FSF GCC merge 02/23/03
[official-gcc.git] / libstdc++-v3 / include / bits / stl_map.h
blobadb2e9a9d9b2213b14e220c5945670c7d8968fb1
1 // Map implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_map.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef __GLIBCPP_INTERNAL_MAP_H
62 #define __GLIBCPP_INTERNAL_MAP_H
64 #include <bits/concept_check.h>
66 namespace std
68 /**
69 * @brief A standard container made up of (key,value) pairs, which can be
70 * retrieved based on a key, in logarithmic time.
72 * @ingroup Containers
73 * @ingroup Assoc_containers
75 * Meets the requirements of a <a href="tables.html#65">container</a>, a
76 * <a href="tables.html#66">reversible container</a>, and an
77 * <a href="tables.html#69">associative container</a> (using unique keys).
78 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
79 * value_type is std::pair<const Key,T>.
81 * Maps support bidirectional iterators.
83 * @if maint
84 * The private tree data is declared exactly the same way for map and
85 * multimap; the distinction is made entirely in how the tree functions are
86 * called (*_unique versus *_equal, same as the standard).
87 * @endif
89 template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
90 typename _Alloc = allocator<pair<const _Key, _Tp> > >
91 class map
93 // concept requirements
94 __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
95 __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
97 public:
98 typedef _Key key_type;
99 typedef _Tp mapped_type;
100 typedef pair<const _Key, _Tp> value_type;
101 typedef _Compare key_compare;
103 class value_compare
104 : public binary_function<value_type, value_type, bool>
106 friend class map<_Key,_Tp,_Compare,_Alloc>;
107 protected:
108 _Compare comp;
109 value_compare(_Compare __c) : comp(__c) {}
110 public:
111 bool operator()(const value_type& __x, const value_type& __y) const
112 { return comp(__x.first, __y.first); }
115 private:
116 /// @if maint This turns a red-black tree into a [multi]map. @endif
117 typedef _Rb_tree<key_type, value_type,
118 _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
119 /// @if maint The actual tree structure. @endif
120 _Rep_type _M_t;
122 public:
123 // many of these are specified differently in ISO, but the following are
124 // "functionally equivalent"
125 typedef typename _Rep_type::allocator_type allocator_type;
126 typedef typename _Rep_type::reference reference;
127 typedef typename _Rep_type::const_reference const_reference;
128 typedef typename _Rep_type::iterator iterator;
129 typedef typename _Rep_type::const_iterator const_iterator;
130 typedef typename _Rep_type::size_type size_type;
131 typedef typename _Rep_type::difference_type difference_type;
132 typedef typename _Rep_type::pointer pointer;
133 typedef typename _Rep_type::const_pointer const_pointer;
134 typedef typename _Rep_type::reverse_iterator reverse_iterator;
135 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
138 // [23.3.1.1] construct/copy/destroy
139 // (get_allocator() is normally listed in this section, but seems to have
140 // been accidentally omitted in the printed standard)
142 * @brief Default constructor creates no elements.
144 map() : _M_t(_Compare(), allocator_type()) { }
146 // for some reason this was made a separate function
148 * @brief Default constructor creates no elements.
150 explicit
151 map(const _Compare& __comp, const allocator_type& __a = allocator_type())
152 : _M_t(__comp, __a) { }
155 * @brief Map copy constructor.
156 * @param x A %map of identical element and allocator types.
158 * The newly-created %map uses a copy of the allocation object used
159 * by @a x.
161 map(const map& __x)
162 : _M_t(__x._M_t) { }
165 * @brief Builds a %map from a range.
166 * @param first An input iterator.
167 * @param last An input iterator.
169 * Create a %map consisting of copies of the elements from [first,last).
170 * This is linear in N if the range is already sorted, and NlogN
171 * otherwise (where N is distance(first,last)).
173 template <typename _InputIterator>
174 map(_InputIterator __first, _InputIterator __last)
175 : _M_t(_Compare(), allocator_type())
176 { _M_t.insert_unique(__first, __last); }
179 * @brief Builds a %map from a range.
180 * @param first An input iterator.
181 * @param last An input iterator.
182 * @param comp A comparison functor.
183 * @param a An allocator object.
185 * Create a %map consisting of copies of the elements from [first,last).
186 * This is linear in N if the range is already sorted, and NlogN
187 * otherwise (where N is distance(first,last)).
189 template <typename _InputIterator>
190 map(_InputIterator __first, _InputIterator __last,
191 const _Compare& __comp, const allocator_type& __a = allocator_type())
192 : _M_t(__comp, __a)
193 { _M_t.insert_unique(__first, __last); }
195 // FIXME There is no dtor declared, but we should have something generated
196 // by Doxygen. I don't know what tags to add to this paragraph to make
197 // that happen:
199 * The dtor only erases the elements, and note that if the elements
200 * themselves are pointers, the pointed-to memory is not touched in any
201 * way. Managing the pointer is the user's responsibilty.
205 * @brief Map assignment operator.
206 * @param x A %map of identical element and allocator types.
208 * All the elements of @a x are copied, but unlike the copy constructor,
209 * the allocator object is not copied.
211 map&
212 operator=(const map& __x)
214 _M_t = __x._M_t;
215 return *this;
218 /// Get a copy of the memory allocation object.
219 allocator_type
220 get_allocator() const { return _M_t.get_allocator(); }
222 // iterators
224 * Returns a read/write iterator that points to the first pair in the %map.
225 * Iteration is done in ascending order according to the keys.
227 iterator
228 begin() { return _M_t.begin(); }
231 * Returns a read-only (constant) iterator that points to the first pair
232 * in the %map. Iteration is done in ascending order according to the
233 * keys.
235 const_iterator
236 begin() const { return _M_t.begin(); }
239 * Returns a read/write iterator that points one past the last pair in the
240 * %map. Iteration is done in ascending order according to the keys.
242 iterator
243 end() { return _M_t.end(); }
246 * Returns a read-only (constant) iterator that points one past the last
247 * pair in the %map. Iteration is done in ascending order according to the
248 * keys.
250 const_iterator
251 end() const { return _M_t.end(); }
254 * Returns a read/write reverse iterator that points to the last pair in
255 * the %map. Iteration is done in descending order according to the keys.
257 reverse_iterator
258 rbegin() { return _M_t.rbegin(); }
261 * Returns a read-only (constant) reverse iterator that points to the last
262 * pair in the %map. Iteration is done in descending order according to
263 * the keys.
265 const_reverse_iterator
266 rbegin() const { return _M_t.rbegin(); }
269 * Returns a read/write reverse iterator that points to one before the
270 * first pair in the %map. Iteration is done in descending order according
271 * to the keys.
273 reverse_iterator
274 rend() { return _M_t.rend(); }
277 * Returns a read-only (constant) reverse iterator that points to one
278 * before the first pair in the %map. Iteration is done in descending
279 * order according to the keys.
281 const_reverse_iterator
282 rend() const { return _M_t.rend(); }
284 // capacity
285 /** Returns true if the %map is empty. (Thus begin() would equal end().) */
286 bool
287 empty() const { return _M_t.empty(); }
289 /** Returns the size of the %map. */
290 size_type
291 size() const { return _M_t.size(); }
293 /** Returns the maximum size of the %map. */
294 size_type
295 max_size() const { return _M_t.max_size(); }
297 // [23.3.1.2] element access
299 * @brief Subscript ( @c [] ) access to %map data.
300 * @param k The key for which data should be retrieved.
301 * @return A reference to the data of the (key,data) %pair.
303 * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
304 * data associated with the key specified in subscript. If the key does
305 * not exist, a pair with that key is created using default values, which
306 * is then returned.
308 * Lookup requires logarithmic time.
310 mapped_type&
311 operator[](const key_type& __k)
313 // concept requirements
314 __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>)
316 iterator __i = lower_bound(__k);
317 // __i->first is greater than or equivalent to __k.
318 if (__i == end() || key_comp()(__k, (*__i).first))
319 __i = insert(__i, value_type(__k, mapped_type()));
320 return (*__i).second;
323 // modifiers
325 * @brief Attempts to insert a std::pair into the %map.
326 * @param x Pair to be inserted (see std::make_pair for easy creation of
327 * pairs).
328 * @return A pair, of which the first element is an iterator that points
329 * to the possibly inserted pair, and the second is a bool that
330 * is true if the pair was actually inserted.
332 * This function attempts to insert a (key, value) %pair into the %map.
333 * A %map relies on unique keys and thus a %pair is only inserted if its
334 * first element (the key) is not already present in the %map.
336 * Insertion requires logarithmic time.
338 pair<iterator,bool>
339 insert(const value_type& __x)
340 { return _M_t.insert_unique(__x); }
343 * @brief Attempts to insert a std::pair into the %map.
344 * @param position An iterator that serves as a hint as to where the
345 * pair should be inserted.
346 * @param x Pair to be inserted (see std::make_pair for easy creation of
347 * pairs).
348 * @return An iterator that points to the element with key of @a x (may
349 * or may not be the %pair passed in).
351 * This function is not concerned about whether the insertion took place,
352 * and thus does not return a boolean like the single-argument
353 * insert() does. Note that the first parameter is only a hint and can
354 * potentially improve the performance of the insertion process. A bad
355 * hint would cause no gains in efficiency.
357 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
358 * for more on "hinting".
360 * Insertion requires logarithmic time (if the hint is not taken).
362 iterator
363 insert(iterator position, const value_type& __x)
364 { return _M_t.insert_unique(position, __x); }
367 * @brief A template function that attemps to insert a range of elements.
368 * @param first Iterator pointing to the start of the range to be
369 * inserted.
370 * @param last Iterator pointing to the end of the range.
372 * Complexity similar to that of the range constructor.
374 template <typename _InputIterator>
375 void
376 insert(_InputIterator __first, _InputIterator __last)
377 { _M_t.insert_unique(__first, __last); }
380 * @brief Erases an element from a %map.
381 * @param position An iterator pointing to the element to be erased.
383 * This function erases an element, pointed to by the given iterator, from
384 * a %map. Note that this function only erases the element, and that if
385 * the element is itself a pointer, the pointed-to memory is not touched
386 * in any way. Managing the pointer is the user's responsibilty.
388 void
389 erase(iterator __position) { _M_t.erase(__position); }
392 * @brief Erases elements according to the provided key.
393 * @param x Key of element to be erased.
394 * @return The number of elements erased.
396 * This function erases all the elements located by the given key from
397 * a %map.
398 * Note that this function only erases the element, and that if
399 * the element is itself a pointer, the pointed-to memory is not touched
400 * in any way. Managing the pointer is the user's responsibilty.
402 size_type
403 erase(const key_type& __x) { return _M_t.erase(__x); }
406 * @brief Erases a [first,last) range of elements from a %map.
407 * @param first Iterator pointing to the start of the range to be erased.
408 * @param last Iterator pointing to the end of the range to be erased.
410 * This function erases a sequence of elements from a %map.
411 * Note that this function only erases the element, and that if
412 * the element is itself a pointer, the pointed-to memory is not touched
413 * in any way. Managing the pointer is the user's responsibilty.
415 void
416 erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
419 * @brief Swaps data with another %map.
420 * @param x A %map of the same element and allocator types.
422 * This exchanges the elements between two maps in constant time.
423 * (It is only swapping a pointer, an integer, and an instance of
424 * the @c Compare type (which itself is often stateless and empty), so it
425 * should be quite fast.)
426 * Note that the global std::swap() function is specialized such that
427 * std::swap(m1,m2) will feed to this function.
429 void
430 swap(map& __x) { _M_t.swap(__x._M_t); }
433 * Erases all elements in a %map. Note that this function only erases
434 * the elements, and that if the elements themselves are pointers, the
435 * pointed-to memory is not touched in any way. Managing the pointer is
436 * the user's responsibilty.
438 void
439 clear() { _M_t.clear(); }
441 // observers
443 * Returns the key comparison object out of which the %map was constructed.
445 key_compare
446 key_comp() const { return _M_t.key_comp(); }
449 * Returns a value comparison object, built from the key comparison
450 * object out of which the %map was constructed.
452 value_compare
453 value_comp() const { return value_compare(_M_t.key_comp()); }
455 // [23.3.1.3] map operations
457 * @brief Tries to locate an element in a %map.
458 * @param x Key of (key, value) %pair to be located.
459 * @return Iterator pointing to sought-after element, or end() if not
460 * found.
462 * This function takes a key and tries to locate the element with which
463 * the key matches. If successful the function returns an iterator
464 * pointing to the sought after %pair. If unsuccessful it returns the
465 * past-the-end ( @c end() ) iterator.
467 iterator
468 find(const key_type& __x) { return _M_t.find(__x); }
471 * @brief Tries to locate an element in a %map.
472 * @param x Key of (key, value) %pair to be located.
473 * @return Read-only (constant) iterator pointing to sought-after
474 * element, or end() if not found.
476 * This function takes a key and tries to locate the element with which
477 * the key matches. If successful the function returns a constant iterator
478 * pointing to the sought after %pair. If unsuccessful it returns the
479 * past-the-end ( @c end() ) iterator.
481 const_iterator
482 find(const key_type& __x) const { return _M_t.find(__x); }
485 * @brief Finds the number of elements with given key.
486 * @param x Key of (key, value) pairs to be located.
487 * @return Number of elements with specified key.
489 * This function only makes sense for multimaps; for map the result will
490 * either be 0 (not present) or 1 (present).
492 size_type
493 count(const key_type& __x) const
494 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
497 * @brief Finds the beginning of a subsequence matching given key.
498 * @param x Key of (key, value) pair to be located.
499 * @return Iterator pointing to first element matching given key, or
500 * end() if not found.
502 * This function is useful only with multimaps. It returns the first
503 * element of a subsequence of elements that matches the given key. If
504 * unsuccessful it returns an iterator pointing to the first element that
505 * has a greater value than given key or end() if no such element exists.
507 iterator
508 lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
511 * @brief Finds the beginning of a subsequence matching given key.
512 * @param x Key of (key, value) pair to be located.
513 * @return Read-only (constant) iterator pointing to first element
514 * matching given key, or end() if not found.
516 * This function is useful only with multimaps. It returns the first
517 * element of a subsequence of elements that matches the given key. If
518 * unsuccessful the iterator will point to the next greatest element or,
519 * if no such greater element exists, to end().
521 const_iterator
522 lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
525 * @brief Finds the end of a subsequence matching given key.
526 * @param x Key of (key, value) pair to be located.
527 * @return Iterator pointing to last element matching given key.
529 * This function only makes sense with multimaps.
531 iterator
532 upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
535 * @brief Finds the end of a subsequence matching given key.
536 * @param x Key of (key, value) pair to be located.
537 * @return Read-only (constant) iterator pointing to last element matching
538 * given key.
540 * This function only makes sense with multimaps.
542 const_iterator
543 upper_bound(const key_type& __x) const
544 { return _M_t.upper_bound(__x); }
547 * @brief Finds a subsequence matching given key.
548 * @param x Key of (key, value) pairs to be located.
549 * @return Pair of iterators that possibly points to the subsequence
550 * matching given key.
552 * This function returns a pair of which the first
553 * element possibly points to the first element matching the given key
554 * and the second element possibly points to the last element matching the
555 * given key. If unsuccessful the first element of the returned pair will
556 * contain an iterator pointing to the next greatest element or, if no such
557 * greater element exists, to end().
559 * This function only makes sense for multimaps.
561 pair<iterator,iterator>
562 equal_range(const key_type& __x)
563 { return _M_t.equal_range(__x); }
566 * @brief Finds a subsequence matching given key.
567 * @param x Key of (key, value) pairs to be located.
568 * @return Pair of read-only (constant) iterators that possibly points to
569 * the subsequence matching given key.
571 * This function returns a pair of which the first
572 * element possibly points to the first element matching the given key
573 * and the second element possibly points to the last element matching the
574 * given key. If unsuccessful the first element of the returned pair will
575 * contain an iterator pointing to the next greatest element or, if no such
576 * a greater element exists, to end().
578 * This function only makes sense for multimaps.
580 pair<const_iterator,const_iterator>
581 equal_range(const key_type& __x) const
582 { return _M_t.equal_range(__x); }
584 template <typename _K1, typename _T1, typename _C1, typename _A1>
585 friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
586 const map<_K1,_T1,_C1,_A1>&);
587 template <typename _K1, typename _T1, typename _C1, typename _A1>
588 friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
589 const map<_K1,_T1,_C1,_A1>&);
594 * @brief Map equality comparison.
595 * @param x A %map.
596 * @param y A %map of the same type as @a x.
597 * @return True iff the size and elements of the maps are equal.
599 * This is an equivalence relation. It is linear in the size of the
600 * maps. Maps are considered equivalent if their sizes are equal,
601 * and if corresponding elements compare equal.
603 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
604 inline bool
605 operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
606 const map<_Key,_Tp,_Compare,_Alloc>& __y)
607 { return __x._M_t == __y._M_t; }
610 * @brief Map ordering relation.
611 * @param x A %map.
612 * @param y A %map of the same type as @a x.
613 * @return True iff @a x is lexicographically less than @a y.
615 * This is a total ordering relation. It is linear in the size of the
616 * maps. The elements must be comparable with @c <.
618 * See std::lexicographical_compare() for how the determination is made.
620 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
621 inline bool
622 operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
623 const map<_Key,_Tp,_Compare,_Alloc>& __y)
624 { return __x._M_t < __y._M_t; }
626 /// Based on operator==
627 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
628 inline bool
629 operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
630 const map<_Key,_Tp,_Compare,_Alloc>& __y)
631 { return !(__x == __y); }
633 /// Based on operator<
634 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
635 inline bool
636 operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
637 const map<_Key,_Tp,_Compare,_Alloc>& __y)
638 { return __y < __x; }
640 /// Based on operator<
641 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
642 inline bool
643 operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
644 const map<_Key,_Tp,_Compare,_Alloc>& __y)
645 { return !(__y < __x); }
647 /// Based on operator<
648 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
649 inline bool
650 operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
651 const map<_Key,_Tp,_Compare,_Alloc>& __y)
652 { return !(__x < __y); }
654 /// See std::map::swap().
655 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
656 inline void
657 swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
658 { __x.swap(__y); }
659 } // namespace std
661 #endif /* __GLIBCPP_INTERNAL_MAP_H */