FSF GCC merge 02/23/03
[official-gcc.git] / libjava / include / posix-threads.h
blobe28da0b5aafbd55cce450609feb0672249e5625d
1 // -*- c++ -*-
2 // posix-threads.h - Defines for using POSIX threads.
4 /* Copyright (C) 1998, 1999, 2001 Free Software Foundation
6 This file is part of libgcj.
8 This software is copyrighted work licensed under the terms of the
9 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
10 details. */
12 #ifndef __JV_POSIX_THREADS__
13 #define __JV_POSIX_THREADS__
15 // NOTE: This file may only reference those pthread functions which
16 // are known not to be overridden by the Boehm GC. If in doubt, scan
17 // boehm-gc/gc.h. This is yucky but lets us avoid including gc.h
18 // everywhere (which would be truly yucky).
20 #include <pthread.h>
21 #include <sched.h>
24 // Typedefs.
27 typedef struct _Jv_Thread_t
29 // Flag values are defined in implementation.
30 int flags;
32 // Actual thread id.
33 pthread_t thread;
35 // Java Thread object.
36 java::lang::Thread *thread_obj;
38 // Condition variable and corresponding mutex, used to implement the
39 // interruptable wait/notify mechanism.
40 pthread_cond_t wait_cond;
41 pthread_mutex_t wait_mutex;
43 // Next thread for Condition Variable wait-list chain.
44 _Jv_Thread_t *next;
46 } _Jv_Thread_t;
48 typedef void _Jv_ThreadStartFunc (java::lang::Thread *);
51 // Condition Variables used to implement wait/notify/sleep/interrupt.
52 typedef struct
54 // Linked list of Threads that are waiting to be notified.
55 _Jv_Thread_t *first;
57 } _Jv_ConditionVariable_t;
59 typedef struct
61 // For compatibility, simplicity, and correctness, we do not use the native
62 // pthreads recursive mutex implementation, but simulate them instead.
64 // Mutex the thread holds the entire time this mutex is held.
65 pthread_mutex_t mutex;
67 // Thread holding this mutex.
68 pthread_t owner;
70 // Number of times mutex is held (lock depth). If 0, the lock is not held.
71 int count;
72 } _Jv_Mutex_t;
74 // This is a convenience function used only by the pthreads thread
75 // implementation. This is slow, but that's too bad -- we need to do
76 // the checks for correctness. It might be nice to be able to compile
77 // this out. Returns 0 if the lock is held by the current thread, and
78 // 1 otherwise.
79 inline int
80 _Jv_PthreadCheckMonitor (_Jv_Mutex_t *mu)
82 pthread_t self = pthread_self();
83 if (mu->owner == self)
84 return 0;
85 else return 1;
89 // Condition variables.
92 int _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
93 jlong millis, jint nanos);
95 int _Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu);
97 int _Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu);
99 inline void
100 _Jv_CondInit (_Jv_ConditionVariable_t *cv)
102 cv->first = 0;
106 // Mutexes.
109 #ifdef LOCK_DEBUG
110 # include <stdio.h>
111 #endif
113 inline void
114 _Jv_MutexInit (_Jv_Mutex_t *mu)
116 # ifdef LOCK_DEBUG /* Assumes Linuxthreads */
117 pthread_mutexattr_t attr;
118 pthread_mutexattr_init(&attr);
119 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
120 pthread_mutex_init (&mu->mutex, &attr);
121 # else
122 pthread_mutex_init (&mu->mutex, 0);
123 # endif
125 mu->count = 0;
126 mu->owner = 0;
129 inline int
130 _Jv_MutexLock (_Jv_Mutex_t *mu)
132 pthread_t self = pthread_self ();
133 if (mu->owner == self)
135 mu->count++;
137 else
139 # ifdef LOCK_DEBUG
140 int result = pthread_mutex_lock (&mu->mutex);
141 if (0 != result)
143 fprintf(stderr, "Pthread_mutex_lock returned %d\n", result);
144 for (;;) {}
146 # else
147 pthread_mutex_lock (&mu->mutex);
148 # endif
149 mu->count = 1;
150 mu->owner = self;
152 return 0;
155 inline int
156 _Jv_MutexUnlock (_Jv_Mutex_t *mu)
158 if (_Jv_PthreadCheckMonitor (mu))
160 # ifdef LOCK_DEBUG
161 fprintf(stderr, "_Jv_MutexUnlock: Not owner\n");
162 for (;;) {}
163 # endif
164 return 1;
167 mu->count--;
169 if (mu->count == 0)
171 mu->owner = 0;
172 # ifdef LOCK_DEBUG
173 int result = pthread_mutex_unlock (&mu->mutex);
174 if (0 != result)
176 fprintf(stderr, "Pthread_mutex_unlock returned %d\n", result);
177 for (;;) {}
179 # else
180 pthread_mutex_unlock (&mu->mutex);
181 # endif
183 return 0;
186 #ifndef LINUX_THREADS
188 // pthread_mutex_destroy does nothing on Linux and it is a win to avoid
189 // defining this macro.
191 #define _Jv_HaveMutexDestroy
193 inline void
194 _Jv_MutexDestroy (_Jv_Mutex_t *mu)
196 pthread_mutex_destroy (&mu->mutex);
199 #endif /* LINUX_THREADS */
202 // Thread creation and manipulation.
205 void _Jv_InitThreads (void);
207 _Jv_Thread_t *_Jv_ThreadInitData (java::lang::Thread *thread);
208 void _Jv_ThreadDestroyData (_Jv_Thread_t *data);
210 inline java::lang::Thread *
211 _Jv_ThreadCurrent (void)
213 extern pthread_key_t _Jv_ThreadKey;
214 return (java::lang::Thread *) pthread_getspecific (_Jv_ThreadKey);
217 #ifdef JV_HASH_SYNCHRONIZATION
218 // Should be specialized to just load the "current thread" register
219 // on platforms that support it. Speed is of the essence. The value
220 // of the descriptor is not, so long as there is a one-to-one correspondence
221 // to threads.
224 #ifdef __ia64__
226 typedef size_t _Jv_ThreadId_t;
228 register size_t _Jv_self __asm__("r13");
229 // For linux_threads this is really a pointer to its thread data
230 // structure. We treat it as opaque. That should also work
231 // on other operating systems that follow the ABI standard.
233 // This should become the prototype for machines that maintain a thread
234 // pointer in a register.
235 inline _Jv_ThreadId_t
236 _Jv_ThreadSelf (void)
238 return _Jv_self;
241 #define JV_SELF_DEFINED
243 #endif /* __ia64__ */
245 #ifdef __alpha__
247 #ifdef __FreeBSD__
248 #include <machine/pal.h>
249 #define PAL_rduniq PAL_rdunique
250 #else
251 #include <asm/pal.h>
252 #endif
254 typedef unsigned long _Jv_ThreadId_t;
256 inline _Jv_ThreadId_t
257 _Jv_ThreadSelf (void)
259 register unsigned long id __asm__("$0");
260 __asm__ ("call_pal %1" : "=r"(id) : "i"(PAL_rduniq));
261 return id;
264 #define JV_SELF_DEFINED
266 #endif /* __alpha__ */
268 #if defined(SLOW_PTHREAD_SELF)
270 #include "sysdep/locks.h"
272 typedef pthread_t _Jv_ThreadId_t;
274 // E.g. on X86 Linux, pthread_self() is too slow for our purpose.
275 // Instead we maintain a cache based on the current sp value.
276 // This is similar to what's done for thread local allocation in the
277 // GC, only far simpler.
278 // This code should probably go away when Linux/X86 starts using a
279 // segment register to hold the thread id.
280 # define LOG_THREAD_SPACING 12
281 // If two thread pointer values are closer than
282 // 1 << LOG_THREAD_SPACING, we assume they belong
283 // to the same thread.
284 # define SELF_CACHE_SIZE 1024
285 # define SC_INDEX(sp) (((unsigned long)(sp) >> 19) & (SELF_CACHE_SIZE-1))
286 // Mapping from sp value to cache index.
287 // Note that this is not in any real sense a hash
288 // function, since we need to be able to clear
289 // all possibly matching slots on thread startup.
290 // Thus all entries that might correspond to
291 // a given thread are intentionally contiguous.
292 // Works well with anything that allocates at least
293 // 512KB stacks.
294 # define SC_CLEAR_MIN (-16) // When starting a new thread, we clear
295 # define SC_CLEAR_MAX 0 // all self cache entries between
296 // SC_INDEX(sp)+SC_CLEAR_MIN and
297 // SC_INDEX(sp)+SC_CLEAR_MAX to ensure
298 // we never see stale values. The
299 // current values assume a downward
300 // growing stack of size <= 7.5 MB.
301 # define BAD_HIGH_SP_VALUE ((size_t)(-1))
303 extern volatile
304 struct self_cache_entry {
305 size_t high_sp_bits; // sp value >> LOG_THREAD_SPACING
306 pthread_t self; // Corresponding thread
307 } _Jv_self_cache[];
309 void _Jv_Self_Cache_Init();
311 _Jv_ThreadId_t
312 _Jv_ThreadSelf_out_of_line(volatile self_cache_entry *sce,
313 size_t high_sp_bits);
315 inline _Jv_ThreadId_t
316 _Jv_ThreadSelf (void)
318 int dummy;
319 size_t sp = (size_t)(&dummy);
320 unsigned h = SC_INDEX(sp);
321 volatile self_cache_entry *sce = _Jv_self_cache + h;
322 pthread_t candidate_self = sce -> self; // Read must precede following one.
323 read_barrier();
324 if (sce -> high_sp_bits == sp >> LOG_THREAD_SPACING)
326 // The sce -> self value we read must be valid. An intervening
327 // cache replacement by another thread would have first replaced
328 // high_sp_bits by something else, and it can't possibly change
329 // back without our intervention.
330 return candidate_self;
332 else
333 return _Jv_ThreadSelf_out_of_line(sce, sp >> LOG_THREAD_SPACING);
336 #define JV_SELF_DEFINED
338 #endif /* SLOW_PTHREAD_SELF */
340 #ifndef JV_SELF_DEFINED /* If all else fails, call pthread_self directly */
342 typedef pthread_t _Jv_ThreadId_t;
344 inline _Jv_ThreadId_t
345 _Jv_ThreadSelf (void)
347 return pthread_self();
350 #endif /* !JV_SELF_DEFINED */
352 #endif /* JV_HASH_SYNCHRONIZATION */
354 inline _Jv_Thread_t *
355 _Jv_ThreadCurrentData (void)
357 extern pthread_key_t _Jv_ThreadDataKey;
358 return (_Jv_Thread_t *) pthread_getspecific (_Jv_ThreadDataKey);
361 inline void
362 _Jv_ThreadYield (void)
364 #ifdef HAVE_SCHED_YIELD
365 sched_yield ();
366 #endif /* HAVE_SCHED_YIELD */
369 void _Jv_ThreadRegister (_Jv_Thread_t *data);
370 void _Jv_ThreadUnRegister ();
372 void _Jv_ThreadSetPriority (_Jv_Thread_t *data, jint prio);
374 void _Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
375 _Jv_ThreadStartFunc *meth);
377 void _Jv_ThreadWait (void);
379 void _Jv_ThreadInterrupt (_Jv_Thread_t *data);
381 #endif /* __JV_POSIX_THREADS__ */