Merge from the pain train
[official-gcc.git] / gcc / cse.c
blob60dc9a9484b5cdad0bd2e2d7453998d5b87847ce
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
75 Registers and "quantity numbers":
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
110 Constants and quantity numbers
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
130 Other expressions:
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
198 Related expressions:
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
210 static int max_qty;
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
215 static int next_qty;
217 /* Per-qty information tracking.
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
222 `mode' contains the machine mode of this quantity.
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
242 struct qty_table_elem
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
258 /* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260 struct change_cc_mode_args
262 rtx insn;
263 rtx newreg;
266 #ifdef HAVE_cc0
267 /* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
271 Instead, we store below the value last assigned to CC0. If it should
272 happen to be a constant, it is stored in preference to the actual
273 assigned value. In case it is a constant, we store the mode in which
274 the constant should be interpreted. */
276 static rtx prev_insn_cc0;
277 static enum machine_mode prev_insn_cc0_mode;
279 /* Previous actual insn. 0 if at first insn of basic block. */
281 static rtx prev_insn;
282 #endif
284 /* Insn being scanned. */
286 static rtx this_insn;
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
292 Or -1 if this register is at the end of the chain.
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
299 int next, prev;
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
305 struct cse_reg_info
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
328 /* A table of cse_reg_info indexed by register numbers. */
329 struct cse_reg_info *cse_reg_info_table;
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
337 /* The timestamp at the beginning of the current run of
338 cse_basic_block. We increment this variable at the beginning of
339 the current run of cse_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
350 static HARD_REG_SET hard_regs_in_table;
352 /* CUID of insn that starts the basic block currently being cse-processed. */
354 static int cse_basic_block_start;
356 /* CUID of insn that ends the basic block currently being cse-processed. */
358 static int cse_basic_block_end;
360 /* Vector mapping INSN_UIDs to cuids.
361 The cuids are like uids but increase monotonically always.
362 We use them to see whether a reg is used outside a given basic block. */
364 static int *uid_cuid;
366 /* Highest UID in UID_CUID. */
367 static int max_uid;
369 /* Get the cuid of an insn. */
371 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
373 /* Nonzero if this pass has made changes, and therefore it's
374 worthwhile to run the garbage collector. */
376 static int cse_altered;
378 /* Nonzero if cse has altered conditional jump insns
379 in such a way that jump optimization should be redone. */
381 static int cse_jumps_altered;
383 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
384 REG_LABEL, we have to rerun jump after CSE to put in the note. */
385 static int recorded_label_ref;
387 /* canon_hash stores 1 in do_not_record
388 if it notices a reference to CC0, PC, or some other volatile
389 subexpression. */
391 static int do_not_record;
393 /* canon_hash stores 1 in hash_arg_in_memory
394 if it notices a reference to memory within the expression being hashed. */
396 static int hash_arg_in_memory;
398 /* The hash table contains buckets which are chains of `struct table_elt's,
399 each recording one expression's information.
400 That expression is in the `exp' field.
402 The canon_exp field contains a canonical (from the point of view of
403 alias analysis) version of the `exp' field.
405 Those elements with the same hash code are chained in both directions
406 through the `next_same_hash' and `prev_same_hash' fields.
408 Each set of expressions with equivalent values
409 are on a two-way chain through the `next_same_value'
410 and `prev_same_value' fields, and all point with
411 the `first_same_value' field at the first element in
412 that chain. The chain is in order of increasing cost.
413 Each element's cost value is in its `cost' field.
415 The `in_memory' field is nonzero for elements that
416 involve any reference to memory. These elements are removed
417 whenever a write is done to an unidentified location in memory.
418 To be safe, we assume that a memory address is unidentified unless
419 the address is either a symbol constant or a constant plus
420 the frame pointer or argument pointer.
422 The `related_value' field is used to connect related expressions
423 (that differ by adding an integer).
424 The related expressions are chained in a circular fashion.
425 `related_value' is zero for expressions for which this
426 chain is not useful.
428 The `cost' field stores the cost of this element's expression.
429 The `regcost' field stores the value returned by approx_reg_cost for
430 this element's expression.
432 The `is_const' flag is set if the element is a constant (including
433 a fixed address).
435 The `flag' field is used as a temporary during some search routines.
437 The `mode' field is usually the same as GET_MODE (`exp'), but
438 if `exp' is a CONST_INT and has no machine mode then the `mode'
439 field is the mode it was being used as. Each constant is
440 recorded separately for each mode it is used with. */
442 struct table_elt
444 rtx exp;
445 rtx canon_exp;
446 struct table_elt *next_same_hash;
447 struct table_elt *prev_same_hash;
448 struct table_elt *next_same_value;
449 struct table_elt *prev_same_value;
450 struct table_elt *first_same_value;
451 struct table_elt *related_value;
452 int cost;
453 int regcost;
454 /* The size of this field should match the size
455 of the mode field of struct rtx_def (see rtl.h). */
456 ENUM_BITFIELD(machine_mode) mode : 8;
457 char in_memory;
458 char is_const;
459 char flag;
462 /* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
465 #define HASH_SHIFT 5
466 #define HASH_SIZE (1 << HASH_SHIFT)
467 #define HASH_MASK (HASH_SIZE - 1)
469 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
472 #define HASH(X, M) \
473 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
477 /* Like HASH, but without side-effects. */
478 #define SAFE_HASH(X, M) \
479 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
480 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
481 : safe_hash (X, M)) & HASH_MASK)
483 /* Determine whether register number N is considered a fixed register for the
484 purpose of approximating register costs.
485 It is desirable to replace other regs with fixed regs, to reduce need for
486 non-fixed hard regs.
487 A reg wins if it is either the frame pointer or designated as fixed. */
488 #define FIXED_REGNO_P(N) \
489 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
490 || fixed_regs[N] || global_regs[N])
492 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
493 hard registers and pointers into the frame are the cheapest with a cost
494 of 0. Next come pseudos with a cost of one and other hard registers with
495 a cost of 2. Aside from these special cases, call `rtx_cost'. */
497 #define CHEAP_REGNO(N) \
498 (REGNO_PTR_FRAME_P(N) \
499 || (HARD_REGISTER_NUM_P (N) \
500 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
502 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
503 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
505 /* Get the number of times this register has been updated in this
506 basic block. */
508 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
510 /* Get the point at which REG was recorded in the table. */
512 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
514 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
515 SUBREG). */
517 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
519 /* Get the quantity number for REG. */
521 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
523 /* Determine if the quantity number for register X represents a valid index
524 into the qty_table. */
526 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
528 static struct table_elt *table[HASH_SIZE];
530 /* Chain of `struct table_elt's made so far for this function
531 but currently removed from the table. */
533 static struct table_elt *free_element_chain;
535 /* Set to the cost of a constant pool reference if one was found for a
536 symbolic constant. If this was found, it means we should try to
537 convert constants into constant pool entries if they don't fit in
538 the insn. */
540 static int constant_pool_entries_cost;
541 static int constant_pool_entries_regcost;
543 /* This data describes a block that will be processed by cse_basic_block. */
545 struct cse_basic_block_data
547 /* Lowest CUID value of insns in block. */
548 int low_cuid;
549 /* Highest CUID value of insns in block. */
550 int high_cuid;
551 /* Total number of SETs in block. */
552 int nsets;
553 /* Last insn in the block. */
554 rtx last;
555 /* Size of current branch path, if any. */
556 int path_size;
557 /* Current branch path, indicating which branches will be taken. */
558 struct branch_path
560 /* The branch insn. */
561 rtx branch;
562 /* Whether it should be taken or not. AROUND is the same as taken
563 except that it is used when the destination label is not preceded
564 by a BARRIER. */
565 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
566 } *path;
569 static bool fixed_base_plus_p (rtx x);
570 static int notreg_cost (rtx, enum rtx_code);
571 static int approx_reg_cost_1 (rtx *, void *);
572 static int approx_reg_cost (rtx);
573 static int preferable (int, int, int, int);
574 static void new_basic_block (void);
575 static void make_new_qty (unsigned int, enum machine_mode);
576 static void make_regs_eqv (unsigned int, unsigned int);
577 static void delete_reg_equiv (unsigned int);
578 static int mention_regs (rtx);
579 static int insert_regs (rtx, struct table_elt *, int);
580 static void remove_from_table (struct table_elt *, unsigned);
581 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
582 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
583 static rtx lookup_as_function (rtx, enum rtx_code);
584 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
585 enum machine_mode);
586 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
587 static void invalidate (rtx, enum machine_mode);
588 static int cse_rtx_varies_p (rtx, int);
589 static void remove_invalid_refs (unsigned int);
590 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
591 enum machine_mode);
592 static void rehash_using_reg (rtx);
593 static void invalidate_memory (void);
594 static void invalidate_for_call (void);
595 static rtx use_related_value (rtx, struct table_elt *);
597 static inline unsigned canon_hash (rtx, enum machine_mode);
598 static inline unsigned safe_hash (rtx, enum machine_mode);
599 static unsigned hash_rtx_string (const char *);
601 static rtx canon_reg (rtx, rtx);
602 static void find_best_addr (rtx, rtx *, enum machine_mode);
603 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
604 enum machine_mode *,
605 enum machine_mode *);
606 static rtx fold_rtx (rtx, rtx);
607 static rtx equiv_constant (rtx);
608 static void record_jump_equiv (rtx, int);
609 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
610 int);
611 static void cse_insn (rtx, rtx);
612 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
613 int, int);
614 static int addr_affects_sp_p (rtx);
615 static void invalidate_from_clobbers (rtx);
616 static rtx cse_process_notes (rtx, rtx);
617 static void invalidate_skipped_set (rtx, rtx, void *);
618 static void invalidate_skipped_block (rtx);
619 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
620 static void count_reg_usage (rtx, int *, int);
621 static int check_for_label_ref (rtx *, void *);
622 extern void dump_class (struct table_elt*);
623 static void get_cse_reg_info_1 (unsigned int regno);
624 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
625 static int check_dependence (rtx *, void *);
627 static void flush_hash_table (void);
628 static bool insn_live_p (rtx, int *);
629 static bool set_live_p (rtx, rtx, int *);
630 static bool dead_libcall_p (rtx, int *);
631 static int cse_change_cc_mode (rtx *, void *);
632 static void cse_change_cc_mode_insn (rtx, rtx);
633 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
634 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
637 #undef RTL_HOOKS_GEN_LOWPART
638 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
640 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
642 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
643 virtual regs here because the simplify_*_operation routines are called
644 by integrate.c, which is called before virtual register instantiation. */
646 static bool
647 fixed_base_plus_p (rtx x)
649 switch (GET_CODE (x))
651 case REG:
652 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
653 return true;
654 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
655 return true;
656 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
657 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
658 return true;
659 return false;
661 case PLUS:
662 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
663 return false;
664 return fixed_base_plus_p (XEXP (x, 0));
666 default:
667 return false;
671 /* Dump the expressions in the equivalence class indicated by CLASSP.
672 This function is used only for debugging. */
673 void
674 dump_class (struct table_elt *classp)
676 struct table_elt *elt;
678 fprintf (stderr, "Equivalence chain for ");
679 print_rtl (stderr, classp->exp);
680 fprintf (stderr, ": \n");
682 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
684 print_rtl (stderr, elt->exp);
685 fprintf (stderr, "\n");
689 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
691 static int
692 approx_reg_cost_1 (rtx *xp, void *data)
694 rtx x = *xp;
695 int *cost_p = data;
697 if (x && REG_P (x))
699 unsigned int regno = REGNO (x);
701 if (! CHEAP_REGNO (regno))
703 if (regno < FIRST_PSEUDO_REGISTER)
705 if (SMALL_REGISTER_CLASSES)
706 return 1;
707 *cost_p += 2;
709 else
710 *cost_p += 1;
714 return 0;
717 /* Return an estimate of the cost of the registers used in an rtx.
718 This is mostly the number of different REG expressions in the rtx;
719 however for some exceptions like fixed registers we use a cost of
720 0. If any other hard register reference occurs, return MAX_COST. */
722 static int
723 approx_reg_cost (rtx x)
725 int cost = 0;
727 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
728 return MAX_COST;
730 return cost;
733 /* Returns a canonical version of X for the address, from the point of view,
734 that all multiplications are represented as MULT instead of the multiply
735 by a power of 2 being represented as ASHIFT. */
737 static rtx
738 canon_for_address (rtx x)
740 enum rtx_code code;
741 enum machine_mode mode;
742 rtx new = 0;
743 int i;
744 const char *fmt;
746 if (!x)
747 return x;
749 code = GET_CODE (x);
750 mode = GET_MODE (x);
752 switch (code)
754 case ASHIFT:
755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
756 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
757 && INTVAL (XEXP (x, 1)) >= 0)
759 new = canon_for_address (XEXP (x, 0));
760 new = gen_rtx_MULT (mode, new,
761 gen_int_mode ((HOST_WIDE_INT) 1
762 << INTVAL (XEXP (x, 1)),
763 mode));
765 break;
766 default:
767 break;
770 if (new)
771 return new;
773 /* Now recursively process each operand of this operation. */
774 fmt = GET_RTX_FORMAT (code);
775 for (i = 0; i < GET_RTX_LENGTH (code); i++)
776 if (fmt[i] == 'e')
778 new = canon_for_address (XEXP (x, i));
779 XEXP (x, i) = new;
781 return x;
784 /* Return a negative value if an rtx A, whose costs are given by COST_A
785 and REGCOST_A, is more desirable than an rtx B.
786 Return a positive value if A is less desirable, or 0 if the two are
787 equally good. */
788 static int
789 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
791 /* First, get rid of cases involving expressions that are entirely
792 unwanted. */
793 if (cost_a != cost_b)
795 if (cost_a == MAX_COST)
796 return 1;
797 if (cost_b == MAX_COST)
798 return -1;
801 /* Avoid extending lifetimes of hardregs. */
802 if (regcost_a != regcost_b)
804 if (regcost_a == MAX_COST)
805 return 1;
806 if (regcost_b == MAX_COST)
807 return -1;
810 /* Normal operation costs take precedence. */
811 if (cost_a != cost_b)
812 return cost_a - cost_b;
813 /* Only if these are identical consider effects on register pressure. */
814 if (regcost_a != regcost_b)
815 return regcost_a - regcost_b;
816 return 0;
819 /* Internal function, to compute cost when X is not a register; called
820 from COST macro to keep it simple. */
822 static int
823 notreg_cost (rtx x, enum rtx_code outer)
825 return ((GET_CODE (x) == SUBREG
826 && REG_P (SUBREG_REG (x))
827 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
828 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
829 && (GET_MODE_SIZE (GET_MODE (x))
830 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
831 && subreg_lowpart_p (x)
832 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
833 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
835 : rtx_cost (x, outer) * 2);
839 /* Initialize CSE_REG_INFO_TABLE. */
841 static void
842 init_cse_reg_info (unsigned int nregs)
844 /* Do we need to grow the table? */
845 if (nregs > cse_reg_info_table_size)
847 unsigned int new_size;
849 if (cse_reg_info_table_size < 2048)
851 /* Compute a new size that is a power of 2 and no smaller
852 than the large of NREGS and 64. */
853 new_size = (cse_reg_info_table_size
854 ? cse_reg_info_table_size : 64);
856 while (new_size < nregs)
857 new_size *= 2;
859 else
861 /* If we need a big table, allocate just enough to hold
862 NREGS registers. */
863 new_size = nregs;
866 /* Reallocate the table with NEW_SIZE entries. */
867 if (cse_reg_info_table)
868 free (cse_reg_info_table);
869 cse_reg_info_table = xmalloc (sizeof (struct cse_reg_info)
870 * new_size);
871 cse_reg_info_table_size = new_size;
872 cse_reg_info_table_first_uninitialized = 0;
875 /* Do we have all of the first NREGS entries initialized? */
876 if (cse_reg_info_table_first_uninitialized < nregs)
878 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
879 unsigned int i;
881 /* Put the old timestamp on newly allocated entries so that they
882 will all be considered out of date. We do not touch those
883 entries beyond the first NREGS entries to be nice to the
884 virtual memory. */
885 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
886 cse_reg_info_table[i].timestamp = old_timestamp;
888 cse_reg_info_table_first_uninitialized = nregs;
892 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
894 static void
895 get_cse_reg_info_1 (unsigned int regno)
897 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
898 entry will be considered to have been initialized. */
899 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
901 /* Initialize the rest of the entry. */
902 cse_reg_info_table[regno].reg_tick = 1;
903 cse_reg_info_table[regno].reg_in_table = -1;
904 cse_reg_info_table[regno].subreg_ticked = -1;
905 cse_reg_info_table[regno].reg_qty = -regno - 1;
908 /* Find a cse_reg_info entry for REGNO. */
910 static inline struct cse_reg_info *
911 get_cse_reg_info (unsigned int regno)
913 struct cse_reg_info *p = &cse_reg_info_table[regno];
915 /* If this entry has not been initialized, go ahead and initialize
916 it. */
917 if (p->timestamp != cse_reg_info_timestamp)
918 get_cse_reg_info_1 (regno);
920 return p;
923 /* Clear the hash table and initialize each register with its own quantity,
924 for a new basic block. */
926 static void
927 new_basic_block (void)
929 int i;
931 next_qty = 0;
933 /* Invalidate cse_reg_info_table. */
934 cse_reg_info_timestamp++;
936 /* Clear out hash table state for this pass. */
937 CLEAR_HARD_REG_SET (hard_regs_in_table);
939 /* The per-quantity values used to be initialized here, but it is
940 much faster to initialize each as it is made in `make_new_qty'. */
942 for (i = 0; i < HASH_SIZE; i++)
944 struct table_elt *first;
946 first = table[i];
947 if (first != NULL)
949 struct table_elt *last = first;
951 table[i] = NULL;
953 while (last->next_same_hash != NULL)
954 last = last->next_same_hash;
956 /* Now relink this hash entire chain into
957 the free element list. */
959 last->next_same_hash = free_element_chain;
960 free_element_chain = first;
964 #ifdef HAVE_cc0
965 prev_insn = 0;
966 prev_insn_cc0 = 0;
967 #endif
970 /* Say that register REG contains a quantity in mode MODE not in any
971 register before and initialize that quantity. */
973 static void
974 make_new_qty (unsigned int reg, enum machine_mode mode)
976 int q;
977 struct qty_table_elem *ent;
978 struct reg_eqv_elem *eqv;
980 gcc_assert (next_qty < max_qty);
982 q = REG_QTY (reg) = next_qty++;
983 ent = &qty_table[q];
984 ent->first_reg = reg;
985 ent->last_reg = reg;
986 ent->mode = mode;
987 ent->const_rtx = ent->const_insn = NULL_RTX;
988 ent->comparison_code = UNKNOWN;
990 eqv = &reg_eqv_table[reg];
991 eqv->next = eqv->prev = -1;
994 /* Make reg NEW equivalent to reg OLD.
995 OLD is not changing; NEW is. */
997 static void
998 make_regs_eqv (unsigned int new, unsigned int old)
1000 unsigned int lastr, firstr;
1001 int q = REG_QTY (old);
1002 struct qty_table_elem *ent;
1004 ent = &qty_table[q];
1006 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1007 gcc_assert (REGNO_QTY_VALID_P (old));
1009 REG_QTY (new) = q;
1010 firstr = ent->first_reg;
1011 lastr = ent->last_reg;
1013 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1014 hard regs. Among pseudos, if NEW will live longer than any other reg
1015 of the same qty, and that is beyond the current basic block,
1016 make it the new canonical replacement for this qty. */
1017 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1018 /* Certain fixed registers might be of the class NO_REGS. This means
1019 that not only can they not be allocated by the compiler, but
1020 they cannot be used in substitutions or canonicalizations
1021 either. */
1022 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1023 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1024 || (new >= FIRST_PSEUDO_REGISTER
1025 && (firstr < FIRST_PSEUDO_REGISTER
1026 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1027 || (uid_cuid[REGNO_FIRST_UID (new)]
1028 < cse_basic_block_start))
1029 && (uid_cuid[REGNO_LAST_UID (new)]
1030 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1032 reg_eqv_table[firstr].prev = new;
1033 reg_eqv_table[new].next = firstr;
1034 reg_eqv_table[new].prev = -1;
1035 ent->first_reg = new;
1037 else
1039 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1040 Otherwise, insert before any non-fixed hard regs that are at the
1041 end. Registers of class NO_REGS cannot be used as an
1042 equivalent for anything. */
1043 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1044 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1045 && new >= FIRST_PSEUDO_REGISTER)
1046 lastr = reg_eqv_table[lastr].prev;
1047 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1048 if (reg_eqv_table[lastr].next >= 0)
1049 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1050 else
1051 qty_table[q].last_reg = new;
1052 reg_eqv_table[lastr].next = new;
1053 reg_eqv_table[new].prev = lastr;
1057 /* Remove REG from its equivalence class. */
1059 static void
1060 delete_reg_equiv (unsigned int reg)
1062 struct qty_table_elem *ent;
1063 int q = REG_QTY (reg);
1064 int p, n;
1066 /* If invalid, do nothing. */
1067 if (! REGNO_QTY_VALID_P (reg))
1068 return;
1070 ent = &qty_table[q];
1072 p = reg_eqv_table[reg].prev;
1073 n = reg_eqv_table[reg].next;
1075 if (n != -1)
1076 reg_eqv_table[n].prev = p;
1077 else
1078 ent->last_reg = p;
1079 if (p != -1)
1080 reg_eqv_table[p].next = n;
1081 else
1082 ent->first_reg = n;
1084 REG_QTY (reg) = -reg - 1;
1087 /* Remove any invalid expressions from the hash table
1088 that refer to any of the registers contained in expression X.
1090 Make sure that newly inserted references to those registers
1091 as subexpressions will be considered valid.
1093 mention_regs is not called when a register itself
1094 is being stored in the table.
1096 Return 1 if we have done something that may have changed the hash code
1097 of X. */
1099 static int
1100 mention_regs (rtx x)
1102 enum rtx_code code;
1103 int i, j;
1104 const char *fmt;
1105 int changed = 0;
1107 if (x == 0)
1108 return 0;
1110 code = GET_CODE (x);
1111 if (code == REG)
1113 unsigned int regno = REGNO (x);
1114 unsigned int endregno
1115 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1116 : hard_regno_nregs[regno][GET_MODE (x)]);
1117 unsigned int i;
1119 for (i = regno; i < endregno; i++)
1121 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1122 remove_invalid_refs (i);
1124 REG_IN_TABLE (i) = REG_TICK (i);
1125 SUBREG_TICKED (i) = -1;
1128 return 0;
1131 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1132 pseudo if they don't use overlapping words. We handle only pseudos
1133 here for simplicity. */
1134 if (code == SUBREG && REG_P (SUBREG_REG (x))
1135 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1137 unsigned int i = REGNO (SUBREG_REG (x));
1139 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1141 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1142 the last store to this register really stored into this
1143 subreg, then remove the memory of this subreg.
1144 Otherwise, remove any memory of the entire register and
1145 all its subregs from the table. */
1146 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1147 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1148 remove_invalid_refs (i);
1149 else
1150 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1153 REG_IN_TABLE (i) = REG_TICK (i);
1154 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1155 return 0;
1158 /* If X is a comparison or a COMPARE and either operand is a register
1159 that does not have a quantity, give it one. This is so that a later
1160 call to record_jump_equiv won't cause X to be assigned a different
1161 hash code and not found in the table after that call.
1163 It is not necessary to do this here, since rehash_using_reg can
1164 fix up the table later, but doing this here eliminates the need to
1165 call that expensive function in the most common case where the only
1166 use of the register is in the comparison. */
1168 if (code == COMPARE || COMPARISON_P (x))
1170 if (REG_P (XEXP (x, 0))
1171 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1172 if (insert_regs (XEXP (x, 0), NULL, 0))
1174 rehash_using_reg (XEXP (x, 0));
1175 changed = 1;
1178 if (REG_P (XEXP (x, 1))
1179 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1180 if (insert_regs (XEXP (x, 1), NULL, 0))
1182 rehash_using_reg (XEXP (x, 1));
1183 changed = 1;
1187 fmt = GET_RTX_FORMAT (code);
1188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1189 if (fmt[i] == 'e')
1190 changed |= mention_regs (XEXP (x, i));
1191 else if (fmt[i] == 'E')
1192 for (j = 0; j < XVECLEN (x, i); j++)
1193 changed |= mention_regs (XVECEXP (x, i, j));
1195 return changed;
1198 /* Update the register quantities for inserting X into the hash table
1199 with a value equivalent to CLASSP.
1200 (If the class does not contain a REG, it is irrelevant.)
1201 If MODIFIED is nonzero, X is a destination; it is being modified.
1202 Note that delete_reg_equiv should be called on a register
1203 before insert_regs is done on that register with MODIFIED != 0.
1205 Nonzero value means that elements of reg_qty have changed
1206 so X's hash code may be different. */
1208 static int
1209 insert_regs (rtx x, struct table_elt *classp, int modified)
1211 if (REG_P (x))
1213 unsigned int regno = REGNO (x);
1214 int qty_valid;
1216 /* If REGNO is in the equivalence table already but is of the
1217 wrong mode for that equivalence, don't do anything here. */
1219 qty_valid = REGNO_QTY_VALID_P (regno);
1220 if (qty_valid)
1222 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1224 if (ent->mode != GET_MODE (x))
1225 return 0;
1228 if (modified || ! qty_valid)
1230 if (classp)
1231 for (classp = classp->first_same_value;
1232 classp != 0;
1233 classp = classp->next_same_value)
1234 if (REG_P (classp->exp)
1235 && GET_MODE (classp->exp) == GET_MODE (x))
1237 make_regs_eqv (regno, REGNO (classp->exp));
1238 return 1;
1241 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1242 than REG_IN_TABLE to find out if there was only a single preceding
1243 invalidation - for the SUBREG - or another one, which would be
1244 for the full register. However, if we find here that REG_TICK
1245 indicates that the register is invalid, it means that it has
1246 been invalidated in a separate operation. The SUBREG might be used
1247 now (then this is a recursive call), or we might use the full REG
1248 now and a SUBREG of it later. So bump up REG_TICK so that
1249 mention_regs will do the right thing. */
1250 if (! modified
1251 && REG_IN_TABLE (regno) >= 0
1252 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1253 REG_TICK (regno)++;
1254 make_new_qty (regno, GET_MODE (x));
1255 return 1;
1258 return 0;
1261 /* If X is a SUBREG, we will likely be inserting the inner register in the
1262 table. If that register doesn't have an assigned quantity number at
1263 this point but does later, the insertion that we will be doing now will
1264 not be accessible because its hash code will have changed. So assign
1265 a quantity number now. */
1267 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1268 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1270 insert_regs (SUBREG_REG (x), NULL, 0);
1271 mention_regs (x);
1272 return 1;
1274 else
1275 return mention_regs (x);
1278 /* Look in or update the hash table. */
1280 /* Remove table element ELT from use in the table.
1281 HASH is its hash code, made using the HASH macro.
1282 It's an argument because often that is known in advance
1283 and we save much time not recomputing it. */
1285 static void
1286 remove_from_table (struct table_elt *elt, unsigned int hash)
1288 if (elt == 0)
1289 return;
1291 /* Mark this element as removed. See cse_insn. */
1292 elt->first_same_value = 0;
1294 /* Remove the table element from its equivalence class. */
1297 struct table_elt *prev = elt->prev_same_value;
1298 struct table_elt *next = elt->next_same_value;
1300 if (next)
1301 next->prev_same_value = prev;
1303 if (prev)
1304 prev->next_same_value = next;
1305 else
1307 struct table_elt *newfirst = next;
1308 while (next)
1310 next->first_same_value = newfirst;
1311 next = next->next_same_value;
1316 /* Remove the table element from its hash bucket. */
1319 struct table_elt *prev = elt->prev_same_hash;
1320 struct table_elt *next = elt->next_same_hash;
1322 if (next)
1323 next->prev_same_hash = prev;
1325 if (prev)
1326 prev->next_same_hash = next;
1327 else if (table[hash] == elt)
1328 table[hash] = next;
1329 else
1331 /* This entry is not in the proper hash bucket. This can happen
1332 when two classes were merged by `merge_equiv_classes'. Search
1333 for the hash bucket that it heads. This happens only very
1334 rarely, so the cost is acceptable. */
1335 for (hash = 0; hash < HASH_SIZE; hash++)
1336 if (table[hash] == elt)
1337 table[hash] = next;
1341 /* Remove the table element from its related-value circular chain. */
1343 if (elt->related_value != 0 && elt->related_value != elt)
1345 struct table_elt *p = elt->related_value;
1347 while (p->related_value != elt)
1348 p = p->related_value;
1349 p->related_value = elt->related_value;
1350 if (p->related_value == p)
1351 p->related_value = 0;
1354 /* Now add it to the free element chain. */
1355 elt->next_same_hash = free_element_chain;
1356 free_element_chain = elt;
1359 /* Look up X in the hash table and return its table element,
1360 or 0 if X is not in the table.
1362 MODE is the machine-mode of X, or if X is an integer constant
1363 with VOIDmode then MODE is the mode with which X will be used.
1365 Here we are satisfied to find an expression whose tree structure
1366 looks like X. */
1368 static struct table_elt *
1369 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1371 struct table_elt *p;
1373 for (p = table[hash]; p; p = p->next_same_hash)
1374 if (mode == p->mode && ((x == p->exp && REG_P (x))
1375 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1376 return p;
1378 return 0;
1381 /* Like `lookup' but don't care whether the table element uses invalid regs.
1382 Also ignore discrepancies in the machine mode of a register. */
1384 static struct table_elt *
1385 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1387 struct table_elt *p;
1389 if (REG_P (x))
1391 unsigned int regno = REGNO (x);
1393 /* Don't check the machine mode when comparing registers;
1394 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1395 for (p = table[hash]; p; p = p->next_same_hash)
1396 if (REG_P (p->exp)
1397 && REGNO (p->exp) == regno)
1398 return p;
1400 else
1402 for (p = table[hash]; p; p = p->next_same_hash)
1403 if (mode == p->mode
1404 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1405 return p;
1408 return 0;
1411 /* Look for an expression equivalent to X and with code CODE.
1412 If one is found, return that expression. */
1414 static rtx
1415 lookup_as_function (rtx x, enum rtx_code code)
1417 struct table_elt *p
1418 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1420 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1421 long as we are narrowing. So if we looked in vain for a mode narrower
1422 than word_mode before, look for word_mode now. */
1423 if (p == 0 && code == CONST_INT
1424 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1426 x = copy_rtx (x);
1427 PUT_MODE (x, word_mode);
1428 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1431 if (p == 0)
1432 return 0;
1434 for (p = p->first_same_value; p; p = p->next_same_value)
1435 if (GET_CODE (p->exp) == code
1436 /* Make sure this is a valid entry in the table. */
1437 && exp_equiv_p (p->exp, p->exp, 1, false))
1438 return p->exp;
1440 return 0;
1443 /* Insert X in the hash table, assuming HASH is its hash code
1444 and CLASSP is an element of the class it should go in
1445 (or 0 if a new class should be made).
1446 It is inserted at the proper position to keep the class in
1447 the order cheapest first.
1449 MODE is the machine-mode of X, or if X is an integer constant
1450 with VOIDmode then MODE is the mode with which X will be used.
1452 For elements of equal cheapness, the most recent one
1453 goes in front, except that the first element in the list
1454 remains first unless a cheaper element is added. The order of
1455 pseudo-registers does not matter, as canon_reg will be called to
1456 find the cheapest when a register is retrieved from the table.
1458 The in_memory field in the hash table element is set to 0.
1459 The caller must set it nonzero if appropriate.
1461 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1462 and if insert_regs returns a nonzero value
1463 you must then recompute its hash code before calling here.
1465 If necessary, update table showing constant values of quantities. */
1467 #define CHEAPER(X, Y) \
1468 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1470 static struct table_elt *
1471 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1473 struct table_elt *elt;
1475 /* If X is a register and we haven't made a quantity for it,
1476 something is wrong. */
1477 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1479 /* If X is a hard register, show it is being put in the table. */
1480 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1482 unsigned int regno = REGNO (x);
1483 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1484 unsigned int i;
1486 for (i = regno; i < endregno; i++)
1487 SET_HARD_REG_BIT (hard_regs_in_table, i);
1490 /* Put an element for X into the right hash bucket. */
1492 elt = free_element_chain;
1493 if (elt)
1494 free_element_chain = elt->next_same_hash;
1495 else
1496 elt = xmalloc (sizeof (struct table_elt));
1498 elt->exp = x;
1499 elt->canon_exp = NULL_RTX;
1500 elt->cost = COST (x);
1501 elt->regcost = approx_reg_cost (x);
1502 elt->next_same_value = 0;
1503 elt->prev_same_value = 0;
1504 elt->next_same_hash = table[hash];
1505 elt->prev_same_hash = 0;
1506 elt->related_value = 0;
1507 elt->in_memory = 0;
1508 elt->mode = mode;
1509 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1511 if (table[hash])
1512 table[hash]->prev_same_hash = elt;
1513 table[hash] = elt;
1515 /* Put it into the proper value-class. */
1516 if (classp)
1518 classp = classp->first_same_value;
1519 if (CHEAPER (elt, classp))
1520 /* Insert at the head of the class. */
1522 struct table_elt *p;
1523 elt->next_same_value = classp;
1524 classp->prev_same_value = elt;
1525 elt->first_same_value = elt;
1527 for (p = classp; p; p = p->next_same_value)
1528 p->first_same_value = elt;
1530 else
1532 /* Insert not at head of the class. */
1533 /* Put it after the last element cheaper than X. */
1534 struct table_elt *p, *next;
1536 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1537 p = next);
1539 /* Put it after P and before NEXT. */
1540 elt->next_same_value = next;
1541 if (next)
1542 next->prev_same_value = elt;
1544 elt->prev_same_value = p;
1545 p->next_same_value = elt;
1546 elt->first_same_value = classp;
1549 else
1550 elt->first_same_value = elt;
1552 /* If this is a constant being set equivalent to a register or a register
1553 being set equivalent to a constant, note the constant equivalence.
1555 If this is a constant, it cannot be equivalent to a different constant,
1556 and a constant is the only thing that can be cheaper than a register. So
1557 we know the register is the head of the class (before the constant was
1558 inserted).
1560 If this is a register that is not already known equivalent to a
1561 constant, we must check the entire class.
1563 If this is a register that is already known equivalent to an insn,
1564 update the qtys `const_insn' to show that `this_insn' is the latest
1565 insn making that quantity equivalent to the constant. */
1567 if (elt->is_const && classp && REG_P (classp->exp)
1568 && !REG_P (x))
1570 int exp_q = REG_QTY (REGNO (classp->exp));
1571 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1573 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1574 exp_ent->const_insn = this_insn;
1577 else if (REG_P (x)
1578 && classp
1579 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1580 && ! elt->is_const)
1582 struct table_elt *p;
1584 for (p = classp; p != 0; p = p->next_same_value)
1586 if (p->is_const && !REG_P (p->exp))
1588 int x_q = REG_QTY (REGNO (x));
1589 struct qty_table_elem *x_ent = &qty_table[x_q];
1591 x_ent->const_rtx
1592 = gen_lowpart (GET_MODE (x), p->exp);
1593 x_ent->const_insn = this_insn;
1594 break;
1599 else if (REG_P (x)
1600 && qty_table[REG_QTY (REGNO (x))].const_rtx
1601 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1602 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1604 /* If this is a constant with symbolic value,
1605 and it has a term with an explicit integer value,
1606 link it up with related expressions. */
1607 if (GET_CODE (x) == CONST)
1609 rtx subexp = get_related_value (x);
1610 unsigned subhash;
1611 struct table_elt *subelt, *subelt_prev;
1613 if (subexp != 0)
1615 /* Get the integer-free subexpression in the hash table. */
1616 subhash = SAFE_HASH (subexp, mode);
1617 subelt = lookup (subexp, subhash, mode);
1618 if (subelt == 0)
1619 subelt = insert (subexp, NULL, subhash, mode);
1620 /* Initialize SUBELT's circular chain if it has none. */
1621 if (subelt->related_value == 0)
1622 subelt->related_value = subelt;
1623 /* Find the element in the circular chain that precedes SUBELT. */
1624 subelt_prev = subelt;
1625 while (subelt_prev->related_value != subelt)
1626 subelt_prev = subelt_prev->related_value;
1627 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1628 This way the element that follows SUBELT is the oldest one. */
1629 elt->related_value = subelt_prev->related_value;
1630 subelt_prev->related_value = elt;
1634 return elt;
1637 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1638 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1639 the two classes equivalent.
1641 CLASS1 will be the surviving class; CLASS2 should not be used after this
1642 call.
1644 Any invalid entries in CLASS2 will not be copied. */
1646 static void
1647 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1649 struct table_elt *elt, *next, *new;
1651 /* Ensure we start with the head of the classes. */
1652 class1 = class1->first_same_value;
1653 class2 = class2->first_same_value;
1655 /* If they were already equal, forget it. */
1656 if (class1 == class2)
1657 return;
1659 for (elt = class2; elt; elt = next)
1661 unsigned int hash;
1662 rtx exp = elt->exp;
1663 enum machine_mode mode = elt->mode;
1665 next = elt->next_same_value;
1667 /* Remove old entry, make a new one in CLASS1's class.
1668 Don't do this for invalid entries as we cannot find their
1669 hash code (it also isn't necessary). */
1670 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1672 bool need_rehash = false;
1674 hash_arg_in_memory = 0;
1675 hash = HASH (exp, mode);
1677 if (REG_P (exp))
1679 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1680 delete_reg_equiv (REGNO (exp));
1683 remove_from_table (elt, hash);
1685 if (insert_regs (exp, class1, 0) || need_rehash)
1687 rehash_using_reg (exp);
1688 hash = HASH (exp, mode);
1690 new = insert (exp, class1, hash, mode);
1691 new->in_memory = hash_arg_in_memory;
1696 /* Flush the entire hash table. */
1698 static void
1699 flush_hash_table (void)
1701 int i;
1702 struct table_elt *p;
1704 for (i = 0; i < HASH_SIZE; i++)
1705 for (p = table[i]; p; p = table[i])
1707 /* Note that invalidate can remove elements
1708 after P in the current hash chain. */
1709 if (REG_P (p->exp))
1710 invalidate (p->exp, p->mode);
1711 else
1712 remove_from_table (p, i);
1716 /* Function called for each rtx to check whether true dependence exist. */
1717 struct check_dependence_data
1719 enum machine_mode mode;
1720 rtx exp;
1721 rtx addr;
1724 static int
1725 check_dependence (rtx *x, void *data)
1727 struct check_dependence_data *d = (struct check_dependence_data *) data;
1728 if (*x && MEM_P (*x))
1729 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1730 cse_rtx_varies_p);
1731 else
1732 return 0;
1735 /* Remove from the hash table, or mark as invalid, all expressions whose
1736 values could be altered by storing in X. X is a register, a subreg, or
1737 a memory reference with nonvarying address (because, when a memory
1738 reference with a varying address is stored in, all memory references are
1739 removed by invalidate_memory so specific invalidation is superfluous).
1740 FULL_MODE, if not VOIDmode, indicates that this much should be
1741 invalidated instead of just the amount indicated by the mode of X. This
1742 is only used for bitfield stores into memory.
1744 A nonvarying address may be just a register or just a symbol reference,
1745 or it may be either of those plus a numeric offset. */
1747 static void
1748 invalidate (rtx x, enum machine_mode full_mode)
1750 int i;
1751 struct table_elt *p;
1752 rtx addr;
1754 switch (GET_CODE (x))
1756 case REG:
1758 /* If X is a register, dependencies on its contents are recorded
1759 through the qty number mechanism. Just change the qty number of
1760 the register, mark it as invalid for expressions that refer to it,
1761 and remove it itself. */
1762 unsigned int regno = REGNO (x);
1763 unsigned int hash = HASH (x, GET_MODE (x));
1765 /* Remove REGNO from any quantity list it might be on and indicate
1766 that its value might have changed. If it is a pseudo, remove its
1767 entry from the hash table.
1769 For a hard register, we do the first two actions above for any
1770 additional hard registers corresponding to X. Then, if any of these
1771 registers are in the table, we must remove any REG entries that
1772 overlap these registers. */
1774 delete_reg_equiv (regno);
1775 REG_TICK (regno)++;
1776 SUBREG_TICKED (regno) = -1;
1778 if (regno >= FIRST_PSEUDO_REGISTER)
1780 /* Because a register can be referenced in more than one mode,
1781 we might have to remove more than one table entry. */
1782 struct table_elt *elt;
1784 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1785 remove_from_table (elt, hash);
1787 else
1789 HOST_WIDE_INT in_table
1790 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1791 unsigned int endregno
1792 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1793 unsigned int tregno, tendregno, rn;
1794 struct table_elt *p, *next;
1796 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1798 for (rn = regno + 1; rn < endregno; rn++)
1800 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1801 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1802 delete_reg_equiv (rn);
1803 REG_TICK (rn)++;
1804 SUBREG_TICKED (rn) = -1;
1807 if (in_table)
1808 for (hash = 0; hash < HASH_SIZE; hash++)
1809 for (p = table[hash]; p; p = next)
1811 next = p->next_same_hash;
1813 if (!REG_P (p->exp)
1814 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1815 continue;
1817 tregno = REGNO (p->exp);
1818 tendregno
1819 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1820 if (tendregno > regno && tregno < endregno)
1821 remove_from_table (p, hash);
1825 return;
1827 case SUBREG:
1828 invalidate (SUBREG_REG (x), VOIDmode);
1829 return;
1831 case PARALLEL:
1832 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1833 invalidate (XVECEXP (x, 0, i), VOIDmode);
1834 return;
1836 case EXPR_LIST:
1837 /* This is part of a disjoint return value; extract the location in
1838 question ignoring the offset. */
1839 invalidate (XEXP (x, 0), VOIDmode);
1840 return;
1842 case MEM:
1843 addr = canon_rtx (get_addr (XEXP (x, 0)));
1844 /* Calculate the canonical version of X here so that
1845 true_dependence doesn't generate new RTL for X on each call. */
1846 x = canon_rtx (x);
1848 /* Remove all hash table elements that refer to overlapping pieces of
1849 memory. */
1850 if (full_mode == VOIDmode)
1851 full_mode = GET_MODE (x);
1853 for (i = 0; i < HASH_SIZE; i++)
1855 struct table_elt *next;
1857 for (p = table[i]; p; p = next)
1859 next = p->next_same_hash;
1860 if (p->in_memory)
1862 struct check_dependence_data d;
1864 /* Just canonicalize the expression once;
1865 otherwise each time we call invalidate
1866 true_dependence will canonicalize the
1867 expression again. */
1868 if (!p->canon_exp)
1869 p->canon_exp = canon_rtx (p->exp);
1870 d.exp = x;
1871 d.addr = addr;
1872 d.mode = full_mode;
1873 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1874 remove_from_table (p, i);
1878 return;
1880 default:
1881 gcc_unreachable ();
1885 /* Remove all expressions that refer to register REGNO,
1886 since they are already invalid, and we are about to
1887 mark that register valid again and don't want the old
1888 expressions to reappear as valid. */
1890 static void
1891 remove_invalid_refs (unsigned int regno)
1893 unsigned int i;
1894 struct table_elt *p, *next;
1896 for (i = 0; i < HASH_SIZE; i++)
1897 for (p = table[i]; p; p = next)
1899 next = p->next_same_hash;
1900 if (!REG_P (p->exp)
1901 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1902 remove_from_table (p, i);
1906 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1907 and mode MODE. */
1908 static void
1909 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1910 enum machine_mode mode)
1912 unsigned int i;
1913 struct table_elt *p, *next;
1914 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1916 for (i = 0; i < HASH_SIZE; i++)
1917 for (p = table[i]; p; p = next)
1919 rtx exp = p->exp;
1920 next = p->next_same_hash;
1922 if (!REG_P (exp)
1923 && (GET_CODE (exp) != SUBREG
1924 || !REG_P (SUBREG_REG (exp))
1925 || REGNO (SUBREG_REG (exp)) != regno
1926 || (((SUBREG_BYTE (exp)
1927 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1928 && SUBREG_BYTE (exp) <= end))
1929 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1930 remove_from_table (p, i);
1934 /* Recompute the hash codes of any valid entries in the hash table that
1935 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1937 This is called when we make a jump equivalence. */
1939 static void
1940 rehash_using_reg (rtx x)
1942 unsigned int i;
1943 struct table_elt *p, *next;
1944 unsigned hash;
1946 if (GET_CODE (x) == SUBREG)
1947 x = SUBREG_REG (x);
1949 /* If X is not a register or if the register is known not to be in any
1950 valid entries in the table, we have no work to do. */
1952 if (!REG_P (x)
1953 || REG_IN_TABLE (REGNO (x)) < 0
1954 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1955 return;
1957 /* Scan all hash chains looking for valid entries that mention X.
1958 If we find one and it is in the wrong hash chain, move it. */
1960 for (i = 0; i < HASH_SIZE; i++)
1961 for (p = table[i]; p; p = next)
1963 next = p->next_same_hash;
1964 if (reg_mentioned_p (x, p->exp)
1965 && exp_equiv_p (p->exp, p->exp, 1, false)
1966 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1968 if (p->next_same_hash)
1969 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1971 if (p->prev_same_hash)
1972 p->prev_same_hash->next_same_hash = p->next_same_hash;
1973 else
1974 table[i] = p->next_same_hash;
1976 p->next_same_hash = table[hash];
1977 p->prev_same_hash = 0;
1978 if (table[hash])
1979 table[hash]->prev_same_hash = p;
1980 table[hash] = p;
1985 /* Remove from the hash table any expression that is a call-clobbered
1986 register. Also update their TICK values. */
1988 static void
1989 invalidate_for_call (void)
1991 unsigned int regno, endregno;
1992 unsigned int i;
1993 unsigned hash;
1994 struct table_elt *p, *next;
1995 int in_table = 0;
1997 /* Go through all the hard registers. For each that is clobbered in
1998 a CALL_INSN, remove the register from quantity chains and update
1999 reg_tick if defined. Also see if any of these registers is currently
2000 in the table. */
2002 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2003 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2005 delete_reg_equiv (regno);
2006 if (REG_TICK (regno) >= 0)
2008 REG_TICK (regno)++;
2009 SUBREG_TICKED (regno) = -1;
2012 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2015 /* In the case where we have no call-clobbered hard registers in the
2016 table, we are done. Otherwise, scan the table and remove any
2017 entry that overlaps a call-clobbered register. */
2019 if (in_table)
2020 for (hash = 0; hash < HASH_SIZE; hash++)
2021 for (p = table[hash]; p; p = next)
2023 next = p->next_same_hash;
2025 if (!REG_P (p->exp)
2026 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2027 continue;
2029 regno = REGNO (p->exp);
2030 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2032 for (i = regno; i < endregno; i++)
2033 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2035 remove_from_table (p, hash);
2036 break;
2041 /* Given an expression X of type CONST,
2042 and ELT which is its table entry (or 0 if it
2043 is not in the hash table),
2044 return an alternate expression for X as a register plus integer.
2045 If none can be found, return 0. */
2047 static rtx
2048 use_related_value (rtx x, struct table_elt *elt)
2050 struct table_elt *relt = 0;
2051 struct table_elt *p, *q;
2052 HOST_WIDE_INT offset;
2054 /* First, is there anything related known?
2055 If we have a table element, we can tell from that.
2056 Otherwise, must look it up. */
2058 if (elt != 0 && elt->related_value != 0)
2059 relt = elt;
2060 else if (elt == 0 && GET_CODE (x) == CONST)
2062 rtx subexp = get_related_value (x);
2063 if (subexp != 0)
2064 relt = lookup (subexp,
2065 SAFE_HASH (subexp, GET_MODE (subexp)),
2066 GET_MODE (subexp));
2069 if (relt == 0)
2070 return 0;
2072 /* Search all related table entries for one that has an
2073 equivalent register. */
2075 p = relt;
2076 while (1)
2078 /* This loop is strange in that it is executed in two different cases.
2079 The first is when X is already in the table. Then it is searching
2080 the RELATED_VALUE list of X's class (RELT). The second case is when
2081 X is not in the table. Then RELT points to a class for the related
2082 value.
2084 Ensure that, whatever case we are in, that we ignore classes that have
2085 the same value as X. */
2087 if (rtx_equal_p (x, p->exp))
2088 q = 0;
2089 else
2090 for (q = p->first_same_value; q; q = q->next_same_value)
2091 if (REG_P (q->exp))
2092 break;
2094 if (q)
2095 break;
2097 p = p->related_value;
2099 /* We went all the way around, so there is nothing to be found.
2100 Alternatively, perhaps RELT was in the table for some other reason
2101 and it has no related values recorded. */
2102 if (p == relt || p == 0)
2103 break;
2106 if (q == 0)
2107 return 0;
2109 offset = (get_integer_term (x) - get_integer_term (p->exp));
2110 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2111 return plus_constant (q->exp, offset);
2114 /* Hash a string. Just add its bytes up. */
2115 static inline unsigned
2116 hash_rtx_string (const char *ps)
2118 unsigned hash = 0;
2119 const unsigned char *p = (const unsigned char *) ps;
2121 if (p)
2122 while (*p)
2123 hash += *p++;
2125 return hash;
2128 /* Hash an rtx. We are careful to make sure the value is never negative.
2129 Equivalent registers hash identically.
2130 MODE is used in hashing for CONST_INTs only;
2131 otherwise the mode of X is used.
2133 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2135 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2136 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2138 Note that cse_insn knows that the hash code of a MEM expression
2139 is just (int) MEM plus the hash code of the address. */
2141 unsigned
2142 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2143 int *hash_arg_in_memory_p, bool have_reg_qty)
2145 int i, j;
2146 unsigned hash = 0;
2147 enum rtx_code code;
2148 const char *fmt;
2150 /* Used to turn recursion into iteration. We can't rely on GCC's
2151 tail-recursion elimination since we need to keep accumulating values
2152 in HASH. */
2153 repeat:
2154 if (x == 0)
2155 return hash;
2157 code = GET_CODE (x);
2158 switch (code)
2160 case REG:
2162 unsigned int regno = REGNO (x);
2164 if (!reload_completed)
2166 /* On some machines, we can't record any non-fixed hard register,
2167 because extending its life will cause reload problems. We
2168 consider ap, fp, sp, gp to be fixed for this purpose.
2170 We also consider CCmode registers to be fixed for this purpose;
2171 failure to do so leads to failure to simplify 0<100 type of
2172 conditionals.
2174 On all machines, we can't record any global registers.
2175 Nor should we record any register that is in a small
2176 class, as defined by CLASS_LIKELY_SPILLED_P. */
2177 bool record;
2179 if (regno >= FIRST_PSEUDO_REGISTER)
2180 record = true;
2181 else if (x == frame_pointer_rtx
2182 || x == hard_frame_pointer_rtx
2183 || x == arg_pointer_rtx
2184 || x == stack_pointer_rtx
2185 || x == pic_offset_table_rtx)
2186 record = true;
2187 else if (global_regs[regno])
2188 record = false;
2189 else if (fixed_regs[regno])
2190 record = true;
2191 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2192 record = true;
2193 else if (SMALL_REGISTER_CLASSES)
2194 record = false;
2195 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2196 record = false;
2197 else
2198 record = true;
2200 if (!record)
2202 *do_not_record_p = 1;
2203 return 0;
2207 hash += ((unsigned int) REG << 7);
2208 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2209 return hash;
2212 /* We handle SUBREG of a REG specially because the underlying
2213 reg changes its hash value with every value change; we don't
2214 want to have to forget unrelated subregs when one subreg changes. */
2215 case SUBREG:
2217 if (REG_P (SUBREG_REG (x)))
2219 hash += (((unsigned int) SUBREG << 7)
2220 + REGNO (SUBREG_REG (x))
2221 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2222 return hash;
2224 break;
2227 case CONST_INT:
2228 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2229 + (unsigned int) INTVAL (x));
2230 return hash;
2232 case CONST_DOUBLE:
2233 /* This is like the general case, except that it only counts
2234 the integers representing the constant. */
2235 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2236 if (GET_MODE (x) != VOIDmode)
2237 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2238 else
2239 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2240 + (unsigned int) CONST_DOUBLE_HIGH (x));
2241 return hash;
2243 case CONST_VECTOR:
2245 int units;
2246 rtx elt;
2248 units = CONST_VECTOR_NUNITS (x);
2250 for (i = 0; i < units; ++i)
2252 elt = CONST_VECTOR_ELT (x, i);
2253 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2254 hash_arg_in_memory_p, have_reg_qty);
2257 return hash;
2260 /* Assume there is only one rtx object for any given label. */
2261 case LABEL_REF:
2262 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2263 differences and differences between each stage's debugging dumps. */
2264 hash += (((unsigned int) LABEL_REF << 7)
2265 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2266 return hash;
2268 case SYMBOL_REF:
2270 /* Don't hash on the symbol's address to avoid bootstrap differences.
2271 Different hash values may cause expressions to be recorded in
2272 different orders and thus different registers to be used in the
2273 final assembler. This also avoids differences in the dump files
2274 between various stages. */
2275 unsigned int h = 0;
2276 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2278 while (*p)
2279 h += (h << 7) + *p++; /* ??? revisit */
2281 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2282 return hash;
2285 case MEM:
2286 /* We don't record if marked volatile or if BLKmode since we don't
2287 know the size of the move. */
2288 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2290 *do_not_record_p = 1;
2291 return 0;
2293 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2294 *hash_arg_in_memory_p = 1;
2296 /* Now that we have already found this special case,
2297 might as well speed it up as much as possible. */
2298 hash += (unsigned) MEM;
2299 x = XEXP (x, 0);
2300 goto repeat;
2302 case USE:
2303 /* A USE that mentions non-volatile memory needs special
2304 handling since the MEM may be BLKmode which normally
2305 prevents an entry from being made. Pure calls are
2306 marked by a USE which mentions BLKmode memory.
2307 See calls.c:emit_call_1. */
2308 if (MEM_P (XEXP (x, 0))
2309 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2311 hash += (unsigned) USE;
2312 x = XEXP (x, 0);
2314 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2315 *hash_arg_in_memory_p = 1;
2317 /* Now that we have already found this special case,
2318 might as well speed it up as much as possible. */
2319 hash += (unsigned) MEM;
2320 x = XEXP (x, 0);
2321 goto repeat;
2323 break;
2325 case PRE_DEC:
2326 case PRE_INC:
2327 case POST_DEC:
2328 case POST_INC:
2329 case PRE_MODIFY:
2330 case POST_MODIFY:
2331 case PC:
2332 case CC0:
2333 case CALL:
2334 case UNSPEC_VOLATILE:
2335 *do_not_record_p = 1;
2336 return 0;
2338 case ASM_OPERANDS:
2339 if (MEM_VOLATILE_P (x))
2341 *do_not_record_p = 1;
2342 return 0;
2344 else
2346 /* We don't want to take the filename and line into account. */
2347 hash += (unsigned) code + (unsigned) GET_MODE (x)
2348 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2349 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2350 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2352 if (ASM_OPERANDS_INPUT_LENGTH (x))
2354 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2356 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2357 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2358 do_not_record_p, hash_arg_in_memory_p,
2359 have_reg_qty)
2360 + hash_rtx_string
2361 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2364 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2365 x = ASM_OPERANDS_INPUT (x, 0);
2366 mode = GET_MODE (x);
2367 goto repeat;
2370 return hash;
2372 break;
2374 default:
2375 break;
2378 i = GET_RTX_LENGTH (code) - 1;
2379 hash += (unsigned) code + (unsigned) GET_MODE (x);
2380 fmt = GET_RTX_FORMAT (code);
2381 for (; i >= 0; i--)
2383 switch (fmt[i])
2385 case 'e':
2386 /* If we are about to do the last recursive call
2387 needed at this level, change it into iteration.
2388 This function is called enough to be worth it. */
2389 if (i == 0)
2391 x = XEXP (x, i);
2392 goto repeat;
2395 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2396 hash_arg_in_memory_p, have_reg_qty);
2397 break;
2399 case 'E':
2400 for (j = 0; j < XVECLEN (x, i); j++)
2401 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2402 hash_arg_in_memory_p, have_reg_qty);
2403 break;
2405 case 's':
2406 hash += hash_rtx_string (XSTR (x, i));
2407 break;
2409 case 'i':
2410 hash += (unsigned int) XINT (x, i);
2411 break;
2413 case '0': case 't':
2414 /* Unused. */
2415 break;
2417 default:
2418 gcc_unreachable ();
2422 return hash;
2425 /* Hash an rtx X for cse via hash_rtx.
2426 Stores 1 in do_not_record if any subexpression is volatile.
2427 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2428 does not have the RTX_UNCHANGING_P bit set. */
2430 static inline unsigned
2431 canon_hash (rtx x, enum machine_mode mode)
2433 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2436 /* Like canon_hash but with no side effects, i.e. do_not_record
2437 and hash_arg_in_memory are not changed. */
2439 static inline unsigned
2440 safe_hash (rtx x, enum machine_mode mode)
2442 int dummy_do_not_record;
2443 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2446 /* Return 1 iff X and Y would canonicalize into the same thing,
2447 without actually constructing the canonicalization of either one.
2448 If VALIDATE is nonzero,
2449 we assume X is an expression being processed from the rtl
2450 and Y was found in the hash table. We check register refs
2451 in Y for being marked as valid.
2453 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2456 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2458 int i, j;
2459 enum rtx_code code;
2460 const char *fmt;
2462 /* Note: it is incorrect to assume an expression is equivalent to itself
2463 if VALIDATE is nonzero. */
2464 if (x == y && !validate)
2465 return 1;
2467 if (x == 0 || y == 0)
2468 return x == y;
2470 code = GET_CODE (x);
2471 if (code != GET_CODE (y))
2472 return 0;
2474 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2475 if (GET_MODE (x) != GET_MODE (y))
2476 return 0;
2478 switch (code)
2480 case PC:
2481 case CC0:
2482 case CONST_INT:
2483 return x == y;
2485 case LABEL_REF:
2486 return XEXP (x, 0) == XEXP (y, 0);
2488 case SYMBOL_REF:
2489 return XSTR (x, 0) == XSTR (y, 0);
2491 case REG:
2492 if (for_gcse)
2493 return REGNO (x) == REGNO (y);
2494 else
2496 unsigned int regno = REGNO (y);
2497 unsigned int i;
2498 unsigned int endregno
2499 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2500 : hard_regno_nregs[regno][GET_MODE (y)]);
2502 /* If the quantities are not the same, the expressions are not
2503 equivalent. If there are and we are not to validate, they
2504 are equivalent. Otherwise, ensure all regs are up-to-date. */
2506 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2507 return 0;
2509 if (! validate)
2510 return 1;
2512 for (i = regno; i < endregno; i++)
2513 if (REG_IN_TABLE (i) != REG_TICK (i))
2514 return 0;
2516 return 1;
2519 case MEM:
2520 if (for_gcse)
2522 /* Can't merge two expressions in different alias sets, since we
2523 can decide that the expression is transparent in a block when
2524 it isn't, due to it being set with the different alias set. */
2525 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2526 return 0;
2528 /* A volatile mem should not be considered equivalent to any
2529 other. */
2530 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2531 return 0;
2533 break;
2535 /* For commutative operations, check both orders. */
2536 case PLUS:
2537 case MULT:
2538 case AND:
2539 case IOR:
2540 case XOR:
2541 case NE:
2542 case EQ:
2543 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2544 validate, for_gcse)
2545 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2546 validate, for_gcse))
2547 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2548 validate, for_gcse)
2549 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2550 validate, for_gcse)));
2552 case ASM_OPERANDS:
2553 /* We don't use the generic code below because we want to
2554 disregard filename and line numbers. */
2556 /* A volatile asm isn't equivalent to any other. */
2557 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2558 return 0;
2560 if (GET_MODE (x) != GET_MODE (y)
2561 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2562 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2563 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2564 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2565 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2566 return 0;
2568 if (ASM_OPERANDS_INPUT_LENGTH (x))
2570 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2571 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2572 ASM_OPERANDS_INPUT (y, i),
2573 validate, for_gcse)
2574 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2575 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2576 return 0;
2579 return 1;
2581 default:
2582 break;
2585 /* Compare the elements. If any pair of corresponding elements
2586 fail to match, return 0 for the whole thing. */
2588 fmt = GET_RTX_FORMAT (code);
2589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2591 switch (fmt[i])
2593 case 'e':
2594 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2595 validate, for_gcse))
2596 return 0;
2597 break;
2599 case 'E':
2600 if (XVECLEN (x, i) != XVECLEN (y, i))
2601 return 0;
2602 for (j = 0; j < XVECLEN (x, i); j++)
2603 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2604 validate, for_gcse))
2605 return 0;
2606 break;
2608 case 's':
2609 if (strcmp (XSTR (x, i), XSTR (y, i)))
2610 return 0;
2611 break;
2613 case 'i':
2614 if (XINT (x, i) != XINT (y, i))
2615 return 0;
2616 break;
2618 case 'w':
2619 if (XWINT (x, i) != XWINT (y, i))
2620 return 0;
2621 break;
2623 case '0':
2624 case 't':
2625 break;
2627 default:
2628 gcc_unreachable ();
2632 return 1;
2635 /* Return 1 if X has a value that can vary even between two
2636 executions of the program. 0 means X can be compared reliably
2637 against certain constants or near-constants. */
2639 static int
2640 cse_rtx_varies_p (rtx x, int from_alias)
2642 /* We need not check for X and the equivalence class being of the same
2643 mode because if X is equivalent to a constant in some mode, it
2644 doesn't vary in any mode. */
2646 if (REG_P (x)
2647 && REGNO_QTY_VALID_P (REGNO (x)))
2649 int x_q = REG_QTY (REGNO (x));
2650 struct qty_table_elem *x_ent = &qty_table[x_q];
2652 if (GET_MODE (x) == x_ent->mode
2653 && x_ent->const_rtx != NULL_RTX)
2654 return 0;
2657 if (GET_CODE (x) == PLUS
2658 && GET_CODE (XEXP (x, 1)) == CONST_INT
2659 && REG_P (XEXP (x, 0))
2660 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2662 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2663 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2665 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2666 && x0_ent->const_rtx != NULL_RTX)
2667 return 0;
2670 /* This can happen as the result of virtual register instantiation, if
2671 the initial constant is too large to be a valid address. This gives
2672 us a three instruction sequence, load large offset into a register,
2673 load fp minus a constant into a register, then a MEM which is the
2674 sum of the two `constant' registers. */
2675 if (GET_CODE (x) == PLUS
2676 && REG_P (XEXP (x, 0))
2677 && REG_P (XEXP (x, 1))
2678 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2679 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2681 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2682 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2683 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2684 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2686 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2687 && x0_ent->const_rtx != NULL_RTX
2688 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2689 && x1_ent->const_rtx != NULL_RTX)
2690 return 0;
2693 return rtx_varies_p (x, from_alias);
2696 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2697 the result if necessary. INSN is as for canon_reg. */
2699 static void
2700 validate_canon_reg (rtx *xloc, rtx insn)
2702 rtx new = canon_reg (*xloc, insn);
2703 int insn_code;
2705 /* If replacing pseudo with hard reg or vice versa, ensure the
2706 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2707 if (insn != 0 && new != 0
2708 && REG_P (new) && REG_P (*xloc)
2709 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2710 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2711 || GET_MODE (new) != GET_MODE (*xloc)
2712 || (insn_code = recog_memoized (insn)) < 0
2713 || insn_data[insn_code].n_dups > 0))
2714 validate_change (insn, xloc, new, 1);
2715 else
2716 *xloc = new;
2719 /* Canonicalize an expression:
2720 replace each register reference inside it
2721 with the "oldest" equivalent register.
2723 If INSN is nonzero and we are replacing a pseudo with a hard register
2724 or vice versa, validate_change is used to ensure that INSN remains valid
2725 after we make our substitution. The calls are made with IN_GROUP nonzero
2726 so apply_change_group must be called upon the outermost return from this
2727 function (unless INSN is zero). The result of apply_change_group can
2728 generally be discarded since the changes we are making are optional. */
2730 static rtx
2731 canon_reg (rtx x, rtx insn)
2733 int i;
2734 enum rtx_code code;
2735 const char *fmt;
2737 if (x == 0)
2738 return x;
2740 code = GET_CODE (x);
2741 switch (code)
2743 case PC:
2744 case CC0:
2745 case CONST:
2746 case CONST_INT:
2747 case CONST_DOUBLE:
2748 case CONST_VECTOR:
2749 case SYMBOL_REF:
2750 case LABEL_REF:
2751 case ADDR_VEC:
2752 case ADDR_DIFF_VEC:
2753 return x;
2755 case REG:
2757 int first;
2758 int q;
2759 struct qty_table_elem *ent;
2761 /* Never replace a hard reg, because hard regs can appear
2762 in more than one machine mode, and we must preserve the mode
2763 of each occurrence. Also, some hard regs appear in
2764 MEMs that are shared and mustn't be altered. Don't try to
2765 replace any reg that maps to a reg of class NO_REGS. */
2766 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2767 || ! REGNO_QTY_VALID_P (REGNO (x)))
2768 return x;
2770 q = REG_QTY (REGNO (x));
2771 ent = &qty_table[q];
2772 first = ent->first_reg;
2773 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2774 : REGNO_REG_CLASS (first) == NO_REGS ? x
2775 : gen_rtx_REG (ent->mode, first));
2778 default:
2779 break;
2782 fmt = GET_RTX_FORMAT (code);
2783 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2785 int j;
2787 if (fmt[i] == 'e')
2788 validate_canon_reg (&XEXP (x, i), insn);
2789 else if (fmt[i] == 'E')
2790 for (j = 0; j < XVECLEN (x, i); j++)
2791 validate_canon_reg (&XVECEXP (x, i, j), insn);
2794 return x;
2797 /* LOC is a location within INSN that is an operand address (the contents of
2798 a MEM). Find the best equivalent address to use that is valid for this
2799 insn.
2801 On most CISC machines, complicated address modes are costly, and rtx_cost
2802 is a good approximation for that cost. However, most RISC machines have
2803 only a few (usually only one) memory reference formats. If an address is
2804 valid at all, it is often just as cheap as any other address. Hence, for
2805 RISC machines, we use `address_cost' to compare the costs of various
2806 addresses. For two addresses of equal cost, choose the one with the
2807 highest `rtx_cost' value as that has the potential of eliminating the
2808 most insns. For equal costs, we choose the first in the equivalence
2809 class. Note that we ignore the fact that pseudo registers are cheaper than
2810 hard registers here because we would also prefer the pseudo registers. */
2812 static void
2813 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2815 struct table_elt *elt;
2816 rtx addr = *loc;
2817 struct table_elt *p;
2818 int found_better = 1;
2819 int save_do_not_record = do_not_record;
2820 int save_hash_arg_in_memory = hash_arg_in_memory;
2821 int addr_volatile;
2822 int regno;
2823 unsigned hash;
2825 /* Do not try to replace constant addresses or addresses of local and
2826 argument slots. These MEM expressions are made only once and inserted
2827 in many instructions, as well as being used to control symbol table
2828 output. It is not safe to clobber them.
2830 There are some uncommon cases where the address is already in a register
2831 for some reason, but we cannot take advantage of that because we have
2832 no easy way to unshare the MEM. In addition, looking up all stack
2833 addresses is costly. */
2834 if ((GET_CODE (addr) == PLUS
2835 && REG_P (XEXP (addr, 0))
2836 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2837 && (regno = REGNO (XEXP (addr, 0)),
2838 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2839 || regno == ARG_POINTER_REGNUM))
2840 || (REG_P (addr)
2841 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2842 || regno == HARD_FRAME_POINTER_REGNUM
2843 || regno == ARG_POINTER_REGNUM))
2844 || CONSTANT_ADDRESS_P (addr))
2845 return;
2847 /* If this address is not simply a register, try to fold it. This will
2848 sometimes simplify the expression. Many simplifications
2849 will not be valid, but some, usually applying the associative rule, will
2850 be valid and produce better code. */
2851 if (!REG_P (addr))
2853 rtx folded = fold_rtx (addr, NULL_RTX);
2854 if (folded != addr)
2856 int addr_folded_cost = address_cost (folded, mode);
2857 int addr_cost = address_cost (addr, mode);
2859 if ((addr_folded_cost < addr_cost
2860 || (addr_folded_cost == addr_cost
2861 /* ??? The rtx_cost comparison is left over from an older
2862 version of this code. It is probably no longer helpful.*/
2863 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2864 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2865 && validate_change (insn, loc, folded, 0))
2866 addr = folded;
2870 /* If this address is not in the hash table, we can't look for equivalences
2871 of the whole address. Also, ignore if volatile. */
2873 do_not_record = 0;
2874 hash = HASH (addr, Pmode);
2875 addr_volatile = do_not_record;
2876 do_not_record = save_do_not_record;
2877 hash_arg_in_memory = save_hash_arg_in_memory;
2879 if (addr_volatile)
2880 return;
2882 elt = lookup (addr, hash, Pmode);
2884 if (elt)
2886 /* We need to find the best (under the criteria documented above) entry
2887 in the class that is valid. We use the `flag' field to indicate
2888 choices that were invalid and iterate until we can't find a better
2889 one that hasn't already been tried. */
2891 for (p = elt->first_same_value; p; p = p->next_same_value)
2892 p->flag = 0;
2894 while (found_better)
2896 int best_addr_cost = address_cost (*loc, mode);
2897 int best_rtx_cost = (elt->cost + 1) >> 1;
2898 int exp_cost;
2899 struct table_elt *best_elt = elt;
2901 found_better = 0;
2902 for (p = elt->first_same_value; p; p = p->next_same_value)
2903 if (! p->flag)
2905 if ((REG_P (p->exp)
2906 || exp_equiv_p (p->exp, p->exp, 1, false))
2907 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2908 || (exp_cost == best_addr_cost
2909 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2911 found_better = 1;
2912 best_addr_cost = exp_cost;
2913 best_rtx_cost = (p->cost + 1) >> 1;
2914 best_elt = p;
2918 if (found_better)
2920 if (validate_change (insn, loc,
2921 canon_reg (copy_rtx (best_elt->exp),
2922 NULL_RTX), 0))
2923 return;
2924 else
2925 best_elt->flag = 1;
2930 /* If the address is a binary operation with the first operand a register
2931 and the second a constant, do the same as above, but looking for
2932 equivalences of the register. Then try to simplify before checking for
2933 the best address to use. This catches a few cases: First is when we
2934 have REG+const and the register is another REG+const. We can often merge
2935 the constants and eliminate one insn and one register. It may also be
2936 that a machine has a cheap REG+REG+const. Finally, this improves the
2937 code on the Alpha for unaligned byte stores. */
2939 if (flag_expensive_optimizations
2940 && ARITHMETIC_P (*loc)
2941 && REG_P (XEXP (*loc, 0)))
2943 rtx op1 = XEXP (*loc, 1);
2945 do_not_record = 0;
2946 hash = HASH (XEXP (*loc, 0), Pmode);
2947 do_not_record = save_do_not_record;
2948 hash_arg_in_memory = save_hash_arg_in_memory;
2950 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2951 if (elt == 0)
2952 return;
2954 /* We need to find the best (under the criteria documented above) entry
2955 in the class that is valid. We use the `flag' field to indicate
2956 choices that were invalid and iterate until we can't find a better
2957 one that hasn't already been tried. */
2959 for (p = elt->first_same_value; p; p = p->next_same_value)
2960 p->flag = 0;
2962 while (found_better)
2964 int best_addr_cost = address_cost (*loc, mode);
2965 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2966 struct table_elt *best_elt = elt;
2967 rtx best_rtx = *loc;
2968 int count;
2970 /* This is at worst case an O(n^2) algorithm, so limit our search
2971 to the first 32 elements on the list. This avoids trouble
2972 compiling code with very long basic blocks that can easily
2973 call simplify_gen_binary so many times that we run out of
2974 memory. */
2976 found_better = 0;
2977 for (p = elt->first_same_value, count = 0;
2978 p && count < 32;
2979 p = p->next_same_value, count++)
2980 if (! p->flag
2981 && (REG_P (p->exp)
2982 || exp_equiv_p (p->exp, p->exp, 1, false)))
2984 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
2985 p->exp, op1);
2986 int new_cost;
2988 /* Get the canonical version of the address so we can accept
2989 more. */
2990 new = canon_for_address (new);
2992 new_cost = address_cost (new, mode);
2994 if (new_cost < best_addr_cost
2995 || (new_cost == best_addr_cost
2996 && (COST (new) + 1) >> 1 > best_rtx_cost))
2998 found_better = 1;
2999 best_addr_cost = new_cost;
3000 best_rtx_cost = (COST (new) + 1) >> 1;
3001 best_elt = p;
3002 best_rtx = new;
3006 if (found_better)
3008 if (validate_change (insn, loc,
3009 canon_reg (copy_rtx (best_rtx),
3010 NULL_RTX), 0))
3011 return;
3012 else
3013 best_elt->flag = 1;
3019 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3020 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3021 what values are being compared.
3023 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3024 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3025 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3026 compared to produce cc0.
3028 The return value is the comparison operator and is either the code of
3029 A or the code corresponding to the inverse of the comparison. */
3031 static enum rtx_code
3032 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3033 enum machine_mode *pmode1, enum machine_mode *pmode2)
3035 rtx arg1, arg2;
3037 arg1 = *parg1, arg2 = *parg2;
3039 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3041 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3043 /* Set nonzero when we find something of interest. */
3044 rtx x = 0;
3045 int reverse_code = 0;
3046 struct table_elt *p = 0;
3048 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3049 On machines with CC0, this is the only case that can occur, since
3050 fold_rtx will return the COMPARE or item being compared with zero
3051 when given CC0. */
3053 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3054 x = arg1;
3056 /* If ARG1 is a comparison operator and CODE is testing for
3057 STORE_FLAG_VALUE, get the inner arguments. */
3059 else if (COMPARISON_P (arg1))
3061 #ifdef FLOAT_STORE_FLAG_VALUE
3062 REAL_VALUE_TYPE fsfv;
3063 #endif
3065 if (code == NE
3066 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3067 && code == LT && STORE_FLAG_VALUE == -1)
3068 #ifdef FLOAT_STORE_FLAG_VALUE
3069 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3070 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3071 REAL_VALUE_NEGATIVE (fsfv)))
3072 #endif
3074 x = arg1;
3075 else if (code == EQ
3076 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3077 && code == GE && STORE_FLAG_VALUE == -1)
3078 #ifdef FLOAT_STORE_FLAG_VALUE
3079 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3080 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3081 REAL_VALUE_NEGATIVE (fsfv)))
3082 #endif
3084 x = arg1, reverse_code = 1;
3087 /* ??? We could also check for
3089 (ne (and (eq (...) (const_int 1))) (const_int 0))
3091 and related forms, but let's wait until we see them occurring. */
3093 if (x == 0)
3094 /* Look up ARG1 in the hash table and see if it has an equivalence
3095 that lets us see what is being compared. */
3096 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3097 if (p)
3099 p = p->first_same_value;
3101 /* If what we compare is already known to be constant, that is as
3102 good as it gets.
3103 We need to break the loop in this case, because otherwise we
3104 can have an infinite loop when looking at a reg that is known
3105 to be a constant which is the same as a comparison of a reg
3106 against zero which appears later in the insn stream, which in
3107 turn is constant and the same as the comparison of the first reg
3108 against zero... */
3109 if (p->is_const)
3110 break;
3113 for (; p; p = p->next_same_value)
3115 enum machine_mode inner_mode = GET_MODE (p->exp);
3116 #ifdef FLOAT_STORE_FLAG_VALUE
3117 REAL_VALUE_TYPE fsfv;
3118 #endif
3120 /* If the entry isn't valid, skip it. */
3121 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3122 continue;
3124 if (GET_CODE (p->exp) == COMPARE
3125 /* Another possibility is that this machine has a compare insn
3126 that includes the comparison code. In that case, ARG1 would
3127 be equivalent to a comparison operation that would set ARG1 to
3128 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3129 ORIG_CODE is the actual comparison being done; if it is an EQ,
3130 we must reverse ORIG_CODE. On machine with a negative value
3131 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3132 || ((code == NE
3133 || (code == LT
3134 && GET_MODE_CLASS (inner_mode) == MODE_INT
3135 && (GET_MODE_BITSIZE (inner_mode)
3136 <= HOST_BITS_PER_WIDE_INT)
3137 && (STORE_FLAG_VALUE
3138 & ((HOST_WIDE_INT) 1
3139 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3140 #ifdef FLOAT_STORE_FLAG_VALUE
3141 || (code == LT
3142 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3143 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3144 REAL_VALUE_NEGATIVE (fsfv)))
3145 #endif
3147 && COMPARISON_P (p->exp)))
3149 x = p->exp;
3150 break;
3152 else if ((code == EQ
3153 || (code == GE
3154 && GET_MODE_CLASS (inner_mode) == MODE_INT
3155 && (GET_MODE_BITSIZE (inner_mode)
3156 <= HOST_BITS_PER_WIDE_INT)
3157 && (STORE_FLAG_VALUE
3158 & ((HOST_WIDE_INT) 1
3159 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3160 #ifdef FLOAT_STORE_FLAG_VALUE
3161 || (code == GE
3162 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3163 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3164 REAL_VALUE_NEGATIVE (fsfv)))
3165 #endif
3167 && COMPARISON_P (p->exp))
3169 reverse_code = 1;
3170 x = p->exp;
3171 break;
3174 /* If this non-trapping address, e.g. fp + constant, the
3175 equivalent is a better operand since it may let us predict
3176 the value of the comparison. */
3177 else if (!rtx_addr_can_trap_p (p->exp))
3179 arg1 = p->exp;
3180 continue;
3184 /* If we didn't find a useful equivalence for ARG1, we are done.
3185 Otherwise, set up for the next iteration. */
3186 if (x == 0)
3187 break;
3189 /* If we need to reverse the comparison, make sure that that is
3190 possible -- we can't necessarily infer the value of GE from LT
3191 with floating-point operands. */
3192 if (reverse_code)
3194 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3195 if (reversed == UNKNOWN)
3196 break;
3197 else
3198 code = reversed;
3200 else if (COMPARISON_P (x))
3201 code = GET_CODE (x);
3202 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3205 /* Return our results. Return the modes from before fold_rtx
3206 because fold_rtx might produce const_int, and then it's too late. */
3207 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3208 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3210 return code;
3213 /* If X is a nontrivial arithmetic operation on an argument
3214 for which a constant value can be determined, return
3215 the result of operating on that value, as a constant.
3216 Otherwise, return X, possibly with one or more operands
3217 modified by recursive calls to this function.
3219 If X is a register whose contents are known, we do NOT
3220 return those contents here. equiv_constant is called to
3221 perform that task.
3223 INSN is the insn that we may be modifying. If it is 0, make a copy
3224 of X before modifying it. */
3226 static rtx
3227 fold_rtx (rtx x, rtx insn)
3229 enum rtx_code code;
3230 enum machine_mode mode;
3231 const char *fmt;
3232 int i;
3233 rtx new = 0;
3234 int copied = 0;
3235 int must_swap = 0;
3237 /* Folded equivalents of first two operands of X. */
3238 rtx folded_arg0;
3239 rtx folded_arg1;
3241 /* Constant equivalents of first three operands of X;
3242 0 when no such equivalent is known. */
3243 rtx const_arg0;
3244 rtx const_arg1;
3245 rtx const_arg2;
3247 /* The mode of the first operand of X. We need this for sign and zero
3248 extends. */
3249 enum machine_mode mode_arg0;
3251 if (x == 0)
3252 return x;
3254 mode = GET_MODE (x);
3255 code = GET_CODE (x);
3256 switch (code)
3258 case CONST:
3259 case CONST_INT:
3260 case CONST_DOUBLE:
3261 case CONST_VECTOR:
3262 case SYMBOL_REF:
3263 case LABEL_REF:
3264 case REG:
3265 case PC:
3266 /* No use simplifying an EXPR_LIST
3267 since they are used only for lists of args
3268 in a function call's REG_EQUAL note. */
3269 case EXPR_LIST:
3270 return x;
3272 #ifdef HAVE_cc0
3273 case CC0:
3274 return prev_insn_cc0;
3275 #endif
3277 case SUBREG:
3278 /* See if we previously assigned a constant value to this SUBREG. */
3279 if ((new = lookup_as_function (x, CONST_INT)) != 0
3280 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3281 return new;
3283 /* If this is a paradoxical SUBREG, we have no idea what value the
3284 extra bits would have. However, if the operand is equivalent
3285 to a SUBREG whose operand is the same as our mode, and all the
3286 modes are within a word, we can just use the inner operand
3287 because these SUBREGs just say how to treat the register.
3289 Similarly if we find an integer constant. */
3291 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3293 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3294 struct table_elt *elt;
3296 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3297 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3298 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3299 imode)) != 0)
3300 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3302 if (CONSTANT_P (elt->exp)
3303 && GET_MODE (elt->exp) == VOIDmode)
3304 return elt->exp;
3306 if (GET_CODE (elt->exp) == SUBREG
3307 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3308 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3309 return copy_rtx (SUBREG_REG (elt->exp));
3312 return x;
3315 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3316 We might be able to if the SUBREG is extracting a single word in an
3317 integral mode or extracting the low part. */
3319 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3320 const_arg0 = equiv_constant (folded_arg0);
3321 if (const_arg0)
3322 folded_arg0 = const_arg0;
3324 if (folded_arg0 != SUBREG_REG (x))
3326 new = simplify_subreg (mode, folded_arg0,
3327 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3328 if (new)
3329 return new;
3332 if (REG_P (folded_arg0)
3333 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3335 struct table_elt *elt;
3337 elt = lookup (folded_arg0,
3338 HASH (folded_arg0, GET_MODE (folded_arg0)),
3339 GET_MODE (folded_arg0));
3341 if (elt)
3342 elt = elt->first_same_value;
3344 if (subreg_lowpart_p (x))
3345 /* If this is a narrowing SUBREG and our operand is a REG, see
3346 if we can find an equivalence for REG that is an arithmetic
3347 operation in a wider mode where both operands are paradoxical
3348 SUBREGs from objects of our result mode. In that case, we
3349 couldn-t report an equivalent value for that operation, since we
3350 don't know what the extra bits will be. But we can find an
3351 equivalence for this SUBREG by folding that operation in the
3352 narrow mode. This allows us to fold arithmetic in narrow modes
3353 when the machine only supports word-sized arithmetic.
3355 Also look for a case where we have a SUBREG whose operand
3356 is the same as our result. If both modes are smaller
3357 than a word, we are simply interpreting a register in
3358 different modes and we can use the inner value. */
3360 for (; elt; elt = elt->next_same_value)
3362 enum rtx_code eltcode = GET_CODE (elt->exp);
3364 /* Just check for unary and binary operations. */
3365 if (UNARY_P (elt->exp)
3366 && eltcode != SIGN_EXTEND
3367 && eltcode != ZERO_EXTEND
3368 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3369 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3370 && (GET_MODE_CLASS (mode)
3371 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3373 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3375 if (!REG_P (op0) && ! CONSTANT_P (op0))
3376 op0 = fold_rtx (op0, NULL_RTX);
3378 op0 = equiv_constant (op0);
3379 if (op0)
3380 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3381 op0, mode);
3383 else if (ARITHMETIC_P (elt->exp)
3384 && eltcode != DIV && eltcode != MOD
3385 && eltcode != UDIV && eltcode != UMOD
3386 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3387 && eltcode != ROTATE && eltcode != ROTATERT
3388 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3389 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3390 == mode))
3391 || CONSTANT_P (XEXP (elt->exp, 0)))
3392 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3393 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3394 == mode))
3395 || CONSTANT_P (XEXP (elt->exp, 1))))
3397 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3398 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3400 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3401 op0 = fold_rtx (op0, NULL_RTX);
3403 if (op0)
3404 op0 = equiv_constant (op0);
3406 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3407 op1 = fold_rtx (op1, NULL_RTX);
3409 if (op1)
3410 op1 = equiv_constant (op1);
3412 /* If we are looking for the low SImode part of
3413 (ashift:DI c (const_int 32)), it doesn't work
3414 to compute that in SImode, because a 32-bit shift
3415 in SImode is unpredictable. We know the value is 0. */
3416 if (op0 && op1
3417 && GET_CODE (elt->exp) == ASHIFT
3418 && GET_CODE (op1) == CONST_INT
3419 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3421 if (INTVAL (op1)
3422 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3423 /* If the count fits in the inner mode's width,
3424 but exceeds the outer mode's width,
3425 the value will get truncated to 0
3426 by the subreg. */
3427 new = CONST0_RTX (mode);
3428 else
3429 /* If the count exceeds even the inner mode's width,
3430 don't fold this expression. */
3431 new = 0;
3433 else if (op0 && op1)
3434 new = simplify_binary_operation (GET_CODE (elt->exp), mode, op0, op1);
3437 else if (GET_CODE (elt->exp) == SUBREG
3438 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3439 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3440 <= UNITS_PER_WORD)
3441 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3442 new = copy_rtx (SUBREG_REG (elt->exp));
3444 if (new)
3445 return new;
3447 else
3448 /* A SUBREG resulting from a zero extension may fold to zero if
3449 it extracts higher bits than the ZERO_EXTEND's source bits.
3450 FIXME: if combine tried to, er, combine these instructions,
3451 this transformation may be moved to simplify_subreg. */
3452 for (; elt; elt = elt->next_same_value)
3454 if (GET_CODE (elt->exp) == ZERO_EXTEND
3455 && subreg_lsb (x)
3456 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3457 return CONST0_RTX (mode);
3461 return x;
3463 case NOT:
3464 case NEG:
3465 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3466 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3467 new = lookup_as_function (XEXP (x, 0), code);
3468 if (new)
3469 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3470 break;
3472 case MEM:
3473 /* If we are not actually processing an insn, don't try to find the
3474 best address. Not only don't we care, but we could modify the
3475 MEM in an invalid way since we have no insn to validate against. */
3476 if (insn != 0)
3477 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3480 /* Even if we don't fold in the insn itself,
3481 we can safely do so here, in hopes of getting a constant. */
3482 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3483 rtx base = 0;
3484 HOST_WIDE_INT offset = 0;
3486 if (REG_P (addr)
3487 && REGNO_QTY_VALID_P (REGNO (addr)))
3489 int addr_q = REG_QTY (REGNO (addr));
3490 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3492 if (GET_MODE (addr) == addr_ent->mode
3493 && addr_ent->const_rtx != NULL_RTX)
3494 addr = addr_ent->const_rtx;
3497 /* If address is constant, split it into a base and integer offset. */
3498 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3499 base = addr;
3500 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3501 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3503 base = XEXP (XEXP (addr, 0), 0);
3504 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3506 else if (GET_CODE (addr) == LO_SUM
3507 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3508 base = XEXP (addr, 1);
3510 /* If this is a constant pool reference, we can fold it into its
3511 constant to allow better value tracking. */
3512 if (base && GET_CODE (base) == SYMBOL_REF
3513 && CONSTANT_POOL_ADDRESS_P (base))
3515 rtx constant = get_pool_constant (base);
3516 enum machine_mode const_mode = get_pool_mode (base);
3517 rtx new;
3519 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3521 constant_pool_entries_cost = COST (constant);
3522 constant_pool_entries_regcost = approx_reg_cost (constant);
3525 /* If we are loading the full constant, we have an equivalence. */
3526 if (offset == 0 && mode == const_mode)
3527 return constant;
3529 /* If this actually isn't a constant (weird!), we can't do
3530 anything. Otherwise, handle the two most common cases:
3531 extracting a word from a multi-word constant, and extracting
3532 the low-order bits. Other cases don't seem common enough to
3533 worry about. */
3534 if (! CONSTANT_P (constant))
3535 return x;
3537 if (GET_MODE_CLASS (mode) == MODE_INT
3538 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3539 && offset % UNITS_PER_WORD == 0
3540 && (new = operand_subword (constant,
3541 offset / UNITS_PER_WORD,
3542 0, const_mode)) != 0)
3543 return new;
3545 if (((BYTES_BIG_ENDIAN
3546 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3547 || (! BYTES_BIG_ENDIAN && offset == 0))
3548 && (new = gen_lowpart (mode, constant)) != 0)
3549 return new;
3552 /* If this is a reference to a label at a known position in a jump
3553 table, we also know its value. */
3554 if (base && GET_CODE (base) == LABEL_REF)
3556 rtx label = XEXP (base, 0);
3557 rtx table_insn = NEXT_INSN (label);
3559 if (table_insn && JUMP_P (table_insn)
3560 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3562 rtx table = PATTERN (table_insn);
3564 if (offset >= 0
3565 && (offset / GET_MODE_SIZE (GET_MODE (table))
3566 < XVECLEN (table, 0)))
3567 return XVECEXP (table, 0,
3568 offset / GET_MODE_SIZE (GET_MODE (table)));
3570 if (table_insn && JUMP_P (table_insn)
3571 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3573 rtx table = PATTERN (table_insn);
3575 if (offset >= 0
3576 && (offset / GET_MODE_SIZE (GET_MODE (table))
3577 < XVECLEN (table, 1)))
3579 offset /= GET_MODE_SIZE (GET_MODE (table));
3580 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3581 XEXP (table, 0));
3583 if (GET_MODE (table) != Pmode)
3584 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3586 /* Indicate this is a constant. This isn't a
3587 valid form of CONST, but it will only be used
3588 to fold the next insns and then discarded, so
3589 it should be safe.
3591 Note this expression must be explicitly discarded,
3592 by cse_insn, else it may end up in a REG_EQUAL note
3593 and "escape" to cause problems elsewhere. */
3594 return gen_rtx_CONST (GET_MODE (new), new);
3599 return x;
3602 #ifdef NO_FUNCTION_CSE
3603 case CALL:
3604 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3605 return x;
3606 break;
3607 #endif
3609 case ASM_OPERANDS:
3610 if (insn)
3612 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3613 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3614 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3616 break;
3618 default:
3619 break;
3622 const_arg0 = 0;
3623 const_arg1 = 0;
3624 const_arg2 = 0;
3625 mode_arg0 = VOIDmode;
3627 /* Try folding our operands.
3628 Then see which ones have constant values known. */
3630 fmt = GET_RTX_FORMAT (code);
3631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3632 if (fmt[i] == 'e')
3634 rtx arg = XEXP (x, i);
3635 rtx folded_arg = arg, const_arg = 0;
3636 enum machine_mode mode_arg = GET_MODE (arg);
3637 rtx cheap_arg, expensive_arg;
3638 rtx replacements[2];
3639 int j;
3640 int old_cost = COST_IN (XEXP (x, i), code);
3642 /* Most arguments are cheap, so handle them specially. */
3643 switch (GET_CODE (arg))
3645 case REG:
3646 /* This is the same as calling equiv_constant; it is duplicated
3647 here for speed. */
3648 if (REGNO_QTY_VALID_P (REGNO (arg)))
3650 int arg_q = REG_QTY (REGNO (arg));
3651 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3653 if (arg_ent->const_rtx != NULL_RTX
3654 && !REG_P (arg_ent->const_rtx)
3655 && GET_CODE (arg_ent->const_rtx) != PLUS)
3656 const_arg
3657 = gen_lowpart (GET_MODE (arg),
3658 arg_ent->const_rtx);
3660 break;
3662 case CONST:
3663 case CONST_INT:
3664 case SYMBOL_REF:
3665 case LABEL_REF:
3666 case CONST_DOUBLE:
3667 case CONST_VECTOR:
3668 const_arg = arg;
3669 break;
3671 #ifdef HAVE_cc0
3672 case CC0:
3673 folded_arg = prev_insn_cc0;
3674 mode_arg = prev_insn_cc0_mode;
3675 const_arg = equiv_constant (folded_arg);
3676 break;
3677 #endif
3679 default:
3680 folded_arg = fold_rtx (arg, insn);
3681 const_arg = equiv_constant (folded_arg);
3684 /* For the first three operands, see if the operand
3685 is constant or equivalent to a constant. */
3686 switch (i)
3688 case 0:
3689 folded_arg0 = folded_arg;
3690 const_arg0 = const_arg;
3691 mode_arg0 = mode_arg;
3692 break;
3693 case 1:
3694 folded_arg1 = folded_arg;
3695 const_arg1 = const_arg;
3696 break;
3697 case 2:
3698 const_arg2 = const_arg;
3699 break;
3702 /* Pick the least expensive of the folded argument and an
3703 equivalent constant argument. */
3704 if (const_arg == 0 || const_arg == folded_arg
3705 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3706 cheap_arg = folded_arg, expensive_arg = const_arg;
3707 else
3708 cheap_arg = const_arg, expensive_arg = folded_arg;
3710 /* Try to replace the operand with the cheapest of the two
3711 possibilities. If it doesn't work and this is either of the first
3712 two operands of a commutative operation, try swapping them.
3713 If THAT fails, try the more expensive, provided it is cheaper
3714 than what is already there. */
3716 if (cheap_arg == XEXP (x, i))
3717 continue;
3719 if (insn == 0 && ! copied)
3721 x = copy_rtx (x);
3722 copied = 1;
3725 /* Order the replacements from cheapest to most expensive. */
3726 replacements[0] = cheap_arg;
3727 replacements[1] = expensive_arg;
3729 for (j = 0; j < 2 && replacements[j]; j++)
3731 int new_cost = COST_IN (replacements[j], code);
3733 /* Stop if what existed before was cheaper. Prefer constants
3734 in the case of a tie. */
3735 if (new_cost > old_cost
3736 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3737 break;
3739 /* It's not safe to substitute the operand of a conversion
3740 operator with a constant, as the conversion's identity
3741 depends upon the mode of it's operand. This optimization
3742 is handled by the call to simplify_unary_operation. */
3743 if (GET_RTX_CLASS (code) == RTX_UNARY
3744 && GET_MODE (replacements[j]) != mode_arg0
3745 && (code == ZERO_EXTEND
3746 || code == SIGN_EXTEND
3747 || code == TRUNCATE
3748 || code == FLOAT_TRUNCATE
3749 || code == FLOAT_EXTEND
3750 || code == FLOAT
3751 || code == FIX
3752 || code == UNSIGNED_FLOAT
3753 || code == UNSIGNED_FIX))
3754 continue;
3756 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3757 break;
3759 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3760 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3762 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3763 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3765 if (apply_change_group ())
3767 /* Swap them back to be invalid so that this loop can
3768 continue and flag them to be swapped back later. */
3769 rtx tem;
3771 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3772 XEXP (x, 1) = tem;
3773 must_swap = 1;
3774 break;
3780 else
3782 if (fmt[i] == 'E')
3783 /* Don't try to fold inside of a vector of expressions.
3784 Doing nothing is harmless. */
3788 /* If a commutative operation, place a constant integer as the second
3789 operand unless the first operand is also a constant integer. Otherwise,
3790 place any constant second unless the first operand is also a constant. */
3792 if (COMMUTATIVE_P (x))
3794 if (must_swap
3795 || swap_commutative_operands_p (const_arg0 ? const_arg0
3796 : XEXP (x, 0),
3797 const_arg1 ? const_arg1
3798 : XEXP (x, 1)))
3800 rtx tem = XEXP (x, 0);
3802 if (insn == 0 && ! copied)
3804 x = copy_rtx (x);
3805 copied = 1;
3808 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3809 validate_change (insn, &XEXP (x, 1), tem, 1);
3810 if (apply_change_group ())
3812 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3813 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3818 /* If X is an arithmetic operation, see if we can simplify it. */
3820 switch (GET_RTX_CLASS (code))
3822 case RTX_UNARY:
3824 int is_const = 0;
3826 /* We can't simplify extension ops unless we know the
3827 original mode. */
3828 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3829 && mode_arg0 == VOIDmode)
3830 break;
3832 /* If we had a CONST, strip it off and put it back later if we
3833 fold. */
3834 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3835 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3837 new = simplify_unary_operation (code, mode,
3838 const_arg0 ? const_arg0 : folded_arg0,
3839 mode_arg0);
3840 /* NEG of PLUS could be converted into MINUS, but that causes
3841 expressions of the form
3842 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3843 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3844 FIXME: those ports should be fixed. */
3845 if (new != 0 && is_const
3846 && GET_CODE (new) == PLUS
3847 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3848 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3849 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3850 new = gen_rtx_CONST (mode, new);
3852 break;
3854 case RTX_COMPARE:
3855 case RTX_COMM_COMPARE:
3856 /* See what items are actually being compared and set FOLDED_ARG[01]
3857 to those values and CODE to the actual comparison code. If any are
3858 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3859 do anything if both operands are already known to be constant. */
3861 /* ??? Vector mode comparisons are not supported yet. */
3862 if (VECTOR_MODE_P (mode))
3863 break;
3865 if (const_arg0 == 0 || const_arg1 == 0)
3867 struct table_elt *p0, *p1;
3868 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3869 enum machine_mode mode_arg1;
3871 #ifdef FLOAT_STORE_FLAG_VALUE
3872 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3874 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3875 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3876 false_rtx = CONST0_RTX (mode);
3878 #endif
3880 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3881 &mode_arg0, &mode_arg1);
3883 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3884 what kinds of things are being compared, so we can't do
3885 anything with this comparison. */
3887 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3888 break;
3890 const_arg0 = equiv_constant (folded_arg0);
3891 const_arg1 = equiv_constant (folded_arg1);
3893 /* If we do not now have two constants being compared, see
3894 if we can nevertheless deduce some things about the
3895 comparison. */
3896 if (const_arg0 == 0 || const_arg1 == 0)
3898 /* Some addresses are known to be nonzero. We don't know
3899 their sign, but equality comparisons are known. */
3900 if (const_arg1 == const0_rtx
3901 && nonzero_address_p (folded_arg0))
3903 if (code == EQ)
3904 return false_rtx;
3905 else if (code == NE)
3906 return true_rtx;
3909 /* See if the two operands are the same. */
3911 if (folded_arg0 == folded_arg1
3912 || (REG_P (folded_arg0)
3913 && REG_P (folded_arg1)
3914 && (REG_QTY (REGNO (folded_arg0))
3915 == REG_QTY (REGNO (folded_arg1))))
3916 || ((p0 = lookup (folded_arg0,
3917 SAFE_HASH (folded_arg0, mode_arg0),
3918 mode_arg0))
3919 && (p1 = lookup (folded_arg1,
3920 SAFE_HASH (folded_arg1, mode_arg0),
3921 mode_arg0))
3922 && p0->first_same_value == p1->first_same_value))
3924 /* Sadly two equal NaNs are not equivalent. */
3925 if (!HONOR_NANS (mode_arg0))
3926 return ((code == EQ || code == LE || code == GE
3927 || code == LEU || code == GEU || code == UNEQ
3928 || code == UNLE || code == UNGE
3929 || code == ORDERED)
3930 ? true_rtx : false_rtx);
3931 /* Take care for the FP compares we can resolve. */
3932 if (code == UNEQ || code == UNLE || code == UNGE)
3933 return true_rtx;
3934 if (code == LTGT || code == LT || code == GT)
3935 return false_rtx;
3938 /* If FOLDED_ARG0 is a register, see if the comparison we are
3939 doing now is either the same as we did before or the reverse
3940 (we only check the reverse if not floating-point). */
3941 else if (REG_P (folded_arg0))
3943 int qty = REG_QTY (REGNO (folded_arg0));
3945 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3947 struct qty_table_elem *ent = &qty_table[qty];
3949 if ((comparison_dominates_p (ent->comparison_code, code)
3950 || (! FLOAT_MODE_P (mode_arg0)
3951 && comparison_dominates_p (ent->comparison_code,
3952 reverse_condition (code))))
3953 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3954 || (const_arg1
3955 && rtx_equal_p (ent->comparison_const,
3956 const_arg1))
3957 || (REG_P (folded_arg1)
3958 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3959 return (comparison_dominates_p (ent->comparison_code, code)
3960 ? true_rtx : false_rtx);
3966 /* If we are comparing against zero, see if the first operand is
3967 equivalent to an IOR with a constant. If so, we may be able to
3968 determine the result of this comparison. */
3970 if (const_arg1 == const0_rtx)
3972 rtx y = lookup_as_function (folded_arg0, IOR);
3973 rtx inner_const;
3975 if (y != 0
3976 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3977 && GET_CODE (inner_const) == CONST_INT
3978 && INTVAL (inner_const) != 0)
3980 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3981 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3982 && (INTVAL (inner_const)
3983 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3984 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3986 #ifdef FLOAT_STORE_FLAG_VALUE
3987 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3989 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3990 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3991 false_rtx = CONST0_RTX (mode);
3993 #endif
3995 switch (code)
3997 case EQ:
3998 return false_rtx;
3999 case NE:
4000 return true_rtx;
4001 case LT: case LE:
4002 if (has_sign)
4003 return true_rtx;
4004 break;
4005 case GT: case GE:
4006 if (has_sign)
4007 return false_rtx;
4008 break;
4009 default:
4010 break;
4016 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4017 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4018 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4020 break;
4022 case RTX_BIN_ARITH:
4023 case RTX_COMM_ARITH:
4024 switch (code)
4026 case PLUS:
4027 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4028 with that LABEL_REF as its second operand. If so, the result is
4029 the first operand of that MINUS. This handles switches with an
4030 ADDR_DIFF_VEC table. */
4031 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4033 rtx y
4034 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4035 : lookup_as_function (folded_arg0, MINUS);
4037 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4038 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4039 return XEXP (y, 0);
4041 /* Now try for a CONST of a MINUS like the above. */
4042 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4043 : lookup_as_function (folded_arg0, CONST))) != 0
4044 && GET_CODE (XEXP (y, 0)) == MINUS
4045 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4046 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4047 return XEXP (XEXP (y, 0), 0);
4050 /* Likewise if the operands are in the other order. */
4051 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4053 rtx y
4054 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4055 : lookup_as_function (folded_arg1, MINUS);
4057 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4058 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4059 return XEXP (y, 0);
4061 /* Now try for a CONST of a MINUS like the above. */
4062 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4063 : lookup_as_function (folded_arg1, CONST))) != 0
4064 && GET_CODE (XEXP (y, 0)) == MINUS
4065 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4066 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4067 return XEXP (XEXP (y, 0), 0);
4070 /* If second operand is a register equivalent to a negative
4071 CONST_INT, see if we can find a register equivalent to the
4072 positive constant. Make a MINUS if so. Don't do this for
4073 a non-negative constant since we might then alternate between
4074 choosing positive and negative constants. Having the positive
4075 constant previously-used is the more common case. Be sure
4076 the resulting constant is non-negative; if const_arg1 were
4077 the smallest negative number this would overflow: depending
4078 on the mode, this would either just be the same value (and
4079 hence not save anything) or be incorrect. */
4080 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4081 && INTVAL (const_arg1) < 0
4082 /* This used to test
4084 -INTVAL (const_arg1) >= 0
4086 But The Sun V5.0 compilers mis-compiled that test. So
4087 instead we test for the problematic value in a more direct
4088 manner and hope the Sun compilers get it correct. */
4089 && INTVAL (const_arg1) !=
4090 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4091 && REG_P (folded_arg1))
4093 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4094 struct table_elt *p
4095 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4097 if (p)
4098 for (p = p->first_same_value; p; p = p->next_same_value)
4099 if (REG_P (p->exp))
4100 return simplify_gen_binary (MINUS, mode, folded_arg0,
4101 canon_reg (p->exp, NULL_RTX));
4103 goto from_plus;
4105 case MINUS:
4106 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4107 If so, produce (PLUS Z C2-C). */
4108 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4110 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4111 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4112 return fold_rtx (plus_constant (copy_rtx (y),
4113 -INTVAL (const_arg1)),
4114 NULL_RTX);
4117 /* Fall through. */
4119 from_plus:
4120 case SMIN: case SMAX: case UMIN: case UMAX:
4121 case IOR: case AND: case XOR:
4122 case MULT:
4123 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4124 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4125 is known to be of similar form, we may be able to replace the
4126 operation with a combined operation. This may eliminate the
4127 intermediate operation if every use is simplified in this way.
4128 Note that the similar optimization done by combine.c only works
4129 if the intermediate operation's result has only one reference. */
4131 if (REG_P (folded_arg0)
4132 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4134 int is_shift
4135 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4136 rtx y = lookup_as_function (folded_arg0, code);
4137 rtx inner_const;
4138 enum rtx_code associate_code;
4139 rtx new_const;
4141 if (y == 0
4142 || 0 == (inner_const
4143 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4144 || GET_CODE (inner_const) != CONST_INT
4145 /* If we have compiled a statement like
4146 "if (x == (x & mask1))", and now are looking at
4147 "x & mask2", we will have a case where the first operand
4148 of Y is the same as our first operand. Unless we detect
4149 this case, an infinite loop will result. */
4150 || XEXP (y, 0) == folded_arg0)
4151 break;
4153 /* Don't associate these operations if they are a PLUS with the
4154 same constant and it is a power of two. These might be doable
4155 with a pre- or post-increment. Similarly for two subtracts of
4156 identical powers of two with post decrement. */
4158 if (code == PLUS && const_arg1 == inner_const
4159 && ((HAVE_PRE_INCREMENT
4160 && exact_log2 (INTVAL (const_arg1)) >= 0)
4161 || (HAVE_POST_INCREMENT
4162 && exact_log2 (INTVAL (const_arg1)) >= 0)
4163 || (HAVE_PRE_DECREMENT
4164 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4165 || (HAVE_POST_DECREMENT
4166 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4167 break;
4169 /* Compute the code used to compose the constants. For example,
4170 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4172 associate_code = (is_shift || code == MINUS ? PLUS : code);
4174 new_const = simplify_binary_operation (associate_code, mode,
4175 const_arg1, inner_const);
4177 if (new_const == 0)
4178 break;
4180 /* If we are associating shift operations, don't let this
4181 produce a shift of the size of the object or larger.
4182 This could occur when we follow a sign-extend by a right
4183 shift on a machine that does a sign-extend as a pair
4184 of shifts. */
4186 if (is_shift && GET_CODE (new_const) == CONST_INT
4187 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4189 /* As an exception, we can turn an ASHIFTRT of this
4190 form into a shift of the number of bits - 1. */
4191 if (code == ASHIFTRT)
4192 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4193 else
4194 break;
4197 y = copy_rtx (XEXP (y, 0));
4199 /* If Y contains our first operand (the most common way this
4200 can happen is if Y is a MEM), we would do into an infinite
4201 loop if we tried to fold it. So don't in that case. */
4203 if (! reg_mentioned_p (folded_arg0, y))
4204 y = fold_rtx (y, insn);
4206 return simplify_gen_binary (code, mode, y, new_const);
4208 break;
4210 case DIV: case UDIV:
4211 /* ??? The associative optimization performed immediately above is
4212 also possible for DIV and UDIV using associate_code of MULT.
4213 However, we would need extra code to verify that the
4214 multiplication does not overflow, that is, there is no overflow
4215 in the calculation of new_const. */
4216 break;
4218 default:
4219 break;
4222 new = simplify_binary_operation (code, mode,
4223 const_arg0 ? const_arg0 : folded_arg0,
4224 const_arg1 ? const_arg1 : folded_arg1);
4225 break;
4227 case RTX_OBJ:
4228 /* (lo_sum (high X) X) is simply X. */
4229 if (code == LO_SUM && const_arg0 != 0
4230 && GET_CODE (const_arg0) == HIGH
4231 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4232 return const_arg1;
4233 break;
4235 case RTX_TERNARY:
4236 case RTX_BITFIELD_OPS:
4237 new = simplify_ternary_operation (code, mode, mode_arg0,
4238 const_arg0 ? const_arg0 : folded_arg0,
4239 const_arg1 ? const_arg1 : folded_arg1,
4240 const_arg2 ? const_arg2 : XEXP (x, 2));
4241 break;
4243 default:
4244 break;
4247 return new ? new : x;
4250 /* Return a constant value currently equivalent to X.
4251 Return 0 if we don't know one. */
4253 static rtx
4254 equiv_constant (rtx x)
4256 if (REG_P (x)
4257 && REGNO_QTY_VALID_P (REGNO (x)))
4259 int x_q = REG_QTY (REGNO (x));
4260 struct qty_table_elem *x_ent = &qty_table[x_q];
4262 if (x_ent->const_rtx)
4263 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4266 if (x == 0 || CONSTANT_P (x))
4267 return x;
4269 /* If X is a MEM, try to fold it outside the context of any insn to see if
4270 it might be equivalent to a constant. That handles the case where it
4271 is a constant-pool reference. Then try to look it up in the hash table
4272 in case it is something whose value we have seen before. */
4274 if (MEM_P (x))
4276 struct table_elt *elt;
4278 x = fold_rtx (x, NULL_RTX);
4279 if (CONSTANT_P (x))
4280 return x;
4282 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4283 if (elt == 0)
4284 return 0;
4286 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4287 if (elt->is_const && CONSTANT_P (elt->exp))
4288 return elt->exp;
4291 return 0;
4294 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4295 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4296 least-significant part of X.
4297 MODE specifies how big a part of X to return.
4299 If the requested operation cannot be done, 0 is returned.
4301 This is similar to gen_lowpart_general in emit-rtl.c. */
4304 gen_lowpart_if_possible (enum machine_mode mode, rtx x)
4306 rtx result = gen_lowpart_common (mode, x);
4308 if (result)
4309 return result;
4310 else if (MEM_P (x))
4312 /* This is the only other case we handle. */
4313 int offset = 0;
4314 rtx new;
4316 if (WORDS_BIG_ENDIAN)
4317 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4318 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4319 if (BYTES_BIG_ENDIAN)
4320 /* Adjust the address so that the address-after-the-data is
4321 unchanged. */
4322 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4323 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4325 new = adjust_address_nv (x, mode, offset);
4326 if (! memory_address_p (mode, XEXP (new, 0)))
4327 return 0;
4329 return new;
4331 else
4332 return 0;
4335 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4336 branch. It will be zero if not.
4338 In certain cases, this can cause us to add an equivalence. For example,
4339 if we are following the taken case of
4340 if (i == 2)
4341 we can add the fact that `i' and '2' are now equivalent.
4343 In any case, we can record that this comparison was passed. If the same
4344 comparison is seen later, we will know its value. */
4346 static void
4347 record_jump_equiv (rtx insn, int taken)
4349 int cond_known_true;
4350 rtx op0, op1;
4351 rtx set;
4352 enum machine_mode mode, mode0, mode1;
4353 int reversed_nonequality = 0;
4354 enum rtx_code code;
4356 /* Ensure this is the right kind of insn. */
4357 if (! any_condjump_p (insn))
4358 return;
4359 set = pc_set (insn);
4361 /* See if this jump condition is known true or false. */
4362 if (taken)
4363 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4364 else
4365 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4367 /* Get the type of comparison being done and the operands being compared.
4368 If we had to reverse a non-equality condition, record that fact so we
4369 know that it isn't valid for floating-point. */
4370 code = GET_CODE (XEXP (SET_SRC (set), 0));
4371 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4372 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4374 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4375 if (! cond_known_true)
4377 code = reversed_comparison_code_parts (code, op0, op1, insn);
4379 /* Don't remember if we can't find the inverse. */
4380 if (code == UNKNOWN)
4381 return;
4384 /* The mode is the mode of the non-constant. */
4385 mode = mode0;
4386 if (mode1 != VOIDmode)
4387 mode = mode1;
4389 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4392 /* Yet another form of subreg creation. In this case, we want something in
4393 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4395 static rtx
4396 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4398 enum machine_mode op_mode = GET_MODE (op);
4399 if (op_mode == mode || op_mode == VOIDmode)
4400 return op;
4401 return lowpart_subreg (mode, op, op_mode);
4404 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4405 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4406 Make any useful entries we can with that information. Called from
4407 above function and called recursively. */
4409 static void
4410 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4411 rtx op1, int reversed_nonequality)
4413 unsigned op0_hash, op1_hash;
4414 int op0_in_memory, op1_in_memory;
4415 struct table_elt *op0_elt, *op1_elt;
4417 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4418 we know that they are also equal in the smaller mode (this is also
4419 true for all smaller modes whether or not there is a SUBREG, but
4420 is not worth testing for with no SUBREG). */
4422 /* Note that GET_MODE (op0) may not equal MODE. */
4423 if (code == EQ && GET_CODE (op0) == SUBREG
4424 && (GET_MODE_SIZE (GET_MODE (op0))
4425 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4427 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4428 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4429 if (tem)
4430 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4431 reversed_nonequality);
4434 if (code == EQ && GET_CODE (op1) == SUBREG
4435 && (GET_MODE_SIZE (GET_MODE (op1))
4436 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4438 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4439 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4440 if (tem)
4441 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4442 reversed_nonequality);
4445 /* Similarly, if this is an NE comparison, and either is a SUBREG
4446 making a smaller mode, we know the whole thing is also NE. */
4448 /* Note that GET_MODE (op0) may not equal MODE;
4449 if we test MODE instead, we can get an infinite recursion
4450 alternating between two modes each wider than MODE. */
4452 if (code == NE && GET_CODE (op0) == SUBREG
4453 && subreg_lowpart_p (op0)
4454 && (GET_MODE_SIZE (GET_MODE (op0))
4455 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4457 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4458 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4459 if (tem)
4460 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4461 reversed_nonequality);
4464 if (code == NE && GET_CODE (op1) == SUBREG
4465 && subreg_lowpart_p (op1)
4466 && (GET_MODE_SIZE (GET_MODE (op1))
4467 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4469 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4470 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4471 if (tem)
4472 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4473 reversed_nonequality);
4476 /* Hash both operands. */
4478 do_not_record = 0;
4479 hash_arg_in_memory = 0;
4480 op0_hash = HASH (op0, mode);
4481 op0_in_memory = hash_arg_in_memory;
4483 if (do_not_record)
4484 return;
4486 do_not_record = 0;
4487 hash_arg_in_memory = 0;
4488 op1_hash = HASH (op1, mode);
4489 op1_in_memory = hash_arg_in_memory;
4491 if (do_not_record)
4492 return;
4494 /* Look up both operands. */
4495 op0_elt = lookup (op0, op0_hash, mode);
4496 op1_elt = lookup (op1, op1_hash, mode);
4498 /* If both operands are already equivalent or if they are not in the
4499 table but are identical, do nothing. */
4500 if ((op0_elt != 0 && op1_elt != 0
4501 && op0_elt->first_same_value == op1_elt->first_same_value)
4502 || op0 == op1 || rtx_equal_p (op0, op1))
4503 return;
4505 /* If we aren't setting two things equal all we can do is save this
4506 comparison. Similarly if this is floating-point. In the latter
4507 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4508 If we record the equality, we might inadvertently delete code
4509 whose intent was to change -0 to +0. */
4511 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4513 struct qty_table_elem *ent;
4514 int qty;
4516 /* If we reversed a floating-point comparison, if OP0 is not a
4517 register, or if OP1 is neither a register or constant, we can't
4518 do anything. */
4520 if (!REG_P (op1))
4521 op1 = equiv_constant (op1);
4523 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4524 || !REG_P (op0) || op1 == 0)
4525 return;
4527 /* Put OP0 in the hash table if it isn't already. This gives it a
4528 new quantity number. */
4529 if (op0_elt == 0)
4531 if (insert_regs (op0, NULL, 0))
4533 rehash_using_reg (op0);
4534 op0_hash = HASH (op0, mode);
4536 /* If OP0 is contained in OP1, this changes its hash code
4537 as well. Faster to rehash than to check, except
4538 for the simple case of a constant. */
4539 if (! CONSTANT_P (op1))
4540 op1_hash = HASH (op1,mode);
4543 op0_elt = insert (op0, NULL, op0_hash, mode);
4544 op0_elt->in_memory = op0_in_memory;
4547 qty = REG_QTY (REGNO (op0));
4548 ent = &qty_table[qty];
4550 ent->comparison_code = code;
4551 if (REG_P (op1))
4553 /* Look it up again--in case op0 and op1 are the same. */
4554 op1_elt = lookup (op1, op1_hash, mode);
4556 /* Put OP1 in the hash table so it gets a new quantity number. */
4557 if (op1_elt == 0)
4559 if (insert_regs (op1, NULL, 0))
4561 rehash_using_reg (op1);
4562 op1_hash = HASH (op1, mode);
4565 op1_elt = insert (op1, NULL, op1_hash, mode);
4566 op1_elt->in_memory = op1_in_memory;
4569 ent->comparison_const = NULL_RTX;
4570 ent->comparison_qty = REG_QTY (REGNO (op1));
4572 else
4574 ent->comparison_const = op1;
4575 ent->comparison_qty = -1;
4578 return;
4581 /* If either side is still missing an equivalence, make it now,
4582 then merge the equivalences. */
4584 if (op0_elt == 0)
4586 if (insert_regs (op0, NULL, 0))
4588 rehash_using_reg (op0);
4589 op0_hash = HASH (op0, mode);
4592 op0_elt = insert (op0, NULL, op0_hash, mode);
4593 op0_elt->in_memory = op0_in_memory;
4596 if (op1_elt == 0)
4598 if (insert_regs (op1, NULL, 0))
4600 rehash_using_reg (op1);
4601 op1_hash = HASH (op1, mode);
4604 op1_elt = insert (op1, NULL, op1_hash, mode);
4605 op1_elt->in_memory = op1_in_memory;
4608 merge_equiv_classes (op0_elt, op1_elt);
4611 /* CSE processing for one instruction.
4612 First simplify sources and addresses of all assignments
4613 in the instruction, using previously-computed equivalents values.
4614 Then install the new sources and destinations in the table
4615 of available values.
4617 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4618 the insn. It means that INSN is inside libcall block. In this
4619 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4621 /* Data on one SET contained in the instruction. */
4623 struct set
4625 /* The SET rtx itself. */
4626 rtx rtl;
4627 /* The SET_SRC of the rtx (the original value, if it is changing). */
4628 rtx src;
4629 /* The hash-table element for the SET_SRC of the SET. */
4630 struct table_elt *src_elt;
4631 /* Hash value for the SET_SRC. */
4632 unsigned src_hash;
4633 /* Hash value for the SET_DEST. */
4634 unsigned dest_hash;
4635 /* The SET_DEST, with SUBREG, etc., stripped. */
4636 rtx inner_dest;
4637 /* Nonzero if the SET_SRC is in memory. */
4638 char src_in_memory;
4639 /* Nonzero if the SET_SRC contains something
4640 whose value cannot be predicted and understood. */
4641 char src_volatile;
4642 /* Original machine mode, in case it becomes a CONST_INT.
4643 The size of this field should match the size of the mode
4644 field of struct rtx_def (see rtl.h). */
4645 ENUM_BITFIELD(machine_mode) mode : 8;
4646 /* A constant equivalent for SET_SRC, if any. */
4647 rtx src_const;
4648 /* Original SET_SRC value used for libcall notes. */
4649 rtx orig_src;
4650 /* Hash value of constant equivalent for SET_SRC. */
4651 unsigned src_const_hash;
4652 /* Table entry for constant equivalent for SET_SRC, if any. */
4653 struct table_elt *src_const_elt;
4656 static void
4657 cse_insn (rtx insn, rtx libcall_insn)
4659 rtx x = PATTERN (insn);
4660 int i;
4661 rtx tem;
4662 int n_sets = 0;
4664 #ifdef HAVE_cc0
4665 /* Records what this insn does to set CC0. */
4666 rtx this_insn_cc0 = 0;
4667 enum machine_mode this_insn_cc0_mode = VOIDmode;
4668 #endif
4670 rtx src_eqv = 0;
4671 struct table_elt *src_eqv_elt = 0;
4672 int src_eqv_volatile = 0;
4673 int src_eqv_in_memory = 0;
4674 unsigned src_eqv_hash = 0;
4676 struct set *sets = (struct set *) 0;
4678 this_insn = insn;
4680 /* Find all the SETs and CLOBBERs in this instruction.
4681 Record all the SETs in the array `set' and count them.
4682 Also determine whether there is a CLOBBER that invalidates
4683 all memory references, or all references at varying addresses. */
4685 if (CALL_P (insn))
4687 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4689 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4690 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4691 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4695 if (GET_CODE (x) == SET)
4697 sets = alloca (sizeof (struct set));
4698 sets[0].rtl = x;
4700 /* Ignore SETs that are unconditional jumps.
4701 They never need cse processing, so this does not hurt.
4702 The reason is not efficiency but rather
4703 so that we can test at the end for instructions
4704 that have been simplified to unconditional jumps
4705 and not be misled by unchanged instructions
4706 that were unconditional jumps to begin with. */
4707 if (SET_DEST (x) == pc_rtx
4708 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4711 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4712 The hard function value register is used only once, to copy to
4713 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4714 Ensure we invalidate the destination register. On the 80386 no
4715 other code would invalidate it since it is a fixed_reg.
4716 We need not check the return of apply_change_group; see canon_reg. */
4718 else if (GET_CODE (SET_SRC (x)) == CALL)
4720 canon_reg (SET_SRC (x), insn);
4721 apply_change_group ();
4722 fold_rtx (SET_SRC (x), insn);
4723 invalidate (SET_DEST (x), VOIDmode);
4725 else
4726 n_sets = 1;
4728 else if (GET_CODE (x) == PARALLEL)
4730 int lim = XVECLEN (x, 0);
4732 sets = alloca (lim * sizeof (struct set));
4734 /* Find all regs explicitly clobbered in this insn,
4735 and ensure they are not replaced with any other regs
4736 elsewhere in this insn.
4737 When a reg that is clobbered is also used for input,
4738 we should presume that that is for a reason,
4739 and we should not substitute some other register
4740 which is not supposed to be clobbered.
4741 Therefore, this loop cannot be merged into the one below
4742 because a CALL may precede a CLOBBER and refer to the
4743 value clobbered. We must not let a canonicalization do
4744 anything in that case. */
4745 for (i = 0; i < lim; i++)
4747 rtx y = XVECEXP (x, 0, i);
4748 if (GET_CODE (y) == CLOBBER)
4750 rtx clobbered = XEXP (y, 0);
4752 if (REG_P (clobbered)
4753 || GET_CODE (clobbered) == SUBREG)
4754 invalidate (clobbered, VOIDmode);
4755 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4756 || GET_CODE (clobbered) == ZERO_EXTRACT)
4757 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4761 for (i = 0; i < lim; i++)
4763 rtx y = XVECEXP (x, 0, i);
4764 if (GET_CODE (y) == SET)
4766 /* As above, we ignore unconditional jumps and call-insns and
4767 ignore the result of apply_change_group. */
4768 if (GET_CODE (SET_SRC (y)) == CALL)
4770 canon_reg (SET_SRC (y), insn);
4771 apply_change_group ();
4772 fold_rtx (SET_SRC (y), insn);
4773 invalidate (SET_DEST (y), VOIDmode);
4775 else if (SET_DEST (y) == pc_rtx
4776 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4778 else
4779 sets[n_sets++].rtl = y;
4781 else if (GET_CODE (y) == CLOBBER)
4783 /* If we clobber memory, canon the address.
4784 This does nothing when a register is clobbered
4785 because we have already invalidated the reg. */
4786 if (MEM_P (XEXP (y, 0)))
4787 canon_reg (XEXP (y, 0), NULL_RTX);
4789 else if (GET_CODE (y) == USE
4790 && ! (REG_P (XEXP (y, 0))
4791 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4792 canon_reg (y, NULL_RTX);
4793 else if (GET_CODE (y) == CALL)
4795 /* The result of apply_change_group can be ignored; see
4796 canon_reg. */
4797 canon_reg (y, insn);
4798 apply_change_group ();
4799 fold_rtx (y, insn);
4803 else if (GET_CODE (x) == CLOBBER)
4805 if (MEM_P (XEXP (x, 0)))
4806 canon_reg (XEXP (x, 0), NULL_RTX);
4809 /* Canonicalize a USE of a pseudo register or memory location. */
4810 else if (GET_CODE (x) == USE
4811 && ! (REG_P (XEXP (x, 0))
4812 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4813 canon_reg (XEXP (x, 0), NULL_RTX);
4814 else if (GET_CODE (x) == CALL)
4816 /* The result of apply_change_group can be ignored; see canon_reg. */
4817 canon_reg (x, insn);
4818 apply_change_group ();
4819 fold_rtx (x, insn);
4822 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4823 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4824 is handled specially for this case, and if it isn't set, then there will
4825 be no equivalence for the destination. */
4826 if (n_sets == 1 && REG_NOTES (insn) != 0
4827 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4828 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4829 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4831 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4832 XEXP (tem, 0) = src_eqv;
4835 /* Canonicalize sources and addresses of destinations.
4836 We do this in a separate pass to avoid problems when a MATCH_DUP is
4837 present in the insn pattern. In that case, we want to ensure that
4838 we don't break the duplicate nature of the pattern. So we will replace
4839 both operands at the same time. Otherwise, we would fail to find an
4840 equivalent substitution in the loop calling validate_change below.
4842 We used to suppress canonicalization of DEST if it appears in SRC,
4843 but we don't do this any more. */
4845 for (i = 0; i < n_sets; i++)
4847 rtx dest = SET_DEST (sets[i].rtl);
4848 rtx src = SET_SRC (sets[i].rtl);
4849 rtx new = canon_reg (src, insn);
4850 int insn_code;
4852 sets[i].orig_src = src;
4853 if ((REG_P (new) && REG_P (src)
4854 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4855 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4856 || (insn_code = recog_memoized (insn)) < 0
4857 || insn_data[insn_code].n_dups > 0)
4858 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4859 else
4860 SET_SRC (sets[i].rtl) = new;
4862 if (GET_CODE (dest) == ZERO_EXTRACT)
4864 validate_change (insn, &XEXP (dest, 1),
4865 canon_reg (XEXP (dest, 1), insn), 1);
4866 validate_change (insn, &XEXP (dest, 2),
4867 canon_reg (XEXP (dest, 2), insn), 1);
4870 while (GET_CODE (dest) == SUBREG
4871 || GET_CODE (dest) == ZERO_EXTRACT
4872 || GET_CODE (dest) == STRICT_LOW_PART)
4873 dest = XEXP (dest, 0);
4875 if (MEM_P (dest))
4876 canon_reg (dest, insn);
4879 /* Now that we have done all the replacements, we can apply the change
4880 group and see if they all work. Note that this will cause some
4881 canonicalizations that would have worked individually not to be applied
4882 because some other canonicalization didn't work, but this should not
4883 occur often.
4885 The result of apply_change_group can be ignored; see canon_reg. */
4887 apply_change_group ();
4889 /* Set sets[i].src_elt to the class each source belongs to.
4890 Detect assignments from or to volatile things
4891 and set set[i] to zero so they will be ignored
4892 in the rest of this function.
4894 Nothing in this loop changes the hash table or the register chains. */
4896 for (i = 0; i < n_sets; i++)
4898 rtx src, dest;
4899 rtx src_folded;
4900 struct table_elt *elt = 0, *p;
4901 enum machine_mode mode;
4902 rtx src_eqv_here;
4903 rtx src_const = 0;
4904 rtx src_related = 0;
4905 struct table_elt *src_const_elt = 0;
4906 int src_cost = MAX_COST;
4907 int src_eqv_cost = MAX_COST;
4908 int src_folded_cost = MAX_COST;
4909 int src_related_cost = MAX_COST;
4910 int src_elt_cost = MAX_COST;
4911 int src_regcost = MAX_COST;
4912 int src_eqv_regcost = MAX_COST;
4913 int src_folded_regcost = MAX_COST;
4914 int src_related_regcost = MAX_COST;
4915 int src_elt_regcost = MAX_COST;
4916 /* Set nonzero if we need to call force_const_mem on with the
4917 contents of src_folded before using it. */
4918 int src_folded_force_flag = 0;
4920 dest = SET_DEST (sets[i].rtl);
4921 src = SET_SRC (sets[i].rtl);
4923 /* If SRC is a constant that has no machine mode,
4924 hash it with the destination's machine mode.
4925 This way we can keep different modes separate. */
4927 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4928 sets[i].mode = mode;
4930 if (src_eqv)
4932 enum machine_mode eqvmode = mode;
4933 if (GET_CODE (dest) == STRICT_LOW_PART)
4934 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4935 do_not_record = 0;
4936 hash_arg_in_memory = 0;
4937 src_eqv_hash = HASH (src_eqv, eqvmode);
4939 /* Find the equivalence class for the equivalent expression. */
4941 if (!do_not_record)
4942 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4944 src_eqv_volatile = do_not_record;
4945 src_eqv_in_memory = hash_arg_in_memory;
4948 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4949 value of the INNER register, not the destination. So it is not
4950 a valid substitution for the source. But save it for later. */
4951 if (GET_CODE (dest) == STRICT_LOW_PART)
4952 src_eqv_here = 0;
4953 else
4954 src_eqv_here = src_eqv;
4956 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4957 simplified result, which may not necessarily be valid. */
4958 src_folded = fold_rtx (src, insn);
4960 #if 0
4961 /* ??? This caused bad code to be generated for the m68k port with -O2.
4962 Suppose src is (CONST_INT -1), and that after truncation src_folded
4963 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4964 At the end we will add src and src_const to the same equivalence
4965 class. We now have 3 and -1 on the same equivalence class. This
4966 causes later instructions to be mis-optimized. */
4967 /* If storing a constant in a bitfield, pre-truncate the constant
4968 so we will be able to record it later. */
4969 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4971 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4973 if (GET_CODE (src) == CONST_INT
4974 && GET_CODE (width) == CONST_INT
4975 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4976 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4977 src_folded
4978 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4979 << INTVAL (width)) - 1));
4981 #endif
4983 /* Compute SRC's hash code, and also notice if it
4984 should not be recorded at all. In that case,
4985 prevent any further processing of this assignment. */
4986 do_not_record = 0;
4987 hash_arg_in_memory = 0;
4989 sets[i].src = src;
4990 sets[i].src_hash = HASH (src, mode);
4991 sets[i].src_volatile = do_not_record;
4992 sets[i].src_in_memory = hash_arg_in_memory;
4994 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4995 a pseudo, do not record SRC. Using SRC as a replacement for
4996 anything else will be incorrect in that situation. Note that
4997 this usually occurs only for stack slots, in which case all the
4998 RTL would be referring to SRC, so we don't lose any optimization
4999 opportunities by not having SRC in the hash table. */
5001 if (MEM_P (src)
5002 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5003 && REG_P (dest)
5004 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5005 sets[i].src_volatile = 1;
5007 #if 0
5008 /* It is no longer clear why we used to do this, but it doesn't
5009 appear to still be needed. So let's try without it since this
5010 code hurts cse'ing widened ops. */
5011 /* If source is a paradoxical subreg (such as QI treated as an SI),
5012 treat it as volatile. It may do the work of an SI in one context
5013 where the extra bits are not being used, but cannot replace an SI
5014 in general. */
5015 if (GET_CODE (src) == SUBREG
5016 && (GET_MODE_SIZE (GET_MODE (src))
5017 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5018 sets[i].src_volatile = 1;
5019 #endif
5021 /* Locate all possible equivalent forms for SRC. Try to replace
5022 SRC in the insn with each cheaper equivalent.
5024 We have the following types of equivalents: SRC itself, a folded
5025 version, a value given in a REG_EQUAL note, or a value related
5026 to a constant.
5028 Each of these equivalents may be part of an additional class
5029 of equivalents (if more than one is in the table, they must be in
5030 the same class; we check for this).
5032 If the source is volatile, we don't do any table lookups.
5034 We note any constant equivalent for possible later use in a
5035 REG_NOTE. */
5037 if (!sets[i].src_volatile)
5038 elt = lookup (src, sets[i].src_hash, mode);
5040 sets[i].src_elt = elt;
5042 if (elt && src_eqv_here && src_eqv_elt)
5044 if (elt->first_same_value != src_eqv_elt->first_same_value)
5046 /* The REG_EQUAL is indicating that two formerly distinct
5047 classes are now equivalent. So merge them. */
5048 merge_equiv_classes (elt, src_eqv_elt);
5049 src_eqv_hash = HASH (src_eqv, elt->mode);
5050 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5053 src_eqv_here = 0;
5056 else if (src_eqv_elt)
5057 elt = src_eqv_elt;
5059 /* Try to find a constant somewhere and record it in `src_const'.
5060 Record its table element, if any, in `src_const_elt'. Look in
5061 any known equivalences first. (If the constant is not in the
5062 table, also set `sets[i].src_const_hash'). */
5063 if (elt)
5064 for (p = elt->first_same_value; p; p = p->next_same_value)
5065 if (p->is_const)
5067 src_const = p->exp;
5068 src_const_elt = elt;
5069 break;
5072 if (src_const == 0
5073 && (CONSTANT_P (src_folded)
5074 /* Consider (minus (label_ref L1) (label_ref L2)) as
5075 "constant" here so we will record it. This allows us
5076 to fold switch statements when an ADDR_DIFF_VEC is used. */
5077 || (GET_CODE (src_folded) == MINUS
5078 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5079 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5080 src_const = src_folded, src_const_elt = elt;
5081 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5082 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5084 /* If we don't know if the constant is in the table, get its
5085 hash code and look it up. */
5086 if (src_const && src_const_elt == 0)
5088 sets[i].src_const_hash = HASH (src_const, mode);
5089 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5092 sets[i].src_const = src_const;
5093 sets[i].src_const_elt = src_const_elt;
5095 /* If the constant and our source are both in the table, mark them as
5096 equivalent. Otherwise, if a constant is in the table but the source
5097 isn't, set ELT to it. */
5098 if (src_const_elt && elt
5099 && src_const_elt->first_same_value != elt->first_same_value)
5100 merge_equiv_classes (elt, src_const_elt);
5101 else if (src_const_elt && elt == 0)
5102 elt = src_const_elt;
5104 /* See if there is a register linearly related to a constant
5105 equivalent of SRC. */
5106 if (src_const
5107 && (GET_CODE (src_const) == CONST
5108 || (src_const_elt && src_const_elt->related_value != 0)))
5110 src_related = use_related_value (src_const, src_const_elt);
5111 if (src_related)
5113 struct table_elt *src_related_elt
5114 = lookup (src_related, HASH (src_related, mode), mode);
5115 if (src_related_elt && elt)
5117 if (elt->first_same_value
5118 != src_related_elt->first_same_value)
5119 /* This can occur when we previously saw a CONST
5120 involving a SYMBOL_REF and then see the SYMBOL_REF
5121 twice. Merge the involved classes. */
5122 merge_equiv_classes (elt, src_related_elt);
5124 src_related = 0;
5125 src_related_elt = 0;
5127 else if (src_related_elt && elt == 0)
5128 elt = src_related_elt;
5132 /* See if we have a CONST_INT that is already in a register in a
5133 wider mode. */
5135 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5136 && GET_MODE_CLASS (mode) == MODE_INT
5137 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5139 enum machine_mode wider_mode;
5141 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5142 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5143 && src_related == 0;
5144 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5146 struct table_elt *const_elt
5147 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5149 if (const_elt == 0)
5150 continue;
5152 for (const_elt = const_elt->first_same_value;
5153 const_elt; const_elt = const_elt->next_same_value)
5154 if (REG_P (const_elt->exp))
5156 src_related = gen_lowpart (mode,
5157 const_elt->exp);
5158 break;
5163 /* Another possibility is that we have an AND with a constant in
5164 a mode narrower than a word. If so, it might have been generated
5165 as part of an "if" which would narrow the AND. If we already
5166 have done the AND in a wider mode, we can use a SUBREG of that
5167 value. */
5169 if (flag_expensive_optimizations && ! src_related
5170 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5171 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5173 enum machine_mode tmode;
5174 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5176 for (tmode = GET_MODE_WIDER_MODE (mode);
5177 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5178 tmode = GET_MODE_WIDER_MODE (tmode))
5180 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5181 struct table_elt *larger_elt;
5183 if (inner)
5185 PUT_MODE (new_and, tmode);
5186 XEXP (new_and, 0) = inner;
5187 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5188 if (larger_elt == 0)
5189 continue;
5191 for (larger_elt = larger_elt->first_same_value;
5192 larger_elt; larger_elt = larger_elt->next_same_value)
5193 if (REG_P (larger_elt->exp))
5195 src_related
5196 = gen_lowpart (mode, larger_elt->exp);
5197 break;
5200 if (src_related)
5201 break;
5206 #ifdef LOAD_EXTEND_OP
5207 /* See if a MEM has already been loaded with a widening operation;
5208 if it has, we can use a subreg of that. Many CISC machines
5209 also have such operations, but this is only likely to be
5210 beneficial on these machines. */
5212 if (flag_expensive_optimizations && src_related == 0
5213 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5214 && GET_MODE_CLASS (mode) == MODE_INT
5215 && MEM_P (src) && ! do_not_record
5216 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5218 struct rtx_def memory_extend_buf;
5219 rtx memory_extend_rtx = &memory_extend_buf;
5220 enum machine_mode tmode;
5222 /* Set what we are trying to extend and the operation it might
5223 have been extended with. */
5224 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5225 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5226 XEXP (memory_extend_rtx, 0) = src;
5228 for (tmode = GET_MODE_WIDER_MODE (mode);
5229 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5230 tmode = GET_MODE_WIDER_MODE (tmode))
5232 struct table_elt *larger_elt;
5234 PUT_MODE (memory_extend_rtx, tmode);
5235 larger_elt = lookup (memory_extend_rtx,
5236 HASH (memory_extend_rtx, tmode), tmode);
5237 if (larger_elt == 0)
5238 continue;
5240 for (larger_elt = larger_elt->first_same_value;
5241 larger_elt; larger_elt = larger_elt->next_same_value)
5242 if (REG_P (larger_elt->exp))
5244 src_related = gen_lowpart (mode,
5245 larger_elt->exp);
5246 break;
5249 if (src_related)
5250 break;
5253 #endif /* LOAD_EXTEND_OP */
5255 if (src == src_folded)
5256 src_folded = 0;
5258 /* At this point, ELT, if nonzero, points to a class of expressions
5259 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5260 and SRC_RELATED, if nonzero, each contain additional equivalent
5261 expressions. Prune these latter expressions by deleting expressions
5262 already in the equivalence class.
5264 Check for an equivalent identical to the destination. If found,
5265 this is the preferred equivalent since it will likely lead to
5266 elimination of the insn. Indicate this by placing it in
5267 `src_related'. */
5269 if (elt)
5270 elt = elt->first_same_value;
5271 for (p = elt; p; p = p->next_same_value)
5273 enum rtx_code code = GET_CODE (p->exp);
5275 /* If the expression is not valid, ignore it. Then we do not
5276 have to check for validity below. In most cases, we can use
5277 `rtx_equal_p', since canonicalization has already been done. */
5278 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5279 continue;
5281 /* Also skip paradoxical subregs, unless that's what we're
5282 looking for. */
5283 if (code == SUBREG
5284 && (GET_MODE_SIZE (GET_MODE (p->exp))
5285 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5286 && ! (src != 0
5287 && GET_CODE (src) == SUBREG
5288 && GET_MODE (src) == GET_MODE (p->exp)
5289 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5290 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5291 continue;
5293 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5294 src = 0;
5295 else if (src_folded && GET_CODE (src_folded) == code
5296 && rtx_equal_p (src_folded, p->exp))
5297 src_folded = 0;
5298 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5299 && rtx_equal_p (src_eqv_here, p->exp))
5300 src_eqv_here = 0;
5301 else if (src_related && GET_CODE (src_related) == code
5302 && rtx_equal_p (src_related, p->exp))
5303 src_related = 0;
5305 /* This is the same as the destination of the insns, we want
5306 to prefer it. Copy it to src_related. The code below will
5307 then give it a negative cost. */
5308 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5309 src_related = dest;
5312 /* Find the cheapest valid equivalent, trying all the available
5313 possibilities. Prefer items not in the hash table to ones
5314 that are when they are equal cost. Note that we can never
5315 worsen an insn as the current contents will also succeed.
5316 If we find an equivalent identical to the destination, use it as best,
5317 since this insn will probably be eliminated in that case. */
5318 if (src)
5320 if (rtx_equal_p (src, dest))
5321 src_cost = src_regcost = -1;
5322 else
5324 src_cost = COST (src);
5325 src_regcost = approx_reg_cost (src);
5329 if (src_eqv_here)
5331 if (rtx_equal_p (src_eqv_here, dest))
5332 src_eqv_cost = src_eqv_regcost = -1;
5333 else
5335 src_eqv_cost = COST (src_eqv_here);
5336 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5340 if (src_folded)
5342 if (rtx_equal_p (src_folded, dest))
5343 src_folded_cost = src_folded_regcost = -1;
5344 else
5346 src_folded_cost = COST (src_folded);
5347 src_folded_regcost = approx_reg_cost (src_folded);
5351 if (src_related)
5353 if (rtx_equal_p (src_related, dest))
5354 src_related_cost = src_related_regcost = -1;
5355 else
5357 src_related_cost = COST (src_related);
5358 src_related_regcost = approx_reg_cost (src_related);
5362 /* If this was an indirect jump insn, a known label will really be
5363 cheaper even though it looks more expensive. */
5364 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5365 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5367 /* Terminate loop when replacement made. This must terminate since
5368 the current contents will be tested and will always be valid. */
5369 while (1)
5371 rtx trial;
5373 /* Skip invalid entries. */
5374 while (elt && !REG_P (elt->exp)
5375 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5376 elt = elt->next_same_value;
5378 /* A paradoxical subreg would be bad here: it'll be the right
5379 size, but later may be adjusted so that the upper bits aren't
5380 what we want. So reject it. */
5381 if (elt != 0
5382 && GET_CODE (elt->exp) == SUBREG
5383 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5384 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5385 /* It is okay, though, if the rtx we're trying to match
5386 will ignore any of the bits we can't predict. */
5387 && ! (src != 0
5388 && GET_CODE (src) == SUBREG
5389 && GET_MODE (src) == GET_MODE (elt->exp)
5390 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5391 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5393 elt = elt->next_same_value;
5394 continue;
5397 if (elt)
5399 src_elt_cost = elt->cost;
5400 src_elt_regcost = elt->regcost;
5403 /* Find cheapest and skip it for the next time. For items
5404 of equal cost, use this order:
5405 src_folded, src, src_eqv, src_related and hash table entry. */
5406 if (src_folded
5407 && preferable (src_folded_cost, src_folded_regcost,
5408 src_cost, src_regcost) <= 0
5409 && preferable (src_folded_cost, src_folded_regcost,
5410 src_eqv_cost, src_eqv_regcost) <= 0
5411 && preferable (src_folded_cost, src_folded_regcost,
5412 src_related_cost, src_related_regcost) <= 0
5413 && preferable (src_folded_cost, src_folded_regcost,
5414 src_elt_cost, src_elt_regcost) <= 0)
5416 trial = src_folded, src_folded_cost = MAX_COST;
5417 if (src_folded_force_flag)
5419 rtx forced = force_const_mem (mode, trial);
5420 if (forced)
5421 trial = forced;
5424 else if (src
5425 && preferable (src_cost, src_regcost,
5426 src_eqv_cost, src_eqv_regcost) <= 0
5427 && preferable (src_cost, src_regcost,
5428 src_related_cost, src_related_regcost) <= 0
5429 && preferable (src_cost, src_regcost,
5430 src_elt_cost, src_elt_regcost) <= 0)
5431 trial = src, src_cost = MAX_COST;
5432 else if (src_eqv_here
5433 && preferable (src_eqv_cost, src_eqv_regcost,
5434 src_related_cost, src_related_regcost) <= 0
5435 && preferable (src_eqv_cost, src_eqv_regcost,
5436 src_elt_cost, src_elt_regcost) <= 0)
5437 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5438 else if (src_related
5439 && preferable (src_related_cost, src_related_regcost,
5440 src_elt_cost, src_elt_regcost) <= 0)
5441 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5442 else
5444 trial = copy_rtx (elt->exp);
5445 elt = elt->next_same_value;
5446 src_elt_cost = MAX_COST;
5449 /* We don't normally have an insn matching (set (pc) (pc)), so
5450 check for this separately here. We will delete such an
5451 insn below.
5453 For other cases such as a table jump or conditional jump
5454 where we know the ultimate target, go ahead and replace the
5455 operand. While that may not make a valid insn, we will
5456 reemit the jump below (and also insert any necessary
5457 barriers). */
5458 if (n_sets == 1 && dest == pc_rtx
5459 && (trial == pc_rtx
5460 || (GET_CODE (trial) == LABEL_REF
5461 && ! condjump_p (insn))))
5463 /* Don't substitute non-local labels, this confuses CFG. */
5464 if (GET_CODE (trial) == LABEL_REF
5465 && LABEL_REF_NONLOCAL_P (trial))
5466 continue;
5468 SET_SRC (sets[i].rtl) = trial;
5469 cse_jumps_altered = 1;
5470 break;
5473 /* Look for a substitution that makes a valid insn. */
5474 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5476 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5478 /* If we just made a substitution inside a libcall, then we
5479 need to make the same substitution in any notes attached
5480 to the RETVAL insn. */
5481 if (libcall_insn
5482 && (REG_P (sets[i].orig_src)
5483 || GET_CODE (sets[i].orig_src) == SUBREG
5484 || MEM_P (sets[i].orig_src)))
5486 rtx note = find_reg_equal_equiv_note (libcall_insn);
5487 if (note != 0)
5488 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5489 sets[i].orig_src,
5490 copy_rtx (new));
5493 /* The result of apply_change_group can be ignored; see
5494 canon_reg. */
5496 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5497 apply_change_group ();
5498 break;
5501 /* If we previously found constant pool entries for
5502 constants and this is a constant, try making a
5503 pool entry. Put it in src_folded unless we already have done
5504 this since that is where it likely came from. */
5506 else if (constant_pool_entries_cost
5507 && CONSTANT_P (trial)
5508 /* Reject cases that will abort in decode_rtx_const.
5509 On the alpha when simplifying a switch, we get
5510 (const (truncate (minus (label_ref) (label_ref)))). */
5511 && ! (GET_CODE (trial) == CONST
5512 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5513 /* Likewise on IA-64, except without the truncate. */
5514 && ! (GET_CODE (trial) == CONST
5515 && GET_CODE (XEXP (trial, 0)) == MINUS
5516 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5517 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5518 && (src_folded == 0
5519 || (!MEM_P (src_folded)
5520 && ! src_folded_force_flag))
5521 && GET_MODE_CLASS (mode) != MODE_CC
5522 && mode != VOIDmode)
5524 src_folded_force_flag = 1;
5525 src_folded = trial;
5526 src_folded_cost = constant_pool_entries_cost;
5527 src_folded_regcost = constant_pool_entries_regcost;
5531 src = SET_SRC (sets[i].rtl);
5533 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5534 However, there is an important exception: If both are registers
5535 that are not the head of their equivalence class, replace SET_SRC
5536 with the head of the class. If we do not do this, we will have
5537 both registers live over a portion of the basic block. This way,
5538 their lifetimes will likely abut instead of overlapping. */
5539 if (REG_P (dest)
5540 && REGNO_QTY_VALID_P (REGNO (dest)))
5542 int dest_q = REG_QTY (REGNO (dest));
5543 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5545 if (dest_ent->mode == GET_MODE (dest)
5546 && dest_ent->first_reg != REGNO (dest)
5547 && REG_P (src) && REGNO (src) == REGNO (dest)
5548 /* Don't do this if the original insn had a hard reg as
5549 SET_SRC or SET_DEST. */
5550 && (!REG_P (sets[i].src)
5551 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5552 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5553 /* We can't call canon_reg here because it won't do anything if
5554 SRC is a hard register. */
5556 int src_q = REG_QTY (REGNO (src));
5557 struct qty_table_elem *src_ent = &qty_table[src_q];
5558 int first = src_ent->first_reg;
5559 rtx new_src
5560 = (first >= FIRST_PSEUDO_REGISTER
5561 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5563 /* We must use validate-change even for this, because this
5564 might be a special no-op instruction, suitable only to
5565 tag notes onto. */
5566 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5568 src = new_src;
5569 /* If we had a constant that is cheaper than what we are now
5570 setting SRC to, use that constant. We ignored it when we
5571 thought we could make this into a no-op. */
5572 if (src_const && COST (src_const) < COST (src)
5573 && validate_change (insn, &SET_SRC (sets[i].rtl),
5574 src_const, 0))
5575 src = src_const;
5580 /* If we made a change, recompute SRC values. */
5581 if (src != sets[i].src)
5583 cse_altered = 1;
5584 do_not_record = 0;
5585 hash_arg_in_memory = 0;
5586 sets[i].src = src;
5587 sets[i].src_hash = HASH (src, mode);
5588 sets[i].src_volatile = do_not_record;
5589 sets[i].src_in_memory = hash_arg_in_memory;
5590 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5593 /* If this is a single SET, we are setting a register, and we have an
5594 equivalent constant, we want to add a REG_NOTE. We don't want
5595 to write a REG_EQUAL note for a constant pseudo since verifying that
5596 that pseudo hasn't been eliminated is a pain. Such a note also
5597 won't help anything.
5599 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5600 which can be created for a reference to a compile time computable
5601 entry in a jump table. */
5603 if (n_sets == 1 && src_const && REG_P (dest)
5604 && !REG_P (src_const)
5605 && ! (GET_CODE (src_const) == CONST
5606 && GET_CODE (XEXP (src_const, 0)) == MINUS
5607 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5608 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5610 /* We only want a REG_EQUAL note if src_const != src. */
5611 if (! rtx_equal_p (src, src_const))
5613 /* Make sure that the rtx is not shared. */
5614 src_const = copy_rtx (src_const);
5616 /* Record the actual constant value in a REG_EQUAL note,
5617 making a new one if one does not already exist. */
5618 set_unique_reg_note (insn, REG_EQUAL, src_const);
5622 /* Now deal with the destination. */
5623 do_not_record = 0;
5625 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5626 while (GET_CODE (dest) == SUBREG
5627 || GET_CODE (dest) == ZERO_EXTRACT
5628 || GET_CODE (dest) == STRICT_LOW_PART)
5629 dest = XEXP (dest, 0);
5631 sets[i].inner_dest = dest;
5633 if (MEM_P (dest))
5635 #ifdef PUSH_ROUNDING
5636 /* Stack pushes invalidate the stack pointer. */
5637 rtx addr = XEXP (dest, 0);
5638 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5639 && XEXP (addr, 0) == stack_pointer_rtx)
5640 invalidate (stack_pointer_rtx, Pmode);
5641 #endif
5642 dest = fold_rtx (dest, insn);
5645 /* Compute the hash code of the destination now,
5646 before the effects of this instruction are recorded,
5647 since the register values used in the address computation
5648 are those before this instruction. */
5649 sets[i].dest_hash = HASH (dest, mode);
5651 /* Don't enter a bit-field in the hash table
5652 because the value in it after the store
5653 may not equal what was stored, due to truncation. */
5655 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5657 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5659 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5660 && GET_CODE (width) == CONST_INT
5661 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5662 && ! (INTVAL (src_const)
5663 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5664 /* Exception: if the value is constant,
5665 and it won't be truncated, record it. */
5667 else
5669 /* This is chosen so that the destination will be invalidated
5670 but no new value will be recorded.
5671 We must invalidate because sometimes constant
5672 values can be recorded for bitfields. */
5673 sets[i].src_elt = 0;
5674 sets[i].src_volatile = 1;
5675 src_eqv = 0;
5676 src_eqv_elt = 0;
5680 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5681 the insn. */
5682 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5684 /* One less use of the label this insn used to jump to. */
5685 delete_insn (insn);
5686 cse_jumps_altered = 1;
5687 /* No more processing for this set. */
5688 sets[i].rtl = 0;
5691 /* If this SET is now setting PC to a label, we know it used to
5692 be a conditional or computed branch. */
5693 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5694 && !LABEL_REF_NONLOCAL_P (src))
5696 /* Now emit a BARRIER after the unconditional jump. */
5697 if (NEXT_INSN (insn) == 0
5698 || !BARRIER_P (NEXT_INSN (insn)))
5699 emit_barrier_after (insn);
5701 /* We reemit the jump in as many cases as possible just in
5702 case the form of an unconditional jump is significantly
5703 different than a computed jump or conditional jump.
5705 If this insn has multiple sets, then reemitting the
5706 jump is nontrivial. So instead we just force rerecognition
5707 and hope for the best. */
5708 if (n_sets == 1)
5710 rtx new, note;
5712 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5713 JUMP_LABEL (new) = XEXP (src, 0);
5714 LABEL_NUSES (XEXP (src, 0))++;
5716 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5717 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5718 if (note)
5720 XEXP (note, 1) = NULL_RTX;
5721 REG_NOTES (new) = note;
5724 delete_insn (insn);
5725 insn = new;
5727 /* Now emit a BARRIER after the unconditional jump. */
5728 if (NEXT_INSN (insn) == 0
5729 || !BARRIER_P (NEXT_INSN (insn)))
5730 emit_barrier_after (insn);
5732 else
5733 INSN_CODE (insn) = -1;
5735 /* Do not bother deleting any unreachable code,
5736 let jump/flow do that. */
5738 cse_jumps_altered = 1;
5739 sets[i].rtl = 0;
5742 /* If destination is volatile, invalidate it and then do no further
5743 processing for this assignment. */
5745 else if (do_not_record)
5747 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5748 invalidate (dest, VOIDmode);
5749 else if (MEM_P (dest))
5750 invalidate (dest, VOIDmode);
5751 else if (GET_CODE (dest) == STRICT_LOW_PART
5752 || GET_CODE (dest) == ZERO_EXTRACT)
5753 invalidate (XEXP (dest, 0), GET_MODE (dest));
5754 sets[i].rtl = 0;
5757 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5758 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5760 #ifdef HAVE_cc0
5761 /* If setting CC0, record what it was set to, or a constant, if it
5762 is equivalent to a constant. If it is being set to a floating-point
5763 value, make a COMPARE with the appropriate constant of 0. If we
5764 don't do this, later code can interpret this as a test against
5765 const0_rtx, which can cause problems if we try to put it into an
5766 insn as a floating-point operand. */
5767 if (dest == cc0_rtx)
5769 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5770 this_insn_cc0_mode = mode;
5771 if (FLOAT_MODE_P (mode))
5772 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5773 CONST0_RTX (mode));
5775 #endif
5778 /* Now enter all non-volatile source expressions in the hash table
5779 if they are not already present.
5780 Record their equivalence classes in src_elt.
5781 This way we can insert the corresponding destinations into
5782 the same classes even if the actual sources are no longer in them
5783 (having been invalidated). */
5785 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5786 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5788 struct table_elt *elt;
5789 struct table_elt *classp = sets[0].src_elt;
5790 rtx dest = SET_DEST (sets[0].rtl);
5791 enum machine_mode eqvmode = GET_MODE (dest);
5793 if (GET_CODE (dest) == STRICT_LOW_PART)
5795 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5796 classp = 0;
5798 if (insert_regs (src_eqv, classp, 0))
5800 rehash_using_reg (src_eqv);
5801 src_eqv_hash = HASH (src_eqv, eqvmode);
5803 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5804 elt->in_memory = src_eqv_in_memory;
5805 src_eqv_elt = elt;
5807 /* Check to see if src_eqv_elt is the same as a set source which
5808 does not yet have an elt, and if so set the elt of the set source
5809 to src_eqv_elt. */
5810 for (i = 0; i < n_sets; i++)
5811 if (sets[i].rtl && sets[i].src_elt == 0
5812 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5813 sets[i].src_elt = src_eqv_elt;
5816 for (i = 0; i < n_sets; i++)
5817 if (sets[i].rtl && ! sets[i].src_volatile
5818 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5820 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5822 /* REG_EQUAL in setting a STRICT_LOW_PART
5823 gives an equivalent for the entire destination register,
5824 not just for the subreg being stored in now.
5825 This is a more interesting equivalence, so we arrange later
5826 to treat the entire reg as the destination. */
5827 sets[i].src_elt = src_eqv_elt;
5828 sets[i].src_hash = src_eqv_hash;
5830 else
5832 /* Insert source and constant equivalent into hash table, if not
5833 already present. */
5834 struct table_elt *classp = src_eqv_elt;
5835 rtx src = sets[i].src;
5836 rtx dest = SET_DEST (sets[i].rtl);
5837 enum machine_mode mode
5838 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5840 /* It's possible that we have a source value known to be
5841 constant but don't have a REG_EQUAL note on the insn.
5842 Lack of a note will mean src_eqv_elt will be NULL. This
5843 can happen where we've generated a SUBREG to access a
5844 CONST_INT that is already in a register in a wider mode.
5845 Ensure that the source expression is put in the proper
5846 constant class. */
5847 if (!classp)
5848 classp = sets[i].src_const_elt;
5850 if (sets[i].src_elt == 0)
5852 /* Don't put a hard register source into the table if this is
5853 the last insn of a libcall. In this case, we only need
5854 to put src_eqv_elt in src_elt. */
5855 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5857 struct table_elt *elt;
5859 /* Note that these insert_regs calls cannot remove
5860 any of the src_elt's, because they would have failed to
5861 match if not still valid. */
5862 if (insert_regs (src, classp, 0))
5864 rehash_using_reg (src);
5865 sets[i].src_hash = HASH (src, mode);
5867 elt = insert (src, classp, sets[i].src_hash, mode);
5868 elt->in_memory = sets[i].src_in_memory;
5869 sets[i].src_elt = classp = elt;
5871 else
5872 sets[i].src_elt = classp;
5874 if (sets[i].src_const && sets[i].src_const_elt == 0
5875 && src != sets[i].src_const
5876 && ! rtx_equal_p (sets[i].src_const, src))
5877 sets[i].src_elt = insert (sets[i].src_const, classp,
5878 sets[i].src_const_hash, mode);
5881 else if (sets[i].src_elt == 0)
5882 /* If we did not insert the source into the hash table (e.g., it was
5883 volatile), note the equivalence class for the REG_EQUAL value, if any,
5884 so that the destination goes into that class. */
5885 sets[i].src_elt = src_eqv_elt;
5887 invalidate_from_clobbers (x);
5889 /* Some registers are invalidated by subroutine calls. Memory is
5890 invalidated by non-constant calls. */
5892 if (CALL_P (insn))
5894 if (! CONST_OR_PURE_CALL_P (insn))
5895 invalidate_memory ();
5896 invalidate_for_call ();
5899 /* Now invalidate everything set by this instruction.
5900 If a SUBREG or other funny destination is being set,
5901 sets[i].rtl is still nonzero, so here we invalidate the reg
5902 a part of which is being set. */
5904 for (i = 0; i < n_sets; i++)
5905 if (sets[i].rtl)
5907 /* We can't use the inner dest, because the mode associated with
5908 a ZERO_EXTRACT is significant. */
5909 rtx dest = SET_DEST (sets[i].rtl);
5911 /* Needed for registers to remove the register from its
5912 previous quantity's chain.
5913 Needed for memory if this is a nonvarying address, unless
5914 we have just done an invalidate_memory that covers even those. */
5915 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5916 invalidate (dest, VOIDmode);
5917 else if (MEM_P (dest))
5918 invalidate (dest, VOIDmode);
5919 else if (GET_CODE (dest) == STRICT_LOW_PART
5920 || GET_CODE (dest) == ZERO_EXTRACT)
5921 invalidate (XEXP (dest, 0), GET_MODE (dest));
5924 /* A volatile ASM invalidates everything. */
5925 if (NONJUMP_INSN_P (insn)
5926 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5927 && MEM_VOLATILE_P (PATTERN (insn)))
5928 flush_hash_table ();
5930 /* Make sure registers mentioned in destinations
5931 are safe for use in an expression to be inserted.
5932 This removes from the hash table
5933 any invalid entry that refers to one of these registers.
5935 We don't care about the return value from mention_regs because
5936 we are going to hash the SET_DEST values unconditionally. */
5938 for (i = 0; i < n_sets; i++)
5940 if (sets[i].rtl)
5942 rtx x = SET_DEST (sets[i].rtl);
5944 if (!REG_P (x))
5945 mention_regs (x);
5946 else
5948 /* We used to rely on all references to a register becoming
5949 inaccessible when a register changes to a new quantity,
5950 since that changes the hash code. However, that is not
5951 safe, since after HASH_SIZE new quantities we get a
5952 hash 'collision' of a register with its own invalid
5953 entries. And since SUBREGs have been changed not to
5954 change their hash code with the hash code of the register,
5955 it wouldn't work any longer at all. So we have to check
5956 for any invalid references lying around now.
5957 This code is similar to the REG case in mention_regs,
5958 but it knows that reg_tick has been incremented, and
5959 it leaves reg_in_table as -1 . */
5960 unsigned int regno = REGNO (x);
5961 unsigned int endregno
5962 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5963 : hard_regno_nregs[regno][GET_MODE (x)]);
5964 unsigned int i;
5966 for (i = regno; i < endregno; i++)
5968 if (REG_IN_TABLE (i) >= 0)
5970 remove_invalid_refs (i);
5971 REG_IN_TABLE (i) = -1;
5978 /* We may have just removed some of the src_elt's from the hash table.
5979 So replace each one with the current head of the same class. */
5981 for (i = 0; i < n_sets; i++)
5982 if (sets[i].rtl)
5984 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5985 /* If elt was removed, find current head of same class,
5986 or 0 if nothing remains of that class. */
5988 struct table_elt *elt = sets[i].src_elt;
5990 while (elt && elt->prev_same_value)
5991 elt = elt->prev_same_value;
5993 while (elt && elt->first_same_value == 0)
5994 elt = elt->next_same_value;
5995 sets[i].src_elt = elt ? elt->first_same_value : 0;
5999 /* Now insert the destinations into their equivalence classes. */
6001 for (i = 0; i < n_sets; i++)
6002 if (sets[i].rtl)
6004 rtx dest = SET_DEST (sets[i].rtl);
6005 struct table_elt *elt;
6007 /* Don't record value if we are not supposed to risk allocating
6008 floating-point values in registers that might be wider than
6009 memory. */
6010 if ((flag_float_store
6011 && MEM_P (dest)
6012 && FLOAT_MODE_P (GET_MODE (dest)))
6013 /* Don't record BLKmode values, because we don't know the
6014 size of it, and can't be sure that other BLKmode values
6015 have the same or smaller size. */
6016 || GET_MODE (dest) == BLKmode
6017 /* Don't record values of destinations set inside a libcall block
6018 since we might delete the libcall. Things should have been set
6019 up so we won't want to reuse such a value, but we play it safe
6020 here. */
6021 || libcall_insn
6022 /* If we didn't put a REG_EQUAL value or a source into the hash
6023 table, there is no point is recording DEST. */
6024 || sets[i].src_elt == 0
6025 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6026 or SIGN_EXTEND, don't record DEST since it can cause
6027 some tracking to be wrong.
6029 ??? Think about this more later. */
6030 || (GET_CODE (dest) == SUBREG
6031 && (GET_MODE_SIZE (GET_MODE (dest))
6032 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6033 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6034 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6035 continue;
6037 /* STRICT_LOW_PART isn't part of the value BEING set,
6038 and neither is the SUBREG inside it.
6039 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6040 if (GET_CODE (dest) == STRICT_LOW_PART)
6041 dest = SUBREG_REG (XEXP (dest, 0));
6043 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6044 /* Registers must also be inserted into chains for quantities. */
6045 if (insert_regs (dest, sets[i].src_elt, 1))
6047 /* If `insert_regs' changes something, the hash code must be
6048 recalculated. */
6049 rehash_using_reg (dest);
6050 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6053 elt = insert (dest, sets[i].src_elt,
6054 sets[i].dest_hash, GET_MODE (dest));
6056 elt->in_memory = (MEM_P (sets[i].inner_dest)
6057 && !MEM_READONLY_P (sets[i].inner_dest));
6059 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6060 narrower than M2, and both M1 and M2 are the same number of words,
6061 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6062 make that equivalence as well.
6064 However, BAR may have equivalences for which gen_lowpart
6065 will produce a simpler value than gen_lowpart applied to
6066 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6067 BAR's equivalences. If we don't get a simplified form, make
6068 the SUBREG. It will not be used in an equivalence, but will
6069 cause two similar assignments to be detected.
6071 Note the loop below will find SUBREG_REG (DEST) since we have
6072 already entered SRC and DEST of the SET in the table. */
6074 if (GET_CODE (dest) == SUBREG
6075 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6076 / UNITS_PER_WORD)
6077 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6078 && (GET_MODE_SIZE (GET_MODE (dest))
6079 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6080 && sets[i].src_elt != 0)
6082 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6083 struct table_elt *elt, *classp = 0;
6085 for (elt = sets[i].src_elt->first_same_value; elt;
6086 elt = elt->next_same_value)
6088 rtx new_src = 0;
6089 unsigned src_hash;
6090 struct table_elt *src_elt;
6091 int byte = 0;
6093 /* Ignore invalid entries. */
6094 if (!REG_P (elt->exp)
6095 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6096 continue;
6098 /* We may have already been playing subreg games. If the
6099 mode is already correct for the destination, use it. */
6100 if (GET_MODE (elt->exp) == new_mode)
6101 new_src = elt->exp;
6102 else
6104 /* Calculate big endian correction for the SUBREG_BYTE.
6105 We have already checked that M1 (GET_MODE (dest))
6106 is not narrower than M2 (new_mode). */
6107 if (BYTES_BIG_ENDIAN)
6108 byte = (GET_MODE_SIZE (GET_MODE (dest))
6109 - GET_MODE_SIZE (new_mode));
6111 new_src = simplify_gen_subreg (new_mode, elt->exp,
6112 GET_MODE (dest), byte);
6115 /* The call to simplify_gen_subreg fails if the value
6116 is VOIDmode, yet we can't do any simplification, e.g.
6117 for EXPR_LISTs denoting function call results.
6118 It is invalid to construct a SUBREG with a VOIDmode
6119 SUBREG_REG, hence a zero new_src means we can't do
6120 this substitution. */
6121 if (! new_src)
6122 continue;
6124 src_hash = HASH (new_src, new_mode);
6125 src_elt = lookup (new_src, src_hash, new_mode);
6127 /* Put the new source in the hash table is if isn't
6128 already. */
6129 if (src_elt == 0)
6131 if (insert_regs (new_src, classp, 0))
6133 rehash_using_reg (new_src);
6134 src_hash = HASH (new_src, new_mode);
6136 src_elt = insert (new_src, classp, src_hash, new_mode);
6137 src_elt->in_memory = elt->in_memory;
6139 else if (classp && classp != src_elt->first_same_value)
6140 /* Show that two things that we've seen before are
6141 actually the same. */
6142 merge_equiv_classes (src_elt, classp);
6144 classp = src_elt->first_same_value;
6145 /* Ignore invalid entries. */
6146 while (classp
6147 && !REG_P (classp->exp)
6148 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6149 classp = classp->next_same_value;
6154 /* Special handling for (set REG0 REG1) where REG0 is the
6155 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6156 be used in the sequel, so (if easily done) change this insn to
6157 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6158 that computed their value. Then REG1 will become a dead store
6159 and won't cloud the situation for later optimizations.
6161 Do not make this change if REG1 is a hard register, because it will
6162 then be used in the sequel and we may be changing a two-operand insn
6163 into a three-operand insn.
6165 Also do not do this if we are operating on a copy of INSN.
6167 Also don't do this if INSN ends a libcall; this would cause an unrelated
6168 register to be set in the middle of a libcall, and we then get bad code
6169 if the libcall is deleted. */
6171 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6172 && NEXT_INSN (PREV_INSN (insn)) == insn
6173 && REG_P (SET_SRC (sets[0].rtl))
6174 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6175 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6177 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6178 struct qty_table_elem *src_ent = &qty_table[src_q];
6180 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6181 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6183 rtx prev = insn;
6184 /* Scan for the previous nonnote insn, but stop at a basic
6185 block boundary. */
6188 prev = PREV_INSN (prev);
6190 while (prev && NOTE_P (prev)
6191 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6193 /* Do not swap the registers around if the previous instruction
6194 attaches a REG_EQUIV note to REG1.
6196 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6197 from the pseudo that originally shadowed an incoming argument
6198 to another register. Some uses of REG_EQUIV might rely on it
6199 being attached to REG1 rather than REG2.
6201 This section previously turned the REG_EQUIV into a REG_EQUAL
6202 note. We cannot do that because REG_EQUIV may provide an
6203 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6205 if (prev != 0 && NONJUMP_INSN_P (prev)
6206 && GET_CODE (PATTERN (prev)) == SET
6207 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6208 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6210 rtx dest = SET_DEST (sets[0].rtl);
6211 rtx src = SET_SRC (sets[0].rtl);
6212 rtx note;
6214 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6215 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6216 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6217 apply_change_group ();
6219 /* If INSN has a REG_EQUAL note, and this note mentions
6220 REG0, then we must delete it, because the value in
6221 REG0 has changed. If the note's value is REG1, we must
6222 also delete it because that is now this insn's dest. */
6223 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6224 if (note != 0
6225 && (reg_mentioned_p (dest, XEXP (note, 0))
6226 || rtx_equal_p (src, XEXP (note, 0))))
6227 remove_note (insn, note);
6232 /* If this is a conditional jump insn, record any known equivalences due to
6233 the condition being tested. */
6235 if (JUMP_P (insn)
6236 && n_sets == 1 && GET_CODE (x) == SET
6237 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6238 record_jump_equiv (insn, 0);
6240 #ifdef HAVE_cc0
6241 /* If the previous insn set CC0 and this insn no longer references CC0,
6242 delete the previous insn. Here we use the fact that nothing expects CC0
6243 to be valid over an insn, which is true until the final pass. */
6244 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6245 && (tem = single_set (prev_insn)) != 0
6246 && SET_DEST (tem) == cc0_rtx
6247 && ! reg_mentioned_p (cc0_rtx, x))
6248 delete_insn (prev_insn);
6250 prev_insn_cc0 = this_insn_cc0;
6251 prev_insn_cc0_mode = this_insn_cc0_mode;
6252 prev_insn = insn;
6253 #endif
6256 /* Remove from the hash table all expressions that reference memory. */
6258 static void
6259 invalidate_memory (void)
6261 int i;
6262 struct table_elt *p, *next;
6264 for (i = 0; i < HASH_SIZE; i++)
6265 for (p = table[i]; p; p = next)
6267 next = p->next_same_hash;
6268 if (p->in_memory)
6269 remove_from_table (p, i);
6273 /* If ADDR is an address that implicitly affects the stack pointer, return
6274 1 and update the register tables to show the effect. Else, return 0. */
6276 static int
6277 addr_affects_sp_p (rtx addr)
6279 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6280 && REG_P (XEXP (addr, 0))
6281 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6283 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6285 REG_TICK (STACK_POINTER_REGNUM)++;
6286 /* Is it possible to use a subreg of SP? */
6287 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6290 /* This should be *very* rare. */
6291 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6292 invalidate (stack_pointer_rtx, VOIDmode);
6294 return 1;
6297 return 0;
6300 /* Perform invalidation on the basis of everything about an insn
6301 except for invalidating the actual places that are SET in it.
6302 This includes the places CLOBBERed, and anything that might
6303 alias with something that is SET or CLOBBERed.
6305 X is the pattern of the insn. */
6307 static void
6308 invalidate_from_clobbers (rtx x)
6310 if (GET_CODE (x) == CLOBBER)
6312 rtx ref = XEXP (x, 0);
6313 if (ref)
6315 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6316 || MEM_P (ref))
6317 invalidate (ref, VOIDmode);
6318 else if (GET_CODE (ref) == STRICT_LOW_PART
6319 || GET_CODE (ref) == ZERO_EXTRACT)
6320 invalidate (XEXP (ref, 0), GET_MODE (ref));
6323 else if (GET_CODE (x) == PARALLEL)
6325 int i;
6326 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6328 rtx y = XVECEXP (x, 0, i);
6329 if (GET_CODE (y) == CLOBBER)
6331 rtx ref = XEXP (y, 0);
6332 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6333 || MEM_P (ref))
6334 invalidate (ref, VOIDmode);
6335 else if (GET_CODE (ref) == STRICT_LOW_PART
6336 || GET_CODE (ref) == ZERO_EXTRACT)
6337 invalidate (XEXP (ref, 0), GET_MODE (ref));
6343 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6344 and replace any registers in them with either an equivalent constant
6345 or the canonical form of the register. If we are inside an address,
6346 only do this if the address remains valid.
6348 OBJECT is 0 except when within a MEM in which case it is the MEM.
6350 Return the replacement for X. */
6352 static rtx
6353 cse_process_notes (rtx x, rtx object)
6355 enum rtx_code code = GET_CODE (x);
6356 const char *fmt = GET_RTX_FORMAT (code);
6357 int i;
6359 switch (code)
6361 case CONST_INT:
6362 case CONST:
6363 case SYMBOL_REF:
6364 case LABEL_REF:
6365 case CONST_DOUBLE:
6366 case CONST_VECTOR:
6367 case PC:
6368 case CC0:
6369 case LO_SUM:
6370 return x;
6372 case MEM:
6373 validate_change (x, &XEXP (x, 0),
6374 cse_process_notes (XEXP (x, 0), x), 0);
6375 return x;
6377 case EXPR_LIST:
6378 case INSN_LIST:
6379 if (REG_NOTE_KIND (x) == REG_EQUAL)
6380 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6381 if (XEXP (x, 1))
6382 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6383 return x;
6385 case SIGN_EXTEND:
6386 case ZERO_EXTEND:
6387 case SUBREG:
6389 rtx new = cse_process_notes (XEXP (x, 0), object);
6390 /* We don't substitute VOIDmode constants into these rtx,
6391 since they would impede folding. */
6392 if (GET_MODE (new) != VOIDmode)
6393 validate_change (object, &XEXP (x, 0), new, 0);
6394 return x;
6397 case REG:
6398 i = REG_QTY (REGNO (x));
6400 /* Return a constant or a constant register. */
6401 if (REGNO_QTY_VALID_P (REGNO (x)))
6403 struct qty_table_elem *ent = &qty_table[i];
6405 if (ent->const_rtx != NULL_RTX
6406 && (CONSTANT_P (ent->const_rtx)
6407 || REG_P (ent->const_rtx)))
6409 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6410 if (new)
6411 return new;
6415 /* Otherwise, canonicalize this register. */
6416 return canon_reg (x, NULL_RTX);
6418 default:
6419 break;
6422 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6423 if (fmt[i] == 'e')
6424 validate_change (object, &XEXP (x, i),
6425 cse_process_notes (XEXP (x, i), object), 0);
6427 return x;
6430 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6431 since they are done elsewhere. This function is called via note_stores. */
6433 static void
6434 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6436 enum rtx_code code = GET_CODE (dest);
6438 if (code == MEM
6439 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6440 /* There are times when an address can appear varying and be a PLUS
6441 during this scan when it would be a fixed address were we to know
6442 the proper equivalences. So invalidate all memory if there is
6443 a BLKmode or nonscalar memory reference or a reference to a
6444 variable address. */
6445 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6446 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6448 invalidate_memory ();
6449 return;
6452 if (GET_CODE (set) == CLOBBER
6453 || CC0_P (dest)
6454 || dest == pc_rtx)
6455 return;
6457 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6458 invalidate (XEXP (dest, 0), GET_MODE (dest));
6459 else if (code == REG || code == SUBREG || code == MEM)
6460 invalidate (dest, VOIDmode);
6463 /* Invalidate all insns from START up to the end of the function or the
6464 next label. This called when we wish to CSE around a block that is
6465 conditionally executed. */
6467 static void
6468 invalidate_skipped_block (rtx start)
6470 rtx insn;
6472 for (insn = start; insn && !LABEL_P (insn);
6473 insn = NEXT_INSN (insn))
6475 if (! INSN_P (insn))
6476 continue;
6478 if (CALL_P (insn))
6480 if (! CONST_OR_PURE_CALL_P (insn))
6481 invalidate_memory ();
6482 invalidate_for_call ();
6485 invalidate_from_clobbers (PATTERN (insn));
6486 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6490 /* Find the end of INSN's basic block and return its range,
6491 the total number of SETs in all the insns of the block, the last insn of the
6492 block, and the branch path.
6494 The branch path indicates which branches should be followed. If a nonzero
6495 path size is specified, the block should be rescanned and a different set
6496 of branches will be taken. The branch path is only used if
6497 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6499 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6500 used to describe the block. It is filled in with the information about
6501 the current block. The incoming structure's branch path, if any, is used
6502 to construct the output branch path. */
6504 static void
6505 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6506 int follow_jumps, int skip_blocks)
6508 rtx p = insn, q;
6509 int nsets = 0;
6510 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6511 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6512 int path_size = data->path_size;
6513 int path_entry = 0;
6514 int i;
6516 /* Update the previous branch path, if any. If the last branch was
6517 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6518 If it was previously PATH_NOT_TAKEN,
6519 shorten the path by one and look at the previous branch. We know that
6520 at least one branch must have been taken if PATH_SIZE is nonzero. */
6521 while (path_size > 0)
6523 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6525 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6526 break;
6528 else
6529 path_size--;
6532 /* If the first instruction is marked with QImode, that means we've
6533 already processed this block. Our caller will look at DATA->LAST
6534 to figure out where to go next. We want to return the next block
6535 in the instruction stream, not some branched-to block somewhere
6536 else. We accomplish this by pretending our called forbid us to
6537 follow jumps, or skip blocks. */
6538 if (GET_MODE (insn) == QImode)
6539 follow_jumps = skip_blocks = 0;
6541 /* Scan to end of this basic block. */
6542 while (p && !LABEL_P (p))
6544 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6545 the regs restored by the longjmp come from
6546 a later time than the setjmp. */
6547 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6548 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6549 break;
6551 /* A PARALLEL can have lots of SETs in it,
6552 especially if it is really an ASM_OPERANDS. */
6553 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6554 nsets += XVECLEN (PATTERN (p), 0);
6555 else if (!NOTE_P (p))
6556 nsets += 1;
6558 /* Ignore insns made by CSE; they cannot affect the boundaries of
6559 the basic block. */
6561 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6562 high_cuid = INSN_CUID (p);
6563 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6564 low_cuid = INSN_CUID (p);
6566 /* See if this insn is in our branch path. If it is and we are to
6567 take it, do so. */
6568 if (path_entry < path_size && data->path[path_entry].branch == p)
6570 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6571 p = JUMP_LABEL (p);
6573 /* Point to next entry in path, if any. */
6574 path_entry++;
6577 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6578 was specified, we haven't reached our maximum path length, there are
6579 insns following the target of the jump, this is the only use of the
6580 jump label, and the target label is preceded by a BARRIER.
6582 Alternatively, we can follow the jump if it branches around a
6583 block of code and there are no other branches into the block.
6584 In this case invalidate_skipped_block will be called to invalidate any
6585 registers set in the block when following the jump. */
6587 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6588 && JUMP_P (p)
6589 && GET_CODE (PATTERN (p)) == SET
6590 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6591 && JUMP_LABEL (p) != 0
6592 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6593 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6595 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6596 if ((!NOTE_P (q)
6597 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6598 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6599 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6600 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6601 break;
6603 /* If we ran into a BARRIER, this code is an extension of the
6604 basic block when the branch is taken. */
6605 if (follow_jumps && q != 0 && BARRIER_P (q))
6607 /* Don't allow ourself to keep walking around an
6608 always-executed loop. */
6609 if (next_real_insn (q) == next)
6611 p = NEXT_INSN (p);
6612 continue;
6615 /* Similarly, don't put a branch in our path more than once. */
6616 for (i = 0; i < path_entry; i++)
6617 if (data->path[i].branch == p)
6618 break;
6620 if (i != path_entry)
6621 break;
6623 data->path[path_entry].branch = p;
6624 data->path[path_entry++].status = PATH_TAKEN;
6626 /* This branch now ends our path. It was possible that we
6627 didn't see this branch the last time around (when the
6628 insn in front of the target was a JUMP_INSN that was
6629 turned into a no-op). */
6630 path_size = path_entry;
6632 p = JUMP_LABEL (p);
6633 /* Mark block so we won't scan it again later. */
6634 PUT_MODE (NEXT_INSN (p), QImode);
6636 /* Detect a branch around a block of code. */
6637 else if (skip_blocks && q != 0 && !LABEL_P (q))
6639 rtx tmp;
6641 if (next_real_insn (q) == next)
6643 p = NEXT_INSN (p);
6644 continue;
6647 for (i = 0; i < path_entry; i++)
6648 if (data->path[i].branch == p)
6649 break;
6651 if (i != path_entry)
6652 break;
6654 /* This is no_labels_between_p (p, q) with an added check for
6655 reaching the end of a function (in case Q precedes P). */
6656 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6657 if (LABEL_P (tmp))
6658 break;
6660 if (tmp == q)
6662 data->path[path_entry].branch = p;
6663 data->path[path_entry++].status = PATH_AROUND;
6665 path_size = path_entry;
6667 p = JUMP_LABEL (p);
6668 /* Mark block so we won't scan it again later. */
6669 PUT_MODE (NEXT_INSN (p), QImode);
6673 p = NEXT_INSN (p);
6676 data->low_cuid = low_cuid;
6677 data->high_cuid = high_cuid;
6678 data->nsets = nsets;
6679 data->last = p;
6681 /* If all jumps in the path are not taken, set our path length to zero
6682 so a rescan won't be done. */
6683 for (i = path_size - 1; i >= 0; i--)
6684 if (data->path[i].status != PATH_NOT_TAKEN)
6685 break;
6687 if (i == -1)
6688 data->path_size = 0;
6689 else
6690 data->path_size = path_size;
6692 /* End the current branch path. */
6693 data->path[path_size].branch = 0;
6696 /* Perform cse on the instructions of a function.
6697 F is the first instruction.
6698 NREGS is one plus the highest pseudo-reg number used in the instruction.
6700 Returns 1 if jump_optimize should be redone due to simplifications
6701 in conditional jump instructions. */
6704 cse_main (rtx f, int nregs, FILE *file)
6706 struct cse_basic_block_data val;
6707 rtx insn = f;
6708 int i;
6710 init_cse_reg_info (nregs);
6712 val.path = xmalloc (sizeof (struct branch_path)
6713 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6715 cse_jumps_altered = 0;
6716 recorded_label_ref = 0;
6717 constant_pool_entries_cost = 0;
6718 constant_pool_entries_regcost = 0;
6719 val.path_size = 0;
6720 rtl_hooks = cse_rtl_hooks;
6722 init_recog ();
6723 init_alias_analysis ();
6725 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
6727 /* Find the largest uid. */
6729 max_uid = get_max_uid ();
6730 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
6732 /* Compute the mapping from uids to cuids.
6733 CUIDs are numbers assigned to insns, like uids,
6734 except that cuids increase monotonically through the code.
6735 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6736 between two insns is not affected by -g. */
6738 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6740 if (!NOTE_P (insn)
6741 || NOTE_LINE_NUMBER (insn) < 0)
6742 INSN_CUID (insn) = ++i;
6743 else
6744 /* Give a line number note the same cuid as preceding insn. */
6745 INSN_CUID (insn) = i;
6748 /* Loop over basic blocks.
6749 Compute the maximum number of qty's needed for each basic block
6750 (which is 2 for each SET). */
6751 insn = f;
6752 while (insn)
6754 cse_altered = 0;
6755 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6756 flag_cse_skip_blocks);
6758 /* If this basic block was already processed or has no sets, skip it. */
6759 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6761 PUT_MODE (insn, VOIDmode);
6762 insn = (val.last ? NEXT_INSN (val.last) : 0);
6763 val.path_size = 0;
6764 continue;
6767 cse_basic_block_start = val.low_cuid;
6768 cse_basic_block_end = val.high_cuid;
6769 max_qty = val.nsets * 2;
6771 if (file)
6772 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
6773 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6774 val.nsets);
6776 /* Make MAX_QTY bigger to give us room to optimize
6777 past the end of this basic block, if that should prove useful. */
6778 if (max_qty < 500)
6779 max_qty = 500;
6781 /* If this basic block is being extended by following certain jumps,
6782 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6783 Otherwise, we start after this basic block. */
6784 if (val.path_size > 0)
6785 cse_basic_block (insn, val.last, val.path);
6786 else
6788 int old_cse_jumps_altered = cse_jumps_altered;
6789 rtx temp;
6791 /* When cse changes a conditional jump to an unconditional
6792 jump, we want to reprocess the block, since it will give
6793 us a new branch path to investigate. */
6794 cse_jumps_altered = 0;
6795 temp = cse_basic_block (insn, val.last, val.path);
6796 if (cse_jumps_altered == 0
6797 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6798 insn = temp;
6800 cse_jumps_altered |= old_cse_jumps_altered;
6803 if (cse_altered)
6804 ggc_collect ();
6806 #ifdef USE_C_ALLOCA
6807 alloca (0);
6808 #endif
6811 /* Clean up. */
6812 end_alias_analysis ();
6813 free (uid_cuid);
6814 free (reg_eqv_table);
6815 free (val.path);
6816 rtl_hooks = general_rtl_hooks;
6818 return cse_jumps_altered || recorded_label_ref;
6821 /* Process a single basic block. FROM and TO and the limits of the basic
6822 block. NEXT_BRANCH points to the branch path when following jumps or
6823 a null path when not following jumps. */
6825 static rtx
6826 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6828 rtx insn;
6829 int to_usage = 0;
6830 rtx libcall_insn = NULL_RTX;
6831 int num_insns = 0;
6832 int no_conflict = 0;
6834 /* Allocate the space needed by qty_table. */
6835 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
6837 new_basic_block ();
6839 /* TO might be a label. If so, protect it from being deleted. */
6840 if (to != 0 && LABEL_P (to))
6841 ++LABEL_NUSES (to);
6843 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6845 enum rtx_code code = GET_CODE (insn);
6847 /* If we have processed 1,000 insns, flush the hash table to
6848 avoid extreme quadratic behavior. We must not include NOTEs
6849 in the count since there may be more of them when generating
6850 debugging information. If we clear the table at different
6851 times, code generated with -g -O might be different than code
6852 generated with -O but not -g.
6854 ??? This is a real kludge and needs to be done some other way.
6855 Perhaps for 2.9. */
6856 if (code != NOTE && num_insns++ > 1000)
6858 flush_hash_table ();
6859 num_insns = 0;
6862 /* See if this is a branch that is part of the path. If so, and it is
6863 to be taken, do so. */
6864 if (next_branch->branch == insn)
6866 enum taken status = next_branch++->status;
6867 if (status != PATH_NOT_TAKEN)
6869 if (status == PATH_TAKEN)
6870 record_jump_equiv (insn, 1);
6871 else
6872 invalidate_skipped_block (NEXT_INSN (insn));
6874 /* Set the last insn as the jump insn; it doesn't affect cc0.
6875 Then follow this branch. */
6876 #ifdef HAVE_cc0
6877 prev_insn_cc0 = 0;
6878 prev_insn = insn;
6879 #endif
6880 insn = JUMP_LABEL (insn);
6881 continue;
6885 if (GET_MODE (insn) == QImode)
6886 PUT_MODE (insn, VOIDmode);
6888 if (GET_RTX_CLASS (code) == RTX_INSN)
6890 rtx p;
6892 /* Process notes first so we have all notes in canonical forms when
6893 looking for duplicate operations. */
6895 if (REG_NOTES (insn))
6896 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6898 /* Track when we are inside in LIBCALL block. Inside such a block,
6899 we do not want to record destinations. The last insn of a
6900 LIBCALL block is not considered to be part of the block, since
6901 its destination is the result of the block and hence should be
6902 recorded. */
6904 if (REG_NOTES (insn) != 0)
6906 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6907 libcall_insn = XEXP (p, 0);
6908 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6910 /* Keep libcall_insn for the last SET insn of a no-conflict
6911 block to prevent changing the destination. */
6912 if (! no_conflict)
6913 libcall_insn = 0;
6914 else
6915 no_conflict = -1;
6917 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6918 no_conflict = 1;
6921 cse_insn (insn, libcall_insn);
6923 if (no_conflict == -1)
6925 libcall_insn = 0;
6926 no_conflict = 0;
6929 /* If we haven't already found an insn where we added a LABEL_REF,
6930 check this one. */
6931 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6932 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6933 (void *) insn))
6934 recorded_label_ref = 1;
6937 /* If INSN is now an unconditional jump, skip to the end of our
6938 basic block by pretending that we just did the last insn in the
6939 basic block. If we are jumping to the end of our block, show
6940 that we can have one usage of TO. */
6942 if (any_uncondjump_p (insn))
6944 if (to == 0)
6946 free (qty_table);
6947 return 0;
6950 if (JUMP_LABEL (insn) == to)
6951 to_usage = 1;
6953 /* Maybe TO was deleted because the jump is unconditional.
6954 If so, there is nothing left in this basic block. */
6955 /* ??? Perhaps it would be smarter to set TO
6956 to whatever follows this insn,
6957 and pretend the basic block had always ended here. */
6958 if (INSN_DELETED_P (to))
6959 break;
6961 insn = PREV_INSN (to);
6964 /* See if it is ok to keep on going past the label
6965 which used to end our basic block. Remember that we incremented
6966 the count of that label, so we decrement it here. If we made
6967 a jump unconditional, TO_USAGE will be one; in that case, we don't
6968 want to count the use in that jump. */
6970 if (to != 0 && NEXT_INSN (insn) == to
6971 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
6973 struct cse_basic_block_data val;
6974 rtx prev;
6976 insn = NEXT_INSN (to);
6978 /* If TO was the last insn in the function, we are done. */
6979 if (insn == 0)
6981 free (qty_table);
6982 return 0;
6985 /* If TO was preceded by a BARRIER we are done with this block
6986 because it has no continuation. */
6987 prev = prev_nonnote_insn (to);
6988 if (prev && BARRIER_P (prev))
6990 free (qty_table);
6991 return insn;
6994 /* Find the end of the following block. Note that we won't be
6995 following branches in this case. */
6996 to_usage = 0;
6997 val.path_size = 0;
6998 val.path = xmalloc (sizeof (struct branch_path)
6999 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
7000 cse_end_of_basic_block (insn, &val, 0, 0);
7001 free (val.path);
7003 /* If the tables we allocated have enough space left
7004 to handle all the SETs in the next basic block,
7005 continue through it. Otherwise, return,
7006 and that block will be scanned individually. */
7007 if (val.nsets * 2 + next_qty > max_qty)
7008 break;
7010 cse_basic_block_start = val.low_cuid;
7011 cse_basic_block_end = val.high_cuid;
7012 to = val.last;
7014 /* Prevent TO from being deleted if it is a label. */
7015 if (to != 0 && LABEL_P (to))
7016 ++LABEL_NUSES (to);
7018 /* Back up so we process the first insn in the extension. */
7019 insn = PREV_INSN (insn);
7023 gcc_assert (next_qty <= max_qty);
7025 free (qty_table);
7027 return to ? NEXT_INSN (to) : 0;
7030 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7031 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7033 static int
7034 check_for_label_ref (rtx *rtl, void *data)
7036 rtx insn = (rtx) data;
7038 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7039 we must rerun jump since it needs to place the note. If this is a
7040 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7041 since no REG_LABEL will be added. */
7042 return (GET_CODE (*rtl) == LABEL_REF
7043 && ! LABEL_REF_NONLOCAL_P (*rtl)
7044 && LABEL_P (XEXP (*rtl, 0))
7045 && INSN_UID (XEXP (*rtl, 0)) != 0
7046 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7049 /* Count the number of times registers are used (not set) in X.
7050 COUNTS is an array in which we accumulate the count, INCR is how much
7051 we count each register usage. */
7053 static void
7054 count_reg_usage (rtx x, int *counts, int incr)
7056 enum rtx_code code;
7057 rtx note;
7058 const char *fmt;
7059 int i, j;
7061 if (x == 0)
7062 return;
7064 switch (code = GET_CODE (x))
7066 case REG:
7067 counts[REGNO (x)] += incr;
7068 return;
7070 case PC:
7071 case CC0:
7072 case CONST:
7073 case CONST_INT:
7074 case CONST_DOUBLE:
7075 case CONST_VECTOR:
7076 case SYMBOL_REF:
7077 case LABEL_REF:
7078 return;
7080 case CLOBBER:
7081 /* If we are clobbering a MEM, mark any registers inside the address
7082 as being used. */
7083 if (MEM_P (XEXP (x, 0)))
7084 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7085 return;
7087 case SET:
7088 /* Unless we are setting a REG, count everything in SET_DEST. */
7089 if (!REG_P (SET_DEST (x)))
7090 count_reg_usage (SET_DEST (x), counts, incr);
7091 count_reg_usage (SET_SRC (x), counts, incr);
7092 return;
7094 case CALL_INSN:
7095 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
7096 /* Fall through. */
7098 case INSN:
7099 case JUMP_INSN:
7100 count_reg_usage (PATTERN (x), counts, incr);
7102 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7103 use them. */
7105 note = find_reg_equal_equiv_note (x);
7106 if (note)
7108 rtx eqv = XEXP (note, 0);
7110 if (GET_CODE (eqv) == EXPR_LIST)
7111 /* This REG_EQUAL note describes the result of a function call.
7112 Process all the arguments. */
7115 count_reg_usage (XEXP (eqv, 0), counts, incr);
7116 eqv = XEXP (eqv, 1);
7118 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7119 else
7120 count_reg_usage (eqv, counts, incr);
7122 return;
7124 case EXPR_LIST:
7125 if (REG_NOTE_KIND (x) == REG_EQUAL
7126 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7127 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7128 involving registers in the address. */
7129 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7130 count_reg_usage (XEXP (x, 0), counts, incr);
7132 count_reg_usage (XEXP (x, 1), counts, incr);
7133 return;
7135 case ASM_OPERANDS:
7136 /* Iterate over just the inputs, not the constraints as well. */
7137 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7138 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
7139 return;
7141 case INSN_LIST:
7142 gcc_unreachable ();
7144 default:
7145 break;
7148 fmt = GET_RTX_FORMAT (code);
7149 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7151 if (fmt[i] == 'e')
7152 count_reg_usage (XEXP (x, i), counts, incr);
7153 else if (fmt[i] == 'E')
7154 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7155 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7159 /* Return true if set is live. */
7160 static bool
7161 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7162 int *counts)
7164 #ifdef HAVE_cc0
7165 rtx tem;
7166 #endif
7168 if (set_noop_p (set))
7171 #ifdef HAVE_cc0
7172 else if (GET_CODE (SET_DEST (set)) == CC0
7173 && !side_effects_p (SET_SRC (set))
7174 && ((tem = next_nonnote_insn (insn)) == 0
7175 || !INSN_P (tem)
7176 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7177 return false;
7178 #endif
7179 else if (!REG_P (SET_DEST (set))
7180 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7181 || counts[REGNO (SET_DEST (set))] != 0
7182 || side_effects_p (SET_SRC (set)))
7183 return true;
7184 return false;
7187 /* Return true if insn is live. */
7189 static bool
7190 insn_live_p (rtx insn, int *counts)
7192 int i;
7193 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7194 return true;
7195 else if (GET_CODE (PATTERN (insn)) == SET)
7196 return set_live_p (PATTERN (insn), insn, counts);
7197 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7199 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7201 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7203 if (GET_CODE (elt) == SET)
7205 if (set_live_p (elt, insn, counts))
7206 return true;
7208 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7209 return true;
7211 return false;
7213 else
7214 return true;
7217 /* Return true if libcall is dead as a whole. */
7219 static bool
7220 dead_libcall_p (rtx insn, int *counts)
7222 rtx note, set, new;
7224 /* See if there's a REG_EQUAL note on this insn and try to
7225 replace the source with the REG_EQUAL expression.
7227 We assume that insns with REG_RETVALs can only be reg->reg
7228 copies at this point. */
7229 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7230 if (!note)
7231 return false;
7233 set = single_set (insn);
7234 if (!set)
7235 return false;
7237 new = simplify_rtx (XEXP (note, 0));
7238 if (!new)
7239 new = XEXP (note, 0);
7241 /* While changing insn, we must update the counts accordingly. */
7242 count_reg_usage (insn, counts, -1);
7244 if (validate_change (insn, &SET_SRC (set), new, 0))
7246 count_reg_usage (insn, counts, 1);
7247 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7248 remove_note (insn, note);
7249 return true;
7252 if (CONSTANT_P (new))
7254 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7255 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7257 count_reg_usage (insn, counts, 1);
7258 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7259 remove_note (insn, note);
7260 return true;
7264 count_reg_usage (insn, counts, 1);
7265 return false;
7268 /* Scan all the insns and delete any that are dead; i.e., they store a register
7269 that is never used or they copy a register to itself.
7271 This is used to remove insns made obviously dead by cse, loop or other
7272 optimizations. It improves the heuristics in loop since it won't try to
7273 move dead invariants out of loops or make givs for dead quantities. The
7274 remaining passes of the compilation are also sped up. */
7277 delete_trivially_dead_insns (rtx insns, int nreg)
7279 int *counts;
7280 rtx insn, prev;
7281 int in_libcall = 0, dead_libcall = 0;
7282 int ndead = 0;
7284 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7285 /* First count the number of times each register is used. */
7286 counts = xcalloc (nreg, sizeof (int));
7287 for (insn = insns; insn; insn = NEXT_INSN (insn))
7288 if (INSN_P (insn))
7289 count_reg_usage (insn, counts, 1);
7291 /* Go from the last insn to the first and delete insns that only set unused
7292 registers or copy a register to itself. As we delete an insn, remove
7293 usage counts for registers it uses.
7295 The first jump optimization pass may leave a real insn as the last
7296 insn in the function. We must not skip that insn or we may end
7297 up deleting code that is not really dead. */
7298 for (insn = get_last_insn (); insn; insn = prev)
7300 int live_insn = 0;
7302 prev = PREV_INSN (insn);
7303 if (!INSN_P (insn))
7304 continue;
7306 /* Don't delete any insns that are part of a libcall block unless
7307 we can delete the whole libcall block.
7309 Flow or loop might get confused if we did that. Remember
7310 that we are scanning backwards. */
7311 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7313 in_libcall = 1;
7314 live_insn = 1;
7315 dead_libcall = dead_libcall_p (insn, counts);
7317 else if (in_libcall)
7318 live_insn = ! dead_libcall;
7319 else
7320 live_insn = insn_live_p (insn, counts);
7322 /* If this is a dead insn, delete it and show registers in it aren't
7323 being used. */
7325 if (! live_insn)
7327 count_reg_usage (insn, counts, -1);
7328 delete_insn_and_edges (insn);
7329 ndead++;
7332 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7334 in_libcall = 0;
7335 dead_libcall = 0;
7339 if (dump_file && ndead)
7340 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7341 ndead);
7342 /* Clean up. */
7343 free (counts);
7344 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7345 return ndead;
7348 /* This function is called via for_each_rtx. The argument, NEWREG, is
7349 a condition code register with the desired mode. If we are looking
7350 at the same register in a different mode, replace it with
7351 NEWREG. */
7353 static int
7354 cse_change_cc_mode (rtx *loc, void *data)
7356 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7358 if (*loc
7359 && REG_P (*loc)
7360 && REGNO (*loc) == REGNO (args->newreg)
7361 && GET_MODE (*loc) != GET_MODE (args->newreg))
7363 validate_change (args->insn, loc, args->newreg, 1);
7365 return -1;
7367 return 0;
7370 /* Change the mode of any reference to the register REGNO (NEWREG) to
7371 GET_MODE (NEWREG) in INSN. */
7373 static void
7374 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7376 struct change_cc_mode_args args;
7377 int success;
7379 if (!INSN_P (insn))
7380 return;
7382 args.insn = insn;
7383 args.newreg = newreg;
7385 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7386 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7388 /* If the following assertion was triggered, there is most probably
7389 something wrong with the cc_modes_compatible back end function.
7390 CC modes only can be considered compatible if the insn - with the mode
7391 replaced by any of the compatible modes - can still be recognized. */
7392 success = apply_change_group ();
7393 gcc_assert (success);
7396 /* Change the mode of any reference to the register REGNO (NEWREG) to
7397 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7398 any instruction which modifies NEWREG. */
7400 static void
7401 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7403 rtx insn;
7405 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7407 if (! INSN_P (insn))
7408 continue;
7410 if (reg_set_p (newreg, insn))
7411 return;
7413 cse_change_cc_mode_insn (insn, newreg);
7417 /* BB is a basic block which finishes with CC_REG as a condition code
7418 register which is set to CC_SRC. Look through the successors of BB
7419 to find blocks which have a single predecessor (i.e., this one),
7420 and look through those blocks for an assignment to CC_REG which is
7421 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7422 permitted to change the mode of CC_SRC to a compatible mode. This
7423 returns VOIDmode if no equivalent assignments were found.
7424 Otherwise it returns the mode which CC_SRC should wind up with.
7426 The main complexity in this function is handling the mode issues.
7427 We may have more than one duplicate which we can eliminate, and we
7428 try to find a mode which will work for multiple duplicates. */
7430 static enum machine_mode
7431 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7433 bool found_equiv;
7434 enum machine_mode mode;
7435 unsigned int insn_count;
7436 edge e;
7437 rtx insns[2];
7438 enum machine_mode modes[2];
7439 rtx last_insns[2];
7440 unsigned int i;
7441 rtx newreg;
7442 edge_iterator ei;
7444 /* We expect to have two successors. Look at both before picking
7445 the final mode for the comparison. If we have more successors
7446 (i.e., some sort of table jump, although that seems unlikely),
7447 then we require all beyond the first two to use the same
7448 mode. */
7450 found_equiv = false;
7451 mode = GET_MODE (cc_src);
7452 insn_count = 0;
7453 FOR_EACH_EDGE (e, ei, bb->succs)
7455 rtx insn;
7456 rtx end;
7458 if (e->flags & EDGE_COMPLEX)
7459 continue;
7461 if (EDGE_COUNT (e->dest->preds) != 1
7462 || e->dest == EXIT_BLOCK_PTR)
7463 continue;
7465 end = NEXT_INSN (BB_END (e->dest));
7466 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7468 rtx set;
7470 if (! INSN_P (insn))
7471 continue;
7473 /* If CC_SRC is modified, we have to stop looking for
7474 something which uses it. */
7475 if (modified_in_p (cc_src, insn))
7476 break;
7478 /* Check whether INSN sets CC_REG to CC_SRC. */
7479 set = single_set (insn);
7480 if (set
7481 && REG_P (SET_DEST (set))
7482 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7484 bool found;
7485 enum machine_mode set_mode;
7486 enum machine_mode comp_mode;
7488 found = false;
7489 set_mode = GET_MODE (SET_SRC (set));
7490 comp_mode = set_mode;
7491 if (rtx_equal_p (cc_src, SET_SRC (set)))
7492 found = true;
7493 else if (GET_CODE (cc_src) == COMPARE
7494 && GET_CODE (SET_SRC (set)) == COMPARE
7495 && mode != set_mode
7496 && rtx_equal_p (XEXP (cc_src, 0),
7497 XEXP (SET_SRC (set), 0))
7498 && rtx_equal_p (XEXP (cc_src, 1),
7499 XEXP (SET_SRC (set), 1)))
7502 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7503 if (comp_mode != VOIDmode
7504 && (can_change_mode || comp_mode == mode))
7505 found = true;
7508 if (found)
7510 found_equiv = true;
7511 if (insn_count < ARRAY_SIZE (insns))
7513 insns[insn_count] = insn;
7514 modes[insn_count] = set_mode;
7515 last_insns[insn_count] = end;
7516 ++insn_count;
7518 if (mode != comp_mode)
7520 gcc_assert (can_change_mode);
7521 mode = comp_mode;
7523 /* The modified insn will be re-recognized later. */
7524 PUT_MODE (cc_src, mode);
7527 else
7529 if (set_mode != mode)
7531 /* We found a matching expression in the
7532 wrong mode, but we don't have room to
7533 store it in the array. Punt. This case
7534 should be rare. */
7535 break;
7537 /* INSN sets CC_REG to a value equal to CC_SRC
7538 with the right mode. We can simply delete
7539 it. */
7540 delete_insn (insn);
7543 /* We found an instruction to delete. Keep looking,
7544 in the hopes of finding a three-way jump. */
7545 continue;
7548 /* We found an instruction which sets the condition
7549 code, so don't look any farther. */
7550 break;
7553 /* If INSN sets CC_REG in some other way, don't look any
7554 farther. */
7555 if (reg_set_p (cc_reg, insn))
7556 break;
7559 /* If we fell off the bottom of the block, we can keep looking
7560 through successors. We pass CAN_CHANGE_MODE as false because
7561 we aren't prepared to handle compatibility between the
7562 further blocks and this block. */
7563 if (insn == end)
7565 enum machine_mode submode;
7567 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7568 if (submode != VOIDmode)
7570 gcc_assert (submode == mode);
7571 found_equiv = true;
7572 can_change_mode = false;
7577 if (! found_equiv)
7578 return VOIDmode;
7580 /* Now INSN_COUNT is the number of instructions we found which set
7581 CC_REG to a value equivalent to CC_SRC. The instructions are in
7582 INSNS. The modes used by those instructions are in MODES. */
7584 newreg = NULL_RTX;
7585 for (i = 0; i < insn_count; ++i)
7587 if (modes[i] != mode)
7589 /* We need to change the mode of CC_REG in INSNS[i] and
7590 subsequent instructions. */
7591 if (! newreg)
7593 if (GET_MODE (cc_reg) == mode)
7594 newreg = cc_reg;
7595 else
7596 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7598 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7599 newreg);
7602 delete_insn (insns[i]);
7605 return mode;
7608 /* If we have a fixed condition code register (or two), walk through
7609 the instructions and try to eliminate duplicate assignments. */
7611 void
7612 cse_condition_code_reg (void)
7614 unsigned int cc_regno_1;
7615 unsigned int cc_regno_2;
7616 rtx cc_reg_1;
7617 rtx cc_reg_2;
7618 basic_block bb;
7620 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7621 return;
7623 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7624 if (cc_regno_2 != INVALID_REGNUM)
7625 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7626 else
7627 cc_reg_2 = NULL_RTX;
7629 FOR_EACH_BB (bb)
7631 rtx last_insn;
7632 rtx cc_reg;
7633 rtx insn;
7634 rtx cc_src_insn;
7635 rtx cc_src;
7636 enum machine_mode mode;
7637 enum machine_mode orig_mode;
7639 /* Look for blocks which end with a conditional jump based on a
7640 condition code register. Then look for the instruction which
7641 sets the condition code register. Then look through the
7642 successor blocks for instructions which set the condition
7643 code register to the same value. There are other possible
7644 uses of the condition code register, but these are by far the
7645 most common and the ones which we are most likely to be able
7646 to optimize. */
7648 last_insn = BB_END (bb);
7649 if (!JUMP_P (last_insn))
7650 continue;
7652 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7653 cc_reg = cc_reg_1;
7654 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7655 cc_reg = cc_reg_2;
7656 else
7657 continue;
7659 cc_src_insn = NULL_RTX;
7660 cc_src = NULL_RTX;
7661 for (insn = PREV_INSN (last_insn);
7662 insn && insn != PREV_INSN (BB_HEAD (bb));
7663 insn = PREV_INSN (insn))
7665 rtx set;
7667 if (! INSN_P (insn))
7668 continue;
7669 set = single_set (insn);
7670 if (set
7671 && REG_P (SET_DEST (set))
7672 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7674 cc_src_insn = insn;
7675 cc_src = SET_SRC (set);
7676 break;
7678 else if (reg_set_p (cc_reg, insn))
7679 break;
7682 if (! cc_src_insn)
7683 continue;
7685 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7686 continue;
7688 /* Now CC_REG is a condition code register used for a
7689 conditional jump at the end of the block, and CC_SRC, in
7690 CC_SRC_INSN, is the value to which that condition code
7691 register is set, and CC_SRC is still meaningful at the end of
7692 the basic block. */
7694 orig_mode = GET_MODE (cc_src);
7695 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7696 if (mode != VOIDmode)
7698 gcc_assert (mode == GET_MODE (cc_src));
7699 if (mode != orig_mode)
7701 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7703 cse_change_cc_mode_insn (cc_src_insn, newreg);
7705 /* Do the same in the following insns that use the
7706 current value of CC_REG within BB. */
7707 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7708 NEXT_INSN (last_insn),
7709 newreg);