Update ChangeLog and version files for release
[official-gcc.git] / gcc / loop-iv.c
blobde2b15a8fef734a0cbf53b798959852dbf3f0990
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "predict.h"
58 #include "vec.h"
59 #include "hashtab.h"
60 #include "hash-set.h"
61 #include "machmode.h"
62 #include "input.h"
63 #include "function.h"
64 #include "dominance.h"
65 #include "cfg.h"
66 #include "basic-block.h"
67 #include "cfgloop.h"
68 #include "symtab.h"
69 #include "flags.h"
70 #include "statistics.h"
71 #include "double-int.h"
72 #include "real.h"
73 #include "fixed-value.h"
74 #include "alias.h"
75 #include "wide-int.h"
76 #include "inchash.h"
77 #include "tree.h"
78 #include "insn-config.h"
79 #include "expmed.h"
80 #include "dojump.h"
81 #include "explow.h"
82 #include "calls.h"
83 #include "emit-rtl.h"
84 #include "varasm.h"
85 #include "stmt.h"
86 #include "expr.h"
87 #include "intl.h"
88 #include "diagnostic-core.h"
89 #include "df.h"
90 #include "hash-table.h"
91 #include "dumpfile.h"
92 #include "rtl-iter.h"
94 /* Possible return values of iv_get_reaching_def. */
96 enum iv_grd_result
98 /* More than one reaching def, or reaching def that does not
99 dominate the use. */
100 GRD_INVALID,
102 /* The use is trivial invariant of the loop, i.e. is not changed
103 inside the loop. */
104 GRD_INVARIANT,
106 /* The use is reached by initial value and a value from the
107 previous iteration. */
108 GRD_MAYBE_BIV,
110 /* The use has single dominating def. */
111 GRD_SINGLE_DOM
114 /* Information about a biv. */
116 struct biv_entry
118 unsigned regno; /* The register of the biv. */
119 struct rtx_iv iv; /* Value of the biv. */
122 static bool clean_slate = true;
124 static unsigned int iv_ref_table_size = 0;
126 /* Table of rtx_ivs indexed by the df_ref uid field. */
127 static struct rtx_iv ** iv_ref_table;
129 /* Induction variable stored at the reference. */
130 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
131 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
133 /* The current loop. */
135 static struct loop *current_loop;
137 /* Hashtable helper. */
139 struct biv_entry_hasher : typed_free_remove <biv_entry>
141 typedef biv_entry value_type;
142 typedef rtx_def compare_type;
143 static inline hashval_t hash (const value_type *);
144 static inline bool equal (const value_type *, const compare_type *);
147 /* Returns hash value for biv B. */
149 inline hashval_t
150 biv_entry_hasher::hash (const value_type *b)
152 return b->regno;
155 /* Compares biv B and register R. */
157 inline bool
158 biv_entry_hasher::equal (const value_type *b, const compare_type *r)
160 return b->regno == REGNO (r);
163 /* Bivs of the current loop. */
165 static hash_table<biv_entry_hasher> *bivs;
167 static bool iv_analyze_op (rtx_insn *, rtx, struct rtx_iv *);
169 /* Return the RTX code corresponding to the IV extend code EXTEND. */
170 static inline enum rtx_code
171 iv_extend_to_rtx_code (enum iv_extend_code extend)
173 switch (extend)
175 case IV_SIGN_EXTEND:
176 return SIGN_EXTEND;
177 case IV_ZERO_EXTEND:
178 return ZERO_EXTEND;
179 case IV_UNKNOWN_EXTEND:
180 return UNKNOWN;
182 gcc_unreachable ();
185 /* Dumps information about IV to FILE. */
187 extern void dump_iv_info (FILE *, struct rtx_iv *);
188 void
189 dump_iv_info (FILE *file, struct rtx_iv *iv)
191 if (!iv->base)
193 fprintf (file, "not simple");
194 return;
197 if (iv->step == const0_rtx
198 && !iv->first_special)
199 fprintf (file, "invariant ");
201 print_rtl (file, iv->base);
202 if (iv->step != const0_rtx)
204 fprintf (file, " + ");
205 print_rtl (file, iv->step);
206 fprintf (file, " * iteration");
208 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
210 if (iv->mode != iv->extend_mode)
211 fprintf (file, " %s to %s",
212 rtx_name[iv_extend_to_rtx_code (iv->extend)],
213 GET_MODE_NAME (iv->extend_mode));
215 if (iv->mult != const1_rtx)
217 fprintf (file, " * ");
218 print_rtl (file, iv->mult);
220 if (iv->delta != const0_rtx)
222 fprintf (file, " + ");
223 print_rtl (file, iv->delta);
225 if (iv->first_special)
226 fprintf (file, " (first special)");
229 /* Generates a subreg to get the least significant part of EXPR (in mode
230 INNER_MODE) to OUTER_MODE. */
233 lowpart_subreg (machine_mode outer_mode, rtx expr,
234 machine_mode inner_mode)
236 return simplify_gen_subreg (outer_mode, expr, inner_mode,
237 subreg_lowpart_offset (outer_mode, inner_mode));
240 static void
241 check_iv_ref_table_size (void)
243 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
245 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
246 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
247 memset (&iv_ref_table[iv_ref_table_size], 0,
248 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
249 iv_ref_table_size = new_size;
254 /* Checks whether REG is a well-behaved register. */
256 static bool
257 simple_reg_p (rtx reg)
259 unsigned r;
261 if (GET_CODE (reg) == SUBREG)
263 if (!subreg_lowpart_p (reg))
264 return false;
265 reg = SUBREG_REG (reg);
268 if (!REG_P (reg))
269 return false;
271 r = REGNO (reg);
272 if (HARD_REGISTER_NUM_P (r))
273 return false;
275 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
276 return false;
278 return true;
281 /* Clears the information about ivs stored in df. */
283 static void
284 clear_iv_info (void)
286 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
287 struct rtx_iv *iv;
289 check_iv_ref_table_size ();
290 for (i = 0; i < n_defs; i++)
292 iv = iv_ref_table[i];
293 if (iv)
295 free (iv);
296 iv_ref_table[i] = NULL;
300 bivs->empty ();
304 /* Prepare the data for an induction variable analysis of a LOOP. */
306 void
307 iv_analysis_loop_init (struct loop *loop)
309 current_loop = loop;
311 /* Clear the information from the analysis of the previous loop. */
312 if (clean_slate)
314 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
315 bivs = new hash_table<biv_entry_hasher> (10);
316 clean_slate = false;
318 else
319 clear_iv_info ();
321 /* Get rid of the ud chains before processing the rescans. Then add
322 the problem back. */
323 df_remove_problem (df_chain);
324 df_process_deferred_rescans ();
325 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
326 df_chain_add_problem (DF_UD_CHAIN);
327 df_note_add_problem ();
328 df_analyze_loop (loop);
329 if (dump_file)
330 df_dump_region (dump_file);
332 check_iv_ref_table_size ();
335 /* Finds the definition of REG that dominates loop latch and stores
336 it to DEF. Returns false if there is not a single definition
337 dominating the latch. If REG has no definition in loop, DEF
338 is set to NULL and true is returned. */
340 static bool
341 latch_dominating_def (rtx reg, df_ref *def)
343 df_ref single_rd = NULL, adef;
344 unsigned regno = REGNO (reg);
345 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
347 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
349 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
350 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
351 continue;
353 /* More than one reaching definition. */
354 if (single_rd)
355 return false;
357 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
358 return false;
360 single_rd = adef;
363 *def = single_rd;
364 return true;
367 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
369 static enum iv_grd_result
370 iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
372 df_ref use, adef;
373 basic_block def_bb, use_bb;
374 rtx_insn *def_insn;
375 bool dom_p;
377 *def = NULL;
378 if (!simple_reg_p (reg))
379 return GRD_INVALID;
380 if (GET_CODE (reg) == SUBREG)
381 reg = SUBREG_REG (reg);
382 gcc_assert (REG_P (reg));
384 use = df_find_use (insn, reg);
385 gcc_assert (use != NULL);
387 if (!DF_REF_CHAIN (use))
388 return GRD_INVARIANT;
390 /* More than one reaching def. */
391 if (DF_REF_CHAIN (use)->next)
392 return GRD_INVALID;
394 adef = DF_REF_CHAIN (use)->ref;
396 /* We do not handle setting only part of the register. */
397 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
398 return GRD_INVALID;
400 def_insn = DF_REF_INSN (adef);
401 def_bb = DF_REF_BB (adef);
402 use_bb = BLOCK_FOR_INSN (insn);
404 if (use_bb == def_bb)
405 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
406 else
407 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
409 if (dom_p)
411 *def = adef;
412 return GRD_SINGLE_DOM;
415 /* The definition does not dominate the use. This is still OK if
416 this may be a use of a biv, i.e. if the def_bb dominates loop
417 latch. */
418 if (just_once_each_iteration_p (current_loop, def_bb))
419 return GRD_MAYBE_BIV;
421 return GRD_INVALID;
424 /* Sets IV to invariant CST in MODE. Always returns true (just for
425 consistency with other iv manipulation functions that may fail). */
427 static bool
428 iv_constant (struct rtx_iv *iv, rtx cst, machine_mode mode)
430 if (mode == VOIDmode)
431 mode = GET_MODE (cst);
433 iv->mode = mode;
434 iv->base = cst;
435 iv->step = const0_rtx;
436 iv->first_special = false;
437 iv->extend = IV_UNKNOWN_EXTEND;
438 iv->extend_mode = iv->mode;
439 iv->delta = const0_rtx;
440 iv->mult = const1_rtx;
442 return true;
445 /* Evaluates application of subreg to MODE on IV. */
447 static bool
448 iv_subreg (struct rtx_iv *iv, machine_mode mode)
450 /* If iv is invariant, just calculate the new value. */
451 if (iv->step == const0_rtx
452 && !iv->first_special)
454 rtx val = get_iv_value (iv, const0_rtx);
455 val = lowpart_subreg (mode, val,
456 iv->extend == IV_UNKNOWN_EXTEND
457 ? iv->mode : iv->extend_mode);
459 iv->base = val;
460 iv->extend = IV_UNKNOWN_EXTEND;
461 iv->mode = iv->extend_mode = mode;
462 iv->delta = const0_rtx;
463 iv->mult = const1_rtx;
464 return true;
467 if (iv->extend_mode == mode)
468 return true;
470 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
471 return false;
473 iv->extend = IV_UNKNOWN_EXTEND;
474 iv->mode = mode;
476 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
477 simplify_gen_binary (MULT, iv->extend_mode,
478 iv->base, iv->mult));
479 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
480 iv->mult = const1_rtx;
481 iv->delta = const0_rtx;
482 iv->first_special = false;
484 return true;
487 /* Evaluates application of EXTEND to MODE on IV. */
489 static bool
490 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, machine_mode mode)
492 /* If iv is invariant, just calculate the new value. */
493 if (iv->step == const0_rtx
494 && !iv->first_special)
496 rtx val = get_iv_value (iv, const0_rtx);
497 if (iv->extend_mode != iv->mode
498 && iv->extend != IV_UNKNOWN_EXTEND
499 && iv->extend != extend)
500 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
501 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
502 val,
503 iv->extend == extend
504 ? iv->extend_mode : iv->mode);
505 iv->base = val;
506 iv->extend = IV_UNKNOWN_EXTEND;
507 iv->mode = iv->extend_mode = mode;
508 iv->delta = const0_rtx;
509 iv->mult = const1_rtx;
510 return true;
513 if (mode != iv->extend_mode)
514 return false;
516 if (iv->extend != IV_UNKNOWN_EXTEND
517 && iv->extend != extend)
518 return false;
520 iv->extend = extend;
522 return true;
525 /* Evaluates negation of IV. */
527 static bool
528 iv_neg (struct rtx_iv *iv)
530 if (iv->extend == IV_UNKNOWN_EXTEND)
532 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
533 iv->base, iv->extend_mode);
534 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
535 iv->step, iv->extend_mode);
537 else
539 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
540 iv->delta, iv->extend_mode);
541 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
542 iv->mult, iv->extend_mode);
545 return true;
548 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
550 static bool
551 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
553 machine_mode mode;
554 rtx arg;
556 /* Extend the constant to extend_mode of the other operand if necessary. */
557 if (iv0->extend == IV_UNKNOWN_EXTEND
558 && iv0->mode == iv0->extend_mode
559 && iv0->step == const0_rtx
560 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
562 iv0->extend_mode = iv1->extend_mode;
563 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
564 iv0->base, iv0->mode);
566 if (iv1->extend == IV_UNKNOWN_EXTEND
567 && iv1->mode == iv1->extend_mode
568 && iv1->step == const0_rtx
569 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
571 iv1->extend_mode = iv0->extend_mode;
572 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
573 iv1->base, iv1->mode);
576 mode = iv0->extend_mode;
577 if (mode != iv1->extend_mode)
578 return false;
580 if (iv0->extend == IV_UNKNOWN_EXTEND
581 && iv1->extend == IV_UNKNOWN_EXTEND)
583 if (iv0->mode != iv1->mode)
584 return false;
586 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
587 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
589 return true;
592 /* Handle addition of constant. */
593 if (iv1->extend == IV_UNKNOWN_EXTEND
594 && iv1->mode == mode
595 && iv1->step == const0_rtx)
597 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
598 return true;
601 if (iv0->extend == IV_UNKNOWN_EXTEND
602 && iv0->mode == mode
603 && iv0->step == const0_rtx)
605 arg = iv0->base;
606 *iv0 = *iv1;
607 if (op == MINUS
608 && !iv_neg (iv0))
609 return false;
611 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
612 return true;
615 return false;
618 /* Evaluates multiplication of IV by constant CST. */
620 static bool
621 iv_mult (struct rtx_iv *iv, rtx mby)
623 machine_mode mode = iv->extend_mode;
625 if (GET_MODE (mby) != VOIDmode
626 && GET_MODE (mby) != mode)
627 return false;
629 if (iv->extend == IV_UNKNOWN_EXTEND)
631 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
632 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
634 else
636 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
637 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
640 return true;
643 /* Evaluates shift of IV by constant CST. */
645 static bool
646 iv_shift (struct rtx_iv *iv, rtx mby)
648 machine_mode mode = iv->extend_mode;
650 if (GET_MODE (mby) != VOIDmode
651 && GET_MODE (mby) != mode)
652 return false;
654 if (iv->extend == IV_UNKNOWN_EXTEND)
656 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
657 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
659 else
661 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
662 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
665 return true;
668 /* The recursive part of get_biv_step. Gets the value of the single value
669 defined by DEF wrto initial value of REG inside loop, in shape described
670 at get_biv_step. */
672 static bool
673 get_biv_step_1 (df_ref def, rtx reg,
674 rtx *inner_step, machine_mode *inner_mode,
675 enum iv_extend_code *extend, machine_mode outer_mode,
676 rtx *outer_step)
678 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
679 rtx next, nextr, tmp;
680 enum rtx_code code;
681 rtx_insn *insn = DF_REF_INSN (def);
682 df_ref next_def;
683 enum iv_grd_result res;
685 set = single_set (insn);
686 if (!set)
687 return false;
689 rhs = find_reg_equal_equiv_note (insn);
690 if (rhs)
691 rhs = XEXP (rhs, 0);
692 else
693 rhs = SET_SRC (set);
695 code = GET_CODE (rhs);
696 switch (code)
698 case SUBREG:
699 case REG:
700 next = rhs;
701 break;
703 case PLUS:
704 case MINUS:
705 op0 = XEXP (rhs, 0);
706 op1 = XEXP (rhs, 1);
708 if (code == PLUS && CONSTANT_P (op0))
710 tmp = op0; op0 = op1; op1 = tmp;
713 if (!simple_reg_p (op0)
714 || !CONSTANT_P (op1))
715 return false;
717 if (GET_MODE (rhs) != outer_mode)
719 /* ppc64 uses expressions like
721 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
723 this is equivalent to
725 (set x':DI (plus:DI y:DI 1))
726 (set x:SI (subreg:SI (x':DI)). */
727 if (GET_CODE (op0) != SUBREG)
728 return false;
729 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
730 return false;
733 next = op0;
734 break;
736 case SIGN_EXTEND:
737 case ZERO_EXTEND:
738 if (GET_MODE (rhs) != outer_mode)
739 return false;
741 op0 = XEXP (rhs, 0);
742 if (!simple_reg_p (op0))
743 return false;
745 next = op0;
746 break;
748 default:
749 return false;
752 if (GET_CODE (next) == SUBREG)
754 if (!subreg_lowpart_p (next))
755 return false;
757 nextr = SUBREG_REG (next);
758 if (GET_MODE (nextr) != outer_mode)
759 return false;
761 else
762 nextr = next;
764 res = iv_get_reaching_def (insn, nextr, &next_def);
766 if (res == GRD_INVALID || res == GRD_INVARIANT)
767 return false;
769 if (res == GRD_MAYBE_BIV)
771 if (!rtx_equal_p (nextr, reg))
772 return false;
774 *inner_step = const0_rtx;
775 *extend = IV_UNKNOWN_EXTEND;
776 *inner_mode = outer_mode;
777 *outer_step = const0_rtx;
779 else if (!get_biv_step_1 (next_def, reg,
780 inner_step, inner_mode, extend, outer_mode,
781 outer_step))
782 return false;
784 if (GET_CODE (next) == SUBREG)
786 machine_mode amode = GET_MODE (next);
788 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
789 return false;
791 *inner_mode = amode;
792 *inner_step = simplify_gen_binary (PLUS, outer_mode,
793 *inner_step, *outer_step);
794 *outer_step = const0_rtx;
795 *extend = IV_UNKNOWN_EXTEND;
798 switch (code)
800 case REG:
801 case SUBREG:
802 break;
804 case PLUS:
805 case MINUS:
806 if (*inner_mode == outer_mode
807 /* See comment in previous switch. */
808 || GET_MODE (rhs) != outer_mode)
809 *inner_step = simplify_gen_binary (code, outer_mode,
810 *inner_step, op1);
811 else
812 *outer_step = simplify_gen_binary (code, outer_mode,
813 *outer_step, op1);
814 break;
816 case SIGN_EXTEND:
817 case ZERO_EXTEND:
818 gcc_assert (GET_MODE (op0) == *inner_mode
819 && *extend == IV_UNKNOWN_EXTEND
820 && *outer_step == const0_rtx);
822 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
823 break;
825 default:
826 return false;
829 return true;
832 /* Gets the operation on register REG inside loop, in shape
834 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
836 If the operation cannot be described in this shape, return false.
837 LAST_DEF is the definition of REG that dominates loop latch. */
839 static bool
840 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
841 machine_mode *inner_mode, enum iv_extend_code *extend,
842 machine_mode *outer_mode, rtx *outer_step)
844 *outer_mode = GET_MODE (reg);
846 if (!get_biv_step_1 (last_def, reg,
847 inner_step, inner_mode, extend, *outer_mode,
848 outer_step))
849 return false;
851 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
852 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
854 return true;
857 /* Records information that DEF is induction variable IV. */
859 static void
860 record_iv (df_ref def, struct rtx_iv *iv)
862 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
864 *recorded_iv = *iv;
865 check_iv_ref_table_size ();
866 DF_REF_IV_SET (def, recorded_iv);
869 /* If DEF was already analyzed for bivness, store the description of the biv to
870 IV and return true. Otherwise return false. */
872 static bool
873 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
875 struct biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
877 if (!biv)
878 return false;
880 *iv = biv->iv;
881 return true;
884 static void
885 record_biv (rtx def, struct rtx_iv *iv)
887 struct biv_entry *biv = XNEW (struct biv_entry);
888 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
890 biv->regno = REGNO (def);
891 biv->iv = *iv;
892 gcc_assert (!*slot);
893 *slot = biv;
896 /* Determines whether DEF is a biv and if so, stores its description
897 to *IV. */
899 static bool
900 iv_analyze_biv (rtx def, struct rtx_iv *iv)
902 rtx inner_step, outer_step;
903 machine_mode inner_mode, outer_mode;
904 enum iv_extend_code extend;
905 df_ref last_def;
907 if (dump_file)
909 fprintf (dump_file, "Analyzing ");
910 print_rtl (dump_file, def);
911 fprintf (dump_file, " for bivness.\n");
914 if (!REG_P (def))
916 if (!CONSTANT_P (def))
917 return false;
919 return iv_constant (iv, def, VOIDmode);
922 if (!latch_dominating_def (def, &last_def))
924 if (dump_file)
925 fprintf (dump_file, " not simple.\n");
926 return false;
929 if (!last_def)
930 return iv_constant (iv, def, VOIDmode);
932 if (analyzed_for_bivness_p (def, iv))
934 if (dump_file)
935 fprintf (dump_file, " already analysed.\n");
936 return iv->base != NULL_RTX;
939 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
940 &outer_mode, &outer_step))
942 iv->base = NULL_RTX;
943 goto end;
946 /* Loop transforms base to es (base + inner_step) + outer_step,
947 where es means extend of subreg between inner_mode and outer_mode.
948 The corresponding induction variable is
950 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
952 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
953 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
954 iv->mode = inner_mode;
955 iv->extend_mode = outer_mode;
956 iv->extend = extend;
957 iv->mult = const1_rtx;
958 iv->delta = outer_step;
959 iv->first_special = inner_mode != outer_mode;
961 end:
962 if (dump_file)
964 fprintf (dump_file, " ");
965 dump_iv_info (dump_file, iv);
966 fprintf (dump_file, "\n");
969 record_biv (def, iv);
970 return iv->base != NULL_RTX;
973 /* Analyzes expression RHS used at INSN and stores the result to *IV.
974 The mode of the induction variable is MODE. */
976 bool
977 iv_analyze_expr (rtx_insn *insn, rtx rhs, machine_mode mode,
978 struct rtx_iv *iv)
980 rtx mby = NULL_RTX, tmp;
981 rtx op0 = NULL_RTX, op1 = NULL_RTX;
982 struct rtx_iv iv0, iv1;
983 enum rtx_code code = GET_CODE (rhs);
984 machine_mode omode = mode;
986 iv->mode = VOIDmode;
987 iv->base = NULL_RTX;
988 iv->step = NULL_RTX;
990 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
992 if (CONSTANT_P (rhs)
993 || REG_P (rhs)
994 || code == SUBREG)
996 if (!iv_analyze_op (insn, rhs, iv))
997 return false;
999 if (iv->mode == VOIDmode)
1001 iv->mode = mode;
1002 iv->extend_mode = mode;
1005 return true;
1008 switch (code)
1010 case REG:
1011 op0 = rhs;
1012 break;
1014 case SIGN_EXTEND:
1015 case ZERO_EXTEND:
1016 case NEG:
1017 op0 = XEXP (rhs, 0);
1018 omode = GET_MODE (op0);
1019 break;
1021 case PLUS:
1022 case MINUS:
1023 op0 = XEXP (rhs, 0);
1024 op1 = XEXP (rhs, 1);
1025 break;
1027 case MULT:
1028 op0 = XEXP (rhs, 0);
1029 mby = XEXP (rhs, 1);
1030 if (!CONSTANT_P (mby))
1032 tmp = op0;
1033 op0 = mby;
1034 mby = tmp;
1036 if (!CONSTANT_P (mby))
1037 return false;
1038 break;
1040 case ASHIFT:
1041 op0 = XEXP (rhs, 0);
1042 mby = XEXP (rhs, 1);
1043 if (!CONSTANT_P (mby))
1044 return false;
1045 break;
1047 default:
1048 return false;
1051 if (op0
1052 && !iv_analyze_expr (insn, op0, omode, &iv0))
1053 return false;
1055 if (op1
1056 && !iv_analyze_expr (insn, op1, omode, &iv1))
1057 return false;
1059 switch (code)
1061 case SIGN_EXTEND:
1062 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1063 return false;
1064 break;
1066 case ZERO_EXTEND:
1067 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1068 return false;
1069 break;
1071 case NEG:
1072 if (!iv_neg (&iv0))
1073 return false;
1074 break;
1076 case PLUS:
1077 case MINUS:
1078 if (!iv_add (&iv0, &iv1, code))
1079 return false;
1080 break;
1082 case MULT:
1083 if (!iv_mult (&iv0, mby))
1084 return false;
1085 break;
1087 case ASHIFT:
1088 if (!iv_shift (&iv0, mby))
1089 return false;
1090 break;
1092 default:
1093 break;
1096 *iv = iv0;
1097 return iv->base != NULL_RTX;
1100 /* Analyzes iv DEF and stores the result to *IV. */
1102 static bool
1103 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1105 rtx_insn *insn = DF_REF_INSN (def);
1106 rtx reg = DF_REF_REG (def);
1107 rtx set, rhs;
1109 if (dump_file)
1111 fprintf (dump_file, "Analyzing def of ");
1112 print_rtl (dump_file, reg);
1113 fprintf (dump_file, " in insn ");
1114 print_rtl_single (dump_file, insn);
1117 check_iv_ref_table_size ();
1118 if (DF_REF_IV (def))
1120 if (dump_file)
1121 fprintf (dump_file, " already analysed.\n");
1122 *iv = *DF_REF_IV (def);
1123 return iv->base != NULL_RTX;
1126 iv->mode = VOIDmode;
1127 iv->base = NULL_RTX;
1128 iv->step = NULL_RTX;
1130 if (!REG_P (reg))
1131 return false;
1133 set = single_set (insn);
1134 if (!set)
1135 return false;
1137 if (!REG_P (SET_DEST (set)))
1138 return false;
1140 gcc_assert (SET_DEST (set) == reg);
1141 rhs = find_reg_equal_equiv_note (insn);
1142 if (rhs)
1143 rhs = XEXP (rhs, 0);
1144 else
1145 rhs = SET_SRC (set);
1147 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1148 record_iv (def, iv);
1150 if (dump_file)
1152 print_rtl (dump_file, reg);
1153 fprintf (dump_file, " in insn ");
1154 print_rtl_single (dump_file, insn);
1155 fprintf (dump_file, " is ");
1156 dump_iv_info (dump_file, iv);
1157 fprintf (dump_file, "\n");
1160 return iv->base != NULL_RTX;
1163 /* Analyzes operand OP of INSN and stores the result to *IV. */
1165 static bool
1166 iv_analyze_op (rtx_insn *insn, rtx op, struct rtx_iv *iv)
1168 df_ref def = NULL;
1169 enum iv_grd_result res;
1171 if (dump_file)
1173 fprintf (dump_file, "Analyzing operand ");
1174 print_rtl (dump_file, op);
1175 fprintf (dump_file, " of insn ");
1176 print_rtl_single (dump_file, insn);
1179 if (function_invariant_p (op))
1180 res = GRD_INVARIANT;
1181 else if (GET_CODE (op) == SUBREG)
1183 if (!subreg_lowpart_p (op))
1184 return false;
1186 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1187 return false;
1189 return iv_subreg (iv, GET_MODE (op));
1191 else
1193 res = iv_get_reaching_def (insn, op, &def);
1194 if (res == GRD_INVALID)
1196 if (dump_file)
1197 fprintf (dump_file, " not simple.\n");
1198 return false;
1202 if (res == GRD_INVARIANT)
1204 iv_constant (iv, op, VOIDmode);
1206 if (dump_file)
1208 fprintf (dump_file, " ");
1209 dump_iv_info (dump_file, iv);
1210 fprintf (dump_file, "\n");
1212 return true;
1215 if (res == GRD_MAYBE_BIV)
1216 return iv_analyze_biv (op, iv);
1218 return iv_analyze_def (def, iv);
1221 /* Analyzes value VAL at INSN and stores the result to *IV. */
1223 bool
1224 iv_analyze (rtx_insn *insn, rtx val, struct rtx_iv *iv)
1226 rtx reg;
1228 /* We must find the insn in that val is used, so that we get to UD chains.
1229 Since the function is sometimes called on result of get_condition,
1230 this does not necessarily have to be directly INSN; scan also the
1231 following insns. */
1232 if (simple_reg_p (val))
1234 if (GET_CODE (val) == SUBREG)
1235 reg = SUBREG_REG (val);
1236 else
1237 reg = val;
1239 while (!df_find_use (insn, reg))
1240 insn = NEXT_INSN (insn);
1243 return iv_analyze_op (insn, val, iv);
1246 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1248 bool
1249 iv_analyze_result (rtx_insn *insn, rtx def, struct rtx_iv *iv)
1251 df_ref adef;
1253 adef = df_find_def (insn, def);
1254 if (!adef)
1255 return false;
1257 return iv_analyze_def (adef, iv);
1260 /* Checks whether definition of register REG in INSN is a basic induction
1261 variable. IV analysis must have been initialized (via a call to
1262 iv_analysis_loop_init) for this function to produce a result. */
1264 bool
1265 biv_p (rtx_insn *insn, rtx reg)
1267 struct rtx_iv iv;
1268 df_ref def, last_def;
1270 if (!simple_reg_p (reg))
1271 return false;
1273 def = df_find_def (insn, reg);
1274 gcc_assert (def != NULL);
1275 if (!latch_dominating_def (reg, &last_def))
1276 return false;
1277 if (last_def != def)
1278 return false;
1280 if (!iv_analyze_biv (reg, &iv))
1281 return false;
1283 return iv.step != const0_rtx;
1286 /* Calculates value of IV at ITERATION-th iteration. */
1289 get_iv_value (struct rtx_iv *iv, rtx iteration)
1291 rtx val;
1293 /* We would need to generate some if_then_else patterns, and so far
1294 it is not needed anywhere. */
1295 gcc_assert (!iv->first_special);
1297 if (iv->step != const0_rtx && iteration != const0_rtx)
1298 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1299 simplify_gen_binary (MULT, iv->extend_mode,
1300 iv->step, iteration));
1301 else
1302 val = iv->base;
1304 if (iv->extend_mode == iv->mode)
1305 return val;
1307 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1309 if (iv->extend == IV_UNKNOWN_EXTEND)
1310 return val;
1312 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1313 iv->extend_mode, val, iv->mode);
1314 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1315 simplify_gen_binary (MULT, iv->extend_mode,
1316 iv->mult, val));
1318 return val;
1321 /* Free the data for an induction variable analysis. */
1323 void
1324 iv_analysis_done (void)
1326 if (!clean_slate)
1328 clear_iv_info ();
1329 clean_slate = true;
1330 df_finish_pass (true);
1331 delete bivs;
1332 bivs = NULL;
1333 free (iv_ref_table);
1334 iv_ref_table = NULL;
1335 iv_ref_table_size = 0;
1339 /* Computes inverse to X modulo (1 << MOD). */
1341 static uint64_t
1342 inverse (uint64_t x, int mod)
1344 uint64_t mask =
1345 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1346 uint64_t rslt = 1;
1347 int i;
1349 for (i = 0; i < mod - 1; i++)
1351 rslt = (rslt * x) & mask;
1352 x = (x * x) & mask;
1355 return rslt;
1358 /* Checks whether any register in X is in set ALT. */
1360 static bool
1361 altered_reg_used (const_rtx x, bitmap alt)
1363 subrtx_iterator::array_type array;
1364 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1366 const_rtx x = *iter;
1367 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1368 return true;
1370 return false;
1373 /* Marks registers altered by EXPR in set ALT. */
1375 static void
1376 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1378 if (GET_CODE (expr) == SUBREG)
1379 expr = SUBREG_REG (expr);
1380 if (!REG_P (expr))
1381 return;
1383 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1386 /* Checks whether RHS is simple enough to process. */
1388 static bool
1389 simple_rhs_p (rtx rhs)
1391 rtx op0, op1;
1393 if (function_invariant_p (rhs)
1394 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1395 return true;
1397 switch (GET_CODE (rhs))
1399 case PLUS:
1400 case MINUS:
1401 case AND:
1402 op0 = XEXP (rhs, 0);
1403 op1 = XEXP (rhs, 1);
1404 /* Allow reg OP const and reg OP reg. */
1405 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1406 && !function_invariant_p (op0))
1407 return false;
1408 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1409 && !function_invariant_p (op1))
1410 return false;
1412 return true;
1414 case ASHIFT:
1415 case ASHIFTRT:
1416 case LSHIFTRT:
1417 case MULT:
1418 op0 = XEXP (rhs, 0);
1419 op1 = XEXP (rhs, 1);
1420 /* Allow reg OP const. */
1421 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1422 return false;
1423 if (!function_invariant_p (op1))
1424 return false;
1426 return true;
1428 default:
1429 return false;
1433 /* If REGNO has a single definition, return its known value, otherwise return
1434 null. */
1436 static rtx
1437 find_single_def_src (unsigned int regno)
1439 df_ref adef;
1440 rtx set, src;
1442 for (;;)
1444 rtx note;
1445 adef = DF_REG_DEF_CHAIN (regno);
1446 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1447 || DF_REF_IS_ARTIFICIAL (adef))
1448 return NULL_RTX;
1450 set = single_set (DF_REF_INSN (adef));
1451 if (set == NULL || !REG_P (SET_DEST (set))
1452 || REGNO (SET_DEST (set)) != regno)
1453 return NULL_RTX;
1455 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1457 if (note && function_invariant_p (XEXP (note, 0)))
1459 src = XEXP (note, 0);
1460 break;
1462 src = SET_SRC (set);
1464 if (REG_P (src))
1466 regno = REGNO (src);
1467 continue;
1469 break;
1471 if (!function_invariant_p (src))
1472 return NULL_RTX;
1474 return src;
1477 /* If any registers in *EXPR that have a single definition, try to replace
1478 them with the known-equivalent values. */
1480 static void
1481 replace_single_def_regs (rtx *expr)
1483 subrtx_var_iterator::array_type array;
1484 repeat:
1485 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1487 rtx x = *iter;
1488 if (REG_P (x))
1489 if (rtx new_x = find_single_def_src (REGNO (x)))
1491 *expr = simplify_replace_rtx (*expr, x, new_x);
1492 goto repeat;
1497 /* A subroutine of simplify_using_initial_values, this function examines INSN
1498 to see if it contains a suitable set that we can use to make a replacement.
1499 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1500 the set; return false otherwise. */
1502 static bool
1503 suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
1505 rtx set = single_set (insn);
1506 rtx lhs = NULL_RTX, rhs;
1508 if (!set)
1509 return false;
1511 lhs = SET_DEST (set);
1512 if (!REG_P (lhs))
1513 return false;
1515 rhs = find_reg_equal_equiv_note (insn);
1516 if (rhs)
1517 rhs = XEXP (rhs, 0);
1518 else
1519 rhs = SET_SRC (set);
1521 if (!simple_rhs_p (rhs))
1522 return false;
1524 *dest = lhs;
1525 *src = rhs;
1526 return true;
1529 /* Using the data returned by suitable_set_for_replacement, replace DEST
1530 with SRC in *EXPR and return the new expression. Also call
1531 replace_single_def_regs if the replacement changed something. */
1532 static void
1533 replace_in_expr (rtx *expr, rtx dest, rtx src)
1535 rtx old = *expr;
1536 *expr = simplify_replace_rtx (*expr, dest, src);
1537 if (old == *expr)
1538 return;
1539 replace_single_def_regs (expr);
1542 /* Checks whether A implies B. */
1544 static bool
1545 implies_p (rtx a, rtx b)
1547 rtx op0, op1, opb0, opb1, r;
1548 machine_mode mode;
1550 if (rtx_equal_p (a, b))
1551 return true;
1553 if (GET_CODE (a) == EQ)
1555 op0 = XEXP (a, 0);
1556 op1 = XEXP (a, 1);
1558 if (REG_P (op0)
1559 || (GET_CODE (op0) == SUBREG
1560 && REG_P (SUBREG_REG (op0))))
1562 r = simplify_replace_rtx (b, op0, op1);
1563 if (r == const_true_rtx)
1564 return true;
1567 if (REG_P (op1)
1568 || (GET_CODE (op1) == SUBREG
1569 && REG_P (SUBREG_REG (op1))))
1571 r = simplify_replace_rtx (b, op1, op0);
1572 if (r == const_true_rtx)
1573 return true;
1577 if (b == const_true_rtx)
1578 return true;
1580 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1581 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1582 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1583 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1584 return false;
1586 op0 = XEXP (a, 0);
1587 op1 = XEXP (a, 1);
1588 opb0 = XEXP (b, 0);
1589 opb1 = XEXP (b, 1);
1591 mode = GET_MODE (op0);
1592 if (mode != GET_MODE (opb0))
1593 mode = VOIDmode;
1594 else if (mode == VOIDmode)
1596 mode = GET_MODE (op1);
1597 if (mode != GET_MODE (opb1))
1598 mode = VOIDmode;
1601 /* A < B implies A + 1 <= B. */
1602 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1603 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1606 if (GET_CODE (a) == GT)
1608 r = op0;
1609 op0 = op1;
1610 op1 = r;
1613 if (GET_CODE (b) == GE)
1615 r = opb0;
1616 opb0 = opb1;
1617 opb1 = r;
1620 if (SCALAR_INT_MODE_P (mode)
1621 && rtx_equal_p (op1, opb1)
1622 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1623 return true;
1624 return false;
1627 /* A < B or A > B imply A != B. TODO: Likewise
1628 A + n < B implies A != B + n if neither wraps. */
1629 if (GET_CODE (b) == NE
1630 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1631 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1633 if (rtx_equal_p (op0, opb0)
1634 && rtx_equal_p (op1, opb1))
1635 return true;
1638 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1639 if (GET_CODE (a) == NE
1640 && op1 == const0_rtx)
1642 if ((GET_CODE (b) == GTU
1643 && opb1 == const0_rtx)
1644 || (GET_CODE (b) == GEU
1645 && opb1 == const1_rtx))
1646 return rtx_equal_p (op0, opb0);
1649 /* A != N is equivalent to A - (N + 1) <u -1. */
1650 if (GET_CODE (a) == NE
1651 && CONST_INT_P (op1)
1652 && GET_CODE (b) == LTU
1653 && opb1 == constm1_rtx
1654 && GET_CODE (opb0) == PLUS
1655 && CONST_INT_P (XEXP (opb0, 1))
1656 /* Avoid overflows. */
1657 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1658 != ((unsigned HOST_WIDE_INT)1
1659 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1660 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1661 return rtx_equal_p (op0, XEXP (opb0, 0));
1663 /* Likewise, A != N implies A - N > 0. */
1664 if (GET_CODE (a) == NE
1665 && CONST_INT_P (op1))
1667 if (GET_CODE (b) == GTU
1668 && GET_CODE (opb0) == PLUS
1669 && opb1 == const0_rtx
1670 && CONST_INT_P (XEXP (opb0, 1))
1671 /* Avoid overflows. */
1672 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1673 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1674 && rtx_equal_p (XEXP (opb0, 0), op0))
1675 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1676 if (GET_CODE (b) == GEU
1677 && GET_CODE (opb0) == PLUS
1678 && opb1 == const1_rtx
1679 && CONST_INT_P (XEXP (opb0, 1))
1680 /* Avoid overflows. */
1681 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1682 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1683 && rtx_equal_p (XEXP (opb0, 0), op0))
1684 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1687 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1688 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1689 && CONST_INT_P (op1)
1690 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1691 || INTVAL (op1) >= 0)
1692 && GET_CODE (b) == LTU
1693 && CONST_INT_P (opb1)
1694 && rtx_equal_p (op0, opb0))
1695 return INTVAL (opb1) < 0;
1697 return false;
1700 /* Canonicalizes COND so that
1702 (1) Ensure that operands are ordered according to
1703 swap_commutative_operands_p.
1704 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1705 for GE, GEU, and LEU. */
1708 canon_condition (rtx cond)
1710 rtx tem;
1711 rtx op0, op1;
1712 enum rtx_code code;
1713 machine_mode mode;
1715 code = GET_CODE (cond);
1716 op0 = XEXP (cond, 0);
1717 op1 = XEXP (cond, 1);
1719 if (swap_commutative_operands_p (op0, op1))
1721 code = swap_condition (code);
1722 tem = op0;
1723 op0 = op1;
1724 op1 = tem;
1727 mode = GET_MODE (op0);
1728 if (mode == VOIDmode)
1729 mode = GET_MODE (op1);
1730 gcc_assert (mode != VOIDmode);
1732 if (CONST_INT_P (op1)
1733 && GET_MODE_CLASS (mode) != MODE_CC
1734 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1736 HOST_WIDE_INT const_val = INTVAL (op1);
1737 unsigned HOST_WIDE_INT uconst_val = const_val;
1738 unsigned HOST_WIDE_INT max_val
1739 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1741 switch (code)
1743 case LE:
1744 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1745 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1746 break;
1748 /* When cross-compiling, const_val might be sign-extended from
1749 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1750 case GE:
1751 if ((HOST_WIDE_INT) (const_val & max_val)
1752 != (((HOST_WIDE_INT) 1
1753 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1754 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1755 break;
1757 case LEU:
1758 if (uconst_val < max_val)
1759 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1760 break;
1762 case GEU:
1763 if (uconst_val != 0)
1764 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1765 break;
1767 default:
1768 break;
1772 if (op0 != XEXP (cond, 0)
1773 || op1 != XEXP (cond, 1)
1774 || code != GET_CODE (cond)
1775 || GET_MODE (cond) != SImode)
1776 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1778 return cond;
1781 /* Reverses CONDition; returns NULL if we cannot. */
1783 static rtx
1784 reversed_condition (rtx cond)
1786 enum rtx_code reversed;
1787 reversed = reversed_comparison_code (cond, NULL);
1788 if (reversed == UNKNOWN)
1789 return NULL_RTX;
1790 else
1791 return gen_rtx_fmt_ee (reversed,
1792 GET_MODE (cond), XEXP (cond, 0),
1793 XEXP (cond, 1));
1796 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1797 set of altered regs. */
1799 void
1800 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1802 rtx rev, reve, exp = *expr;
1804 /* If some register gets altered later, we do not really speak about its
1805 value at the time of comparison. */
1806 if (altered && altered_reg_used (cond, altered))
1807 return;
1809 if (GET_CODE (cond) == EQ
1810 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1812 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1813 return;
1816 if (!COMPARISON_P (exp))
1817 return;
1819 rev = reversed_condition (cond);
1820 reve = reversed_condition (exp);
1822 cond = canon_condition (cond);
1823 exp = canon_condition (exp);
1824 if (rev)
1825 rev = canon_condition (rev);
1826 if (reve)
1827 reve = canon_condition (reve);
1829 if (rtx_equal_p (exp, cond))
1831 *expr = const_true_rtx;
1832 return;
1835 if (rev && rtx_equal_p (exp, rev))
1837 *expr = const0_rtx;
1838 return;
1841 if (implies_p (cond, exp))
1843 *expr = const_true_rtx;
1844 return;
1847 if (reve && implies_p (cond, reve))
1849 *expr = const0_rtx;
1850 return;
1853 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1854 be false. */
1855 if (rev && implies_p (exp, rev))
1857 *expr = const0_rtx;
1858 return;
1861 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1862 if (rev && reve && implies_p (reve, rev))
1864 *expr = const_true_rtx;
1865 return;
1868 /* We would like to have some other tests here. TODO. */
1870 return;
1873 /* Use relationship between A and *B to eventually eliminate *B.
1874 OP is the operation we consider. */
1876 static void
1877 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1879 switch (op)
1881 case AND:
1882 /* If A implies *B, we may replace *B by true. */
1883 if (implies_p (a, *b))
1884 *b = const_true_rtx;
1885 break;
1887 case IOR:
1888 /* If *B implies A, we may replace *B by false. */
1889 if (implies_p (*b, a))
1890 *b = const0_rtx;
1891 break;
1893 default:
1894 gcc_unreachable ();
1898 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1899 operation we consider. */
1901 static void
1902 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1904 rtx elt;
1906 for (elt = tail; elt; elt = XEXP (elt, 1))
1907 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1908 for (elt = tail; elt; elt = XEXP (elt, 1))
1909 eliminate_implied_condition (op, XEXP (elt, 0), head);
1912 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1913 is a list, its elements are assumed to be combined using OP. */
1915 static void
1916 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1918 bool expression_valid;
1919 rtx head, tail, last_valid_expr;
1920 rtx_expr_list *cond_list;
1921 rtx_insn *insn;
1922 rtx neutral, aggr;
1923 regset altered, this_altered;
1924 edge e;
1926 if (!*expr)
1927 return;
1929 if (CONSTANT_P (*expr))
1930 return;
1932 if (GET_CODE (*expr) == EXPR_LIST)
1934 head = XEXP (*expr, 0);
1935 tail = XEXP (*expr, 1);
1937 eliminate_implied_conditions (op, &head, tail);
1939 switch (op)
1941 case AND:
1942 neutral = const_true_rtx;
1943 aggr = const0_rtx;
1944 break;
1946 case IOR:
1947 neutral = const0_rtx;
1948 aggr = const_true_rtx;
1949 break;
1951 default:
1952 gcc_unreachable ();
1955 simplify_using_initial_values (loop, UNKNOWN, &head);
1956 if (head == aggr)
1958 XEXP (*expr, 0) = aggr;
1959 XEXP (*expr, 1) = NULL_RTX;
1960 return;
1962 else if (head == neutral)
1964 *expr = tail;
1965 simplify_using_initial_values (loop, op, expr);
1966 return;
1968 simplify_using_initial_values (loop, op, &tail);
1970 if (tail && XEXP (tail, 0) == aggr)
1972 *expr = tail;
1973 return;
1976 XEXP (*expr, 0) = head;
1977 XEXP (*expr, 1) = tail;
1978 return;
1981 gcc_assert (op == UNKNOWN);
1983 replace_single_def_regs (expr);
1984 if (CONSTANT_P (*expr))
1985 return;
1987 e = loop_preheader_edge (loop);
1988 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1989 return;
1991 altered = ALLOC_REG_SET (&reg_obstack);
1992 this_altered = ALLOC_REG_SET (&reg_obstack);
1994 expression_valid = true;
1995 last_valid_expr = *expr;
1996 cond_list = NULL;
1997 while (1)
1999 insn = BB_END (e->src);
2000 if (any_condjump_p (insn))
2002 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
2004 if (cond && (e->flags & EDGE_FALLTHRU))
2005 cond = reversed_condition (cond);
2006 if (cond)
2008 rtx old = *expr;
2009 simplify_using_condition (cond, expr, altered);
2010 if (old != *expr)
2012 rtx note;
2013 if (CONSTANT_P (*expr))
2014 goto out;
2015 for (note = cond_list; note; note = XEXP (note, 1))
2017 simplify_using_condition (XEXP (note, 0), expr, altered);
2018 if (CONSTANT_P (*expr))
2019 goto out;
2022 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
2026 FOR_BB_INSNS_REVERSE (e->src, insn)
2028 rtx src, dest;
2029 rtx old = *expr;
2031 if (!INSN_P (insn))
2032 continue;
2034 CLEAR_REG_SET (this_altered);
2035 note_stores (PATTERN (insn), mark_altered, this_altered);
2036 if (CALL_P (insn))
2038 /* Kill all call clobbered registers. */
2039 unsigned int i;
2040 hard_reg_set_iterator hrsi;
2041 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
2042 0, i, hrsi)
2043 SET_REGNO_REG_SET (this_altered, i);
2046 if (suitable_set_for_replacement (insn, &dest, &src))
2048 rtx_expr_list **pnote, **pnote_next;
2050 replace_in_expr (expr, dest, src);
2051 if (CONSTANT_P (*expr))
2052 goto out;
2054 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2056 rtx note = *pnote;
2057 rtx old_cond = XEXP (note, 0);
2059 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2060 replace_in_expr (&XEXP (note, 0), dest, src);
2062 /* We can no longer use a condition that has been simplified
2063 to a constant, and simplify_using_condition will abort if
2064 we try. */
2065 if (CONSTANT_P (XEXP (note, 0)))
2067 *pnote = *pnote_next;
2068 pnote_next = pnote;
2069 free_EXPR_LIST_node (note);
2071 /* Retry simplifications with this condition if either the
2072 expression or the condition changed. */
2073 else if (old_cond != XEXP (note, 0) || old != *expr)
2074 simplify_using_condition (XEXP (note, 0), expr, altered);
2077 else
2079 rtx_expr_list **pnote, **pnote_next;
2081 /* If we did not use this insn to make a replacement, any overlap
2082 between stores in this insn and our expression will cause the
2083 expression to become invalid. */
2084 if (altered_reg_used (*expr, this_altered))
2085 goto out;
2087 /* Likewise for the conditions. */
2088 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2090 rtx note = *pnote;
2091 rtx old_cond = XEXP (note, 0);
2093 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2094 if (altered_reg_used (old_cond, this_altered))
2096 *pnote = *pnote_next;
2097 pnote_next = pnote;
2098 free_EXPR_LIST_node (note);
2103 if (CONSTANT_P (*expr))
2104 goto out;
2106 IOR_REG_SET (altered, this_altered);
2108 /* If the expression now contains regs that have been altered, we
2109 can't return it to the caller. However, it is still valid for
2110 further simplification, so keep searching to see if we can
2111 eventually turn it into a constant. */
2112 if (altered_reg_used (*expr, altered))
2113 expression_valid = false;
2114 if (expression_valid)
2115 last_valid_expr = *expr;
2118 if (!single_pred_p (e->src)
2119 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2120 break;
2121 e = single_pred_edge (e->src);
2124 out:
2125 free_EXPR_LIST_list (&cond_list);
2126 if (!CONSTANT_P (*expr))
2127 *expr = last_valid_expr;
2128 FREE_REG_SET (altered);
2129 FREE_REG_SET (this_altered);
2132 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2133 that IV occurs as left operands of comparison COND and its signedness
2134 is SIGNED_P to DESC. */
2136 static void
2137 shorten_into_mode (struct rtx_iv *iv, machine_mode mode,
2138 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2140 rtx mmin, mmax, cond_over, cond_under;
2142 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2143 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2144 iv->base, mmin);
2145 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2146 iv->base, mmax);
2148 switch (cond)
2150 case LE:
2151 case LT:
2152 case LEU:
2153 case LTU:
2154 if (cond_under != const0_rtx)
2155 desc->infinite =
2156 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2157 if (cond_over != const0_rtx)
2158 desc->noloop_assumptions =
2159 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2160 break;
2162 case GE:
2163 case GT:
2164 case GEU:
2165 case GTU:
2166 if (cond_over != const0_rtx)
2167 desc->infinite =
2168 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2169 if (cond_under != const0_rtx)
2170 desc->noloop_assumptions =
2171 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2172 break;
2174 case NE:
2175 if (cond_over != const0_rtx)
2176 desc->infinite =
2177 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2178 if (cond_under != const0_rtx)
2179 desc->infinite =
2180 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2181 break;
2183 default:
2184 gcc_unreachable ();
2187 iv->mode = mode;
2188 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2191 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2192 subregs of the same mode if possible (sometimes it is necessary to add
2193 some assumptions to DESC). */
2195 static bool
2196 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2197 enum rtx_code cond, struct niter_desc *desc)
2199 machine_mode comp_mode;
2200 bool signed_p;
2202 /* If the ivs behave specially in the first iteration, or are
2203 added/multiplied after extending, we ignore them. */
2204 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2205 return false;
2206 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2207 return false;
2209 /* If there is some extend, it must match signedness of the comparison. */
2210 switch (cond)
2212 case LE:
2213 case LT:
2214 if (iv0->extend == IV_ZERO_EXTEND
2215 || iv1->extend == IV_ZERO_EXTEND)
2216 return false;
2217 signed_p = true;
2218 break;
2220 case LEU:
2221 case LTU:
2222 if (iv0->extend == IV_SIGN_EXTEND
2223 || iv1->extend == IV_SIGN_EXTEND)
2224 return false;
2225 signed_p = false;
2226 break;
2228 case NE:
2229 if (iv0->extend != IV_UNKNOWN_EXTEND
2230 && iv1->extend != IV_UNKNOWN_EXTEND
2231 && iv0->extend != iv1->extend)
2232 return false;
2234 signed_p = false;
2235 if (iv0->extend != IV_UNKNOWN_EXTEND)
2236 signed_p = iv0->extend == IV_SIGN_EXTEND;
2237 if (iv1->extend != IV_UNKNOWN_EXTEND)
2238 signed_p = iv1->extend == IV_SIGN_EXTEND;
2239 break;
2241 default:
2242 gcc_unreachable ();
2245 /* Values of both variables should be computed in the same mode. These
2246 might indeed be different, if we have comparison like
2248 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2250 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2251 in different modes. This does not seem impossible to handle, but
2252 it hardly ever occurs in practice.
2254 The only exception is the case when one of operands is invariant.
2255 For example pentium 3 generates comparisons like
2256 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2257 definitely do not want this prevent the optimization. */
2258 comp_mode = iv0->extend_mode;
2259 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2260 comp_mode = iv1->extend_mode;
2262 if (iv0->extend_mode != comp_mode)
2264 if (iv0->mode != iv0->extend_mode
2265 || iv0->step != const0_rtx)
2266 return false;
2268 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2269 comp_mode, iv0->base, iv0->mode);
2270 iv0->extend_mode = comp_mode;
2273 if (iv1->extend_mode != comp_mode)
2275 if (iv1->mode != iv1->extend_mode
2276 || iv1->step != const0_rtx)
2277 return false;
2279 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2280 comp_mode, iv1->base, iv1->mode);
2281 iv1->extend_mode = comp_mode;
2284 /* Check that both ivs belong to a range of a single mode. If one of the
2285 operands is an invariant, we may need to shorten it into the common
2286 mode. */
2287 if (iv0->mode == iv0->extend_mode
2288 && iv0->step == const0_rtx
2289 && iv0->mode != iv1->mode)
2290 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2292 if (iv1->mode == iv1->extend_mode
2293 && iv1->step == const0_rtx
2294 && iv0->mode != iv1->mode)
2295 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2297 if (iv0->mode != iv1->mode)
2298 return false;
2300 desc->mode = iv0->mode;
2301 desc->signed_p = signed_p;
2303 return true;
2306 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2307 result. This function is called from iv_number_of_iterations with
2308 a number of fields in DESC already filled in. OLD_NITER is the original
2309 expression for the number of iterations, before we tried to simplify it. */
2311 static uint64_t
2312 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2314 rtx niter = desc->niter_expr;
2315 rtx mmin, mmax, cmp;
2316 uint64_t nmax, inc;
2317 uint64_t andmax = 0;
2319 /* We used to look for constant operand 0 of AND,
2320 but canonicalization should always make this impossible. */
2321 gcc_checking_assert (GET_CODE (niter) != AND
2322 || !CONST_INT_P (XEXP (niter, 0)));
2324 if (GET_CODE (niter) == AND
2325 && CONST_INT_P (XEXP (niter, 1)))
2327 andmax = UINTVAL (XEXP (niter, 1));
2328 niter = XEXP (niter, 0);
2331 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2332 nmax = UINTVAL (mmax) - UINTVAL (mmin);
2334 if (GET_CODE (niter) == UDIV)
2336 if (!CONST_INT_P (XEXP (niter, 1)))
2337 return nmax;
2338 inc = INTVAL (XEXP (niter, 1));
2339 niter = XEXP (niter, 0);
2341 else
2342 inc = 1;
2344 /* We could use a binary search here, but for now improving the upper
2345 bound by just one eliminates one important corner case. */
2346 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2347 desc->mode, old_niter, mmax);
2348 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2349 if (cmp == const_true_rtx)
2351 nmax--;
2353 if (dump_file)
2354 fprintf (dump_file, ";; improved upper bound by one.\n");
2356 nmax /= inc;
2357 if (andmax)
2358 nmax = MIN (nmax, andmax);
2359 if (dump_file)
2360 fprintf (dump_file, ";; Determined upper bound %"PRId64".\n",
2361 nmax);
2362 return nmax;
2365 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2366 the result into DESC. Very similar to determine_number_of_iterations
2367 (basically its rtl version), complicated by things like subregs. */
2369 static void
2370 iv_number_of_iterations (struct loop *loop, rtx_insn *insn, rtx condition,
2371 struct niter_desc *desc)
2373 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2374 struct rtx_iv iv0, iv1, tmp_iv;
2375 rtx assumption, may_not_xform;
2376 enum rtx_code cond;
2377 machine_mode mode, comp_mode;
2378 rtx mmin, mmax, mode_mmin, mode_mmax;
2379 uint64_t s, size, d, inv, max;
2380 int64_t up, down, inc, step_val;
2381 int was_sharp = false;
2382 rtx old_niter;
2383 bool step_is_pow2;
2385 /* The meaning of these assumptions is this:
2386 if !assumptions
2387 then the rest of information does not have to be valid
2388 if noloop_assumptions then the loop does not roll
2389 if infinite then this exit is never used */
2391 desc->assumptions = NULL_RTX;
2392 desc->noloop_assumptions = NULL_RTX;
2393 desc->infinite = NULL_RTX;
2394 desc->simple_p = true;
2396 desc->const_iter = false;
2397 desc->niter_expr = NULL_RTX;
2399 cond = GET_CODE (condition);
2400 gcc_assert (COMPARISON_P (condition));
2402 mode = GET_MODE (XEXP (condition, 0));
2403 if (mode == VOIDmode)
2404 mode = GET_MODE (XEXP (condition, 1));
2405 /* The constant comparisons should be folded. */
2406 gcc_assert (mode != VOIDmode);
2408 /* We only handle integers or pointers. */
2409 if (GET_MODE_CLASS (mode) != MODE_INT
2410 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2411 goto fail;
2413 op0 = XEXP (condition, 0);
2414 if (!iv_analyze (insn, op0, &iv0))
2415 goto fail;
2416 if (iv0.extend_mode == VOIDmode)
2417 iv0.mode = iv0.extend_mode = mode;
2419 op1 = XEXP (condition, 1);
2420 if (!iv_analyze (insn, op1, &iv1))
2421 goto fail;
2422 if (iv1.extend_mode == VOIDmode)
2423 iv1.mode = iv1.extend_mode = mode;
2425 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2426 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2427 goto fail;
2429 /* Check condition and normalize it. */
2431 switch (cond)
2433 case GE:
2434 case GT:
2435 case GEU:
2436 case GTU:
2437 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2438 cond = swap_condition (cond);
2439 break;
2440 case NE:
2441 case LE:
2442 case LEU:
2443 case LT:
2444 case LTU:
2445 break;
2446 default:
2447 goto fail;
2450 /* Handle extends. This is relatively nontrivial, so we only try in some
2451 easy cases, when we can canonicalize the ivs (possibly by adding some
2452 assumptions) to shape subreg (base + i * step). This function also fills
2453 in desc->mode and desc->signed_p. */
2455 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2456 goto fail;
2458 comp_mode = iv0.extend_mode;
2459 mode = iv0.mode;
2460 size = GET_MODE_PRECISION (mode);
2461 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2462 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2463 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2465 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2466 goto fail;
2468 /* We can take care of the case of two induction variables chasing each other
2469 if the test is NE. I have never seen a loop using it, but still it is
2470 cool. */
2471 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2473 if (cond != NE)
2474 goto fail;
2476 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2477 iv1.step = const0_rtx;
2480 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2481 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2483 /* This is either infinite loop or the one that ends immediately, depending
2484 on initial values. Unswitching should remove this kind of conditions. */
2485 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2486 goto fail;
2488 if (cond != NE)
2490 if (iv0.step == const0_rtx)
2491 step_val = -INTVAL (iv1.step);
2492 else
2493 step_val = INTVAL (iv0.step);
2495 /* Ignore loops of while (i-- < 10) type. */
2496 if (step_val < 0)
2497 goto fail;
2499 step_is_pow2 = !(step_val & (step_val - 1));
2501 else
2503 /* We do not care about whether the step is power of two in this
2504 case. */
2505 step_is_pow2 = false;
2506 step_val = 0;
2509 /* Some more condition normalization. We must record some assumptions
2510 due to overflows. */
2511 switch (cond)
2513 case LT:
2514 case LTU:
2515 /* We want to take care only of non-sharp relationals; this is easy,
2516 as in cases the overflow would make the transformation unsafe
2517 the loop does not roll. Seemingly it would make more sense to want
2518 to take care of sharp relationals instead, as NE is more similar to
2519 them, but the problem is that here the transformation would be more
2520 difficult due to possibly infinite loops. */
2521 if (iv0.step == const0_rtx)
2523 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2524 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2525 mode_mmax);
2526 if (assumption == const_true_rtx)
2527 goto zero_iter_simplify;
2528 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2529 iv0.base, const1_rtx);
2531 else
2533 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2534 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2535 mode_mmin);
2536 if (assumption == const_true_rtx)
2537 goto zero_iter_simplify;
2538 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2539 iv1.base, constm1_rtx);
2542 if (assumption != const0_rtx)
2543 desc->noloop_assumptions =
2544 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2545 cond = (cond == LT) ? LE : LEU;
2547 /* It will be useful to be able to tell the difference once more in
2548 LE -> NE reduction. */
2549 was_sharp = true;
2550 break;
2551 default: ;
2554 /* Take care of trivially infinite loops. */
2555 if (cond != NE)
2557 if (iv0.step == const0_rtx)
2559 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2560 if (rtx_equal_p (tmp, mode_mmin))
2562 desc->infinite =
2563 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2564 /* Fill in the remaining fields somehow. */
2565 goto zero_iter_simplify;
2568 else
2570 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2571 if (rtx_equal_p (tmp, mode_mmax))
2573 desc->infinite =
2574 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2575 /* Fill in the remaining fields somehow. */
2576 goto zero_iter_simplify;
2581 /* If we can we want to take care of NE conditions instead of size
2582 comparisons, as they are much more friendly (most importantly
2583 this takes care of special handling of loops with step 1). We can
2584 do it if we first check that upper bound is greater or equal to
2585 lower bound, their difference is constant c modulo step and that
2586 there is not an overflow. */
2587 if (cond != NE)
2589 if (iv0.step == const0_rtx)
2590 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2591 else
2592 step = iv0.step;
2593 step = lowpart_subreg (mode, step, comp_mode);
2594 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2595 delta = lowpart_subreg (mode, delta, comp_mode);
2596 delta = simplify_gen_binary (UMOD, mode, delta, step);
2597 may_xform = const0_rtx;
2598 may_not_xform = const_true_rtx;
2600 if (CONST_INT_P (delta))
2602 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2604 /* A special case. We have transformed condition of type
2605 for (i = 0; i < 4; i += 4)
2606 into
2607 for (i = 0; i <= 3; i += 4)
2608 obviously if the test for overflow during that transformation
2609 passed, we cannot overflow here. Most importantly any
2610 loop with sharp end condition and step 1 falls into this
2611 category, so handling this case specially is definitely
2612 worth the troubles. */
2613 may_xform = const_true_rtx;
2615 else if (iv0.step == const0_rtx)
2617 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2618 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2619 bound = lowpart_subreg (mode, bound, comp_mode);
2620 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2621 may_xform = simplify_gen_relational (cond, SImode, mode,
2622 bound, tmp);
2623 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2624 SImode, mode,
2625 bound, tmp);
2627 else
2629 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2630 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2631 bound = lowpart_subreg (mode, bound, comp_mode);
2632 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2633 may_xform = simplify_gen_relational (cond, SImode, mode,
2634 tmp, bound);
2635 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2636 SImode, mode,
2637 tmp, bound);
2641 if (may_xform != const0_rtx)
2643 /* We perform the transformation always provided that it is not
2644 completely senseless. This is OK, as we would need this assumption
2645 to determine the number of iterations anyway. */
2646 if (may_xform != const_true_rtx)
2648 /* If the step is a power of two and the final value we have
2649 computed overflows, the cycle is infinite. Otherwise it
2650 is nontrivial to compute the number of iterations. */
2651 if (step_is_pow2)
2652 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2653 desc->infinite);
2654 else
2655 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2656 desc->assumptions);
2659 /* We are going to lose some information about upper bound on
2660 number of iterations in this step, so record the information
2661 here. */
2662 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2663 if (CONST_INT_P (iv1.base))
2664 up = INTVAL (iv1.base);
2665 else
2666 up = INTVAL (mode_mmax) - inc;
2667 down = INTVAL (CONST_INT_P (iv0.base)
2668 ? iv0.base
2669 : mode_mmin);
2670 max = (uint64_t) (up - down) / inc + 1;
2671 if (!desc->infinite
2672 && !desc->assumptions)
2673 record_niter_bound (loop, max, false, true);
2675 if (iv0.step == const0_rtx)
2677 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2678 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2680 else
2682 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2683 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2686 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2687 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2688 assumption = simplify_gen_relational (reverse_condition (cond),
2689 SImode, mode, tmp0, tmp1);
2690 if (assumption == const_true_rtx)
2691 goto zero_iter_simplify;
2692 else if (assumption != const0_rtx)
2693 desc->noloop_assumptions =
2694 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2695 cond = NE;
2699 /* Count the number of iterations. */
2700 if (cond == NE)
2702 /* Everything we do here is just arithmetics modulo size of mode. This
2703 makes us able to do more involved computations of number of iterations
2704 than in other cases. First transform the condition into shape
2705 s * i <> c, with s positive. */
2706 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2707 iv0.base = const0_rtx;
2708 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2709 iv1.step = const0_rtx;
2710 if (INTVAL (iv0.step) < 0)
2712 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2713 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
2715 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2717 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2718 is infinite. Otherwise, the number of iterations is
2719 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2720 s = INTVAL (iv0.step); d = 1;
2721 while (s % 2 != 1)
2723 s /= 2;
2724 d *= 2;
2725 size--;
2727 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
2729 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2730 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2731 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2732 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2734 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2735 inv = inverse (s, size);
2736 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2737 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2739 else
2741 if (iv1.step == const0_rtx)
2742 /* Condition in shape a + s * i <= b
2743 We must know that b + s does not overflow and a <= b + s and then we
2744 can compute number of iterations as (b + s - a) / s. (It might
2745 seem that we in fact could be more clever about testing the b + s
2746 overflow condition using some information about b - a mod s,
2747 but it was already taken into account during LE -> NE transform). */
2749 step = iv0.step;
2750 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2751 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2753 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2754 lowpart_subreg (mode, step,
2755 comp_mode));
2756 if (step_is_pow2)
2758 rtx t0, t1;
2760 /* If s is power of 2, we know that the loop is infinite if
2761 a % s <= b % s and b + s overflows. */
2762 assumption = simplify_gen_relational (reverse_condition (cond),
2763 SImode, mode,
2764 tmp1, bound);
2766 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2767 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2768 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2769 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2770 desc->infinite =
2771 alloc_EXPR_LIST (0, assumption, desc->infinite);
2773 else
2775 assumption = simplify_gen_relational (cond, SImode, mode,
2776 tmp1, bound);
2777 desc->assumptions =
2778 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2781 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2782 tmp = lowpart_subreg (mode, tmp, comp_mode);
2783 assumption = simplify_gen_relational (reverse_condition (cond),
2784 SImode, mode, tmp0, tmp);
2786 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2787 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2789 else
2791 /* Condition in shape a <= b - s * i
2792 We must know that a - s does not overflow and a - s <= b and then
2793 we can again compute number of iterations as (b - (a - s)) / s. */
2794 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2795 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2796 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2798 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2799 lowpart_subreg (mode, step, comp_mode));
2800 if (step_is_pow2)
2802 rtx t0, t1;
2804 /* If s is power of 2, we know that the loop is infinite if
2805 a % s <= b % s and a - s overflows. */
2806 assumption = simplify_gen_relational (reverse_condition (cond),
2807 SImode, mode,
2808 bound, tmp0);
2810 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2811 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2812 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2813 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2814 desc->infinite =
2815 alloc_EXPR_LIST (0, assumption, desc->infinite);
2817 else
2819 assumption = simplify_gen_relational (cond, SImode, mode,
2820 bound, tmp0);
2821 desc->assumptions =
2822 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2825 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2826 tmp = lowpart_subreg (mode, tmp, comp_mode);
2827 assumption = simplify_gen_relational (reverse_condition (cond),
2828 SImode, mode,
2829 tmp, tmp1);
2830 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2831 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2833 if (assumption == const_true_rtx)
2834 goto zero_iter_simplify;
2835 else if (assumption != const0_rtx)
2836 desc->noloop_assumptions =
2837 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2838 delta = simplify_gen_binary (UDIV, mode, delta, step);
2839 desc->niter_expr = delta;
2842 old_niter = desc->niter_expr;
2844 simplify_using_initial_values (loop, AND, &desc->assumptions);
2845 if (desc->assumptions
2846 && XEXP (desc->assumptions, 0) == const0_rtx)
2847 goto fail;
2848 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2849 simplify_using_initial_values (loop, IOR, &desc->infinite);
2850 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2852 /* Rerun the simplification. Consider code (created by copying loop headers)
2854 i = 0;
2856 if (0 < n)
2860 i++;
2861 } while (i < n);
2864 The first pass determines that i = 0, the second pass uses it to eliminate
2865 noloop assumption. */
2867 simplify_using_initial_values (loop, AND, &desc->assumptions);
2868 if (desc->assumptions
2869 && XEXP (desc->assumptions, 0) == const0_rtx)
2870 goto fail;
2871 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2872 simplify_using_initial_values (loop, IOR, &desc->infinite);
2873 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2875 if (desc->noloop_assumptions
2876 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2877 goto zero_iter;
2879 if (CONST_INT_P (desc->niter_expr))
2881 uint64_t val = INTVAL (desc->niter_expr);
2883 desc->const_iter = true;
2884 desc->niter = val & GET_MODE_MASK (desc->mode);
2885 if (!desc->infinite
2886 && !desc->assumptions)
2887 record_niter_bound (loop, desc->niter, false, true);
2889 else
2891 max = determine_max_iter (loop, desc, old_niter);
2892 if (!max)
2893 goto zero_iter_simplify;
2894 if (!desc->infinite
2895 && !desc->assumptions)
2896 record_niter_bound (loop, max, false, true);
2898 /* simplify_using_initial_values does a copy propagation on the registers
2899 in the expression for the number of iterations. This prolongs life
2900 ranges of registers and increases register pressure, and usually
2901 brings no gain (and if it happens to do, the cse pass will take care
2902 of it anyway). So prevent this behavior, unless it enabled us to
2903 derive that the number of iterations is a constant. */
2904 desc->niter_expr = old_niter;
2907 return;
2909 zero_iter_simplify:
2910 /* Simplify the assumptions. */
2911 simplify_using_initial_values (loop, AND, &desc->assumptions);
2912 if (desc->assumptions
2913 && XEXP (desc->assumptions, 0) == const0_rtx)
2914 goto fail;
2915 simplify_using_initial_values (loop, IOR, &desc->infinite);
2917 /* Fallthru. */
2918 zero_iter:
2919 desc->const_iter = true;
2920 desc->niter = 0;
2921 record_niter_bound (loop, 0, true, true);
2922 desc->noloop_assumptions = NULL_RTX;
2923 desc->niter_expr = const0_rtx;
2924 return;
2926 fail:
2927 desc->simple_p = false;
2928 return;
2931 /* Checks whether E is a simple exit from LOOP and stores its description
2932 into DESC. */
2934 static void
2935 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2937 basic_block exit_bb;
2938 rtx condition;
2939 rtx_insn *at;
2940 edge ein;
2942 exit_bb = e->src;
2943 desc->simple_p = false;
2945 /* It must belong directly to the loop. */
2946 if (exit_bb->loop_father != loop)
2947 return;
2949 /* It must be tested (at least) once during any iteration. */
2950 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2951 return;
2953 /* It must end in a simple conditional jump. */
2954 if (!any_condjump_p (BB_END (exit_bb)))
2955 return;
2957 ein = EDGE_SUCC (exit_bb, 0);
2958 if (ein == e)
2959 ein = EDGE_SUCC (exit_bb, 1);
2961 desc->out_edge = e;
2962 desc->in_edge = ein;
2964 /* Test whether the condition is suitable. */
2965 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2966 return;
2968 if (ein->flags & EDGE_FALLTHRU)
2970 condition = reversed_condition (condition);
2971 if (!condition)
2972 return;
2975 /* Check that we are able to determine number of iterations and fill
2976 in information about it. */
2977 iv_number_of_iterations (loop, at, condition, desc);
2980 /* Finds a simple exit of LOOP and stores its description into DESC. */
2982 void
2983 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2985 unsigned i;
2986 basic_block *body;
2987 edge e;
2988 struct niter_desc act;
2989 bool any = false;
2990 edge_iterator ei;
2992 desc->simple_p = false;
2993 body = get_loop_body (loop);
2995 for (i = 0; i < loop->num_nodes; i++)
2997 FOR_EACH_EDGE (e, ei, body[i]->succs)
2999 if (flow_bb_inside_loop_p (loop, e->dest))
3000 continue;
3002 check_simple_exit (loop, e, &act);
3003 if (!act.simple_p)
3004 continue;
3006 if (!any)
3007 any = true;
3008 else
3010 /* Prefer constant iterations; the less the better. */
3011 if (!act.const_iter
3012 || (desc->const_iter && act.niter >= desc->niter))
3013 continue;
3015 /* Also if the actual exit may be infinite, while the old one
3016 not, prefer the old one. */
3017 if (act.infinite && !desc->infinite)
3018 continue;
3021 *desc = act;
3025 if (dump_file)
3027 if (desc->simple_p)
3029 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
3030 fprintf (dump_file, " simple exit %d -> %d\n",
3031 desc->out_edge->src->index,
3032 desc->out_edge->dest->index);
3033 if (desc->assumptions)
3035 fprintf (dump_file, " assumptions: ");
3036 print_rtl (dump_file, desc->assumptions);
3037 fprintf (dump_file, "\n");
3039 if (desc->noloop_assumptions)
3041 fprintf (dump_file, " does not roll if: ");
3042 print_rtl (dump_file, desc->noloop_assumptions);
3043 fprintf (dump_file, "\n");
3045 if (desc->infinite)
3047 fprintf (dump_file, " infinite if: ");
3048 print_rtl (dump_file, desc->infinite);
3049 fprintf (dump_file, "\n");
3052 fprintf (dump_file, " number of iterations: ");
3053 print_rtl (dump_file, desc->niter_expr);
3054 fprintf (dump_file, "\n");
3056 fprintf (dump_file, " upper bound: %li\n",
3057 (long)get_max_loop_iterations_int (loop));
3058 fprintf (dump_file, " realistic bound: %li\n",
3059 (long)get_estimated_loop_iterations_int (loop));
3061 else
3062 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3065 free (body);
3068 /* Creates a simple loop description of LOOP if it was not computed
3069 already. */
3071 struct niter_desc *
3072 get_simple_loop_desc (struct loop *loop)
3074 struct niter_desc *desc = simple_loop_desc (loop);
3076 if (desc)
3077 return desc;
3079 /* At least desc->infinite is not always initialized by
3080 find_simple_loop_exit. */
3081 desc = ggc_cleared_alloc<niter_desc> ();
3082 iv_analysis_loop_init (loop);
3083 find_simple_exit (loop, desc);
3084 loop->simple_loop_desc = desc;
3086 if (desc->simple_p && (desc->assumptions || desc->infinite))
3088 const char *wording;
3090 /* Assume that no overflow happens and that the loop is finite.
3091 We already warned at the tree level if we ran optimizations there. */
3092 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3094 if (desc->infinite)
3096 wording =
3097 flag_unsafe_loop_optimizations
3098 ? N_("assuming that the loop is not infinite")
3099 : N_("cannot optimize possibly infinite loops");
3100 warning (OPT_Wunsafe_loop_optimizations, "%s",
3101 gettext (wording));
3103 if (desc->assumptions)
3105 wording =
3106 flag_unsafe_loop_optimizations
3107 ? N_("assuming that the loop counter does not overflow")
3108 : N_("cannot optimize loop, the loop counter may overflow");
3109 warning (OPT_Wunsafe_loop_optimizations, "%s",
3110 gettext (wording));
3114 if (flag_unsafe_loop_optimizations)
3116 desc->assumptions = NULL_RTX;
3117 desc->infinite = NULL_RTX;
3121 return desc;
3124 /* Releases simple loop description for LOOP. */
3126 void
3127 free_simple_loop_desc (struct loop *loop)
3129 struct niter_desc *desc = simple_loop_desc (loop);
3131 if (!desc)
3132 return;
3134 ggc_free (desc);
3135 loop->simple_loop_desc = NULL;