2008-05-20 Kai Tietz <kai.tietz@onevision.com>
[official-gcc.git] / gcc / df-core.c
blob8efbd21a0147203a8e01b9b242ed27fa4b17ae2f
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Originally contributed by Michael P. Hayes
5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 OVERVIEW:
28 The files in this collection (df*.c,df.h) provide a general framework
29 for solving dataflow problems. The global dataflow is performed using
30 a good implementation of iterative dataflow analysis.
32 The file df-problems.c provides problem instance for the most common
33 dataflow problems: reaching defs, upward exposed uses, live variables,
34 uninitialized variables, def-use chains, and use-def chains. However,
35 the interface allows other dataflow problems to be defined as well.
37 Dataflow analysis is available in most of the rtl backend (the parts
38 between pass_df_initialize and pass_df_finish). It is quite likely
39 that these boundaries will be expanded in the future. The only
40 requirement is that there be a correct control flow graph.
42 There are three variations of the live variable problem that are
43 available whenever dataflow is available. The LR problem finds the
44 areas that can reach a use of a variable, the UR problems finds the
45 areas tha can be reached from a definition of a variable. The LIVE
46 problem finds the intersection of these two areas.
48 There are several optional problems. These can be enabled when they
49 are needed and disabled when they are not needed.
51 Dataflow problems are generally solved in three layers. The bottom
52 layer is called scanning where a data structure is built for each rtl
53 insn that describes the set of defs and uses of that insn. Scanning
54 is generally kept up to date, i.e. as the insns changes, the scanned
55 version of that insn changes also. There are various mechanisms for
56 making this happen and are described in the INCREMENTAL SCANNING
57 section.
59 In the middle layer, basic blocks are scanned to produce transfer
60 functions which describe the effects of that block on the a global
61 dataflow solution. The transfer functions are only rebuilt if the
62 some instruction within the block has changed.
64 The top layer is the dataflow solution itself. The dataflow solution
65 is computed by using an efficient iterative solver and the transfer
66 functions. The dataflow solution must be recomputed whenever the
67 control changes or if one of the transfer function changes.
70 USAGE:
72 Here is an example of using the dataflow routines.
74 df_[chain,live,note,rd]_add_problem (flags);
76 df_set_blocks (blocks);
78 df_analyze ();
80 df_dump (stderr);
82 df_finish_pass (false);
84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85 instance to struct df_problem, to the set of problems solved in this
86 instance of df. All calls to add a problem for a given instance of df
87 must occur before the first call to DF_ANALYZE.
89 Problems can be dependent on other problems. For instance, solving
90 def-use or use-def chains is dependent on solving reaching
91 definitions. As long as these dependencies are listed in the problem
92 definition, the order of adding the problems is not material.
93 Otherwise, the problems will be solved in the order of calls to
94 df_add_problem. Note that it is not necessary to have a problem. In
95 that case, df will just be used to do the scanning.
99 DF_SET_BLOCKS is an optional call used to define a region of the
100 function on which the analysis will be performed. The normal case is
101 to analyze the entire function and no call to df_set_blocks is made.
102 DF_SET_BLOCKS only effects the blocks that are effected when computing
103 the transfer functions and final solution. The insn level information
104 is always kept up to date.
106 When a subset is given, the analysis behaves as if the function only
107 contains those blocks and any edges that occur directly between the
108 blocks in the set. Care should be taken to call df_set_blocks right
109 before the call to analyze in order to eliminate the possibility that
110 optimizations that reorder blocks invalidate the bitvector.
112 DF_ANALYZE causes all of the defined problems to be (re)solved. When
113 DF_ANALYZE is completes, the IN and OUT sets for each basic block
114 contain the computer information. The DF_*_BB_INFO macros can be used
115 to access these bitvectors. All deferred rescannings are down before
116 the transfer functions are recomputed.
118 DF_DUMP can then be called to dump the information produce to some
119 file. This calls DF_DUMP_START, to print the information that is not
120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121 for each block to print the basic specific information. These parts
122 can all be called separately as part of a larger dump function.
125 DF_FINISH_PASS causes df_remove_problem to be called on all of the
126 optional problems. It also causes any insns whose scanning has been
127 deferred to be rescanned as well as clears all of the changeable flags.
128 Setting the pass manager TODO_df_finish flag causes this function to
129 be run. However, the pass manager will call df_finish_pass AFTER the
130 pass dumping has been done, so if you want to see the results of the
131 optional problems in the pass dumps, use the TODO flag rather than
132 calling the function yourself.
134 INCREMENTAL SCANNING
136 There are four ways of doing the incremental scanning:
138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
147 upon even after changes have been made to the instructions. This
148 technique is contra indicated in several cases:
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
173 e) If the pass uses either non-standard or ancient techniques to
174 modify insns, automatic detection of the insns that need to be
175 rescanned may be impractical. Cse and regrename fall into this
176 category.
178 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
179 df_insn_delete do not immediately change the insn but instead make
180 a note that the insn needs to be rescanned. The next call to
181 df_analyze, df_finish_pass, or df_process_deferred_rescans will
182 cause all of the pending rescans to be processed.
184 This is the technique of choice if either 1a, 1b, or 1c are issues
185 in the pass. In the case of 1a or 1b, a call to df_remove_problem
186 (df_chain) should be made before the next call to df_analyze or
187 df_process_deferred_rescans.
189 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
190 (This mode can be cleared by calling df_clear_flags
191 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
192 be rescanned.
194 3) Total rescanning - In this mode the rescanning is disabled.
195 However, the df information associated with deleted insn is delete
196 at the time the insn is deleted. At the end of the pass, a call
197 must be made to df_insn_rescan_all. This method is used by the
198 register allocator since it generally changes each insn multiple
199 times (once for each ref) and does not need to make use of the
200 updated scanning information.
202 It is also currently used by two older passes (cse, and regrename)
203 which change insns in hard to track ways. It is hoped that this
204 will be fixed soon since this it is expensive to rescan all of the
205 insns when only a small number of them have really changed.
207 4) Do it yourself - In this mechanism, the pass updates the insns
208 itself using the low level df primitives. Currently no pass does
209 this, but it has the advantage that it is quite efficient given
210 that the pass generally has exact knowledge of what it is changing.
212 DATA STRUCTURES
214 Scanning produces a `struct df_ref' data structure (ref) is allocated
215 for every register reference (def or use) and this records the insn
216 and bb the ref is found within. The refs are linked together in
217 chains of uses and defs for each insn and for each register. Each ref
218 also has a chain field that links all the use refs for a def or all
219 the def refs for a use. This is used to create use-def or def-use
220 chains.
222 Different optimizations have different needs. Ultimately, only
223 register allocation and schedulers should be using the bitmaps
224 produced for the live register and uninitialized register problems.
225 The rest of the backend should be upgraded to using and maintaining
226 the linked information such as def use or use def chains.
229 PHILOSOPHY:
231 While incremental bitmaps are not worthwhile to maintain, incremental
232 chains may be perfectly reasonable. The fastest way to build chains
233 from scratch or after significant modifications is to build reaching
234 definitions (RD) and build the chains from this.
236 However, general algorithms for maintaining use-def or def-use chains
237 are not practical. The amount of work to recompute the chain any
238 chain after an arbitrary change is large. However, with a modest
239 amount of work it is generally possible to have the application that
240 uses the chains keep them up to date. The high level knowledge of
241 what is really happening is essential to crafting efficient
242 incremental algorithms.
244 As for the bit vector problems, there is no interface to give a set of
245 blocks over with to resolve the iteration. In general, restarting a
246 dataflow iteration is difficult and expensive. Again, the best way to
247 keep the dataflow information up to data (if this is really what is
248 needed) it to formulate a problem specific solution.
250 There are fine grained calls for creating and deleting references from
251 instructions in df-scan.c. However, these are not currently connected
252 to the engine that resolves the dataflow equations.
255 DATA STRUCTURES:
257 The basic object is a DF_REF (reference) and this may either be a
258 DEF (definition) or a USE of a register.
260 These are linked into a variety of lists; namely reg-def, reg-use,
261 insn-def, insn-use, def-use, and use-def lists. For example, the
262 reg-def lists contain all the locations that define a given register
263 while the insn-use lists contain all the locations that use a
264 register.
266 Note that the reg-def and reg-use chains are generally short for
267 pseudos and long for the hard registers.
269 ACCESSING INSNS:
271 1) The df insn information is kept in the insns array. This array is
272 indexed by insn uid.
274 2) Each insn has three sets of refs: They are linked into one of three
275 lists: the insn's defs list (accessed by the DF_INSN_DEFS or
276 DF_INSN_UID_DEFS macros), the insn's uses list (accessed by the
277 DF_INSN_USES or DF_INSN_UID_USES macros) or the insn's eq_uses list
278 (accessed by the DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
279 The latter list are the list of references in REG_EQUAL or
280 REG_EQUIV notes. These macros produce a ref (or NULL), the rest of
281 the list can be obtained by traversal of the NEXT_REF field
282 (accessed by the DF_REF_NEXT_REF macro.) There is no significance
283 to the ordering of the uses or refs in an instruction.
285 3) Each insn has a logical uid field (LUID). When properly set, this
286 is an integer that numbers each insn in the basic block, in order from
287 the start of the block. The numbers are only correct after a call to
288 df_analyse. They will rot after insns are added deleted or moved
289 around.
291 ACCESSING REFS:
293 There are 4 ways to obtain access to refs:
295 1) References are divided into two categories, REAL and ARTIFICIAL.
297 REAL refs are associated with instructions.
299 ARTIFICIAL refs are associated with basic blocks. The heads of
300 these lists can be accessed by calling df_get_artificial_defs or
301 df_get_artificial_uses for the particular basic block.
303 Artificial defs and uses occur both at the beginning and ends of blocks.
305 For blocks that area at the destination of eh edges, the
306 artificial uses and defs occur at the beginning. The defs relate
307 to the registers specified in EH_RETURN_DATA_REGNO and the uses
308 relate to the registers specified in ED_USES. Logically these
309 defs and uses should really occur along the eh edge, but there is
310 no convenient way to do this. Artificial edges that occur at the
311 beginning of the block have the DF_REF_AT_TOP flag set.
313 Artificial uses occur at the end of all blocks. These arise from
314 the hard registers that are always live, such as the stack
315 register and are put there to keep the code from forgetting about
316 them.
318 Artificial defs occur at the end of the entry block. These arise
319 from registers that are live at entry to the function.
321 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
322 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
324 All of the eq_uses, uses and defs associated with each pseudo or
325 hard register may be linked in a bidirectional chain. These are
326 called reg-use or reg_def chains. If the changeable flag
327 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
328 treated like uses. If it is not set they are ignored.
330 The first use, eq_use or def for a register can be obtained using
331 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
332 macros. Subsequent uses for the same regno can be obtained by
333 following the next_reg field of the ref. The number of elements in
334 each of the chains can be found by using the DF_REG_USE_COUNT,
335 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
337 In previous versions of this code, these chains were ordered. It
338 has not been practical to continue this practice.
340 3) If def-use or use-def chains are built, these can be traversed to
341 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
342 include the eq_uses. Otherwise these are ignored when building the
343 chains.
345 4) An array of all of the uses (and an array of all of the defs) can
347 be built. These arrays are indexed by the value in the id
348 structure. These arrays are only lazily kept up to date, and that
349 process can be expensive. To have these arrays built, call
350 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
351 has been set the array will contain the eq_uses. Otherwise these
352 are ignored when building the array and assigning the ids. Note
353 that the values in the id field of a ref may change across calls to
354 df_analyze or df_reorganize_defs or df_reorganize_uses.
356 If the only use of this array is to find all of the refs, it is
357 better to traverse all of the registers and then traverse all of
358 reg-use or reg-def chains.
360 NOTES:
362 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
363 both a use and a def. These are both marked read/write to show that they
364 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
365 will generate a use of reg 42 followed by a def of reg 42 (both marked
366 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
367 generates a use of reg 41 then a def of reg 41 (both marked read/write),
368 even though reg 41 is decremented before it is used for the memory
369 address in this second example.
371 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
372 for which the number of word_mode units covered by the outer mode is
373 smaller than that covered by the inner mode, invokes a read-modify-write.
374 operation. We generate both a use and a def and again mark them
375 read/write.
377 Paradoxical subreg writes do not leave a trace of the old content, so they
378 are write-only operations.
382 #include "config.h"
383 #include "system.h"
384 #include "coretypes.h"
385 #include "tm.h"
386 #include "rtl.h"
387 #include "tm_p.h"
388 #include "insn-config.h"
389 #include "recog.h"
390 #include "function.h"
391 #include "regs.h"
392 #include "output.h"
393 #include "alloc-pool.h"
394 #include "flags.h"
395 #include "hard-reg-set.h"
396 #include "basic-block.h"
397 #include "sbitmap.h"
398 #include "bitmap.h"
399 #include "timevar.h"
400 #include "df.h"
401 #include "tree-pass.h"
402 #include "params.h"
404 static void *df_get_bb_info (struct dataflow *, unsigned int);
405 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
406 #ifdef DF_DEBUG_CFG
407 static void df_set_clean_cfg (void);
408 #endif
410 /* An obstack for bitmap not related to specific dataflow problems.
411 This obstack should e.g. be used for bitmaps with a short life time
412 such as temporary bitmaps. */
414 bitmap_obstack df_bitmap_obstack;
417 /*----------------------------------------------------------------------------
418 Functions to create, destroy and manipulate an instance of df.
419 ----------------------------------------------------------------------------*/
421 struct df *df;
423 /* Add PROBLEM (and any dependent problems) to the DF instance. */
425 void
426 df_add_problem (struct df_problem *problem)
428 struct dataflow *dflow;
429 int i;
431 /* First try to add the dependent problem. */
432 if (problem->dependent_problem)
433 df_add_problem (problem->dependent_problem);
435 /* Check to see if this problem has already been defined. If it
436 has, just return that instance, if not, add it to the end of the
437 vector. */
438 dflow = df->problems_by_index[problem->id];
439 if (dflow)
440 return;
442 /* Make a new one and add it to the end. */
443 dflow = XCNEW (struct dataflow);
444 dflow->problem = problem;
445 dflow->computed = false;
446 dflow->solutions_dirty = true;
447 df->problems_by_index[dflow->problem->id] = dflow;
449 /* Keep the defined problems ordered by index. This solves the
450 problem that RI will use the information from UREC if UREC has
451 been defined, or from LIVE if LIVE is defined and otherwise LR.
452 However for this to work, the computation of RI must be pushed
453 after which ever of those problems is defined, but we do not
454 require any of those except for LR to have actually been
455 defined. */
456 df->num_problems_defined++;
457 for (i = df->num_problems_defined - 2; i >= 0; i--)
459 if (problem->id < df->problems_in_order[i]->problem->id)
460 df->problems_in_order[i+1] = df->problems_in_order[i];
461 else
463 df->problems_in_order[i+1] = dflow;
464 return;
467 df->problems_in_order[0] = dflow;
471 /* Set the MASK flags in the DFLOW problem. The old flags are
472 returned. If a flag is not allowed to be changed this will fail if
473 checking is enabled. */
474 enum df_changeable_flags
475 df_set_flags (enum df_changeable_flags changeable_flags)
477 enum df_changeable_flags old_flags = df->changeable_flags;
478 df->changeable_flags |= changeable_flags;
479 return old_flags;
483 /* Clear the MASK flags in the DFLOW problem. The old flags are
484 returned. If a flag is not allowed to be changed this will fail if
485 checking is enabled. */
486 enum df_changeable_flags
487 df_clear_flags (enum df_changeable_flags changeable_flags)
489 enum df_changeable_flags old_flags = df->changeable_flags;
490 df->changeable_flags &= ~changeable_flags;
491 return old_flags;
495 /* Set the blocks that are to be considered for analysis. If this is
496 not called or is called with null, the entire function in
497 analyzed. */
499 void
500 df_set_blocks (bitmap blocks)
502 if (blocks)
504 if (dump_file)
505 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
506 if (df->blocks_to_analyze)
508 /* This block is called to change the focus from one subset
509 to another. */
510 int p;
511 bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
512 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
513 for (p = 0; p < df->num_problems_defined; p++)
515 struct dataflow *dflow = df->problems_in_order[p];
516 if (dflow->optional_p && dflow->problem->reset_fun)
517 dflow->problem->reset_fun (df->blocks_to_analyze);
518 else if (dflow->problem->free_blocks_on_set_blocks)
520 bitmap_iterator bi;
521 unsigned int bb_index;
523 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
525 basic_block bb = BASIC_BLOCK (bb_index);
526 if (bb)
528 void *bb_info = df_get_bb_info (dflow, bb_index);
529 if (bb_info)
531 dflow->problem->free_bb_fun (bb, bb_info);
532 df_set_bb_info (dflow, bb_index, NULL);
539 BITMAP_FREE (diff);
541 else
543 /* This block of code is executed to change the focus from
544 the entire function to a subset. */
545 bitmap blocks_to_reset = NULL;
546 int p;
547 for (p = 0; p < df->num_problems_defined; p++)
549 struct dataflow *dflow = df->problems_in_order[p];
550 if (dflow->optional_p && dflow->problem->reset_fun)
552 if (!blocks_to_reset)
554 basic_block bb;
555 blocks_to_reset =
556 BITMAP_ALLOC (&df_bitmap_obstack);
557 FOR_ALL_BB(bb)
559 bitmap_set_bit (blocks_to_reset, bb->index);
562 dflow->problem->reset_fun (blocks_to_reset);
565 if (blocks_to_reset)
566 BITMAP_FREE (blocks_to_reset);
568 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
570 bitmap_copy (df->blocks_to_analyze, blocks);
571 df->analyze_subset = true;
573 else
575 /* This block is executed to reset the focus to the entire
576 function. */
577 if (dump_file)
578 fprintf (dump_file, "clearing blocks_to_analyze\n");
579 if (df->blocks_to_analyze)
581 BITMAP_FREE (df->blocks_to_analyze);
582 df->blocks_to_analyze = NULL;
584 df->analyze_subset = false;
587 /* Setting the blocks causes the refs to be unorganized since only
588 the refs in the blocks are seen. */
589 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
590 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
591 df_mark_solutions_dirty ();
595 /* Delete a DFLOW problem (and any problems that depend on this
596 problem). */
598 void
599 df_remove_problem (struct dataflow *dflow)
601 struct df_problem *problem;
602 int i;
604 if (!dflow)
605 return;
607 problem = dflow->problem;
608 gcc_assert (problem->remove_problem_fun);
610 /* Delete any problems that depended on this problem first. */
611 for (i = 0; i < df->num_problems_defined; i++)
612 if (df->problems_in_order[i]->problem->dependent_problem == problem)
613 df_remove_problem (df->problems_in_order[i]);
615 /* Now remove this problem. */
616 for (i = 0; i < df->num_problems_defined; i++)
617 if (df->problems_in_order[i] == dflow)
619 int j;
620 for (j = i + 1; j < df->num_problems_defined; j++)
621 df->problems_in_order[j-1] = df->problems_in_order[j];
622 df->problems_in_order[j] = NULL;
623 df->num_problems_defined--;
624 break;
627 (problem->remove_problem_fun) ();
628 df->problems_by_index[problem->id] = NULL;
632 /* Remove all of the problems that are not permanent. Scanning, LR
633 and (at -O2 or higher) LIVE are permanent, the rest are removable.
634 Also clear all of the changeable_flags. */
636 void
637 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
639 int i;
640 int removed = 0;
642 #ifdef ENABLE_DF_CHECKING
643 enum df_changeable_flags saved_flags;
644 #endif
646 if (!df)
647 return;
649 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
650 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
652 #ifdef ENABLE_DF_CHECKING
653 saved_flags = df->changeable_flags;
654 #endif
656 for (i = 0; i < df->num_problems_defined; i++)
658 struct dataflow *dflow = df->problems_in_order[i];
659 struct df_problem *problem = dflow->problem;
661 if (dflow->optional_p)
663 gcc_assert (problem->remove_problem_fun);
664 (problem->remove_problem_fun) ();
665 df->problems_in_order[i] = NULL;
666 df->problems_by_index[problem->id] = NULL;
667 removed++;
670 df->num_problems_defined -= removed;
672 /* Clear all of the flags. */
673 df->changeable_flags = 0;
674 df_process_deferred_rescans ();
676 /* Set the focus back to the whole function. */
677 if (df->blocks_to_analyze)
679 BITMAP_FREE (df->blocks_to_analyze);
680 df->blocks_to_analyze = NULL;
681 df_mark_solutions_dirty ();
682 df->analyze_subset = false;
685 #ifdef ENABLE_DF_CHECKING
686 /* Verification will fail in DF_NO_INSN_RESCAN. */
687 if (!(saved_flags & DF_NO_INSN_RESCAN))
689 df_lr_verify_transfer_functions ();
690 if (df_live)
691 df_live_verify_transfer_functions ();
694 #ifdef DF_DEBUG_CFG
695 df_set_clean_cfg ();
696 #endif
697 #endif
699 #ifdef ENABLE_CHECKING
700 if (verify)
701 df->changeable_flags |= DF_VERIFY_SCHEDULED;
702 #endif
706 /* Set up the dataflow instance for the entire back end. */
708 static unsigned int
709 rest_of_handle_df_initialize (void)
711 gcc_assert (!df);
712 df = XCNEW (struct df);
713 df->changeable_flags = 0;
715 bitmap_obstack_initialize (&df_bitmap_obstack);
717 /* Set this to a conservative value. Stack_ptr_mod will compute it
718 correctly later. */
719 current_function_sp_is_unchanging = 0;
721 df_scan_add_problem ();
722 df_scan_alloc (NULL);
724 /* These three problems are permanent. */
725 df_lr_add_problem ();
726 if (optimize > 1)
727 df_live_add_problem ();
729 df->postorder = XNEWVEC (int, last_basic_block);
730 df->postorder_inverted = XNEWVEC (int, last_basic_block);
731 df->n_blocks = post_order_compute (df->postorder, true, true);
732 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
733 gcc_assert (df->n_blocks == df->n_blocks_inverted);
735 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
736 memset (df->hard_regs_live_count, 0,
737 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
739 df_hard_reg_init ();
740 /* After reload, some ports add certain bits to regs_ever_live so
741 this cannot be reset. */
742 df_compute_regs_ever_live (true);
743 df_scan_blocks ();
744 df_compute_regs_ever_live (false);
745 return 0;
749 static bool
750 gate_opt (void)
752 return optimize > 0;
756 struct rtl_opt_pass pass_df_initialize_opt =
759 RTL_PASS,
760 "dfinit", /* name */
761 gate_opt, /* gate */
762 rest_of_handle_df_initialize, /* execute */
763 NULL, /* sub */
764 NULL, /* next */
765 0, /* static_pass_number */
766 0, /* tv_id */
767 0, /* properties_required */
768 0, /* properties_provided */
769 0, /* properties_destroyed */
770 0, /* todo_flags_start */
771 0 /* todo_flags_finish */
776 static bool
777 gate_no_opt (void)
779 return optimize == 0;
783 struct rtl_opt_pass pass_df_initialize_no_opt =
786 RTL_PASS,
787 "dfinit", /* name */
788 gate_no_opt, /* gate */
789 rest_of_handle_df_initialize, /* execute */
790 NULL, /* sub */
791 NULL, /* next */
792 0, /* static_pass_number */
793 0, /* tv_id */
794 0, /* properties_required */
795 0, /* properties_provided */
796 0, /* properties_destroyed */
797 0, /* todo_flags_start */
798 0 /* todo_flags_finish */
803 /* Free all the dataflow info and the DF structure. This should be
804 called from the df_finish macro which also NULLs the parm. */
806 static unsigned int
807 rest_of_handle_df_finish (void)
809 int i;
811 gcc_assert (df);
813 for (i = 0; i < df->num_problems_defined; i++)
815 struct dataflow *dflow = df->problems_in_order[i];
816 dflow->problem->free_fun ();
819 if (df->postorder)
820 free (df->postorder);
821 if (df->postorder_inverted)
822 free (df->postorder_inverted);
823 free (df->hard_regs_live_count);
824 free (df);
825 df = NULL;
827 bitmap_obstack_release (&df_bitmap_obstack);
828 return 0;
832 struct rtl_opt_pass pass_df_finish =
835 RTL_PASS,
836 "dfinish", /* name */
837 NULL, /* gate */
838 rest_of_handle_df_finish, /* execute */
839 NULL, /* sub */
840 NULL, /* next */
841 0, /* static_pass_number */
842 0, /* tv_id */
843 0, /* properties_required */
844 0, /* properties_provided */
845 0, /* properties_destroyed */
846 0, /* todo_flags_start */
847 0 /* todo_flags_finish */
855 /*----------------------------------------------------------------------------
856 The general data flow analysis engine.
857 ----------------------------------------------------------------------------*/
860 /* Helper function for df_worklist_dataflow.
861 Propagate the dataflow forward.
862 Given a BB_INDEX, do the dataflow propagation
863 and set bits on for successors in PENDING
864 if the out set of the dataflow has changed. */
866 static void
867 df_worklist_propagate_forward (struct dataflow *dataflow,
868 unsigned bb_index,
869 unsigned *bbindex_to_postorder,
870 bitmap pending,
871 sbitmap considered)
873 edge e;
874 edge_iterator ei;
875 basic_block bb = BASIC_BLOCK (bb_index);
877 /* Calculate <conf_op> of incoming edges. */
878 if (EDGE_COUNT (bb->preds) > 0)
879 FOR_EACH_EDGE (e, ei, bb->preds)
881 if (TEST_BIT (considered, e->src->index))
882 dataflow->problem->con_fun_n (e);
884 else if (dataflow->problem->con_fun_0)
885 dataflow->problem->con_fun_0 (bb);
887 if (dataflow->problem->trans_fun (bb_index))
889 /* The out set of this block has changed.
890 Propagate to the outgoing blocks. */
891 FOR_EACH_EDGE (e, ei, bb->succs)
893 unsigned ob_index = e->dest->index;
895 if (TEST_BIT (considered, ob_index))
896 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
902 /* Helper function for df_worklist_dataflow.
903 Propagate the dataflow backward. */
905 static void
906 df_worklist_propagate_backward (struct dataflow *dataflow,
907 unsigned bb_index,
908 unsigned *bbindex_to_postorder,
909 bitmap pending,
910 sbitmap considered)
912 edge e;
913 edge_iterator ei;
914 basic_block bb = BASIC_BLOCK (bb_index);
916 /* Calculate <conf_op> of incoming edges. */
917 if (EDGE_COUNT (bb->succs) > 0)
918 FOR_EACH_EDGE (e, ei, bb->succs)
920 if (TEST_BIT (considered, e->dest->index))
921 dataflow->problem->con_fun_n (e);
923 else if (dataflow->problem->con_fun_0)
924 dataflow->problem->con_fun_0 (bb);
926 if (dataflow->problem->trans_fun (bb_index))
928 /* The out set of this block has changed.
929 Propagate to the outgoing blocks. */
930 FOR_EACH_EDGE (e, ei, bb->preds)
932 unsigned ob_index = e->src->index;
934 if (TEST_BIT (considered, ob_index))
935 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
942 /* This will free "pending". */
943 static void
944 df_worklist_dataflow_overeager (struct dataflow *dataflow,
945 bitmap pending,
946 sbitmap considered,
947 int *blocks_in_postorder,
948 unsigned *bbindex_to_postorder)
950 enum df_flow_dir dir = dataflow->problem->dir;
951 int count = 0;
953 while (!bitmap_empty_p (pending))
955 unsigned bb_index;
956 int index;
957 count++;
959 index = bitmap_first_set_bit (pending);
960 bitmap_clear_bit (pending, index);
962 bb_index = blocks_in_postorder[index];
964 if (dir == DF_FORWARD)
965 df_worklist_propagate_forward (dataflow, bb_index,
966 bbindex_to_postorder,
967 pending, considered);
968 else
969 df_worklist_propagate_backward (dataflow, bb_index,
970 bbindex_to_postorder,
971 pending, considered);
974 BITMAP_FREE (pending);
976 /* Dump statistics. */
977 if (dump_file)
978 fprintf (dump_file, "df_worklist_dataflow_overeager:"
979 "n_basic_blocks %d n_edges %d"
980 " count %d (%5.2g)\n",
981 n_basic_blocks, n_edges,
982 count, count / (float)n_basic_blocks);
985 static void
986 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
987 bitmap pending,
988 sbitmap considered,
989 int *blocks_in_postorder,
990 unsigned *bbindex_to_postorder)
992 enum df_flow_dir dir = dataflow->problem->dir;
993 int dcount = 0;
994 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
996 /* Double-queueing. Worklist is for the current iteration,
997 and pending is for the next. */
998 while (!bitmap_empty_p (pending))
1000 /* Swap pending and worklist. */
1001 bitmap temp = worklist;
1002 worklist = pending;
1003 pending = temp;
1007 int index;
1008 unsigned bb_index;
1009 dcount++;
1011 index = bitmap_first_set_bit (worklist);
1012 bitmap_clear_bit (worklist, index);
1014 bb_index = blocks_in_postorder[index];
1016 if (dir == DF_FORWARD)
1017 df_worklist_propagate_forward (dataflow, bb_index,
1018 bbindex_to_postorder,
1019 pending, considered);
1020 else
1021 df_worklist_propagate_backward (dataflow, bb_index,
1022 bbindex_to_postorder,
1023 pending, considered);
1025 while (!bitmap_empty_p (worklist));
1028 BITMAP_FREE (worklist);
1029 BITMAP_FREE (pending);
1031 /* Dump statistics. */
1032 if (dump_file)
1033 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1034 "n_basic_blocks %d n_edges %d"
1035 " count %d (%5.2g)\n",
1036 n_basic_blocks, n_edges,
1037 dcount, dcount / (float)n_basic_blocks);
1040 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1041 with "n"-th bit representing the n-th block in the reverse-postorder order.
1042 This is so-called over-eager algorithm where it propagates
1043 changes on demand. This algorithm may visit blocks more than
1044 iterative method if there are deeply nested loops.
1045 Worklist algorithm works better than iterative algorithm
1046 for CFGs with no nested loops.
1047 In practice, the measurement shows worklist algorithm beats
1048 iterative algorithm by some margin overall.
1049 Note that this is slightly different from the traditional textbook worklist solver,
1050 in that the worklist is effectively sorted by the reverse postorder.
1051 For CFGs with no nested loops, this is optimal.
1053 The overeager algorithm while works well for typical inputs,
1054 it could degenerate into excessive iterations given CFGs with high loop nests
1055 and unstructured loops. To cap the excessive iteration on such case,
1056 we switch to double-queueing when the original algorithm seems to
1057 get into such.
1060 void
1061 df_worklist_dataflow (struct dataflow *dataflow,
1062 bitmap blocks_to_consider,
1063 int *blocks_in_postorder,
1064 int n_blocks)
1066 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1067 sbitmap considered = sbitmap_alloc (last_basic_block);
1068 bitmap_iterator bi;
1069 unsigned int *bbindex_to_postorder;
1070 int i;
1071 unsigned int index;
1072 enum df_flow_dir dir = dataflow->problem->dir;
1074 gcc_assert (dir != DF_NONE);
1076 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1077 bbindex_to_postorder =
1078 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1080 /* Initialize the array to an out-of-bound value. */
1081 for (i = 0; i < last_basic_block; i++)
1082 bbindex_to_postorder[i] = last_basic_block;
1084 /* Initialize the considered map. */
1085 sbitmap_zero (considered);
1086 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1088 SET_BIT (considered, index);
1091 /* Initialize the mapping of block index to postorder. */
1092 for (i = 0; i < n_blocks; i++)
1094 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1095 /* Add all blocks to the worklist. */
1096 bitmap_set_bit (pending, i);
1099 /* Initialize the problem. */
1100 if (dataflow->problem->init_fun)
1101 dataflow->problem->init_fun (blocks_to_consider);
1103 /* Solve it. Determine the solving algorithm
1104 based on a simple heuristic. */
1105 if (n_edges > PARAM_VALUE (PARAM_DF_DOUBLE_QUEUE_THRESHOLD_FACTOR)
1106 * n_basic_blocks)
1108 /* High average connectivity, meaning dense graph
1109 with more likely deep nested loops
1110 or unstructured loops. */
1111 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1112 blocks_in_postorder,
1113 bbindex_to_postorder);
1115 else
1117 /* Most inputs fall into this case
1118 with relatively flat or structured CFG. */
1119 df_worklist_dataflow_overeager (dataflow, pending, considered,
1120 blocks_in_postorder,
1121 bbindex_to_postorder);
1124 sbitmap_free (considered);
1125 free (bbindex_to_postorder);
1129 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1130 the order of the remaining entries. Returns the length of the resulting
1131 list. */
1133 static unsigned
1134 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1136 unsigned act, last;
1138 for (act = 0, last = 0; act < len; act++)
1139 if (bitmap_bit_p (blocks, list[act]))
1140 list[last++] = list[act];
1142 return last;
1146 /* Execute dataflow analysis on a single dataflow problem.
1148 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1149 examined or will be computed. For calls from DF_ANALYZE, this is
1150 the set of blocks that has been passed to DF_SET_BLOCKS.
1153 void
1154 df_analyze_problem (struct dataflow *dflow,
1155 bitmap blocks_to_consider,
1156 int *postorder, int n_blocks)
1158 timevar_push (dflow->problem->tv_id);
1160 #ifdef ENABLE_DF_CHECKING
1161 if (dflow->problem->verify_start_fun)
1162 dflow->problem->verify_start_fun ();
1163 #endif
1165 /* (Re)Allocate the datastructures necessary to solve the problem. */
1166 if (dflow->problem->alloc_fun)
1167 dflow->problem->alloc_fun (blocks_to_consider);
1169 /* Set up the problem and compute the local information. */
1170 if (dflow->problem->local_compute_fun)
1171 dflow->problem->local_compute_fun (blocks_to_consider);
1173 /* Solve the equations. */
1174 if (dflow->problem->dataflow_fun)
1175 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1176 postorder, n_blocks);
1178 /* Massage the solution. */
1179 if (dflow->problem->finalize_fun)
1180 dflow->problem->finalize_fun (blocks_to_consider);
1182 #ifdef ENABLE_DF_CHECKING
1183 if (dflow->problem->verify_end_fun)
1184 dflow->problem->verify_end_fun ();
1185 #endif
1187 timevar_pop (dflow->problem->tv_id);
1189 dflow->computed = true;
1193 /* Analyze dataflow info for the basic blocks specified by the bitmap
1194 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1196 void
1197 df_analyze (void)
1199 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1200 bool everything;
1201 int i;
1203 if (df->postorder)
1204 free (df->postorder);
1205 if (df->postorder_inverted)
1206 free (df->postorder_inverted);
1207 df->postorder = XNEWVEC (int, last_basic_block);
1208 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1209 df->n_blocks = post_order_compute (df->postorder, true, true);
1210 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1212 /* These should be the same. */
1213 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1215 /* We need to do this before the df_verify_all because this is
1216 not kept incrementally up to date. */
1217 df_compute_regs_ever_live (false);
1218 df_process_deferred_rescans ();
1220 if (dump_file)
1221 fprintf (dump_file, "df_analyze called\n");
1223 #ifndef ENABLE_DF_CHECKING
1224 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1225 #endif
1226 df_verify ();
1228 for (i = 0; i < df->n_blocks; i++)
1229 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1231 #ifdef ENABLE_CHECKING
1232 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1233 the ENTRY block. */
1234 for (i = 0; i < df->n_blocks_inverted; i++)
1235 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1236 #endif
1238 /* Make sure that we have pruned any unreachable blocks from these
1239 sets. */
1240 if (df->analyze_subset)
1242 everything = false;
1243 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1244 df->n_blocks = df_prune_to_subcfg (df->postorder,
1245 df->n_blocks, df->blocks_to_analyze);
1246 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1247 df->n_blocks_inverted,
1248 df->blocks_to_analyze);
1249 BITMAP_FREE (current_all_blocks);
1251 else
1253 everything = true;
1254 df->blocks_to_analyze = current_all_blocks;
1255 current_all_blocks = NULL;
1258 /* Skip over the DF_SCAN problem. */
1259 for (i = 1; i < df->num_problems_defined; i++)
1261 struct dataflow *dflow = df->problems_in_order[i];
1262 if (dflow->solutions_dirty)
1264 if (dflow->problem->dir == DF_FORWARD)
1265 df_analyze_problem (dflow,
1266 df->blocks_to_analyze,
1267 df->postorder_inverted,
1268 df->n_blocks_inverted);
1269 else
1270 df_analyze_problem (dflow,
1271 df->blocks_to_analyze,
1272 df->postorder,
1273 df->n_blocks);
1277 if (everything)
1279 BITMAP_FREE (df->blocks_to_analyze);
1280 df->blocks_to_analyze = NULL;
1283 #ifdef DF_DEBUG_CFG
1284 df_set_clean_cfg ();
1285 #endif
1289 /* Return the number of basic blocks from the last call to df_analyze. */
1291 int
1292 df_get_n_blocks (enum df_flow_dir dir)
1294 gcc_assert (dir != DF_NONE);
1296 if (dir == DF_FORWARD)
1298 gcc_assert (df->postorder_inverted);
1299 return df->n_blocks_inverted;
1302 gcc_assert (df->postorder);
1303 return df->n_blocks;
1307 /* Return a pointer to the array of basic blocks in the reverse postorder.
1308 Depending on the direction of the dataflow problem,
1309 it returns either the usual reverse postorder array
1310 or the reverse postorder of inverted traversal. */
1311 int *
1312 df_get_postorder (enum df_flow_dir dir)
1314 gcc_assert (dir != DF_NONE);
1316 if (dir == DF_FORWARD)
1318 gcc_assert (df->postorder_inverted);
1319 return df->postorder_inverted;
1321 gcc_assert (df->postorder);
1322 return df->postorder;
1325 static struct df_problem user_problem;
1326 static struct dataflow user_dflow;
1328 /* Interface for calling iterative dataflow with user defined
1329 confluence and transfer functions. All that is necessary is to
1330 supply DIR, a direction, CONF_FUN_0, a confluence function for
1331 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1332 confluence function, TRANS_FUN, the basic block transfer function,
1333 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1334 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1336 void
1337 df_simple_dataflow (enum df_flow_dir dir,
1338 df_init_function init_fun,
1339 df_confluence_function_0 con_fun_0,
1340 df_confluence_function_n con_fun_n,
1341 df_transfer_function trans_fun,
1342 bitmap blocks, int * postorder, int n_blocks)
1344 memset (&user_problem, 0, sizeof (struct df_problem));
1345 user_problem.dir = dir;
1346 user_problem.init_fun = init_fun;
1347 user_problem.con_fun_0 = con_fun_0;
1348 user_problem.con_fun_n = con_fun_n;
1349 user_problem.trans_fun = trans_fun;
1350 user_dflow.problem = &user_problem;
1351 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1356 /*----------------------------------------------------------------------------
1357 Functions to support limited incremental change.
1358 ----------------------------------------------------------------------------*/
1361 /* Get basic block info. */
1363 static void *
1364 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1366 if (dflow->block_info == NULL)
1367 return NULL;
1368 if (index >= dflow->block_info_size)
1369 return NULL;
1370 return (struct df_scan_bb_info *) dflow->block_info[index];
1374 /* Set basic block info. */
1376 static void
1377 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1378 void *bb_info)
1380 gcc_assert (dflow->block_info);
1381 dflow->block_info[index] = bb_info;
1385 /* Mark the solutions as being out of date. */
1387 void
1388 df_mark_solutions_dirty (void)
1390 if (df)
1392 int p;
1393 for (p = 1; p < df->num_problems_defined; p++)
1394 df->problems_in_order[p]->solutions_dirty = true;
1399 /* Return true if BB needs it's transfer functions recomputed. */
1401 bool
1402 df_get_bb_dirty (basic_block bb)
1404 if (df && df_live)
1405 return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
1406 else
1407 return false;
1411 /* Mark BB as needing it's transfer functions as being out of
1412 date. */
1414 void
1415 df_set_bb_dirty (basic_block bb)
1417 if (df)
1419 int p;
1420 for (p = 1; p < df->num_problems_defined; p++)
1422 struct dataflow *dflow = df->problems_in_order[p];
1423 if (dflow->out_of_date_transfer_functions)
1424 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1426 df_mark_solutions_dirty ();
1431 /* Clear the dirty bits. This is called from places that delete
1432 blocks. */
1433 static void
1434 df_clear_bb_dirty (basic_block bb)
1436 int p;
1437 for (p = 1; p < df->num_problems_defined; p++)
1439 struct dataflow *dflow = df->problems_in_order[p];
1440 if (dflow->out_of_date_transfer_functions)
1441 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1444 /* Called from the rtl_compact_blocks to reorganize the problems basic
1445 block info. */
1447 void
1448 df_compact_blocks (void)
1450 int i, p;
1451 basic_block bb;
1452 void **problem_temps;
1453 int size = last_basic_block * sizeof (void *);
1454 bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
1455 problem_temps = xmalloc (size);
1457 for (p = 0; p < df->num_problems_defined; p++)
1459 struct dataflow *dflow = df->problems_in_order[p];
1461 /* Need to reorganize the out_of_date_transfer_functions for the
1462 dflow problem. */
1463 if (dflow->out_of_date_transfer_functions)
1465 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1466 bitmap_clear (dflow->out_of_date_transfer_functions);
1467 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1468 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1469 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1470 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1472 i = NUM_FIXED_BLOCKS;
1473 FOR_EACH_BB (bb)
1475 if (bitmap_bit_p (tmp, bb->index))
1476 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1477 i++;
1481 /* Now shuffle the block info for the problem. */
1482 if (dflow->problem->free_bb_fun)
1484 df_grow_bb_info (dflow);
1485 memcpy (problem_temps, dflow->block_info, size);
1487 /* Copy the bb info from the problem tmps to the proper
1488 place in the block_info vector. Null out the copied
1489 item. The entry and exit blocks never move. */
1490 i = NUM_FIXED_BLOCKS;
1491 FOR_EACH_BB (bb)
1493 df_set_bb_info (dflow, i, problem_temps[bb->index]);
1494 problem_temps[bb->index] = NULL;
1495 i++;
1497 memset (dflow->block_info + i, 0,
1498 (last_basic_block - i) *sizeof (void *));
1500 /* Free any block infos that were not copied (and NULLed).
1501 These are from orphaned blocks. */
1502 for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1504 basic_block bb = BASIC_BLOCK (i);
1505 if (problem_temps[i] && bb)
1506 dflow->problem->free_bb_fun
1507 (bb, problem_temps[i]);
1512 /* Shuffle the bits in the basic_block indexed arrays. */
1514 if (df->blocks_to_analyze)
1516 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1517 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1518 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1519 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1520 bitmap_copy (tmp, df->blocks_to_analyze);
1521 bitmap_clear (df->blocks_to_analyze);
1522 i = NUM_FIXED_BLOCKS;
1523 FOR_EACH_BB (bb)
1525 if (bitmap_bit_p (tmp, bb->index))
1526 bitmap_set_bit (df->blocks_to_analyze, i);
1527 i++;
1531 BITMAP_FREE (tmp);
1533 free (problem_temps);
1535 i = NUM_FIXED_BLOCKS;
1536 FOR_EACH_BB (bb)
1538 SET_BASIC_BLOCK (i, bb);
1539 bb->index = i;
1540 i++;
1543 gcc_assert (i == n_basic_blocks);
1545 for (; i < last_basic_block; i++)
1546 SET_BASIC_BLOCK (i, NULL);
1548 #ifdef DF_DEBUG_CFG
1549 if (!df_lr->solutions_dirty)
1550 df_set_clean_cfg ();
1551 #endif
1555 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1556 block. There is no excuse for people to do this kind of thing. */
1558 void
1559 df_bb_replace (int old_index, basic_block new_block)
1561 int new_block_index = new_block->index;
1562 int p;
1564 if (dump_file)
1565 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1567 gcc_assert (df);
1568 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1570 for (p = 0; p < df->num_problems_defined; p++)
1572 struct dataflow *dflow = df->problems_in_order[p];
1573 if (dflow->block_info)
1575 df_grow_bb_info (dflow);
1576 gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
1577 df_set_bb_info (dflow, old_index,
1578 df_get_bb_info (dflow, new_block_index));
1582 df_clear_bb_dirty (new_block);
1583 SET_BASIC_BLOCK (old_index, new_block);
1584 new_block->index = old_index;
1585 df_set_bb_dirty (BASIC_BLOCK (old_index));
1586 SET_BASIC_BLOCK (new_block_index, NULL);
1590 /* Free all of the per basic block dataflow from all of the problems.
1591 This is typically called before a basic block is deleted and the
1592 problem will be reanalyzed. */
1594 void
1595 df_bb_delete (int bb_index)
1597 basic_block bb = BASIC_BLOCK (bb_index);
1598 int i;
1600 if (!df)
1601 return;
1603 for (i = 0; i < df->num_problems_defined; i++)
1605 struct dataflow *dflow = df->problems_in_order[i];
1606 if (dflow->problem->free_bb_fun)
1608 void *bb_info = df_get_bb_info (dflow, bb_index);
1609 if (bb_info)
1611 dflow->problem->free_bb_fun (bb, bb_info);
1612 df_set_bb_info (dflow, bb_index, NULL);
1616 df_clear_bb_dirty (bb);
1617 df_mark_solutions_dirty ();
1621 /* Verify that there is a place for everything and everything is in
1622 its place. This is too expensive to run after every pass in the
1623 mainline. However this is an excellent debugging tool if the
1624 dataflow information is not being updated properly. You can just
1625 sprinkle calls in until you find the place that is changing an
1626 underlying structure without calling the proper updating
1627 routine. */
1629 void
1630 df_verify (void)
1632 df_scan_verify ();
1633 #ifdef ENABLE_DF_CHECKING
1634 df_lr_verify_transfer_functions ();
1635 if (df_live)
1636 df_live_verify_transfer_functions ();
1637 #endif
1640 #ifdef DF_DEBUG_CFG
1642 /* Compute an array of ints that describes the cfg. This can be used
1643 to discover places where the cfg is modified by the appropriate
1644 calls have not been made to the keep df informed. The internals of
1645 this are unexciting, the key is that two instances of this can be
1646 compared to see if any changes have been made to the cfg. */
1648 static int *
1649 df_compute_cfg_image (void)
1651 basic_block bb;
1652 int size = 2 + (2 * n_basic_blocks);
1653 int i;
1654 int * map;
1656 FOR_ALL_BB (bb)
1658 size += EDGE_COUNT (bb->succs);
1661 map = XNEWVEC (int, size);
1662 map[0] = size;
1663 i = 1;
1664 FOR_ALL_BB (bb)
1666 edge_iterator ei;
1667 edge e;
1669 map[i++] = bb->index;
1670 FOR_EACH_EDGE (e, ei, bb->succs)
1671 map[i++] = e->dest->index;
1672 map[i++] = -1;
1674 map[i] = -1;
1675 return map;
1678 static int *saved_cfg = NULL;
1681 /* This function compares the saved version of the cfg with the
1682 current cfg and aborts if the two are identical. The function
1683 silently returns if the cfg has been marked as dirty or the two are
1684 the same. */
1686 void
1687 df_check_cfg_clean (void)
1689 int *new_map;
1691 if (!df)
1692 return;
1694 if (df_lr->solutions_dirty)
1695 return;
1697 if (saved_cfg == NULL)
1698 return;
1700 new_map = df_compute_cfg_image ();
1701 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1702 free (new_map);
1706 /* This function builds a cfg fingerprint and squirrels it away in
1707 saved_cfg. */
1709 static void
1710 df_set_clean_cfg (void)
1712 if (saved_cfg)
1713 free (saved_cfg);
1714 saved_cfg = df_compute_cfg_image ();
1717 #endif /* DF_DEBUG_CFG */
1718 /*----------------------------------------------------------------------------
1719 PUBLIC INTERFACES TO QUERY INFORMATION.
1720 ----------------------------------------------------------------------------*/
1723 /* Return first def of REGNO within BB. */
1725 struct df_ref *
1726 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1728 rtx insn;
1729 struct df_ref **def_rec;
1730 unsigned int uid;
1732 FOR_BB_INSNS (bb, insn)
1734 if (!INSN_P (insn))
1735 continue;
1737 uid = INSN_UID (insn);
1738 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1740 struct df_ref *def = *def_rec;
1741 if (DF_REF_REGNO (def) == regno)
1742 return def;
1745 return NULL;
1749 /* Return last def of REGNO within BB. */
1751 struct df_ref *
1752 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1754 rtx insn;
1755 struct df_ref **def_rec;
1756 unsigned int uid;
1758 FOR_BB_INSNS_REVERSE (bb, insn)
1760 if (!INSN_P (insn))
1761 continue;
1763 uid = INSN_UID (insn);
1764 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1766 struct df_ref *def = *def_rec;
1767 if (DF_REF_REGNO (def) == regno)
1768 return def;
1772 return NULL;
1775 /* Finds the reference corresponding to the definition of REG in INSN.
1776 DF is the dataflow object. */
1778 struct df_ref *
1779 df_find_def (rtx insn, rtx reg)
1781 unsigned int uid;
1782 struct df_ref **def_rec;
1784 if (GET_CODE (reg) == SUBREG)
1785 reg = SUBREG_REG (reg);
1786 gcc_assert (REG_P (reg));
1788 uid = INSN_UID (insn);
1789 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1791 struct df_ref *def = *def_rec;
1792 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1793 return def;
1796 return NULL;
1800 /* Return true if REG is defined in INSN, zero otherwise. */
1802 bool
1803 df_reg_defined (rtx insn, rtx reg)
1805 return df_find_def (insn, reg) != NULL;
1809 /* Finds the reference corresponding to the use of REG in INSN.
1810 DF is the dataflow object. */
1812 struct df_ref *
1813 df_find_use (rtx insn, rtx reg)
1815 unsigned int uid;
1816 struct df_ref **use_rec;
1818 if (GET_CODE (reg) == SUBREG)
1819 reg = SUBREG_REG (reg);
1820 gcc_assert (REG_P (reg));
1822 uid = INSN_UID (insn);
1823 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1825 struct df_ref *use = *use_rec;
1826 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1827 return use;
1829 if (df->changeable_flags & DF_EQ_NOTES)
1830 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1832 struct df_ref *use = *use_rec;
1833 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1834 return use;
1836 return NULL;
1840 /* Return true if REG is referenced in INSN, zero otherwise. */
1842 bool
1843 df_reg_used (rtx insn, rtx reg)
1845 return df_find_use (insn, reg) != NULL;
1849 /*----------------------------------------------------------------------------
1850 Debugging and printing functions.
1851 ----------------------------------------------------------------------------*/
1854 /* Write information about registers and basic blocks into FILE.
1855 This is part of making a debugging dump. */
1857 void
1858 df_print_regset (FILE *file, bitmap r)
1860 unsigned int i;
1861 bitmap_iterator bi;
1863 if (r == NULL)
1864 fputs (" (nil)", file);
1865 else
1867 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1869 fprintf (file, " %d", i);
1870 if (i < FIRST_PSEUDO_REGISTER)
1871 fprintf (file, " [%s]", reg_names[i]);
1874 fprintf (file, "\n");
1878 /* Write information about registers and basic blocks into FILE. The
1879 bitmap is in the form used by df_byte_lr. This is part of making a
1880 debugging dump. */
1882 void
1883 df_print_byte_regset (FILE *file, bitmap r)
1885 unsigned int max_reg = max_reg_num ();
1886 bitmap_iterator bi;
1888 if (r == NULL)
1889 fputs (" (nil)", file);
1890 else
1892 unsigned int i;
1893 for (i = 0; i < max_reg; i++)
1895 unsigned int first = df_byte_lr_get_regno_start (i);
1896 unsigned int len = df_byte_lr_get_regno_len (i);
1898 if (len > 1)
1900 bool found = false;
1901 unsigned int j;
1903 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1905 found = j < first + len;
1906 break;
1908 if (found)
1910 const char * sep = "";
1911 fprintf (file, " %d", i);
1912 if (i < FIRST_PSEUDO_REGISTER)
1913 fprintf (file, " [%s]", reg_names[i]);
1914 fprintf (file, "(");
1915 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1917 if (j > first + len - 1)
1918 break;
1919 fprintf (file, "%s%d", sep, j-first);
1920 sep = ", ";
1922 fprintf (file, ")");
1925 else
1927 if (bitmap_bit_p (r, first))
1929 fprintf (file, " %d", i);
1930 if (i < FIRST_PSEUDO_REGISTER)
1931 fprintf (file, " [%s]", reg_names[i]);
1937 fprintf (file, "\n");
1941 /* Dump dataflow info. */
1943 void
1944 df_dump (FILE *file)
1946 basic_block bb;
1947 df_dump_start (file);
1949 FOR_ALL_BB (bb)
1951 df_print_bb_index (bb, file);
1952 df_dump_top (bb, file);
1953 df_dump_bottom (bb, file);
1956 fprintf (file, "\n");
1960 /* Dump dataflow info for df->blocks_to_analyze. */
1962 void
1963 df_dump_region (FILE *file)
1965 if (df->blocks_to_analyze)
1967 bitmap_iterator bi;
1968 unsigned int bb_index;
1970 fprintf (file, "\n\nstarting region dump\n");
1971 df_dump_start (file);
1973 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1975 basic_block bb = BASIC_BLOCK (bb_index);
1977 df_print_bb_index (bb, file);
1978 df_dump_top (bb, file);
1979 df_dump_bottom (bb, file);
1981 fprintf (file, "\n");
1983 else
1984 df_dump (file);
1988 /* Dump the introductory information for each problem defined. */
1990 void
1991 df_dump_start (FILE *file)
1993 int i;
1995 if (!df || !file)
1996 return;
1998 fprintf (file, "\n\n%s\n", current_function_name ());
1999 fprintf (file, "\nDataflow summary:\n");
2000 if (df->blocks_to_analyze)
2001 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2002 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2004 for (i = 0; i < df->num_problems_defined; i++)
2006 struct dataflow *dflow = df->problems_in_order[i];
2007 if (dflow->computed)
2009 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2010 if (fun)
2011 fun(file);
2017 /* Dump the top of the block information for BB. */
2019 void
2020 df_dump_top (basic_block bb, FILE *file)
2022 int i;
2024 if (!df || !file)
2025 return;
2027 for (i = 0; i < df->num_problems_defined; i++)
2029 struct dataflow *dflow = df->problems_in_order[i];
2030 if (dflow->computed)
2032 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
2033 if (bbfun)
2034 bbfun (bb, file);
2040 /* Dump the bottom of the block information for BB. */
2042 void
2043 df_dump_bottom (basic_block bb, FILE *file)
2045 int i;
2047 if (!df || !file)
2048 return;
2050 for (i = 0; i < df->num_problems_defined; i++)
2052 struct dataflow *dflow = df->problems_in_order[i];
2053 if (dflow->computed)
2055 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2056 if (bbfun)
2057 bbfun (bb, file);
2063 void
2064 df_refs_chain_dump (struct df_ref **ref_rec, bool follow_chain, FILE *file)
2066 fprintf (file, "{ ");
2067 while (*ref_rec)
2069 struct df_ref *ref = *ref_rec;
2070 fprintf (file, "%c%d(%d)",
2071 DF_REF_REG_DEF_P (ref) ? 'd' : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2072 DF_REF_ID (ref),
2073 DF_REF_REGNO (ref));
2074 if (follow_chain)
2075 df_chain_dump (DF_REF_CHAIN (ref), file);
2076 ref_rec++;
2078 fprintf (file, "}");
2082 /* Dump either a ref-def or reg-use chain. */
2084 void
2085 df_regs_chain_dump (struct df_ref *ref, FILE *file)
2087 fprintf (file, "{ ");
2088 while (ref)
2090 fprintf (file, "%c%d(%d) ",
2091 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2092 DF_REF_ID (ref),
2093 DF_REF_REGNO (ref));
2094 ref = ref->next_reg;
2096 fprintf (file, "}");
2100 static void
2101 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2103 while (*mws)
2105 fprintf (file, "mw %c r[%d..%d]\n",
2106 ((*mws)->type == DF_REF_REG_DEF) ? 'd' : 'u',
2107 (*mws)->start_regno, (*mws)->end_regno);
2108 mws++;
2113 static void
2114 df_insn_uid_debug (unsigned int uid,
2115 bool follow_chain, FILE *file)
2117 fprintf (file, "insn %d luid %d",
2118 uid, DF_INSN_UID_LUID (uid));
2120 if (DF_INSN_UID_DEFS (uid))
2122 fprintf (file, " defs ");
2123 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2126 if (DF_INSN_UID_USES (uid))
2128 fprintf (file, " uses ");
2129 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2132 if (DF_INSN_UID_EQ_USES (uid))
2134 fprintf (file, " eq uses ");
2135 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2138 if (DF_INSN_UID_MWS (uid))
2140 fprintf (file, " mws ");
2141 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2143 fprintf (file, "\n");
2147 void
2148 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2150 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2153 void
2154 df_insn_debug_regno (rtx insn, FILE *file)
2156 unsigned int uid = INSN_UID(insn);
2158 fprintf (file, "insn %d bb %d luid %d defs ",
2159 uid, BLOCK_FOR_INSN (insn)->index, DF_INSN_LUID (insn));
2160 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), false, file);
2162 fprintf (file, " uses ");
2163 df_refs_chain_dump (DF_INSN_UID_USES (uid), false, file);
2165 fprintf (file, " eq_uses ");
2166 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), false, file);
2167 fprintf (file, "\n");
2170 void
2171 df_regno_debug (unsigned int regno, FILE *file)
2173 fprintf (file, "reg %d defs ", regno);
2174 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2175 fprintf (file, " uses ");
2176 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2177 fprintf (file, " eq_uses ");
2178 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2179 fprintf (file, "\n");
2183 void
2184 df_ref_debug (struct df_ref *ref, FILE *file)
2186 fprintf (file, "%c%d ",
2187 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2188 DF_REF_ID (ref));
2189 fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
2190 DF_REF_REGNO (ref),
2191 DF_REF_BBNO (ref),
2192 DF_REF_INSN (ref) ? INSN_UID (DF_REF_INSN (ref)) : -1,
2193 DF_REF_FLAGS (ref),
2194 DF_REF_TYPE (ref));
2195 if (DF_REF_LOC (ref))
2196 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref), (void *)*DF_REF_LOC (ref));
2197 else
2198 fprintf (file, "chain ");
2199 df_chain_dump (DF_REF_CHAIN (ref), file);
2200 fprintf (file, "\n");
2203 /* Functions for debugging from GDB. */
2205 void
2206 debug_df_insn (rtx insn)
2208 df_insn_debug (insn, true, stderr);
2209 debug_rtx (insn);
2213 void
2214 debug_df_reg (rtx reg)
2216 df_regno_debug (REGNO (reg), stderr);
2220 void
2221 debug_df_regno (unsigned int regno)
2223 df_regno_debug (regno, stderr);
2227 void
2228 debug_df_ref (struct df_ref *ref)
2230 df_ref_debug (ref, stderr);
2234 void
2235 debug_df_defno (unsigned int defno)
2237 df_ref_debug (DF_DEFS_GET (defno), stderr);
2241 void
2242 debug_df_useno (unsigned int defno)
2244 df_ref_debug (DF_USES_GET (defno), stderr);
2248 void
2249 debug_df_chain (struct df_link *link)
2251 df_chain_dump (link, stderr);
2252 fputc ('\n', stderr);