Merge from the pain train
[official-gcc.git] / gcc / cfg.c
blob6737003e60cfe6dd5a7053757e16a2ad991be300
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "alloc-pool.h"
64 #include "timevar.h"
65 #include "ggc.h"
67 /* The obstack on which the flow graph components are allocated. */
69 struct bitmap_obstack reg_obstack;
71 /* Number of basic blocks in the current function. */
73 int n_basic_blocks;
75 /* First free basic block number. */
77 int last_basic_block;
79 /* Number of edges in the current function. */
81 int n_edges;
83 /* The basic block array. */
85 varray_type basic_block_info;
87 /* The special entry and exit blocks. */
88 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
90 /* Memory alloc pool for bb member rbi. */
91 alloc_pool rbi_pool;
93 void debug_flow_info (void);
94 static void free_edge (edge);
96 /* Indicate the presence of the profile. */
97 enum profile_status profile_status;
99 /* Called once at initialization time. */
101 void
102 init_flow (void)
104 n_edges = 0;
106 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
107 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
108 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
109 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
110 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
111 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
114 /* Helper function for remove_edge and clear_edges. Frees edge structure
115 without actually unlinking it from the pred/succ lists. */
117 static void
118 free_edge (edge e ATTRIBUTE_UNUSED)
120 n_edges--;
121 ggc_free (e);
124 /* Free the memory associated with the edge structures. */
126 void
127 clear_edges (void)
129 basic_block bb;
130 edge e;
131 edge_iterator ei;
133 FOR_EACH_BB (bb)
135 FOR_EACH_EDGE (e, ei, bb->succs)
136 free_edge (e);
137 VEC_truncate (edge, bb->succs, 0);
138 VEC_truncate (edge, bb->preds, 0);
141 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
142 free_edge (e);
143 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
144 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
146 gcc_assert (!n_edges);
149 /* Allocate memory for basic_block. */
151 basic_block
152 alloc_block (void)
154 basic_block bb;
155 bb = ggc_alloc_cleared (sizeof (*bb));
156 return bb;
159 /* Create memory pool for rbi_pool. */
161 void
162 alloc_rbi_pool (void)
164 rbi_pool = create_alloc_pool ("rbi pool",
165 sizeof (struct reorder_block_def),
166 n_basic_blocks + 2);
169 /* Free rbi_pool. */
171 void
172 free_rbi_pool (void)
174 free_alloc_pool (rbi_pool);
177 /* Initialize rbi (the structure containing data used by basic block
178 duplication and reordering) for the given basic block. */
180 void
181 initialize_bb_rbi (basic_block bb)
183 gcc_assert (!bb->rbi);
184 bb->rbi = pool_alloc (rbi_pool);
185 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
188 /* Link block B to chain after AFTER. */
189 void
190 link_block (basic_block b, basic_block after)
192 b->next_bb = after->next_bb;
193 b->prev_bb = after;
194 after->next_bb = b;
195 b->next_bb->prev_bb = b;
198 /* Unlink block B from chain. */
199 void
200 unlink_block (basic_block b)
202 b->next_bb->prev_bb = b->prev_bb;
203 b->prev_bb->next_bb = b->next_bb;
204 b->prev_bb = NULL;
205 b->next_bb = NULL;
208 /* Sequentially order blocks and compact the arrays. */
209 void
210 compact_blocks (void)
212 int i;
213 basic_block bb;
215 i = 0;
216 FOR_EACH_BB (bb)
218 BASIC_BLOCK (i) = bb;
219 bb->index = i;
220 i++;
223 gcc_assert (i == n_basic_blocks);
225 for (; i < last_basic_block; i++)
226 BASIC_BLOCK (i) = NULL;
228 last_basic_block = n_basic_blocks;
231 /* Remove block B from the basic block array. */
233 void
234 expunge_block (basic_block b)
236 unlink_block (b);
237 BASIC_BLOCK (b->index) = NULL;
238 n_basic_blocks--;
239 /* We should be able to ggc_free here, but we are not.
240 The dead SSA_NAMES are left pointing to dead statements that are pointing
241 to dead basic blocks making garbage collector to die.
242 We should be able to release all dead SSA_NAMES and at the same time we should
243 clear out BB pointer of dead statements consistently. */
246 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
247 created edge. Use this only if you are sure that this edge can't
248 possibly already exist. */
250 edge
251 unchecked_make_edge (basic_block src, basic_block dst, int flags)
253 edge e;
254 e = ggc_alloc_cleared (sizeof (*e));
255 n_edges++;
257 VEC_safe_push (edge, src->succs, e);
258 VEC_safe_push (edge, dst->preds, e);
260 e->src = src;
261 e->dest = dst;
262 e->flags = flags;
263 e->dest_idx = EDGE_COUNT (dst->preds) - 1;
265 execute_on_growing_pred (e);
267 return e;
270 /* Create an edge connecting SRC and DST with FLAGS optionally using
271 edge cache CACHE. Return the new edge, NULL if already exist. */
273 edge
274 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
276 if (edge_cache == NULL
277 || src == ENTRY_BLOCK_PTR
278 || dst == EXIT_BLOCK_PTR)
279 return make_edge (src, dst, flags);
281 /* Does the requested edge already exist? */
282 if (! TEST_BIT (edge_cache[src->index], dst->index))
284 /* The edge does not exist. Create one and update the
285 cache. */
286 SET_BIT (edge_cache[src->index], dst->index);
287 return unchecked_make_edge (src, dst, flags);
290 /* At this point, we know that the requested edge exists. Adjust
291 flags if necessary. */
292 if (flags)
294 edge e = find_edge (src, dst);
295 e->flags |= flags;
298 return NULL;
301 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
302 created edge or NULL if already exist. */
304 edge
305 make_edge (basic_block src, basic_block dest, int flags)
307 edge e = find_edge (src, dest);
309 /* Make sure we don't add duplicate edges. */
310 if (e)
312 e->flags |= flags;
313 return NULL;
316 return unchecked_make_edge (src, dest, flags);
319 /* Create an edge connecting SRC to DEST and set probability by knowing
320 that it is the single edge leaving SRC. */
322 edge
323 make_single_succ_edge (basic_block src, basic_block dest, int flags)
325 edge e = make_edge (src, dest, flags);
327 e->probability = REG_BR_PROB_BASE;
328 e->count = src->count;
329 return e;
332 /* This function will remove an edge from the flow graph. */
334 void
335 remove_edge (edge e)
337 edge tmp;
338 basic_block src, dest;
339 unsigned int dest_idx;
340 bool found = false;
341 edge_iterator ei;
343 execute_on_shrinking_pred (e);
345 src = e->src;
346 dest = e->dest;
347 dest_idx = e->dest_idx;
349 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
351 if (tmp == e)
353 VEC_unordered_remove (edge, src->succs, ei.index);
354 found = true;
355 break;
357 else
358 ei_next (&ei);
361 gcc_assert (found);
363 VEC_unordered_remove (edge, dest->preds, dest_idx);
365 /* If we removed an edge in the middle of the edge vector, we need
366 to update dest_idx of the edge that moved into the "hole". */
367 if (dest_idx < EDGE_COUNT (dest->preds))
368 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
370 free_edge (e);
373 /* Redirect an edge's successor from one block to another. */
375 void
376 redirect_edge_succ (edge e, basic_block new_succ)
378 basic_block dest = e->dest;
379 unsigned int dest_idx = e->dest_idx;
381 execute_on_shrinking_pred (e);
383 VEC_unordered_remove (edge, dest->preds, dest_idx);
385 /* If we removed an edge in the middle of the edge vector, we need
386 to update dest_idx of the edge that moved into the "hole". */
387 if (dest_idx < EDGE_COUNT (dest->preds))
388 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
390 /* Reconnect the edge to the new successor block. */
391 VEC_safe_push (edge, new_succ->preds, e);
392 e->dest = new_succ;
393 e->dest_idx = EDGE_COUNT (new_succ->preds) - 1;
394 execute_on_growing_pred (e);
397 /* Like previous but avoid possible duplicate edge. */
399 edge
400 redirect_edge_succ_nodup (edge e, basic_block new_succ)
402 edge s;
404 s = find_edge (e->src, new_succ);
405 if (s && s != e)
407 s->flags |= e->flags;
408 s->probability += e->probability;
409 if (s->probability > REG_BR_PROB_BASE)
410 s->probability = REG_BR_PROB_BASE;
411 s->count += e->count;
412 remove_edge (e);
413 e = s;
415 else
416 redirect_edge_succ (e, new_succ);
418 return e;
421 /* Redirect an edge's predecessor from one block to another. */
423 void
424 redirect_edge_pred (edge e, basic_block new_pred)
426 edge tmp;
427 edge_iterator ei;
428 bool found = false;
430 /* Disconnect the edge from the old predecessor block. */
431 for (ei = ei_start (e->src->succs); (tmp = ei_safe_edge (ei)); )
433 if (tmp == e)
435 VEC_unordered_remove (edge, e->src->succs, ei.index);
436 found = true;
437 break;
439 else
440 ei_next (&ei);
443 gcc_assert (found);
445 /* Reconnect the edge to the new predecessor block. */
446 VEC_safe_push (edge, new_pred->succs, e);
447 e->src = new_pred;
450 /* Clear all basic block flags, with the exception of partitioning. */
451 void
452 clear_bb_flags (void)
454 basic_block bb;
456 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
457 bb->flags = BB_PARTITION (bb);
460 /* Check the consistency of profile information. We can't do that
461 in verify_flow_info, as the counts may get invalid for incompletely
462 solved graphs, later eliminating of conditionals or roundoff errors.
463 It is still practical to have them reported for debugging of simple
464 testcases. */
465 void
466 check_bb_profile (basic_block bb, FILE * file)
468 edge e;
469 int sum = 0;
470 gcov_type lsum;
471 edge_iterator ei;
473 if (profile_status == PROFILE_ABSENT)
474 return;
476 if (bb != EXIT_BLOCK_PTR)
478 FOR_EACH_EDGE (e, ei, bb->succs)
479 sum += e->probability;
480 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
481 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
482 sum * 100.0 / REG_BR_PROB_BASE);
483 lsum = 0;
484 FOR_EACH_EDGE (e, ei, bb->succs)
485 lsum += e->count;
486 if (EDGE_COUNT (bb->succs)
487 && (lsum - bb->count > 100 || lsum - bb->count < -100))
488 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
489 (int) lsum, (int) bb->count);
491 if (bb != ENTRY_BLOCK_PTR)
493 sum = 0;
494 FOR_EACH_EDGE (e, ei, bb->preds)
495 sum += EDGE_FREQUENCY (e);
496 if (abs (sum - bb->frequency) > 100)
497 fprintf (file,
498 "Invalid sum of incoming frequencies %i, should be %i\n",
499 sum, bb->frequency);
500 lsum = 0;
501 FOR_EACH_EDGE (e, ei, bb->preds)
502 lsum += e->count;
503 if (lsum - bb->count > 100 || lsum - bb->count < -100)
504 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
505 (int) lsum, (int) bb->count);
509 void
510 dump_flow_info (FILE *file)
512 int i;
513 basic_block bb;
515 /* There are no pseudo registers after reload. Don't dump them. */
516 if (reg_n_info && !reload_completed)
518 int max_regno = max_reg_num ();
519 fprintf (file, "%d registers.\n", max_regno);
520 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
521 if (REG_N_REFS (i))
523 enum reg_class class, altclass;
525 fprintf (file, "\nRegister %d used %d times across %d insns",
526 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
527 if (REG_BASIC_BLOCK (i) >= 0)
528 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
529 if (REG_N_SETS (i))
530 fprintf (file, "; set %d time%s", REG_N_SETS (i),
531 (REG_N_SETS (i) == 1) ? "" : "s");
532 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
533 fprintf (file, "; user var");
534 if (REG_N_DEATHS (i) != 1)
535 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
536 if (REG_N_CALLS_CROSSED (i) == 1)
537 fprintf (file, "; crosses 1 call");
538 else if (REG_N_CALLS_CROSSED (i))
539 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
540 if (regno_reg_rtx[i] != NULL
541 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
542 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
544 class = reg_preferred_class (i);
545 altclass = reg_alternate_class (i);
546 if (class != GENERAL_REGS || altclass != ALL_REGS)
548 if (altclass == ALL_REGS || class == ALL_REGS)
549 fprintf (file, "; pref %s", reg_class_names[(int) class]);
550 else if (altclass == NO_REGS)
551 fprintf (file, "; %s or none", reg_class_names[(int) class]);
552 else
553 fprintf (file, "; pref %s, else %s",
554 reg_class_names[(int) class],
555 reg_class_names[(int) altclass]);
558 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
559 fprintf (file, "; pointer");
560 fprintf (file, ".\n");
564 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
565 FOR_EACH_BB (bb)
567 edge e;
568 edge_iterator ei;
570 fprintf (file, "\nBasic block %d ", bb->index);
571 fprintf (file, "prev %d, next %d, ",
572 bb->prev_bb->index, bb->next_bb->index);
573 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
574 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
575 fprintf (file, ", freq %i", bb->frequency);
576 if (maybe_hot_bb_p (bb))
577 fprintf (file, ", maybe hot");
578 if (probably_never_executed_bb_p (bb))
579 fprintf (file, ", probably never executed");
580 fprintf (file, ".\n");
582 fprintf (file, "Predecessors: ");
583 FOR_EACH_EDGE (e, ei, bb->preds)
584 dump_edge_info (file, e, 0);
586 fprintf (file, "\nSuccessors: ");
587 FOR_EACH_EDGE (e, ei, bb->succs)
588 dump_edge_info (file, e, 1);
590 if (bb->global_live_at_start)
592 fprintf (file, "\nRegisters live at start:");
593 dump_regset (bb->global_live_at_start, file);
596 if (bb->global_live_at_end)
598 fprintf (file, "\nRegisters live at end:");
599 dump_regset (bb->global_live_at_end, file);
602 putc ('\n', file);
603 check_bb_profile (bb, file);
606 putc ('\n', file);
609 void
610 debug_flow_info (void)
612 dump_flow_info (stderr);
615 void
616 dump_edge_info (FILE *file, edge e, int do_succ)
618 basic_block side = (do_succ ? e->dest : e->src);
620 if (side == ENTRY_BLOCK_PTR)
621 fputs (" ENTRY", file);
622 else if (side == EXIT_BLOCK_PTR)
623 fputs (" EXIT", file);
624 else
625 fprintf (file, " %d", side->index);
627 if (e->probability)
628 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
630 if (e->count)
632 fprintf (file, " count:");
633 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
636 if (e->flags)
638 static const char * const bitnames[] = {
639 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
640 "can_fallthru", "irreducible", "sibcall", "loop_exit",
641 "true", "false", "exec"
643 int comma = 0;
644 int i, flags = e->flags;
646 fputs (" (", file);
647 for (i = 0; flags; i++)
648 if (flags & (1 << i))
650 flags &= ~(1 << i);
652 if (comma)
653 fputc (',', file);
654 if (i < (int) ARRAY_SIZE (bitnames))
655 fputs (bitnames[i], file);
656 else
657 fprintf (file, "%d", i);
658 comma = 1;
661 fputc (')', file);
665 /* Simple routines to easily allocate AUX fields of basic blocks. */
667 static struct obstack block_aux_obstack;
668 static void *first_block_aux_obj = 0;
669 static struct obstack edge_aux_obstack;
670 static void *first_edge_aux_obj = 0;
672 /* Allocate a memory block of SIZE as BB->aux. The obstack must
673 be first initialized by alloc_aux_for_blocks. */
675 inline void
676 alloc_aux_for_block (basic_block bb, int size)
678 /* Verify that aux field is clear. */
679 gcc_assert (!bb->aux && first_block_aux_obj);
680 bb->aux = obstack_alloc (&block_aux_obstack, size);
681 memset (bb->aux, 0, size);
684 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
685 alloc_aux_for_block for each basic block. */
687 void
688 alloc_aux_for_blocks (int size)
690 static int initialized;
692 if (!initialized)
694 gcc_obstack_init (&block_aux_obstack);
695 initialized = 1;
697 else
698 /* Check whether AUX data are still allocated. */
699 gcc_assert (!first_block_aux_obj);
701 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
702 if (size)
704 basic_block bb;
706 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
707 alloc_aux_for_block (bb, size);
711 /* Clear AUX pointers of all blocks. */
713 void
714 clear_aux_for_blocks (void)
716 basic_block bb;
718 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
719 bb->aux = NULL;
722 /* Free data allocated in block_aux_obstack and clear AUX pointers
723 of all blocks. */
725 void
726 free_aux_for_blocks (void)
728 gcc_assert (first_block_aux_obj);
729 obstack_free (&block_aux_obstack, first_block_aux_obj);
730 first_block_aux_obj = NULL;
732 clear_aux_for_blocks ();
735 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
736 be first initialized by alloc_aux_for_edges. */
738 inline void
739 alloc_aux_for_edge (edge e, int size)
741 /* Verify that aux field is clear. */
742 gcc_assert (!e->aux && first_edge_aux_obj);
743 e->aux = obstack_alloc (&edge_aux_obstack, size);
744 memset (e->aux, 0, size);
747 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
748 alloc_aux_for_edge for each basic edge. */
750 void
751 alloc_aux_for_edges (int size)
753 static int initialized;
755 if (!initialized)
757 gcc_obstack_init (&edge_aux_obstack);
758 initialized = 1;
760 else
761 /* Check whether AUX data are still allocated. */
762 gcc_assert (!first_edge_aux_obj);
764 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
765 if (size)
767 basic_block bb;
769 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
771 edge e;
772 edge_iterator ei;
774 FOR_EACH_EDGE (e, ei, bb->succs)
775 alloc_aux_for_edge (e, size);
780 /* Clear AUX pointers of all edges. */
782 void
783 clear_aux_for_edges (void)
785 basic_block bb;
786 edge e;
788 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
790 edge_iterator ei;
791 FOR_EACH_EDGE (e, ei, bb->succs)
792 e->aux = NULL;
796 /* Free data allocated in edge_aux_obstack and clear AUX pointers
797 of all edges. */
799 void
800 free_aux_for_edges (void)
802 gcc_assert (first_edge_aux_obj);
803 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
804 first_edge_aux_obj = NULL;
806 clear_aux_for_edges ();
809 void
810 debug_bb (basic_block bb)
812 dump_bb (bb, stderr, 0);
815 basic_block
816 debug_bb_n (int n)
818 basic_block bb = BASIC_BLOCK (n);
819 dump_bb (bb, stderr, 0);
820 return bb;
823 /* Dumps cfg related information about basic block BB to FILE. */
825 static void
826 dump_cfg_bb_info (FILE *file, basic_block bb)
828 unsigned i;
829 edge_iterator ei;
830 bool first = true;
831 static const char * const bb_bitnames[] =
833 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
835 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
836 edge e;
838 fprintf (file, "Basic block %d", bb->index);
839 for (i = 0; i < n_bitnames; i++)
840 if (bb->flags & (1 << i))
842 if (first)
843 fprintf (file, " (");
844 else
845 fprintf (file, ", ");
846 first = false;
847 fprintf (file, bb_bitnames[i]);
849 if (!first)
850 fprintf (file, ")");
851 fprintf (file, "\n");
853 fprintf (file, "Predecessors: ");
854 FOR_EACH_EDGE (e, ei, bb->preds)
855 dump_edge_info (file, e, 0);
857 fprintf (file, "\nSuccessors: ");
858 FOR_EACH_EDGE (e, ei, bb->succs)
859 dump_edge_info (file, e, 1);
860 fprintf (file, "\n\n");
863 /* Dumps a brief description of cfg to FILE. */
865 void
866 brief_dump_cfg (FILE *file)
868 basic_block bb;
870 FOR_EACH_BB (bb)
872 dump_cfg_bb_info (file, bb);
876 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
877 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
878 redirected to destination of TAKEN_EDGE.
880 This function may leave the profile inconsistent in the case TAKEN_EDGE
881 frequency or count is believed to be lower than FREQUENCY or COUNT
882 respectively. */
883 void
884 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
885 gcov_type count, edge taken_edge)
887 edge c;
888 int prob;
889 edge_iterator ei;
891 bb->count -= count;
892 if (bb->count < 0)
893 bb->count = 0;
895 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
896 Watch for overflows. */
897 if (bb->frequency)
898 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
899 else
900 prob = 0;
901 if (prob > taken_edge->probability)
903 if (dump_file)
904 fprintf (dump_file, "Jump threading proved probability of edge "
905 "%i->%i too small (it is %i, should be %i).\n",
906 taken_edge->src->index, taken_edge->dest->index,
907 taken_edge->probability, prob);
908 prob = taken_edge->probability;
911 /* Now rescale the probabilities. */
912 taken_edge->probability -= prob;
913 prob = REG_BR_PROB_BASE - prob;
914 bb->frequency -= edge_frequency;
915 if (bb->frequency < 0)
916 bb->frequency = 0;
917 if (prob <= 0)
919 if (dump_file)
920 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
921 "frequency of block should end up being 0, it is %i\n",
922 bb->index, bb->frequency);
923 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
924 ei = ei_start (bb->succs);
925 ei_next (&ei);
926 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
927 c->probability = 0;
929 else if (prob != REG_BR_PROB_BASE)
931 int scale = REG_BR_PROB_BASE / prob;
933 FOR_EACH_EDGE (c, ei, bb->succs)
934 c->probability *= scale;
937 if (bb != taken_edge->src)
938 abort ();
939 taken_edge->count -= count;
940 if (taken_edge->count < 0)
941 taken_edge->count = 0;