* doc/generic.texi (ANNOTATE_EXPR): Document 3rd operand.
[official-gcc.git] / gcc / cfgloopmanip.c
blob2ecd37cdff186ca883c94e253b2d785afdaae79d
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
57 int i;
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = current_loops->tree_root, *act;
94 FOR_EACH_EDGE (e, ei, bb->succs)
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
107 if (loop == bb->loop_father)
108 return false;
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
113 return true;
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
124 static bool
125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
127 unsigned i;
128 edge e;
129 vec<edge> exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 FOR_EACH_VEC_ELT (exits, i, e)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
157 ret = true;
160 exits.release ();
161 return ret;
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
184 basic_block *queue, *qtop, *qbeg, *qend;
185 struct loop *base_loop, *target_loop;
186 edge e;
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
215 while (qbeg != qend)
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
224 if (from->loop_father->header == from)
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
238 else
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
248 FOR_EACH_EDGE (e, ei, from->succs)
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
257 basic_block pred = e->src;
258 struct loop *nca;
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
294 free (queue);
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 struct loop *l, *f;
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
315 if (!can_remove_branch_p (e))
316 return false;
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
361 *irred_invalidated = true;
362 break;
365 for (i = 0; i < nrem; i++)
367 bb = rem_bbs[i];
368 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
369 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
370 && !bitmap_bit_p (seen, ae->dest->index))
372 bitmap_set_bit (seen, ae->dest->index);
373 bord_bbs[n_bord_bbs++] = ae->dest;
375 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
376 *irred_invalidated = true;
380 /* Remove the path. */
381 from = e->src;
382 remove_branch (e);
383 dom_bbs.create (0);
385 /* Cancel loops contained in the path. */
386 for (i = 0; i < nrem; i++)
387 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
388 cancel_loop_tree (rem_bbs[i]->loop_father);
390 remove_bbs (rem_bbs, nrem);
391 free (rem_bbs);
393 /* Find blocks whose dominators may be affected. */
394 bitmap_clear (seen);
395 for (i = 0; i < n_bord_bbs; i++)
397 basic_block ldom;
399 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
400 if (bitmap_bit_p (seen, bb->index))
401 continue;
402 bitmap_set_bit (seen, bb->index);
404 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
405 ldom;
406 ldom = next_dom_son (CDI_DOMINATORS, ldom))
407 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
408 dom_bbs.safe_push (ldom);
411 /* Recount dominators. */
412 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
413 dom_bbs.release ();
414 free (bord_bbs);
416 /* Fix placements of basic blocks inside loops and the placement of
417 loops in the loop tree. */
418 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
419 fix_loop_placements (from->loop_father, irred_invalidated);
421 if (local_irred_invalidated
422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
423 mark_irreducible_loops ();
425 return true;
428 /* Creates place for a new LOOP in loops structure of FN. */
430 void
431 place_new_loop (struct function *fn, struct loop *loop)
433 loop->num = number_of_loops (fn);
434 vec_safe_push (loops_for_fn (fn)->larray, loop);
437 /* Given LOOP structure with filled header and latch, find the body of the
438 corresponding loop and add it to loops tree. Insert the LOOP as a son of
439 outer. */
441 void
442 add_loop (struct loop *loop, struct loop *outer)
444 basic_block *bbs;
445 int i, n;
446 struct loop *subloop;
447 edge e;
448 edge_iterator ei;
450 /* Add it to loop structure. */
451 place_new_loop (cfun, loop);
452 flow_loop_tree_node_add (outer, loop);
454 /* Find its nodes. */
455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
458 for (i = 0; i < n; i++)
460 if (bbs[i]->loop_father == outer)
462 remove_bb_from_loops (bbs[i]);
463 add_bb_to_loop (bbs[i], loop);
464 continue;
467 loop->num_nodes++;
469 /* If we find a direct subloop of OUTER, move it to LOOP. */
470 subloop = bbs[i]->loop_father;
471 if (loop_outer (subloop) == outer
472 && subloop->header == bbs[i])
474 flow_loop_tree_node_remove (subloop);
475 flow_loop_tree_node_add (loop, subloop);
479 /* Update the information about loop exit edges. */
480 for (i = 0; i < n; i++)
482 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
484 rescan_loop_exit (e, false, false);
488 free (bbs);
491 /* Scale profile of loop by P. */
493 void
494 scale_loop_frequencies (struct loop *loop, profile_probability p)
496 basic_block *bbs;
498 bbs = get_loop_body (loop);
499 scale_bbs_frequencies (bbs, loop->num_nodes, p);
500 free (bbs);
503 /* Scale profile in LOOP by P.
504 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
505 to iterate too many times. */
507 void
508 scale_loop_profile (struct loop *loop, profile_probability p,
509 gcov_type iteration_bound)
511 gcov_type iterations = expected_loop_iterations_unbounded (loop);
512 edge e;
513 edge_iterator ei;
515 if (dump_file && (dump_flags & TDF_DETAILS))
517 fprintf (dump_file, ";; Scaling loop %i with scale ",
518 loop->num);
519 p.dump (dump_file);
520 fprintf (dump_file, " bounding iterations to %i from guessed %i\n",
521 (int)iteration_bound, (int)iterations);
524 /* See if loop is predicted to iterate too many times. */
525 if (iteration_bound && iterations > 0
526 && p.apply (iterations) > iteration_bound)
528 /* Fixing loop profile for different trip count is not trivial; the exit
529 probabilities has to be updated to match and frequencies propagated down
530 to the loop body.
532 We fully update only the simple case of loop with single exit that is
533 either from the latch or BB just before latch and leads from BB with
534 simple conditional jump. This is OK for use in vectorizer. */
535 e = single_exit (loop);
536 if (e)
538 edge other_e;
539 profile_count count_delta;
541 FOR_EACH_EDGE (other_e, ei, e->src->succs)
542 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
543 && e != other_e)
544 break;
546 /* Probability of exit must be 1/iterations. */
547 count_delta = e->count ();
548 e->probability = profile_probability::always ()
549 .apply_scale (1, iteration_bound);
550 other_e->probability = e->probability.invert ();
551 count_delta -= e->count ();
553 /* If latch exists, change its count, since we changed
554 probability of exit. Theoretically we should update everything from
555 source of exit edge to latch, but for vectorizer this is enough. */
556 if (loop->latch
557 && loop->latch != e->src)
559 loop->latch->count += count_delta;
563 /* Roughly speaking we want to reduce the loop body profile by the
564 difference of loop iterations. We however can do better if
565 we look at the actual profile, if it is available. */
566 p = p.apply_scale (iteration_bound, iterations);
568 if (loop->header->count.initialized_p ())
570 profile_count count_in = profile_count::zero ();
572 FOR_EACH_EDGE (e, ei, loop->header->preds)
573 if (e->src != loop->latch)
574 count_in += e->count ();
576 if (count_in > profile_count::zero () )
578 p = count_in.probability_in (loop->header->count.apply_scale
579 (iteration_bound, 1));
582 if (!(p > profile_probability::never ()))
583 p = profile_probability::very_unlikely ();
586 if (p >= profile_probability::always ()
587 || !p.initialized_p ())
588 return;
590 /* Scale the actual probabilities. */
591 scale_loop_frequencies (loop, p);
592 if (dump_file && (dump_flags & TDF_DETAILS))
593 fprintf (dump_file, ";; guessed iterations are now %i\n",
594 (int)expected_loop_iterations_unbounded (loop));
597 /* Recompute dominance information for basic blocks outside LOOP. */
599 static void
600 update_dominators_in_loop (struct loop *loop)
602 vec<basic_block> dom_bbs = vNULL;
603 basic_block *body;
604 unsigned i;
606 auto_sbitmap seen (last_basic_block_for_fn (cfun));
607 bitmap_clear (seen);
608 body = get_loop_body (loop);
610 for (i = 0; i < loop->num_nodes; i++)
611 bitmap_set_bit (seen, body[i]->index);
613 for (i = 0; i < loop->num_nodes; i++)
615 basic_block ldom;
617 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
618 ldom;
619 ldom = next_dom_son (CDI_DOMINATORS, ldom))
620 if (!bitmap_bit_p (seen, ldom->index))
622 bitmap_set_bit (seen, ldom->index);
623 dom_bbs.safe_push (ldom);
627 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
628 free (body);
629 dom_bbs.release ();
632 /* Creates an if region as shown above. CONDITION is used to create
633 the test for the if.
636 | ------------- -------------
637 | | pred_bb | | pred_bb |
638 | ------------- -------------
639 | | |
640 | | | ENTRY_EDGE
641 | | ENTRY_EDGE V
642 | | ====> -------------
643 | | | cond_bb |
644 | | | CONDITION |
645 | | -------------
646 | V / \
647 | ------------- e_false / \ e_true
648 | | succ_bb | V V
649 | ------------- ----------- -----------
650 | | false_bb | | true_bb |
651 | ----------- -----------
652 | \ /
653 | \ /
654 | V V
655 | -------------
656 | | join_bb |
657 | -------------
658 | | exit_edge (result)
660 | -----------
661 | | succ_bb |
662 | -----------
666 edge
667 create_empty_if_region_on_edge (edge entry_edge, tree condition)
670 basic_block cond_bb, true_bb, false_bb, join_bb;
671 edge e_true, e_false, exit_edge;
672 gcond *cond_stmt;
673 tree simple_cond;
674 gimple_stmt_iterator gsi;
676 cond_bb = split_edge (entry_edge);
678 /* Insert condition in cond_bb. */
679 gsi = gsi_last_bb (cond_bb);
680 simple_cond =
681 force_gimple_operand_gsi (&gsi, condition, true, NULL,
682 false, GSI_NEW_STMT);
683 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
684 gsi = gsi_last_bb (cond_bb);
685 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
687 join_bb = split_edge (single_succ_edge (cond_bb));
689 e_true = single_succ_edge (cond_bb);
690 true_bb = split_edge (e_true);
692 e_false = make_edge (cond_bb, join_bb, 0);
693 false_bb = split_edge (e_false);
695 e_true->flags &= ~EDGE_FALLTHRU;
696 e_true->flags |= EDGE_TRUE_VALUE;
697 e_false->flags &= ~EDGE_FALLTHRU;
698 e_false->flags |= EDGE_FALSE_VALUE;
700 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
701 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
702 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
703 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
705 exit_edge = single_succ_edge (join_bb);
707 if (single_pred_p (exit_edge->dest))
708 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
710 return exit_edge;
713 /* create_empty_loop_on_edge
715 | - pred_bb - ------ pred_bb ------
716 | | | | iv0 = initial_value |
717 | -----|----- ---------|-----------
718 | | ______ | entry_edge
719 | | entry_edge / | |
720 | | ====> | -V---V- loop_header -------------
721 | V | | iv_before = phi (iv0, iv_after) |
722 | - succ_bb - | ---|-----------------------------
723 | | | | |
724 | ----------- | ---V--- loop_body ---------------
725 | | | iv_after = iv_before + stride |
726 | | | if (iv_before < upper_bound) |
727 | | ---|--------------\--------------
728 | | | \ exit_e
729 | | V \
730 | | - loop_latch - V- succ_bb -
731 | | | | | |
732 | | /------------- -----------
733 | \ ___ /
735 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
736 that is used before the increment of IV. IV_BEFORE should be used for
737 adding code to the body that uses the IV. OUTER is the outer loop in
738 which the new loop should be inserted.
740 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
741 inserted on the loop entry edge. This implies that this function
742 should be used only when the UPPER_BOUND expression is a loop
743 invariant. */
745 struct loop *
746 create_empty_loop_on_edge (edge entry_edge,
747 tree initial_value,
748 tree stride, tree upper_bound,
749 tree iv,
750 tree *iv_before,
751 tree *iv_after,
752 struct loop *outer)
754 basic_block loop_header, loop_latch, succ_bb, pred_bb;
755 struct loop *loop;
756 gimple_stmt_iterator gsi;
757 gimple_seq stmts;
758 gcond *cond_expr;
759 tree exit_test;
760 edge exit_e;
762 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
764 /* Create header, latch and wire up the loop. */
765 pred_bb = entry_edge->src;
766 loop_header = split_edge (entry_edge);
767 loop_latch = split_edge (single_succ_edge (loop_header));
768 succ_bb = single_succ (loop_latch);
769 make_edge (loop_header, succ_bb, 0);
770 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
772 /* Set immediate dominator information. */
773 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
774 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
775 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
777 /* Initialize a loop structure and put it in a loop hierarchy. */
778 loop = alloc_loop ();
779 loop->header = loop_header;
780 loop->latch = loop_latch;
781 add_loop (loop, outer);
783 /* TODO: Fix counts. */
784 scale_loop_frequencies (loop, profile_probability::even ());
786 /* Update dominators. */
787 update_dominators_in_loop (loop);
789 /* Modify edge flags. */
790 exit_e = single_exit (loop);
791 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
792 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
794 /* Construct IV code in loop. */
795 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
796 if (stmts)
798 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
799 gsi_commit_edge_inserts ();
802 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
803 if (stmts)
805 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
806 gsi_commit_edge_inserts ();
809 gsi = gsi_last_bb (loop_header);
810 create_iv (initial_value, stride, iv, loop, &gsi, false,
811 iv_before, iv_after);
813 /* Insert loop exit condition. */
814 cond_expr = gimple_build_cond
815 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
817 exit_test = gimple_cond_lhs (cond_expr);
818 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
819 false, GSI_NEW_STMT);
820 gimple_cond_set_lhs (cond_expr, exit_test);
821 gsi = gsi_last_bb (exit_e->src);
822 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
824 split_block_after_labels (loop_header);
826 return loop;
829 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
830 latch to header and update loop tree and dominators
831 accordingly. Everything between them plus LATCH_EDGE destination must
832 be dominated by HEADER_EDGE destination, and back-reachable from
833 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
834 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
835 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
836 Returns the newly created loop. Frequencies and counts in the new loop
837 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
839 struct loop *
840 loopify (edge latch_edge, edge header_edge,
841 basic_block switch_bb, edge true_edge, edge false_edge,
842 bool redirect_all_edges, profile_probability true_scale,
843 profile_probability false_scale)
845 basic_block succ_bb = latch_edge->dest;
846 basic_block pred_bb = header_edge->src;
847 struct loop *loop = alloc_loop ();
848 struct loop *outer = loop_outer (succ_bb->loop_father);
849 profile_count cnt;
851 loop->header = header_edge->dest;
852 loop->latch = latch_edge->src;
854 cnt = header_edge->count ();
856 /* Redirect edges. */
857 loop_redirect_edge (latch_edge, loop->header);
858 loop_redirect_edge (true_edge, succ_bb);
860 /* During loop versioning, one of the switch_bb edge is already properly
861 set. Do not redirect it again unless redirect_all_edges is true. */
862 if (redirect_all_edges)
864 loop_redirect_edge (header_edge, switch_bb);
865 loop_redirect_edge (false_edge, loop->header);
867 /* Update dominators. */
868 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
869 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
872 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
874 /* Compute new loop. */
875 add_loop (loop, outer);
877 /* Add switch_bb to appropriate loop. */
878 if (switch_bb->loop_father)
879 remove_bb_from_loops (switch_bb);
880 add_bb_to_loop (switch_bb, outer);
882 /* Fix counts. */
883 if (redirect_all_edges)
885 switch_bb->count = cnt;
887 scale_loop_frequencies (loop, false_scale);
888 scale_loop_frequencies (succ_bb->loop_father, true_scale);
889 update_dominators_in_loop (loop);
891 return loop;
894 /* Remove the latch edge of a LOOP and update loops to indicate that
895 the LOOP was removed. After this function, original loop latch will
896 have no successor, which caller is expected to fix somehow.
898 If this may cause the information about irreducible regions to become
899 invalid, IRRED_INVALIDATED is set to true.
901 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
902 basic blocks that had non-trivial update on their loop_father.*/
904 void
905 unloop (struct loop *loop, bool *irred_invalidated,
906 bitmap loop_closed_ssa_invalidated)
908 basic_block *body;
909 struct loop *ploop;
910 unsigned i, n;
911 basic_block latch = loop->latch;
912 bool dummy = false;
914 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
915 *irred_invalidated = true;
917 /* This is relatively straightforward. The dominators are unchanged, as
918 loop header dominates loop latch, so the only thing we have to care of
919 is the placement of loops and basic blocks inside the loop tree. We
920 move them all to the loop->outer, and then let fix_bb_placements do
921 its work. */
923 body = get_loop_body (loop);
924 n = loop->num_nodes;
925 for (i = 0; i < n; i++)
926 if (body[i]->loop_father == loop)
928 remove_bb_from_loops (body[i]);
929 add_bb_to_loop (body[i], loop_outer (loop));
931 free (body);
933 while (loop->inner)
935 ploop = loop->inner;
936 flow_loop_tree_node_remove (ploop);
937 flow_loop_tree_node_add (loop_outer (loop), ploop);
940 /* Remove the loop and free its data. */
941 delete_loop (loop);
943 remove_edge (single_succ_edge (latch));
945 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
946 there is an irreducible region inside the cancelled loop, the flags will
947 be still correct. */
948 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
951 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
952 condition stated in description of fix_loop_placement holds for them.
953 It is used in case when we removed some edges coming out of LOOP, which
954 may cause the right placement of LOOP inside loop tree to change.
956 IRRED_INVALIDATED is set to true if a change in the loop structures might
957 invalidate the information about irreducible regions. */
959 static void
960 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
962 struct loop *outer;
964 while (loop_outer (loop))
966 outer = loop_outer (loop);
967 if (!fix_loop_placement (loop, irred_invalidated))
968 break;
970 /* Changing the placement of a loop in the loop tree may alter the
971 validity of condition 2) of the description of fix_bb_placement
972 for its preheader, because the successor is the header and belongs
973 to the loop. So call fix_bb_placements to fix up the placement
974 of the preheader and (possibly) of its predecessors. */
975 fix_bb_placements (loop_preheader_edge (loop)->src,
976 irred_invalidated, NULL);
977 loop = outer;
981 /* Duplicate loop bounds and other information we store about
982 the loop into its duplicate. */
984 void
985 copy_loop_info (struct loop *loop, struct loop *target)
987 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
988 target->any_upper_bound = loop->any_upper_bound;
989 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
990 target->any_likely_upper_bound = loop->any_likely_upper_bound;
991 target->nb_iterations_likely_upper_bound
992 = loop->nb_iterations_likely_upper_bound;
993 target->any_estimate = loop->any_estimate;
994 target->nb_iterations_estimate = loop->nb_iterations_estimate;
995 target->estimate_state = loop->estimate_state;
996 target->constraints = loop->constraints;
997 target->warned_aggressive_loop_optimizations
998 |= loop->warned_aggressive_loop_optimizations;
999 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1002 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1003 created loop into loops structure. */
1004 struct loop *
1005 duplicate_loop (struct loop *loop, struct loop *target)
1007 struct loop *cloop;
1008 cloop = alloc_loop ();
1009 place_new_loop (cfun, cloop);
1011 copy_loop_info (loop, cloop);
1013 /* Mark the new loop as copy of LOOP. */
1014 set_loop_copy (loop, cloop);
1016 /* Add it to target. */
1017 flow_loop_tree_node_add (target, cloop);
1019 return cloop;
1022 /* Copies structure of subloops of LOOP into TARGET loop, placing
1023 newly created loops into loop tree. */
1024 void
1025 duplicate_subloops (struct loop *loop, struct loop *target)
1027 struct loop *aloop, *cloop;
1029 for (aloop = loop->inner; aloop; aloop = aloop->next)
1031 cloop = duplicate_loop (aloop, target);
1032 duplicate_subloops (aloop, cloop);
1036 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1037 into TARGET loop, placing newly created loops into loop tree. */
1038 static void
1039 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1041 struct loop *aloop;
1042 int i;
1044 for (i = 0; i < n; i++)
1046 aloop = duplicate_loop (copied_loops[i], target);
1047 duplicate_subloops (copied_loops[i], aloop);
1051 /* Redirects edge E to basic block DEST. */
1052 static void
1053 loop_redirect_edge (edge e, basic_block dest)
1055 if (e->dest == dest)
1056 return;
1058 redirect_edge_and_branch_force (e, dest);
1061 /* Check whether LOOP's body can be duplicated. */
1062 bool
1063 can_duplicate_loop_p (const struct loop *loop)
1065 int ret;
1066 basic_block *bbs = get_loop_body (loop);
1068 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1069 free (bbs);
1071 return ret;
1074 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1075 loop structure and dominators. E's destination must be LOOP header for
1076 this to work, i.e. it must be entry or latch edge of this loop; these are
1077 unique, as the loops must have preheaders for this function to work
1078 correctly (in case E is latch, the function unrolls the loop, if E is entry
1079 edge, it peels the loop). Store edges created by copying ORIG edge from
1080 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1081 original LOOP body, the other copies are numbered in order given by control
1082 flow through them) into TO_REMOVE array. Returns false if duplication is
1083 impossible. */
1085 bool
1086 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1087 unsigned int ndupl, sbitmap wont_exit,
1088 edge orig, vec<edge> *to_remove,
1089 int flags)
1091 struct loop *target, *aloop;
1092 struct loop **orig_loops;
1093 unsigned n_orig_loops;
1094 basic_block header = loop->header, latch = loop->latch;
1095 basic_block *new_bbs, *bbs, *first_active;
1096 basic_block new_bb, bb, first_active_latch = NULL;
1097 edge ae, latch_edge;
1098 edge spec_edges[2], new_spec_edges[2];
1099 const int SE_LATCH = 0;
1100 const int SE_ORIG = 1;
1101 unsigned i, j, n;
1102 int is_latch = (latch == e->src);
1103 profile_probability *scale_step = NULL;
1104 profile_probability scale_main = profile_probability::always ();
1105 profile_probability scale_act = profile_probability::always ();
1106 profile_count after_exit_num = profile_count::zero (),
1107 after_exit_den = profile_count::zero ();
1108 bool scale_after_exit = false;
1109 int add_irreducible_flag;
1110 basic_block place_after;
1111 bitmap bbs_to_scale = NULL;
1112 bitmap_iterator bi;
1114 gcc_assert (e->dest == loop->header);
1115 gcc_assert (ndupl > 0);
1117 if (orig)
1119 /* Orig must be edge out of the loop. */
1120 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1121 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1124 n = loop->num_nodes;
1125 bbs = get_loop_body_in_dom_order (loop);
1126 gcc_assert (bbs[0] == loop->header);
1127 gcc_assert (bbs[n - 1] == loop->latch);
1129 /* Check whether duplication is possible. */
1130 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1132 free (bbs);
1133 return false;
1135 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1137 /* In case we are doing loop peeling and the loop is in the middle of
1138 irreducible region, the peeled copies will be inside it too. */
1139 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1140 gcc_assert (!is_latch || !add_irreducible_flag);
1142 /* Find edge from latch. */
1143 latch_edge = loop_latch_edge (loop);
1145 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1147 /* Calculate coefficients by that we have to scale counts
1148 of duplicated loop bodies. */
1149 profile_count count_in = header->count;
1150 profile_count count_le = latch_edge->count ();
1151 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1152 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1153 profile_probability prob_pass_wont_exit =
1154 (count_le + count_out_orig).probability_in (count_in);
1156 if (orig && orig->probability.initialized_p ()
1157 && !(orig->probability == profile_probability::always ()))
1159 /* The blocks that are dominated by a removed exit edge ORIG have
1160 frequencies scaled by this. */
1161 if (orig->count ().initialized_p ())
1163 after_exit_num = orig->src->count;
1164 after_exit_den = after_exit_num - orig->count ();
1165 scale_after_exit = true;
1167 bbs_to_scale = BITMAP_ALLOC (NULL);
1168 for (i = 0; i < n; i++)
1170 if (bbs[i] != orig->src
1171 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1172 bitmap_set_bit (bbs_to_scale, i);
1176 scale_step = XNEWVEC (profile_probability, ndupl);
1178 for (i = 1; i <= ndupl; i++)
1179 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1180 ? prob_pass_wont_exit
1181 : prob_pass_thru;
1183 /* Complete peeling is special as the probability of exit in last
1184 copy becomes 1. */
1185 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1187 profile_count wanted_count = e->count ();
1189 gcc_assert (!is_latch);
1190 /* First copy has count of incoming edge. Each subsequent
1191 count should be reduced by prob_pass_wont_exit. Caller
1192 should've managed the flags so all except for original loop
1193 has won't exist set. */
1194 scale_act = wanted_count.probability_in (count_in);
1195 /* Now simulate the duplication adjustments and compute header
1196 frequency of the last copy. */
1197 for (i = 0; i < ndupl; i++)
1198 wanted_count = wanted_count.apply_probability (scale_step [i]);
1199 scale_main = wanted_count.probability_in (count_in);
1201 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1202 First iteration will be original loop followed by duplicated bodies.
1203 It is necessary to scale down the original so we get right overall
1204 number of iterations. */
1205 else if (is_latch)
1207 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1208 ? prob_pass_wont_exit
1209 : prob_pass_thru;
1210 profile_probability p = prob_pass_main;
1211 profile_count scale_main_den = count_in;
1212 for (i = 0; i < ndupl; i++)
1214 scale_main_den += count_in.apply_probability (p);
1215 p = p * scale_step[i];
1217 /* If original loop is executed COUNT_IN times, the unrolled
1218 loop will account SCALE_MAIN_DEN times. */
1219 scale_main = count_in.probability_in (scale_main_den);
1220 scale_act = scale_main * prob_pass_main;
1222 else
1224 profile_count preheader_count = e->count ();
1225 for (i = 0; i < ndupl; i++)
1226 scale_main = scale_main * scale_step[i];
1227 scale_act = preheader_count.probability_in (count_in);
1231 /* Loop the new bbs will belong to. */
1232 target = e->src->loop_father;
1234 /* Original loops. */
1235 n_orig_loops = 0;
1236 for (aloop = loop->inner; aloop; aloop = aloop->next)
1237 n_orig_loops++;
1238 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1239 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1240 orig_loops[i] = aloop;
1242 set_loop_copy (loop, target);
1244 first_active = XNEWVEC (basic_block, n);
1245 if (is_latch)
1247 memcpy (first_active, bbs, n * sizeof (basic_block));
1248 first_active_latch = latch;
1251 spec_edges[SE_ORIG] = orig;
1252 spec_edges[SE_LATCH] = latch_edge;
1254 place_after = e->src;
1255 for (j = 0; j < ndupl; j++)
1257 /* Copy loops. */
1258 copy_loops_to (orig_loops, n_orig_loops, target);
1260 /* Copy bbs. */
1261 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1262 place_after, true);
1263 place_after = new_spec_edges[SE_LATCH]->src;
1265 if (flags & DLTHE_RECORD_COPY_NUMBER)
1266 for (i = 0; i < n; i++)
1268 gcc_assert (!new_bbs[i]->aux);
1269 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1272 /* Note whether the blocks and edges belong to an irreducible loop. */
1273 if (add_irreducible_flag)
1275 for (i = 0; i < n; i++)
1276 new_bbs[i]->flags |= BB_DUPLICATED;
1277 for (i = 0; i < n; i++)
1279 edge_iterator ei;
1280 new_bb = new_bbs[i];
1281 if (new_bb->loop_father == target)
1282 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1284 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1285 if ((ae->dest->flags & BB_DUPLICATED)
1286 && (ae->src->loop_father == target
1287 || ae->dest->loop_father == target))
1288 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1290 for (i = 0; i < n; i++)
1291 new_bbs[i]->flags &= ~BB_DUPLICATED;
1294 /* Redirect the special edges. */
1295 if (is_latch)
1297 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1298 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1299 loop->header);
1300 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1301 latch = loop->latch = new_bbs[n - 1];
1302 e = latch_edge = new_spec_edges[SE_LATCH];
1304 else
1306 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1307 loop->header);
1308 redirect_edge_and_branch_force (e, new_bbs[0]);
1309 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1310 e = new_spec_edges[SE_LATCH];
1313 /* Record exit edge in this copy. */
1314 if (orig && bitmap_bit_p (wont_exit, j + 1))
1316 if (to_remove)
1317 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1318 force_edge_cold (new_spec_edges[SE_ORIG], true);
1320 /* Scale the frequencies of the blocks dominated by the exit. */
1321 if (bbs_to_scale && scale_after_exit)
1323 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1324 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1325 after_exit_den);
1329 /* Record the first copy in the control flow order if it is not
1330 the original loop (i.e. in case of peeling). */
1331 if (!first_active_latch)
1333 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1334 first_active_latch = new_bbs[n - 1];
1337 /* Set counts and frequencies. */
1338 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1340 scale_bbs_frequencies (new_bbs, n, scale_act);
1341 scale_act = scale_act * scale_step[j];
1344 free (new_bbs);
1345 free (orig_loops);
1347 /* Record the exit edge in the original loop body, and update the frequencies. */
1348 if (orig && bitmap_bit_p (wont_exit, 0))
1350 if (to_remove)
1351 to_remove->safe_push (orig);
1352 force_edge_cold (orig, true);
1354 /* Scale the frequencies of the blocks dominated by the exit. */
1355 if (bbs_to_scale && scale_after_exit)
1357 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1358 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1359 after_exit_den);
1363 /* Update the original loop. */
1364 if (!is_latch)
1365 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1366 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1368 scale_bbs_frequencies (bbs, n, scale_main);
1369 free (scale_step);
1372 /* Update dominators of outer blocks if affected. */
1373 for (i = 0; i < n; i++)
1375 basic_block dominated, dom_bb;
1376 vec<basic_block> dom_bbs;
1377 unsigned j;
1379 bb = bbs[i];
1380 bb->aux = 0;
1382 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1383 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1385 if (flow_bb_inside_loop_p (loop, dominated))
1386 continue;
1387 dom_bb = nearest_common_dominator (
1388 CDI_DOMINATORS, first_active[i], first_active_latch);
1389 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1391 dom_bbs.release ();
1393 free (first_active);
1395 free (bbs);
1396 BITMAP_FREE (bbs_to_scale);
1398 return true;
1401 /* A callback for make_forwarder block, to redirect all edges except for
1402 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1403 whether to redirect it. */
1405 edge mfb_kj_edge;
1406 bool
1407 mfb_keep_just (edge e)
1409 return e != mfb_kj_edge;
1412 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1414 static bool
1415 has_preds_from_loop (basic_block block, struct loop *loop)
1417 edge e;
1418 edge_iterator ei;
1420 FOR_EACH_EDGE (e, ei, block->preds)
1421 if (e->src->loop_father == loop)
1422 return true;
1423 return false;
1426 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1427 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1428 entry; otherwise we also force preheader block to have only one successor.
1429 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1430 to be a fallthru predecessor to the loop header and to have only
1431 predecessors from outside of the loop.
1432 The function also updates dominators. */
1434 basic_block
1435 create_preheader (struct loop *loop, int flags)
1437 edge e;
1438 basic_block dummy;
1439 int nentry = 0;
1440 bool irred = false;
1441 bool latch_edge_was_fallthru;
1442 edge one_succ_pred = NULL, single_entry = NULL;
1443 edge_iterator ei;
1445 FOR_EACH_EDGE (e, ei, loop->header->preds)
1447 if (e->src == loop->latch)
1448 continue;
1449 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1450 nentry++;
1451 single_entry = e;
1452 if (single_succ_p (e->src))
1453 one_succ_pred = e;
1455 gcc_assert (nentry);
1456 if (nentry == 1)
1458 bool need_forwarder_block = false;
1460 /* We do not allow entry block to be the loop preheader, since we
1461 cannot emit code there. */
1462 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1463 need_forwarder_block = true;
1464 else
1466 /* If we want simple preheaders, also force the preheader to have
1467 just a single successor. */
1468 if ((flags & CP_SIMPLE_PREHEADERS)
1469 && !single_succ_p (single_entry->src))
1470 need_forwarder_block = true;
1471 /* If we want fallthru preheaders, also create forwarder block when
1472 preheader ends with a jump or has predecessors from loop. */
1473 else if ((flags & CP_FALLTHRU_PREHEADERS)
1474 && (JUMP_P (BB_END (single_entry->src))
1475 || has_preds_from_loop (single_entry->src, loop)))
1476 need_forwarder_block = true;
1478 if (! need_forwarder_block)
1479 return NULL;
1482 mfb_kj_edge = loop_latch_edge (loop);
1483 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1484 if (nentry == 1)
1485 dummy = split_edge (single_entry);
1486 else
1488 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1489 dummy = fallthru->src;
1490 loop->header = fallthru->dest;
1493 /* Try to be clever in placing the newly created preheader. The idea is to
1494 avoid breaking any "fallthruness" relationship between blocks.
1496 The preheader was created just before the header and all incoming edges
1497 to the header were redirected to the preheader, except the latch edge.
1498 So the only problematic case is when this latch edge was a fallthru
1499 edge: it is not anymore after the preheader creation so we have broken
1500 the fallthruness. We're therefore going to look for a better place. */
1501 if (latch_edge_was_fallthru)
1503 if (one_succ_pred)
1504 e = one_succ_pred;
1505 else
1506 e = EDGE_PRED (dummy, 0);
1508 move_block_after (dummy, e->src);
1511 if (irred)
1513 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1514 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1517 if (dump_file)
1518 fprintf (dump_file, "Created preheader block for loop %i\n",
1519 loop->num);
1521 if (flags & CP_FALLTHRU_PREHEADERS)
1522 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1523 && !JUMP_P (BB_END (dummy)));
1525 return dummy;
1528 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1530 void
1531 create_preheaders (int flags)
1533 struct loop *loop;
1535 if (!current_loops)
1536 return;
1538 FOR_EACH_LOOP (loop, 0)
1539 create_preheader (loop, flags);
1540 loops_state_set (LOOPS_HAVE_PREHEADERS);
1543 /* Forces all loop latches to have only single successor. */
1545 void
1546 force_single_succ_latches (void)
1548 struct loop *loop;
1549 edge e;
1551 FOR_EACH_LOOP (loop, 0)
1553 if (loop->latch != loop->header && single_succ_p (loop->latch))
1554 continue;
1556 e = find_edge (loop->latch, loop->header);
1557 gcc_checking_assert (e != NULL);
1559 split_edge (e);
1561 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1564 /* This function is called from loop_version. It splits the entry edge
1565 of the loop we want to version, adds the versioning condition, and
1566 adjust the edges to the two versions of the loop appropriately.
1567 e is an incoming edge. Returns the basic block containing the
1568 condition.
1570 --- edge e ---- > [second_head]
1572 Split it and insert new conditional expression and adjust edges.
1574 --- edge e ---> [cond expr] ---> [first_head]
1576 +---------> [second_head]
1578 THEN_PROB is the probability of then branch of the condition.
1579 ELSE_PROB is the probability of else branch. Note that they may be both
1580 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1581 IFN_LOOP_DIST_ALIAS. */
1583 static basic_block
1584 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1585 edge e, void *cond_expr,
1586 profile_probability then_prob,
1587 profile_probability else_prob)
1589 basic_block new_head = NULL;
1590 edge e1;
1592 gcc_assert (e->dest == second_head);
1594 /* Split edge 'e'. This will create a new basic block, where we can
1595 insert conditional expr. */
1596 new_head = split_edge (e);
1598 lv_add_condition_to_bb (first_head, second_head, new_head,
1599 cond_expr);
1601 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1602 e = single_succ_edge (new_head);
1603 e1 = make_edge (new_head, first_head,
1604 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1605 e1->probability = then_prob;
1606 e->probability = else_prob;
1608 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1609 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1611 /* Adjust loop header phi nodes. */
1612 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1614 return new_head;
1617 /* Main entry point for Loop Versioning transformation.
1619 This transformation given a condition and a loop, creates
1620 -if (condition) { loop_copy1 } else { loop_copy2 },
1621 where loop_copy1 is the loop transformed in one way, and loop_copy2
1622 is the loop transformed in another way (or unchanged). COND_EXPR
1623 may be a run time test for things that were not resolved by static
1624 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1626 If non-NULL, CONDITION_BB is set to the basic block containing the
1627 condition.
1629 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1630 is the ratio by that the frequencies in the original loop should
1631 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1632 new loop should be scaled.
1634 If PLACE_AFTER is true, we place the new loop after LOOP in the
1635 instruction stream, otherwise it is placed before LOOP. */
1637 struct loop *
1638 loop_version (struct loop *loop,
1639 void *cond_expr, basic_block *condition_bb,
1640 profile_probability then_prob, profile_probability else_prob,
1641 profile_probability then_scale, profile_probability else_scale,
1642 bool place_after)
1644 basic_block first_head, second_head;
1645 edge entry, latch_edge, true_edge, false_edge;
1646 int irred_flag;
1647 struct loop *nloop;
1648 basic_block cond_bb;
1650 /* Record entry and latch edges for the loop */
1651 entry = loop_preheader_edge (loop);
1652 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1653 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1655 /* Note down head of loop as first_head. */
1656 first_head = entry->dest;
1658 /* Duplicate loop. */
1659 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1660 NULL, NULL, NULL, 0))
1662 entry->flags |= irred_flag;
1663 return NULL;
1666 /* After duplication entry edge now points to new loop head block.
1667 Note down new head as second_head. */
1668 second_head = entry->dest;
1670 /* Split loop entry edge and insert new block with cond expr. */
1671 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1672 entry, cond_expr, then_prob, else_prob);
1673 if (condition_bb)
1674 *condition_bb = cond_bb;
1676 if (!cond_bb)
1678 entry->flags |= irred_flag;
1679 return NULL;
1682 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1684 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1685 nloop = loopify (latch_edge,
1686 single_pred_edge (get_bb_copy (loop->header)),
1687 cond_bb, true_edge, false_edge,
1688 false /* Do not redirect all edges. */,
1689 then_scale, else_scale);
1691 copy_loop_info (loop, nloop);
1693 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1694 lv_flush_pending_stmts (latch_edge);
1696 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1697 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1698 lv_flush_pending_stmts (false_edge);
1699 /* Adjust irreducible flag. */
1700 if (irred_flag)
1702 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1703 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1704 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1705 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1708 if (place_after)
1710 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1711 unsigned i;
1713 after = loop->latch;
1715 for (i = 0; i < nloop->num_nodes; i++)
1717 move_block_after (bbs[i], after);
1718 after = bbs[i];
1720 free (bbs);
1723 /* At this point condition_bb is loop preheader with two successors,
1724 first_head and second_head. Make sure that loop preheader has only
1725 one successor. */
1726 split_edge (loop_preheader_edge (loop));
1727 split_edge (loop_preheader_edge (nloop));
1729 return nloop;