gcc:
[official-gcc.git] / gcc / stor-layout.c
blob088f3606a0d038232054dc0f7b1baeca2d791cbc
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
65 tree
66 variable_size (tree size)
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
83 return save_expr (size);
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
89 /* Return true if T is a self-referential component reference. */
91 static bool
92 self_referential_component_ref_p (tree t)
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 enum tree_code code = TREE_CODE (*tp);
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
117 *walk_subtrees = 0;
118 return NULL_TREE;
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 *walk_subtrees = 0;
126 return NULL_TREE;
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
147 return copy_tree_r (tp, walk_subtrees, data);
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
153 static tree
154 self_referential_size (tree size)
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 tree subst, param_name, param_type, param_decl;
186 if (DECL_P (ref))
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
208 size = substitute_in_expr (size, subst, param_decl);
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
215 self_refs.release ();
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
273 void
274 finalize_size_functions (void)
276 unsigned int i;
277 tree fndecl;
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
292 vec_free (size_functions);
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 machine_mode mode;
304 int i;
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return opt_machine_mode ();
323 /* Similar, except passed a tree node. */
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
355 gcc_assert (mode != VOIDmode);
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 return opt_scalar_int_mode ();
399 /* fall through */
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
407 /* Find a mode that can be used for efficient bitwise operations on MODE,
408 if one exists. */
410 opt_machine_mode
411 bitwise_mode_for_mode (machine_mode mode)
413 /* Quick exit if we already have a suitable mode. */
414 scalar_int_mode int_mode;
415 if (is_a <scalar_int_mode> (mode, &int_mode)
416 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
417 return int_mode;
419 /* Reuse the sanity checks from int_mode_for_mode. */
420 gcc_checking_assert ((int_mode_for_mode (mode), true));
422 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424 /* Try to replace complex modes with complex modes. In general we
425 expect both components to be processed independently, so we only
426 care whether there is a register for the inner mode. */
427 if (COMPLEX_MODE_P (mode))
429 machine_mode trial = mode;
430 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
431 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
432 && have_regs_of_mode[GET_MODE_INNER (trial)])
433 return trial;
436 /* Try to replace vector modes with vector modes. Also try using vector
437 modes if an integer mode would be too big. */
438 if (VECTOR_MODE_P (mode)
439 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441 machine_mode trial = mode;
442 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
443 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
444 && have_regs_of_mode[trial]
445 && targetm.vector_mode_supported_p (trial))
446 return trial;
449 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
450 return mode_for_size (bitsize, MODE_INT, true);
453 /* Find a type that can be used for efficient bitwise operations on MODE.
454 Return null if no such mode exists. */
456 tree
457 bitwise_type_for_mode (machine_mode mode)
459 if (!bitwise_mode_for_mode (mode).exists (&mode))
460 return NULL_TREE;
462 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
463 tree inner_type = build_nonstandard_integer_type (inner_size, true);
465 if (VECTOR_MODE_P (mode))
466 return build_vector_type_for_mode (inner_type, mode);
468 if (COMPLEX_MODE_P (mode))
469 return build_complex_type (inner_type);
471 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
472 return inner_type;
475 /* Find a mode that is suitable for representing a vector with NUNITS
476 elements of mode INNERMODE, if one exists. The returned mode can be
477 either an integer mode or a vector mode. */
479 opt_machine_mode
480 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 machine_mode mode;
484 /* First, look for a supported vector type. */
485 if (SCALAR_FLOAT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FLOAT;
487 else if (SCALAR_FRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_FRACT;
489 else if (SCALAR_UFRACT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_UFRACT;
491 else if (SCALAR_ACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_ACCUM;
493 else if (SCALAR_UACCUM_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UACCUM;
495 else
496 mode = MIN_MODE_VECTOR_INT;
498 /* Do not check vector_mode_supported_p here. We'll do that
499 later in vector_type_mode. */
500 FOR_EACH_MODE_FROM (mode, mode)
501 if (known_eq (GET_MODE_NUNITS (mode), nunits)
502 && GET_MODE_INNER (mode) == innermode)
503 return mode;
505 /* For integers, try mapping it to a same-sized scalar mode. */
506 if (GET_MODE_CLASS (innermode) == MODE_INT)
508 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
509 if (int_mode_for_size (nbits, 0).exists (&mode)
510 && have_regs_of_mode[mode])
511 return mode;
514 return opt_machine_mode ();
517 /* Return the mode for a vector that has NUNITS integer elements of
518 INT_BITS bits each, if such a mode exists. The mode can be either
519 an integer mode or a vector mode. */
521 opt_machine_mode
522 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
524 scalar_int_mode int_mode;
525 machine_mode vec_mode;
526 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
527 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
528 return vec_mode;
529 return opt_machine_mode ();
532 /* Return the alignment of MODE. This will be bounded by 1 and
533 BIGGEST_ALIGNMENT. */
535 unsigned int
536 get_mode_alignment (machine_mode mode)
538 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
541 /* Return the natural mode of an array, given that it is SIZE bytes in
542 total and has elements of type ELEM_TYPE. */
544 static machine_mode
545 mode_for_array (tree elem_type, tree size)
547 tree elem_size;
548 poly_uint64 int_size, int_elem_size;
549 unsigned HOST_WIDE_INT num_elems;
550 bool limit_p;
552 /* One-element arrays get the component type's mode. */
553 elem_size = TYPE_SIZE (elem_type);
554 if (simple_cst_equal (size, elem_size))
555 return TYPE_MODE (elem_type);
557 limit_p = true;
558 if (poly_int_tree_p (size, &int_size)
559 && poly_int_tree_p (elem_size, &int_elem_size)
560 && maybe_ne (int_elem_size, 0U)
561 && constant_multiple_p (int_size, int_elem_size, &num_elems))
563 machine_mode elem_mode = TYPE_MODE (elem_type);
564 machine_mode mode;
565 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
566 return mode;
567 if (targetm.array_mode_supported_p (elem_mode, num_elems))
568 limit_p = false;
570 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
573 /* Subroutine of layout_decl: Force alignment required for the data type.
574 But if the decl itself wants greater alignment, don't override that. */
576 static inline void
577 do_type_align (tree type, tree decl)
579 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
581 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
582 if (TREE_CODE (decl) == FIELD_DECL)
583 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
585 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
586 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
589 /* Set the size, mode and alignment of a ..._DECL node.
590 TYPE_DECL does need this for C++.
591 Note that LABEL_DECL and CONST_DECL nodes do not need this,
592 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
593 Don't call layout_decl for them.
595 KNOWN_ALIGN is the amount of alignment we can assume this
596 decl has with no special effort. It is relevant only for FIELD_DECLs
597 and depends on the previous fields.
598 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
599 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
600 the record will be aligned to suit. */
602 void
603 layout_decl (tree decl, unsigned int known_align)
605 tree type = TREE_TYPE (decl);
606 enum tree_code code = TREE_CODE (decl);
607 rtx rtl = NULL_RTX;
608 location_t loc = DECL_SOURCE_LOCATION (decl);
610 if (code == CONST_DECL)
611 return;
613 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
614 || code == TYPE_DECL || code == FIELD_DECL);
616 rtl = DECL_RTL_IF_SET (decl);
618 if (type == error_mark_node)
619 type = void_type_node;
621 /* Usually the size and mode come from the data type without change,
622 however, the front-end may set the explicit width of the field, so its
623 size may not be the same as the size of its type. This happens with
624 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
625 also happens with other fields. For example, the C++ front-end creates
626 zero-sized fields corresponding to empty base classes, and depends on
627 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
628 size in bytes from the size in bits. If we have already set the mode,
629 don't set it again since we can be called twice for FIELD_DECLs. */
631 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
632 if (DECL_MODE (decl) == VOIDmode)
633 SET_DECL_MODE (decl, TYPE_MODE (type));
635 if (DECL_SIZE (decl) == 0)
637 DECL_SIZE (decl) = TYPE_SIZE (type);
638 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
640 else if (DECL_SIZE_UNIT (decl) == 0)
641 DECL_SIZE_UNIT (decl)
642 = fold_convert_loc (loc, sizetype,
643 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
644 bitsize_unit_node));
646 if (code != FIELD_DECL)
647 /* For non-fields, update the alignment from the type. */
648 do_type_align (type, decl);
649 else
650 /* For fields, it's a bit more complicated... */
652 bool old_user_align = DECL_USER_ALIGN (decl);
653 bool zero_bitfield = false;
654 bool packed_p = DECL_PACKED (decl);
655 unsigned int mfa;
657 if (DECL_BIT_FIELD (decl))
659 DECL_BIT_FIELD_TYPE (decl) = type;
661 /* A zero-length bit-field affects the alignment of the next
662 field. In essence such bit-fields are not influenced by
663 any packing due to #pragma pack or attribute packed. */
664 if (integer_zerop (DECL_SIZE (decl))
665 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
667 zero_bitfield = true;
668 packed_p = false;
669 if (PCC_BITFIELD_TYPE_MATTERS)
670 do_type_align (type, decl);
671 else
673 #ifdef EMPTY_FIELD_BOUNDARY
674 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
676 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
677 DECL_USER_ALIGN (decl) = 0;
679 #endif
683 /* See if we can use an ordinary integer mode for a bit-field.
684 Conditions are: a fixed size that is correct for another mode,
685 occupying a complete byte or bytes on proper boundary. */
686 if (TYPE_SIZE (type) != 0
687 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
688 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
690 machine_mode xmode;
691 if (mode_for_size_tree (DECL_SIZE (decl),
692 MODE_INT, 1).exists (&xmode))
694 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
695 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
696 && (known_align == 0 || known_align >= xalign))
698 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
699 SET_DECL_MODE (decl, xmode);
700 DECL_BIT_FIELD (decl) = 0;
705 /* Turn off DECL_BIT_FIELD if we won't need it set. */
706 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
707 && known_align >= TYPE_ALIGN (type)
708 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
709 DECL_BIT_FIELD (decl) = 0;
711 else if (packed_p && DECL_USER_ALIGN (decl))
712 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
713 round up; we'll reduce it again below. We want packing to
714 supersede USER_ALIGN inherited from the type, but defer to
715 alignment explicitly specified on the field decl. */;
716 else
717 do_type_align (type, decl);
719 /* If the field is packed and not explicitly aligned, give it the
720 minimum alignment. Note that do_type_align may set
721 DECL_USER_ALIGN, so we need to check old_user_align instead. */
722 if (packed_p
723 && !old_user_align)
724 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
726 if (! packed_p && ! DECL_USER_ALIGN (decl))
728 /* Some targets (i.e. i386, VMS) limit struct field alignment
729 to a lower boundary than alignment of variables unless
730 it was overridden by attribute aligned. */
731 #ifdef BIGGEST_FIELD_ALIGNMENT
732 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
733 (unsigned) BIGGEST_FIELD_ALIGNMENT));
734 #endif
735 #ifdef ADJUST_FIELD_ALIGN
736 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
737 DECL_ALIGN (decl)));
738 #endif
741 if (zero_bitfield)
742 mfa = initial_max_fld_align * BITS_PER_UNIT;
743 else
744 mfa = maximum_field_alignment;
745 /* Should this be controlled by DECL_USER_ALIGN, too? */
746 if (mfa != 0)
747 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
750 /* Evaluate nonconstant size only once, either now or as soon as safe. */
751 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
752 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
753 if (DECL_SIZE_UNIT (decl) != 0
754 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
755 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
757 /* If requested, warn about definitions of large data objects. */
758 if ((code == VAR_DECL || code == PARM_DECL)
759 && ! DECL_EXTERNAL (decl))
761 tree size = DECL_SIZE_UNIT (decl);
763 if (size != 0 && TREE_CODE (size) == INTEGER_CST)
765 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
766 as if PTRDIFF_MAX had been specified, with the value
767 being that on the target rather than the host. */
768 unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
769 if (max_size == HOST_WIDE_INT_MAX)
770 max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
772 if (compare_tree_int (size, max_size) > 0)
773 warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
774 "maximum object size %wu",
775 decl, size, max_size);
779 /* If the RTL was already set, update its mode and mem attributes. */
780 if (rtl)
782 PUT_MODE (rtl, DECL_MODE (decl));
783 SET_DECL_RTL (decl, 0);
784 if (MEM_P (rtl))
785 set_mem_attributes (rtl, decl, 1);
786 SET_DECL_RTL (decl, rtl);
790 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
791 results of a previous call to layout_decl and calls it again. */
793 void
794 relayout_decl (tree decl)
796 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
797 SET_DECL_MODE (decl, VOIDmode);
798 if (!DECL_USER_ALIGN (decl))
799 SET_DECL_ALIGN (decl, 0);
800 if (DECL_RTL_SET_P (decl))
801 SET_DECL_RTL (decl, 0);
803 layout_decl (decl, 0);
806 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
807 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
808 is to be passed to all other layout functions for this record. It is the
809 responsibility of the caller to call `free' for the storage returned.
810 Note that garbage collection is not permitted until we finish laying
811 out the record. */
813 record_layout_info
814 start_record_layout (tree t)
816 record_layout_info rli = XNEW (struct record_layout_info_s);
818 rli->t = t;
820 /* If the type has a minimum specified alignment (via an attribute
821 declaration, for example) use it -- otherwise, start with a
822 one-byte alignment. */
823 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
824 rli->unpacked_align = rli->record_align;
825 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
827 #ifdef STRUCTURE_SIZE_BOUNDARY
828 /* Packed structures don't need to have minimum size. */
829 if (! TYPE_PACKED (t))
831 unsigned tmp;
833 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
834 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
835 if (maximum_field_alignment != 0)
836 tmp = MIN (tmp, maximum_field_alignment);
837 rli->record_align = MAX (rli->record_align, tmp);
839 #endif
841 rli->offset = size_zero_node;
842 rli->bitpos = bitsize_zero_node;
843 rli->prev_field = 0;
844 rli->pending_statics = 0;
845 rli->packed_maybe_necessary = 0;
846 rli->remaining_in_alignment = 0;
848 return rli;
851 /* Fold sizetype value X to bitsizetype, given that X represents a type
852 size or offset. */
854 static tree
855 bits_from_bytes (tree x)
857 if (POLY_INT_CST_P (x))
858 /* The runtime calculation isn't allowed to overflow sizetype;
859 increasing the runtime values must always increase the size
860 or offset of the object. This means that the object imposes
861 a maximum value on the runtime parameters, but we don't record
862 what that is. */
863 return build_poly_int_cst
864 (bitsizetype,
865 poly_wide_int::from (poly_int_cst_value (x),
866 TYPE_PRECISION (bitsizetype),
867 TYPE_SIGN (TREE_TYPE (x))));
868 x = fold_convert (bitsizetype, x);
869 gcc_checking_assert (x);
870 return x;
873 /* Return the combined bit position for the byte offset OFFSET and the
874 bit position BITPOS.
876 These functions operate on byte and bit positions present in FIELD_DECLs
877 and assume that these expressions result in no (intermediate) overflow.
878 This assumption is necessary to fold the expressions as much as possible,
879 so as to avoid creating artificially variable-sized types in languages
880 supporting variable-sized types like Ada. */
882 tree
883 bit_from_pos (tree offset, tree bitpos)
885 return size_binop (PLUS_EXPR, bitpos,
886 size_binop (MULT_EXPR, bits_from_bytes (offset),
887 bitsize_unit_node));
890 /* Return the combined truncated byte position for the byte offset OFFSET and
891 the bit position BITPOS. */
893 tree
894 byte_from_pos (tree offset, tree bitpos)
896 tree bytepos;
897 if (TREE_CODE (bitpos) == MULT_EXPR
898 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
899 bytepos = TREE_OPERAND (bitpos, 0);
900 else
901 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
902 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
905 /* Split the bit position POS into a byte offset *POFFSET and a bit
906 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
908 void
909 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
910 tree pos)
912 tree toff_align = bitsize_int (off_align);
913 if (TREE_CODE (pos) == MULT_EXPR
914 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
916 *poffset = size_binop (MULT_EXPR,
917 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
918 size_int (off_align / BITS_PER_UNIT));
919 *pbitpos = bitsize_zero_node;
921 else
923 *poffset = size_binop (MULT_EXPR,
924 fold_convert (sizetype,
925 size_binop (FLOOR_DIV_EXPR, pos,
926 toff_align)),
927 size_int (off_align / BITS_PER_UNIT));
928 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
932 /* Given a pointer to bit and byte offsets and an offset alignment,
933 normalize the offsets so they are within the alignment. */
935 void
936 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
938 /* If the bit position is now larger than it should be, adjust it
939 downwards. */
940 if (compare_tree_int (*pbitpos, off_align) >= 0)
942 tree offset, bitpos;
943 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
944 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
945 *pbitpos = bitpos;
949 /* Print debugging information about the information in RLI. */
951 DEBUG_FUNCTION void
952 debug_rli (record_layout_info rli)
954 print_node_brief (stderr, "type", rli->t, 0);
955 print_node_brief (stderr, "\noffset", rli->offset, 0);
956 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
958 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
959 rli->record_align, rli->unpacked_align,
960 rli->offset_align);
962 /* The ms_struct code is the only that uses this. */
963 if (targetm.ms_bitfield_layout_p (rli->t))
964 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
966 if (rli->packed_maybe_necessary)
967 fprintf (stderr, "packed may be necessary\n");
969 if (!vec_safe_is_empty (rli->pending_statics))
971 fprintf (stderr, "pending statics:\n");
972 debug (rli->pending_statics);
976 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
977 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
979 void
980 normalize_rli (record_layout_info rli)
982 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
985 /* Returns the size in bytes allocated so far. */
987 tree
988 rli_size_unit_so_far (record_layout_info rli)
990 return byte_from_pos (rli->offset, rli->bitpos);
993 /* Returns the size in bits allocated so far. */
995 tree
996 rli_size_so_far (record_layout_info rli)
998 return bit_from_pos (rli->offset, rli->bitpos);
1001 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1002 the next available location within the record is given by KNOWN_ALIGN.
1003 Update the variable alignment fields in RLI, and return the alignment
1004 to give the FIELD. */
1006 unsigned int
1007 update_alignment_for_field (record_layout_info rli, tree field,
1008 unsigned int known_align)
1010 /* The alignment required for FIELD. */
1011 unsigned int desired_align;
1012 /* The type of this field. */
1013 tree type = TREE_TYPE (field);
1014 /* True if the field was explicitly aligned by the user. */
1015 bool user_align;
1016 bool is_bitfield;
1018 /* Do not attempt to align an ERROR_MARK node */
1019 if (TREE_CODE (type) == ERROR_MARK)
1020 return 0;
1022 /* Lay out the field so we know what alignment it needs. */
1023 layout_decl (field, known_align);
1024 desired_align = DECL_ALIGN (field);
1025 user_align = DECL_USER_ALIGN (field);
1027 is_bitfield = (type != error_mark_node
1028 && DECL_BIT_FIELD_TYPE (field)
1029 && ! integer_zerop (TYPE_SIZE (type)));
1031 /* Record must have at least as much alignment as any field.
1032 Otherwise, the alignment of the field within the record is
1033 meaningless. */
1034 if (targetm.ms_bitfield_layout_p (rli->t))
1036 /* Here, the alignment of the underlying type of a bitfield can
1037 affect the alignment of a record; even a zero-sized field
1038 can do this. The alignment should be to the alignment of
1039 the type, except that for zero-size bitfields this only
1040 applies if there was an immediately prior, nonzero-size
1041 bitfield. (That's the way it is, experimentally.) */
1042 if (!is_bitfield
1043 || ((DECL_SIZE (field) == NULL_TREE
1044 || !integer_zerop (DECL_SIZE (field)))
1045 ? !DECL_PACKED (field)
1046 : (rli->prev_field
1047 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1048 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1050 unsigned int type_align = TYPE_ALIGN (type);
1051 if (!is_bitfield && DECL_PACKED (field))
1052 type_align = desired_align;
1053 else
1054 type_align = MAX (type_align, desired_align);
1055 if (maximum_field_alignment != 0)
1056 type_align = MIN (type_align, maximum_field_alignment);
1057 rli->record_align = MAX (rli->record_align, type_align);
1058 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1061 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1063 /* Named bit-fields cause the entire structure to have the
1064 alignment implied by their type. Some targets also apply the same
1065 rules to unnamed bitfields. */
1066 if (DECL_NAME (field) != 0
1067 || targetm.align_anon_bitfield ())
1069 unsigned int type_align = TYPE_ALIGN (type);
1071 #ifdef ADJUST_FIELD_ALIGN
1072 if (! TYPE_USER_ALIGN (type))
1073 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1074 #endif
1076 /* Targets might chose to handle unnamed and hence possibly
1077 zero-width bitfield. Those are not influenced by #pragmas
1078 or packed attributes. */
1079 if (integer_zerop (DECL_SIZE (field)))
1081 if (initial_max_fld_align)
1082 type_align = MIN (type_align,
1083 initial_max_fld_align * BITS_PER_UNIT);
1085 else if (maximum_field_alignment != 0)
1086 type_align = MIN (type_align, maximum_field_alignment);
1087 else if (DECL_PACKED (field))
1088 type_align = MIN (type_align, BITS_PER_UNIT);
1090 /* The alignment of the record is increased to the maximum
1091 of the current alignment, the alignment indicated on the
1092 field (i.e., the alignment specified by an __aligned__
1093 attribute), and the alignment indicated by the type of
1094 the field. */
1095 rli->record_align = MAX (rli->record_align, desired_align);
1096 rli->record_align = MAX (rli->record_align, type_align);
1098 if (warn_packed)
1099 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1100 user_align |= TYPE_USER_ALIGN (type);
1103 else
1105 rli->record_align = MAX (rli->record_align, desired_align);
1106 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1109 TYPE_USER_ALIGN (rli->t) |= user_align;
1111 return desired_align;
1114 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1115 the field alignment of FIELD or FIELD isn't aligned. */
1117 static void
1118 handle_warn_if_not_align (tree field, unsigned int record_align)
1120 tree type = TREE_TYPE (field);
1122 if (type == error_mark_node)
1123 return;
1125 unsigned int warn_if_not_align = 0;
1127 int opt_w = 0;
1129 if (warn_if_not_aligned)
1131 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1132 if (!warn_if_not_align)
1133 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1134 if (warn_if_not_align)
1135 opt_w = OPT_Wif_not_aligned;
1138 if (!warn_if_not_align
1139 && warn_packed_not_aligned
1140 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1142 warn_if_not_align = TYPE_ALIGN (type);
1143 opt_w = OPT_Wpacked_not_aligned;
1146 if (!warn_if_not_align)
1147 return;
1149 tree context = DECL_CONTEXT (field);
1151 warn_if_not_align /= BITS_PER_UNIT;
1152 record_align /= BITS_PER_UNIT;
1153 if ((record_align % warn_if_not_align) != 0)
1154 warning (opt_w, "alignment %u of %qT is less than %u",
1155 record_align, context, warn_if_not_align);
1157 tree off = byte_position (field);
1158 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1160 if (TREE_CODE (off) == INTEGER_CST)
1161 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1162 field, off, context, warn_if_not_align);
1163 else
1164 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1165 field, off, context, warn_if_not_align);
1169 /* Called from place_field to handle unions. */
1171 static void
1172 place_union_field (record_layout_info rli, tree field)
1174 update_alignment_for_field (rli, field, /*known_align=*/0);
1176 DECL_FIELD_OFFSET (field) = size_zero_node;
1177 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1178 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1179 handle_warn_if_not_align (field, rli->record_align);
1181 /* If this is an ERROR_MARK return *after* having set the
1182 field at the start of the union. This helps when parsing
1183 invalid fields. */
1184 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1185 return;
1187 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1188 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1189 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1191 /* We assume the union's size will be a multiple of a byte so we don't
1192 bother with BITPOS. */
1193 if (TREE_CODE (rli->t) == UNION_TYPE)
1194 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1195 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1196 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1197 DECL_SIZE_UNIT (field), rli->offset);
1200 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1201 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1202 units of alignment than the underlying TYPE. */
1203 static int
1204 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1205 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1207 /* Note that the calculation of OFFSET might overflow; we calculate it so
1208 that we still get the right result as long as ALIGN is a power of two. */
1209 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1211 offset = offset % align;
1212 return ((offset + size + align - 1) / align
1213 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1216 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1217 is a FIELD_DECL to be added after those fields already present in
1218 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1219 callers that desire that behavior must manually perform that step.) */
1221 void
1222 place_field (record_layout_info rli, tree field)
1224 /* The alignment required for FIELD. */
1225 unsigned int desired_align;
1226 /* The alignment FIELD would have if we just dropped it into the
1227 record as it presently stands. */
1228 unsigned int known_align;
1229 unsigned int actual_align;
1230 /* The type of this field. */
1231 tree type = TREE_TYPE (field);
1233 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1235 /* If FIELD is static, then treat it like a separate variable, not
1236 really like a structure field. If it is a FUNCTION_DECL, it's a
1237 method. In both cases, all we do is lay out the decl, and we do
1238 it *after* the record is laid out. */
1239 if (VAR_P (field))
1241 vec_safe_push (rli->pending_statics, field);
1242 return;
1245 /* Enumerators and enum types which are local to this class need not
1246 be laid out. Likewise for initialized constant fields. */
1247 else if (TREE_CODE (field) != FIELD_DECL)
1248 return;
1250 /* Unions are laid out very differently than records, so split
1251 that code off to another function. */
1252 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1254 place_union_field (rli, field);
1255 return;
1258 else if (TREE_CODE (type) == ERROR_MARK)
1260 /* Place this field at the current allocation position, so we
1261 maintain monotonicity. */
1262 DECL_FIELD_OFFSET (field) = rli->offset;
1263 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1264 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1265 handle_warn_if_not_align (field, rli->record_align);
1266 return;
1269 if (AGGREGATE_TYPE_P (type)
1270 && TYPE_TYPELESS_STORAGE (type))
1271 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1273 /* Work out the known alignment so far. Note that A & (-A) is the
1274 value of the least-significant bit in A that is one. */
1275 if (! integer_zerop (rli->bitpos))
1276 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1277 else if (integer_zerop (rli->offset))
1278 known_align = 0;
1279 else if (tree_fits_uhwi_p (rli->offset))
1280 known_align = (BITS_PER_UNIT
1281 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1282 else
1283 known_align = rli->offset_align;
1285 desired_align = update_alignment_for_field (rli, field, known_align);
1286 if (known_align == 0)
1287 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1289 if (warn_packed && DECL_PACKED (field))
1291 if (known_align >= TYPE_ALIGN (type))
1293 if (TYPE_ALIGN (type) > desired_align)
1295 if (STRICT_ALIGNMENT)
1296 warning (OPT_Wattributes, "packed attribute causes "
1297 "inefficient alignment for %q+D", field);
1298 /* Don't warn if DECL_PACKED was set by the type. */
1299 else if (!TYPE_PACKED (rli->t))
1300 warning (OPT_Wattributes, "packed attribute is "
1301 "unnecessary for %q+D", field);
1304 else
1305 rli->packed_maybe_necessary = 1;
1308 /* Does this field automatically have alignment it needs by virtue
1309 of the fields that precede it and the record's own alignment? */
1310 if (known_align < desired_align
1311 && (! targetm.ms_bitfield_layout_p (rli->t)
1312 || rli->prev_field == NULL))
1314 /* No, we need to skip space before this field.
1315 Bump the cumulative size to multiple of field alignment. */
1317 if (!targetm.ms_bitfield_layout_p (rli->t)
1318 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1319 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1321 /* If the alignment is still within offset_align, just align
1322 the bit position. */
1323 if (desired_align < rli->offset_align)
1324 rli->bitpos = round_up (rli->bitpos, desired_align);
1325 else
1327 /* First adjust OFFSET by the partial bits, then align. */
1328 rli->offset
1329 = size_binop (PLUS_EXPR, rli->offset,
1330 fold_convert (sizetype,
1331 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1332 bitsize_unit_node)));
1333 rli->bitpos = bitsize_zero_node;
1335 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1338 if (! TREE_CONSTANT (rli->offset))
1339 rli->offset_align = desired_align;
1342 /* Handle compatibility with PCC. Note that if the record has any
1343 variable-sized fields, we need not worry about compatibility. */
1344 if (PCC_BITFIELD_TYPE_MATTERS
1345 && ! targetm.ms_bitfield_layout_p (rli->t)
1346 && TREE_CODE (field) == FIELD_DECL
1347 && type != error_mark_node
1348 && DECL_BIT_FIELD (field)
1349 && (! DECL_PACKED (field)
1350 /* Enter for these packed fields only to issue a warning. */
1351 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1352 && maximum_field_alignment == 0
1353 && ! integer_zerop (DECL_SIZE (field))
1354 && tree_fits_uhwi_p (DECL_SIZE (field))
1355 && tree_fits_uhwi_p (rli->offset)
1356 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1358 unsigned int type_align = TYPE_ALIGN (type);
1359 tree dsize = DECL_SIZE (field);
1360 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1361 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1362 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1364 #ifdef ADJUST_FIELD_ALIGN
1365 if (! TYPE_USER_ALIGN (type))
1366 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1367 #endif
1369 /* A bit field may not span more units of alignment of its type
1370 than its type itself. Advance to next boundary if necessary. */
1371 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1373 if (DECL_PACKED (field))
1375 if (warn_packed_bitfield_compat == 1)
1376 inform
1377 (input_location,
1378 "offset of packed bit-field %qD has changed in GCC 4.4",
1379 field);
1381 else
1382 rli->bitpos = round_up (rli->bitpos, type_align);
1385 if (! DECL_PACKED (field))
1386 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1388 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1389 TYPE_WARN_IF_NOT_ALIGN (type));
1392 #ifdef BITFIELD_NBYTES_LIMITED
1393 if (BITFIELD_NBYTES_LIMITED
1394 && ! targetm.ms_bitfield_layout_p (rli->t)
1395 && TREE_CODE (field) == FIELD_DECL
1396 && type != error_mark_node
1397 && DECL_BIT_FIELD_TYPE (field)
1398 && ! DECL_PACKED (field)
1399 && ! integer_zerop (DECL_SIZE (field))
1400 && tree_fits_uhwi_p (DECL_SIZE (field))
1401 && tree_fits_uhwi_p (rli->offset)
1402 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1404 unsigned int type_align = TYPE_ALIGN (type);
1405 tree dsize = DECL_SIZE (field);
1406 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1407 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1408 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1410 #ifdef ADJUST_FIELD_ALIGN
1411 if (! TYPE_USER_ALIGN (type))
1412 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1413 #endif
1415 if (maximum_field_alignment != 0)
1416 type_align = MIN (type_align, maximum_field_alignment);
1417 /* ??? This test is opposite the test in the containing if
1418 statement, so this code is unreachable currently. */
1419 else if (DECL_PACKED (field))
1420 type_align = MIN (type_align, BITS_PER_UNIT);
1422 /* A bit field may not span the unit of alignment of its type.
1423 Advance to next boundary if necessary. */
1424 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1425 rli->bitpos = round_up (rli->bitpos, type_align);
1427 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1428 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1429 TYPE_WARN_IF_NOT_ALIGN (type));
1431 #endif
1433 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1434 A subtlety:
1435 When a bit field is inserted into a packed record, the whole
1436 size of the underlying type is used by one or more same-size
1437 adjacent bitfields. (That is, if its long:3, 32 bits is
1438 used in the record, and any additional adjacent long bitfields are
1439 packed into the same chunk of 32 bits. However, if the size
1440 changes, a new field of that size is allocated.) In an unpacked
1441 record, this is the same as using alignment, but not equivalent
1442 when packing.
1444 Note: for compatibility, we use the type size, not the type alignment
1445 to determine alignment, since that matches the documentation */
1447 if (targetm.ms_bitfield_layout_p (rli->t))
1449 tree prev_saved = rli->prev_field;
1450 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1452 /* This is a bitfield if it exists. */
1453 if (rli->prev_field)
1455 bool realign_p = known_align < desired_align;
1457 /* If both are bitfields, nonzero, and the same size, this is
1458 the middle of a run. Zero declared size fields are special
1459 and handled as "end of run". (Note: it's nonzero declared
1460 size, but equal type sizes!) (Since we know that both
1461 the current and previous fields are bitfields by the
1462 time we check it, DECL_SIZE must be present for both.) */
1463 if (DECL_BIT_FIELD_TYPE (field)
1464 && !integer_zerop (DECL_SIZE (field))
1465 && !integer_zerop (DECL_SIZE (rli->prev_field))
1466 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1467 && tree_fits_uhwi_p (TYPE_SIZE (type))
1468 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1470 /* We're in the middle of a run of equal type size fields; make
1471 sure we realign if we run out of bits. (Not decl size,
1472 type size!) */
1473 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1475 if (rli->remaining_in_alignment < bitsize)
1477 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1479 /* out of bits; bump up to next 'word'. */
1480 rli->bitpos
1481 = size_binop (PLUS_EXPR, rli->bitpos,
1482 bitsize_int (rli->remaining_in_alignment));
1483 rli->prev_field = field;
1484 if (typesize < bitsize)
1485 rli->remaining_in_alignment = 0;
1486 else
1487 rli->remaining_in_alignment = typesize - bitsize;
1489 else
1491 rli->remaining_in_alignment -= bitsize;
1492 realign_p = false;
1495 else
1497 /* End of a run: if leaving a run of bitfields of the same type
1498 size, we have to "use up" the rest of the bits of the type
1499 size.
1501 Compute the new position as the sum of the size for the prior
1502 type and where we first started working on that type.
1503 Note: since the beginning of the field was aligned then
1504 of course the end will be too. No round needed. */
1506 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1508 rli->bitpos
1509 = size_binop (PLUS_EXPR, rli->bitpos,
1510 bitsize_int (rli->remaining_in_alignment));
1512 else
1513 /* We "use up" size zero fields; the code below should behave
1514 as if the prior field was not a bitfield. */
1515 prev_saved = NULL;
1517 /* Cause a new bitfield to be captured, either this time (if
1518 currently a bitfield) or next time we see one. */
1519 if (!DECL_BIT_FIELD_TYPE (field)
1520 || integer_zerop (DECL_SIZE (field)))
1521 rli->prev_field = NULL;
1524 /* Does this field automatically have alignment it needs by virtue
1525 of the fields that precede it and the record's own alignment? */
1526 if (realign_p)
1528 /* If the alignment is still within offset_align, just align
1529 the bit position. */
1530 if (desired_align < rli->offset_align)
1531 rli->bitpos = round_up (rli->bitpos, desired_align);
1532 else
1534 /* First adjust OFFSET by the partial bits, then align. */
1535 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1536 bitsize_unit_node);
1537 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1538 fold_convert (sizetype, d));
1539 rli->bitpos = bitsize_zero_node;
1541 rli->offset = round_up (rli->offset,
1542 desired_align / BITS_PER_UNIT);
1545 if (! TREE_CONSTANT (rli->offset))
1546 rli->offset_align = desired_align;
1549 normalize_rli (rli);
1552 /* If we're starting a new run of same type size bitfields
1553 (or a run of non-bitfields), set up the "first of the run"
1554 fields.
1556 That is, if the current field is not a bitfield, or if there
1557 was a prior bitfield the type sizes differ, or if there wasn't
1558 a prior bitfield the size of the current field is nonzero.
1560 Note: we must be sure to test ONLY the type size if there was
1561 a prior bitfield and ONLY for the current field being zero if
1562 there wasn't. */
1564 if (!DECL_BIT_FIELD_TYPE (field)
1565 || (prev_saved != NULL
1566 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1567 : !integer_zerop (DECL_SIZE (field))))
1569 /* Never smaller than a byte for compatibility. */
1570 unsigned int type_align = BITS_PER_UNIT;
1572 /* (When not a bitfield), we could be seeing a flex array (with
1573 no DECL_SIZE). Since we won't be using remaining_in_alignment
1574 until we see a bitfield (and come by here again) we just skip
1575 calculating it. */
1576 if (DECL_SIZE (field) != NULL
1577 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1578 && tree_fits_uhwi_p (DECL_SIZE (field)))
1580 unsigned HOST_WIDE_INT bitsize
1581 = tree_to_uhwi (DECL_SIZE (field));
1582 unsigned HOST_WIDE_INT typesize
1583 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1585 if (typesize < bitsize)
1586 rli->remaining_in_alignment = 0;
1587 else
1588 rli->remaining_in_alignment = typesize - bitsize;
1591 /* Now align (conventionally) for the new type. */
1592 if (! DECL_PACKED (field))
1593 type_align = TYPE_ALIGN (TREE_TYPE (field));
1595 if (maximum_field_alignment != 0)
1596 type_align = MIN (type_align, maximum_field_alignment);
1598 rli->bitpos = round_up (rli->bitpos, type_align);
1600 /* If we really aligned, don't allow subsequent bitfields
1601 to undo that. */
1602 rli->prev_field = NULL;
1606 /* Offset so far becomes the position of this field after normalizing. */
1607 normalize_rli (rli);
1608 DECL_FIELD_OFFSET (field) = rli->offset;
1609 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1610 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1611 handle_warn_if_not_align (field, rli->record_align);
1613 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1614 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1615 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1617 /* If this field ended up more aligned than we thought it would be (we
1618 approximate this by seeing if its position changed), lay out the field
1619 again; perhaps we can use an integral mode for it now. */
1620 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1621 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1622 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1623 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1624 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1625 actual_align = (BITS_PER_UNIT
1626 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1627 else
1628 actual_align = DECL_OFFSET_ALIGN (field);
1629 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1630 store / extract bit field operations will check the alignment of the
1631 record against the mode of bit fields. */
1633 if (known_align != actual_align)
1634 layout_decl (field, actual_align);
1636 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1637 rli->prev_field = field;
1639 /* Now add size of this field to the size of the record. If the size is
1640 not constant, treat the field as being a multiple of bytes and just
1641 adjust the offset, resetting the bit position. Otherwise, apportion the
1642 size amongst the bit position and offset. First handle the case of an
1643 unspecified size, which can happen when we have an invalid nested struct
1644 definition, such as struct j { struct j { int i; } }. The error message
1645 is printed in finish_struct. */
1646 if (DECL_SIZE (field) == 0)
1647 /* Do nothing. */;
1648 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1649 || TREE_OVERFLOW (DECL_SIZE (field)))
1651 rli->offset
1652 = size_binop (PLUS_EXPR, rli->offset,
1653 fold_convert (sizetype,
1654 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1655 bitsize_unit_node)));
1656 rli->offset
1657 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1658 rli->bitpos = bitsize_zero_node;
1659 rli->offset_align = MIN (rli->offset_align, desired_align);
1661 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1662 bitsize_int (rli->offset_align)))
1664 tree type = strip_array_types (TREE_TYPE (field));
1665 /* The above adjusts offset_align just based on the start of the
1666 field. The field might not have a size that is a multiple of
1667 that offset_align though. If the field is an array of fixed
1668 sized elements, assume there can be any multiple of those
1669 sizes. If it is a variable length aggregate or array of
1670 variable length aggregates, assume worst that the end is
1671 just BITS_PER_UNIT aligned. */
1672 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1674 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1676 unsigned HOST_WIDE_INT sz
1677 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1678 rli->offset_align = MIN (rli->offset_align, sz);
1681 else
1682 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1685 else if (targetm.ms_bitfield_layout_p (rli->t))
1687 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1689 /* If we ended a bitfield before the full length of the type then
1690 pad the struct out to the full length of the last type. */
1691 if ((DECL_CHAIN (field) == NULL
1692 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1693 && DECL_BIT_FIELD_TYPE (field)
1694 && !integer_zerop (DECL_SIZE (field)))
1695 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1696 bitsize_int (rli->remaining_in_alignment));
1698 normalize_rli (rli);
1700 else
1702 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1703 normalize_rli (rli);
1707 /* Assuming that all the fields have been laid out, this function uses
1708 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1709 indicated by RLI. */
1711 static void
1712 finalize_record_size (record_layout_info rli)
1714 tree unpadded_size, unpadded_size_unit;
1716 /* Now we want just byte and bit offsets, so set the offset alignment
1717 to be a byte and then normalize. */
1718 rli->offset_align = BITS_PER_UNIT;
1719 normalize_rli (rli);
1721 /* Determine the desired alignment. */
1722 #ifdef ROUND_TYPE_ALIGN
1723 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1724 rli->record_align));
1725 #else
1726 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1727 #endif
1729 /* Compute the size so far. Be sure to allow for extra bits in the
1730 size in bytes. We have guaranteed above that it will be no more
1731 than a single byte. */
1732 unpadded_size = rli_size_so_far (rli);
1733 unpadded_size_unit = rli_size_unit_so_far (rli);
1734 if (! integer_zerop (rli->bitpos))
1735 unpadded_size_unit
1736 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1738 /* Round the size up to be a multiple of the required alignment. */
1739 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1740 TYPE_SIZE_UNIT (rli->t)
1741 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1743 if (TREE_CONSTANT (unpadded_size)
1744 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1745 && input_location != BUILTINS_LOCATION)
1746 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1748 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1749 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1750 && TREE_CONSTANT (unpadded_size))
1752 tree unpacked_size;
1754 #ifdef ROUND_TYPE_ALIGN
1755 rli->unpacked_align
1756 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1757 #else
1758 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1759 #endif
1761 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1762 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1764 if (TYPE_NAME (rli->t))
1766 tree name;
1768 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1769 name = TYPE_NAME (rli->t);
1770 else
1771 name = DECL_NAME (TYPE_NAME (rli->t));
1773 if (STRICT_ALIGNMENT)
1774 warning (OPT_Wpacked, "packed attribute causes inefficient "
1775 "alignment for %qE", name);
1776 else
1777 warning (OPT_Wpacked,
1778 "packed attribute is unnecessary for %qE", name);
1780 else
1782 if (STRICT_ALIGNMENT)
1783 warning (OPT_Wpacked,
1784 "packed attribute causes inefficient alignment");
1785 else
1786 warning (OPT_Wpacked, "packed attribute is unnecessary");
1792 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1794 void
1795 compute_record_mode (tree type)
1797 tree field;
1798 machine_mode mode = VOIDmode;
1800 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1801 However, if possible, we use a mode that fits in a register
1802 instead, in order to allow for better optimization down the
1803 line. */
1804 SET_TYPE_MODE (type, BLKmode);
1806 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1807 return;
1809 /* A record which has any BLKmode members must itself be
1810 BLKmode; it can't go in a register. Unless the member is
1811 BLKmode only because it isn't aligned. */
1812 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1814 if (TREE_CODE (field) != FIELD_DECL)
1815 continue;
1817 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1818 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1819 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1820 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1821 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1822 || ! tree_fits_uhwi_p (bit_position (field))
1823 || DECL_SIZE (field) == 0
1824 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1825 return;
1827 /* If this field is the whole struct, remember its mode so
1828 that, say, we can put a double in a class into a DF
1829 register instead of forcing it to live in the stack. */
1830 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1831 mode = DECL_MODE (field);
1833 /* With some targets, it is sub-optimal to access an aligned
1834 BLKmode structure as a scalar. */
1835 if (targetm.member_type_forces_blk (field, mode))
1836 return;
1839 /* If we only have one real field; use its mode if that mode's size
1840 matches the type's size. This only applies to RECORD_TYPE. This
1841 does not apply to unions. */
1842 poly_uint64 type_size;
1843 if (TREE_CODE (type) == RECORD_TYPE
1844 && mode != VOIDmode
1845 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
1846 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1848 else
1849 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1851 /* If structure's known alignment is less than what the scalar
1852 mode would need, and it matters, then stick with BLKmode. */
1853 if (mode != BLKmode
1854 && STRICT_ALIGNMENT
1855 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1856 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1858 /* If this is the only reason this type is BLKmode, then
1859 don't force containing types to be BLKmode. */
1860 TYPE_NO_FORCE_BLK (type) = 1;
1861 mode = BLKmode;
1864 SET_TYPE_MODE (type, mode);
1867 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1868 out. */
1870 static void
1871 finalize_type_size (tree type)
1873 /* Normally, use the alignment corresponding to the mode chosen.
1874 However, where strict alignment is not required, avoid
1875 over-aligning structures, since most compilers do not do this
1876 alignment. */
1877 if (TYPE_MODE (type) != BLKmode
1878 && TYPE_MODE (type) != VOIDmode
1879 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1881 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1883 /* Don't override a larger alignment requirement coming from a user
1884 alignment of one of the fields. */
1885 if (mode_align >= TYPE_ALIGN (type))
1887 SET_TYPE_ALIGN (type, mode_align);
1888 TYPE_USER_ALIGN (type) = 0;
1892 /* Do machine-dependent extra alignment. */
1893 #ifdef ROUND_TYPE_ALIGN
1894 SET_TYPE_ALIGN (type,
1895 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1896 #endif
1898 /* If we failed to find a simple way to calculate the unit size
1899 of the type, find it by division. */
1900 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1901 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1902 result will fit in sizetype. We will get more efficient code using
1903 sizetype, so we force a conversion. */
1904 TYPE_SIZE_UNIT (type)
1905 = fold_convert (sizetype,
1906 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1907 bitsize_unit_node));
1909 if (TYPE_SIZE (type) != 0)
1911 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1912 TYPE_SIZE_UNIT (type)
1913 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1916 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1917 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1918 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1919 if (TYPE_SIZE_UNIT (type) != 0
1920 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1921 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1923 /* Handle empty records as per the x86-64 psABI. */
1924 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1926 /* Also layout any other variants of the type. */
1927 if (TYPE_NEXT_VARIANT (type)
1928 || type != TYPE_MAIN_VARIANT (type))
1930 tree variant;
1931 /* Record layout info of this variant. */
1932 tree size = TYPE_SIZE (type);
1933 tree size_unit = TYPE_SIZE_UNIT (type);
1934 unsigned int align = TYPE_ALIGN (type);
1935 unsigned int precision = TYPE_PRECISION (type);
1936 unsigned int user_align = TYPE_USER_ALIGN (type);
1937 machine_mode mode = TYPE_MODE (type);
1938 bool empty_p = TYPE_EMPTY_P (type);
1940 /* Copy it into all variants. */
1941 for (variant = TYPE_MAIN_VARIANT (type);
1942 variant != 0;
1943 variant = TYPE_NEXT_VARIANT (variant))
1945 TYPE_SIZE (variant) = size;
1946 TYPE_SIZE_UNIT (variant) = size_unit;
1947 unsigned valign = align;
1948 if (TYPE_USER_ALIGN (variant))
1949 valign = MAX (valign, TYPE_ALIGN (variant));
1950 else
1951 TYPE_USER_ALIGN (variant) = user_align;
1952 SET_TYPE_ALIGN (variant, valign);
1953 TYPE_PRECISION (variant) = precision;
1954 SET_TYPE_MODE (variant, mode);
1955 TYPE_EMPTY_P (variant) = empty_p;
1960 /* Return a new underlying object for a bitfield started with FIELD. */
1962 static tree
1963 start_bitfield_representative (tree field)
1965 tree repr = make_node (FIELD_DECL);
1966 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1967 /* Force the representative to begin at a BITS_PER_UNIT aligned
1968 boundary - C++ may use tail-padding of a base object to
1969 continue packing bits so the bitfield region does not start
1970 at bit zero (see g++.dg/abi/bitfield5.C for example).
1971 Unallocated bits may happen for other reasons as well,
1972 for example Ada which allows explicit bit-granular structure layout. */
1973 DECL_FIELD_BIT_OFFSET (repr)
1974 = size_binop (BIT_AND_EXPR,
1975 DECL_FIELD_BIT_OFFSET (field),
1976 bitsize_int (~(BITS_PER_UNIT - 1)));
1977 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1978 DECL_SIZE (repr) = DECL_SIZE (field);
1979 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1980 DECL_PACKED (repr) = DECL_PACKED (field);
1981 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1982 /* There are no indirect accesses to this field. If we introduce
1983 some then they have to use the record alias set. This makes
1984 sure to properly conflict with [indirect] accesses to addressable
1985 fields of the bitfield group. */
1986 DECL_NONADDRESSABLE_P (repr) = 1;
1987 return repr;
1990 /* Finish up a bitfield group that was started by creating the underlying
1991 object REPR with the last field in the bitfield group FIELD. */
1993 static void
1994 finish_bitfield_representative (tree repr, tree field)
1996 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1997 tree nextf, size;
1999 size = size_diffop (DECL_FIELD_OFFSET (field),
2000 DECL_FIELD_OFFSET (repr));
2001 while (TREE_CODE (size) == COMPOUND_EXPR)
2002 size = TREE_OPERAND (size, 1);
2003 gcc_assert (tree_fits_uhwi_p (size));
2004 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2005 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2006 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2007 + tree_to_uhwi (DECL_SIZE (field)));
2009 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2010 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2012 /* Now nothing tells us how to pad out bitsize ... */
2013 nextf = DECL_CHAIN (field);
2014 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2015 nextf = DECL_CHAIN (nextf);
2016 if (nextf)
2018 tree maxsize;
2019 /* If there was an error, the field may be not laid out
2020 correctly. Don't bother to do anything. */
2021 if (TREE_TYPE (nextf) == error_mark_node)
2022 return;
2023 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2024 DECL_FIELD_OFFSET (repr));
2025 if (tree_fits_uhwi_p (maxsize))
2027 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2028 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2029 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2030 /* If the group ends within a bitfield nextf does not need to be
2031 aligned to BITS_PER_UNIT. Thus round up. */
2032 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2034 else
2035 maxbitsize = bitsize;
2037 else
2039 /* Note that if the C++ FE sets up tail-padding to be re-used it
2040 creates a as-base variant of the type with TYPE_SIZE adjusted
2041 accordingly. So it is safe to include tail-padding here. */
2042 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2043 (DECL_CONTEXT (field));
2044 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2045 /* We cannot generally rely on maxsize to fold to an integer constant,
2046 so use bitsize as fallback for this case. */
2047 if (tree_fits_uhwi_p (maxsize))
2048 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2049 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2050 else
2051 maxbitsize = bitsize;
2054 /* Only if we don't artificially break up the representative in
2055 the middle of a large bitfield with different possibly
2056 overlapping representatives. And all representatives start
2057 at byte offset. */
2058 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2060 /* Find the smallest nice mode to use. */
2061 opt_scalar_int_mode mode_iter;
2062 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2063 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2064 break;
2066 scalar_int_mode mode;
2067 if (!mode_iter.exists (&mode)
2068 || GET_MODE_BITSIZE (mode) > maxbitsize
2069 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2071 /* We really want a BLKmode representative only as a last resort,
2072 considering the member b in
2073 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2074 Otherwise we simply want to split the representative up
2075 allowing for overlaps within the bitfield region as required for
2076 struct { int a : 7; int b : 7;
2077 int c : 10; int d; } __attribute__((packed));
2078 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2079 DECL_SIZE (repr) = bitsize_int (bitsize);
2080 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2081 SET_DECL_MODE (repr, BLKmode);
2082 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2083 bitsize / BITS_PER_UNIT);
2085 else
2087 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2088 DECL_SIZE (repr) = bitsize_int (modesize);
2089 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2090 SET_DECL_MODE (repr, mode);
2091 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2094 /* Remember whether the bitfield group is at the end of the
2095 structure or not. */
2096 DECL_CHAIN (repr) = nextf;
2099 /* Compute and set FIELD_DECLs for the underlying objects we should
2100 use for bitfield access for the structure T. */
2102 void
2103 finish_bitfield_layout (tree t)
2105 tree field, prev;
2106 tree repr = NULL_TREE;
2108 /* Unions would be special, for the ease of type-punning optimizations
2109 we could use the underlying type as hint for the representative
2110 if the bitfield would fit and the representative would not exceed
2111 the union in size. */
2112 if (TREE_CODE (t) != RECORD_TYPE)
2113 return;
2115 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2116 field; field = DECL_CHAIN (field))
2118 if (TREE_CODE (field) != FIELD_DECL)
2119 continue;
2121 /* In the C++ memory model, consecutive bit fields in a structure are
2122 considered one memory location and updating a memory location
2123 may not store into adjacent memory locations. */
2124 if (!repr
2125 && DECL_BIT_FIELD_TYPE (field))
2127 /* Start new representative. */
2128 repr = start_bitfield_representative (field);
2130 else if (repr
2131 && ! DECL_BIT_FIELD_TYPE (field))
2133 /* Finish off new representative. */
2134 finish_bitfield_representative (repr, prev);
2135 repr = NULL_TREE;
2137 else if (DECL_BIT_FIELD_TYPE (field))
2139 gcc_assert (repr != NULL_TREE);
2141 /* Zero-size bitfields finish off a representative and
2142 do not have a representative themselves. This is
2143 required by the C++ memory model. */
2144 if (integer_zerop (DECL_SIZE (field)))
2146 finish_bitfield_representative (repr, prev);
2147 repr = NULL_TREE;
2150 /* We assume that either DECL_FIELD_OFFSET of the representative
2151 and each bitfield member is a constant or they are equal.
2152 This is because we need to be able to compute the bit-offset
2153 of each field relative to the representative in get_bit_range
2154 during RTL expansion.
2155 If these constraints are not met, simply force a new
2156 representative to be generated. That will at most
2157 generate worse code but still maintain correctness with
2158 respect to the C++ memory model. */
2159 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2160 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2161 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2162 DECL_FIELD_OFFSET (field), 0)))
2164 finish_bitfield_representative (repr, prev);
2165 repr = start_bitfield_representative (field);
2168 else
2169 continue;
2171 if (repr)
2172 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2174 prev = field;
2177 if (repr)
2178 finish_bitfield_representative (repr, prev);
2181 /* Do all of the work required to layout the type indicated by RLI,
2182 once the fields have been laid out. This function will call `free'
2183 for RLI, unless FREE_P is false. Passing a value other than false
2184 for FREE_P is bad practice; this option only exists to support the
2185 G++ 3.2 ABI. */
2187 void
2188 finish_record_layout (record_layout_info rli, int free_p)
2190 tree variant;
2192 /* Compute the final size. */
2193 finalize_record_size (rli);
2195 /* Compute the TYPE_MODE for the record. */
2196 compute_record_mode (rli->t);
2198 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2199 finalize_type_size (rli->t);
2201 /* Compute bitfield representatives. */
2202 finish_bitfield_layout (rli->t);
2204 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2205 With C++ templates, it is too early to do this when the attribute
2206 is being parsed. */
2207 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2208 variant = TYPE_NEXT_VARIANT (variant))
2210 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2211 TYPE_REVERSE_STORAGE_ORDER (variant)
2212 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2215 /* Lay out any static members. This is done now because their type
2216 may use the record's type. */
2217 while (!vec_safe_is_empty (rli->pending_statics))
2218 layout_decl (rli->pending_statics->pop (), 0);
2220 /* Clean up. */
2221 if (free_p)
2223 vec_free (rli->pending_statics);
2224 free (rli);
2229 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2230 NAME, its fields are chained in reverse on FIELDS.
2232 If ALIGN_TYPE is non-null, it is given the same alignment as
2233 ALIGN_TYPE. */
2235 void
2236 finish_builtin_struct (tree type, const char *name, tree fields,
2237 tree align_type)
2239 tree tail, next;
2241 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2243 DECL_FIELD_CONTEXT (fields) = type;
2244 next = DECL_CHAIN (fields);
2245 DECL_CHAIN (fields) = tail;
2247 TYPE_FIELDS (type) = tail;
2249 if (align_type)
2251 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2252 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2253 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2254 TYPE_WARN_IF_NOT_ALIGN (align_type));
2257 layout_type (type);
2258 #if 0 /* not yet, should get fixed properly later */
2259 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2260 #else
2261 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2262 TYPE_DECL, get_identifier (name), type);
2263 #endif
2264 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2265 layout_decl (TYPE_NAME (type), 0);
2268 /* Calculate the mode, size, and alignment for TYPE.
2269 For an array type, calculate the element separation as well.
2270 Record TYPE on the chain of permanent or temporary types
2271 so that dbxout will find out about it.
2273 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2274 layout_type does nothing on such a type.
2276 If the type is incomplete, its TYPE_SIZE remains zero. */
2278 void
2279 layout_type (tree type)
2281 gcc_assert (type);
2283 if (type == error_mark_node)
2284 return;
2286 /* We don't want finalize_type_size to copy an alignment attribute to
2287 variants that don't have it. */
2288 type = TYPE_MAIN_VARIANT (type);
2290 /* Do nothing if type has been laid out before. */
2291 if (TYPE_SIZE (type))
2292 return;
2294 switch (TREE_CODE (type))
2296 case LANG_TYPE:
2297 /* This kind of type is the responsibility
2298 of the language-specific code. */
2299 gcc_unreachable ();
2301 case BOOLEAN_TYPE:
2302 case INTEGER_TYPE:
2303 case ENUMERAL_TYPE:
2305 scalar_int_mode mode
2306 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2307 SET_TYPE_MODE (type, mode);
2308 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2309 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2310 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2311 break;
2314 case REAL_TYPE:
2316 /* Allow the caller to choose the type mode, which is how decimal
2317 floats are distinguished from binary ones. */
2318 if (TYPE_MODE (type) == VOIDmode)
2319 SET_TYPE_MODE
2320 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2321 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2322 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2323 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2324 break;
2327 case FIXED_POINT_TYPE:
2329 /* TYPE_MODE (type) has been set already. */
2330 scalar_mode mode = SCALAR_TYPE_MODE (type);
2331 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2332 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2333 break;
2336 case COMPLEX_TYPE:
2337 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2338 SET_TYPE_MODE (type,
2339 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2341 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2342 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2343 break;
2345 case VECTOR_TYPE:
2347 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2348 tree innertype = TREE_TYPE (type);
2350 /* Find an appropriate mode for the vector type. */
2351 if (TYPE_MODE (type) == VOIDmode)
2352 SET_TYPE_MODE (type,
2353 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2354 nunits).else_blk ());
2356 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2358 /* Several boolean vector elements may fit in a single unit. */
2359 if (VECTOR_BOOLEAN_TYPE_P (type)
2360 && type->type_common.mode != BLKmode)
2361 TYPE_SIZE_UNIT (type)
2362 = size_int (GET_MODE_SIZE (type->type_common.mode));
2363 else
2364 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2365 TYPE_SIZE_UNIT (innertype),
2366 size_int (nunits));
2367 TYPE_SIZE (type) = int_const_binop
2368 (MULT_EXPR,
2369 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2370 bitsize_int (BITS_PER_UNIT));
2372 /* For vector types, we do not default to the mode's alignment.
2373 Instead, query a target hook, defaulting to natural alignment.
2374 This prevents ABI changes depending on whether or not native
2375 vector modes are supported. */
2376 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2378 /* However, if the underlying mode requires a bigger alignment than
2379 what the target hook provides, we cannot use the mode. For now,
2380 simply reject that case. */
2381 gcc_assert (TYPE_ALIGN (type)
2382 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2383 break;
2386 case VOID_TYPE:
2387 /* This is an incomplete type and so doesn't have a size. */
2388 SET_TYPE_ALIGN (type, 1);
2389 TYPE_USER_ALIGN (type) = 0;
2390 SET_TYPE_MODE (type, VOIDmode);
2391 break;
2393 case OFFSET_TYPE:
2394 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2395 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2396 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2397 integral, which may be an __intN. */
2398 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2399 TYPE_PRECISION (type) = POINTER_SIZE;
2400 break;
2402 case FUNCTION_TYPE:
2403 case METHOD_TYPE:
2404 /* It's hard to see what the mode and size of a function ought to
2405 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2406 make it consistent with that. */
2407 SET_TYPE_MODE (type,
2408 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2409 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2410 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2411 break;
2413 case POINTER_TYPE:
2414 case REFERENCE_TYPE:
2416 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2417 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2418 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2419 TYPE_UNSIGNED (type) = 1;
2420 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2422 break;
2424 case ARRAY_TYPE:
2426 tree index = TYPE_DOMAIN (type);
2427 tree element = TREE_TYPE (type);
2429 /* We need to know both bounds in order to compute the size. */
2430 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2431 && TYPE_SIZE (element))
2433 tree ub = TYPE_MAX_VALUE (index);
2434 tree lb = TYPE_MIN_VALUE (index);
2435 tree element_size = TYPE_SIZE (element);
2436 tree length;
2438 /* Make sure that an array of zero-sized element is zero-sized
2439 regardless of its extent. */
2440 if (integer_zerop (element_size))
2441 length = size_zero_node;
2443 /* The computation should happen in the original signedness so
2444 that (possible) negative values are handled appropriately
2445 when determining overflow. */
2446 else
2448 /* ??? When it is obvious that the range is signed
2449 represent it using ssizetype. */
2450 if (TREE_CODE (lb) == INTEGER_CST
2451 && TREE_CODE (ub) == INTEGER_CST
2452 && TYPE_UNSIGNED (TREE_TYPE (lb))
2453 && tree_int_cst_lt (ub, lb))
2455 lb = wide_int_to_tree (ssizetype,
2456 offset_int::from (wi::to_wide (lb),
2457 SIGNED));
2458 ub = wide_int_to_tree (ssizetype,
2459 offset_int::from (wi::to_wide (ub),
2460 SIGNED));
2462 length
2463 = fold_convert (sizetype,
2464 size_binop (PLUS_EXPR,
2465 build_int_cst (TREE_TYPE (lb), 1),
2466 size_binop (MINUS_EXPR, ub, lb)));
2469 /* ??? We have no way to distinguish a null-sized array from an
2470 array spanning the whole sizetype range, so we arbitrarily
2471 decide that [0, -1] is the only valid representation. */
2472 if (integer_zerop (length)
2473 && TREE_OVERFLOW (length)
2474 && integer_zerop (lb))
2475 length = size_zero_node;
2477 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2478 bits_from_bytes (length));
2480 /* If we know the size of the element, calculate the total size
2481 directly, rather than do some division thing below. This
2482 optimization helps Fortran assumed-size arrays (where the
2483 size of the array is determined at runtime) substantially. */
2484 if (TYPE_SIZE_UNIT (element))
2485 TYPE_SIZE_UNIT (type)
2486 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2489 /* Now round the alignment and size,
2490 using machine-dependent criteria if any. */
2492 unsigned align = TYPE_ALIGN (element);
2493 if (TYPE_USER_ALIGN (type))
2494 align = MAX (align, TYPE_ALIGN (type));
2495 else
2496 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2497 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2498 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2499 TYPE_WARN_IF_NOT_ALIGN (element));
2500 #ifdef ROUND_TYPE_ALIGN
2501 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2502 #else
2503 align = MAX (align, BITS_PER_UNIT);
2504 #endif
2505 SET_TYPE_ALIGN (type, align);
2506 SET_TYPE_MODE (type, BLKmode);
2507 if (TYPE_SIZE (type) != 0
2508 && ! targetm.member_type_forces_blk (type, VOIDmode)
2509 /* BLKmode elements force BLKmode aggregate;
2510 else extract/store fields may lose. */
2511 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2512 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2514 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2515 TYPE_SIZE (type)));
2516 if (TYPE_MODE (type) != BLKmode
2517 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2518 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2520 TYPE_NO_FORCE_BLK (type) = 1;
2521 SET_TYPE_MODE (type, BLKmode);
2524 if (AGGREGATE_TYPE_P (element))
2525 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2526 /* When the element size is constant, check that it is at least as
2527 large as the element alignment. */
2528 if (TYPE_SIZE_UNIT (element)
2529 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2530 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2531 TYPE_ALIGN_UNIT. */
2532 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2533 && !integer_zerop (TYPE_SIZE_UNIT (element))
2534 && compare_tree_int (TYPE_SIZE_UNIT (element),
2535 TYPE_ALIGN_UNIT (element)) < 0)
2536 error ("alignment of array elements is greater than element size");
2537 break;
2540 case RECORD_TYPE:
2541 case UNION_TYPE:
2542 case QUAL_UNION_TYPE:
2544 tree field;
2545 record_layout_info rli;
2547 /* Initialize the layout information. */
2548 rli = start_record_layout (type);
2550 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2551 in the reverse order in building the COND_EXPR that denotes
2552 its size. We reverse them again later. */
2553 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2554 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2556 /* Place all the fields. */
2557 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2558 place_field (rli, field);
2560 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2561 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2563 /* Finish laying out the record. */
2564 finish_record_layout (rli, /*free_p=*/true);
2566 break;
2568 default:
2569 gcc_unreachable ();
2572 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2573 records and unions, finish_record_layout already called this
2574 function. */
2575 if (!RECORD_OR_UNION_TYPE_P (type))
2576 finalize_type_size (type);
2578 /* We should never see alias sets on incomplete aggregates. And we
2579 should not call layout_type on not incomplete aggregates. */
2580 if (AGGREGATE_TYPE_P (type))
2581 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2584 /* Return the least alignment required for type TYPE. */
2586 unsigned int
2587 min_align_of_type (tree type)
2589 unsigned int align = TYPE_ALIGN (type);
2590 if (!TYPE_USER_ALIGN (type))
2592 align = MIN (align, BIGGEST_ALIGNMENT);
2593 #ifdef BIGGEST_FIELD_ALIGNMENT
2594 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2595 #endif
2596 unsigned int field_align = align;
2597 #ifdef ADJUST_FIELD_ALIGN
2598 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2599 #endif
2600 align = MIN (align, field_align);
2602 return align / BITS_PER_UNIT;
2605 /* Create and return a type for signed integers of PRECISION bits. */
2607 tree
2608 make_signed_type (int precision)
2610 tree type = make_node (INTEGER_TYPE);
2612 TYPE_PRECISION (type) = precision;
2614 fixup_signed_type (type);
2615 return type;
2618 /* Create and return a type for unsigned integers of PRECISION bits. */
2620 tree
2621 make_unsigned_type (int precision)
2623 tree type = make_node (INTEGER_TYPE);
2625 TYPE_PRECISION (type) = precision;
2627 fixup_unsigned_type (type);
2628 return type;
2631 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2632 and SATP. */
2634 tree
2635 make_fract_type (int precision, int unsignedp, int satp)
2637 tree type = make_node (FIXED_POINT_TYPE);
2639 TYPE_PRECISION (type) = precision;
2641 if (satp)
2642 TYPE_SATURATING (type) = 1;
2644 /* Lay out the type: set its alignment, size, etc. */
2645 TYPE_UNSIGNED (type) = unsignedp;
2646 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2647 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2648 layout_type (type);
2650 return type;
2653 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2654 and SATP. */
2656 tree
2657 make_accum_type (int precision, int unsignedp, int satp)
2659 tree type = make_node (FIXED_POINT_TYPE);
2661 TYPE_PRECISION (type) = precision;
2663 if (satp)
2664 TYPE_SATURATING (type) = 1;
2666 /* Lay out the type: set its alignment, size, etc. */
2667 TYPE_UNSIGNED (type) = unsignedp;
2668 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2669 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2670 layout_type (type);
2672 return type;
2675 /* Initialize sizetypes so layout_type can use them. */
2677 void
2678 initialize_sizetypes (void)
2680 int precision, bprecision;
2682 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2683 if (strcmp (SIZETYPE, "unsigned int") == 0)
2684 precision = INT_TYPE_SIZE;
2685 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2686 precision = LONG_TYPE_SIZE;
2687 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2688 precision = LONG_LONG_TYPE_SIZE;
2689 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2690 precision = SHORT_TYPE_SIZE;
2691 else
2693 int i;
2695 precision = -1;
2696 for (i = 0; i < NUM_INT_N_ENTS; i++)
2697 if (int_n_enabled_p[i])
2699 char name[50];
2700 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2702 if (strcmp (name, SIZETYPE) == 0)
2704 precision = int_n_data[i].bitsize;
2707 if (precision == -1)
2708 gcc_unreachable ();
2711 bprecision
2712 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2713 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2714 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2715 bprecision = HOST_BITS_PER_DOUBLE_INT;
2717 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2718 sizetype = make_node (INTEGER_TYPE);
2719 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2720 TYPE_PRECISION (sizetype) = precision;
2721 TYPE_UNSIGNED (sizetype) = 1;
2722 bitsizetype = make_node (INTEGER_TYPE);
2723 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2724 TYPE_PRECISION (bitsizetype) = bprecision;
2725 TYPE_UNSIGNED (bitsizetype) = 1;
2727 /* Now layout both types manually. */
2728 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2729 SET_TYPE_MODE (sizetype, mode);
2730 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2731 TYPE_SIZE (sizetype) = bitsize_int (precision);
2732 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2733 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2735 mode = smallest_int_mode_for_size (bprecision);
2736 SET_TYPE_MODE (bitsizetype, mode);
2737 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2738 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2739 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2740 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2742 /* Create the signed variants of *sizetype. */
2743 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2744 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2745 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2746 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2749 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2750 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2751 for TYPE, based on the PRECISION and whether or not the TYPE
2752 IS_UNSIGNED. PRECISION need not correspond to a width supported
2753 natively by the hardware; for example, on a machine with 8-bit,
2754 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2755 61. */
2757 void
2758 set_min_and_max_values_for_integral_type (tree type,
2759 int precision,
2760 signop sgn)
2762 /* For bitfields with zero width we end up creating integer types
2763 with zero precision. Don't assign any minimum/maximum values
2764 to those types, they don't have any valid value. */
2765 if (precision < 1)
2766 return;
2768 TYPE_MIN_VALUE (type)
2769 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2770 TYPE_MAX_VALUE (type)
2771 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2774 /* Set the extreme values of TYPE based on its precision in bits,
2775 then lay it out. Used when make_signed_type won't do
2776 because the tree code is not INTEGER_TYPE. */
2778 void
2779 fixup_signed_type (tree type)
2781 int precision = TYPE_PRECISION (type);
2783 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2785 /* Lay out the type: set its alignment, size, etc. */
2786 layout_type (type);
2789 /* Set the extreme values of TYPE based on its precision in bits,
2790 then lay it out. This is used both in `make_unsigned_type'
2791 and for enumeral types. */
2793 void
2794 fixup_unsigned_type (tree type)
2796 int precision = TYPE_PRECISION (type);
2798 TYPE_UNSIGNED (type) = 1;
2800 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2802 /* Lay out the type: set its alignment, size, etc. */
2803 layout_type (type);
2806 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2807 starting at BITPOS.
2809 BITREGION_START is the bit position of the first bit in this
2810 sequence of bit fields. BITREGION_END is the last bit in this
2811 sequence. If these two fields are non-zero, we should restrict the
2812 memory access to that range. Otherwise, we are allowed to touch
2813 any adjacent non bit-fields.
2815 ALIGN is the alignment of the underlying object in bits.
2816 VOLATILEP says whether the bitfield is volatile. */
2818 bit_field_mode_iterator
2819 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2820 poly_int64 bitregion_start,
2821 poly_int64 bitregion_end,
2822 unsigned int align, bool volatilep)
2823 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2824 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2825 m_bitregion_end (bitregion_end), m_align (align),
2826 m_volatilep (volatilep), m_count (0)
2828 if (known_eq (m_bitregion_end, 0))
2830 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2831 the bitfield is mapped and won't trap, provided that ALIGN isn't
2832 too large. The cap is the biggest required alignment for data,
2833 or at least the word size. And force one such chunk at least. */
2834 unsigned HOST_WIDE_INT units
2835 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2836 if (bitsize <= 0)
2837 bitsize = 1;
2838 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2839 m_bitregion_end = end - end % units - 1;
2843 /* Calls to this function return successively larger modes that can be used
2844 to represent the bitfield. Return true if another bitfield mode is
2845 available, storing it in *OUT_MODE if so. */
2847 bool
2848 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2850 scalar_int_mode mode;
2851 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2853 unsigned int unit = GET_MODE_BITSIZE (mode);
2855 /* Skip modes that don't have full precision. */
2856 if (unit != GET_MODE_PRECISION (mode))
2857 continue;
2859 /* Stop if the mode is too wide to handle efficiently. */
2860 if (unit > MAX_FIXED_MODE_SIZE)
2861 break;
2863 /* Don't deliver more than one multiword mode; the smallest one
2864 should be used. */
2865 if (m_count > 0 && unit > BITS_PER_WORD)
2866 break;
2868 /* Skip modes that are too small. */
2869 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2870 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2871 if (subend > unit)
2872 continue;
2874 /* Stop if the mode goes outside the bitregion. */
2875 HOST_WIDE_INT start = m_bitpos - substart;
2876 if (maybe_ne (m_bitregion_start, 0)
2877 && maybe_lt (start, m_bitregion_start))
2878 break;
2879 HOST_WIDE_INT end = start + unit;
2880 if (maybe_gt (end, m_bitregion_end + 1))
2881 break;
2883 /* Stop if the mode requires too much alignment. */
2884 if (GET_MODE_ALIGNMENT (mode) > m_align
2885 && targetm.slow_unaligned_access (mode, m_align))
2886 break;
2888 *out_mode = mode;
2889 m_mode = GET_MODE_WIDER_MODE (mode);
2890 m_count++;
2891 return true;
2893 return false;
2896 /* Return true if smaller modes are generally preferred for this kind
2897 of bitfield. */
2899 bool
2900 bit_field_mode_iterator::prefer_smaller_modes ()
2902 return (m_volatilep
2903 ? targetm.narrow_volatile_bitfield ()
2904 : !SLOW_BYTE_ACCESS);
2907 /* Find the best machine mode to use when referencing a bit field of length
2908 BITSIZE bits starting at BITPOS.
2910 BITREGION_START is the bit position of the first bit in this
2911 sequence of bit fields. BITREGION_END is the last bit in this
2912 sequence. If these two fields are non-zero, we should restrict the
2913 memory access to that range. Otherwise, we are allowed to touch
2914 any adjacent non bit-fields.
2916 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2917 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2918 doesn't want to apply a specific limit.
2920 If no mode meets all these conditions, we return VOIDmode.
2922 The underlying object is known to be aligned to a boundary of ALIGN bits.
2924 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2925 smallest mode meeting these conditions.
2927 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2928 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2929 all the conditions.
2931 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2932 decide which of the above modes should be used. */
2934 bool
2935 get_best_mode (int bitsize, int bitpos,
2936 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2937 unsigned int align,
2938 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2939 scalar_int_mode *best_mode)
2941 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2942 bitregion_end, align, volatilep);
2943 scalar_int_mode mode;
2944 bool found = false;
2945 while (iter.next_mode (&mode)
2946 /* ??? For historical reasons, reject modes that would normally
2947 receive greater alignment, even if unaligned accesses are
2948 acceptable. This has both advantages and disadvantages.
2949 Removing this check means that something like:
2951 struct s { unsigned int x; unsigned int y; };
2952 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2954 can be implemented using a single load and compare on
2955 64-bit machines that have no alignment restrictions.
2956 For example, on powerpc64-linux-gnu, we would generate:
2958 ld 3,0(3)
2959 cntlzd 3,3
2960 srdi 3,3,6
2963 rather than:
2965 lwz 9,0(3)
2966 cmpwi 7,9,0
2967 bne 7,.L3
2968 lwz 3,4(3)
2969 cntlzw 3,3
2970 srwi 3,3,5
2971 extsw 3,3
2973 .p2align 4,,15
2974 .L3:
2975 li 3,0
2978 However, accessing more than one field can make life harder
2979 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2980 has a series of unsigned short copies followed by a series of
2981 unsigned short comparisons. With this check, both the copies
2982 and comparisons remain 16-bit accesses and FRE is able
2983 to eliminate the latter. Without the check, the comparisons
2984 can be done using 2 64-bit operations, which FRE isn't able
2985 to handle in the same way.
2987 Either way, it would probably be worth disabling this check
2988 during expand. One particular example where removing the
2989 check would help is the get_best_mode call in store_bit_field.
2990 If we are given a memory bitregion of 128 bits that is aligned
2991 to a 64-bit boundary, and the bitfield we want to modify is
2992 in the second half of the bitregion, this check causes
2993 store_bitfield to turn the memory into a 64-bit reference
2994 to the _first_ half of the region. We later use
2995 adjust_bitfield_address to get a reference to the correct half,
2996 but doing so looks to adjust_bitfield_address as though we are
2997 moving past the end of the original object, so it drops the
2998 associated MEM_EXPR and MEM_OFFSET. Removing the check
2999 causes store_bit_field to keep a 128-bit memory reference,
3000 so that the final bitfield reference still has a MEM_EXPR
3001 and MEM_OFFSET. */
3002 && GET_MODE_ALIGNMENT (mode) <= align
3003 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3005 *best_mode = mode;
3006 found = true;
3007 if (iter.prefer_smaller_modes ())
3008 break;
3011 return found;
3014 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3015 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3017 void
3018 get_mode_bounds (scalar_int_mode mode, int sign,
3019 scalar_int_mode target_mode,
3020 rtx *mmin, rtx *mmax)
3022 unsigned size = GET_MODE_PRECISION (mode);
3023 unsigned HOST_WIDE_INT min_val, max_val;
3025 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3027 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3028 if (mode == BImode)
3030 if (STORE_FLAG_VALUE < 0)
3032 min_val = STORE_FLAG_VALUE;
3033 max_val = 0;
3035 else
3037 min_val = 0;
3038 max_val = STORE_FLAG_VALUE;
3041 else if (sign)
3043 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3044 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3046 else
3048 min_val = 0;
3049 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3052 *mmin = gen_int_mode (min_val, target_mode);
3053 *mmax = gen_int_mode (max_val, target_mode);
3056 #include "gt-stor-layout.h"