Privatize SSA variables into gimple_df.
[official-gcc.git] / gcc / tree-ssa-propagate.c
bloba5114862dc8dbdc093315fa492f5cfdddd5d5406
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
176 static void
177 cfg_blocks_add (basic_block bb)
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
187 else
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
196 CFG_BLOCKS_HEAD. */
197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 cfg_blocks_head = 0;
199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
201 else
202 cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 % VEC_length (basic_block, cfg_blocks));
206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207 SET_BIT (bb_in_list, bb->index);
211 /* Remove a block from the worklist. */
213 static basic_block
214 cfg_blocks_get (void)
216 basic_block bb;
218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
220 gcc_assert (!cfg_blocks_empty_p ());
221 gcc_assert (bb);
223 cfg_blocks_head = ((cfg_blocks_head + 1)
224 % VEC_length (basic_block, cfg_blocks));
225 --cfg_blocks_num;
226 RESET_BIT (bb_in_list, bb->index);
228 return bb;
232 /* We have just defined a new value for VAR. If IS_VARYING is true,
233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234 them to INTERESTING_SSA_EDGES. */
236 static void
237 add_ssa_edge (tree var, bool is_varying)
239 imm_use_iterator iter;
240 use_operand_p use_p;
242 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
244 tree use_stmt = USE_STMT (use_p);
246 if (!DONT_SIMULATE_AGAIN (use_stmt)
247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 if (is_varying)
251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 else
253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
259 /* Add edge E to the control flow worklist. */
261 static void
262 add_control_edge (edge e)
264 basic_block bb = e->dest;
265 if (bb == EXIT_BLOCK_PTR)
266 return;
268 /* If the edge had already been executed, skip it. */
269 if (e->flags & EDGE_EXECUTABLE)
270 return;
272 e->flags |= EDGE_EXECUTABLE;
274 /* If the block is already in the list, we're done. */
275 if (TEST_BIT (bb_in_list, bb->index))
276 return;
278 cfg_blocks_add (bb);
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 e->src->index, e->dest->index);
286 /* Simulate the execution of STMT and update the work lists accordingly. */
288 static void
289 simulate_stmt (tree stmt)
291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292 edge taken_edge = NULL;
293 tree output_name = NULL_TREE;
295 /* Don't bother visiting statements that are already
296 considered varying by the propagator. */
297 if (DONT_SIMULATE_AGAIN (stmt))
298 return;
300 if (TREE_CODE (stmt) == PHI_NODE)
302 val = ssa_prop_visit_phi (stmt);
303 output_name = PHI_RESULT (stmt);
305 else
306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
308 if (val == SSA_PROP_VARYING)
310 DONT_SIMULATE_AGAIN (stmt) = 1;
312 /* If the statement produced a new varying value, add the SSA
313 edges coming out of OUTPUT_NAME. */
314 if (output_name)
315 add_ssa_edge (output_name, true);
317 /* If STMT transfers control out of its basic block, add
318 all outgoing edges to the work list. */
319 if (stmt_ends_bb_p (stmt))
321 edge e;
322 edge_iterator ei;
323 basic_block bb = bb_for_stmt (stmt);
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 add_control_edge (e);
328 else if (val == SSA_PROP_INTERESTING)
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST.
345 We take a pointer to WORKLIST because it may be reallocated when an
346 SSA edge is added to it in simulate_stmt. */
348 static void
349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
351 /* Drain the entire worklist. */
352 while (VEC_length (tree, *worklist) > 0)
354 basic_block bb;
356 /* Pull the statement to simulate off the worklist. */
357 tree stmt = VEC_pop (tree, *worklist);
359 /* If this statement was already visited by simulate_block, then
360 we don't need to visit it again here. */
361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 continue;
364 /* STMT is no longer in a worklist. */
365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
367 if (dump_file && (dump_flags & TDF_DETAILS))
369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 print_generic_stmt (dump_file, stmt, dump_flags);
373 bb = bb_for_stmt (stmt);
375 /* PHI nodes are always visited, regardless of whether or not
376 the destination block is executable. Otherwise, visit the
377 statement only if its block is marked executable. */
378 if (TREE_CODE (stmt) == PHI_NODE
379 || TEST_BIT (executable_blocks, bb->index))
380 simulate_stmt (stmt);
385 /* Simulate the execution of BLOCK. Evaluate the statement associated
386 with each variable reference inside the block. */
388 static void
389 simulate_block (basic_block block)
391 tree phi;
393 /* There is nothing to do for the exit block. */
394 if (block == EXIT_BLOCK_PTR)
395 return;
397 if (dump_file && (dump_flags & TDF_DETAILS))
398 fprintf (dump_file, "\nSimulating block %d\n", block->index);
400 /* Always simulate PHI nodes, even if we have simulated this block
401 before. */
402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403 simulate_stmt (phi);
405 /* If this is the first time we've simulated this block, then we
406 must simulate each of its statements. */
407 if (!TEST_BIT (executable_blocks, block->index))
409 block_stmt_iterator j;
410 unsigned int normal_edge_count;
411 edge e, normal_edge;
412 edge_iterator ei;
414 /* Note that we have simulated this block. */
415 SET_BIT (executable_blocks, block->index);
417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
419 tree stmt = bsi_stmt (j);
421 /* If this statement is already in the worklist then
422 "cancel" it. The reevaluation implied by the worklist
423 entry will produce the same value we generate here and
424 thus reevaluating it again from the worklist is
425 pointless. */
426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
429 simulate_stmt (stmt);
432 /* We can not predict when abnormal edges will be executed, so
433 once a block is considered executable, we consider any
434 outgoing abnormal edges as executable.
436 At the same time, if this block has only one successor that is
437 reached by non-abnormal edges, then add that successor to the
438 worklist. */
439 normal_edge_count = 0;
440 normal_edge = NULL;
441 FOR_EACH_EDGE (e, ei, block->succs)
443 if (e->flags & EDGE_ABNORMAL)
444 add_control_edge (e);
445 else
447 normal_edge_count++;
448 normal_edge = e;
452 if (normal_edge_count == 1)
453 add_control_edge (normal_edge);
458 /* Initialize local data structures and work lists. */
460 static void
461 ssa_prop_init (void)
463 edge e;
464 edge_iterator ei;
465 basic_block bb;
466 size_t i;
468 /* Worklists of SSA edges. */
469 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470 varying_ssa_edges = VEC_alloc (tree, gc, 20);
472 executable_blocks = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (executable_blocks);
475 bb_in_list = sbitmap_alloc (last_basic_block);
476 sbitmap_zero (bb_in_list);
478 if (dump_file && (dump_flags & TDF_DETAILS))
479 dump_immediate_uses (dump_file);
481 cfg_blocks = VEC_alloc (basic_block, heap, 20);
482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
484 /* Initialize the values for every SSA_NAME. */
485 for (i = 1; i < num_ssa_names; i++)
486 if (ssa_name (i))
487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
489 /* Initially assume that every edge in the CFG is not executable.
490 (including the edges coming out of ENTRY_BLOCK_PTR). */
491 FOR_ALL_BB (bb)
493 block_stmt_iterator si;
495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 e->flags &= ~EDGE_EXECUTABLE;
502 /* Seed the algorithm by adding the successors of the entry block to the
503 edge worklist. */
504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505 add_control_edge (e);
509 /* Free allocated storage. */
511 static void
512 ssa_prop_fini (void)
514 VEC_free (tree, gc, interesting_ssa_edges);
515 VEC_free (tree, gc, varying_ssa_edges);
516 VEC_free (basic_block, heap, cfg_blocks);
517 cfg_blocks = NULL;
518 sbitmap_free (bb_in_list);
519 sbitmap_free (executable_blocks);
523 /* Get the main expression from statement STMT. */
525 tree
526 get_rhs (tree stmt)
528 enum tree_code code = TREE_CODE (stmt);
530 switch (code)
532 case RETURN_EXPR:
533 stmt = TREE_OPERAND (stmt, 0);
534 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535 return stmt;
536 /* FALLTHRU */
538 case MODIFY_EXPR:
539 stmt = TREE_OPERAND (stmt, 1);
540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 return TREE_OPERAND (stmt, 0);
542 else
543 return stmt;
545 case COND_EXPR:
546 return COND_EXPR_COND (stmt);
547 case SWITCH_EXPR:
548 return SWITCH_COND (stmt);
549 case GOTO_EXPR:
550 return GOTO_DESTINATION (stmt);
551 case LABEL_EXPR:
552 return LABEL_EXPR_LABEL (stmt);
554 default:
555 return stmt;
560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
561 GIMPLE expression no changes are done and the function returns
562 false. */
564 bool
565 set_rhs (tree *stmt_p, tree expr)
567 tree stmt = *stmt_p, op;
568 enum tree_code code = TREE_CODE (expr);
569 stmt_ann_t ann;
570 tree var;
571 ssa_op_iter iter;
573 /* Verify the constant folded result is valid gimple. */
574 switch (TREE_CODE_CLASS (code))
576 case tcc_declaration:
577 if (!is_gimple_variable(expr))
578 return false;
579 break;
581 case tcc_constant:
582 break;
584 case tcc_binary:
585 case tcc_comparison:
586 if (!is_gimple_val (TREE_OPERAND (expr, 0))
587 || !is_gimple_val (TREE_OPERAND (expr, 1)))
588 return false;
589 break;
591 case tcc_unary:
592 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
593 return false;
594 break;
596 case tcc_expression:
597 switch (code)
599 case ADDR_EXPR:
600 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
601 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
602 return false;
603 break;
605 case TRUTH_NOT_EXPR:
606 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
607 return false;
608 break;
610 case TRUTH_AND_EXPR:
611 case TRUTH_XOR_EXPR:
612 case TRUTH_OR_EXPR:
613 if (!is_gimple_val (TREE_OPERAND (expr, 0))
614 || !is_gimple_val (TREE_OPERAND (expr, 1)))
615 return false;
616 break;
618 case CALL_EXPR:
619 case EXC_PTR_EXPR:
620 case FILTER_EXPR:
621 break;
623 default:
624 return false;
626 break;
628 case tcc_exceptional:
629 switch (code)
631 case SSA_NAME:
632 break;
634 default:
635 return false;
637 break;
639 default:
640 return false;
643 if (EXPR_HAS_LOCATION (stmt)
644 && EXPR_P (expr)
645 && ! EXPR_HAS_LOCATION (expr)
646 && TREE_SIDE_EFFECTS (expr)
647 && TREE_CODE (expr) != LABEL_EXPR)
648 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
650 switch (TREE_CODE (stmt))
652 case RETURN_EXPR:
653 op = TREE_OPERAND (stmt, 0);
654 if (TREE_CODE (op) != MODIFY_EXPR)
656 TREE_OPERAND (stmt, 0) = expr;
657 break;
659 stmt = op;
660 /* FALLTHRU */
662 case MODIFY_EXPR:
663 op = TREE_OPERAND (stmt, 1);
664 if (TREE_CODE (op) == WITH_SIZE_EXPR)
665 stmt = op;
666 TREE_OPERAND (stmt, 1) = expr;
667 break;
669 case COND_EXPR:
670 if (!is_gimple_condexpr (expr))
671 return false;
672 COND_EXPR_COND (stmt) = expr;
673 break;
674 case SWITCH_EXPR:
675 SWITCH_COND (stmt) = expr;
676 break;
677 case GOTO_EXPR:
678 GOTO_DESTINATION (stmt) = expr;
679 break;
680 case LABEL_EXPR:
681 LABEL_EXPR_LABEL (stmt) = expr;
682 break;
684 default:
685 /* Replace the whole statement with EXPR. If EXPR has no side
686 effects, then replace *STMT_P with an empty statement. */
687 ann = stmt_ann (stmt);
688 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
689 (*stmt_p)->common.ann = (tree_ann_t) ann;
691 if (gimple_in_ssa_p (cfun)
692 && TREE_SIDE_EFFECTS (expr))
694 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
695 replacement. */
696 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
698 if (TREE_CODE (var) == SSA_NAME)
699 SSA_NAME_DEF_STMT (var) = *stmt_p;
702 break;
705 return true;
709 /* Entry point to the propagation engine.
711 VISIT_STMT is called for every statement visited.
712 VISIT_PHI is called for every PHI node visited. */
714 void
715 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
716 ssa_prop_visit_phi_fn visit_phi)
718 ssa_prop_visit_stmt = visit_stmt;
719 ssa_prop_visit_phi = visit_phi;
721 ssa_prop_init ();
723 /* Iterate until the worklists are empty. */
724 while (!cfg_blocks_empty_p ()
725 || VEC_length (tree, interesting_ssa_edges) > 0
726 || VEC_length (tree, varying_ssa_edges) > 0)
728 if (!cfg_blocks_empty_p ())
730 /* Pull the next block to simulate off the worklist. */
731 basic_block dest_block = cfg_blocks_get ();
732 simulate_block (dest_block);
735 /* In order to move things to varying as quickly as
736 possible,process the VARYING_SSA_EDGES worklist first. */
737 process_ssa_edge_worklist (&varying_ssa_edges);
739 /* Now process the INTERESTING_SSA_EDGES worklist. */
740 process_ssa_edge_worklist (&interesting_ssa_edges);
743 ssa_prop_fini ();
747 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
749 tree
750 first_vdef (tree stmt)
752 ssa_op_iter iter;
753 tree op;
755 /* Simply return the first operand we arrive at. */
756 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
757 return (op);
759 gcc_unreachable ();
763 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
764 is a non-volatile pointer dereference, a structure reference or a
765 reference to a single _DECL. Ignore volatile memory references
766 because they are not interesting for the optimizers. */
768 bool
769 stmt_makes_single_load (tree stmt)
771 tree rhs;
773 if (TREE_CODE (stmt) != MODIFY_EXPR)
774 return false;
776 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
777 return false;
779 rhs = TREE_OPERAND (stmt, 1);
780 STRIP_NOPS (rhs);
782 return (!TREE_THIS_VOLATILE (rhs)
783 && (DECL_P (rhs)
784 || REFERENCE_CLASS_P (rhs)));
788 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
789 is a non-volatile pointer dereference, a structure reference or a
790 reference to a single _DECL. Ignore volatile memory references
791 because they are not interesting for the optimizers. */
793 bool
794 stmt_makes_single_store (tree stmt)
796 tree lhs;
798 if (TREE_CODE (stmt) != MODIFY_EXPR)
799 return false;
801 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
802 return false;
804 lhs = TREE_OPERAND (stmt, 0);
805 STRIP_NOPS (lhs);
807 return (!TREE_THIS_VOLATILE (lhs)
808 && (DECL_P (lhs)
809 || REFERENCE_CLASS_P (lhs)));
813 /* If STMT makes a single memory load and all the virtual use operands
814 have the same value in array VALUES, return it. Otherwise, return
815 NULL. */
817 prop_value_t *
818 get_value_loaded_by (tree stmt, prop_value_t *values)
820 ssa_op_iter i;
821 tree vuse;
822 prop_value_t *prev_val = NULL;
823 prop_value_t *val = NULL;
825 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
827 val = &values[SSA_NAME_VERSION (vuse)];
828 if (prev_val && prev_val->value != val->value)
829 return NULL;
830 prev_val = val;
833 return val;
837 /* Propagation statistics. */
838 struct prop_stats_d
840 long num_const_prop;
841 long num_copy_prop;
842 long num_pred_folded;
845 static struct prop_stats_d prop_stats;
847 /* Replace USE references in statement STMT with the values stored in
848 PROP_VALUE. Return true if at least one reference was replaced. If
849 REPLACED_ADDRESSES_P is given, it will be set to true if an address
850 constant was replaced. */
852 bool
853 replace_uses_in (tree stmt, bool *replaced_addresses_p,
854 prop_value_t *prop_value)
856 bool replaced = false;
857 use_operand_p use;
858 ssa_op_iter iter;
860 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
862 tree tuse = USE_FROM_PTR (use);
863 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
865 if (val == tuse || val == NULL_TREE)
866 continue;
868 if (TREE_CODE (stmt) == ASM_EXPR
869 && !may_propagate_copy_into_asm (tuse))
870 continue;
872 if (!may_propagate_copy (tuse, val))
873 continue;
875 if (TREE_CODE (val) != SSA_NAME)
876 prop_stats.num_const_prop++;
877 else
878 prop_stats.num_copy_prop++;
880 propagate_value (use, val);
882 replaced = true;
883 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
884 *replaced_addresses_p = true;
887 return replaced;
891 /* Replace the VUSE references in statement STMT with the values
892 stored in PROP_VALUE. Return true if a reference was replaced. If
893 REPLACED_ADDRESSES_P is given, it will be set to true if an address
894 constant was replaced.
896 Replacing VUSE operands is slightly more complex than replacing
897 regular USEs. We are only interested in two types of replacements
898 here:
900 1- If the value to be replaced is a constant or an SSA name for a
901 GIMPLE register, then we are making a copy/constant propagation
902 from a memory store. For instance,
904 # a_3 = V_MAY_DEF <a_2>
905 a.b = x_1;
907 # VUSE <a_3>
908 y_4 = a.b;
910 This replacement is only possible iff STMT is an assignment
911 whose RHS is identical to the LHS of the statement that created
912 the VUSE(s) that we are replacing. Otherwise, we may do the
913 wrong replacement:
915 # a_3 = V_MAY_DEF <a_2>
916 # b_5 = V_MAY_DEF <b_4>
917 *p = 10;
919 # VUSE <b_5>
920 x_8 = b;
922 Even though 'b_5' acquires the value '10' during propagation,
923 there is no way for the propagator to tell whether the
924 replacement is correct in every reached use, because values are
925 computed at definition sites. Therefore, when doing final
926 substitution of propagated values, we have to check each use
927 site. Since the RHS of STMT ('b') is different from the LHS of
928 the originating statement ('*p'), we cannot replace 'b' with
929 '10'.
931 Similarly, when merging values from PHI node arguments,
932 propagators need to take care not to merge the same values
933 stored in different locations:
935 if (...)
936 # a_3 = V_MAY_DEF <a_2>
937 a.b = 3;
938 else
939 # a_4 = V_MAY_DEF <a_2>
940 a.c = 3;
941 # a_5 = PHI <a_3, a_4>
943 It would be wrong to propagate '3' into 'a_5' because that
944 operation merges two stores to different memory locations.
947 2- If the value to be replaced is an SSA name for a virtual
948 register, then we simply replace each VUSE operand with its
949 value from PROP_VALUE. This is the same replacement done by
950 replace_uses_in. */
952 static bool
953 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
954 prop_value_t *prop_value)
956 bool replaced = false;
957 ssa_op_iter iter;
958 use_operand_p vuse;
960 if (stmt_makes_single_load (stmt))
962 /* If STMT is an assignment whose RHS is a single memory load,
963 see if we are trying to propagate a constant or a GIMPLE
964 register (case #1 above). */
965 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
966 tree rhs = TREE_OPERAND (stmt, 1);
968 if (val
969 && val->value
970 && (is_gimple_reg (val->value)
971 || is_gimple_min_invariant (val->value))
972 && simple_cst_equal (rhs, val->mem_ref) == 1)
975 /* If we are replacing a constant address, inform our
976 caller. */
977 if (TREE_CODE (val->value) != SSA_NAME
978 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
979 && replaced_addresses_p)
980 *replaced_addresses_p = true;
982 /* We can only perform the substitution if the load is done
983 from the same memory location as the original store.
984 Since we already know that there are no intervening
985 stores between DEF_STMT and STMT, we only need to check
986 that the RHS of STMT is the same as the memory reference
987 propagated together with the value. */
988 TREE_OPERAND (stmt, 1) = val->value;
990 if (TREE_CODE (val->value) != SSA_NAME)
991 prop_stats.num_const_prop++;
992 else
993 prop_stats.num_copy_prop++;
995 /* Since we have replaced the whole RHS of STMT, there
996 is no point in checking the other VUSEs, as they will
997 all have the same value. */
998 return true;
1002 /* Otherwise, the values for every VUSE operand must be other
1003 SSA_NAMEs that can be propagated into STMT. */
1004 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1006 tree var = USE_FROM_PTR (vuse);
1007 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1009 if (val == NULL_TREE || var == val)
1010 continue;
1012 /* Constants and copies propagated between real and virtual
1013 operands are only possible in the cases handled above. They
1014 should be ignored in any other context. */
1015 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1016 continue;
1018 propagate_value (vuse, val);
1019 prop_stats.num_copy_prop++;
1020 replaced = true;
1023 return replaced;
1027 /* Replace propagated values into all the arguments for PHI using the
1028 values from PROP_VALUE. */
1030 static void
1031 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1033 int i;
1034 bool replaced = false;
1035 tree prev_phi = NULL;
1037 if (dump_file && (dump_flags & TDF_DETAILS))
1038 prev_phi = unshare_expr (phi);
1040 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1042 tree arg = PHI_ARG_DEF (phi, i);
1044 if (TREE_CODE (arg) == SSA_NAME)
1046 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1048 if (val && val != arg && may_propagate_copy (arg, val))
1050 if (TREE_CODE (val) != SSA_NAME)
1051 prop_stats.num_const_prop++;
1052 else
1053 prop_stats.num_copy_prop++;
1055 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1056 replaced = true;
1058 /* If we propagated a copy and this argument flows
1059 through an abnormal edge, update the replacement
1060 accordingly. */
1061 if (TREE_CODE (val) == SSA_NAME
1062 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1063 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1068 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1070 fprintf (dump_file, "Folded PHI node: ");
1071 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1072 fprintf (dump_file, " into: ");
1073 print_generic_stmt (dump_file, phi, TDF_SLIM);
1074 fprintf (dump_file, "\n");
1079 /* If STMT has a predicate whose value can be computed using the value
1080 range information computed by VRP, compute its value and return true.
1081 Otherwise, return false. */
1083 static bool
1084 fold_predicate_in (tree stmt)
1086 tree *pred_p = NULL;
1087 bool modify_expr_p = false;
1088 tree val;
1090 if (TREE_CODE (stmt) == MODIFY_EXPR
1091 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1093 modify_expr_p = true;
1094 pred_p = &TREE_OPERAND (stmt, 1);
1096 else if (TREE_CODE (stmt) == COND_EXPR)
1097 pred_p = &COND_EXPR_COND (stmt);
1098 else
1099 return false;
1101 val = vrp_evaluate_conditional (*pred_p, true);
1102 if (val)
1104 if (modify_expr_p)
1105 val = fold_convert (TREE_TYPE (*pred_p), val);
1107 if (dump_file)
1109 fprintf (dump_file, "Folding predicate ");
1110 print_generic_expr (dump_file, *pred_p, 0);
1111 fprintf (dump_file, " to ");
1112 print_generic_expr (dump_file, val, 0);
1113 fprintf (dump_file, "\n");
1116 prop_stats.num_pred_folded++;
1117 *pred_p = val;
1118 return true;
1121 return false;
1125 /* Perform final substitution and folding of propagated values.
1127 PROP_VALUE[I] contains the single value that should be substituted
1128 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1129 substituted.
1131 If USE_RANGES_P is true, statements that contain predicate
1132 expressions are evaluated with a call to vrp_evaluate_conditional.
1133 This will only give meaningful results when called from tree-vrp.c
1134 (the information used by vrp_evaluate_conditional is built by the
1135 VRP pass). */
1137 void
1138 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1140 basic_block bb;
1142 if (prop_value == NULL && !use_ranges_p)
1143 return;
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1148 memset (&prop_stats, 0, sizeof (prop_stats));
1150 /* Substitute values in every statement of every basic block. */
1151 FOR_EACH_BB (bb)
1153 block_stmt_iterator i;
1154 tree phi;
1156 /* Propagate known values into PHI nodes. */
1157 if (prop_value)
1158 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1159 replace_phi_args_in (phi, prop_value);
1161 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1163 bool replaced_address, did_replace;
1164 tree prev_stmt = NULL;
1165 tree stmt = bsi_stmt (i);
1167 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1168 range information for names and they are discarded
1169 afterwards. */
1170 if (TREE_CODE (stmt) == MODIFY_EXPR
1171 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1172 continue;
1174 /* Replace the statement with its folded version and mark it
1175 folded. */
1176 did_replace = false;
1177 replaced_address = false;
1178 if (dump_file && (dump_flags & TDF_DETAILS))
1179 prev_stmt = unshare_expr (stmt);
1181 /* If we have range information, see if we can fold
1182 predicate expressions. */
1183 if (use_ranges_p)
1184 did_replace = fold_predicate_in (stmt);
1186 if (prop_value)
1188 /* Only replace real uses if we couldn't fold the
1189 statement using value range information (value range
1190 information is not collected on virtuals, so we only
1191 need to check this for real uses). */
1192 if (!did_replace)
1193 did_replace |= replace_uses_in (stmt, &replaced_address,
1194 prop_value);
1196 did_replace |= replace_vuses_in (stmt, &replaced_address,
1197 prop_value);
1200 /* If we made a replacement, fold and cleanup the statement. */
1201 if (did_replace)
1203 tree old_stmt = stmt;
1204 tree rhs;
1206 fold_stmt (bsi_stmt_ptr (i));
1207 stmt = bsi_stmt (i);
1209 /* If we folded a builtin function, we'll likely
1210 need to rename VDEFs. */
1211 mark_new_vars_to_rename (stmt);
1213 /* If we cleaned up EH information from the statement,
1214 remove EH edges. */
1215 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1216 tree_purge_dead_eh_edges (bb);
1218 rhs = get_rhs (stmt);
1219 if (TREE_CODE (rhs) == ADDR_EXPR)
1220 recompute_tree_invariant_for_addr_expr (rhs);
1222 if (dump_file && (dump_flags & TDF_DETAILS))
1224 fprintf (dump_file, "Folded statement: ");
1225 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1226 fprintf (dump_file, " into: ");
1227 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1228 fprintf (dump_file, "\n");
1232 /* Some statements may be simplified using ranges. For
1233 example, division may be replaced by shifts, modulo
1234 replaced with bitwise and, etc. Do this after
1235 substituting constants, folding, etc so that we're
1236 presented with a fully propagated, canonicalized
1237 statement. */
1238 if (use_ranges_p)
1239 simplify_stmt_using_ranges (stmt);
1244 if (dump_file && (dump_flags & TDF_STATS))
1246 fprintf (dump_file, "Constants propagated: %6ld\n",
1247 prop_stats.num_const_prop);
1248 fprintf (dump_file, "Copies propagated: %6ld\n",
1249 prop_stats.num_copy_prop);
1250 fprintf (dump_file, "Predicates folded: %6ld\n",
1251 prop_stats.num_pred_folded);
1255 #include "gt-tree-ssa-propagate.h"