FSF GCC merge 02/23/03
[official-gcc.git] / gcc / config / ns32k / ns32k.h
blob9f2c0260fe82d796ce280a0df81dddf8bfa4303a
1 /* Definitions of target machine for GNU compiler. NS32000 version.
2 Copyright (C) 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__ns32000__"); \
29 /* CPU type */ \
30 if (TARGET_32532) \
31 builtin_define ("__ns32532__"); \
32 else if (TARGET_32332) \
33 builtin_define ("__ns32332__"); \
34 else \
35 builtin_define ("__ns32032__"); \
37 /* FPU type */ \
38 if (TARGET_32381) \
39 builtin_define ("__ns32381__"); \
40 else if (TARGET_32081) \
41 builtin_define ("__ns32081__"); \
43 /* Misc. */ \
44 if (TARGET_RTD) \
45 builtin_define ("__RTD__"); \
47 builtin_assert ("cpu=ns32k"); \
48 builtin_assert ("machine=ns32k"); \
49 } \
50 while (0)
52 /* Print subsidiary information on the compiler version in use. */
53 #define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
56 /* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
57 to cover most NS32k addressing syntax variations. This way we don't
58 need to redefine long macros in all the tm.h files for just slight
59 variations in assembler syntax. */
61 #ifndef ABSOLUTE_PREFIX
62 #define ABSOLUTE_PREFIX '@'
63 #endif
65 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
66 #define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
67 #else
68 #define PUT_IMMEDIATE_PREFIX(FILE)
69 #endif
70 #if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
71 #define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
72 #else
73 #define PUT_ABSOLUTE_PREFIX(FILE)
74 #endif
75 #if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
76 #define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
77 #else
78 #define PUT_EXTERNAL_PREFIX(FILE)
79 #endif
81 /* Run-time compilation parameters selecting different hardware subsets. */
83 extern int target_flags;
85 /* Masks for target_flags */
86 #define MASK_32081 1
87 #define MASK_RTD 2
88 #define MASK_REGPARM 4
89 #define MASK_32532 8
90 #define MASK_32332 16
91 #define MASK_NO_SB 32
92 #define MASK_NO_BITFIELD 64
93 #define MASK_HIMEM 128
94 #define MASK_32381 256
95 #define MASK_MULT_ADD 512
96 #define MASK_SRC 1024
97 #define MASK_IEEE_COMPARE 2048
99 /* Macros used in the machine description to test the flags. */
101 /* Compile 32081 insns for floating point (not library calls). */
102 #define TARGET_32081 (target_flags & MASK_32081)
103 #define TARGET_32381 (target_flags & MASK_32381)
105 /* The use of multiply-add instructions is optional because there may
106 * be cases where it produces worse code.
109 #define TARGET_MULT_ADD (target_flags & MASK_MULT_ADD)
111 /* Compile using rtd insn calling sequence.
112 This will not work unless you use prototypes at least
113 for all functions that can take varying numbers of args. */
114 #define TARGET_RTD (target_flags & MASK_RTD)
116 /* Compile passing first two args in regs 0 and 1. */
117 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
119 /* Options to select type of CPU, for better optimization.
120 The output is correct for any kind of 32000 regardless of these options. */
121 #define TARGET_32532 (target_flags & MASK_32532)
122 #define TARGET_32332 (target_flags & MASK_32332)
124 /* Ok to use the static base register (and presume it's 0) */
125 #define TARGET_SB ((target_flags & MASK_NO_SB) == 0)
127 #define TARGET_HIMEM (target_flags & MASK_HIMEM)
129 /* Compile using bit-field insns. */
130 #define TARGET_BITFIELD ((target_flags & MASK_NO_BITFIELD) == 0)
132 #define TARGET_IEEE_COMPARE (target_flags & MASK_IEEE_COMPARE)
134 /* Macro to define tables used to set the flags.
135 This is a list in braces of pairs in braces,
136 each pair being { "NAME", VALUE }
137 where VALUE is the bits to set or minus the bits to clear.
138 An empty string NAME is used to identify the default VALUE. */
139 #define TARGET_SWITCHES \
140 { { "32081", MASK_32081, N_("Use hardware fp")}, \
141 { "soft-float", -(MASK_32081|MASK_32381), \
142 N_("Don't use hardware fp")}, \
143 { "rtd", MASK_RTD, N_("Alternative calling convention")}, \
144 { "nortd", -MASK_RTD, N_("Use normal calling convention")}, \
145 { "regparm", MASK_REGPARM, N_("Pass some arguments in registers")}, \
146 { "noregparm", -MASK_REGPARM, N_("Pass all arguments on stack")}, \
147 { "32532", MASK_32532|MASK_32332, N_("Optimize for 32532 cpu")}, \
148 { "32332", MASK_32332, N_("Optimize for 32332 cpu")}, \
149 { "32332", -MASK_32532, 0}, \
150 { "32032", -(MASK_32532|MASK_32332), N_("Optimize for 32032")}, \
151 { "sb", -MASK_NO_SB, \
152 N_("Register sb is zero. Use for absolute addressing")}, \
153 { "nosb", MASK_NO_SB, N_("Do not use register sb")}, \
154 { "bitfield", -MASK_NO_BITFIELD, \
155 N_("Use bit-field instructions")}, \
156 { "nobitfield", MASK_NO_BITFIELD, \
157 N_("Do not use bit-field instructions")}, \
158 { "himem", MASK_HIMEM, N_("Generate code for high memory")}, \
159 { "nohimem", -MASK_HIMEM, N_("Generate code for low memory")}, \
160 { "32381", MASK_32381, N_("32381 fpu")}, \
161 { "mult-add", MASK_MULT_ADD, \
162 N_("Use multiply-accumulate fp instructions")}, \
163 { "nomult-add", -MASK_MULT_ADD, \
164 N_("Do not use multiply-accumulate fp instructions") }, \
165 { "src", MASK_SRC, N_("\"Small register classes\" kludge")}, \
166 { "nosrc", -MASK_SRC, N_("No \"Small register classes\" kludge")}, \
167 { "ieee-compare", MASK_IEEE_COMPARE, N_("Use IEEE math for fp comparisons")}, \
168 { "noieee-compare", -MASK_IEEE_COMPARE, \
169 N_("Do not use IEEE math for fp comparisons")}, \
170 { "", TARGET_DEFAULT, 0}}
172 /* TARGET_DEFAULT is defined in encore.h, pc532.h, etc. */
174 /* When we are generating PIC, the sb is used as a pointer
175 to the GOT. 32381 is a superset of 32081 */
177 #define OVERRIDE_OPTIONS \
179 if (target_flags & MASK_32532) \
180 target_flags |= MASK_32332; \
181 if (flag_pic || TARGET_HIMEM) \
182 target_flags |= MASK_NO_SB; \
183 if (TARGET_32381) \
184 target_flags |= MASK_32081; \
185 else \
186 target_flags &= ~MASK_MULT_ADD; \
187 if (flag_unsafe_math_optimizations) \
188 target_flags &= ~MASK_IEEE_COMPARE; \
191 /* Zero or more C statements that may conditionally modify two
192 variables `fixed_regs' and `call_used_regs' (both of type `char
193 []') after they have been initialized from the two preceding
194 macros.
196 This is necessary in case the fixed or call-clobbered registers
197 depend on target flags.
199 You need not define this macro if it has no work to do.
201 If the usage of an entire class of registers depends on the target
202 flags, you may indicate this to GCC by using this macro to modify
203 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
204 the classes which should not be used by GCC. Also define the macro
205 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
206 letter for a class that shouldn't be used.
208 (However, if this class is not included in `GENERAL_REGS' and all
209 of the insn patterns whose constraints permit this class are
210 controlled by target switches, then GCC will automatically avoid
211 using these registers when the target switches are opposed to
212 them.) */
214 #define CONDITIONAL_REGISTER_USAGE \
215 do \
217 if (!TARGET_32081) \
219 int regno; \
221 for (regno = F0_REGNUM; regno <= F0_REGNUM + 8; regno++) \
222 fixed_regs[regno] = call_used_regs[regno] = 1; \
224 if (!TARGET_32381) \
226 int regno; \
228 for (regno = L1_REGNUM; regno <= L1_REGNUM + 8; regno++) \
229 fixed_regs[regno] = call_used_regs[regno] = 1; \
232 while (0)
235 /* target machine storage layout */
237 /* Define this if most significant bit is lowest numbered
238 in instructions that operate on numbered bit-fields.
239 This is not true on the ns32k. */
240 #define BITS_BIG_ENDIAN 0
242 /* Define this if most significant byte of a word is the lowest numbered. */
243 /* That is not true on the ns32k. */
244 #define BYTES_BIG_ENDIAN 0
246 /* Define this if most significant word of a multiword number is lowest
247 numbered. This is not true on the ns32k. */
248 #define WORDS_BIG_ENDIAN 0
250 /* Width of a word, in units (bytes). */
251 #define UNITS_PER_WORD 4
253 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
254 #define PARM_BOUNDARY 32
256 /* Boundary (in *bits*) on which stack pointer should be aligned. */
257 #define STACK_BOUNDARY 32
259 /* Allocation boundary (in *bits*) for the code of a function. */
260 #define FUNCTION_BOUNDARY 16
262 /* Alignment of field after `int : 0' in a structure. */
263 #define EMPTY_FIELD_BOUNDARY 32
265 /* Every structure's size must be a multiple of this. */
266 #define STRUCTURE_SIZE_BOUNDARY 8
268 /* No data type wants to be aligned rounder than this. */
269 #define BIGGEST_ALIGNMENT 32
271 /* Set this nonzero if move instructions will actually fail to work
272 when given unaligned data. National claims that the NS32032
273 works without strict alignment, but rumor has it that operands
274 crossing a page boundary cause unpredictable results. */
275 #define STRICT_ALIGNMENT 1
277 /* If bit field type is int, don't let it cross an int,
278 and give entire struct the alignment of an int. */
279 /* Required on the 386 since it doesn't have a full set of bit-field insns.
280 (There is no signed extv insn.) */
281 #define PCC_BITFIELD_TYPE_MATTERS 1
283 /* Standard register usage. */
285 /* Number of actual hardware registers.
286 The hardware registers are assigned numbers for the compiler
287 from 0 to just below FIRST_PSEUDO_REGISTER.
288 All registers that the compiler knows about must be given numbers,
289 even those that are not normally considered general registers. */
290 #define FIRST_PSEUDO_REGISTER 26
292 /* 1 for registers that have pervasive standard uses
293 and are not available for the register allocator.
294 On the ns32k, these are the FP, SP, (SB and PC are not included here). */
295 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
296 0, 0, 0, 0, 0, 0, 0, 0, \
297 0, 0, 0, 0, 0, 0, 0, 0, \
298 1, 1}
300 /* 1 for registers not available across function calls.
301 These must include the FIXED_REGISTERS and also any
302 registers that can be used without being saved.
303 The latter must include the registers where values are returned
304 and the register where structure-value addresses are passed.
305 Aside from that, you can include as many other registers as you like. */
306 #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
307 1, 1, 1, 1, 0, 0, 0, 0, \
308 1, 1, 0, 0, 0, 0, 0, 0, \
309 1, 1}
311 /* How to refer to registers in assembler output.
312 This sequence is indexed by compiler's hard-register-number (see above). */
314 #define REGISTER_NAMES \
315 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
316 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
317 "l1", "l1h","l3", "l3h","l5", "l5h","l7", "l7h", \
318 "fp", "sp"}
321 #define ADDITIONAL_REGISTER_NAMES \
322 {{"l0", 8}, {"l2", 10}, {"l4", 12}, {"l6", 14}}
324 /* l0-7 are not recognized by the assembler. These are the names to use,
325 * but we don't want ambiguous names in REGISTER_NAMES
327 #define OUTPUT_REGISTER_NAMES \
328 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
329 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
330 "f1", "l1h","f3", "l3h","f5", "l5h","f7", "f7h", \
331 "fp", "sp"}
333 #define REG_ALLOC_ORDER \
334 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 10, 11, 18, 12, 13, 20, 14, 15, 22, 24, 25, 17, 19, 23}
336 /* How to renumber registers for dbx and gdb.
337 NS32000 may need more change in the numeration. XXX */
339 #define DBX_REGISTER_NUMBER(REGNO) \
340 ((REGNO) < L1_REGNUM? (REGNO) \
341 : (REGNO) < FRAME_POINTER_REGNUM? (REGNO) - L1_REGNUM + 22 \
342 : (REGNO) == FRAME_POINTER_REGNUM? 17 \
343 : 16)
345 /* dwarf2out.c can't understand the funny DBX register numbering.
346 * We use dwarf2out.c for exception handling even though we use DBX
347 * for debugging
349 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
353 #define R0_REGNUM 0
354 #define F0_REGNUM 8
355 #define L1_REGNUM 16
357 /* Specify the registers used for certain standard purposes.
358 The values of these macros are register numbers. */
360 /* NS32000 pc is not overloaded on a register. */
361 /* #define PC_REGNUM */
363 /* Register to use for pushing function arguments. */
364 #define STACK_POINTER_REGNUM 25
366 /* Base register for access to local variables of the function. */
367 #define FRAME_POINTER_REGNUM 24
370 /* Return number of consecutive hard regs needed starting at reg REGNO
371 to hold something of mode MODE.
372 This is ordinarily the length in words of a value of mode MODE
373 but can be less for certain modes in special long registers.
374 On the ns32k, all registers are 32 bits long except for the 32381 "long"
375 registers but we treat those as pairs */
376 #define LONG_FP_REGS_P(REGNO) ((REGNO) >= L1_REGNUM && (REGNO) < L1_REGNUM + 8)
377 #define HARD_REGNO_NREGS(REGNO, MODE) \
378 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
380 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
381 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
383 /* Value is 1 if it is a good idea to tie two pseudo registers
384 when one has mode MODE1 and one has mode MODE2.
385 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
386 for any hard reg, then this must be 0 for correct output.
388 Early documentation says SI and DI are not tieable if some reg can
389 be OK for SI but not for DI. However other ports (mips, i860, mvs
390 and tahoe) don't meet the above criterion. Evidently the real
391 requirement is somewhat laxer. Documentation was changed for gcc
392 2.8 but was not picked up by egcs (at least egcs 1.0). Having all
393 integer modes tieable definitely generates faster code. */
395 #define MODES_TIEABLE_P(MODE1, MODE2) \
396 ((FLOAT_MODE_P(MODE1) && FLOAT_MODE_P(MODE2) \
397 && (GET_MODE_UNIT_SIZE(MODE1) == GET_MODE_UNIT_SIZE(MODE2))) \
398 || (!FLOAT_MODE_P(MODE1) && !FLOAT_MODE_P(MODE2)))
400 /* Value should be nonzero if functions must have frame pointers.
401 Zero means the frame pointer need not be set up (and parms
402 may be accessed via the stack pointer) in functions that seem suitable.
403 This is computed in `reload', in reload1.c. */
404 #define FRAME_POINTER_REQUIRED 0
406 /* Base register for access to arguments of the function. */
407 #define ARG_POINTER_REGNUM 24
409 /* Register in which static-chain is passed to a function. */
410 #define STATIC_CHAIN_REGNUM 1
412 /* Register in which address to store a structure value
413 is passed to a function. */
414 #define STRUCT_VALUE_REGNUM 2
416 /* Define the classes of registers for register constraints in the
417 machine description. Also define ranges of constants.
419 One of the classes must always be named ALL_REGS and include all hard regs.
420 If there is more than one class, another class must be named NO_REGS
421 and contain no registers.
423 The name GENERAL_REGS must be the name of a class (or an alias for
424 another name such as ALL_REGS). This is the class of registers
425 that is allowed by "g" or "r" in a register constraint.
426 Also, registers outside this class are allocated only when
427 instructions express preferences for them.
429 The classes must be numbered in nondecreasing order; that is,
430 a larger-numbered class must never be contained completely
431 in a smaller-numbered class.
433 For any two classes, it is very desirable that there be another
434 class that represents their union. */
436 enum reg_class
437 { NO_REGS, GENERAL_REGS, FLOAT_REG0, LONG_FLOAT_REG0, FLOAT_REGS,
438 LONG_REGS, FP_REGS, GEN_AND_FP_REGS, FRAME_POINTER_REG,
439 STACK_POINTER_REG, GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
441 #define N_REG_CLASSES (int) LIM_REG_CLASSES
443 /* Give names of register classes as strings for dump file. */
445 #define REG_CLASS_NAMES \
446 {"NO_REGS", "GENERAL_REGS", "FLOAT_REG0", "LONG_FLOAT_REG0", "FLOAT_REGS", \
447 "LONG_REGS", "FP_REGS", "GEN_AND_FP_REGS", "FRAME_POINTER_REG", \
448 "STACK_POINTER_REG", "GEN_AND_MEM_REGS", "ALL_REGS" }
450 /* Define which registers fit in which classes.
451 This is an initializer for a vector of HARD_REG_SET
452 of length N_REG_CLASSES. */
454 #define REG_CLASS_CONTENTS \
455 {{0}, /* NO_REGS */ \
456 {0x00ff}, /* GENERAL_REGS */ \
457 {0x100}, /* FLOAT_REG0 */ \
458 {0x300}, /* LONG_FLOAT_REG0 */ \
459 {0xff00}, /* FLOAT_REGS */ \
460 {0xff0000}, /* LONG_REGS */ \
461 {0xffff00}, /* FP_REGS */ \
462 {0xffffff}, /* GEN_AND_FP_REGS */ \
463 {0x1000000}, /* FRAME_POINTER_REG */ \
464 {0x2000000}, /* STACK_POINTER_REG */ \
465 {0x30000ff}, /* GEN_AND_MEM_REGS */ \
466 {0x3ffffff} /* ALL_REGS */ \
469 #define SUBSET_P(CLASS1, CLASS2) \
470 ((ns32k_reg_class_contents[CLASS1][0] \
471 & ~ns32k_reg_class_contents[CLASS2][0]) == 0)
474 /* LONG_REGS are registers which can only hold double precision floats
475 * and can only be accessable by long float instructions.
477 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO) \
478 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) ? LONG_REGS : NO_REGS)
480 /* The same information, inverted:
481 Return the class number of the smallest class containing
482 reg number REGNO. This could be a conditional expression
483 or could index an array. */
485 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
487 /* The class value for index registers, and the one for base regs. */
489 #define INDEX_REG_CLASS GENERAL_REGS
490 #define BASE_REG_CLASS GEN_AND_MEM_REGS
492 /* Get reg_class from a letter such as appears in the machine description. */
494 #define REG_CLASS_FROM_LETTER(C) \
495 ((C) == 'u' ? FLOAT_REG0 \
496 : (C) == 'v' ? LONG_FLOAT_REG0 \
497 : (C) == 'f' ? FLOAT_REGS \
498 : (C) == 'l' ? FP_REGS \
499 : (C) == 'x' ? FRAME_POINTER_REG \
500 : (C) == 'y' ? STACK_POINTER_REG \
501 : NO_REGS)
503 /* The letters I, J, K, L and M in a register constraint string
504 can be used to stand for particular ranges of immediate operands.
505 This macro defines what the ranges are.
506 C is the letter, and VALUE is a constant value.
507 Return 1 if VALUE is in the range specified by C.
509 On the ns32k, these letters are used as follows:
511 I : Matches integers which are valid shift amounts for scaled indexing.
512 These are 0, 1, 2, 3 for byte, word, double, and quadword.
513 Used for matching arithmetic shifts only on 32032 & 32332.
514 J : Matches integers which fit a "quick" operand.
515 K : Matches integers 0 to 7 (for inss and exts instructions).
518 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
519 ((VALUE) < 8 && (VALUE) + 8 >= 0 ? \
520 ((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
521 (C) == 'J' ? (VALUE) <= 7 : \
522 (C) == 'K' ? 0 <= (VALUE) : 0) : 0)
524 /* Similar, but for floating constants, and defining letters G and H.
525 Here VALUE is the CONST_DOUBLE rtx itself. */
527 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
529 /* Given an rtx X being reloaded into a reg required to be
530 in class CLASS, return the class of reg to actually use.
531 In general this is just CLASS; but on some machines
532 in some cases it is preferable to use a more restrictive class. */
534 /* We return GENERAL_REGS instead of GEN_AND_MEM_REGS.
535 The latter offers no real additional possibilities
536 and can cause spurious secondary reloading. */
538 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
539 ((CLASS) == GEN_AND_MEM_REGS ? GENERAL_REGS : (CLASS))
541 /* Return the maximum number of consecutive registers
542 needed to represent mode MODE in a register of class CLASS. */
543 /* On the 32000, this is the size of MODE in words */
545 #define CLASS_MAX_NREGS(CLASS, MODE) \
546 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
548 /* Stack layout; function entry, exit and calling. */
550 /* Define this if pushing a word on the stack
551 makes the stack pointer a smaller address. */
552 #define STACK_GROWS_DOWNWARD
554 /* Define this if the nominal address of the stack frame
555 is at the high-address end of the local variables;
556 that is, each additional local variable allocated
557 goes at a more negative offset in the frame. */
558 #define FRAME_GROWS_DOWNWARD
560 /* Offset within stack frame to start allocating local variables at.
561 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
562 first local allocated. Otherwise, it is the offset to the BEGINNING
563 of the first local allocated. */
564 #define STARTING_FRAME_OFFSET 0
566 /* A C expression whose value is RTL representing the location of the
567 incoming return address at the beginning of any function, before
568 the prologue. This RTL is either a `REG', indicating that the
569 return value is saved in `REG', or a `MEM' representing a location
570 in the stack.
572 You only need to define this macro if you want to support call
573 frame debugging information like that provided by DWARF 2.
575 Before the prologue, RA is at 0(sp). */
577 #define INCOMING_RETURN_ADDR_RTX \
578 gen_rtx (MEM, VOIDmode, gen_rtx (REG, VOIDmode, STACK_POINTER_REGNUM))
580 /* A C expression whose value is RTL representing the value of the
581 return address for the frame COUNT steps up from the current frame,
582 after the prologue. FRAMEADDR is the frame pointer of the COUNT
583 frame, or the frame pointer of the COUNT - 1 frame if
584 `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
586 After the prologue, RA is at 4(fp) in the current frame. */
588 #define RETURN_ADDR_RTX(COUNT, FRAME) \
589 ((COUNT> 0 && flag_omit_frame_pointer)? NULL_RTX \
590 : gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, (FRAME), GEN_INT(4))))
592 /* A C expression whose value is an integer giving the offset, in
593 bytes, from the value of the stack pointer register to the top of
594 the stack frame at the beginning of any function, before the
595 prologue. The top of the frame is defined to be the value of the
596 stack pointer in the previous frame, just before the call
597 instruction.
599 You only need to define this macro if you want to support call
600 frame debugging information like that provided by DWARF 2. */
602 #define INCOMING_FRAME_SP_OFFSET 4
604 /* If we generate an insn to push BYTES bytes,
605 this says how many the stack pointer really advances by.
606 On the 32000, sp@- in a byte insn really pushes a BYTE. */
607 #define PUSH_ROUNDING(BYTES) (BYTES)
609 /* Offset of first parameter from the argument pointer register value. */
610 #define FIRST_PARM_OFFSET(FNDECL) 8
612 /* Value is the number of byte of arguments automatically
613 popped when returning from a subroutine call.
614 FUNDECL is the declaration node of the function (as a tree),
615 FUNTYPE is the data type of the function (as a tree),
616 or for a library call it is an identifier node for the subroutine name.
617 SIZE is the number of bytes of arguments passed on the stack.
619 On the 32000, the RET insn may be used to pop them if the number
620 of args is fixed, but if the number is variable then the caller
621 must pop them all. RET can't be used for library calls now
622 because the library is compiled with the Unix compiler.
623 Use of RET is a selectable option, since it is incompatible with
624 standard Unix calling sequences. If the option is not selected,
625 the caller must always pop the args.
627 The attribute stdcall is equivalent to RTD on a per module basis. */
629 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
630 (ns32k_return_pops_args (FUNDECL, FUNTYPE, SIZE))
632 /* Define how to find the value returned by a function.
633 VALTYPE is the data type of the value (as a tree).
634 If the precise function being called is known, FUNC is its FUNCTION_DECL;
635 otherwise, FUNC is 0. */
637 /* On the 32000 the return value is in R0,
638 or perhaps in F0 if there is fp support. */
640 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE(TYPE_MODE (VALTYPE))
642 /* Define how to find the value returned by a library function
643 assuming the value has mode MODE. */
645 /* On the 32000 the return value is in R0,
646 or perhaps F0 is there is fp support. */
648 #define LIBCALL_VALUE(MODE) \
649 gen_rtx_REG (MODE, \
650 FLOAT_MODE_P(MODE) && TARGET_32081 ? F0_REGNUM: R0_REGNUM)
652 /* Define this if PCC uses the nonreentrant convention for returning
653 structure and union values. */
655 #define PCC_STATIC_STRUCT_RETURN
657 /* 1 if N is a possible register number for a function value.
658 On the 32000, R0 and F0 are the only registers thus used. */
660 #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
662 /* 1 if N is a possible register number for function argument passing.
663 On the 32000, no registers are used in this way. */
665 #define FUNCTION_ARG_REGNO_P(N) 0
667 /* Define a data type for recording info about an argument list
668 during the scan of that argument list. This data type should
669 hold all necessary information about the function itself
670 and about the args processed so far, enough to enable macros
671 such as FUNCTION_ARG to determine where the next arg should go.
673 On the ns32k, this is a single integer, which is a number of bytes
674 of arguments scanned so far. */
676 #define CUMULATIVE_ARGS int
678 /* Initialize a variable CUM of type CUMULATIVE_ARGS
679 for a call to a function whose data type is FNTYPE.
680 For a library call, FNTYPE is 0.
682 On the ns32k, the offset starts at 0. */
684 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
685 ((CUM) = 0)
687 /* Update the data in CUM to advance over an argument
688 of mode MODE and data type TYPE.
689 (TYPE is null for libcalls where that information may not be available.) */
691 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
692 ((CUM) += ((MODE) != BLKmode \
693 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
694 : (int_size_in_bytes (TYPE) + 3) & ~3))
696 /* Define where to put the arguments to a function.
697 Value is zero to push the argument on the stack,
698 or a hard register in which to store the argument.
700 MODE is the argument's machine mode.
701 TYPE is the data type of the argument (as a tree).
702 This is null for libcalls where that information may
703 not be available.
704 CUM is a variable of type CUMULATIVE_ARGS which gives info about
705 the preceding args and about the function being called.
706 NAMED is nonzero if this argument is a named parameter
707 (otherwise it is an extra parameter matching an ellipsis). */
709 /* On the 32000 all args are pushed, except if -mregparm is specified
710 then the first two words of arguments are passed in r0, r1.
711 *NOTE* -mregparm does not work.
712 It exists only to test register calling conventions. */
714 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
715 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx_REG ((MODE), (CUM) / 4) : 0)
717 /* For an arg passed partly in registers and partly in memory,
718 this is the number of registers used.
719 For args passed entirely in registers or entirely in memory, zero. */
721 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
722 ((TARGET_REGPARM && (CUM) < 8 \
723 && 8 < ((CUM) + ((MODE) == BLKmode \
724 ? int_size_in_bytes (TYPE) \
725 : GET_MODE_SIZE (MODE)))) \
726 ? 2 - (CUM) / 4 : 0)
728 /* Output assembler code to FILE to increment profiler label # LABELNO
729 for profiling a function entry.
731 THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
733 #define FUNCTION_PROFILER(FILE, LABELNO) \
734 fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
736 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
737 the stack pointer does not matter. The value is tested only in
738 functions that have frame pointers.
739 No definition is equivalent to always zero.
741 We use 0, because using 1 requires hair in output_function_epilogue()
742 that is worse than the stack adjust we could save. */
744 /* #define EXIT_IGNORE_STACK 1 */
746 /* Store in the variable DEPTH the initial difference between the
747 frame pointer reg contents and the stack pointer reg contents,
748 as of the start of the function body. This depends on the layout
749 of the fixed parts of the stack frame and on how registers are saved. */
751 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
753 int regno; \
754 int offset = -4; \
755 for (regno = 0; regno < FRAME_POINTER_REGNUM; regno++) \
756 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
757 offset += 4; \
758 if (flag_pic && current_function_uses_pic_offset_table) \
759 offset += 4; \
760 (DEPTH) = (offset + get_frame_size () \
761 + (get_frame_size () == 0 ? 0 : 4)); \
765 /* Output assembler code for a block containing the constant parts
766 of a trampoline, leaving space for the variable parts. */
768 /* On the 32k, the trampoline looks like this:
769 addr 0(pc),r2
770 jump @__trampoline
771 .int STATIC
772 .int FUNCTION
773 Doing trampolines with a library assist function is easier than figuring
774 out how to do stores to memory in reverse byte order (the way immediate
775 operands on the 32k are stored). */
777 #define TRAMPOLINE_TEMPLATE(FILE) \
779 fprintf (FILE, "\taddr 0(pc),r2\n" ); \
780 fprintf (FILE, "\tjump " ); \
781 PUT_ABSOLUTE_PREFIX (FILE); \
782 fprintf (FILE, "__trampoline\n" ); \
783 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
784 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
787 /* Length in units of the trampoline for entering a nested function. */
789 #define TRAMPOLINE_SIZE 20
791 /* Emit RTL insns to initialize the variable parts of a trampoline.
792 FNADDR is an RTX for the address of the function's pure code.
793 CXT is an RTX for the static chain value for the function. */
795 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
797 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
798 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 16)), FNADDR); \
801 /* This is the library routine that is used
802 to transfer control from the trampoline
803 to the actual nested function. */
805 /* The function name __transfer_from_trampoline is not actually used.
806 The function definition just permits use of "asm with operands"
807 (though the operand list is empty). */
808 #define TRANSFER_FROM_TRAMPOLINE \
809 void \
810 __transfer_from_trampoline () \
812 asm (".globl __trampoline"); \
813 asm ("__trampoline:"); \
814 asm ("movd 16(r2),tos"); \
815 asm ("movd 12(r2),r1"); \
816 asm ("ret 0"); \
819 /* Addressing modes, and classification of registers for them. */
821 /* Macros to check register numbers against specific register classes. */
823 /* These assume that REGNO is a hard or pseudo reg number.
824 They give nonzero only if REGNO is a hard reg of the suitable class
825 or a pseudo reg currently allocated to a suitable hard reg.
826 Since they use reg_renumber, they are safe only once reg_renumber
827 has been allocated, which happens in local-alloc.c. */
829 /* note that FP and SP cannot be used as an index. What about PC? */
830 #define REGNO_OK_FOR_INDEX_P(REGNO) \
831 ((REGNO) < F0_REGNUM || (unsigned)reg_renumber[REGNO] < F0_REGNUM)
832 #define REGNO_OK_FOR_BASE_P(REGNO) \
833 ((REGNO) < F0_REGNUM || (unsigned)reg_renumber[REGNO] < F0_REGNUM \
834 || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
836 #define FP_REG_P(X) \
837 (GET_CODE (X) == REG && REGNO (X) >= F0_REGNUM && REGNO (X) < FRAME_POINTER_REGNUM)
839 /* Maximum number of registers that can appear in a valid memory address. */
841 #define MAX_REGS_PER_ADDRESS 2
843 /* Recognize any constant value that is a valid address.
844 This might not work on future ns32k processors as negative
845 displacements are not officially allowed but a mode reserved
846 to National. This works on processors up to 32532, though,
847 and we don't expect any new ones in the series ;-( */
849 #define CONSTANT_ADDRESS_P(X) \
850 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
851 || GET_CODE (X) == CONST \
852 || (GET_CODE (X) == CONST_INT \
853 && NS32K_DISPLACEMENT_P (INTVAL (X))))
855 #define CONSTANT_ADDRESS_NO_LABEL_P(X) \
856 (GET_CODE (X) == CONST_INT \
857 && NS32K_DISPLACEMENT_P (INTVAL (X)))
859 /* Return the register class of a scratch register needed to copy IN into
860 or out of a register in CLASS in MODE. If it can be done directly,
861 NO_REGS is returned. */
863 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
864 secondary_reload_class (CLASS, MODE, IN)
866 /* Certain machines have the property that some registers cannot be
867 copied to some other registers without using memory. Define this
868 macro on those machines to be a C expression that is nonzero if
869 objects of mode M in registers of CLASS1 can only be copied to
870 registers of class CLASS2 by storing a register of CLASS1 into
871 memory and loading that memory location into a register of CLASS2.
873 On the ns32k, floating point regs can only be loaded through memory
875 The movdf and movsf insns in ns32k.md copy between general and
876 floating registers using the stack. In principle, we could get
877 better code not allowing that case in the constraints and defining
878 SECONDARY_MEMORY_NEEDED in practice, though the stack slots used
879 are not available for optimization. */
881 #if 0
882 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, M) \
883 secondary_memory_needed(CLASS1, CLASS2, M)
884 #endif
886 /* SMALL_REGISTER_CLASSES is a run time option. This should no longer
887 be necessay and should go when we have confidence that we won't run
888 out of spill registers */
889 #define SMALL_REGISTER_CLASSES (target_flags & MASK_SRC)
891 /* A C expression whose value is nonzero if pseudos that have been
892 assigned to registers of class CLASS would likely be spilled
893 because registers of CLASS are needed for spill registers.
895 The default definition won't do because class LONG_FLOAT_REG0 has two
896 registers which are always accessed as a pair */
898 #define CLASS_LIKELY_SPILLED_P(CLASS) \
899 (reg_class_size[(int) (CLASS)] == 1 || (CLASS) == LONG_FLOAT_REG0)
902 /* Nonzero if the constant value X is a legitimate general operand.
903 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
905 #define LEGITIMATE_CONSTANT_P(X) 1
907 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
908 and check its validity for a certain class.
909 We have two alternate definitions for each of them.
910 The usual definition accepts all pseudo regs; the other rejects
911 them unless they have been allocated suitable hard regs.
912 The symbol REG_OK_STRICT causes the latter definition to be used.
914 Most source files want to accept pseudo regs in the hope that
915 they will get allocated to the class that the insn wants them to be in.
916 Source files for reload pass need to be strict.
917 After reload, it makes no difference, since pseudo regs have
918 been eliminated by then. */
920 #ifndef REG_OK_STRICT
922 /* Nonzero if X is a hard reg that can be used as an index
923 or if it is a pseudo reg. */
924 #define REG_OK_FOR_INDEX_P(X) \
925 (REGNO (X) < F0_REGNUM || REGNO (X) >= FIRST_PSEUDO_REGISTER)
926 /* Nonzero if X is a hard reg that can be used as a base reg
927 of if it is a pseudo reg. */
928 #define REG_OK_FOR_BASE_P(X) (REGNO (X) < F0_REGNUM || REGNO (X) >= FRAME_POINTER_REGNUM)
929 /* Nonzero if X is a floating point reg or a pseudo reg. */
931 #else
933 /* Nonzero if X is a hard reg that can be used as an index. */
934 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
935 /* Nonzero if X is a hard reg that can be used as a base reg. */
936 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
938 #endif
940 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
941 that is a valid memory address for an instruction.
942 The MODE argument is the machine mode for the MEM expression
943 that wants to use this address.
945 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
947 /* 1 if X is an address that we could indirect through. */
948 /***** NOTE ***** There is a bug in the Sequent assembler which fails
949 to fixup addressing information for symbols used as offsets
950 from registers which are not FP or SP (or SB or PC). This
951 makes _x(fp) valid, while _x(r0) is invalid. */
953 #define INDIRECTABLE_1_ADDRESS_P(X) \
954 (CONSTANT_ADDRESS_P (X) \
955 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
956 || (GET_CODE (X) == PLUS \
957 && GET_CODE (XEXP (X, 0)) == REG \
958 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
959 && ((flag_pic || TARGET_HIMEM) ? \
960 CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)) \
962 CONSTANT_ADDRESS_P (XEXP (X, 1))) \
963 && (GET_CODE (X) != CONST_INT || NS32K_DISPLACEMENT_P (INTVAL (X)))))
965 /* 1 if integer I will fit in a 4 byte displacement field.
966 Strictly speaking, we can't be sure that a symbol will fit this range.
967 But, in practice, it always will. */
969 /* idall@eleceng.adelaide.edu.au says that the 32016 and 32032
970 can handle the full range of displacements--it is only the addresses
971 that have a limited range. So the following was deleted:
972 (((i) <= 16777215 && (i) >= -16777216)
973 || ((TARGET_32532 || TARGET_32332) && ...)) */
974 #define NS32K_DISPLACEMENT_P(i) \
975 ((i) < (1 << 29) && (i) >= - (1 << 29))
977 /* Check for frame pointer or stack pointer. */
978 #define MEM_REG(X) \
979 (GET_CODE (X) == REG && (REGNO (X) == FRAME_POINTER_REGNUM \
980 || REGNO(X) == STACK_POINTER_REGNUM))
982 /* A memory ref whose address is the FP or SP, with optional integer offset,
983 or (on certain machines) a constant address. */
984 #define INDIRECTABLE_2_ADDRESS_P(X) \
985 (GET_CODE (X) == MEM \
986 && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
987 || (GET_CODE (xfoo0) == PLUS \
988 && MEM_REG (XEXP (xfoo0, 0)) \
989 && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
990 || (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
992 /* Go to ADDR if X is a valid address not using indexing.
993 (This much is the easy part.) */
994 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
996 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
997 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
998 if (GET_CODE (X) == PLUS) \
999 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
1000 if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
1001 goto ADDR; \
1004 /* Go to ADDR if X is a valid address not using indexing.
1005 (This much is the easy part.) */
1006 #define GO_IF_INDEXING(X, MODE, ADDR) \
1007 { register rtx xfoob = (X); \
1008 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE)) \
1009 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR); \
1010 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE)) \
1011 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); } \
1013 #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
1014 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
1015 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
1016 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
1019 /* 1 if PROD is either a reg times size of mode MODE
1020 or just a reg, if MODE is just one byte. Actually, on the ns32k,
1021 since the index mode is independent of the operand size,
1022 we can match more stuff...
1024 This macro's expansion uses the temporary variables xfoo0, xfoo1
1025 and xfoo2 that must be declared in the surrounding context. */
1026 #define INDEX_TERM_P(PROD, MODE) \
1027 ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
1028 || (GET_CODE (PROD) == MULT \
1029 && (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
1030 (GET_CODE (xfoo1) == CONST_INT \
1031 && GET_CODE (xfoo0) == REG \
1032 && FITS_INDEX_RANGE (INTVAL (xfoo1)) \
1033 && REG_OK_FOR_INDEX_P (xfoo0)))))
1035 #define FITS_INDEX_RANGE(X) \
1036 ((xfoo2 = (unsigned)(X)-1), \
1037 ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
1039 /* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above. */
1040 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1041 { register rtx xfooy, xfoo0, xfoo1; \
1042 unsigned xfoo2; \
1043 xfooy = X; \
1044 if (flag_pic && cfun && ! current_function_uses_pic_offset_table \
1045 && global_symbolic_reference_mentioned_p (X, 1)) \
1046 current_function_uses_pic_offset_table = 1; \
1047 GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
1048 if (GET_CODE (xfooy) == PLUS) \
1050 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1)) \
1051 && GET_CODE (XEXP (xfooy, 0)) == PLUS) \
1052 xfooy = XEXP (xfooy, 0); \
1053 else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0)) \
1054 && GET_CODE (XEXP (xfooy, 1)) == PLUS) \
1055 xfooy = XEXP (xfooy, 1); \
1056 GO_IF_INDEXING (xfooy, MODE, ADDR); \
1058 else if (INDEX_TERM_P (xfooy, MODE)) \
1059 goto ADDR; \
1060 else if (GET_CODE (xfooy) == PRE_DEC) \
1062 if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
1066 /* Try machine-dependent ways of modifying an illegitimate address
1067 to be legitimate. If we find one, return the new, valid address.
1068 This macro is used in only one place: `memory_address' in explow.c.
1070 OLDX is the address as it was before break_out_memory_refs was called.
1071 In some cases it is useful to look at this to decide what needs to be done.
1073 MODE and WIN are passed so that this macro can use
1074 GO_IF_LEGITIMATE_ADDRESS.
1076 It is always safe for this macro to do nothing. It exists to recognize
1077 opportunities to optimize the output.
1079 For the ns32k, we do nothing */
1081 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1083 /* Nonzero if the constant value X is a legitimate general operand
1084 when generating PIC code. It is given that flag_pic is on and
1085 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1087 #define LEGITIMATE_PIC_OPERAND_P(X) \
1088 (((! current_function_uses_pic_offset_table \
1089 && symbolic_reference_mentioned_p (X))? \
1090 (current_function_uses_pic_offset_table = 1):0 \
1091 ), (! SYMBOLIC_CONST (X) \
1092 || GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF))
1094 #define SYMBOLIC_CONST(X) \
1095 (GET_CODE (X) == SYMBOL_REF \
1096 || GET_CODE (X) == LABEL_REF \
1097 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1099 /* Go to LABEL if ADDR (a legitimate address expression)
1100 has an effect that depends on the machine mode it is used for.
1101 On the ns32k, only predecrement and postincrement address depend thus
1102 (the amount of decrement or increment being the length of the operand). */
1104 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1105 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
1106 goto LABEL;}
1108 /* Specify the machine mode that this machine uses
1109 for the index in the tablejump instruction.
1110 HI mode is more efficient but the range is not wide enough for
1111 all programs. */
1112 #define CASE_VECTOR_MODE SImode
1114 /* Define as C expression which evaluates to nonzero if the tablejump
1115 instruction expects the table to contain offsets from the address of the
1116 table.
1117 Do not define this if the table should contain absolute addresses. */
1118 #define CASE_VECTOR_PC_RELATIVE 1
1120 /* Define this as 1 if `char' should by default be signed; else as 0. */
1121 #define DEFAULT_SIGNED_CHAR 1
1123 /* Max number of bytes we can move from memory to memory
1124 in one reasonably fast instruction. */
1125 #define MOVE_MAX 4
1127 /* The number of scalar move insns which should be generated instead
1128 of a string move insn or a library call.
1130 We have a smart movstrsi insn */
1131 #define MOVE_RATIO 0
1133 #define STORE_RATIO (optimize_size ? 3 : 15)
1134 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
1135 (move_by_pieces_ninsns (SIZE, ALIGN) < (unsigned int) STORE_RATIO)
1138 /* Nonzero if access to memory by bytes is slow and undesirable. */
1139 #define SLOW_BYTE_ACCESS 0
1141 /* Define if shifts truncate the shift count
1142 which implies one can omit a sign-extension or zero-extension
1143 of a shift count. */
1144 /* #define SHIFT_COUNT_TRUNCATED */
1146 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1147 is done just by pretending it is already truncated. */
1148 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1150 /* We assume that the store-condition-codes instructions store 0 for false
1151 and some other value for true. This is the value stored for true. */
1153 #define STORE_FLAG_VALUE 1
1155 /* Specify the machine mode that pointers have.
1156 After generation of rtl, the compiler makes no further distinction
1157 between pointers and any other objects of this machine mode. */
1158 #define Pmode SImode
1160 /* A function address in a call instruction
1161 is a byte address (for indexing purposes)
1162 so give the MEM rtx a byte's mode. */
1163 #define FUNCTION_MODE QImode
1165 /* Tell final.c how to eliminate redundant test instructions. */
1167 /* Here we define machine-dependent flags and fields in cc_status
1168 (see `conditions.h'). */
1170 /* This bit means that what ought to be in the Z bit
1171 should be tested in the F bit. */
1172 #define CC_Z_IN_F 04000
1174 /* This bit means that what ought to be in the Z bit
1175 is complemented in the F bit. */
1176 #define CC_Z_IN_NOT_F 010000
1178 /* This bit means that the L bit indicates unordered (IEEE) comparison.
1180 #define CC_UNORD 020000
1182 /* Store in cc_status the expressions
1183 that the condition codes will describe
1184 after execution of an instruction whose pattern is EXP.
1185 Do not alter them if the instruction would not alter the cc's. */
1187 #define NOTICE_UPDATE_CC(EXP, INSN) \
1188 { if (GET_CODE (EXP) == SET) \
1189 { if (GET_CODE (SET_DEST (EXP)) == CC0) \
1190 { cc_status.flags = 0; \
1191 cc_status.value1 = SET_DEST (EXP); \
1192 cc_status.value2 = SET_SRC (EXP); \
1194 else if (GET_CODE (SET_SRC (EXP)) == CALL) \
1195 { CC_STATUS_INIT; } \
1196 else if (GET_CODE (SET_DEST (EXP)) == REG) \
1197 { if (cc_status.value1 \
1198 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
1199 cc_status.value1 = 0; \
1200 if (cc_status.value2 \
1201 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
1202 cc_status.value2 = 0; \
1204 else if (GET_CODE (SET_DEST (EXP)) == MEM) \
1205 { CC_STATUS_INIT; } \
1207 else if (GET_CODE (EXP) == PARALLEL \
1208 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
1209 { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
1210 { cc_status.flags = 0; \
1211 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
1212 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
1214 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
1215 { if (cc_status.value1 \
1216 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
1217 cc_status.value1 = 0; \
1218 if (cc_status.value2 \
1219 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
1220 cc_status.value2 = 0; \
1222 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
1223 { CC_STATUS_INIT; } \
1225 else if (GET_CODE (EXP) == CALL) \
1226 { /* all bets are off */ CC_STATUS_INIT; } \
1227 else { /* nothing happens? CC_STATUS_INIT; */} \
1228 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1229 && cc_status.value2 \
1230 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1231 abort (); \
1234 /* Describe the costs of the following register moves which are discouraged:
1235 1.) Moves between the Floating point registers and the frame pointer and stack pointer
1236 2.) Moves between the stack pointer and the frame pointer
1237 3.) Moves between the floating point and general registers
1239 These all involve two memory references. This is worse than a memory
1240 to memory move (default cost 4)
1243 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1244 register_move_cost (CLASS1, CLASS2)
1246 #define OUTPUT_JUMP(NORMAL, NO_OV) \
1247 { if (cc_status.flags & CC_NO_OVERFLOW) \
1248 return NO_OV; \
1249 return NORMAL; }
1251 /* Dividing the output into sections */
1253 /* Output before read-only data. */
1255 #define TEXT_SECTION_ASM_OP "\t.text"
1257 /* Output before writable data. */
1259 #define DATA_SECTION_ASM_OP "\t.data"
1261 /* Define the output Assembly Language */
1263 /* Output at beginning of assembler file. */
1265 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1267 /* Output to assembler file text saying following lines
1268 may contain character constants, extra white space, comments, etc. */
1270 #define ASM_APP_ON "#APP\n"
1272 /* Output to assembler file text saying following lines
1273 no longer contain unusual constructs. */
1275 #define ASM_APP_OFF "#NO_APP\n"
1277 /* Output of Data */
1279 /* This is how to output an assembler line defining an external/static
1280 address which is not in tree format (for collect.c). */
1282 /* The prefix to add to user-visible assembler symbols. */
1283 #define USER_LABEL_PREFIX "_"
1285 /* This is how to output an insn to push a register on the stack.
1286 It need not be very fast code. */
1288 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1289 fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
1291 /* This is how to output an insn to pop a register from the stack.
1292 It need not be very fast code. */
1294 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1295 fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
1297 /* This is how to output a command to make the user-level label named NAME
1298 defined for reference from other files. */
1300 /* Globalizing directive for a label. */
1301 #define GLOBAL_ASM_OP ".globl "
1303 /* This is how to store into the string LABEL
1304 the symbol_ref name of an internal numbered label where
1305 PREFIX is the class of label and NUM is the number within the class.
1306 This is suitable for output with `assemble_name'. */
1308 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1309 sprintf (LABEL, "*%s%ld", PREFIX, (long) NUM)
1311 /* This is how to align the code that follows an unconditional branch. */
1313 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (2)
1315 /* This is how to output an element of a case-vector that is absolute.
1316 (The ns32k does not use such vectors,
1317 but we must define this macro anyway.) */
1319 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1320 fprintf (FILE, "\t.long L%d\n", VALUE)
1322 /* This is how to output an element of a case-vector that is relative. */
1323 /* ** Notice that the second element is LI format! */
1324 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1325 fprintf (FILE, "\t.long L%d-LI%d\n", VALUE, REL)
1327 /* This is how to output an assembler line
1328 that says to advance the location counter
1329 to a multiple of 2**LOG bytes. */
1331 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1332 fprintf (FILE, "\t.align %d\n", (LOG))
1334 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1335 fprintf (FILE, "\t.space %u\n", (SIZE))
1337 /* This says how to output an assembler line
1338 to define a global common symbol. */
1340 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1341 ( fputs (".comm ", (FILE)), \
1342 assemble_name ((FILE), (NAME)), \
1343 fprintf ((FILE), ",%u\n", (ROUNDED)))
1345 /* This says how to output an assembler line
1346 to define a local common symbol. */
1348 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1349 ( fputs (".lcomm ", (FILE)), \
1350 assemble_name ((FILE), (NAME)), \
1351 fprintf ((FILE), ",%u\n", (ROUNDED)))
1353 /* Print an instruction operand X on file FILE.
1354 CODE is the code from the %-spec that requested printing this operand;
1355 if `%z3' was used to print operand 3, then CODE is 'z'. */
1357 /* %$ means print the prefix for an immediate operand. */
1359 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1360 ((CODE) == '$' || (CODE) == '?')
1362 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1364 /* Print a memory operand whose address is X, on file FILE. */
1366 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
1368 extern const unsigned int ns32k_reg_class_contents[N_REG_CLASSES][1];
1369 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; /* smallest class containing REGNO */
1372 Local variables:
1373 version-control: t
1374 End: