Merge from the pain train
[official-gcc.git] / gcc / cp / search.c
blobf6a9b577dfc0c6387a4b56b7c742702d11b64a44
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static int template_self_reference_p (tree, tree);
66 static tree dfs_get_pure_virtuals (tree, void *);
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched;
72 static int n_calls_lookup_field, n_calls_lookup_field_1;
73 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
74 static int n_calls_get_base_type;
75 static int n_outer_fields_searched;
76 static int n_contexts_saved;
77 #endif /* GATHER_STATISTICS */
80 /* Data for lookup_base and its workers. */
82 struct lookup_base_data_s
84 tree t; /* type being searched. */
85 tree base; /* The base type we're looking for. */
86 tree binfo; /* Found binfo. */
87 bool via_virtual; /* Found via a virtual path. */
88 bool ambiguous; /* Found multiply ambiguous */
89 bool repeated_base; /* Whether there are repeated bases in the
90 hierarchy. */
91 bool want_any; /* Whether we want any matching binfo. */
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
97 static tree
98 dfs_lookup_base (tree binfo, void *data_)
100 struct lookup_base_data_s *data = data_;
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
104 if (!data->binfo)
106 data->binfo = binfo;
107 data->via_virtual
108 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
110 if (!data->repeated_base)
111 /* If there are no repeated bases, we can stop now. */
112 return binfo;
114 if (data->want_any && !data->via_virtual)
115 /* If this is a non-virtual base, then we can't do
116 better. */
117 return binfo;
119 return dfs_skip_bases;
121 else
123 gcc_assert (binfo != data->binfo);
125 /* We've found more than one matching binfo. */
126 if (!data->want_any)
128 /* This is immediately ambiguous. */
129 data->binfo = NULL_TREE;
130 data->ambiguous = true;
131 return error_mark_node;
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo, data->t))
137 data->binfo = binfo;
138 data->via_virtual = false;
139 return binfo;
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases;
148 return NULL_TREE;
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
156 bool
157 accessible_base_p (tree t, tree base, bool consider_local_p)
159 tree decl;
161 /* [class.access.base]
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
166 If BASE is a non-proper base, this condition is trivially
167 true. */
168 if (same_type_p (t, base))
169 return true;
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl = TYPE_FIELDS (base);
173 while (!DECL_SELF_REFERENCE_P (decl))
174 decl = TREE_CHAIN (decl);
175 while (ANON_AGGR_TYPE_P (t))
176 t = TYPE_CONTEXT (t);
177 return accessible_p (t, decl, consider_local_p);
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
183 discovered.
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
190 tree
191 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
193 tree binfo;
194 tree t_binfo;
195 base_kind bk;
197 if (t == error_mark_node || base == error_mark_node)
199 if (kind_ptr)
200 *kind_ptr = bk_not_base;
201 return error_mark_node;
203 gcc_assert (TYPE_P (base));
205 if (!TYPE_P (t))
207 t_binfo = t;
208 t = BINFO_TYPE (t);
210 else
212 t = complete_type (TYPE_MAIN_VARIANT (t));
213 t_binfo = TYPE_BINFO (t);
216 base = complete_type (TYPE_MAIN_VARIANT (base));
218 if (t_binfo)
220 struct lookup_base_data_s data;
222 data.t = t;
223 data.base = base;
224 data.binfo = NULL_TREE;
225 data.ambiguous = data.via_virtual = false;
226 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
227 data.want_any = access == ba_any;
229 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
230 binfo = data.binfo;
232 if (!binfo)
233 bk = data.ambiguous ? bk_ambig : bk_not_base;
234 else if (binfo == t_binfo)
235 bk = bk_same_type;
236 else if (data.via_virtual)
237 bk = bk_via_virtual;
238 else
239 bk = bk_proper_base;
241 else
243 binfo = NULL_TREE;
244 bk = bk_not_base;
247 /* Check that the base is unambiguous and accessible. */
248 if (access != ba_any)
249 switch (bk)
251 case bk_not_base:
252 break;
254 case bk_ambig:
255 if (!(access & ba_quiet))
257 error ("%qT is an ambiguous base of %qT", base, t);
258 binfo = error_mark_node;
260 break;
262 default:
263 if ((access & ba_check_bit)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base)
271 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
273 if (!(access & ba_quiet))
275 error ("%qT is an inaccessible base of %qT", base, t);
276 binfo = error_mark_node;
278 else
279 binfo = NULL_TREE;
280 bk = bk_inaccessible;
282 break;
285 if (kind_ptr)
286 *kind_ptr = bk;
288 return binfo;
291 /* Data for dcast_base_hint walker. */
293 struct dcast_data_s
295 tree subtype; /* The base type we're looking for. */
296 int virt_depth; /* Number of virtual bases encountered from most
297 derived. */
298 tree offset; /* Best hint offset discovered so far. */
299 bool repeated_base; /* Whether there are repeated bases in the
300 hierarchy. */
303 /* Worker for dcast_base_hint. Search for the base type being cast
304 from. */
306 static tree
307 dfs_dcast_hint_pre (tree binfo, void *data_)
309 struct dcast_data_s *data = data_;
311 if (BINFO_VIRTUAL_P (binfo))
312 data->virt_depth++;
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
316 if (data->virt_depth)
318 data->offset = ssize_int (-1);
319 return data->offset;
321 if (data->offset)
322 data->offset = ssize_int (-3);
323 else
324 data->offset = BINFO_OFFSET (binfo);
326 return data->repeated_base ? dfs_skip_bases : data->offset;
329 return NULL_TREE;
332 /* Worker for dcast_base_hint. Track the virtual depth. */
334 static tree
335 dfs_dcast_hint_post (tree binfo, void *data_)
337 struct dcast_data_s *data = data_;
339 if (BINFO_VIRTUAL_P (binfo))
340 data->virt_depth--;
342 return NULL_TREE;
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
356 tree
357 dcast_base_hint (tree subtype, tree target)
359 struct dcast_data_s data;
361 data.subtype = subtype;
362 data.virt_depth = 0;
363 data.offset = NULL_TREE;
364 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
366 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
367 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
368 return data.offset ? data.offset : ssize_int (-2);
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
381 tree
382 lookup_field_1 (tree type, tree name, bool want_type)
384 tree field;
386 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type) == TYPENAME_TYPE)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
393 of fields!)
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
395 return NULL_TREE;
397 if (TYPE_NAME (type)
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
401 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
402 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
403 int i;
405 while (lo < hi)
407 i = (lo + hi) / 2;
409 #ifdef GATHER_STATISTICS
410 n_fields_searched++;
411 #endif /* GATHER_STATISTICS */
413 if (DECL_NAME (fields[i]) > name)
414 hi = i;
415 else if (DECL_NAME (fields[i]) < name)
416 lo = i + 1;
417 else
419 field = NULL_TREE;
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
425 if (want_type)
428 field = fields[i--];
429 while (i >= lo && DECL_NAME (fields[i]) == name);
430 if (TREE_CODE (field) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field))
432 field = NULL_TREE;
434 else
437 field = fields[i++];
438 while (i < hi && DECL_NAME (fields[i]) == name);
440 return field;
443 return NULL_TREE;
446 field = TYPE_FIELDS (type);
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1++;
450 #endif /* GATHER_STATISTICS */
451 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
453 #ifdef GATHER_STATISTICS
454 n_fields_searched++;
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field));
457 if (DECL_NAME (field) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
460 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
461 if (temp)
462 return temp;
464 if (TREE_CODE (field) == USING_DECL)
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly noticing
475 that dependent USING_DECL's do not have TREE_TYPE set. */
476 if (TREE_TYPE (field))
477 continue;
480 if (DECL_NAME (field) == name
481 && (!want_type
482 || TREE_CODE (field) == TYPE_DECL
483 || DECL_CLASS_TEMPLATE_P (field)))
484 return field;
486 /* Not found. */
487 if (name == vptr_identifier)
489 /* Give the user what s/he thinks s/he wants. */
490 if (TYPE_POLYMORPHIC_P (type))
491 return TYPE_VFIELD (type);
493 return NULL_TREE;
496 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
497 NAMESPACE_DECL corresponding to the innermost non-block scope. */
499 tree
500 current_scope (void)
502 /* There are a number of cases we need to be aware of here:
503 current_class_type current_function_decl
504 global NULL NULL
505 fn-local NULL SET
506 class-local SET NULL
507 class->fn SET SET
508 fn->class SET SET
510 Those last two make life interesting. If we're in a function which is
511 itself inside a class, we need decls to go into the fn's decls (our
512 second case below). But if we're in a class and the class itself is
513 inside a function, we need decls to go into the decls for the class. To
514 achieve this last goal, we must see if, when both current_class_ptr and
515 current_function_decl are set, the class was declared inside that
516 function. If so, we know to put the decls into the class's scope. */
517 if (current_function_decl && current_class_type
518 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
519 && same_type_p (DECL_CONTEXT (current_function_decl),
520 current_class_type))
521 || (DECL_FRIEND_CONTEXT (current_function_decl)
522 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
523 current_class_type))))
524 return current_function_decl;
525 if (current_class_type)
526 return current_class_type;
527 if (current_function_decl)
528 return current_function_decl;
529 return current_namespace;
532 /* Returns nonzero if we are currently in a function scope. Note
533 that this function returns zero if we are within a local class, but
534 not within a member function body of the local class. */
537 at_function_scope_p (void)
539 tree cs = current_scope ();
540 return cs && TREE_CODE (cs) == FUNCTION_DECL;
543 /* Returns true if the innermost active scope is a class scope. */
545 bool
546 at_class_scope_p (void)
548 tree cs = current_scope ();
549 return cs && TYPE_P (cs);
552 /* Returns true if the innermost active scope is a namespace scope. */
554 bool
555 at_namespace_scope_p (void)
557 tree cs = current_scope ();
558 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
561 /* Return the scope of DECL, as appropriate when doing name-lookup. */
563 tree
564 context_for_name_lookup (tree decl)
566 /* [class.union]
568 For the purposes of name lookup, after the anonymous union
569 definition, the members of the anonymous union are considered to
570 have been defined in the scope in which the anonymous union is
571 declared. */
572 tree context = DECL_CONTEXT (decl);
574 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
575 context = TYPE_CONTEXT (context);
576 if (!context)
577 context = global_namespace;
579 return context;
582 /* The accessibility routines use BINFO_ACCESS for scratch space
583 during the computation of the accessibility of some declaration. */
585 #define BINFO_ACCESS(NODE) \
586 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
588 /* Set the access associated with NODE to ACCESS. */
590 #define SET_BINFO_ACCESS(NODE, ACCESS) \
591 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
592 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
594 /* Called from access_in_type via dfs_walk. Calculate the access to
595 DATA (which is really a DECL) in BINFO. */
597 static tree
598 dfs_access_in_type (tree binfo, void *data)
600 tree decl = (tree) data;
601 tree type = BINFO_TYPE (binfo);
602 access_kind access = ak_none;
604 if (context_for_name_lookup (decl) == type)
606 /* If we have descended to the scope of DECL, just note the
607 appropriate access. */
608 if (TREE_PRIVATE (decl))
609 access = ak_private;
610 else if (TREE_PROTECTED (decl))
611 access = ak_protected;
612 else
613 access = ak_public;
615 else
617 /* First, check for an access-declaration that gives us more
618 access to the DECL. The CONST_DECL for an enumeration
619 constant will not have DECL_LANG_SPECIFIC, and thus no
620 DECL_ACCESS. */
621 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
623 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
625 if (decl_access)
627 decl_access = TREE_VALUE (decl_access);
629 if (decl_access == access_public_node)
630 access = ak_public;
631 else if (decl_access == access_protected_node)
632 access = ak_protected;
633 else if (decl_access == access_private_node)
634 access = ak_private;
635 else
636 gcc_unreachable ();
640 if (!access)
642 int i;
643 tree base_binfo;
644 VEC (tree) *accesses;
646 /* Otherwise, scan our baseclasses, and pick the most favorable
647 access. */
648 accesses = BINFO_BASE_ACCESSES (binfo);
649 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
651 tree base_access = VEC_index (tree, accesses, i);
652 access_kind base_access_now = BINFO_ACCESS (base_binfo);
654 if (base_access_now == ak_none || base_access_now == ak_private)
655 /* If it was not accessible in the base, or only
656 accessible as a private member, we can't access it
657 all. */
658 base_access_now = ak_none;
659 else if (base_access == access_protected_node)
660 /* Public and protected members in the base become
661 protected here. */
662 base_access_now = ak_protected;
663 else if (base_access == access_private_node)
664 /* Public and protected members in the base become
665 private here. */
666 base_access_now = ak_private;
668 /* See if the new access, via this base, gives more
669 access than our previous best access. */
670 if (base_access_now != ak_none
671 && (access == ak_none || base_access_now < access))
673 access = base_access_now;
675 /* If the new access is public, we can't do better. */
676 if (access == ak_public)
677 break;
683 /* Note the access to DECL in TYPE. */
684 SET_BINFO_ACCESS (binfo, access);
686 return NULL_TREE;
689 /* Return the access to DECL in TYPE. */
691 static access_kind
692 access_in_type (tree type, tree decl)
694 tree binfo = TYPE_BINFO (type);
696 /* We must take into account
698 [class.paths]
700 If a name can be reached by several paths through a multiple
701 inheritance graph, the access is that of the path that gives
702 most access.
704 The algorithm we use is to make a post-order depth-first traversal
705 of the base-class hierarchy. As we come up the tree, we annotate
706 each node with the most lenient access. */
707 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
709 return BINFO_ACCESS (binfo);
712 /* Returns nonzero if it is OK to access DECL through an object
713 indicated by BINFO in the context of DERIVED. */
715 static int
716 protected_accessible_p (tree decl, tree derived, tree binfo)
718 access_kind access;
720 /* We're checking this clause from [class.access.base]
722 m as a member of N is protected, and the reference occurs in a
723 member or friend of class N, or in a member or friend of a
724 class P derived from N, where m as a member of P is private or
725 protected.
727 Here DERIVED is a possible P and DECL is m. accessible_p will
728 iterate over various values of N, but the access to m in DERIVED
729 does not change.
731 Note that I believe that the passage above is wrong, and should read
732 "...is private or protected or public"; otherwise you get bizarre results
733 whereby a public using-decl can prevent you from accessing a protected
734 member of a base. (jason 2000/02/28) */
736 /* If DERIVED isn't derived from m's class, then it can't be a P. */
737 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
738 return 0;
740 access = access_in_type (derived, decl);
742 /* If m is inaccessible in DERIVED, then it's not a P. */
743 if (access == ak_none)
744 return 0;
746 /* [class.protected]
748 When a friend or a member function of a derived class references
749 a protected nonstatic member of a base class, an access check
750 applies in addition to those described earlier in clause
751 _class.access_) Except when forming a pointer to member
752 (_expr.unary.op_), the access must be through a pointer to,
753 reference to, or object of the derived class itself (or any class
754 derived from that class) (_expr.ref_). If the access is to form
755 a pointer to member, the nested-name-specifier shall name the
756 derived class (or any class derived from that class). */
757 if (DECL_NONSTATIC_MEMBER_P (decl))
759 /* We can tell through what the reference is occurring by
760 chasing BINFO up to the root. */
761 tree t = binfo;
762 while (BINFO_INHERITANCE_CHAIN (t))
763 t = BINFO_INHERITANCE_CHAIN (t);
765 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
766 return 0;
769 return 1;
772 /* Returns nonzero if SCOPE is a friend of a type which would be able
773 to access DECL through the object indicated by BINFO. */
775 static int
776 friend_accessible_p (tree scope, tree decl, tree binfo)
778 tree befriending_classes;
779 tree t;
781 if (!scope)
782 return 0;
784 if (TREE_CODE (scope) == FUNCTION_DECL
785 || DECL_FUNCTION_TEMPLATE_P (scope))
786 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
787 else if (TYPE_P (scope))
788 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
789 else
790 return 0;
792 for (t = befriending_classes; t; t = TREE_CHAIN (t))
793 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
794 return 1;
796 /* Nested classes are implicitly friends of their enclosing types, as
797 per core issue 45 (this is a change from the standard). */
798 if (TYPE_P (scope))
799 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
800 if (protected_accessible_p (decl, t, binfo))
801 return 1;
803 if (TREE_CODE (scope) == FUNCTION_DECL
804 || DECL_FUNCTION_TEMPLATE_P (scope))
806 /* Perhaps this SCOPE is a member of a class which is a
807 friend. */
808 if (DECL_CLASS_SCOPE_P (scope)
809 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
810 return 1;
812 /* Or an instantiation of something which is a friend. */
813 if (DECL_TEMPLATE_INFO (scope))
815 int ret;
816 /* Increment processing_template_decl to make sure that
817 dependent_type_p works correctly. */
818 ++processing_template_decl;
819 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
820 --processing_template_decl;
821 return ret;
825 return 0;
828 /* Called via dfs_walk_once_accessible from accessible_p */
830 static tree
831 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
833 if (BINFO_ACCESS (binfo) != ak_none)
835 tree scope = current_scope ();
836 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
837 && is_friend (BINFO_TYPE (binfo), scope))
838 return binfo;
841 return NULL_TREE;
844 /* DECL is a declaration from a base class of TYPE, which was the
845 class used to name DECL. Return nonzero if, in the current
846 context, DECL is accessible. If TYPE is actually a BINFO node,
847 then we can tell in what context the access is occurring by looking
848 at the most derived class along the path indicated by BINFO. If
849 CONSIDER_LOCAL is true, do consider special access the current
850 scope or friendship thereof we might have. */
852 int
853 accessible_p (tree type, tree decl, bool consider_local_p)
855 tree binfo;
856 tree scope;
857 access_kind access;
859 /* Nonzero if it's OK to access DECL if it has protected
860 accessibility in TYPE. */
861 int protected_ok = 0;
863 /* If this declaration is in a block or namespace scope, there's no
864 access control. */
865 if (!TYPE_P (context_for_name_lookup (decl)))
866 return 1;
868 /* There is no need to perform access checks inside a thunk. */
869 scope = current_scope ();
870 if (scope && DECL_THUNK_P (scope))
871 return 1;
873 /* In a template declaration, we cannot be sure whether the
874 particular specialization that is instantiated will be a friend
875 or not. Therefore, all access checks are deferred until
876 instantiation. */
877 if (processing_template_decl)
878 return 1;
880 if (!TYPE_P (type))
882 binfo = type;
883 type = BINFO_TYPE (type);
885 else
886 binfo = TYPE_BINFO (type);
888 /* [class.access.base]
890 A member m is accessible when named in class N if
892 --m as a member of N is public, or
894 --m as a member of N is private, and the reference occurs in a
895 member or friend of class N, or
897 --m as a member of N is protected, and the reference occurs in a
898 member or friend of class N, or in a member or friend of a
899 class P derived from N, where m as a member of P is private or
900 protected, or
902 --there exists a base class B of N that is accessible at the point
903 of reference, and m is accessible when named in class B.
905 We walk the base class hierarchy, checking these conditions. */
907 if (consider_local_p)
909 /* Figure out where the reference is occurring. Check to see if
910 DECL is private or protected in this scope, since that will
911 determine whether protected access is allowed. */
912 if (current_class_type)
913 protected_ok = protected_accessible_p (decl,
914 current_class_type, binfo);
916 /* Now, loop through the classes of which we are a friend. */
917 if (!protected_ok)
918 protected_ok = friend_accessible_p (scope, decl, binfo);
921 /* Standardize the binfo that access_in_type will use. We don't
922 need to know what path was chosen from this point onwards. */
923 binfo = TYPE_BINFO (type);
925 /* Compute the accessibility of DECL in the class hierarchy
926 dominated by type. */
927 access = access_in_type (type, decl);
928 if (access == ak_public
929 || (access == ak_protected && protected_ok))
930 return 1;
932 if (!consider_local_p)
933 return 0;
935 /* Walk the hierarchy again, looking for a base class that allows
936 access. */
937 return dfs_walk_once_accessible (binfo, /*friends=*/true,
938 NULL, dfs_accessible_post, NULL)
939 != NULL_TREE;
942 struct lookup_field_info {
943 /* The type in which we're looking. */
944 tree type;
945 /* The name of the field for which we're looking. */
946 tree name;
947 /* If non-NULL, the current result of the lookup. */
948 tree rval;
949 /* The path to RVAL. */
950 tree rval_binfo;
951 /* If non-NULL, the lookup was ambiguous, and this is a list of the
952 candidates. */
953 tree ambiguous;
954 /* If nonzero, we are looking for types, not data members. */
955 int want_type;
956 /* If something went wrong, a message indicating what. */
957 const char *errstr;
960 /* Within the scope of a template class, you can refer to the to the
961 current specialization with the name of the template itself. For
962 example:
964 template <typename T> struct S { S* sp; }
966 Returns nonzero if DECL is such a declaration in a class TYPE. */
968 static int
969 template_self_reference_p (tree type, tree decl)
971 return (CLASSTYPE_USE_TEMPLATE (type)
972 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
973 && TREE_CODE (decl) == TYPE_DECL
974 && DECL_ARTIFICIAL (decl)
975 && DECL_NAME (decl) == constructor_name (type));
978 /* Nonzero for a class member means that it is shared between all objects
979 of that class.
981 [class.member.lookup]:If the resulting set of declarations are not all
982 from sub-objects of the same type, or the set has a nonstatic member
983 and includes members from distinct sub-objects, there is an ambiguity
984 and the program is ill-formed.
986 This function checks that T contains no nonstatic members. */
989 shared_member_p (tree t)
991 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
992 || TREE_CODE (t) == CONST_DECL)
993 return 1;
994 if (is_overloaded_fn (t))
996 for (; t; t = OVL_NEXT (t))
998 tree fn = OVL_CURRENT (t);
999 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1000 return 0;
1002 return 1;
1004 return 0;
1007 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1008 found as a base class and sub-object of the object denoted by
1009 BINFO. */
1011 static int
1012 is_subobject_of_p (tree parent, tree binfo)
1014 tree probe;
1016 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1018 if (probe == binfo)
1019 return 1;
1020 if (BINFO_VIRTUAL_P (probe))
1021 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1022 != NULL_TREE);
1024 return 0;
1027 /* DATA is really a struct lookup_field_info. Look for a field with
1028 the name indicated there in BINFO. If this function returns a
1029 non-NULL value it is the result of the lookup. Called from
1030 lookup_field via breadth_first_search. */
1032 static tree
1033 lookup_field_r (tree binfo, void *data)
1035 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1036 tree type = BINFO_TYPE (binfo);
1037 tree nval = NULL_TREE;
1039 /* If this is a dependent base, don't look in it. */
1040 if (BINFO_DEPENDENT_BASE_P (binfo))
1041 return NULL_TREE;
1043 /* If this base class is hidden by the best-known value so far, we
1044 don't need to look. */
1045 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1046 && !BINFO_VIRTUAL_P (binfo))
1047 return dfs_skip_bases;
1049 /* First, look for a function. There can't be a function and a data
1050 member with the same name, and if there's a function and a type
1051 with the same name, the type is hidden by the function. */
1052 if (!lfi->want_type)
1054 int idx = lookup_fnfields_1 (type, lfi->name);
1055 if (idx >= 0)
1056 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1059 if (!nval)
1060 /* Look for a data member or type. */
1061 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1063 /* If there is no declaration with the indicated name in this type,
1064 then there's nothing to do. */
1065 if (!nval)
1066 goto done;
1068 /* If we're looking up a type (as with an elaborated type specifier)
1069 we ignore all non-types we find. */
1070 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1071 && !DECL_CLASS_TEMPLATE_P (nval))
1073 if (lfi->name == TYPE_IDENTIFIER (type))
1075 /* If the aggregate has no user defined constructors, we allow
1076 it to have fields with the same name as the enclosing type.
1077 If we are looking for that name, find the corresponding
1078 TYPE_DECL. */
1079 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1080 if (DECL_NAME (nval) == lfi->name
1081 && TREE_CODE (nval) == TYPE_DECL)
1082 break;
1084 else
1085 nval = NULL_TREE;
1086 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1088 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1089 lfi->name);
1090 if (e != NULL)
1091 nval = TYPE_MAIN_DECL (e->type);
1092 else
1093 goto done;
1097 /* You must name a template base class with a template-id. */
1098 if (!same_type_p (type, lfi->type)
1099 && template_self_reference_p (type, nval))
1100 goto done;
1102 /* If the lookup already found a match, and the new value doesn't
1103 hide the old one, we might have an ambiguity. */
1104 if (lfi->rval_binfo
1105 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1108 if (nval == lfi->rval && shared_member_p (nval))
1109 /* The two things are really the same. */
1111 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1112 /* The previous value hides the new one. */
1114 else
1116 /* We have a real ambiguity. We keep a chain of all the
1117 candidates. */
1118 if (!lfi->ambiguous && lfi->rval)
1120 /* This is the first time we noticed an ambiguity. Add
1121 what we previously thought was a reasonable candidate
1122 to the list. */
1123 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1124 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1127 /* Add the new value. */
1128 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1129 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1130 lfi->errstr = "request for member %qD is ambiguous";
1133 else
1135 lfi->rval = nval;
1136 lfi->rval_binfo = binfo;
1139 done:
1140 /* Don't look for constructors or destructors in base classes. */
1141 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1142 return dfs_skip_bases;
1143 return NULL_TREE;
1146 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1147 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1148 FUNCTIONS, and OPTYPE respectively. */
1150 tree
1151 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1153 tree baselink;
1155 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1156 || TREE_CODE (functions) == TEMPLATE_DECL
1157 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1158 || TREE_CODE (functions) == OVERLOAD);
1159 gcc_assert (!optype || TYPE_P (optype));
1160 gcc_assert (TREE_TYPE (functions));
1162 baselink = make_node (BASELINK);
1163 TREE_TYPE (baselink) = TREE_TYPE (functions);
1164 BASELINK_BINFO (baselink) = binfo;
1165 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1166 BASELINK_FUNCTIONS (baselink) = functions;
1167 BASELINK_OPTYPE (baselink) = optype;
1169 return baselink;
1172 /* Look for a member named NAME in an inheritance lattice dominated by
1173 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1174 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1175 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1176 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1177 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1178 TREE_VALUEs are the list of ambiguous candidates.
1180 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1182 If nothing can be found return NULL_TREE and do not issue an error. */
1184 tree
1185 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1187 tree rval, rval_binfo = NULL_TREE;
1188 tree type = NULL_TREE, basetype_path = NULL_TREE;
1189 struct lookup_field_info lfi;
1191 /* rval_binfo is the binfo associated with the found member, note,
1192 this can be set with useful information, even when rval is not
1193 set, because it must deal with ALL members, not just non-function
1194 members. It is used for ambiguity checking and the hidden
1195 checks. Whereas rval is only set if a proper (not hidden)
1196 non-function member is found. */
1198 const char *errstr = 0;
1200 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1202 if (TREE_CODE (xbasetype) == TREE_BINFO)
1204 type = BINFO_TYPE (xbasetype);
1205 basetype_path = xbasetype;
1207 else
1209 gcc_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)));
1210 type = xbasetype;
1211 xbasetype = NULL_TREE;
1214 type = complete_type (type);
1215 if (!basetype_path)
1216 basetype_path = TYPE_BINFO (type);
1218 if (!basetype_path)
1219 return NULL_TREE;
1221 #ifdef GATHER_STATISTICS
1222 n_calls_lookup_field++;
1223 #endif /* GATHER_STATISTICS */
1225 memset (&lfi, 0, sizeof (lfi));
1226 lfi.type = type;
1227 lfi.name = name;
1228 lfi.want_type = want_type;
1229 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1230 rval = lfi.rval;
1231 rval_binfo = lfi.rval_binfo;
1232 if (rval_binfo)
1233 type = BINFO_TYPE (rval_binfo);
1234 errstr = lfi.errstr;
1236 /* If we are not interested in ambiguities, don't report them;
1237 just return NULL_TREE. */
1238 if (!protect && lfi.ambiguous)
1239 return NULL_TREE;
1241 if (protect == 2)
1243 if (lfi.ambiguous)
1244 return lfi.ambiguous;
1245 else
1246 protect = 0;
1249 /* [class.access]
1251 In the case of overloaded function names, access control is
1252 applied to the function selected by overloaded resolution. */
1253 if (rval && protect && !is_overloaded_fn (rval))
1254 perform_or_defer_access_check (basetype_path, rval);
1256 if (errstr && protect)
1258 error (errstr, name, type);
1259 if (lfi.ambiguous)
1260 print_candidates (lfi.ambiguous);
1261 rval = error_mark_node;
1264 if (rval && is_overloaded_fn (rval))
1265 rval = build_baselink (rval_binfo, basetype_path, rval,
1266 (IDENTIFIER_TYPENAME_P (name)
1267 ? TREE_TYPE (name): NULL_TREE));
1268 return rval;
1271 /* Like lookup_member, except that if we find a function member we
1272 return NULL_TREE. */
1274 tree
1275 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1277 tree rval = lookup_member (xbasetype, name, protect, want_type);
1279 /* Ignore functions, but propagate the ambiguity list. */
1280 if (!error_operand_p (rval)
1281 && (rval && BASELINK_P (rval)))
1282 return NULL_TREE;
1284 return rval;
1287 /* Like lookup_member, except that if we find a non-function member we
1288 return NULL_TREE. */
1290 tree
1291 lookup_fnfields (tree xbasetype, tree name, int protect)
1293 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1295 /* Ignore non-functions, but propagate the ambiguity list. */
1296 if (!error_operand_p (rval)
1297 && (rval && !BASELINK_P (rval)))
1298 return NULL_TREE;
1300 return rval;
1303 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1304 corresponding to "operator TYPE ()", or -1 if there is no such
1305 operator. Only CLASS_TYPE itself is searched; this routine does
1306 not scan the base classes of CLASS_TYPE. */
1308 static int
1309 lookup_conversion_operator (tree class_type, tree type)
1311 int tpl_slot = -1;
1313 if (TYPE_HAS_CONVERSION (class_type))
1315 int i;
1316 tree fn;
1317 VEC(tree) *methods = CLASSTYPE_METHOD_VEC (class_type);
1319 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1320 VEC_iterate (tree, methods, i, fn); ++i)
1322 /* All the conversion operators come near the beginning of
1323 the class. Therefore, if FN is not a conversion
1324 operator, there is no matching conversion operator in
1325 CLASS_TYPE. */
1326 fn = OVL_CURRENT (fn);
1327 if (!DECL_CONV_FN_P (fn))
1328 break;
1330 if (TREE_CODE (fn) == TEMPLATE_DECL)
1331 /* All the templated conversion functions are on the same
1332 slot, so remember it. */
1333 tpl_slot = i;
1334 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1335 return i;
1339 return tpl_slot;
1342 /* TYPE is a class type. Return the index of the fields within
1343 the method vector with name NAME, or -1 is no such field exists. */
1346 lookup_fnfields_1 (tree type, tree name)
1348 VEC(tree) *method_vec;
1349 tree fn;
1350 tree tmp;
1351 size_t i;
1353 if (!CLASS_TYPE_P (type))
1354 return -1;
1356 if (COMPLETE_TYPE_P (type))
1358 if ((name == ctor_identifier
1359 || name == base_ctor_identifier
1360 || name == complete_ctor_identifier))
1362 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1363 lazily_declare_fn (sfk_constructor, type);
1364 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1365 lazily_declare_fn (sfk_copy_constructor, type);
1367 else if (name == ansi_assopname(NOP_EXPR)
1368 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1369 lazily_declare_fn (sfk_assignment_operator, type);
1370 else if ((name == dtor_identifier
1371 || name == base_dtor_identifier
1372 || name == complete_dtor_identifier
1373 || name == deleting_dtor_identifier)
1374 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1375 lazily_declare_fn (sfk_destructor, type);
1378 method_vec = CLASSTYPE_METHOD_VEC (type);
1379 if (!method_vec)
1380 return -1;
1382 #ifdef GATHER_STATISTICS
1383 n_calls_lookup_fnfields_1++;
1384 #endif /* GATHER_STATISTICS */
1386 /* Constructors are first... */
1387 if (name == ctor_identifier)
1389 fn = CLASSTYPE_CONSTRUCTORS (type);
1390 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1392 /* and destructors are second. */
1393 if (name == dtor_identifier)
1395 fn = CLASSTYPE_DESTRUCTORS (type);
1396 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1398 if (IDENTIFIER_TYPENAME_P (name))
1399 return lookup_conversion_operator (type, TREE_TYPE (name));
1401 /* Skip the conversion operators. */
1402 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1403 VEC_iterate (tree, method_vec, i, fn);
1404 ++i)
1405 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1406 break;
1408 /* If the type is complete, use binary search. */
1409 if (COMPLETE_TYPE_P (type))
1411 int lo;
1412 int hi;
1414 lo = i;
1415 hi = VEC_length (tree, method_vec);
1416 while (lo < hi)
1418 i = (lo + hi) / 2;
1420 #ifdef GATHER_STATISTICS
1421 n_outer_fields_searched++;
1422 #endif /* GATHER_STATISTICS */
1424 tmp = VEC_index (tree, method_vec, i);
1425 tmp = DECL_NAME (OVL_CURRENT (tmp));
1426 if (tmp > name)
1427 hi = i;
1428 else if (tmp < name)
1429 lo = i + 1;
1430 else
1431 return i;
1434 else
1435 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1437 #ifdef GATHER_STATISTICS
1438 n_outer_fields_searched++;
1439 #endif /* GATHER_STATISTICS */
1440 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1441 return i;
1444 return -1;
1447 /* Like lookup_fnfields_1, except that the name is extracted from
1448 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1451 class_method_index_for_fn (tree class_type, tree function)
1453 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1454 || DECL_FUNCTION_TEMPLATE_P (function));
1456 return lookup_fnfields_1 (class_type,
1457 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1458 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1459 DECL_NAME (function));
1463 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1464 the class or namespace used to qualify the name. CONTEXT_CLASS is
1465 the class corresponding to the object in which DECL will be used.
1466 Return a possibly modified version of DECL that takes into account
1467 the CONTEXT_CLASS.
1469 In particular, consider an expression like `B::m' in the context of
1470 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1471 then the most derived class indicated by the BASELINK_BINFO will be
1472 `B', not `D'. This function makes that adjustment. */
1474 tree
1475 adjust_result_of_qualified_name_lookup (tree decl,
1476 tree qualifying_scope,
1477 tree context_class)
1479 if (context_class && CLASS_TYPE_P (qualifying_scope)
1480 && DERIVED_FROM_P (qualifying_scope, context_class)
1481 && BASELINK_P (decl))
1483 tree base;
1485 gcc_assert (CLASS_TYPE_P (context_class));
1487 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1488 Because we do not yet know which function will be chosen by
1489 overload resolution, we cannot yet check either accessibility
1490 or ambiguity -- in either case, the choice of a static member
1491 function might make the usage valid. */
1492 base = lookup_base (context_class, qualifying_scope,
1493 ba_unique | ba_quiet, NULL);
1494 if (base)
1496 BASELINK_ACCESS_BINFO (decl) = base;
1497 BASELINK_BINFO (decl)
1498 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1499 ba_unique | ba_quiet,
1500 NULL);
1504 return decl;
1508 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1509 PRE_FN is called in preorder, while POST_FN is called in postorder.
1510 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1511 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1512 that value is immediately returned and the walk is terminated. One
1513 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1514 POST_FN are passed the binfo to examine and the caller's DATA
1515 value. All paths are walked, thus virtual and morally virtual
1516 binfos can be multiply walked. */
1518 tree
1519 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1520 tree (*post_fn) (tree, void *), void *data)
1522 tree rval;
1523 unsigned ix;
1524 tree base_binfo;
1526 /* Call the pre-order walking function. */
1527 if (pre_fn)
1529 rval = pre_fn (binfo, data);
1530 if (rval)
1532 if (rval == dfs_skip_bases)
1533 goto skip_bases;
1534 return rval;
1538 /* Find the next child binfo to walk. */
1539 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1541 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1542 if (rval)
1543 return rval;
1546 skip_bases:
1547 /* Call the post-order walking function. */
1548 if (post_fn)
1550 rval = post_fn (binfo, data);
1551 gcc_assert (rval != dfs_skip_bases);
1552 return rval;
1555 return NULL_TREE;
1558 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1559 that binfos are walked at most once. */
1561 static tree
1562 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1563 tree (*post_fn) (tree, void *), void *data)
1565 tree rval;
1566 unsigned ix;
1567 tree base_binfo;
1569 /* Call the pre-order walking function. */
1570 if (pre_fn)
1572 rval = pre_fn (binfo, data);
1573 if (rval)
1575 if (rval == dfs_skip_bases)
1576 goto skip_bases;
1578 return rval;
1582 /* Find the next child binfo to walk. */
1583 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1585 if (BINFO_VIRTUAL_P (base_binfo))
1587 if (BINFO_MARKED (base_binfo))
1588 continue;
1589 BINFO_MARKED (base_binfo) = 1;
1592 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1593 if (rval)
1594 return rval;
1597 skip_bases:
1598 /* Call the post-order walking function. */
1599 if (post_fn)
1601 rval = post_fn (binfo, data);
1602 gcc_assert (rval != dfs_skip_bases);
1603 return rval;
1606 return NULL_TREE;
1609 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1610 BINFO. */
1612 static void
1613 dfs_unmark_r (tree binfo)
1615 unsigned ix;
1616 tree base_binfo;
1618 /* Process the basetypes. */
1619 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1621 if (BINFO_VIRTUAL_P (base_binfo))
1623 if (!BINFO_MARKED (base_binfo))
1624 continue;
1625 BINFO_MARKED (base_binfo) = 0;
1627 /* Only walk, if it can contain more virtual bases. */
1628 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1629 dfs_unmark_r (base_binfo);
1633 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1634 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1635 For diamond shaped hierarchies we must mark the virtual bases, to
1636 avoid multiple walks. */
1638 tree
1639 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1640 tree (*post_fn) (tree, void *), void *data)
1642 static int active = 0; /* We must not be called recursively. */
1643 tree rval;
1645 gcc_assert (pre_fn || post_fn);
1646 gcc_assert (!active);
1647 active++;
1649 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1650 /* We are not diamond shaped, and therefore cannot encounter the
1651 same binfo twice. */
1652 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1653 else
1655 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1656 if (!BINFO_INHERITANCE_CHAIN (binfo))
1658 /* We are at the top of the hierarchy, and can use the
1659 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1660 bases. */
1661 VEC (tree) *vbases;
1662 unsigned ix;
1663 tree base_binfo;
1665 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1666 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1667 BINFO_MARKED (base_binfo) = 0;
1669 else
1670 dfs_unmark_r (binfo);
1673 active--;
1675 return rval;
1678 /* Worker function for dfs_walk_once_accessible. Behaves like
1679 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1680 access given by the current context should be considered, (b) ONCE
1681 indicates whether bases should be marked during traversal. */
1683 static tree
1684 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1685 tree (*pre_fn) (tree, void *),
1686 tree (*post_fn) (tree, void *), void *data)
1688 tree rval = NULL_TREE;
1689 unsigned ix;
1690 tree base_binfo;
1692 /* Call the pre-order walking function. */
1693 if (pre_fn)
1695 rval = pre_fn (binfo, data);
1696 if (rval)
1698 if (rval == dfs_skip_bases)
1699 goto skip_bases;
1701 return rval;
1705 /* Find the next child binfo to walk. */
1706 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1708 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1710 if (mark && BINFO_MARKED (base_binfo))
1711 continue;
1713 /* If the base is inherited via private or protected
1714 inheritance, then we can't see it, unless we are a friend of
1715 the current binfo. */
1716 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1718 tree scope;
1719 if (!friends_p)
1720 continue;
1721 scope = current_scope ();
1722 if (!scope
1723 || TREE_CODE (scope) == NAMESPACE_DECL
1724 || !is_friend (BINFO_TYPE (binfo), scope))
1725 continue;
1728 if (mark)
1729 BINFO_MARKED (base_binfo) = 1;
1731 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1732 pre_fn, post_fn, data);
1733 if (rval)
1734 return rval;
1737 skip_bases:
1738 /* Call the post-order walking function. */
1739 if (post_fn)
1741 rval = post_fn (binfo, data);
1742 gcc_assert (rval != dfs_skip_bases);
1743 return rval;
1746 return NULL_TREE;
1749 /* Like dfs_walk_once except that only accessible bases are walked.
1750 FRIENDS_P indicates whether friendship of the local context
1751 should be considered when determining accessibility. */
1753 static tree
1754 dfs_walk_once_accessible (tree binfo, bool friends_p,
1755 tree (*pre_fn) (tree, void *),
1756 tree (*post_fn) (tree, void *), void *data)
1758 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1759 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1760 pre_fn, post_fn, data);
1762 if (diamond_shaped)
1764 if (!BINFO_INHERITANCE_CHAIN (binfo))
1766 /* We are at the top of the hierarchy, and can use the
1767 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1768 bases. */
1769 VEC (tree) *vbases;
1770 unsigned ix;
1771 tree base_binfo;
1773 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1774 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1775 BINFO_MARKED (base_binfo) = 0;
1777 else
1778 dfs_unmark_r (binfo);
1780 return rval;
1783 /* Check that virtual overrider OVERRIDER is acceptable for base function
1784 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1786 static int
1787 check_final_overrider (tree overrider, tree basefn)
1789 tree over_type = TREE_TYPE (overrider);
1790 tree base_type = TREE_TYPE (basefn);
1791 tree over_return = TREE_TYPE (over_type);
1792 tree base_return = TREE_TYPE (base_type);
1793 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1794 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1795 int fail = 0;
1797 if (DECL_INVALID_OVERRIDER_P (overrider))
1798 return 0;
1800 if (same_type_p (base_return, over_return))
1801 /* OK */;
1802 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1803 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1804 && POINTER_TYPE_P (base_return)))
1806 /* Potentially covariant. */
1807 unsigned base_quals, over_quals;
1809 fail = !POINTER_TYPE_P (base_return);
1810 if (!fail)
1812 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1814 base_return = TREE_TYPE (base_return);
1815 over_return = TREE_TYPE (over_return);
1817 base_quals = cp_type_quals (base_return);
1818 over_quals = cp_type_quals (over_return);
1820 if ((base_quals & over_quals) != over_quals)
1821 fail = 1;
1823 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1825 tree binfo = lookup_base (over_return, base_return,
1826 ba_check | ba_quiet, NULL);
1828 if (!binfo)
1829 fail = 1;
1831 else if (!pedantic
1832 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1833 /* GNU extension, allow trivial pointer conversions such as
1834 converting to void *, or qualification conversion. */
1836 /* can_convert will permit user defined conversion from a
1837 (reference to) class type. We must reject them. */
1838 over_return = non_reference (TREE_TYPE (over_type));
1839 if (CLASS_TYPE_P (over_return))
1840 fail = 2;
1841 else
1843 cp_warning_at ("deprecated covariant return type for %q#D",
1844 overrider);
1845 cp_warning_at (" overriding %q#D", basefn);
1848 else
1849 fail = 2;
1851 else
1852 fail = 2;
1853 if (!fail)
1854 /* OK */;
1855 else
1857 if (fail == 1)
1859 cp_error_at ("invalid covariant return type for %q#D", overrider);
1860 cp_error_at (" overriding %q#D", basefn);
1862 else
1864 cp_error_at ("conflicting return type specified for %q#D",
1865 overrider);
1866 cp_error_at (" overriding %q#D", basefn);
1868 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1869 return 0;
1872 /* Check throw specifier is at least as strict. */
1873 if (!comp_except_specs (base_throw, over_throw, 0))
1875 cp_error_at ("looser throw specifier for %q#F", overrider);
1876 cp_error_at (" overriding %q#F", basefn);
1877 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1878 return 0;
1881 return 1;
1884 /* Given a class TYPE, and a function decl FNDECL, look for
1885 virtual functions in TYPE's hierarchy which FNDECL overrides.
1886 We do not look in TYPE itself, only its bases.
1888 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1889 find that it overrides anything.
1891 We check that every function which is overridden, is correctly
1892 overridden. */
1895 look_for_overrides (tree type, tree fndecl)
1897 tree binfo = TYPE_BINFO (type);
1898 tree base_binfo;
1899 int ix;
1900 int found = 0;
1902 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1904 tree basetype = BINFO_TYPE (base_binfo);
1906 if (TYPE_POLYMORPHIC_P (basetype))
1907 found += look_for_overrides_r (basetype, fndecl);
1909 return found;
1912 /* Look in TYPE for virtual functions with the same signature as
1913 FNDECL. */
1915 tree
1916 look_for_overrides_here (tree type, tree fndecl)
1918 int ix;
1920 /* If there are no methods in TYPE (meaning that only implicitly
1921 declared methods will ever be provided for TYPE), then there are
1922 no virtual functions. */
1923 if (!CLASSTYPE_METHOD_VEC (type))
1924 return NULL_TREE;
1926 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1927 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1928 else
1929 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1930 if (ix >= 0)
1932 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1934 for (; fns; fns = OVL_NEXT (fns))
1936 tree fn = OVL_CURRENT (fns);
1938 if (!DECL_VIRTUAL_P (fn))
1939 /* Not a virtual. */;
1940 else if (DECL_CONTEXT (fn) != type)
1941 /* Introduced with a using declaration. */;
1942 else if (DECL_STATIC_FUNCTION_P (fndecl))
1944 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1945 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1946 if (compparms (TREE_CHAIN (btypes), dtypes))
1947 return fn;
1949 else if (same_signature_p (fndecl, fn))
1950 return fn;
1953 return NULL_TREE;
1956 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1957 TYPE itself and its bases. */
1959 static int
1960 look_for_overrides_r (tree type, tree fndecl)
1962 tree fn = look_for_overrides_here (type, fndecl);
1963 if (fn)
1965 if (DECL_STATIC_FUNCTION_P (fndecl))
1967 /* A static member function cannot match an inherited
1968 virtual member function. */
1969 cp_error_at ("%q#D cannot be declared", fndecl);
1970 cp_error_at (" since %q#D declared in base class", fn);
1972 else
1974 /* It's definitely virtual, even if not explicitly set. */
1975 DECL_VIRTUAL_P (fndecl) = 1;
1976 check_final_overrider (fndecl, fn);
1978 return 1;
1981 /* We failed to find one declared in this class. Look in its bases. */
1982 return look_for_overrides (type, fndecl);
1985 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1987 static tree
1988 dfs_get_pure_virtuals (tree binfo, void *data)
1990 tree type = (tree) data;
1992 /* We're not interested in primary base classes; the derived class
1993 of which they are a primary base will contain the information we
1994 need. */
1995 if (!BINFO_PRIMARY_P (binfo))
1997 tree virtuals;
1999 for (virtuals = BINFO_VIRTUALS (binfo);
2000 virtuals;
2001 virtuals = TREE_CHAIN (virtuals))
2002 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2003 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (type),
2004 BV_FN (virtuals));
2007 return NULL_TREE;
2010 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2012 void
2013 get_pure_virtuals (tree type)
2015 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2016 is going to be overridden. */
2017 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2018 /* Now, run through all the bases which are not primary bases, and
2019 collect the pure virtual functions. We look at the vtable in
2020 each class to determine what pure virtual functions are present.
2021 (A primary base is not interesting because the derived class of
2022 which it is a primary base will contain vtable entries for the
2023 pure virtuals in the base class. */
2024 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2027 /* Debug info for C++ classes can get very large; try to avoid
2028 emitting it everywhere.
2030 Note that this optimization wins even when the target supports
2031 BINCL (if only slightly), and reduces the amount of work for the
2032 linker. */
2034 void
2035 maybe_suppress_debug_info (tree t)
2037 if (write_symbols == NO_DEBUG)
2038 return;
2040 /* We might have set this earlier in cp_finish_decl. */
2041 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2043 /* If we already know how we're handling this class, handle debug info
2044 the same way. */
2045 if (CLASSTYPE_INTERFACE_KNOWN (t))
2047 if (CLASSTYPE_INTERFACE_ONLY (t))
2048 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2049 /* else don't set it. */
2051 /* If the class has a vtable, write out the debug info along with
2052 the vtable. */
2053 else if (TYPE_CONTAINS_VPTR_P (t))
2054 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2056 /* Otherwise, just emit the debug info normally. */
2059 /* Note that we want debugging information for a base class of a class
2060 whose vtable is being emitted. Normally, this would happen because
2061 calling the constructor for a derived class implies calling the
2062 constructors for all bases, which involve initializing the
2063 appropriate vptr with the vtable for the base class; but in the
2064 presence of optimization, this initialization may be optimized
2065 away, so we tell finish_vtable_vardecl that we want the debugging
2066 information anyway. */
2068 static tree
2069 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2071 tree t = BINFO_TYPE (binfo);
2073 if (CLASSTYPE_DEBUG_REQUESTED (t))
2074 return dfs_skip_bases;
2076 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2078 return NULL_TREE;
2081 /* Write out the debugging information for TYPE, whose vtable is being
2082 emitted. Also walk through our bases and note that we want to
2083 write out information for them. This avoids the problem of not
2084 writing any debug info for intermediate basetypes whose
2085 constructors, and thus the references to their vtables, and thus
2086 the vtables themselves, were optimized away. */
2088 void
2089 note_debug_info_needed (tree type)
2091 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2093 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2094 rest_of_type_compilation (type, toplevel_bindings_p ());
2097 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2100 void
2101 print_search_statistics (void)
2103 #ifdef GATHER_STATISTICS
2104 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2105 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2106 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2107 n_outer_fields_searched, n_calls_lookup_fnfields);
2108 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2109 #else /* GATHER_STATISTICS */
2110 fprintf (stderr, "no search statistics\n");
2111 #endif /* GATHER_STATISTICS */
2114 void
2115 reinit_search_statistics (void)
2117 #ifdef GATHER_STATISTICS
2118 n_fields_searched = 0;
2119 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2120 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2121 n_calls_get_base_type = 0;
2122 n_outer_fields_searched = 0;
2123 n_contexts_saved = 0;
2124 #endif /* GATHER_STATISTICS */
2127 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2128 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2129 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2130 bases have been encountered already in the tree walk. PARENT_CONVS
2131 is the list of lists of conversion functions that could hide CONV
2132 and OTHER_CONVS is the list of lists of conversion functions that
2133 could hide or be hidden by CONV, should virtualness be involved in
2134 the hierarchy. Merely checking the conversion op's name is not
2135 enough because two conversion operators to the same type can have
2136 different names. Return nonzero if we are visible. */
2138 static int
2139 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2140 tree to_type, tree parent_convs, tree other_convs)
2142 tree level, probe;
2144 /* See if we are hidden by a parent conversion. */
2145 for (level = parent_convs; level; level = TREE_CHAIN (level))
2146 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2147 if (same_type_p (to_type, TREE_TYPE (probe)))
2148 return 0;
2150 if (virtual_depth || virtualness)
2152 /* In a virtual hierarchy, we could be hidden, or could hide a
2153 conversion function on the other_convs list. */
2154 for (level = other_convs; level; level = TREE_CHAIN (level))
2156 int we_hide_them;
2157 int they_hide_us;
2158 tree *prev, other;
2160 if (!(virtual_depth || TREE_STATIC (level)))
2161 /* Neither is morally virtual, so cannot hide each other. */
2162 continue;
2164 if (!TREE_VALUE (level))
2165 /* They evaporated away already. */
2166 continue;
2168 they_hide_us = (virtual_depth
2169 && original_binfo (binfo, TREE_PURPOSE (level)));
2170 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2171 && original_binfo (TREE_PURPOSE (level), binfo));
2173 if (!(we_hide_them || they_hide_us))
2174 /* Neither is within the other, so no hiding can occur. */
2175 continue;
2177 for (prev = &TREE_VALUE (level), other = *prev; other;)
2179 if (same_type_p (to_type, TREE_TYPE (other)))
2181 if (they_hide_us)
2182 /* We are hidden. */
2183 return 0;
2185 if (we_hide_them)
2187 /* We hide the other one. */
2188 other = TREE_CHAIN (other);
2189 *prev = other;
2190 continue;
2193 prev = &TREE_CHAIN (other);
2194 other = *prev;
2198 return 1;
2201 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2202 of conversion functions, the first slot will be for the current
2203 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2204 of conversion functions from children of the current binfo,
2205 concatenated with conversions from elsewhere in the hierarchy --
2206 that list begins with OTHER_CONVS. Return a single list of lists
2207 containing only conversions from the current binfo and its
2208 children. */
2210 static tree
2211 split_conversions (tree my_convs, tree parent_convs,
2212 tree child_convs, tree other_convs)
2214 tree t;
2215 tree prev;
2217 /* Remove the original other_convs portion from child_convs. */
2218 for (prev = NULL, t = child_convs;
2219 t != other_convs; prev = t, t = TREE_CHAIN (t))
2220 continue;
2222 if (prev)
2223 TREE_CHAIN (prev) = NULL_TREE;
2224 else
2225 child_convs = NULL_TREE;
2227 /* Attach the child convs to any we had at this level. */
2228 if (my_convs)
2230 my_convs = parent_convs;
2231 TREE_CHAIN (my_convs) = child_convs;
2233 else
2234 my_convs = child_convs;
2236 return my_convs;
2239 /* Worker for lookup_conversions. Lookup conversion functions in
2240 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2241 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2242 encountered virtual bases already in the tree walk. PARENT_CONVS &
2243 PARENT_TPL_CONVS are lists of list of conversions within parent
2244 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2245 elsewhere in the tree. Return the conversions found within this
2246 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2247 encountered virtualness. We keep template and non-template
2248 conversions separate, to avoid unnecessary type comparisons.
2250 The located conversion functions are held in lists of lists. The
2251 TREE_VALUE of the outer list is the list of conversion functions
2252 found in a particular binfo. The TREE_PURPOSE of both the outer
2253 and inner lists is the binfo at which those conversions were
2254 found. TREE_STATIC is set for those lists within of morally
2255 virtual binfos. The TREE_VALUE of the inner list is the conversion
2256 function or overload itself. The TREE_TYPE of each inner list node
2257 is the converted-to type. */
2259 static int
2260 lookup_conversions_r (tree binfo,
2261 int virtual_depth, int virtualness,
2262 tree parent_convs, tree parent_tpl_convs,
2263 tree other_convs, tree other_tpl_convs,
2264 tree *convs, tree *tpl_convs)
2266 int my_virtualness = 0;
2267 tree my_convs = NULL_TREE;
2268 tree my_tpl_convs = NULL_TREE;
2269 tree child_convs = NULL_TREE;
2270 tree child_tpl_convs = NULL_TREE;
2271 unsigned i;
2272 tree base_binfo;
2273 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2274 tree conv;
2276 /* If we have no conversion operators, then don't look. */
2277 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2279 *convs = *tpl_convs = NULL_TREE;
2281 return 0;
2284 if (BINFO_VIRTUAL_P (binfo))
2285 virtual_depth++;
2287 /* First, locate the unhidden ones at this level. */
2288 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2289 VEC_iterate (tree, method_vec, i, conv);
2290 ++i)
2292 tree cur = OVL_CURRENT (conv);
2294 if (!DECL_CONV_FN_P (cur))
2295 break;
2297 if (TREE_CODE (cur) == TEMPLATE_DECL)
2299 /* Only template conversions can be overloaded, and we must
2300 flatten them out and check each one individually. */
2301 tree tpls;
2303 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2305 tree tpl = OVL_CURRENT (tpls);
2306 tree type = DECL_CONV_FN_TYPE (tpl);
2308 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2309 type, parent_tpl_convs, other_tpl_convs))
2311 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2312 TREE_TYPE (my_tpl_convs) = type;
2313 if (virtual_depth)
2315 TREE_STATIC (my_tpl_convs) = 1;
2316 my_virtualness = 1;
2321 else
2323 tree name = DECL_NAME (cur);
2325 if (!IDENTIFIER_MARKED (name))
2327 tree type = DECL_CONV_FN_TYPE (cur);
2329 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2330 type, parent_convs, other_convs))
2332 my_convs = tree_cons (binfo, conv, my_convs);
2333 TREE_TYPE (my_convs) = type;
2334 if (virtual_depth)
2336 TREE_STATIC (my_convs) = 1;
2337 my_virtualness = 1;
2339 IDENTIFIER_MARKED (name) = 1;
2345 if (my_convs)
2347 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2348 if (virtual_depth)
2349 TREE_STATIC (parent_convs) = 1;
2352 if (my_tpl_convs)
2354 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2355 if (virtual_depth)
2356 TREE_STATIC (parent_convs) = 1;
2359 child_convs = other_convs;
2360 child_tpl_convs = other_tpl_convs;
2362 /* Now iterate over each base, looking for more conversions. */
2363 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2365 tree base_convs, base_tpl_convs;
2366 unsigned base_virtualness;
2368 base_virtualness = lookup_conversions_r (base_binfo,
2369 virtual_depth, virtualness,
2370 parent_convs, parent_tpl_convs,
2371 child_convs, child_tpl_convs,
2372 &base_convs, &base_tpl_convs);
2373 if (base_virtualness)
2374 my_virtualness = virtualness = 1;
2375 child_convs = chainon (base_convs, child_convs);
2376 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2379 /* Unmark the conversions found at this level */
2380 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2381 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2383 *convs = split_conversions (my_convs, parent_convs,
2384 child_convs, other_convs);
2385 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2386 child_tpl_convs, other_tpl_convs);
2388 return my_virtualness;
2391 /* Return a TREE_LIST containing all the non-hidden user-defined
2392 conversion functions for TYPE (and its base-classes). The
2393 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2394 function. The TREE_PURPOSE is the BINFO from which the conversion
2395 functions in this node were selected. This function is effectively
2396 performing a set of member lookups as lookup_fnfield does, but
2397 using the type being converted to as the unique key, rather than the
2398 field name. */
2400 tree
2401 lookup_conversions (tree type)
2403 tree convs, tpl_convs;
2404 tree list = NULL_TREE;
2406 complete_type (type);
2407 if (!TYPE_BINFO (type))
2408 return NULL_TREE;
2410 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2411 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2412 &convs, &tpl_convs);
2414 /* Flatten the list-of-lists */
2415 for (; convs; convs = TREE_CHAIN (convs))
2417 tree probe, next;
2419 for (probe = TREE_VALUE (convs); probe; probe = next)
2421 next = TREE_CHAIN (probe);
2423 TREE_CHAIN (probe) = list;
2424 list = probe;
2428 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2430 tree probe, next;
2432 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2434 next = TREE_CHAIN (probe);
2436 TREE_CHAIN (probe) = list;
2437 list = probe;
2441 return list;
2444 /* Returns the binfo of the first direct or indirect virtual base derived
2445 from BINFO, or NULL if binfo is not via virtual. */
2447 tree
2448 binfo_from_vbase (tree binfo)
2450 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2452 if (BINFO_VIRTUAL_P (binfo))
2453 return binfo;
2455 return NULL_TREE;
2458 /* Returns the binfo of the first direct or indirect virtual base derived
2459 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2460 via virtual. */
2462 tree
2463 binfo_via_virtual (tree binfo, tree limit)
2465 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2466 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2467 return NULL_TREE;
2469 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2470 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2472 if (BINFO_VIRTUAL_P (binfo))
2473 return binfo;
2475 return NULL_TREE;
2478 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2479 Find the equivalent binfo within whatever graph HERE is located.
2480 This is the inverse of original_binfo. */
2482 tree
2483 copied_binfo (tree binfo, tree here)
2485 tree result = NULL_TREE;
2487 if (BINFO_VIRTUAL_P (binfo))
2489 tree t;
2491 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2492 t = BINFO_INHERITANCE_CHAIN (t))
2493 continue;
2495 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2497 else if (BINFO_INHERITANCE_CHAIN (binfo))
2499 tree cbinfo;
2500 tree base_binfo;
2501 int ix;
2503 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2504 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2505 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2507 result = base_binfo;
2508 break;
2511 else
2513 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2514 result = here;
2517 gcc_assert (result);
2518 return result;
2521 tree
2522 binfo_for_vbase (tree base, tree t)
2524 unsigned ix;
2525 tree binfo;
2526 VEC (tree) *vbases;
2528 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2529 VEC_iterate (tree, vbases, ix, binfo); ix++)
2530 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2531 return binfo;
2532 return NULL;
2535 /* BINFO is some base binfo of HERE, within some other
2536 hierarchy. Return the equivalent binfo, but in the hierarchy
2537 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2538 is not a base binfo of HERE, returns NULL_TREE. */
2540 tree
2541 original_binfo (tree binfo, tree here)
2543 tree result = NULL;
2545 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2546 result = here;
2547 else if (BINFO_VIRTUAL_P (binfo))
2548 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2549 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2550 : NULL_TREE);
2551 else if (BINFO_INHERITANCE_CHAIN (binfo))
2553 tree base_binfos;
2555 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2556 if (base_binfos)
2558 int ix;
2559 tree base_binfo;
2561 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2562 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2563 BINFO_TYPE (binfo)))
2565 result = base_binfo;
2566 break;
2571 return result;