* TODO: It is commonly a case that we know that both loops will be
675 entered. very_likely below is the probability that second loop will
676 be entered given by connect_loops. We should work out the common
677 case it is always true. */
678 class loop *loop2 = loop_version (loop1, cond, &cond_bb,
679 loop1_prob,
680 /* Pass always as we will later
681 redirect first loop to second
682 loop. */
683 profile_probability::always (),
684 profile_probability::always (),
685 profile_probability::very_likely (),
686 true);
687 gcc_assert (loop2);
688 /* Correct probability of edge cond_bb->preheader_of_loop2. */
689 single_pred_edge
690 (loop_preheader_edge (loop2)->src)->probability
691 = loop1_prob.invert ();
693 fix_loop_bb_probability (loop1, loop2, true_edge, false_edge);
694 /* If conditional we split on has reliable profilea nd both
695 preconditionals of loop1 and loop2 are constant true, we can
696 only redistribute the iteration counts to the split loops.
698 If the conditionals we insert before loop1 or loop2 are non-trivial
699 they increase expected loop count, so account this accordingly.
700 If we do not know the probability of split conditional, avoid
701 reudcing loop estimates, since we do not really know how they are
702 split between of the two new loops. Keep orignal estimate since
703 it is likely better then completely dropping it.
705 TODO: If we know that one of the new loops has constant
706 number of iterations, we can do better. We could also update
707 upper bounds. */
708 if (loop1->any_estimate
709 && wi::fits_shwi_p (loop1->nb_iterations_estimate))
711 sreal scale = true_edge->probability.reliable_p ()
712 ? true_edge->probability.to_sreal () : (sreal)1;
713 sreal scale2 = false_edge->probability.reliable_p ()
714 ? false_edge->probability.to_sreal () : (sreal)1;
715 sreal div1 = loop1_prob.initialized_p ()
716 ? loop1_prob.to_sreal () : (sreal)1/(sreal)2;
717 /* +1 to get header interations rather than latch iterations and then
718 -1 to convert back. */
719 if (div1 != 0)
720 loop1->nb_iterations_estimate
721 = MAX ((((sreal)loop1->nb_iterations_estimate.to_shwi () + 1)
722 * scale / div1).to_nearest_int () - 1, 0);
723 else
724 loop1->any_estimate = false;
725 loop2->nb_iterations_estimate
726 = MAX ((((sreal)loop2->nb_iterations_estimate.to_shwi () + 1) * scale2
727 / profile_probability::very_likely ().to_sreal ())
728 .to_nearest_int () - 1, 0);
730 update_loop_exit_probability_scale_dom_bbs (loop1);
731 update_loop_exit_probability_scale_dom_bbs (loop2);
733 edge new_e = connect_loops (loop1, loop2);
734 connect_loop_phis (loop1, loop2, new_e);
736 /* The iterations of the second loop is now already
737 exactly those that the first loop didn't do, but the
738 iteration space of the first loop is still the original one.
739 Compute the new bound for the guarding IV and patch the
740 loop exit to use it instead of original IV and bound. */
741 gimple_seq stmts = NULL;
742 tree newend = compute_new_first_bound (&stmts, &niter, border,
743 guard_code, guard_init);
744 if (stmts)
745 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
746 stmts);
747 tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
748 patch_loop_exit (loop1, guard_code, guard_next, newend, initial_true);
750 /* Finally patch out the two copies of the condition to be always
751 true/false (or opposite). */
752 gcond *force_true = as_a<gcond *> (*gsi_last_bb (bbs[i]));
753 gcond *force_false = as_a<gcond *> (*gsi_last_bb (get_bb_copy (bbs[i])));
754 if (!initial_true)
755 std::swap (force_true, force_false);
756 gimple_cond_make_true (force_true);
757 gimple_cond_make_false (force_false);
758 update_stmt (force_true);
759 update_stmt (force_false);
761 free_original_copy_tables ();
763 changed = true;
764 if (dump_file && (dump_flags & TDF_DETAILS))
765 fprintf (dump_file, ";; Loop split.\n");
767 if (dump_enabled_p ())
768 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, guard_stmt, "loop split\n");
770 /* Only deal with the first opportunity. */
771 break;
774 free (bbs);
775 return changed;
778 /* Another transformation of loops like:
780 for (i = INIT (); CHECK (i); i = NEXT ())
782 if (expr (a_1, a_2, ..., a_n)) // expr is pure
783 a_j = ...; // change at least one a_j
784 else
785 S; // not change any a_j
788 into:
790 for (i = INIT (); CHECK (i); i = NEXT ())
792 if (expr (a_1, a_2, ..., a_n))
793 a_j = ...;
794 else
797 i = NEXT ();
798 break;
802 for (; CHECK (i); i = NEXT ())
809 /* Data structure to hold temporary information during loop split upon
810 semi-invariant conditional statement. */
811 class split_info {
812 public:
813 /* Array of all basic blocks in a loop, returned by get_loop_body(). */
814 basic_block *bbs;
816 /* All memory store/clobber statements in a loop. */
817 auto_vec<gimple *> memory_stores;
819 /* Whether above memory stores vector has been filled. */
820 int need_init;
822 /* Control dependencies of basic blocks in a loop. */
823 auto_vec<hash_set<basic_block> *> control_deps;
825 split_info () : bbs (NULL), need_init (true) { }
827 ~split_info ()
829 if (bbs)
830 free (bbs);
832 for (unsigned i = 0; i < control_deps.length (); i++)
833 delete control_deps[i];
837 /* Find all statements with memory-write effect in LOOP, including memory
838 store and non-pure function call, and keep those in a vector. This work
839 is only done one time, for the vector should be constant during analysis
840 stage of semi-invariant condition. */
842 static void
843 find_vdef_in_loop (struct loop *loop)
845 split_info *info = (split_info *) loop->aux;
846 gphi *vphi = get_virtual_phi (loop->header);
848 /* Indicate memory store vector has been filled. */
849 info->need_init = false;
851 /* If loop contains memory operation, there must be a virtual PHI node in
852 loop header basic block. */
853 if (vphi == NULL)
854 return;
856 /* All virtual SSA names inside the loop are connected to be a cyclic
857 graph via virtual PHI nodes. The virtual PHI node in loop header just
858 links the first and the last virtual SSA names, by using the last as
859 PHI operand to define the first. */
860 const edge latch = loop_latch_edge (loop);
861 const tree first = gimple_phi_result (vphi);
862 const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
864 /* The virtual SSA cyclic graph might consist of only one SSA name, who
865 is defined by itself.
867 .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
869 This means the loop contains only memory loads, so we can skip it. */
870 if (first == last)
871 return;
873 auto_vec<gimple *> other_stores;
874 auto_vec<tree> worklist;
875 auto_bitmap visited;
877 bitmap_set_bit (visited, SSA_NAME_VERSION (first));
878 bitmap_set_bit (visited, SSA_NAME_VERSION (last));
879 worklist.safe_push (last);
883 tree vuse = worklist.pop ();
884 gimple *stmt = SSA_NAME_DEF_STMT (vuse);
886 /* We mark the first and last SSA names as visited at the beginning,
887 and reversely start the process from the last SSA name towards the
888 first, which ensures that this do-while will not touch SSA names
889 defined outside the loop. */
890 gcc_assert (gimple_bb (stmt)
891 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
893 if (gimple_code (stmt) == GIMPLE_PHI)
895 gphi *phi = as_a <gphi *> (stmt);
897 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
899 tree arg = gimple_phi_arg_def (stmt, i);
901 if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
902 worklist.safe_push (arg);
905 else
907 tree prev = gimple_vuse (stmt);
909 /* Non-pure call statement is conservatively assumed to impact all
910 memory locations. So place call statements ahead of other memory
911 stores in the vector with an idea of using them as shortcut
912 terminators to memory alias analysis. */
913 if (gimple_code (stmt) == GIMPLE_CALL)
914 info->memory_stores.safe_push (stmt);
915 else
916 other_stores.safe_push (stmt);
918 if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
919 worklist.safe_push (prev);
921 } while (!worklist.is_empty ());
923 info->memory_stores.safe_splice (other_stores);
926 /* Two basic blocks have equivalent control dependency if one dominates to
927 the other, and it is post-dominated by the latter. Given a basic block
928 BB in LOOP, find farest equivalent dominating basic block. For BB, there
929 is a constraint that BB does not post-dominate loop header of LOOP, this
930 means BB is control-dependent on at least one basic block in LOOP. */
932 static basic_block
933 get_control_equiv_head_block (struct loop *loop, basic_block bb)
935 while (!bb->aux)
937 basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
939 gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb));
941 if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb))
942 break;
944 bb = dom_bb;
946 return bb;
949 /* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control-
950 dependent on. */
952 static hash_set<basic_block> *
953 find_control_dep_blocks (struct loop *loop, basic_block bb)
955 /* BB has same control dependency as loop header, then it is not control-
956 dependent on any basic block in LOOP. */
957 if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb))
958 return NULL;
960 basic_block equiv_head = get_control_equiv_head_block (loop, bb);
962 if (equiv_head->aux)
964 /* There is a basic block containing control dependency equivalent
965 to BB. No need to recompute that, and also set this information
966 to other equivalent basic blocks. */
967 for (; bb != equiv_head;
968 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
969 bb->aux = equiv_head->aux;
970 return (hash_set<basic_block> *) equiv_head->aux;
973 /* A basic block X is control-dependent on another Y iff there exists
974 a path from X to Y, in which every basic block other than X and Y
975 is post-dominated by Y, but X is not post-dominated by Y.
977 According to this rule, traverse basic blocks in the loop backwards
978 starting from BB, if a basic block is post-dominated by BB, extend
979 current post-dominating path to this block, otherwise it is another
980 one that BB is control-dependent on. */
982 auto_vec<basic_block> pdom_worklist;
983 hash_set<basic_block> pdom_visited;
984 hash_set<basic_block> *dep_bbs = new hash_set<basic_block>;
986 pdom_worklist.safe_push (equiv_head);
990 basic_block pdom_bb = pdom_worklist.pop ();
991 edge_iterator ei;
992 edge e;
994 if (pdom_visited.add (pdom_bb))
995 continue;
997 FOR_EACH_EDGE (e, ei, pdom_bb->preds)
999 basic_block pred_bb = e->src;
1001 if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb))
1003 dep_bbs->add (pred_bb);
1004 continue;
1007 pred_bb = get_control_equiv_head_block (loop, pred_bb);
1009 if (pdom_visited.contains (pred_bb))
1010 continue;
1012 if (!pred_bb->aux)
1014 pdom_worklist.safe_push (pred_bb);
1015 continue;
1018 /* If control dependency of basic block is available, fast extend
1019 post-dominating path using the information instead of advancing
1020 forward step-by-step. */
1021 hash_set<basic_block> *pred_dep_bbs
1022 = (hash_set<basic_block> *) pred_bb->aux;
1024 for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin ();
1025 iter != pred_dep_bbs->end (); ++iter)
1027 basic_block pred_dep_bb = *iter;
1029 /* Basic blocks can either be in control dependency of BB, or
1030 must be post-dominated by BB, if so, extend the path from
1031 these basic blocks. */
1032 if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb))
1033 dep_bbs->add (pred_dep_bb);
1034 else if (!pdom_visited.contains (pred_dep_bb))
1035 pdom_worklist.safe_push (pred_dep_bb);
1038 } while (!pdom_worklist.is_empty ());
1040 /* Record computed control dependencies in loop so that we can reach them
1041 when reclaiming resources. */
1042 ((split_info *) loop->aux)->control_deps.safe_push (dep_bbs);
1044 /* Associate control dependence with related equivalent basic blocks. */
1045 for (equiv_head->aux = dep_bbs; bb != equiv_head;
1046 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1047 bb->aux = dep_bbs;
1049 return dep_bbs;
1052 /* Forward declaration */
1054 static bool
1055 stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
1056 const_basic_block skip_head,
1057 hash_map<gimple *, bool> &stmt_stat);
1059 /* Given STMT, memory load or pure call statement, check whether it is impacted
1060 by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
1061 trace is composed of SKIP_HEAD and those basic block dominated by it, always
1062 corresponds to one branch of a conditional statement). If SKIP_HEAD is
1063 NULL, all basic blocks of LOOP are checked. */
1065 static bool
1066 vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
1067 const_basic_block skip_head)
1069 split_info *info = (split_info *) loop->aux;
1070 tree rhs = NULL_TREE;
1071 ao_ref ref;
1072 gimple *store;
1073 unsigned i;
1075 /* Collect memory store/clobber statements if haven't done that. */
1076 if (info->need_init)
1077 find_vdef_in_loop (loop);
1079 if (is_gimple_assign (stmt))
1080 rhs = gimple_assign_rhs1 (stmt);
1082 ao_ref_init (&ref, rhs);
1084 FOR_EACH_VEC_ELT (info->memory_stores, i, store)
1086 /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */
1087 if (skip_head
1088 && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
1089 continue;
1091 if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
1092 return false;
1095 return true;
1098 /* Suppose one condition branch, led by SKIP_HEAD, is not executed since
1099 certain iteration of LOOP, check whether an SSA name (NAME) remains
1100 unchanged in next iteration. We call this characteristic semi-
1101 invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all basic
1102 blocks and control flows in the loop will be considered. Semi-invariant
1103 state of checked statement is cached in hash map STMT_STAT to avoid
1104 redundant computation in possible following re-check. */
1106 static inline bool
1107 ssa_semi_invariant_p (struct loop *loop, tree name,
1108 const_basic_block skip_head,
1109 hash_map<gimple *, bool> &stmt_stat)
1111 gimple *def = SSA_NAME_DEF_STMT (name);
1112 const_basic_block def_bb = gimple_bb (def);
1114 /* An SSA name defined outside loop is definitely semi-invariant. */
1115 if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
1116 return true;
1118 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1119 return false;
1121 return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat);
1124 /* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is
1125 semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
1126 are excluded from LOOP. */
1128 static bool
1129 loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi,
1130 const_basic_block skip_head)
1132 const_edge latch = loop_latch_edge (loop);
1133 tree name = gimple_phi_result (loop_phi);
1134 tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch);
1136 gcc_checking_assert (from);
1138 /* Loop iteration PHI node locates in loop header, and it has two source
1139 operands, one is an initial value coming from outside the loop, the other
1140 is a value through latch of the loop, which is derived in last iteration,
1141 we call the latter latch value. From the PHI node to definition of latch
1142 value, if excluding branch trace starting from SKIP_HEAD, except copy-
1143 assignment or likewise, there is no other kind of value redefinition, SSA
1144 name defined by the PHI node is semi-invariant.
1146 loop entry
1147 | .--- latch ---.
1148 | | |
1149 v v |
1150 x_1 = PHI <x_0, x_3> |
1153 .------- if (cond) -------. |
1154 | | |
1155 | [ SKIP ] |
1156 | | |
1157 | x_2 = ... |
1158 | | |
1159 '---- T ---->.<---- F ----' |
1162 x_3 = PHI <x_1, x_2> |
1164 '----------------------'
1166 Suppose in certain iteration, execution flow in above graph goes through
1167 true branch, which means that one source value to define x_3 in false
1168 branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next
1169 iterations is defined by x_3, we know that x_1 will never changed if COND
1170 always chooses true branch from then on. */
1172 while (from != name)
1174 /* A new value comes from a CONSTANT. */
1175 if (TREE_CODE (from) != SSA_NAME)
1176 return false;
1178 gimple *stmt = SSA_NAME_DEF_STMT (from);
1179 const_basic_block bb = gimple_bb (stmt);
1181 /* A new value comes from outside the loop. */
1182 if (!bb || !flow_bb_inside_loop_p (loop, bb))
1183 return false;
1185 from = NULL_TREE;
1187 if (gimple_code (stmt) == GIMPLE_PHI)
1189 gphi *phi = as_a <gphi *> (stmt);
1191 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1193 if (skip_head)
1195 const_edge e = gimple_phi_arg_edge (phi, i);
1197 /* Don't consider redefinitions in excluded basic blocks. */
1198 if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
1199 continue;
1202 tree arg = gimple_phi_arg_def (phi, i);
1204 if (!from)
1205 from = arg;
1206 else if (!operand_equal_p (from, arg, 0))
1207 /* There are more than one source operands that provide
1208 different values to the SSA name, it is variant. */
1209 return false;
1212 else if (gimple_code (stmt) == GIMPLE_ASSIGN)
1214 /* For simple value copy, check its rhs instead. */
1215 if (gimple_assign_ssa_name_copy_p (stmt))
1216 from = gimple_assign_rhs1 (stmt);
1219 /* Any other kind of definition is deemed to introduce a new value
1220 to the SSA name. */
1221 if (!from)
1222 return false;
1224 return true;
1227 /* Check whether conditional predicates that BB is control-dependent on, are
1228 semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
1229 are excluded from LOOP. Semi-invariant state of checked statement is cached
1230 in hash map STMT_STAT. */
1232 static bool
1233 control_dep_semi_invariant_p (struct loop *loop, basic_block bb,
1234 const_basic_block skip_head,
1235 hash_map<gimple *, bool> &stmt_stat)
1237 hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb);
1239 if (!dep_bbs)
1240 return true;
1242 for (hash_set<basic_block>::iterator iter = dep_bbs->begin ();
1243 iter != dep_bbs->end (); ++iter)
1245 gimple *last = *gsi_last_bb (*iter);
1246 if (!last)
1247 return false;
1249 /* Only check condition predicates. */
1250 if (gimple_code (last) != GIMPLE_COND
1251 && gimple_code (last) != GIMPLE_SWITCH)
1252 return false;
1254 if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat))
1255 return false;
1258 return true;
1261 /* Check whether STMT is semi-invariant in LOOP, iff all its operands are
1262 semi-invariant, consequently, all its defined values are semi-invariant.
1263 Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.
1264 Semi-invariant state of checked statement is cached in hash map
1265 STMT_STAT. */
1267 static bool
1268 stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
1269 const_basic_block skip_head,
1270 hash_map<gimple *, bool> &stmt_stat)
1272 bool existed;
1273 bool &invar = stmt_stat.get_or_insert (stmt, &existed);
1275 if (existed)
1276 return invar;
1278 /* A statement might depend on itself, which is treated as variant. So set
1279 state of statement under check to be variant to ensure that. */
1280 invar = false;
1282 if (gimple_code (stmt) == GIMPLE_PHI)
1284 gphi *phi = as_a <gphi *> (stmt);
1286 if (gimple_bb (stmt) == loop->header)
1288 /* If the entry value is subject to abnormal coalescing
1289 avoid the transform since we're going to duplicate the
1290 loop header and thus likely introduce overlapping life-ranges
1291 between the PHI def and the entry on the path when the
1292 first loop is skipped. */
1293 tree entry_def
1294 = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1295 if (TREE_CODE (entry_def) == SSA_NAME
1296 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (entry_def))
1297 return false;
1298 invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head);
1299 return invar;
1302 /* For a loop PHI node that does not locate in loop header, it is semi-
1303 invariant only if two conditions are met. The first is its source
1304 values are derived from CONSTANT (including loop-invariant value), or
1305 from SSA name defined by semi-invariant loop iteration PHI node. The
1306 second is its source incoming edges are control-dependent on semi-
1307 invariant conditional predicates. */
1308 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1310 const_edge e = gimple_phi_arg_edge (phi, i);
1311 tree arg = gimple_phi_arg_def (phi, i);
1313 if (TREE_CODE (arg) == SSA_NAME)
1315 if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat))
1316 return false;
1318 /* If source value is defined in location from where the source
1319 edge comes in, no need to check control dependency again
1320 since this has been done in above SSA name check stage. */
1321 if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg)))
1322 continue;
1325 if (!control_dep_semi_invariant_p (loop, e->src, skip_head,
1326 stmt_stat))
1327 return false;
1330 else
1332 ssa_op_iter iter;
1333 tree use;
1335 /* Volatile memory load or return of normal (non-const/non-pure) call
1336 should not be treated as constant in each iteration of loop. */
1337 if (gimple_has_side_effects (stmt))
1338 return false;
1340 /* Check if any memory store may kill memory load at this place. */
1341 if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head))
1342 return false;
1344 /* Although operand of a statement might be SSA name, CONSTANT or
1345 VARDECL, here we only need to check SSA name operands. This is
1346 because check on VARDECL operands, which involve memory loads,
1347 must have been done prior to invocation of this function in
1348 vuse_semi_invariant_p. */
1349 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1350 if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat))
1351 return false;
1354 if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head,
1355 stmt_stat))
1356 return false;
1358 /* Here we SHOULD NOT use invar = true, since hash map might be changed due
1359 to new insertion, and thus invar may point to invalid memory. */
1360 stmt_stat.put (stmt, true);
1361 return true;
1364 /* A helper function to check whether STMT is semi-invariant in LOOP. Basic
1365 blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. */
1367 static bool
1368 stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
1369 const_basic_block skip_head)
1371 hash_map<gimple *, bool> stmt_stat;
1372 return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat);
1375 /* Determine when conditional statement never transfers execution to one of its
1376 branch, whether we can remove the branch's leading basic block (BRANCH_BB)
1377 and those basic blocks dominated by BRANCH_BB. */
1379 static bool
1380 branch_removable_p (basic_block branch_bb)
1382 edge_iterator ei;
1383 edge e;
1385 if (single_pred_p (branch_bb))
1386 return true;
1388 FOR_EACH_EDGE (e, ei, branch_bb->preds)
1390 if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
1391 continue;
1393 if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
1394 continue;
1396 /* The branch can be reached from opposite branch, or from some
1397 statement not dominated by the conditional statement. */
1398 return false;
1401 return true;
1404 /* Find out which branch of a conditional statement (COND) is invariant in the
1405 execution context of LOOP. That is: once the branch is selected in certain
1406 iteration of the loop, any operand that contributes to computation of the
1407 conditional statement remains unchanged in all following iterations. */
1409 static edge
1410 get_cond_invariant_branch (struct loop *loop, gcond *cond)
1412 basic_block cond_bb = gimple_bb (cond);
1413 basic_block targ_bb[2];
1414 bool invar[2];
1415 unsigned invar_checks = 0;
1417 for (unsigned i = 0; i < 2; i++)
1419 targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
1421 /* One branch directs to loop exit, no need to perform loop split upon
1422 this conditional statement. Firstly, it is trivial if the exit branch
1423 is semi-invariant, for the statement is just to break loop. Secondly,
1424 if the opposite branch is semi-invariant, it means that the statement
1425 is real loop-invariant, which is covered by loop unswitch. */
1426 if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
1427 return NULL;
1430 for (unsigned i = 0; i < 2; i++)
1432 invar[!i] = false;
1434 if (!branch_removable_p (targ_bb[i]))
1435 continue;
1437 /* Given a semi-invariant branch, if its opposite branch dominates
1438 loop latch, it and its following trace will only be executed in
1439 final iteration of loop, namely it is not part of repeated body
1440 of the loop. Similar to the above case that the branch is loop
1441 exit, no need to split loop. */
1442 if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
1443 continue;
1445 invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
1446 invar_checks++;
1449 /* With both branches being invariant (handled by loop unswitch) or
1450 variant is not what we want. */
1451 if (invar[0] ^ !invar[1])
1452 return NULL;
1454 /* Found a real loop-invariant condition, do nothing. */
1455 if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
1456 return NULL;
1458 return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1);
1461 /* Calculate increased code size measured by estimated insn number if applying
1462 loop split upon certain branch (BRANCH_EDGE) of a conditional statement. */
1464 static int
1465 compute_added_num_insns (struct loop *loop, const_edge branch_edge)
1467 basic_block cond_bb = branch_edge->src;
1468 unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
1469 basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
1470 basic_block *bbs = ((split_info *) loop->aux)->bbs;
1471 int num = 0;
1473 for (unsigned i = 0; i < loop->num_nodes; i++)
1475 /* Do no count basic blocks only in opposite branch. */
1476 if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
1477 continue;
1479 num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
1482 /* It is unnecessary to evaluate expression of the conditional statement
1483 in new loop that contains only invariant branch. This expression should
1484 be constant value (either true or false). Exclude code size of insns
1485 that contribute to computation of the expression. */
1487 auto_vec<gimple *> worklist;
1488 hash_set<gimple *> removed;
1489 gimple *stmt = last_nondebug_stmt (cond_bb);
1491 worklist.safe_push (stmt);
1492 removed.add (stmt);
1493 num -= estimate_num_insns (stmt, &eni_size_weights);
1497 ssa_op_iter opnd_iter;
1498 use_operand_p opnd_p;
1500 stmt = worklist.pop ();
1501 FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
1503 tree opnd = USE_FROM_PTR (opnd_p);
1505 if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
1506 continue;
1508 gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
1509 use_operand_p use_p;
1510 imm_use_iterator use_iter;
1512 if (removed.contains (opnd_stmt)
1513 || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
1514 continue;
1516 FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
1518 gimple *use_stmt = USE_STMT (use_p);
1520 if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
1522 opnd_stmt = NULL;
1523 break;
1527 if (opnd_stmt)
1529 worklist.safe_push (opnd_stmt);
1530 removed.add (opnd_stmt);
1531 num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
1534 } while (!worklist.is_empty ());
1536 gcc_assert (num >= 0);
1537 return num;
1540 /* Find out loop-invariant branch of a conditional statement (COND) if it has,
1541 and check whether it is eligible and profitable to perform loop split upon
1542 this branch in LOOP. */
1544 static edge
1545 get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
1547 edge invar_branch = get_cond_invariant_branch (loop, cond);
1548 if (!invar_branch)
1549 return NULL;
1551 /* When accurate profile information is available, and execution
1552 frequency of the branch is too low, just let it go. */
1553 profile_probability prob = invar_branch->probability;
1554 if (prob.reliable_p ())
1556 int thres = param_min_loop_cond_split_prob;
1558 if (prob < profile_probability::always ().apply_scale (thres, 100))
1559 return NULL;
1562 /* Add a threshold for increased code size to disable loop split. */
1563 if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns)
1564 return NULL;
1566 return invar_branch;
1569 /* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
1570 conditional statement, perform loop split transformation illustrated
1571 as the following graph.
1573 .-------T------ if (true) ------F------.
1574 | .---------------. |
1575 | | | |
1576 v | v v
1577 pre-header | pre-header
1578 | .------------. | | .------------.
1579 | | | | | | |
1580 | v | | | v |
1581 header | | header |
1582 | | | | |
1583 .--- if (cond) ---. | | .--- if (true) ---. |
1584 | | | | | | |
1585 invariant | | | invariant | |
1586 | | | | | | |
1587 '---T--->.<---F---' | | '---T--->.<---F---' |
1588 | | / | |
1589 stmts | / stmts |
1590 | F T | |
1591 / \ | / / \ |
1592 .-------* * [ if (cond) ] .-------* * |
1593 | | | | | |
1594 | latch | | latch |
1595 | | | | | |
1596 | '------------' | '------------'
1597 '------------------------. .-----------'
1598 loop1 | | loop2
1600 exits
1602 In the graph, loop1 represents the part derived from original one, and
1603 loop2 is duplicated using loop_version (), which corresponds to the part
1604 of original one being splitted out. In original latch edge of loop1, we
1605 insert a new conditional statement duplicated from the semi-invariant cond,
1606 and one of its branch goes back to loop1 header as a latch edge, and the
1607 other branch goes to loop2 pre-header as an entry edge. And also in loop2,
1608 we abandon the variant branch of the conditional statement by setting a
1609 constant bool condition, based on which branch is semi-invariant. */
1611 static bool
1612 do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
1614 basic_block cond_bb = invar_branch->src;
1615 bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
1616 gcond *cond = as_a <gcond *> (*gsi_last_bb (cond_bb));
1618 gcc_assert (cond_bb->loop_father == loop1);
1620 if (dump_enabled_p ())
1621 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond,
1622 "loop split on semi-invariant condition at %s branch\n",
1623 true_invar ? "true" : "false");
1625 initialize_original_copy_tables ();
1627 struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
1628 invar_branch->probability.invert (),
1629 invar_branch->probability,
1630 profile_probability::always (),
1631 profile_probability::always (),
1632 true);
1633 if (!loop2)
1635 free_original_copy_tables ();
1636 return false;
1639 basic_block cond_bb_copy = get_bb_copy (cond_bb);
1640 gcond *cond_copy = as_a<gcond *> (*gsi_last_bb (cond_bb_copy));
1642 /* Replace the condition in loop2 with a bool constant to let PassManager
1643 remove the variant branch after current pass completes. */
1644 if (true_invar)
1645 gimple_cond_make_true (cond_copy);
1646 else
1647 gimple_cond_make_false (cond_copy);
1649 update_stmt (cond_copy);
1651 /* Insert a new conditional statement on latch edge of loop1, its condition
1652 is duplicated from the semi-invariant. This statement acts as a switch
1653 to transfer execution from loop1 to loop2, when loop1 enters into
1654 invariant state. */
1655 basic_block latch_bb = split_edge (loop_latch_edge (loop1));
1656 basic_block break_bb = split_edge (single_pred_edge (latch_bb));
1657 gimple *break_cond = gimple_build_cond (gimple_cond_code(cond),
1658 gimple_cond_lhs (cond),
1659 gimple_cond_rhs (cond),
1660 NULL_TREE, NULL_TREE);
1662 gimple_stmt_iterator gsi = gsi_last_bb (break_bb);
1663 gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
1665 edge to_loop1 = single_succ_edge (break_bb);
1666 edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
1668 to_loop1->flags &= ~EDGE_FALLTHRU;
1669 to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
1670 to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
1672 /* Due to introduction of a control flow edge from loop1 latch to loop2
1673 pre-header, we should update PHIs in loop2 to reflect this connection
1674 between loop1 and loop2. */
1675 connect_loop_phis (loop1, loop2, to_loop2);
1677 edge true_edge, false_edge, skip_edge1, skip_edge2;
1678 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1680 skip_edge1 = true_invar ? false_edge : true_edge;
1681 skip_edge2 = true_invar ? true_edge : false_edge;
1682 fix_loop_bb_probability (loop1, loop2, skip_edge1, skip_edge2);
1684 /* Fix first loop's exit probability after scaling. */
1685 to_loop1->probability = invar_branch->probability.invert ();
1686 to_loop2->probability = invar_branch->probability;
1688 free_original_copy_tables ();
1690 return true;
1693 /* Traverse all conditional statements in LOOP, to find out a good candidate
1694 upon which we can do loop split. */
1696 static bool
1697 split_loop_on_cond (struct loop *loop)
1699 split_info *info = new split_info ();
1700 basic_block *bbs = info->bbs = get_loop_body (loop);
1701 bool do_split = false;
1703 /* Allocate an area to keep temporary info, and associate its address
1704 with loop aux field. */
1705 loop->aux = info;
1707 for (unsigned i = 0; i < loop->num_nodes; i++)
1708 bbs[i]->aux = NULL;
1710 for (unsigned i = 0; i < loop->num_nodes; i++)
1712 basic_block bb = bbs[i];
1714 /* We only consider conditional statement, which be executed at most once
1715 in each iteration of the loop. So skip statements in inner loops. */
1716 if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
1717 continue;
1719 /* Actually this check is not a must constraint. With it, we can ensure
1720 conditional statement will always be executed in each iteration. */
1721 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1722 continue;
1724 gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
1725 if (!cond)
1726 continue;
1728 edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
1730 if (branch_edge)
1732 do_split_loop_on_cond (loop, branch_edge);
1733 do_split = true;
1734 break;
1738 delete info;
1739 loop->aux = NULL;
1741 return do_split;
1744 /* Main entry point. Perform loop splitting on all suitable loops. */
1746 static unsigned int
1747 tree_ssa_split_loops (void)
1749 bool changed = false;
1751 gcc_assert (scev_initialized_p ());
1753 calculate_dominance_info (CDI_POST_DOMINATORS);
1755 for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
1756 loop->aux = NULL;
1758 /* Go through all loops starting from innermost. */
1759 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1761 if (loop->aux)
1763 /* If any of our inner loops was split, don't split us,
1764 and mark our containing loop as having had splits as well.
1765 This allows for delaying SSA update. */
1766 loop_outer (loop)->aux = loop;
1767 continue;
1770 if (optimize_loop_for_size_p (loop))
1771 continue;
1773 if (split_loop (loop) || split_loop_on_cond (loop))
1775 /* Mark our containing loop as having had some split inner loops. */
1776 loop_outer (loop)->aux = loop;
1777 changed = true;
1781 for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
1782 loop->aux = NULL;
1784 clear_aux_for_blocks ();
1786 free_dominance_info (CDI_POST_DOMINATORS);
1788 if (changed)
1790 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1791 return TODO_cleanup_cfg;
1793 return 0;
1796 /* Loop splitting pass. */
1798 namespace {
1800 const pass_data pass_data_loop_split =
1802 GIMPLE_PASS, /* type */
1803 "lsplit", /* name */
1804 OPTGROUP_LOOP, /* optinfo_flags */
1805 TV_LOOP_SPLIT, /* tv_id */
1806 PROP_cfg, /* properties_required */
1807 0, /* properties_provided */
1808 0, /* properties_destroyed */
1809 0, /* todo_flags_start */
1810 0, /* todo_flags_finish */
1813 class pass_loop_split : public gimple_opt_pass
1815 public:
1816 pass_loop_split (gcc::context *ctxt)
1817 : gimple_opt_pass (pass_data_loop_split, ctxt)
1820 /* opt_pass methods: */
1821 bool gate (function *) final override { return flag_split_loops != 0; }
1822 unsigned int execute (function *) final override;
1824 }; // class pass_loop_split
1826 unsigned int
1827 pass_loop_split::execute (function *fun)
1829 if (number_of_loops (fun) <= 1)
1830 return 0;
1832 return tree_ssa_split_loops ();
1835 } // anon namespace
1837 gimple_opt_pass *
1838 make_pass_loop_split (gcc::context *ctxt)
1840 return new pass_loop_split (ctxt);