Merge from the pain train
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob7ac6e268b2d9e7e2d0376d592d0f0ec565752393
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Case; use Sem_Case;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Smem; use Sem_Smem;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uintp; use Uintp;
71 with Urealp; use Urealp;
73 package body Sem_Ch3 is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Build_Derived_Type
80 (N : Node_Id;
81 Parent_Type : Entity_Id;
82 Derived_Type : Entity_Id;
83 Is_Completion : Boolean;
84 Derive_Subps : Boolean := True);
85 -- Create and decorate a Derived_Type given the Parent_Type entity.
86 -- N is the N_Full_Type_Declaration node containing the derived type
87 -- definition. Parent_Type is the entity for the parent type in the derived
88 -- type definition and Derived_Type the actual derived type. Is_Completion
89 -- must be set to False if Derived_Type is the N_Defining_Identifier node
90 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
91 -- the completion of a private type declaration. If Is_Completion is
92 -- set to True, N is the completion of a private type declaration and
93 -- Derived_Type is different from the defining identifier inside N (i.e.
94 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
95 -- the parent subprograms should be derived. The only case where this
96 -- parameter is False is when Build_Derived_Type is recursively called to
97 -- process an implicit derived full type for a type derived from a private
98 -- type (in that case the subprograms must only be derived for the private
99 -- view of the type).
100 -- ??? These flags need a bit of re-examination and re-documentation:
101 -- ??? are they both necessary (both seem related to the recursion)?
103 procedure Build_Derived_Access_Type
104 (N : Node_Id;
105 Parent_Type : Entity_Id;
106 Derived_Type : Entity_Id);
107 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
108 -- create an implicit base if the parent type is constrained or if the
109 -- subtype indication has a constraint.
111 procedure Build_Derived_Array_Type
112 (N : Node_Id;
113 Parent_Type : Entity_Id;
114 Derived_Type : Entity_Id);
115 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
116 -- create an implicit base if the parent type is constrained or if the
117 -- subtype indication has a constraint.
119 procedure Build_Derived_Concurrent_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
124 -- tected type, inherit entries and protected subprograms, check legality
125 -- of discriminant constraints if any.
127 procedure Build_Derived_Enumeration_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
132 -- type, we must create a new list of literals. Types derived from
133 -- Character and Wide_Character are special-cased.
135 procedure Build_Derived_Numeric_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
140 -- an anonymous base type, and propagate constraint to subtype if needed.
142 procedure Build_Derived_Private_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id;
146 Is_Completion : Boolean;
147 Derive_Subps : Boolean := True);
148 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
149 -- because the parent may or may not have a completion, and the derivation
150 -- may itself be a completion.
152 procedure Build_Derived_Record_Type
153 (N : Node_Id;
154 Parent_Type : Entity_Id;
155 Derived_Type : Entity_Id;
156 Derive_Subps : Boolean := True);
157 -- Subsidiary procedure to Build_Derived_Type and
158 -- Analyze_Private_Extension_Declaration used for tagged and untagged
159 -- record types. All parameters are as in Build_Derived_Type except that
160 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
161 -- N_Private_Extension_Declaration node. See the definition of this routine
162 -- for much more info. Derive_Subps indicates whether subprograms should
163 -- be derived from the parent type. The only case where Derive_Subps is
164 -- False is for an implicit derived full type for a type derived from a
165 -- private type (see Build_Derived_Type).
167 function Inherit_Components
168 (N : Node_Id;
169 Parent_Base : Entity_Id;
170 Derived_Base : Entity_Id;
171 Is_Tagged : Boolean;
172 Inherit_Discr : Boolean;
173 Discs : Elist_Id) return Elist_Id;
174 -- Called from Build_Derived_Record_Type to inherit the components of
175 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
176 -- For more information on derived types and component inheritance please
177 -- consult the comment above the body of Build_Derived_Record_Type.
179 -- N is the original derived type declaration.
181 -- Is_Tagged is set if we are dealing with tagged types.
183 -- If Inherit_Discr is set, Derived_Base inherits its discriminants
184 -- from Parent_Base, otherwise no discriminants are inherited.
186 -- Discs gives the list of constraints that apply to Parent_Base in the
187 -- derived type declaration. If Discs is set to No_Elist, then we have
188 -- the following situation:
190 -- type Parent (D1..Dn : ..) is [tagged] record ...;
191 -- type Derived is new Parent [with ...];
193 -- which gets treated as
195 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
197 -- For untagged types the returned value is an association list. The list
198 -- starts from the association (Parent_Base => Derived_Base), and then it
199 -- contains a sequence of the associations of the form
201 -- (Old_Component => New_Component),
203 -- where Old_Component is the Entity_Id of a component in Parent_Base
204 -- and New_Component is the Entity_Id of the corresponding component
205 -- in Derived_Base. For untagged records, this association list is
206 -- needed when copying the record declaration for the derived base.
207 -- In the tagged case the value returned is irrelevant.
209 procedure Build_Discriminal (Discrim : Entity_Id);
210 -- Create the discriminal corresponding to discriminant Discrim, that is
211 -- the parameter corresponding to Discrim to be used in initialization
212 -- procedures for the type where Discrim is a discriminant. Discriminals
213 -- are not used during semantic analysis, and are not fully defined
214 -- entities until expansion. Thus they are not given a scope until
215 -- initialization procedures are built.
217 function Build_Discriminant_Constraints
218 (T : Entity_Id;
219 Def : Node_Id;
220 Derived_Def : Boolean := False) return Elist_Id;
221 -- Validate discriminant constraints, and return the list of the
222 -- constraints in order of discriminant declarations. T is the
223 -- discriminated unconstrained type. Def is the N_Subtype_Indication
224 -- node where the discriminants constraints for T are specified.
225 -- Derived_Def is True if we are building the discriminant constraints
226 -- in a derived type definition of the form "type D (...) is new T (xxx)".
227 -- In this case T is the parent type and Def is the constraint "(xxx)" on
228 -- T and this routine sets the Corresponding_Discriminant field of the
229 -- discriminants in the derived type D to point to the corresponding
230 -- discriminants in the parent type T.
232 procedure Build_Discriminated_Subtype
233 (T : Entity_Id;
234 Def_Id : Entity_Id;
235 Elist : Elist_Id;
236 Related_Nod : Node_Id;
237 For_Access : Boolean := False);
238 -- Subsidiary procedure to Constrain_Discriminated_Type and to
239 -- Process_Incomplete_Dependents. Given
241 -- T (a possibly discriminated base type)
242 -- Def_Id (a very partially built subtype for T),
244 -- the call completes Def_Id to be the appropriate E_*_Subtype.
246 -- The Elist is the list of discriminant constraints if any (it is set to
247 -- No_Elist if T is not a discriminated type, and to an empty list if
248 -- T has discriminants but there are no discriminant constraints). The
249 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
250 -- The For_Access says whether or not this subtype is really constraining
251 -- an access type. That is its sole purpose is the designated type of an
252 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
253 -- is built to avoid freezing T when the access subtype is frozen.
255 function Build_Scalar_Bound
256 (Bound : Node_Id;
257 Par_T : Entity_Id;
258 Der_T : Entity_Id) return Node_Id;
259 -- The bounds of a derived scalar type are conversions of the bounds of
260 -- the parent type. Optimize the representation if the bounds are literals.
261 -- Needs a more complete spec--what are the parameters exactly, and what
262 -- exactly is the returned value, and how is Bound affected???
264 procedure Build_Underlying_Full_View
265 (N : Node_Id;
266 Typ : Entity_Id;
267 Par : Entity_Id);
268 -- If the completion of a private type is itself derived from a private
269 -- type, or if the full view of a private subtype is itself private, the
270 -- back-end has no way to compute the actual size of this type. We build
271 -- an internal subtype declaration of the proper parent type to convey
272 -- this information. This extra mechanism is needed because a full
273 -- view cannot itself have a full view (it would get clobbered during
274 -- view exchanges).
276 procedure Check_Access_Discriminant_Requires_Limited
277 (D : Node_Id;
278 Loc : Node_Id);
279 -- Check the restriction that the type to which an access discriminant
280 -- belongs must be a concurrent type or a descendant of a type with
281 -- the reserved word 'limited' in its declaration.
283 procedure Check_Delta_Expression (E : Node_Id);
284 -- Check that the expression represented by E is suitable for use
285 -- as a delta expression, i.e. it is of real type and is static.
287 procedure Check_Digits_Expression (E : Node_Id);
288 -- Check that the expression represented by E is suitable for use as
289 -- a digits expression, i.e. it is of integer type, positive and static.
291 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
292 -- Validate the initialization of an object declaration. T is the
293 -- required type, and Exp is the initialization expression.
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If T is the full declaration of an incomplete or private type, check
300 -- the conformance of the discriminants, otherwise process them. Prev
301 -- is the entity of the partial declaration, if any.
303 procedure Check_Real_Bound (Bound : Node_Id);
304 -- Check given bound for being of real type and static. If not, post an
305 -- appropriate message, and rewrite the bound with the real literal zero.
307 procedure Constant_Redeclaration
308 (Id : Entity_Id;
309 N : Node_Id;
310 T : out Entity_Id);
311 -- Various checks on legality of full declaration of deferred constant.
312 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
313 -- node. The caller has not yet set any attributes of this entity.
315 procedure Convert_Scalar_Bounds
316 (N : Node_Id;
317 Parent_Type : Entity_Id;
318 Derived_Type : Entity_Id;
319 Loc : Source_Ptr);
320 -- For derived scalar types, convert the bounds in the type definition
321 -- to the derived type, and complete their analysis. Given a constraint
322 -- of the form:
323 -- .. new T range Lo .. Hi;
324 -- Lo and Hi are analyzed and resolved with T'Base, the parent_type.
325 -- The bounds of the derived type (the anonymous base) are copies of
326 -- Lo and Hi. Finally, the bounds of the derived subtype are conversions
327 -- of those bounds to the derived_type, so that their typing is
328 -- consistent.
330 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
331 -- Copies attributes from array base type T2 to array base type T1.
332 -- Copies only attributes that apply to base types, but not subtypes.
334 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
335 -- Copies attributes from array subtype T2 to array subtype T1. Copies
336 -- attributes that apply to both subtypes and base types.
338 procedure Create_Constrained_Components
339 (Subt : Entity_Id;
340 Decl_Node : Node_Id;
341 Typ : Entity_Id;
342 Constraints : Elist_Id);
343 -- Build the list of entities for a constrained discriminated record
344 -- subtype. If a component depends on a discriminant, replace its subtype
345 -- using the discriminant values in the discriminant constraint.
346 -- Subt is the defining identifier for the subtype whose list of
347 -- constrained entities we will create. Decl_Node is the type declaration
348 -- node where we will attach all the itypes created. Typ is the base
349 -- discriminated type for the subtype Subt. Constraints is the list of
350 -- discriminant constraints for Typ.
352 function Constrain_Component_Type
353 (Compon_Type : Entity_Id;
354 Constrained_Typ : Entity_Id;
355 Related_Node : Node_Id;
356 Typ : Entity_Id;
357 Constraints : Elist_Id) return Entity_Id;
358 -- Given a discriminated base type Typ, a list of discriminant constraint
359 -- Constraints for Typ and the type of a component of Typ, Compon_Type,
360 -- create and return the type corresponding to Compon_type where all
361 -- discriminant references are replaced with the corresponding
362 -- constraint. If no discriminant references occur in Compon_Typ then
363 -- return it as is. Constrained_Typ is the final constrained subtype to
364 -- which the constrained Compon_Type belongs. Related_Node is the node
365 -- where we will attach all the itypes created.
367 procedure Constrain_Access
368 (Def_Id : in out Entity_Id;
369 S : Node_Id;
370 Related_Nod : Node_Id);
371 -- Apply a list of constraints to an access type. If Def_Id is empty,
372 -- it is an anonymous type created for a subtype indication. In that
373 -- case it is created in the procedure and attached to Related_Nod.
375 procedure Constrain_Array
376 (Def_Id : in out Entity_Id;
377 SI : Node_Id;
378 Related_Nod : Node_Id;
379 Related_Id : Entity_Id;
380 Suffix : Character);
381 -- Apply a list of index constraints to an unconstrained array type. The
382 -- first parameter is the entity for the resulting subtype. A value of
383 -- Empty for Def_Id indicates that an implicit type must be created, but
384 -- creation is delayed (and must be done by this procedure) because other
385 -- subsidiary implicit types must be created first (which is why Def_Id
386 -- is an in/out parameter). The second parameter is a subtype indication
387 -- node for the constrained array to be created (e.g. something of the
388 -- form string (1 .. 10)). Related_Nod gives the place where this type
389 -- has to be inserted in the tree. The Related_Id and Suffix parameters
390 -- are used to build the associated Implicit type name.
392 procedure Constrain_Concurrent
393 (Def_Id : in out Entity_Id;
394 SI : Node_Id;
395 Related_Nod : Node_Id;
396 Related_Id : Entity_Id;
397 Suffix : Character);
398 -- Apply list of discriminant constraints to an unconstrained concurrent
399 -- type.
401 -- SI is the N_Subtype_Indication node containing the constraint and
402 -- the unconstrained type to constrain.
404 -- Def_Id is the entity for the resulting constrained subtype. A value
405 -- of Empty for Def_Id indicates that an implicit type must be created,
406 -- but creation is delayed (and must be done by this procedure) because
407 -- other subsidiary implicit types must be created first (which is why
408 -- Def_Id is an in/out parameter).
410 -- Related_Nod gives the place where this type has to be inserted
411 -- in the tree
413 -- The last two arguments are used to create its external name if needed.
415 function Constrain_Corresponding_Record
416 (Prot_Subt : Entity_Id;
417 Corr_Rec : Entity_Id;
418 Related_Nod : Node_Id;
419 Related_Id : Entity_Id) return Entity_Id;
420 -- When constraining a protected type or task type with discriminants,
421 -- constrain the corresponding record with the same discriminant values.
423 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
424 -- Constrain a decimal fixed point type with a digits constraint and/or a
425 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
427 procedure Constrain_Discriminated_Type
428 (Def_Id : Entity_Id;
429 S : Node_Id;
430 Related_Nod : Node_Id;
431 For_Access : Boolean := False);
432 -- Process discriminant constraints of composite type. Verify that values
433 -- have been provided for all discriminants, that the original type is
434 -- unconstrained, and that the types of the supplied expressions match
435 -- the discriminant types. The first three parameters are like in routine
436 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
437 -- of For_Access.
439 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
440 -- Constrain an enumeration type with a range constraint. This is
441 -- identical to Constrain_Integer, but for the Ekind of the
442 -- resulting subtype.
444 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
445 -- Constrain a floating point type with either a digits constraint
446 -- and/or a range constraint, building a E_Floating_Point_Subtype.
448 procedure Constrain_Index
449 (Index : Node_Id;
450 S : Node_Id;
451 Related_Nod : Node_Id;
452 Related_Id : Entity_Id;
453 Suffix : Character;
454 Suffix_Index : Nat);
455 -- Process an index constraint in a constrained array declaration. The
456 -- constraint can be a subtype name, or a range with or without an
457 -- explicit subtype mark. The index is the corresponding index of the
458 -- unconstrained array. The Related_Id and Suffix parameters are used to
459 -- build the associated Implicit type name.
461 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
462 -- Build subtype of a signed or modular integer type
464 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
465 -- Constrain an ordinary fixed point type with a range constraint, and
466 -- build an E_Ordinary_Fixed_Point_Subtype entity.
468 procedure Copy_And_Swap (Priv, Full : Entity_Id);
469 -- Copy the Priv entity into the entity of its full declaration
470 -- then swap the two entities in such a manner that the former private
471 -- type is now seen as a full type.
473 procedure Decimal_Fixed_Point_Type_Declaration
474 (T : Entity_Id;
475 Def : Node_Id);
476 -- Create a new decimal fixed point type, and apply the constraint to
477 -- obtain a subtype of this new type.
479 procedure Complete_Private_Subtype
480 (Priv : Entity_Id;
481 Full : Entity_Id;
482 Full_Base : Entity_Id;
483 Related_Nod : Node_Id);
484 -- Complete the implicit full view of a private subtype by setting
485 -- the appropriate semantic fields. If the full view of the parent is
486 -- a record type, build constrained components of subtype.
488 procedure Derived_Standard_Character
489 (N : Node_Id;
490 Parent_Type : Entity_Id;
491 Derived_Type : Entity_Id);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
496 (T : Entity_Id;
497 N : Node_Id;
498 Is_Completion : Boolean);
499 -- Process a derived type declaration. This routine will invoke
500 -- Build_Derived_Type to process the actual derived type definition.
501 -- Parameters N and Is_Completion have the same meaning as in
502 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
503 -- defined in the N_Full_Type_Declaration node N, that is T is the
504 -- derived type.
506 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
507 -- Given a subtype indication S (which is really an N_Subtype_Indication
508 -- node or a plain N_Identifier), find the type of the subtype mark.
510 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
511 -- Insert each literal in symbol table, as an overloadable identifier
512 -- Each enumeration type is mapped into a sequence of integers, and
513 -- each literal is defined as a constant with integer value. If any
514 -- of the literals are character literals, the type is a character
515 -- type, which means that strings are legal aggregates for arrays of
516 -- components of the type.
518 function Expand_To_Stored_Constraint
519 (Typ : Entity_Id;
520 Constraint : Elist_Id) return Elist_Id;
521 -- Given a Constraint (ie a list of expressions) on the discriminants of
522 -- Typ, expand it into a constraint on the stored discriminants and
523 -- return the new list of expressions constraining the stored
524 -- discriminants.
526 function Find_Type_Of_Object
527 (Obj_Def : Node_Id;
528 Related_Nod : Node_Id) return Entity_Id;
529 -- Get type entity for object referenced by Obj_Def, attaching the
530 -- implicit types generated to Related_Nod
532 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
533 -- Create a new float, and apply the constraint to obtain subtype of it
535 function Has_Range_Constraint (N : Node_Id) return Boolean;
536 -- Given an N_Subtype_Indication node N, return True if a range constraint
537 -- is present, either directly, or as part of a digits or delta constraint.
538 -- In addition, a digits constraint in the decimal case returns True, since
539 -- it establishes a default range if no explicit range is present.
541 function Is_Valid_Constraint_Kind
542 (T_Kind : Type_Kind;
543 Constraint_Kind : Node_Kind) return Boolean;
544 -- Returns True if it is legal to apply the given kind of constraint
545 -- to the given kind of type (index constraint to an array type,
546 -- for example).
548 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
549 -- Create new modular type. Verify that modulus is in bounds and is
550 -- a power of two (implementation restriction).
552 procedure New_Concatenation_Op (Typ : Entity_Id);
553 -- Create an abbreviated declaration for an operator in order to
554 -- materialize concatenation on array types.
556 procedure Ordinary_Fixed_Point_Type_Declaration
557 (T : Entity_Id;
558 Def : Node_Id);
559 -- Create a new ordinary fixed point type, and apply the constraint
560 -- to obtain subtype of it.
562 procedure Prepare_Private_Subtype_Completion
563 (Id : Entity_Id;
564 Related_Nod : Node_Id);
565 -- Id is a subtype of some private type. Creates the full declaration
566 -- associated with Id whenever possible, i.e. when the full declaration
567 -- of the base type is already known. Records each subtype into
568 -- Private_Dependents of the base type.
570 procedure Process_Incomplete_Dependents
571 (N : Node_Id;
572 Full_T : Entity_Id;
573 Inc_T : Entity_Id);
574 -- Process all entities that depend on an incomplete type. There include
575 -- subtypes, subprogram types that mention the incomplete type in their
576 -- profiles, and subprogram with access parameters that designate the
577 -- incomplete type.
579 -- Inc_T is the defining identifier of an incomplete type declaration, its
580 -- Ekind is E_Incomplete_Type.
582 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
584 -- Full_T is N's defining identifier.
586 -- Subtypes of incomplete types with discriminants are completed when the
587 -- parent type is. This is simpler than private subtypes, because they can
588 -- only appear in the same scope, and there is no need to exchange views.
589 -- Similarly, access_to_subprogram types may have a parameter or a return
590 -- type that is an incomplete type, and that must be replaced with the
591 -- full type.
593 -- If the full type is tagged, subprogram with access parameters that
594 -- designated the incomplete may be primitive operations of the full type,
595 -- and have to be processed accordingly.
597 procedure Process_Real_Range_Specification (Def : Node_Id);
598 -- Given the type definition for a real type, this procedure processes
599 -- and checks the real range specification of this type definition if
600 -- one is present. If errors are found, error messages are posted, and
601 -- the Real_Range_Specification of Def is reset to Empty.
603 procedure Record_Type_Declaration
604 (T : Entity_Id;
605 N : Node_Id;
606 Prev : Entity_Id);
607 -- Process a record type declaration (for both untagged and tagged
608 -- records). Parameters T and N are exactly like in procedure
609 -- Derived_Type_Declaration, except that no flag Is_Completion is
610 -- needed for this routine. If this is the completion of an incomplete
611 -- type declaration, Prev is the entity of the incomplete declaration,
612 -- used for cross-referencing. Otherwise Prev = T.
614 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
615 -- This routine is used to process the actual record type definition
616 -- (both for untagged and tagged records). Def is a record type
617 -- definition node. This procedure analyzes the components in this
618 -- record type definition. Prev_T is the entity for the enclosing record
619 -- type. It is provided so that its Has_Task flag can be set if any of
620 -- the component have Has_Task set. If the declaration is the completion
621 -- of an incomplete type declaration, Prev_T is the original incomplete
622 -- type, whose full view is the record type.
624 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
625 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
626 -- build a copy of the declaration tree of the parent, and we create
627 -- independently the list of components for the derived type. Semantic
628 -- information uses the component entities, but record representation
629 -- clauses are validated on the declaration tree. This procedure replaces
630 -- discriminants and components in the declaration with those that have
631 -- been created by Inherit_Components.
633 procedure Set_Fixed_Range
634 (E : Entity_Id;
635 Loc : Source_Ptr;
636 Lo : Ureal;
637 Hi : Ureal);
638 -- Build a range node with the given bounds and set it as the Scalar_Range
639 -- of the given fixed-point type entity. Loc is the source location used
640 -- for the constructed range. See body for further details.
642 procedure Set_Scalar_Range_For_Subtype
643 (Def_Id : Entity_Id;
644 R : Node_Id;
645 Subt : Entity_Id);
646 -- This routine is used to set the scalar range field for a subtype
647 -- given Def_Id, the entity for the subtype, and R, the range expression
648 -- for the scalar range. Subt provides the parent subtype to be used
649 -- to analyze, resolve, and check the given range.
651 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
652 -- Create a new signed integer entity, and apply the constraint to obtain
653 -- the required first named subtype of this type.
655 procedure Set_Stored_Constraint_From_Discriminant_Constraint
656 (E : Entity_Id);
657 -- E is some record type. This routine computes E's Stored_Constraint
658 -- from its Discriminant_Constraint.
660 -----------------------
661 -- Access_Definition --
662 -----------------------
664 function Access_Definition
665 (Related_Nod : Node_Id;
666 N : Node_Id) return Entity_Id
668 Anon_Type : constant Entity_Id :=
669 Create_Itype (E_Anonymous_Access_Type, Related_Nod,
670 Scope_Id => Scope (Current_Scope));
671 Desig_Type : Entity_Id;
673 begin
674 if Is_Entry (Current_Scope)
675 and then Is_Task_Type (Etype (Scope (Current_Scope)))
676 then
677 Error_Msg_N ("task entries cannot have access parameters", N);
678 end if;
680 -- Ada 2005 (AI-254): In case of anonymous access to subprograms
681 -- call the corresponding semantic routine
683 if Present (Access_To_Subprogram_Definition (N)) then
684 Access_Subprogram_Declaration
685 (T_Name => Anon_Type,
686 T_Def => Access_To_Subprogram_Definition (N));
688 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
689 Set_Ekind
690 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
691 else
692 Set_Ekind
693 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
694 end if;
696 return Anon_Type;
697 end if;
699 Find_Type (Subtype_Mark (N));
700 Desig_Type := Entity (Subtype_Mark (N));
702 Set_Directly_Designated_Type
703 (Anon_Type, Desig_Type);
704 Set_Etype (Anon_Type, Anon_Type);
705 Init_Size_Align (Anon_Type);
706 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
708 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
709 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify
710 -- if the null value is allowed. In Ada 95 the null value is never
711 -- allowed.
713 if Ada_Version >= Ada_05 then
714 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
715 else
716 Set_Can_Never_Be_Null (Anon_Type, True);
717 end if;
719 -- The anonymous access type is as public as the discriminated type or
720 -- subprogram that defines it. It is imported (for back-end purposes)
721 -- if the designated type is.
723 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
725 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
726 -- designated type comes from the limited view (for back-end purposes).
728 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
730 -- Ada 2005 (AI-231): Propagate the access-constant attribute
732 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
734 -- The context is either a subprogram declaration or an access
735 -- discriminant, in a private or a full type declaration. In the case
736 -- of a subprogram, If the designated type is incomplete, the operation
737 -- will be a primitive operation of the full type, to be updated
738 -- subsequently. If the type is imported through a limited with clause,
739 -- it is not a primitive operation of the type (which is declared
740 -- elsewhere in some other scope).
742 if Ekind (Desig_Type) = E_Incomplete_Type
743 and then not From_With_Type (Desig_Type)
744 and then Is_Overloadable (Current_Scope)
745 then
746 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
747 Set_Has_Delayed_Freeze (Current_Scope);
748 end if;
750 return Anon_Type;
751 end Access_Definition;
753 -----------------------------------
754 -- Access_Subprogram_Declaration --
755 -----------------------------------
757 procedure Access_Subprogram_Declaration
758 (T_Name : Entity_Id;
759 T_Def : Node_Id)
761 Formals : constant List_Id := Parameter_Specifications (T_Def);
762 Formal : Entity_Id;
764 Desig_Type : constant Entity_Id :=
765 Create_Itype (E_Subprogram_Type, Parent (T_Def));
767 begin
768 if Nkind (T_Def) = N_Access_Function_Definition then
769 Analyze (Subtype_Mark (T_Def));
770 Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
772 if not (Is_Type (Etype (Desig_Type))) then
773 Error_Msg_N
774 ("expect type in function specification", Subtype_Mark (T_Def));
775 end if;
777 else
778 Set_Etype (Desig_Type, Standard_Void_Type);
779 end if;
781 if Present (Formals) then
782 New_Scope (Desig_Type);
783 Process_Formals (Formals, Parent (T_Def));
785 -- A bit of a kludge here, End_Scope requires that the parent
786 -- pointer be set to something reasonable, but Itypes don't have
787 -- parent pointers. So we set it and then unset it ??? If and when
788 -- Itypes have proper parent pointers to their declarations, this
789 -- kludge can be removed.
791 Set_Parent (Desig_Type, T_Name);
792 End_Scope;
793 Set_Parent (Desig_Type, Empty);
794 end if;
796 -- The return type and/or any parameter type may be incomplete. Mark
797 -- the subprogram_type as depending on the incomplete type, so that
798 -- it can be updated when the full type declaration is seen.
800 if Present (Formals) then
801 Formal := First_Formal (Desig_Type);
803 while Present (Formal) loop
804 if Ekind (Formal) /= E_In_Parameter
805 and then Nkind (T_Def) = N_Access_Function_Definition
806 then
807 Error_Msg_N ("functions can only have IN parameters", Formal);
808 end if;
810 if Ekind (Etype (Formal)) = E_Incomplete_Type then
811 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
812 Set_Has_Delayed_Freeze (Desig_Type);
813 end if;
815 Next_Formal (Formal);
816 end loop;
817 end if;
819 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
820 and then not Has_Delayed_Freeze (Desig_Type)
821 then
822 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
823 Set_Has_Delayed_Freeze (Desig_Type);
824 end if;
826 Check_Delayed_Subprogram (Desig_Type);
828 if Protected_Present (T_Def) then
829 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
830 Set_Convention (Desig_Type, Convention_Protected);
831 else
832 Set_Ekind (T_Name, E_Access_Subprogram_Type);
833 end if;
835 Set_Etype (T_Name, T_Name);
836 Init_Size_Align (T_Name);
837 Set_Directly_Designated_Type (T_Name, Desig_Type);
839 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
841 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
843 Check_Restriction (No_Access_Subprograms, T_Def);
844 end Access_Subprogram_Declaration;
846 ----------------------------
847 -- Access_Type_Declaration --
848 ----------------------------
850 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
851 S : constant Node_Id := Subtype_Indication (Def);
852 P : constant Node_Id := Parent (Def);
854 Desig : Entity_Id;
855 -- Designated type
857 begin
858 -- Check for permissible use of incomplete type
860 if Nkind (S) /= N_Subtype_Indication then
861 Analyze (S);
863 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
864 Set_Directly_Designated_Type (T, Entity (S));
865 else
866 Set_Directly_Designated_Type (T,
867 Process_Subtype (S, P, T, 'P'));
868 end if;
870 else
871 Set_Directly_Designated_Type (T,
872 Process_Subtype (S, P, T, 'P'));
873 end if;
875 if All_Present (Def) or Constant_Present (Def) then
876 Set_Ekind (T, E_General_Access_Type);
877 else
878 Set_Ekind (T, E_Access_Type);
879 end if;
881 if Base_Type (Designated_Type (T)) = T then
882 Error_Msg_N ("access type cannot designate itself", S);
883 end if;
885 Set_Etype (T, T);
887 -- If the type has appeared already in a with_type clause, it is
888 -- frozen and the pointer size is already set. Else, initialize.
890 if not From_With_Type (T) then
891 Init_Size_Align (T);
892 end if;
894 Set_Is_Access_Constant (T, Constant_Present (Def));
896 Desig := Designated_Type (T);
898 -- If designated type is an imported tagged type, indicate that the
899 -- access type is also imported, and therefore restricted in its use.
900 -- The access type may already be imported, so keep setting otherwise.
902 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
903 -- is available, use it as the designated type of the access type, so
904 -- that the back-end gets a usable entity.
906 declare
907 N_Desig : Entity_Id;
909 begin
910 if From_With_Type (Desig) then
911 Set_From_With_Type (T);
913 if Ekind (Desig) = E_Incomplete_Type then
914 N_Desig := Non_Limited_View (Desig);
916 else pragma Assert (Ekind (Desig) = E_Class_Wide_Type);
917 if From_With_Type (Etype (Desig)) then
918 N_Desig := Non_Limited_View (Etype (Desig));
919 else
920 N_Desig := Etype (Desig);
921 end if;
922 end if;
924 pragma Assert (Present (N_Desig));
925 Set_Directly_Designated_Type (T, N_Desig);
926 end if;
927 end;
929 -- Note that Has_Task is always false, since the access type itself
930 -- is not a task type. See Einfo for more description on this point.
931 -- Exactly the same consideration applies to Has_Controlled_Component.
933 Set_Has_Task (T, False);
934 Set_Has_Controlled_Component (T, False);
936 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
937 -- attributes
939 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
940 Set_Is_Access_Constant (T, Constant_Present (Def));
941 end Access_Type_Declaration;
943 -----------------------------------
944 -- Analyze_Component_Declaration --
945 -----------------------------------
947 procedure Analyze_Component_Declaration (N : Node_Id) is
948 Id : constant Entity_Id := Defining_Identifier (N);
949 T : Entity_Id;
950 P : Entity_Id;
952 function Contains_POC (Constr : Node_Id) return Boolean;
953 -- Determines whether a constraint uses the discriminant of a record
954 -- type thus becoming a per-object constraint (POC).
956 ------------------
957 -- Contains_POC --
958 ------------------
960 function Contains_POC (Constr : Node_Id) return Boolean is
961 begin
962 case Nkind (Constr) is
963 when N_Attribute_Reference =>
964 return Attribute_Name (Constr) = Name_Access
966 Prefix (Constr) = Scope (Entity (Prefix (Constr)));
968 when N_Discriminant_Association =>
969 return Denotes_Discriminant (Expression (Constr));
971 when N_Identifier =>
972 return Denotes_Discriminant (Constr);
974 when N_Index_Or_Discriminant_Constraint =>
975 declare
976 IDC : Node_Id := First (Constraints (Constr));
978 begin
979 while Present (IDC) loop
981 -- One per-object constraint is sufficent
983 if Contains_POC (IDC) then
984 return True;
985 end if;
987 Next (IDC);
988 end loop;
990 return False;
991 end;
993 when N_Range =>
994 return Denotes_Discriminant (Low_Bound (Constr))
995 or else
996 Denotes_Discriminant (High_Bound (Constr));
998 when N_Range_Constraint =>
999 return Denotes_Discriminant (Range_Expression (Constr));
1001 when others =>
1002 return False;
1004 end case;
1005 end Contains_POC;
1007 -- Start of processing for Analyze_Component_Declaration
1009 begin
1010 Generate_Definition (Id);
1011 Enter_Name (Id);
1013 if Present (Subtype_Indication (Component_Definition (N))) then
1014 T := Find_Type_Of_Object
1015 (Subtype_Indication (Component_Definition (N)), N);
1017 -- Ada 2005 (AI-230): Access Definition case
1019 else
1020 pragma Assert (Present
1021 (Access_Definition (Component_Definition (N))));
1023 T := Access_Definition
1024 (Related_Nod => N,
1025 N => Access_Definition (Component_Definition (N)));
1027 -- Ada 2005 (AI-230): In case of components that are anonymous
1028 -- access types the level of accessibility depends on the enclosing
1029 -- type declaration
1031 Set_Scope (T, Current_Scope); -- Ada 2005 (AI-230)
1033 -- Ada 2005 (AI-254)
1035 if Present (Access_To_Subprogram_Definition
1036 (Access_Definition (Component_Definition (N))))
1037 and then Protected_Present (Access_To_Subprogram_Definition
1038 (Access_Definition
1039 (Component_Definition (N))))
1040 then
1041 T := Replace_Anonymous_Access_To_Protected_Subprogram (N, T);
1042 end if;
1043 end if;
1045 -- If the subtype is a constrained subtype of the enclosing record,
1046 -- (which must have a partial view) the back-end does not handle
1047 -- properly the recursion. Rewrite the component declaration with
1048 -- an explicit subtype indication, which is acceptable to Gigi. We
1049 -- can copy the tree directly because side effects have already been
1050 -- removed from discriminant constraints.
1052 if Ekind (T) = E_Access_Subtype
1053 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1054 and then Comes_From_Source (T)
1055 and then Nkind (Parent (T)) = N_Subtype_Declaration
1056 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1057 then
1058 Rewrite
1059 (Subtype_Indication (Component_Definition (N)),
1060 New_Copy_Tree (Subtype_Indication (Parent (T))));
1061 T := Find_Type_Of_Object
1062 (Subtype_Indication (Component_Definition (N)), N);
1063 end if;
1065 -- If the component declaration includes a default expression, then we
1066 -- check that the component is not of a limited type (RM 3.7(5)),
1067 -- and do the special preanalysis of the expression (see section on
1068 -- "Handling of Default and Per-Object Expressions" in the spec of
1069 -- package Sem).
1071 if Present (Expression (N)) then
1072 Analyze_Per_Use_Expression (Expression (N), T);
1073 Check_Initialization (T, Expression (N));
1074 end if;
1076 -- The parent type may be a private view with unknown discriminants,
1077 -- and thus unconstrained. Regular components must be constrained.
1079 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1080 if Is_Class_Wide_Type (T) then
1081 Error_Msg_N
1082 ("class-wide subtype with unknown discriminants" &
1083 " in component declaration",
1084 Subtype_Indication (Component_Definition (N)));
1085 else
1086 Error_Msg_N
1087 ("unconstrained subtype in component declaration",
1088 Subtype_Indication (Component_Definition (N)));
1089 end if;
1091 -- Components cannot be abstract, except for the special case of
1092 -- the _Parent field (case of extending an abstract tagged type)
1094 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
1095 Error_Msg_N ("type of a component cannot be abstract", N);
1096 end if;
1098 Set_Etype (Id, T);
1099 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1101 -- The component declaration may have a per-object constraint, set
1102 -- the appropriate flag in the defining identifier of the subtype.
1104 if Present (Subtype_Indication (Component_Definition (N))) then
1105 declare
1106 Sindic : constant Node_Id :=
1107 Subtype_Indication (Component_Definition (N));
1109 begin
1110 if Nkind (Sindic) = N_Subtype_Indication
1111 and then Present (Constraint (Sindic))
1112 and then Contains_POC (Constraint (Sindic))
1113 then
1114 Set_Has_Per_Object_Constraint (Id);
1115 end if;
1116 end;
1117 end if;
1119 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1120 -- out some static checks.
1122 if Ada_Version >= Ada_05
1123 and then (Null_Exclusion_Present (Component_Definition (N))
1124 or else Can_Never_Be_Null (T))
1125 then
1126 Set_Can_Never_Be_Null (Id);
1127 Null_Exclusion_Static_Checks (N);
1128 end if;
1130 -- If this component is private (or depends on a private type),
1131 -- flag the record type to indicate that some operations are not
1132 -- available.
1134 P := Private_Component (T);
1136 if Present (P) then
1137 -- Check for circular definitions
1139 if P = Any_Type then
1140 Set_Etype (Id, Any_Type);
1142 -- There is a gap in the visibility of operations only if the
1143 -- component type is not defined in the scope of the record type.
1145 elsif Scope (P) = Scope (Current_Scope) then
1146 null;
1148 elsif Is_Limited_Type (P) then
1149 Set_Is_Limited_Composite (Current_Scope);
1151 else
1152 Set_Is_Private_Composite (Current_Scope);
1153 end if;
1154 end if;
1156 if P /= Any_Type
1157 and then Is_Limited_Type (T)
1158 and then Chars (Id) /= Name_uParent
1159 and then Is_Tagged_Type (Current_Scope)
1160 then
1161 if Is_Derived_Type (Current_Scope)
1162 and then not Is_Limited_Record (Root_Type (Current_Scope))
1163 then
1164 Error_Msg_N
1165 ("extension of nonlimited type cannot have limited components",
1167 Explain_Limited_Type (T, N);
1168 Set_Etype (Id, Any_Type);
1169 Set_Is_Limited_Composite (Current_Scope, False);
1171 elsif not Is_Derived_Type (Current_Scope)
1172 and then not Is_Limited_Record (Current_Scope)
1173 then
1174 Error_Msg_N
1175 ("nonlimited tagged type cannot have limited components", N);
1176 Explain_Limited_Type (T, N);
1177 Set_Etype (Id, Any_Type);
1178 Set_Is_Limited_Composite (Current_Scope, False);
1179 end if;
1180 end if;
1182 Set_Original_Record_Component (Id, Id);
1183 end Analyze_Component_Declaration;
1185 --------------------------
1186 -- Analyze_Declarations --
1187 --------------------------
1189 procedure Analyze_Declarations (L : List_Id) is
1190 D : Node_Id;
1191 Next_Node : Node_Id;
1192 Freeze_From : Entity_Id := Empty;
1194 procedure Adjust_D;
1195 -- Adjust D not to include implicit label declarations, since these
1196 -- have strange Sloc values that result in elaboration check problems.
1197 -- (They have the sloc of the label as found in the source, and that
1198 -- is ahead of the current declarative part).
1200 --------------
1201 -- Adjust_D --
1202 --------------
1204 procedure Adjust_D is
1205 begin
1206 while Present (Prev (D))
1207 and then Nkind (D) = N_Implicit_Label_Declaration
1208 loop
1209 Prev (D);
1210 end loop;
1211 end Adjust_D;
1213 -- Start of processing for Analyze_Declarations
1215 begin
1216 D := First (L);
1217 while Present (D) loop
1219 -- Complete analysis of declaration
1221 Analyze (D);
1222 Next_Node := Next (D);
1224 if No (Freeze_From) then
1225 Freeze_From := First_Entity (Current_Scope);
1226 end if;
1228 -- At the end of a declarative part, freeze remaining entities
1229 -- declared in it. The end of the visible declarations of package
1230 -- specification is not the end of a declarative part if private
1231 -- declarations are present. The end of a package declaration is a
1232 -- freezing point only if it a library package. A task definition or
1233 -- protected type definition is not a freeze point either. Finally,
1234 -- we do not freeze entities in generic scopes, because there is no
1235 -- code generated for them and freeze nodes will be generated for
1236 -- the instance.
1238 -- The end of a package instantiation is not a freeze point, but
1239 -- for now we make it one, because the generic body is inserted
1240 -- (currently) immediately after. Generic instantiations will not
1241 -- be a freeze point once delayed freezing of bodies is implemented.
1242 -- (This is needed in any case for early instantiations ???).
1244 if No (Next_Node) then
1245 if Nkind (Parent (L)) = N_Component_List
1246 or else Nkind (Parent (L)) = N_Task_Definition
1247 or else Nkind (Parent (L)) = N_Protected_Definition
1248 then
1249 null;
1251 elsif Nkind (Parent (L)) /= N_Package_Specification then
1252 if Nkind (Parent (L)) = N_Package_Body then
1253 Freeze_From := First_Entity (Current_Scope);
1254 end if;
1256 Adjust_D;
1257 Freeze_All (Freeze_From, D);
1258 Freeze_From := Last_Entity (Current_Scope);
1260 elsif Scope (Current_Scope) /= Standard_Standard
1261 and then not Is_Child_Unit (Current_Scope)
1262 and then No (Generic_Parent (Parent (L)))
1263 then
1264 null;
1266 elsif L /= Visible_Declarations (Parent (L))
1267 or else No (Private_Declarations (Parent (L)))
1268 or else Is_Empty_List (Private_Declarations (Parent (L)))
1269 then
1270 Adjust_D;
1271 Freeze_All (Freeze_From, D);
1272 Freeze_From := Last_Entity (Current_Scope);
1273 end if;
1275 -- If next node is a body then freeze all types before the body.
1276 -- An exception occurs for expander generated bodies, which can
1277 -- be recognized by their already being analyzed. The expander
1278 -- ensures that all types needed by these bodies have been frozen
1279 -- but it is not necessary to freeze all types (and would be wrong
1280 -- since it would not correspond to an RM defined freeze point).
1282 elsif not Analyzed (Next_Node)
1283 and then (Nkind (Next_Node) = N_Subprogram_Body
1284 or else Nkind (Next_Node) = N_Entry_Body
1285 or else Nkind (Next_Node) = N_Package_Body
1286 or else Nkind (Next_Node) = N_Protected_Body
1287 or else Nkind (Next_Node) = N_Task_Body
1288 or else Nkind (Next_Node) in N_Body_Stub)
1289 then
1290 Adjust_D;
1291 Freeze_All (Freeze_From, D);
1292 Freeze_From := Last_Entity (Current_Scope);
1293 end if;
1295 D := Next_Node;
1296 end loop;
1297 end Analyze_Declarations;
1299 ----------------------------------
1300 -- Analyze_Incomplete_Type_Decl --
1301 ----------------------------------
1303 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1304 F : constant Boolean := Is_Pure (Current_Scope);
1305 T : Entity_Id;
1307 begin
1308 Generate_Definition (Defining_Identifier (N));
1310 -- Process an incomplete declaration. The identifier must not have been
1311 -- declared already in the scope. However, an incomplete declaration may
1312 -- appear in the private part of a package, for a private type that has
1313 -- already been declared.
1315 -- In this case, the discriminants (if any) must match
1317 T := Find_Type_Name (N);
1319 Set_Ekind (T, E_Incomplete_Type);
1320 Init_Size_Align (T);
1321 Set_Is_First_Subtype (T, True);
1322 Set_Etype (T, T);
1323 New_Scope (T);
1325 Set_Stored_Constraint (T, No_Elist);
1327 if Present (Discriminant_Specifications (N)) then
1328 Process_Discriminants (N);
1329 end if;
1331 End_Scope;
1333 -- If the type has discriminants, non-trivial subtypes may be be
1334 -- declared before the full view of the type. The full views of those
1335 -- subtypes will be built after the full view of the type.
1337 Set_Private_Dependents (T, New_Elmt_List);
1338 Set_Is_Pure (T, F);
1339 end Analyze_Incomplete_Type_Decl;
1341 -----------------------------
1342 -- Analyze_Itype_Reference --
1343 -----------------------------
1345 -- Nothing to do. This node is placed in the tree only for the benefit
1346 -- of Gigi processing, and has no effect on the semantic processing.
1348 procedure Analyze_Itype_Reference (N : Node_Id) is
1349 begin
1350 pragma Assert (Is_Itype (Itype (N)));
1351 null;
1352 end Analyze_Itype_Reference;
1354 --------------------------------
1355 -- Analyze_Number_Declaration --
1356 --------------------------------
1358 procedure Analyze_Number_Declaration (N : Node_Id) is
1359 Id : constant Entity_Id := Defining_Identifier (N);
1360 E : constant Node_Id := Expression (N);
1361 T : Entity_Id;
1362 Index : Interp_Index;
1363 It : Interp;
1365 begin
1366 Generate_Definition (Id);
1367 Enter_Name (Id);
1369 -- This is an optimization of a common case of an integer literal
1371 if Nkind (E) = N_Integer_Literal then
1372 Set_Is_Static_Expression (E, True);
1373 Set_Etype (E, Universal_Integer);
1375 Set_Etype (Id, Universal_Integer);
1376 Set_Ekind (Id, E_Named_Integer);
1377 Set_Is_Frozen (Id, True);
1378 return;
1379 end if;
1381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1383 -- Process expression, replacing error by integer zero, to avoid
1384 -- cascaded errors or aborts further along in the processing
1386 -- Replace Error by integer zero, which seems least likely to
1387 -- cause cascaded errors.
1389 if E = Error then
1390 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1391 Set_Error_Posted (E);
1392 end if;
1394 Analyze (E);
1396 -- Verify that the expression is static and numeric. If
1397 -- the expression is overloaded, we apply the preference
1398 -- rule that favors root numeric types.
1400 if not Is_Overloaded (E) then
1401 T := Etype (E);
1403 else
1404 T := Any_Type;
1405 Get_First_Interp (E, Index, It);
1407 while Present (It.Typ) loop
1408 if (Is_Integer_Type (It.Typ)
1409 or else Is_Real_Type (It.Typ))
1410 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1411 then
1412 if T = Any_Type then
1413 T := It.Typ;
1415 elsif It.Typ = Universal_Real
1416 or else It.Typ = Universal_Integer
1417 then
1418 -- Choose universal interpretation over any other
1420 T := It.Typ;
1421 exit;
1422 end if;
1423 end if;
1425 Get_Next_Interp (Index, It);
1426 end loop;
1427 end if;
1429 if Is_Integer_Type (T) then
1430 Resolve (E, T);
1431 Set_Etype (Id, Universal_Integer);
1432 Set_Ekind (Id, E_Named_Integer);
1434 elsif Is_Real_Type (T) then
1436 -- Because the real value is converted to universal_real, this
1437 -- is a legal context for a universal fixed expression.
1439 if T = Universal_Fixed then
1440 declare
1441 Loc : constant Source_Ptr := Sloc (N);
1442 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1443 Subtype_Mark =>
1444 New_Occurrence_Of (Universal_Real, Loc),
1445 Expression => Relocate_Node (E));
1447 begin
1448 Rewrite (E, Conv);
1449 Analyze (E);
1450 end;
1452 elsif T = Any_Fixed then
1453 Error_Msg_N ("illegal context for mixed mode operation", E);
1455 -- Expression is of the form : universal_fixed * integer.
1456 -- Try to resolve as universal_real.
1458 T := Universal_Real;
1459 Set_Etype (E, T);
1460 end if;
1462 Resolve (E, T);
1463 Set_Etype (Id, Universal_Real);
1464 Set_Ekind (Id, E_Named_Real);
1466 else
1467 Wrong_Type (E, Any_Numeric);
1468 Resolve (E, T);
1470 Set_Etype (Id, T);
1471 Set_Ekind (Id, E_Constant);
1472 Set_Never_Set_In_Source (Id, True);
1473 Set_Is_True_Constant (Id, True);
1474 return;
1475 end if;
1477 if Nkind (E) = N_Integer_Literal
1478 or else Nkind (E) = N_Real_Literal
1479 then
1480 Set_Etype (E, Etype (Id));
1481 end if;
1483 if not Is_OK_Static_Expression (E) then
1484 Flag_Non_Static_Expr
1485 ("non-static expression used in number declaration!", E);
1486 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1487 Set_Etype (E, Any_Type);
1488 end if;
1489 end Analyze_Number_Declaration;
1491 --------------------------------
1492 -- Analyze_Object_Declaration --
1493 --------------------------------
1495 procedure Analyze_Object_Declaration (N : Node_Id) is
1496 Loc : constant Source_Ptr := Sloc (N);
1497 Id : constant Entity_Id := Defining_Identifier (N);
1498 T : Entity_Id;
1499 Act_T : Entity_Id;
1501 E : Node_Id := Expression (N);
1502 -- E is set to Expression (N) throughout this routine. When
1503 -- Expression (N) is modified, E is changed accordingly.
1505 Prev_Entity : Entity_Id := Empty;
1507 function Build_Default_Subtype return Entity_Id;
1508 -- If the object is limited or aliased, and if the type is unconstrained
1509 -- and there is no expression, the discriminants cannot be modified and
1510 -- the subtype of the object is constrained by the defaults, so it is
1511 -- worthile building the corresponding subtype.
1513 function Count_Tasks (T : Entity_Id) return Uint;
1514 -- This function is called when a library level object of type is
1515 -- declared. It's function is to count the static number of tasks
1516 -- declared within the type (it is only called if Has_Tasks is set for
1517 -- T). As a side effect, if an array of tasks with non-static bounds or
1518 -- a variant record type is encountered, Check_Restrictions is called
1519 -- indicating the count is unknown.
1521 ---------------------------
1522 -- Build_Default_Subtype --
1523 ---------------------------
1525 function Build_Default_Subtype return Entity_Id is
1526 Constraints : constant List_Id := New_List;
1527 Act : Entity_Id;
1528 Decl : Node_Id;
1529 Disc : Entity_Id;
1531 begin
1532 Disc := First_Discriminant (T);
1534 if No (Discriminant_Default_Value (Disc)) then
1535 return T; -- previous error.
1536 end if;
1538 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1539 while Present (Disc) loop
1540 Append (
1541 New_Copy_Tree (
1542 Discriminant_Default_Value (Disc)), Constraints);
1543 Next_Discriminant (Disc);
1544 end loop;
1546 Decl :=
1547 Make_Subtype_Declaration (Loc,
1548 Defining_Identifier => Act,
1549 Subtype_Indication =>
1550 Make_Subtype_Indication (Loc,
1551 Subtype_Mark => New_Occurrence_Of (T, Loc),
1552 Constraint =>
1553 Make_Index_Or_Discriminant_Constraint
1554 (Loc, Constraints)));
1556 Insert_Before (N, Decl);
1557 Analyze (Decl);
1558 return Act;
1559 end Build_Default_Subtype;
1561 -----------------
1562 -- Count_Tasks --
1563 -----------------
1565 function Count_Tasks (T : Entity_Id) return Uint is
1566 C : Entity_Id;
1567 X : Node_Id;
1568 V : Uint;
1570 begin
1571 if Is_Task_Type (T) then
1572 return Uint_1;
1574 elsif Is_Record_Type (T) then
1575 if Has_Discriminants (T) then
1576 Check_Restriction (Max_Tasks, N);
1577 return Uint_0;
1579 else
1580 V := Uint_0;
1581 C := First_Component (T);
1582 while Present (C) loop
1583 V := V + Count_Tasks (Etype (C));
1584 Next_Component (C);
1585 end loop;
1587 return V;
1588 end if;
1590 elsif Is_Array_Type (T) then
1591 X := First_Index (T);
1592 V := Count_Tasks (Component_Type (T));
1593 while Present (X) loop
1594 C := Etype (X);
1596 if not Is_Static_Subtype (C) then
1597 Check_Restriction (Max_Tasks, N);
1598 return Uint_0;
1599 else
1600 V := V * (UI_Max (Uint_0,
1601 Expr_Value (Type_High_Bound (C)) -
1602 Expr_Value (Type_Low_Bound (C)) + Uint_1));
1603 end if;
1605 Next_Index (X);
1606 end loop;
1608 return V;
1610 else
1611 return Uint_0;
1612 end if;
1613 end Count_Tasks;
1615 -- Start of processing for Analyze_Object_Declaration
1617 begin
1618 -- There are three kinds of implicit types generated by an
1619 -- object declaration:
1621 -- 1. Those for generated by the original Object Definition
1623 -- 2. Those generated by the Expression
1625 -- 3. Those used to constrained the Object Definition with the
1626 -- expression constraints when it is unconstrained
1628 -- They must be generated in this order to avoid order of elaboration
1629 -- issues. Thus the first step (after entering the name) is to analyze
1630 -- the object definition.
1632 if Constant_Present (N) then
1633 Prev_Entity := Current_Entity_In_Scope (Id);
1635 -- If homograph is an implicit subprogram, it is overridden by the
1636 -- current declaration.
1638 if Present (Prev_Entity)
1639 and then Is_Overloadable (Prev_Entity)
1640 and then Is_Inherited_Operation (Prev_Entity)
1641 then
1642 Prev_Entity := Empty;
1643 end if;
1644 end if;
1646 if Present (Prev_Entity) then
1647 Constant_Redeclaration (Id, N, T);
1649 Generate_Reference (Prev_Entity, Id, 'c');
1650 Set_Completion_Referenced (Id);
1652 if Error_Posted (N) then
1654 -- Type mismatch or illegal redeclaration, Do not analyze
1655 -- expression to avoid cascaded errors.
1657 T := Find_Type_Of_Object (Object_Definition (N), N);
1658 Set_Etype (Id, T);
1659 Set_Ekind (Id, E_Variable);
1660 return;
1661 end if;
1663 -- In the normal case, enter identifier at the start to catch
1664 -- premature usage in the initialization expression.
1666 else
1667 Generate_Definition (Id);
1668 Enter_Name (Id);
1670 T := Find_Type_Of_Object (Object_Definition (N), N);
1672 if Error_Posted (Id) then
1673 Set_Etype (Id, T);
1674 Set_Ekind (Id, E_Variable);
1675 return;
1676 end if;
1677 end if;
1679 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1680 -- out some static checks
1682 if Ada_Version >= Ada_05
1683 and then (Null_Exclusion_Present (N)
1684 or else Can_Never_Be_Null (T))
1685 then
1686 Set_Can_Never_Be_Null (Id);
1687 Null_Exclusion_Static_Checks (N);
1688 end if;
1690 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1692 -- If deferred constant, make sure context is appropriate. We detect
1693 -- a deferred constant as a constant declaration with no expression.
1694 -- A deferred constant can appear in a package body if its completion
1695 -- is by means of an interface pragma.
1697 if Constant_Present (N)
1698 and then No (E)
1699 then
1700 if not Is_Package (Current_Scope) then
1701 Error_Msg_N
1702 ("invalid context for deferred constant declaration ('R'M 7.4)",
1704 Error_Msg_N
1705 ("\declaration requires an initialization expression",
1707 Set_Constant_Present (N, False);
1709 -- In Ada 83, deferred constant must be of private type
1711 elsif not Is_Private_Type (T) then
1712 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1713 Error_Msg_N
1714 ("(Ada 83) deferred constant must be private type", N);
1715 end if;
1716 end if;
1718 -- If not a deferred constant, then object declaration freezes its type
1720 else
1721 Check_Fully_Declared (T, N);
1722 Freeze_Before (N, T);
1723 end if;
1725 -- If the object was created by a constrained array definition, then
1726 -- set the link in both the anonymous base type and anonymous subtype
1727 -- that are built to represent the array type to point to the object.
1729 if Nkind (Object_Definition (Declaration_Node (Id))) =
1730 N_Constrained_Array_Definition
1731 then
1732 Set_Related_Array_Object (T, Id);
1733 Set_Related_Array_Object (Base_Type (T), Id);
1734 end if;
1736 -- Special checks for protected objects not at library level
1738 if Is_Protected_Type (T)
1739 and then not Is_Library_Level_Entity (Id)
1740 then
1741 Check_Restriction (No_Local_Protected_Objects, Id);
1743 -- Protected objects with interrupt handlers must be at library level
1745 if Has_Interrupt_Handler (T) then
1746 Error_Msg_N
1747 ("interrupt object can only be declared at library level", Id);
1748 end if;
1749 end if;
1751 -- The actual subtype of the object is the nominal subtype, unless
1752 -- the nominal one is unconstrained and obtained from the expression.
1754 Act_T := T;
1756 -- Process initialization expression if present and not in error
1758 if Present (E) and then E /= Error then
1759 Analyze (E);
1761 -- In case of errors detected in the analysis of the expression,
1762 -- decorate it with the expected type to avoid cascade errors
1764 if not Present (Etype (E)) then
1765 Set_Etype (E, T);
1766 end if;
1768 -- If an initialization expression is present, then we set the
1769 -- Is_True_Constant flag. It will be reset if this is a variable
1770 -- and it is indeed modified.
1772 Set_Is_True_Constant (Id, True);
1774 -- If we are analyzing a constant declaration, set its completion
1775 -- flag after analyzing the expression.
1777 if Constant_Present (N) then
1778 Set_Has_Completion (Id);
1779 end if;
1781 if not Assignment_OK (N) then
1782 Check_Initialization (T, E);
1783 end if;
1785 Set_Etype (Id, T); -- may be overridden later on
1786 Resolve (E, T);
1787 Check_Unset_Reference (E);
1789 if Compile_Time_Known_Value (E) then
1790 Set_Current_Value (Id, E);
1791 end if;
1793 -- Check incorrect use of dynamically tagged expressions. Note
1794 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1795 -- fact important to avoid spurious errors due to expanded code
1796 -- for dispatching functions over an anonymous access type
1798 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
1799 and then Is_Tagged_Type (T)
1800 and then not Is_Class_Wide_Type (T)
1801 then
1802 Error_Msg_N ("dynamically tagged expression not allowed!", E);
1803 end if;
1805 Apply_Scalar_Range_Check (E, T);
1806 Apply_Static_Length_Check (E, T);
1807 end if;
1809 -- If the No_Streams restriction is set, check that the type of the
1810 -- object is not, and does not contain, any subtype derived from
1811 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
1812 -- Has_Stream just for efficiency reasons. There is no point in
1813 -- spending time on a Has_Stream check if the restriction is not set.
1815 if Restrictions.Set (No_Streams) then
1816 if Has_Stream (T) then
1817 Check_Restriction (No_Streams, N);
1818 end if;
1819 end if;
1821 -- Abstract type is never permitted for a variable or constant.
1822 -- Note: we inhibit this check for objects that do not come from
1823 -- source because there is at least one case (the expansion of
1824 -- x'class'input where x is abstract) where we legitimately
1825 -- generate an abstract object.
1827 if Is_Abstract (T) and then Comes_From_Source (N) then
1828 Error_Msg_N ("type of object cannot be abstract",
1829 Object_Definition (N));
1831 if Is_CPP_Class (T) then
1832 Error_Msg_NE ("\} may need a cpp_constructor",
1833 Object_Definition (N), T);
1834 end if;
1836 -- Case of unconstrained type
1838 elsif Is_Indefinite_Subtype (T) then
1840 -- Nothing to do in deferred constant case
1842 if Constant_Present (N) and then No (E) then
1843 null;
1845 -- Case of no initialization present
1847 elsif No (E) then
1848 if No_Initialization (N) then
1849 null;
1851 elsif Is_Class_Wide_Type (T) then
1852 Error_Msg_N
1853 ("initialization required in class-wide declaration ", N);
1855 else
1856 Error_Msg_N
1857 ("unconstrained subtype not allowed (need initialization)",
1858 Object_Definition (N));
1859 end if;
1861 -- Case of initialization present but in error. Set initial
1862 -- expression as absent (but do not make above complaints)
1864 elsif E = Error then
1865 Set_Expression (N, Empty);
1866 E := Empty;
1868 -- Case of initialization present
1870 else
1871 -- Not allowed in Ada 83
1873 if not Constant_Present (N) then
1874 if Ada_Version = Ada_83
1875 and then Comes_From_Source (Object_Definition (N))
1876 then
1877 Error_Msg_N
1878 ("(Ada 83) unconstrained variable not allowed",
1879 Object_Definition (N));
1880 end if;
1881 end if;
1883 -- Now we constrain the variable from the initializing expression
1885 -- If the expression is an aggregate, it has been expanded into
1886 -- individual assignments. Retrieve the actual type from the
1887 -- expanded construct.
1889 if Is_Array_Type (T)
1890 and then No_Initialization (N)
1891 and then Nkind (Original_Node (E)) = N_Aggregate
1892 then
1893 Act_T := Etype (E);
1895 else
1896 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
1897 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
1898 end if;
1900 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
1902 if Aliased_Present (N) then
1903 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1904 end if;
1906 Freeze_Before (N, Act_T);
1907 Freeze_Before (N, T);
1908 end if;
1910 elsif Is_Array_Type (T)
1911 and then No_Initialization (N)
1912 and then Nkind (Original_Node (E)) = N_Aggregate
1913 then
1914 if not Is_Entity_Name (Object_Definition (N)) then
1915 Act_T := Etype (E);
1916 Check_Compile_Time_Size (Act_T);
1918 if Aliased_Present (N) then
1919 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1920 end if;
1921 end if;
1923 -- When the given object definition and the aggregate are specified
1924 -- independently, and their lengths might differ do a length check.
1925 -- This cannot happen if the aggregate is of the form (others =>...)
1927 if not Is_Constrained (T) then
1928 null;
1930 elsif Nkind (E) = N_Raise_Constraint_Error then
1932 -- Aggregate is statically illegal. Place back in declaration
1934 Set_Expression (N, E);
1935 Set_No_Initialization (N, False);
1937 elsif T = Etype (E) then
1938 null;
1940 elsif Nkind (E) = N_Aggregate
1941 and then Present (Component_Associations (E))
1942 and then Present (Choices (First (Component_Associations (E))))
1943 and then Nkind (First
1944 (Choices (First (Component_Associations (E))))) = N_Others_Choice
1945 then
1946 null;
1948 else
1949 Apply_Length_Check (E, T);
1950 end if;
1952 elsif (Is_Limited_Record (T)
1953 or else Is_Concurrent_Type (T))
1954 and then not Is_Constrained (T)
1955 and then Has_Discriminants (T)
1956 then
1957 Act_T := Build_Default_Subtype;
1958 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
1960 elsif not Is_Constrained (T)
1961 and then Has_Discriminants (T)
1962 and then Constant_Present (N)
1963 and then Nkind (E) = N_Function_Call
1964 then
1965 -- The back-end has problems with constants of a discriminated type
1966 -- with defaults, if the initial value is a function call. We
1967 -- generate an intermediate temporary for the result of the call.
1968 -- It is unclear why this should make it acceptable to gcc. ???
1970 Remove_Side_Effects (E);
1971 end if;
1973 if T = Standard_Wide_Character or else T = Standard_Wide_Wide_Character
1974 or else Root_Type (T) = Standard_Wide_String
1975 or else Root_Type (T) = Standard_Wide_Wide_String
1976 then
1977 Check_Restriction (No_Wide_Characters, Object_Definition (N));
1978 end if;
1980 -- Now establish the proper kind and type of the object
1982 if Constant_Present (N) then
1983 Set_Ekind (Id, E_Constant);
1984 Set_Never_Set_In_Source (Id, True);
1985 Set_Is_True_Constant (Id, True);
1987 else
1988 Set_Ekind (Id, E_Variable);
1990 -- A variable is set as shared passive if it appears in a shared
1991 -- passive package, and is at the outer level. This is not done
1992 -- for entities generated during expansion, because those are
1993 -- always manipulated locally.
1995 if Is_Shared_Passive (Current_Scope)
1996 and then Is_Library_Level_Entity (Id)
1997 and then Comes_From_Source (Id)
1998 then
1999 Set_Is_Shared_Passive (Id);
2000 Check_Shared_Var (Id, T, N);
2001 end if;
2003 -- Case of no initializing expression present. If the type is not
2004 -- fully initialized, then we set Never_Set_In_Source, since this
2005 -- is a case of a potentially uninitialized object. Note that we
2006 -- do not consider access variables to be fully initialized for
2007 -- this purpose, since it still seems dubious if someone declares
2009 -- Note that we only do this for source declarations. If the object
2010 -- is declared by a generated declaration, we assume that it is not
2011 -- appropriate to generate warnings in that case.
2013 if No (E) then
2014 if (Is_Access_Type (T)
2015 or else not Is_Fully_Initialized_Type (T))
2016 and then Comes_From_Source (N)
2017 then
2018 Set_Never_Set_In_Source (Id);
2019 end if;
2020 end if;
2021 end if;
2023 Init_Alignment (Id);
2024 Init_Esize (Id);
2026 if Aliased_Present (N) then
2027 Set_Is_Aliased (Id);
2029 if No (E)
2030 and then Is_Record_Type (T)
2031 and then not Is_Constrained (T)
2032 and then Has_Discriminants (T)
2033 then
2034 Set_Actual_Subtype (Id, Build_Default_Subtype);
2035 end if;
2036 end if;
2038 Set_Etype (Id, Act_T);
2040 if Has_Controlled_Component (Etype (Id))
2041 or else Is_Controlled (Etype (Id))
2042 then
2043 if not Is_Library_Level_Entity (Id) then
2044 Check_Restriction (No_Nested_Finalization, N);
2045 else
2046 Validate_Controlled_Object (Id);
2047 end if;
2049 -- Generate a warning when an initialization causes an obvious
2050 -- ABE violation. If the init expression is a simple aggregate
2051 -- there shouldn't be any initialize/adjust call generated. This
2052 -- will be true as soon as aggregates are built in place when
2053 -- possible. ??? at the moment we do not generate warnings for
2054 -- temporaries created for those aggregates although a
2055 -- Program_Error might be generated if compiled with -gnato
2057 if Is_Controlled (Etype (Id))
2058 and then Comes_From_Source (Id)
2059 then
2060 declare
2061 BT : constant Entity_Id := Base_Type (Etype (Id));
2063 Implicit_Call : Entity_Id;
2064 pragma Warnings (Off, Implicit_Call);
2065 -- What is this about, it is never referenced ???
2067 function Is_Aggr (N : Node_Id) return Boolean;
2068 -- Check that N is an aggregate
2070 -------------
2071 -- Is_Aggr --
2072 -------------
2074 function Is_Aggr (N : Node_Id) return Boolean is
2075 begin
2076 case Nkind (Original_Node (N)) is
2077 when N_Aggregate | N_Extension_Aggregate =>
2078 return True;
2080 when N_Qualified_Expression |
2081 N_Type_Conversion |
2082 N_Unchecked_Type_Conversion =>
2083 return Is_Aggr (Expression (Original_Node (N)));
2085 when others =>
2086 return False;
2087 end case;
2088 end Is_Aggr;
2090 begin
2091 -- If no underlying type, we already are in an error situation
2092 -- don't try to add a warning since we do not have access
2093 -- prim-op list.
2095 if No (Underlying_Type (BT)) then
2096 Implicit_Call := Empty;
2098 -- A generic type does not have usable primitive operators.
2099 -- Initialization calls are built for instances.
2101 elsif Is_Generic_Type (BT) then
2102 Implicit_Call := Empty;
2104 -- if the init expression is not an aggregate, an adjust
2105 -- call will be generated
2107 elsif Present (E) and then not Is_Aggr (E) then
2108 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
2110 -- if no init expression and we are not in the deferred
2111 -- constant case, an Initialize call will be generated
2113 elsif No (E) and then not Constant_Present (N) then
2114 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
2116 else
2117 Implicit_Call := Empty;
2118 end if;
2119 end;
2120 end if;
2121 end if;
2123 if Has_Task (Etype (Id)) then
2124 Check_Restriction (No_Tasking, N);
2126 if Is_Library_Level_Entity (Id) then
2127 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
2128 else
2129 Check_Restriction (Max_Tasks, N);
2130 Check_Restriction (No_Task_Hierarchy, N);
2131 Check_Potentially_Blocking_Operation (N);
2132 end if;
2134 -- A rather specialized test. If we see two tasks being declared
2135 -- of the same type in the same object declaration, and the task
2136 -- has an entry with an address clause, we know that program error
2137 -- will be raised at run-time since we can't have two tasks with
2138 -- entries at the same address.
2140 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
2141 declare
2142 E : Entity_Id;
2144 begin
2145 E := First_Entity (Etype (Id));
2146 while Present (E) loop
2147 if Ekind (E) = E_Entry
2148 and then Present (Get_Attribute_Definition_Clause
2149 (E, Attribute_Address))
2150 then
2151 Error_Msg_N
2152 ("?more than one task with same entry address", N);
2153 Error_Msg_N
2154 ("\?Program_Error will be raised at run time", N);
2155 Insert_Action (N,
2156 Make_Raise_Program_Error (Loc,
2157 Reason => PE_Duplicated_Entry_Address));
2158 exit;
2159 end if;
2161 Next_Entity (E);
2162 end loop;
2163 end;
2164 end if;
2165 end if;
2167 -- Some simple constant-propagation: if the expression is a constant
2168 -- string initialized with a literal, share the literal. This avoids
2169 -- a run-time copy.
2171 if Present (E)
2172 and then Is_Entity_Name (E)
2173 and then Ekind (Entity (E)) = E_Constant
2174 and then Base_Type (Etype (E)) = Standard_String
2175 then
2176 declare
2177 Val : constant Node_Id := Constant_Value (Entity (E));
2178 begin
2179 if Present (Val)
2180 and then Nkind (Val) = N_String_Literal
2181 then
2182 Rewrite (E, New_Copy (Val));
2183 end if;
2184 end;
2185 end if;
2187 -- Another optimization: if the nominal subtype is unconstrained and
2188 -- the expression is a function call that returns an unconstrained
2189 -- type, rewrite the declaration as a renaming of the result of the
2190 -- call. The exceptions below are cases where the copy is expected,
2191 -- either by the back end (Aliased case) or by the semantics, as for
2192 -- initializing controlled types or copying tags for classwide types.
2194 if Present (E)
2195 and then Nkind (E) = N_Explicit_Dereference
2196 and then Nkind (Original_Node (E)) = N_Function_Call
2197 and then not Is_Library_Level_Entity (Id)
2198 and then not Is_Constrained (T)
2199 and then not Is_Aliased (Id)
2200 and then not Is_Class_Wide_Type (T)
2201 and then not Is_Controlled (T)
2202 and then not Has_Controlled_Component (Base_Type (T))
2203 and then Expander_Active
2204 then
2205 Rewrite (N,
2206 Make_Object_Renaming_Declaration (Loc,
2207 Defining_Identifier => Id,
2208 Access_Definition => Empty,
2209 Subtype_Mark => New_Occurrence_Of
2210 (Base_Type (Etype (Id)), Loc),
2211 Name => E));
2213 Set_Renamed_Object (Id, E);
2215 -- Force generation of debugging information for the constant
2216 -- and for the renamed function call.
2218 Set_Needs_Debug_Info (Id);
2219 Set_Needs_Debug_Info (Entity (Prefix (E)));
2220 end if;
2222 if Present (Prev_Entity)
2223 and then Is_Frozen (Prev_Entity)
2224 and then not Error_Posted (Id)
2225 then
2226 Error_Msg_N ("full constant declaration appears too late", N);
2227 end if;
2229 Check_Eliminated (Id);
2230 end Analyze_Object_Declaration;
2232 ---------------------------
2233 -- Analyze_Others_Choice --
2234 ---------------------------
2236 -- Nothing to do for the others choice node itself, the semantic analysis
2237 -- of the others choice will occur as part of the processing of the parent
2239 procedure Analyze_Others_Choice (N : Node_Id) is
2240 pragma Warnings (Off, N);
2241 begin
2242 null;
2243 end Analyze_Others_Choice;
2245 --------------------------------
2246 -- Analyze_Per_Use_Expression --
2247 --------------------------------
2249 procedure Analyze_Per_Use_Expression (N : Node_Id; T : Entity_Id) is
2250 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
2251 begin
2252 In_Default_Expression := True;
2253 Pre_Analyze_And_Resolve (N, T);
2254 In_Default_Expression := Save_In_Default_Expression;
2255 end Analyze_Per_Use_Expression;
2257 -------------------------------------------
2258 -- Analyze_Private_Extension_Declaration --
2259 -------------------------------------------
2261 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
2262 T : constant Entity_Id := Defining_Identifier (N);
2263 Indic : constant Node_Id := Subtype_Indication (N);
2264 Parent_Type : Entity_Id;
2265 Parent_Base : Entity_Id;
2267 begin
2268 Generate_Definition (T);
2269 Enter_Name (T);
2271 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
2272 Parent_Base := Base_Type (Parent_Type);
2274 if Parent_Type = Any_Type
2275 or else Etype (Parent_Type) = Any_Type
2276 then
2277 Set_Ekind (T, Ekind (Parent_Type));
2278 Set_Etype (T, Any_Type);
2279 return;
2281 elsif not Is_Tagged_Type (Parent_Type) then
2282 Error_Msg_N
2283 ("parent of type extension must be a tagged type ", Indic);
2284 return;
2286 elsif Ekind (Parent_Type) = E_Void
2287 or else Ekind (Parent_Type) = E_Incomplete_Type
2288 then
2289 Error_Msg_N ("premature derivation of incomplete type", Indic);
2290 return;
2291 end if;
2293 -- Perhaps the parent type should be changed to the class-wide type's
2294 -- specific type in this case to prevent cascading errors ???
2296 if Is_Class_Wide_Type (Parent_Type) then
2297 Error_Msg_N
2298 ("parent of type extension must not be a class-wide type", Indic);
2299 return;
2300 end if;
2302 if (not Is_Package (Current_Scope)
2303 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
2304 or else In_Private_Part (Current_Scope)
2306 then
2307 Error_Msg_N ("invalid context for private extension", N);
2308 end if;
2310 -- Set common attributes
2312 Set_Is_Pure (T, Is_Pure (Current_Scope));
2313 Set_Scope (T, Current_Scope);
2314 Set_Ekind (T, E_Record_Type_With_Private);
2315 Init_Size_Align (T);
2317 Set_Etype (T, Parent_Base);
2318 Set_Has_Task (T, Has_Task (Parent_Base));
2320 Set_Convention (T, Convention (Parent_Type));
2321 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
2322 Set_Is_First_Subtype (T);
2323 Make_Class_Wide_Type (T);
2325 if Unknown_Discriminants_Present (N) then
2326 Set_Discriminant_Constraint (T, No_Elist);
2327 end if;
2329 Build_Derived_Record_Type (N, Parent_Type, T);
2330 end Analyze_Private_Extension_Declaration;
2332 ---------------------------------
2333 -- Analyze_Subtype_Declaration --
2334 ---------------------------------
2336 procedure Analyze_Subtype_Declaration (N : Node_Id) is
2337 Id : constant Entity_Id := Defining_Identifier (N);
2338 T : Entity_Id;
2339 R_Checks : Check_Result;
2341 begin
2342 Generate_Definition (Id);
2343 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2344 Init_Size_Align (Id);
2346 -- The following guard condition on Enter_Name is to handle cases
2347 -- where the defining identifier has already been entered into the
2348 -- scope but the declaration as a whole needs to be analyzed.
2350 -- This case in particular happens for derived enumeration types. The
2351 -- derived enumeration type is processed as an inserted enumeration
2352 -- type declaration followed by a rewritten subtype declaration. The
2353 -- defining identifier, however, is entered into the name scope very
2354 -- early in the processing of the original type declaration and
2355 -- therefore needs to be avoided here, when the created subtype
2356 -- declaration is analyzed. (See Build_Derived_Types)
2358 -- This also happens when the full view of a private type is derived
2359 -- type with constraints. In this case the entity has been introduced
2360 -- in the private declaration.
2362 if Present (Etype (Id))
2363 and then (Is_Private_Type (Etype (Id))
2364 or else Is_Task_Type (Etype (Id))
2365 or else Is_Rewrite_Substitution (N))
2366 then
2367 null;
2369 else
2370 Enter_Name (Id);
2371 end if;
2373 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2375 -- Inherit common attributes
2377 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2378 Set_Is_Volatile (Id, Is_Volatile (T));
2379 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
2380 Set_Is_Atomic (Id, Is_Atomic (T));
2382 -- In the case where there is no constraint given in the subtype
2383 -- indication, Process_Subtype just returns the Subtype_Mark,
2384 -- so its semantic attributes must be established here.
2386 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2387 Set_Etype (Id, Base_Type (T));
2389 case Ekind (T) is
2390 when Array_Kind =>
2391 Set_Ekind (Id, E_Array_Subtype);
2392 Copy_Array_Subtype_Attributes (Id, T);
2394 when Decimal_Fixed_Point_Kind =>
2395 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2396 Set_Digits_Value (Id, Digits_Value (T));
2397 Set_Delta_Value (Id, Delta_Value (T));
2398 Set_Scale_Value (Id, Scale_Value (T));
2399 Set_Small_Value (Id, Small_Value (T));
2400 Set_Scalar_Range (Id, Scalar_Range (T));
2401 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2402 Set_Is_Constrained (Id, Is_Constrained (T));
2403 Set_RM_Size (Id, RM_Size (T));
2405 when Enumeration_Kind =>
2406 Set_Ekind (Id, E_Enumeration_Subtype);
2407 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2408 Set_Scalar_Range (Id, Scalar_Range (T));
2409 Set_Is_Character_Type (Id, Is_Character_Type (T));
2410 Set_Is_Constrained (Id, Is_Constrained (T));
2411 Set_RM_Size (Id, RM_Size (T));
2413 when Ordinary_Fixed_Point_Kind =>
2414 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2415 Set_Scalar_Range (Id, Scalar_Range (T));
2416 Set_Small_Value (Id, Small_Value (T));
2417 Set_Delta_Value (Id, Delta_Value (T));
2418 Set_Is_Constrained (Id, Is_Constrained (T));
2419 Set_RM_Size (Id, RM_Size (T));
2421 when Float_Kind =>
2422 Set_Ekind (Id, E_Floating_Point_Subtype);
2423 Set_Scalar_Range (Id, Scalar_Range (T));
2424 Set_Digits_Value (Id, Digits_Value (T));
2425 Set_Is_Constrained (Id, Is_Constrained (T));
2427 when Signed_Integer_Kind =>
2428 Set_Ekind (Id, E_Signed_Integer_Subtype);
2429 Set_Scalar_Range (Id, Scalar_Range (T));
2430 Set_Is_Constrained (Id, Is_Constrained (T));
2431 Set_RM_Size (Id, RM_Size (T));
2433 when Modular_Integer_Kind =>
2434 Set_Ekind (Id, E_Modular_Integer_Subtype);
2435 Set_Scalar_Range (Id, Scalar_Range (T));
2436 Set_Is_Constrained (Id, Is_Constrained (T));
2437 Set_RM_Size (Id, RM_Size (T));
2439 when Class_Wide_Kind =>
2440 Set_Ekind (Id, E_Class_Wide_Subtype);
2441 Set_First_Entity (Id, First_Entity (T));
2442 Set_Last_Entity (Id, Last_Entity (T));
2443 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2444 Set_Cloned_Subtype (Id, T);
2445 Set_Is_Tagged_Type (Id, True);
2446 Set_Has_Unknown_Discriminants
2447 (Id, True);
2449 if Ekind (T) = E_Class_Wide_Subtype then
2450 Set_Equivalent_Type (Id, Equivalent_Type (T));
2451 end if;
2453 when E_Record_Type | E_Record_Subtype =>
2454 Set_Ekind (Id, E_Record_Subtype);
2456 if Ekind (T) = E_Record_Subtype
2457 and then Present (Cloned_Subtype (T))
2458 then
2459 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2460 else
2461 Set_Cloned_Subtype (Id, T);
2462 end if;
2464 Set_First_Entity (Id, First_Entity (T));
2465 Set_Last_Entity (Id, Last_Entity (T));
2466 Set_Has_Discriminants (Id, Has_Discriminants (T));
2467 Set_Is_Constrained (Id, Is_Constrained (T));
2468 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2469 Set_Has_Unknown_Discriminants
2470 (Id, Has_Unknown_Discriminants (T));
2472 if Has_Discriminants (T) then
2473 Set_Discriminant_Constraint
2474 (Id, Discriminant_Constraint (T));
2475 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2477 elsif Has_Unknown_Discriminants (Id) then
2478 Set_Discriminant_Constraint (Id, No_Elist);
2479 end if;
2481 if Is_Tagged_Type (T) then
2482 Set_Is_Tagged_Type (Id);
2483 Set_Is_Abstract (Id, Is_Abstract (T));
2484 Set_Primitive_Operations
2485 (Id, Primitive_Operations (T));
2486 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2487 end if;
2489 when Private_Kind =>
2490 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2491 Set_Has_Discriminants (Id, Has_Discriminants (T));
2492 Set_Is_Constrained (Id, Is_Constrained (T));
2493 Set_First_Entity (Id, First_Entity (T));
2494 Set_Last_Entity (Id, Last_Entity (T));
2495 Set_Private_Dependents (Id, New_Elmt_List);
2496 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2497 Set_Has_Unknown_Discriminants
2498 (Id, Has_Unknown_Discriminants (T));
2500 if Is_Tagged_Type (T) then
2501 Set_Is_Tagged_Type (Id);
2502 Set_Is_Abstract (Id, Is_Abstract (T));
2503 Set_Primitive_Operations
2504 (Id, Primitive_Operations (T));
2505 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2506 end if;
2508 -- In general the attributes of the subtype of a private
2509 -- type are the attributes of the partial view of parent.
2510 -- However, the full view may be a discriminated type,
2511 -- and the subtype must share the discriminant constraint
2512 -- to generate correct calls to initialization procedures.
2514 if Has_Discriminants (T) then
2515 Set_Discriminant_Constraint
2516 (Id, Discriminant_Constraint (T));
2517 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2519 elsif Present (Full_View (T))
2520 and then Has_Discriminants (Full_View (T))
2521 then
2522 Set_Discriminant_Constraint
2523 (Id, Discriminant_Constraint (Full_View (T)));
2524 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2526 -- This would seem semantically correct, but apparently
2527 -- confuses the back-end (4412-009). To be explained ???
2529 -- Set_Has_Discriminants (Id);
2530 end if;
2532 Prepare_Private_Subtype_Completion (Id, N);
2534 when Access_Kind =>
2535 Set_Ekind (Id, E_Access_Subtype);
2536 Set_Is_Constrained (Id, Is_Constrained (T));
2537 Set_Is_Access_Constant
2538 (Id, Is_Access_Constant (T));
2539 Set_Directly_Designated_Type
2540 (Id, Designated_Type (T));
2542 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
2543 -- and carry out some static checks
2545 if Null_Exclusion_Present (N)
2546 or else Can_Never_Be_Null (T)
2547 then
2548 Set_Can_Never_Be_Null (Id);
2550 if Null_Exclusion_Present (N)
2551 and then Can_Never_Be_Null (T)
2552 then
2553 Error_Msg_N
2554 ("(Ada 2005) null exclusion not allowed if parent "
2555 & "is already non-null", Subtype_Indication (N));
2556 end if;
2557 end if;
2559 -- A Pure library_item must not contain the declaration of a
2560 -- named access type, except within a subprogram, generic
2561 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2563 if Comes_From_Source (Id)
2564 and then In_Pure_Unit
2565 and then not In_Subprogram_Task_Protected_Unit
2566 then
2567 Error_Msg_N
2568 ("named access types not allowed in pure unit", N);
2569 end if;
2571 when Concurrent_Kind =>
2572 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2573 Set_Corresponding_Record_Type (Id,
2574 Corresponding_Record_Type (T));
2575 Set_First_Entity (Id, First_Entity (T));
2576 Set_First_Private_Entity (Id, First_Private_Entity (T));
2577 Set_Has_Discriminants (Id, Has_Discriminants (T));
2578 Set_Is_Constrained (Id, Is_Constrained (T));
2579 Set_Last_Entity (Id, Last_Entity (T));
2581 if Has_Discriminants (T) then
2582 Set_Discriminant_Constraint (Id,
2583 Discriminant_Constraint (T));
2584 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2585 end if;
2587 -- If the subtype name denotes an incomplete type
2588 -- an error was already reported by Process_Subtype.
2590 when E_Incomplete_Type =>
2591 Set_Etype (Id, Any_Type);
2593 when others =>
2594 raise Program_Error;
2595 end case;
2596 end if;
2598 if Etype (Id) = Any_Type then
2599 return;
2600 end if;
2602 -- Some common processing on all types
2604 Set_Size_Info (Id, T);
2605 Set_First_Rep_Item (Id, First_Rep_Item (T));
2607 T := Etype (Id);
2609 Set_Is_Immediately_Visible (Id, True);
2610 Set_Depends_On_Private (Id, Has_Private_Component (T));
2612 if Present (Generic_Parent_Type (N))
2613 and then
2614 (Nkind
2615 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
2616 or else Nkind
2617 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
2618 /= N_Formal_Private_Type_Definition)
2619 then
2620 if Is_Tagged_Type (Id) then
2621 if Is_Class_Wide_Type (Id) then
2622 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
2623 else
2624 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
2625 end if;
2627 elsif Scope (Etype (Id)) /= Standard_Standard then
2628 Derive_Subprograms (Generic_Parent_Type (N), Id);
2629 end if;
2630 end if;
2632 if Is_Private_Type (T)
2633 and then Present (Full_View (T))
2634 then
2635 Conditional_Delay (Id, Full_View (T));
2637 -- The subtypes of components or subcomponents of protected types
2638 -- do not need freeze nodes, which would otherwise appear in the
2639 -- wrong scope (before the freeze node for the protected type). The
2640 -- proper subtypes are those of the subcomponents of the corresponding
2641 -- record.
2643 elsif Ekind (Scope (Id)) /= E_Protected_Type
2644 and then Present (Scope (Scope (Id))) -- error defense!
2645 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
2646 then
2647 Conditional_Delay (Id, T);
2648 end if;
2650 -- Check that constraint_error is raised for a scalar subtype
2651 -- indication when the lower or upper bound of a non-null range
2652 -- lies outside the range of the type mark.
2654 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
2655 if Is_Scalar_Type (Etype (Id))
2656 and then Scalar_Range (Id) /=
2657 Scalar_Range (Etype (Subtype_Mark
2658 (Subtype_Indication (N))))
2659 then
2660 Apply_Range_Check
2661 (Scalar_Range (Id),
2662 Etype (Subtype_Mark (Subtype_Indication (N))));
2664 elsif Is_Array_Type (Etype (Id))
2665 and then Present (First_Index (Id))
2666 then
2667 -- This really should be a subprogram that finds the indications
2668 -- to check???
2670 if ((Nkind (First_Index (Id)) = N_Identifier
2671 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
2672 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
2673 and then
2674 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
2675 then
2676 declare
2677 Target_Typ : constant Entity_Id :=
2678 Etype
2679 (First_Index (Etype
2680 (Subtype_Mark (Subtype_Indication (N)))));
2681 begin
2682 R_Checks :=
2683 Range_Check
2684 (Scalar_Range (Etype (First_Index (Id))),
2685 Target_Typ,
2686 Etype (First_Index (Id)),
2687 Defining_Identifier (N));
2689 Insert_Range_Checks
2690 (R_Checks,
2692 Target_Typ,
2693 Sloc (Defining_Identifier (N)));
2694 end;
2695 end if;
2696 end if;
2697 end if;
2699 Check_Eliminated (Id);
2700 end Analyze_Subtype_Declaration;
2702 --------------------------------
2703 -- Analyze_Subtype_Indication --
2704 --------------------------------
2706 procedure Analyze_Subtype_Indication (N : Node_Id) is
2707 T : constant Entity_Id := Subtype_Mark (N);
2708 R : constant Node_Id := Range_Expression (Constraint (N));
2710 begin
2711 Analyze (T);
2713 if R /= Error then
2714 Analyze (R);
2715 Set_Etype (N, Etype (R));
2716 else
2717 Set_Error_Posted (R);
2718 Set_Error_Posted (T);
2719 end if;
2720 end Analyze_Subtype_Indication;
2722 ------------------------------
2723 -- Analyze_Type_Declaration --
2724 ------------------------------
2726 procedure Analyze_Type_Declaration (N : Node_Id) is
2727 Def : constant Node_Id := Type_Definition (N);
2728 Def_Id : constant Entity_Id := Defining_Identifier (N);
2729 T : Entity_Id;
2730 Prev : Entity_Id;
2732 Is_Remote : constant Boolean :=
2733 (Is_Remote_Types (Current_Scope)
2734 or else Is_Remote_Call_Interface (Current_Scope))
2735 and then not (In_Private_Part (Current_Scope)
2736 or else
2737 In_Package_Body (Current_Scope));
2739 begin
2740 Prev := Find_Type_Name (N);
2742 -- The full view, if present, now points to the current type
2744 -- Ada 2005 (AI-50217): If the type was previously decorated when
2745 -- imported through a LIMITED WITH clause, it appears as incomplete
2746 -- but has no full view.
2748 if Ekind (Prev) = E_Incomplete_Type
2749 and then Present (Full_View (Prev))
2750 then
2751 T := Full_View (Prev);
2752 else
2753 T := Prev;
2754 end if;
2756 Set_Is_Pure (T, Is_Pure (Current_Scope));
2758 -- We set the flag Is_First_Subtype here. It is needed to set the
2759 -- corresponding flag for the Implicit class-wide-type created
2760 -- during tagged types processing.
2762 Set_Is_First_Subtype (T, True);
2764 -- Only composite types other than array types are allowed to have
2765 -- discriminants.
2767 case Nkind (Def) is
2769 -- For derived types, the rule will be checked once we've figured
2770 -- out the parent type.
2772 when N_Derived_Type_Definition =>
2773 null;
2775 -- For record types, discriminants are allowed
2777 when N_Record_Definition =>
2778 null;
2780 when others =>
2781 if Present (Discriminant_Specifications (N)) then
2782 Error_Msg_N
2783 ("elementary or array type cannot have discriminants",
2784 Defining_Identifier
2785 (First (Discriminant_Specifications (N))));
2786 end if;
2787 end case;
2789 -- Elaborate the type definition according to kind, and generate
2790 -- subsidiary (implicit) subtypes where needed. We skip this if
2791 -- it was already done (this happens during the reanalysis that
2792 -- follows a call to the high level optimizer).
2794 if not Analyzed (T) then
2795 Set_Analyzed (T);
2797 case Nkind (Def) is
2799 when N_Access_To_Subprogram_Definition =>
2800 Access_Subprogram_Declaration (T, Def);
2802 -- If this is a remote access to subprogram, we must create
2803 -- the equivalent fat pointer type, and related subprograms.
2805 if Is_Remote then
2806 Process_Remote_AST_Declaration (N);
2807 end if;
2809 -- Validate categorization rule against access type declaration
2810 -- usually a violation in Pure unit, Shared_Passive unit.
2812 Validate_Access_Type_Declaration (T, N);
2814 when N_Access_To_Object_Definition =>
2815 Access_Type_Declaration (T, Def);
2817 -- Validate categorization rule against access type declaration
2818 -- usually a violation in Pure unit, Shared_Passive unit.
2820 Validate_Access_Type_Declaration (T, N);
2822 -- If we are in a Remote_Call_Interface package and define
2823 -- a RACW, Read and Write attribute must be added.
2825 if Is_Remote
2826 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2827 then
2828 Add_RACW_Features (Def_Id);
2829 end if;
2831 -- Set no strict aliasing flag if config pragma seen
2833 if Opt.No_Strict_Aliasing then
2834 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2835 end if;
2837 when N_Array_Type_Definition =>
2838 Array_Type_Declaration (T, Def);
2840 when N_Derived_Type_Definition =>
2841 Derived_Type_Declaration (T, N, T /= Def_Id);
2843 when N_Enumeration_Type_Definition =>
2844 Enumeration_Type_Declaration (T, Def);
2846 when N_Floating_Point_Definition =>
2847 Floating_Point_Type_Declaration (T, Def);
2849 when N_Decimal_Fixed_Point_Definition =>
2850 Decimal_Fixed_Point_Type_Declaration (T, Def);
2852 when N_Ordinary_Fixed_Point_Definition =>
2853 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2855 when N_Signed_Integer_Type_Definition =>
2856 Signed_Integer_Type_Declaration (T, Def);
2858 when N_Modular_Type_Definition =>
2859 Modular_Type_Declaration (T, Def);
2861 when N_Record_Definition =>
2862 Record_Type_Declaration (T, N, Prev);
2864 when others =>
2865 raise Program_Error;
2867 end case;
2868 end if;
2870 if Etype (T) = Any_Type then
2871 return;
2872 end if;
2874 -- Some common processing for all types
2876 Set_Depends_On_Private (T, Has_Private_Component (T));
2878 -- Both the declared entity, and its anonymous base type if one
2879 -- was created, need freeze nodes allocated.
2881 declare
2882 B : constant Entity_Id := Base_Type (T);
2884 begin
2885 -- In the case where the base type is different from the first
2886 -- subtype, we pre-allocate a freeze node, and set the proper link
2887 -- to the first subtype. Freeze_Entity will use this preallocated
2888 -- freeze node when it freezes the entity.
2890 if B /= T then
2891 Ensure_Freeze_Node (B);
2892 Set_First_Subtype_Link (Freeze_Node (B), T);
2893 end if;
2895 if not From_With_Type (T) then
2896 Set_Has_Delayed_Freeze (T);
2897 end if;
2898 end;
2900 -- Case of T is the full declaration of some private type which has
2901 -- been swapped in Defining_Identifier (N).
2903 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2904 Process_Full_View (N, T, Def_Id);
2906 -- Record the reference. The form of this is a little strange,
2907 -- since the full declaration has been swapped in. So the first
2908 -- parameter here represents the entity to which a reference is
2909 -- made which is the "real" entity, i.e. the one swapped in,
2910 -- and the second parameter provides the reference location.
2912 Generate_Reference (T, T, 'c');
2913 Set_Completion_Referenced (Def_Id);
2915 -- For completion of incomplete type, process incomplete dependents
2916 -- and always mark the full type as referenced (it is the incomplete
2917 -- type that we get for any real reference).
2919 elsif Ekind (Prev) = E_Incomplete_Type then
2920 Process_Incomplete_Dependents (N, T, Prev);
2921 Generate_Reference (Prev, Def_Id, 'c');
2922 Set_Completion_Referenced (Def_Id);
2924 -- If not private type or incomplete type completion, this is a real
2925 -- definition of a new entity, so record it.
2927 else
2928 Generate_Definition (Def_Id);
2929 end if;
2931 Check_Eliminated (Def_Id);
2932 end Analyze_Type_Declaration;
2934 --------------------------
2935 -- Analyze_Variant_Part --
2936 --------------------------
2938 procedure Analyze_Variant_Part (N : Node_Id) is
2940 procedure Non_Static_Choice_Error (Choice : Node_Id);
2941 -- Error routine invoked by the generic instantiation below when
2942 -- the variant part has a non static choice.
2944 procedure Process_Declarations (Variant : Node_Id);
2945 -- Analyzes all the declarations associated with a Variant.
2946 -- Needed by the generic instantiation below.
2948 package Variant_Choices_Processing is new
2949 Generic_Choices_Processing
2950 (Get_Alternatives => Variants,
2951 Get_Choices => Discrete_Choices,
2952 Process_Empty_Choice => No_OP,
2953 Process_Non_Static_Choice => Non_Static_Choice_Error,
2954 Process_Associated_Node => Process_Declarations);
2955 use Variant_Choices_Processing;
2956 -- Instantiation of the generic choice processing package
2958 -----------------------------
2959 -- Non_Static_Choice_Error --
2960 -----------------------------
2962 procedure Non_Static_Choice_Error (Choice : Node_Id) is
2963 begin
2964 Flag_Non_Static_Expr
2965 ("choice given in variant part is not static!", Choice);
2966 end Non_Static_Choice_Error;
2968 --------------------------
2969 -- Process_Declarations --
2970 --------------------------
2972 procedure Process_Declarations (Variant : Node_Id) is
2973 begin
2974 if not Null_Present (Component_List (Variant)) then
2975 Analyze_Declarations (Component_Items (Component_List (Variant)));
2977 if Present (Variant_Part (Component_List (Variant))) then
2978 Analyze (Variant_Part (Component_List (Variant)));
2979 end if;
2980 end if;
2981 end Process_Declarations;
2983 -- Variables local to Analyze_Case_Statement
2985 Discr_Name : Node_Id;
2986 Discr_Type : Entity_Id;
2988 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
2989 Last_Choice : Nat;
2990 Dont_Care : Boolean;
2991 Others_Present : Boolean := False;
2993 -- Start of processing for Analyze_Variant_Part
2995 begin
2996 Discr_Name := Name (N);
2997 Analyze (Discr_Name);
2999 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
3000 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
3001 end if;
3003 Discr_Type := Etype (Entity (Discr_Name));
3005 if not Is_Discrete_Type (Discr_Type) then
3006 Error_Msg_N
3007 ("discriminant in a variant part must be of a discrete type",
3008 Name (N));
3009 return;
3010 end if;
3012 -- Call the instantiated Analyze_Choices which does the rest of the work
3014 Analyze_Choices
3015 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
3016 end Analyze_Variant_Part;
3018 ----------------------------
3019 -- Array_Type_Declaration --
3020 ----------------------------
3022 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
3023 Component_Def : constant Node_Id := Component_Definition (Def);
3024 Element_Type : Entity_Id;
3025 Implicit_Base : Entity_Id;
3026 Index : Node_Id;
3027 Related_Id : Entity_Id := Empty;
3028 Nb_Index : Nat;
3029 P : constant Node_Id := Parent (Def);
3030 Priv : Entity_Id;
3032 begin
3033 if Nkind (Def) = N_Constrained_Array_Definition then
3034 Index := First (Discrete_Subtype_Definitions (Def));
3035 else
3036 Index := First (Subtype_Marks (Def));
3037 end if;
3039 -- Find proper names for the implicit types which may be public.
3040 -- in case of anonymous arrays we use the name of the first object
3041 -- of that type as prefix.
3043 if No (T) then
3044 Related_Id := Defining_Identifier (P);
3045 else
3046 Related_Id := T;
3047 end if;
3049 Nb_Index := 1;
3050 while Present (Index) loop
3051 Analyze (Index);
3052 Make_Index (Index, P, Related_Id, Nb_Index);
3053 Next_Index (Index);
3054 Nb_Index := Nb_Index + 1;
3055 end loop;
3057 if Present (Subtype_Indication (Component_Def)) then
3058 Element_Type := Process_Subtype (Subtype_Indication (Component_Def),
3059 P, Related_Id, 'C');
3061 -- Ada 2005 (AI-230): Access Definition case
3063 else pragma Assert (Present (Access_Definition (Component_Def)));
3064 Element_Type := Access_Definition
3065 (Related_Nod => Related_Id,
3066 N => Access_Definition (Component_Def));
3068 -- Ada 2005 (AI-230): In case of components that are anonymous
3069 -- access types the level of accessibility depends on the enclosing
3070 -- type declaration
3072 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
3074 -- Ada 2005 (AI-254)
3076 declare
3077 CD : constant Node_Id :=
3078 Access_To_Subprogram_Definition
3079 (Access_Definition (Component_Def));
3080 begin
3081 if Present (CD) and then Protected_Present (CD) then
3082 Element_Type :=
3083 Replace_Anonymous_Access_To_Protected_Subprogram
3084 (Def, Element_Type);
3085 end if;
3086 end;
3087 end if;
3089 -- Constrained array case
3091 if No (T) then
3092 T := Create_Itype (E_Void, P, Related_Id, 'T');
3093 end if;
3095 if Nkind (Def) = N_Constrained_Array_Definition then
3097 -- Establish Implicit_Base as unconstrained base type
3099 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
3101 Init_Size_Align (Implicit_Base);
3102 Set_Etype (Implicit_Base, Implicit_Base);
3103 Set_Scope (Implicit_Base, Current_Scope);
3104 Set_Has_Delayed_Freeze (Implicit_Base);
3106 -- The constrained array type is a subtype of the unconstrained one
3108 Set_Ekind (T, E_Array_Subtype);
3109 Init_Size_Align (T);
3110 Set_Etype (T, Implicit_Base);
3111 Set_Scope (T, Current_Scope);
3112 Set_Is_Constrained (T, True);
3113 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
3114 Set_Has_Delayed_Freeze (T);
3116 -- Complete setup of implicit base type
3118 Set_First_Index (Implicit_Base, First_Index (T));
3119 Set_Component_Type (Implicit_Base, Element_Type);
3120 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
3121 Set_Component_Size (Implicit_Base, Uint_0);
3122 Set_Has_Controlled_Component
3123 (Implicit_Base, Has_Controlled_Component
3124 (Element_Type)
3125 or else
3126 Is_Controlled (Element_Type));
3127 Set_Finalize_Storage_Only
3128 (Implicit_Base, Finalize_Storage_Only
3129 (Element_Type));
3131 -- Unconstrained array case
3133 else
3134 Set_Ekind (T, E_Array_Type);
3135 Init_Size_Align (T);
3136 Set_Etype (T, T);
3137 Set_Scope (T, Current_Scope);
3138 Set_Component_Size (T, Uint_0);
3139 Set_Is_Constrained (T, False);
3140 Set_First_Index (T, First (Subtype_Marks (Def)));
3141 Set_Has_Delayed_Freeze (T, True);
3142 Set_Has_Task (T, Has_Task (Element_Type));
3143 Set_Has_Controlled_Component (T, Has_Controlled_Component
3144 (Element_Type)
3145 or else
3146 Is_Controlled (Element_Type));
3147 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
3148 (Element_Type));
3149 end if;
3151 Set_Component_Type (Base_Type (T), Element_Type);
3153 if Aliased_Present (Component_Definition (Def)) then
3154 Set_Has_Aliased_Components (Etype (T));
3155 end if;
3157 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
3158 -- array to ensure that objects of this type are initialized.
3160 if Ada_Version >= Ada_05
3161 and then (Null_Exclusion_Present (Component_Definition (Def))
3162 or else Can_Never_Be_Null (Element_Type))
3163 then
3164 Set_Can_Never_Be_Null (T);
3166 if Null_Exclusion_Present (Component_Definition (Def))
3167 and then Can_Never_Be_Null (Element_Type)
3168 then
3169 Error_Msg_N
3170 ("(Ada 2005) already a null-excluding type",
3171 Subtype_Indication (Component_Definition (Def)));
3172 end if;
3173 end if;
3175 Priv := Private_Component (Element_Type);
3177 if Present (Priv) then
3179 -- Check for circular definitions
3181 if Priv = Any_Type then
3182 Set_Component_Type (Etype (T), Any_Type);
3184 -- There is a gap in the visibility of operations on the composite
3185 -- type only if the component type is defined in a different scope.
3187 elsif Scope (Priv) = Current_Scope then
3188 null;
3190 elsif Is_Limited_Type (Priv) then
3191 Set_Is_Limited_Composite (Etype (T));
3192 Set_Is_Limited_Composite (T);
3193 else
3194 Set_Is_Private_Composite (Etype (T));
3195 Set_Is_Private_Composite (T);
3196 end if;
3197 end if;
3199 -- Create a concatenation operator for the new type. Internal
3200 -- array types created for packed entities do not need such, they
3201 -- are compatible with the user-defined type.
3203 if Number_Dimensions (T) = 1
3204 and then not Is_Packed_Array_Type (T)
3205 then
3206 New_Concatenation_Op (T);
3207 end if;
3209 -- In the case of an unconstrained array the parser has already
3210 -- verified that all the indices are unconstrained but we still
3211 -- need to make sure that the element type is constrained.
3213 if Is_Indefinite_Subtype (Element_Type) then
3214 Error_Msg_N
3215 ("unconstrained element type in array declaration",
3216 Subtype_Indication (Component_Def));
3218 elsif Is_Abstract (Element_Type) then
3219 Error_Msg_N
3220 ("The type of a component cannot be abstract",
3221 Subtype_Indication (Component_Def));
3222 end if;
3224 end Array_Type_Declaration;
3226 ------------------------------------------------------
3227 -- Replace_Anonymous_Access_To_Protected_Subprogram --
3228 ------------------------------------------------------
3230 function Replace_Anonymous_Access_To_Protected_Subprogram
3231 (N : Node_Id;
3232 Prev_E : Entity_Id) return Entity_Id
3234 Loc : constant Source_Ptr := Sloc (N);
3236 Curr_Scope : constant Scope_Stack_Entry :=
3237 Scope_Stack.Table (Scope_Stack.Last);
3239 Anon : constant Entity_Id :=
3240 Make_Defining_Identifier (Loc,
3241 Chars => New_Internal_Name ('S'));
3243 Acc : Node_Id;
3244 Comp : Node_Id;
3245 Decl : Node_Id;
3246 P : Node_Id := Parent (N);
3248 begin
3249 Set_Is_Internal (Anon);
3251 case Nkind (N) is
3252 when N_Component_Declaration |
3253 N_Unconstrained_Array_Definition |
3254 N_Constrained_Array_Definition =>
3255 Comp := Component_Definition (N);
3256 Acc := Access_Definition (Component_Definition (N));
3258 when N_Discriminant_Specification =>
3259 Comp := Discriminant_Type (N);
3260 Acc := Discriminant_Type (N);
3262 when N_Parameter_Specification =>
3263 Comp := Parameter_Type (N);
3264 Acc := Parameter_Type (N);
3266 when others =>
3267 raise Program_Error;
3268 end case;
3270 Decl := Make_Full_Type_Declaration (Loc,
3271 Defining_Identifier => Anon,
3272 Type_Definition =>
3273 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
3275 Mark_Rewrite_Insertion (Decl);
3277 -- Insert the new declaration in the nearest enclosing scope
3279 while Present (P) and then not Has_Declarations (P) loop
3280 P := Parent (P);
3281 end loop;
3283 pragma Assert (Present (P));
3285 if Nkind (P) = N_Package_Specification then
3286 Prepend (Decl, Visible_Declarations (P));
3287 else
3288 Prepend (Decl, Declarations (P));
3289 end if;
3291 -- Replace the anonymous type with an occurrence of the new declaration.
3292 -- In all cases the rewriten node does not have the null-exclusion
3293 -- attribute because (if present) it was already inherited by the
3294 -- anonymous entity (Anon). Thus, in case of components we do not
3295 -- inherit this attribute.
3297 if Nkind (N) = N_Parameter_Specification then
3298 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
3299 Set_Etype (Defining_Identifier (N), Anon);
3300 Set_Null_Exclusion_Present (N, False);
3301 else
3302 Rewrite (Comp,
3303 Make_Component_Definition (Loc,
3304 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
3305 end if;
3307 Mark_Rewrite_Insertion (Comp);
3309 -- Temporarily remove the current scope from the stack to add the new
3310 -- declarations to the enclosing scope
3312 Scope_Stack.Decrement_Last;
3313 Analyze (Decl);
3314 Scope_Stack.Append (Curr_Scope);
3316 Set_Original_Access_Type (Anon, Prev_E);
3317 return Anon;
3318 end Replace_Anonymous_Access_To_Protected_Subprogram;
3320 -------------------------------
3321 -- Build_Derived_Access_Type --
3322 -------------------------------
3324 procedure Build_Derived_Access_Type
3325 (N : Node_Id;
3326 Parent_Type : Entity_Id;
3327 Derived_Type : Entity_Id)
3329 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
3331 Desig_Type : Entity_Id;
3332 Discr : Entity_Id;
3333 Discr_Con_Elist : Elist_Id;
3334 Discr_Con_El : Elmt_Id;
3335 Subt : Entity_Id;
3337 begin
3338 -- Set the designated type so it is available in case this is
3339 -- an access to a self-referential type, e.g. a standard list
3340 -- type with a next pointer. Will be reset after subtype is built.
3342 Set_Directly_Designated_Type
3343 (Derived_Type, Designated_Type (Parent_Type));
3345 Subt := Process_Subtype (S, N);
3347 if Nkind (S) /= N_Subtype_Indication
3348 and then Subt /= Base_Type (Subt)
3349 then
3350 Set_Ekind (Derived_Type, E_Access_Subtype);
3351 end if;
3353 if Ekind (Derived_Type) = E_Access_Subtype then
3354 declare
3355 Pbase : constant Entity_Id := Base_Type (Parent_Type);
3356 Ibase : constant Entity_Id :=
3357 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
3358 Svg_Chars : constant Name_Id := Chars (Ibase);
3359 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
3361 begin
3362 Copy_Node (Pbase, Ibase);
3364 Set_Chars (Ibase, Svg_Chars);
3365 Set_Next_Entity (Ibase, Svg_Next_E);
3366 Set_Sloc (Ibase, Sloc (Derived_Type));
3367 Set_Scope (Ibase, Scope (Derived_Type));
3368 Set_Freeze_Node (Ibase, Empty);
3369 Set_Is_Frozen (Ibase, False);
3370 Set_Comes_From_Source (Ibase, False);
3371 Set_Is_First_Subtype (Ibase, False);
3373 Set_Etype (Ibase, Pbase);
3374 Set_Etype (Derived_Type, Ibase);
3375 end;
3376 end if;
3378 Set_Directly_Designated_Type
3379 (Derived_Type, Designated_Type (Subt));
3381 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
3382 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
3383 Set_Size_Info (Derived_Type, Parent_Type);
3384 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
3385 Set_Depends_On_Private (Derived_Type,
3386 Has_Private_Component (Derived_Type));
3387 Conditional_Delay (Derived_Type, Subt);
3389 -- Ada 2005 (AI-231). Set the null-exclusion attribute
3391 if Null_Exclusion_Present (Type_Definition (N))
3392 or else Can_Never_Be_Null (Parent_Type)
3393 then
3394 Set_Can_Never_Be_Null (Derived_Type);
3395 end if;
3397 -- Note: we do not copy the Storage_Size_Variable, since
3398 -- we always go to the root type for this information.
3400 -- Apply range checks to discriminants for derived record case
3401 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
3403 Desig_Type := Designated_Type (Derived_Type);
3404 if Is_Composite_Type (Desig_Type)
3405 and then (not Is_Array_Type (Desig_Type))
3406 and then Has_Discriminants (Desig_Type)
3407 and then Base_Type (Desig_Type) /= Desig_Type
3408 then
3409 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
3410 Discr_Con_El := First_Elmt (Discr_Con_Elist);
3412 Discr := First_Discriminant (Base_Type (Desig_Type));
3413 while Present (Discr_Con_El) loop
3414 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
3415 Next_Elmt (Discr_Con_El);
3416 Next_Discriminant (Discr);
3417 end loop;
3418 end if;
3419 end Build_Derived_Access_Type;
3421 ------------------------------
3422 -- Build_Derived_Array_Type --
3423 ------------------------------
3425 procedure Build_Derived_Array_Type
3426 (N : Node_Id;
3427 Parent_Type : Entity_Id;
3428 Derived_Type : Entity_Id)
3430 Loc : constant Source_Ptr := Sloc (N);
3431 Tdef : constant Node_Id := Type_Definition (N);
3432 Indic : constant Node_Id := Subtype_Indication (Tdef);
3433 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3434 Implicit_Base : Entity_Id;
3435 New_Indic : Node_Id;
3437 procedure Make_Implicit_Base;
3438 -- If the parent subtype is constrained, the derived type is a
3439 -- subtype of an implicit base type derived from the parent base.
3441 ------------------------
3442 -- Make_Implicit_Base --
3443 ------------------------
3445 procedure Make_Implicit_Base is
3446 begin
3447 Implicit_Base :=
3448 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3450 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3451 Set_Etype (Implicit_Base, Parent_Base);
3453 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
3454 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
3456 Set_Has_Delayed_Freeze (Implicit_Base, True);
3457 end Make_Implicit_Base;
3459 -- Start of processing for Build_Derived_Array_Type
3461 begin
3462 if not Is_Constrained (Parent_Type) then
3463 if Nkind (Indic) /= N_Subtype_Indication then
3464 Set_Ekind (Derived_Type, E_Array_Type);
3466 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3467 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
3469 Set_Has_Delayed_Freeze (Derived_Type, True);
3471 else
3472 Make_Implicit_Base;
3473 Set_Etype (Derived_Type, Implicit_Base);
3475 New_Indic :=
3476 Make_Subtype_Declaration (Loc,
3477 Defining_Identifier => Derived_Type,
3478 Subtype_Indication =>
3479 Make_Subtype_Indication (Loc,
3480 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
3481 Constraint => Constraint (Indic)));
3483 Rewrite (N, New_Indic);
3484 Analyze (N);
3485 end if;
3487 else
3488 if Nkind (Indic) /= N_Subtype_Indication then
3489 Make_Implicit_Base;
3491 Set_Ekind (Derived_Type, Ekind (Parent_Type));
3492 Set_Etype (Derived_Type, Implicit_Base);
3493 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3495 else
3496 Error_Msg_N ("illegal constraint on constrained type", Indic);
3497 end if;
3498 end if;
3500 -- If the parent type is not a derived type itself, and is
3501 -- declared in a closed scope (e.g., a subprogram), then we
3502 -- need to explicitly introduce the new type's concatenation
3503 -- operator since Derive_Subprograms will not inherit the
3504 -- parent's operator. If the parent type is unconstrained, the
3505 -- operator is of the unconstrained base type.
3507 if Number_Dimensions (Parent_Type) = 1
3508 and then not Is_Limited_Type (Parent_Type)
3509 and then not Is_Derived_Type (Parent_Type)
3510 and then not Is_Package (Scope (Base_Type (Parent_Type)))
3511 then
3512 if not Is_Constrained (Parent_Type)
3513 and then Is_Constrained (Derived_Type)
3514 then
3515 New_Concatenation_Op (Implicit_Base);
3516 else
3517 New_Concatenation_Op (Derived_Type);
3518 end if;
3519 end if;
3520 end Build_Derived_Array_Type;
3522 -----------------------------------
3523 -- Build_Derived_Concurrent_Type --
3524 -----------------------------------
3526 procedure Build_Derived_Concurrent_Type
3527 (N : Node_Id;
3528 Parent_Type : Entity_Id;
3529 Derived_Type : Entity_Id)
3531 D_Constraint : Node_Id;
3532 Disc_Spec : Node_Id;
3533 Old_Disc : Entity_Id;
3534 New_Disc : Entity_Id;
3536 Constraint_Present : constant Boolean :=
3537 Nkind (Subtype_Indication (Type_Definition (N)))
3538 = N_Subtype_Indication;
3540 begin
3541 Set_Stored_Constraint (Derived_Type, No_Elist);
3543 if Is_Task_Type (Parent_Type) then
3544 Set_Storage_Size_Variable (Derived_Type,
3545 Storage_Size_Variable (Parent_Type));
3546 end if;
3548 if Present (Discriminant_Specifications (N)) then
3549 New_Scope (Derived_Type);
3550 Check_Or_Process_Discriminants (N, Derived_Type);
3551 End_Scope;
3553 elsif Constraint_Present then
3555 -- Build constrained subtype and derive from it
3557 declare
3558 Loc : constant Source_Ptr := Sloc (N);
3559 Anon : constant Entity_Id :=
3560 Make_Defining_Identifier (Loc,
3561 New_External_Name (Chars (Derived_Type), 'T'));
3562 Decl : Node_Id;
3564 begin
3565 Decl :=
3566 Make_Subtype_Declaration (Loc,
3567 Defining_Identifier => Anon,
3568 Subtype_Indication =>
3569 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
3570 Insert_Before (N, Decl);
3571 Rewrite (Subtype_Indication (Type_Definition (N)),
3572 New_Occurrence_Of (Anon, Loc));
3573 Analyze (Decl);
3574 Set_Analyzed (Derived_Type, False);
3575 Analyze (N);
3576 return;
3577 end;
3578 end if;
3580 -- All attributes are inherited from parent. In particular,
3581 -- entries and the corresponding record type are the same.
3582 -- Discriminants may be renamed, and must be treated separately.
3584 Set_Has_Discriminants
3585 (Derived_Type, Has_Discriminants (Parent_Type));
3586 Set_Corresponding_Record_Type
3587 (Derived_Type, Corresponding_Record_Type (Parent_Type));
3589 if Constraint_Present then
3590 if not Has_Discriminants (Parent_Type) then
3591 Error_Msg_N ("untagged parent must have discriminants", N);
3593 elsif Present (Discriminant_Specifications (N)) then
3595 -- Verify that new discriminants are used to constrain
3596 -- the old ones.
3598 Old_Disc := First_Discriminant (Parent_Type);
3599 New_Disc := First_Discriminant (Derived_Type);
3600 Disc_Spec := First (Discriminant_Specifications (N));
3601 D_Constraint :=
3602 First
3603 (Constraints
3604 (Constraint (Subtype_Indication (Type_Definition (N)))));
3606 while Present (Old_Disc) and then Present (Disc_Spec) loop
3608 if Nkind (Discriminant_Type (Disc_Spec)) /=
3609 N_Access_Definition
3610 then
3611 Analyze (Discriminant_Type (Disc_Spec));
3613 if not Subtypes_Statically_Compatible (
3614 Etype (Discriminant_Type (Disc_Spec)),
3615 Etype (Old_Disc))
3616 then
3617 Error_Msg_N
3618 ("not statically compatible with parent discriminant",
3619 Discriminant_Type (Disc_Spec));
3620 end if;
3621 end if;
3623 if Nkind (D_Constraint) = N_Identifier
3624 and then Chars (D_Constraint) /=
3625 Chars (Defining_Identifier (Disc_Spec))
3626 then
3627 Error_Msg_N ("new discriminants must constrain old ones",
3628 D_Constraint);
3629 else
3630 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
3631 end if;
3633 Next_Discriminant (Old_Disc);
3634 Next_Discriminant (New_Disc);
3635 Next (Disc_Spec);
3636 end loop;
3638 if Present (Old_Disc) or else Present (Disc_Spec) then
3639 Error_Msg_N ("discriminant mismatch in derivation", N);
3640 end if;
3642 end if;
3644 elsif Present (Discriminant_Specifications (N)) then
3645 Error_Msg_N
3646 ("missing discriminant constraint in untagged derivation",
3648 end if;
3650 if Present (Discriminant_Specifications (N)) then
3651 Old_Disc := First_Discriminant (Parent_Type);
3652 while Present (Old_Disc) loop
3654 if No (Next_Entity (Old_Disc))
3655 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
3656 then
3657 Set_Next_Entity (Last_Entity (Derived_Type),
3658 Next_Entity (Old_Disc));
3659 exit;
3660 end if;
3662 Next_Discriminant (Old_Disc);
3663 end loop;
3665 else
3666 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
3667 if Has_Discriminants (Parent_Type) then
3668 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3669 Set_Discriminant_Constraint (
3670 Derived_Type, Discriminant_Constraint (Parent_Type));
3671 end if;
3672 end if;
3674 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
3676 Set_Has_Completion (Derived_Type);
3677 end Build_Derived_Concurrent_Type;
3679 ------------------------------------
3680 -- Build_Derived_Enumeration_Type --
3681 ------------------------------------
3683 procedure Build_Derived_Enumeration_Type
3684 (N : Node_Id;
3685 Parent_Type : Entity_Id;
3686 Derived_Type : Entity_Id)
3688 Loc : constant Source_Ptr := Sloc (N);
3689 Def : constant Node_Id := Type_Definition (N);
3690 Indic : constant Node_Id := Subtype_Indication (Def);
3691 Implicit_Base : Entity_Id;
3692 Literal : Entity_Id;
3693 New_Lit : Entity_Id;
3694 Literals_List : List_Id;
3695 Type_Decl : Node_Id;
3696 Hi, Lo : Node_Id;
3697 Rang_Expr : Node_Id;
3699 begin
3700 -- Since types Standard.Character and Standard.Wide_Character do
3701 -- not have explicit literals lists we need to process types derived
3702 -- from them specially. This is handled by Derived_Standard_Character.
3703 -- If the parent type is a generic type, there are no literals either,
3704 -- and we construct the same skeletal representation as for the generic
3705 -- parent type.
3707 if Root_Type (Parent_Type) = Standard_Character
3708 or else Root_Type (Parent_Type) = Standard_Wide_Character
3709 or else Root_Type (Parent_Type) = Standard_Wide_Wide_Character
3710 then
3711 Derived_Standard_Character (N, Parent_Type, Derived_Type);
3713 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
3714 declare
3715 Lo : Node_Id;
3716 Hi : Node_Id;
3718 begin
3719 Lo :=
3720 Make_Attribute_Reference (Loc,
3721 Attribute_Name => Name_First,
3722 Prefix => New_Reference_To (Derived_Type, Loc));
3723 Set_Etype (Lo, Derived_Type);
3725 Hi :=
3726 Make_Attribute_Reference (Loc,
3727 Attribute_Name => Name_Last,
3728 Prefix => New_Reference_To (Derived_Type, Loc));
3729 Set_Etype (Hi, Derived_Type);
3731 Set_Scalar_Range (Derived_Type,
3732 Make_Range (Loc,
3733 Low_Bound => Lo,
3734 High_Bound => Hi));
3735 end;
3737 else
3738 -- If a constraint is present, analyze the bounds to catch
3739 -- premature usage of the derived literals.
3741 if Nkind (Indic) = N_Subtype_Indication
3742 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
3743 then
3744 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
3745 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
3746 end if;
3748 -- Introduce an implicit base type for the derived type even
3749 -- if there is no constraint attached to it, since this seems
3750 -- closer to the Ada semantics. Build a full type declaration
3751 -- tree for the derived type using the implicit base type as
3752 -- the defining identifier. The build a subtype declaration
3753 -- tree which applies the constraint (if any) have it replace
3754 -- the derived type declaration.
3756 Literal := First_Literal (Parent_Type);
3757 Literals_List := New_List;
3759 while Present (Literal)
3760 and then Ekind (Literal) = E_Enumeration_Literal
3761 loop
3762 -- Literals of the derived type have the same representation as
3763 -- those of the parent type, but this representation can be
3764 -- overridden by an explicit representation clause. Indicate
3765 -- that there is no explicit representation given yet. These
3766 -- derived literals are implicit operations of the new type,
3767 -- and can be overriden by explicit ones.
3769 if Nkind (Literal) = N_Defining_Character_Literal then
3770 New_Lit :=
3771 Make_Defining_Character_Literal (Loc, Chars (Literal));
3772 else
3773 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
3774 end if;
3776 Set_Ekind (New_Lit, E_Enumeration_Literal);
3777 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
3778 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
3779 Set_Enumeration_Rep_Expr (New_Lit, Empty);
3780 Set_Alias (New_Lit, Literal);
3781 Set_Is_Known_Valid (New_Lit, True);
3783 Append (New_Lit, Literals_List);
3784 Next_Literal (Literal);
3785 end loop;
3787 Implicit_Base :=
3788 Make_Defining_Identifier (Sloc (Derived_Type),
3789 New_External_Name (Chars (Derived_Type), 'B'));
3791 -- Indicate the proper nature of the derived type. This must
3792 -- be done before analysis of the literals, to recognize cases
3793 -- when a literal may be hidden by a previous explicit function
3794 -- definition (cf. c83031a).
3796 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
3797 Set_Etype (Derived_Type, Implicit_Base);
3799 Type_Decl :=
3800 Make_Full_Type_Declaration (Loc,
3801 Defining_Identifier => Implicit_Base,
3802 Discriminant_Specifications => No_List,
3803 Type_Definition =>
3804 Make_Enumeration_Type_Definition (Loc, Literals_List));
3806 Mark_Rewrite_Insertion (Type_Decl);
3807 Insert_Before (N, Type_Decl);
3808 Analyze (Type_Decl);
3810 -- After the implicit base is analyzed its Etype needs to be changed
3811 -- to reflect the fact that it is derived from the parent type which
3812 -- was ignored during analysis. We also set the size at this point.
3814 Set_Etype (Implicit_Base, Parent_Type);
3816 Set_Size_Info (Implicit_Base, Parent_Type);
3817 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
3818 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
3820 Set_Has_Non_Standard_Rep
3821 (Implicit_Base, Has_Non_Standard_Rep
3822 (Parent_Type));
3823 Set_Has_Delayed_Freeze (Implicit_Base);
3825 -- Process the subtype indication including a validation check
3826 -- on the constraint, if any. If a constraint is given, its bounds
3827 -- must be implicitly converted to the new type.
3829 if Nkind (Indic) = N_Subtype_Indication then
3830 declare
3831 R : constant Node_Id :=
3832 Range_Expression (Constraint (Indic));
3834 begin
3835 if Nkind (R) = N_Range then
3836 Hi := Build_Scalar_Bound
3837 (High_Bound (R), Parent_Type, Implicit_Base);
3838 Lo := Build_Scalar_Bound
3839 (Low_Bound (R), Parent_Type, Implicit_Base);
3841 else
3842 -- Constraint is a Range attribute. Replace with the
3843 -- explicit mention of the bounds of the prefix, which must
3844 -- be a subtype.
3846 Analyze (Prefix (R));
3847 Hi :=
3848 Convert_To (Implicit_Base,
3849 Make_Attribute_Reference (Loc,
3850 Attribute_Name => Name_Last,
3851 Prefix =>
3852 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3854 Lo :=
3855 Convert_To (Implicit_Base,
3856 Make_Attribute_Reference (Loc,
3857 Attribute_Name => Name_First,
3858 Prefix =>
3859 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3860 end if;
3861 end;
3863 else
3864 Hi :=
3865 Build_Scalar_Bound
3866 (Type_High_Bound (Parent_Type),
3867 Parent_Type, Implicit_Base);
3868 Lo :=
3869 Build_Scalar_Bound
3870 (Type_Low_Bound (Parent_Type),
3871 Parent_Type, Implicit_Base);
3872 end if;
3874 Rang_Expr :=
3875 Make_Range (Loc,
3876 Low_Bound => Lo,
3877 High_Bound => Hi);
3879 -- If we constructed a default range for the case where no range
3880 -- was given, then the expressions in the range must not freeze
3881 -- since they do not correspond to expressions in the source.
3883 if Nkind (Indic) /= N_Subtype_Indication then
3884 Set_Must_Not_Freeze (Lo);
3885 Set_Must_Not_Freeze (Hi);
3886 Set_Must_Not_Freeze (Rang_Expr);
3887 end if;
3889 Rewrite (N,
3890 Make_Subtype_Declaration (Loc,
3891 Defining_Identifier => Derived_Type,
3892 Subtype_Indication =>
3893 Make_Subtype_Indication (Loc,
3894 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
3895 Constraint =>
3896 Make_Range_Constraint (Loc,
3897 Range_Expression => Rang_Expr))));
3899 Analyze (N);
3901 -- If pragma Discard_Names applies on the first subtype of the
3902 -- parent type, then it must be applied on this subtype as well.
3904 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
3905 Set_Discard_Names (Derived_Type);
3906 end if;
3908 -- Apply a range check. Since this range expression doesn't have an
3909 -- Etype, we have to specifically pass the Source_Typ parameter. Is
3910 -- this right???
3912 if Nkind (Indic) = N_Subtype_Indication then
3913 Apply_Range_Check (Range_Expression (Constraint (Indic)),
3914 Parent_Type,
3915 Source_Typ => Entity (Subtype_Mark (Indic)));
3916 end if;
3917 end if;
3918 end Build_Derived_Enumeration_Type;
3920 --------------------------------
3921 -- Build_Derived_Numeric_Type --
3922 --------------------------------
3924 procedure Build_Derived_Numeric_Type
3925 (N : Node_Id;
3926 Parent_Type : Entity_Id;
3927 Derived_Type : Entity_Id)
3929 Loc : constant Source_Ptr := Sloc (N);
3930 Tdef : constant Node_Id := Type_Definition (N);
3931 Indic : constant Node_Id := Subtype_Indication (Tdef);
3932 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3933 No_Constraint : constant Boolean := Nkind (Indic) /=
3934 N_Subtype_Indication;
3935 Implicit_Base : Entity_Id;
3937 Lo : Node_Id;
3938 Hi : Node_Id;
3940 begin
3941 -- Process the subtype indication including a validation check on
3942 -- the constraint if any.
3944 Discard_Node (Process_Subtype (Indic, N));
3946 -- Introduce an implicit base type for the derived type even if there
3947 -- is no constraint attached to it, since this seems closer to the Ada
3948 -- semantics.
3950 Implicit_Base :=
3951 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3953 Set_Etype (Implicit_Base, Parent_Base);
3954 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3955 Set_Size_Info (Implicit_Base, Parent_Base);
3956 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3957 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
3958 Set_Parent (Implicit_Base, Parent (Derived_Type));
3960 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
3961 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3962 end if;
3964 Set_Has_Delayed_Freeze (Implicit_Base);
3966 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
3967 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
3969 Set_Scalar_Range (Implicit_Base,
3970 Make_Range (Loc,
3971 Low_Bound => Lo,
3972 High_Bound => Hi));
3974 if Has_Infinities (Parent_Base) then
3975 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
3976 end if;
3978 -- The Derived_Type, which is the entity of the declaration, is a
3979 -- subtype of the implicit base. Its Ekind is a subtype, even in the
3980 -- absence of an explicit constraint.
3982 Set_Etype (Derived_Type, Implicit_Base);
3984 -- If we did not have a constraint, then the Ekind is set from the
3985 -- parent type (otherwise Process_Subtype has set the bounds)
3987 if No_Constraint then
3988 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
3989 end if;
3991 -- If we did not have a range constraint, then set the range from the
3992 -- parent type. Otherwise, the call to Process_Subtype has set the
3993 -- bounds.
3995 if No_Constraint
3996 or else not Has_Range_Constraint (Indic)
3997 then
3998 Set_Scalar_Range (Derived_Type,
3999 Make_Range (Loc,
4000 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
4001 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
4002 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4004 if Has_Infinities (Parent_Type) then
4005 Set_Includes_Infinities (Scalar_Range (Derived_Type));
4006 end if;
4007 end if;
4009 -- Set remaining type-specific fields, depending on numeric type
4011 if Is_Modular_Integer_Type (Parent_Type) then
4012 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
4014 Set_Non_Binary_Modulus
4015 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
4017 elsif Is_Floating_Point_Type (Parent_Type) then
4019 -- Digits of base type is always copied from the digits value of
4020 -- the parent base type, but the digits of the derived type will
4021 -- already have been set if there was a constraint present.
4023 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4024 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
4026 if No_Constraint then
4027 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
4028 end if;
4030 elsif Is_Fixed_Point_Type (Parent_Type) then
4032 -- Small of base type and derived type are always copied from the
4033 -- parent base type, since smalls never change. The delta of the
4034 -- base type is also copied from the parent base type. However the
4035 -- delta of the derived type will have been set already if a
4036 -- constraint was present.
4038 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
4039 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
4040 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
4042 if No_Constraint then
4043 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
4044 end if;
4046 -- The scale and machine radix in the decimal case are always
4047 -- copied from the parent base type.
4049 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
4050 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
4051 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
4053 Set_Machine_Radix_10
4054 (Derived_Type, Machine_Radix_10 (Parent_Base));
4055 Set_Machine_Radix_10
4056 (Implicit_Base, Machine_Radix_10 (Parent_Base));
4058 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4060 if No_Constraint then
4061 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
4063 else
4064 -- the analysis of the subtype_indication sets the
4065 -- digits value of the derived type.
4067 null;
4068 end if;
4069 end if;
4070 end if;
4072 -- The type of the bounds is that of the parent type, and they
4073 -- must be converted to the derived type.
4075 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
4077 -- The implicit_base should be frozen when the derived type is frozen,
4078 -- but note that it is used in the conversions of the bounds. For fixed
4079 -- types we delay the determination of the bounds until the proper
4080 -- freezing point. For other numeric types this is rejected by GCC, for
4081 -- reasons that are currently unclear (???), so we choose to freeze the
4082 -- implicit base now. In the case of integers and floating point types
4083 -- this is harmless because subsequent representation clauses cannot
4084 -- affect anything, but it is still baffling that we cannot use the
4085 -- same mechanism for all derived numeric types.
4087 if Is_Fixed_Point_Type (Parent_Type) then
4088 Conditional_Delay (Implicit_Base, Parent_Type);
4089 else
4090 Freeze_Before (N, Implicit_Base);
4091 end if;
4092 end Build_Derived_Numeric_Type;
4094 --------------------------------
4095 -- Build_Derived_Private_Type --
4096 --------------------------------
4098 procedure Build_Derived_Private_Type
4099 (N : Node_Id;
4100 Parent_Type : Entity_Id;
4101 Derived_Type : Entity_Id;
4102 Is_Completion : Boolean;
4103 Derive_Subps : Boolean := True)
4105 Der_Base : Entity_Id;
4106 Discr : Entity_Id;
4107 Full_Decl : Node_Id := Empty;
4108 Full_Der : Entity_Id;
4109 Full_P : Entity_Id;
4110 Last_Discr : Entity_Id;
4111 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
4112 Swapped : Boolean := False;
4114 procedure Copy_And_Build;
4115 -- Copy derived type declaration, replace parent with its full view,
4116 -- and analyze new declaration.
4118 --------------------
4119 -- Copy_And_Build --
4120 --------------------
4122 procedure Copy_And_Build is
4123 Full_N : Node_Id;
4125 begin
4126 if Ekind (Parent_Type) in Record_Kind
4127 or else
4128 (Ekind (Parent_Type) in Enumeration_Kind
4129 and then Root_Type (Parent_Type) /= Standard_Character
4130 and then Root_Type (Parent_Type) /= Standard_Wide_Character
4131 and then Root_Type (Parent_Type) /= Standard_Wide_Wide_Character
4132 and then not Is_Generic_Type (Root_Type (Parent_Type)))
4133 then
4134 Full_N := New_Copy_Tree (N);
4135 Insert_After (N, Full_N);
4136 Build_Derived_Type (
4137 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
4139 else
4140 Build_Derived_Type (
4141 N, Parent_Type, Full_Der, True, Derive_Subps => False);
4142 end if;
4143 end Copy_And_Build;
4145 -- Start of processing for Build_Derived_Private_Type
4147 begin
4148 if Is_Tagged_Type (Parent_Type) then
4149 Build_Derived_Record_Type
4150 (N, Parent_Type, Derived_Type, Derive_Subps);
4151 return;
4153 elsif Has_Discriminants (Parent_Type) then
4154 if Present (Full_View (Parent_Type)) then
4155 if not Is_Completion then
4157 -- Copy declaration for subsequent analysis, to provide a
4158 -- completion for what is a private declaration. Indicate that
4159 -- the full type is internally generated.
4161 Full_Decl := New_Copy_Tree (N);
4162 Full_Der := New_Copy (Derived_Type);
4163 Set_Comes_From_Source (Full_Decl, False);
4165 Insert_After (N, Full_Decl);
4167 else
4168 -- If this is a completion, the full view being built is
4169 -- itself private. We build a subtype of the parent with
4170 -- the same constraints as this full view, to convey to the
4171 -- back end the constrained components and the size of this
4172 -- subtype. If the parent is constrained, its full view can
4173 -- serve as the underlying full view of the derived type.
4175 if No (Discriminant_Specifications (N)) then
4176 if Nkind (Subtype_Indication (Type_Definition (N))) =
4177 N_Subtype_Indication
4178 then
4179 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
4181 elsif Is_Constrained (Full_View (Parent_Type)) then
4182 Set_Underlying_Full_View (Derived_Type,
4183 Full_View (Parent_Type));
4184 end if;
4186 else
4187 -- If there are new discriminants, the parent subtype is
4188 -- constrained by them, but it is not clear how to build
4189 -- the underlying_full_view in this case ???
4191 null;
4192 end if;
4193 end if;
4194 end if;
4196 -- Build partial view of derived type from partial view of parent
4198 Build_Derived_Record_Type
4199 (N, Parent_Type, Derived_Type, Derive_Subps);
4201 if Present (Full_View (Parent_Type))
4202 and then not Is_Completion
4203 then
4204 if not In_Open_Scopes (Par_Scope)
4205 or else not In_Same_Source_Unit (N, Parent_Type)
4206 then
4207 -- Swap partial and full views temporarily
4209 Install_Private_Declarations (Par_Scope);
4210 Install_Visible_Declarations (Par_Scope);
4211 Swapped := True;
4212 end if;
4214 -- Build full view of derived type from full view of parent which
4215 -- is now installed. Subprograms have been derived on the partial
4216 -- view, the completion does not derive them anew.
4218 if not Is_Tagged_Type (Parent_Type) then
4219 Build_Derived_Record_Type
4220 (Full_Decl, Parent_Type, Full_Der, False);
4222 else
4223 -- If full view of parent is tagged, the completion
4224 -- inherits the proper primitive operations.
4226 Set_Defining_Identifier (Full_Decl, Full_Der);
4227 Build_Derived_Record_Type
4228 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
4229 Set_Analyzed (Full_Decl);
4230 end if;
4232 if Swapped then
4233 Uninstall_Declarations (Par_Scope);
4235 if In_Open_Scopes (Par_Scope) then
4236 Install_Visible_Declarations (Par_Scope);
4237 end if;
4238 end if;
4240 Der_Base := Base_Type (Derived_Type);
4241 Set_Full_View (Derived_Type, Full_Der);
4242 Set_Full_View (Der_Base, Base_Type (Full_Der));
4244 -- Copy the discriminant list from full view to the partial views
4245 -- (base type and its subtype). Gigi requires that the partial
4246 -- and full views have the same discriminants.
4248 -- Note that since the partial view is pointing to discriminants
4249 -- in the full view, their scope will be that of the full view.
4250 -- This might cause some front end problems and need
4251 -- adjustment???
4253 Discr := First_Discriminant (Base_Type (Full_Der));
4254 Set_First_Entity (Der_Base, Discr);
4256 loop
4257 Last_Discr := Discr;
4258 Next_Discriminant (Discr);
4259 exit when No (Discr);
4260 end loop;
4262 Set_Last_Entity (Der_Base, Last_Discr);
4264 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
4265 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
4266 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
4268 else
4269 -- If this is a completion, the derived type stays private
4270 -- and there is no need to create a further full view, except
4271 -- in the unusual case when the derivation is nested within a
4272 -- child unit, see below.
4274 null;
4275 end if;
4277 elsif Present (Full_View (Parent_Type))
4278 and then Has_Discriminants (Full_View (Parent_Type))
4279 then
4280 if Has_Unknown_Discriminants (Parent_Type)
4281 and then Nkind (Subtype_Indication (Type_Definition (N)))
4282 = N_Subtype_Indication
4283 then
4284 Error_Msg_N
4285 ("cannot constrain type with unknown discriminants",
4286 Subtype_Indication (Type_Definition (N)));
4287 return;
4288 end if;
4290 -- If full view of parent is a record type, Build full view as
4291 -- a derivation from the parent's full view. Partial view remains
4292 -- private. For code generation and linking, the full view must
4293 -- have the same public status as the partial one. This full view
4294 -- is only needed if the parent type is in an enclosing scope, so
4295 -- that the full view may actually become visible, e.g. in a child
4296 -- unit. This is both more efficient, and avoids order of freezing
4297 -- problems with the added entities.
4299 if not Is_Private_Type (Full_View (Parent_Type))
4300 and then (In_Open_Scopes (Scope (Parent_Type)))
4301 then
4302 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
4303 Chars (Derived_Type));
4304 Set_Is_Itype (Full_Der);
4305 Set_Has_Private_Declaration (Full_Der);
4306 Set_Has_Private_Declaration (Derived_Type);
4307 Set_Associated_Node_For_Itype (Full_Der, N);
4308 Set_Parent (Full_Der, Parent (Derived_Type));
4309 Set_Full_View (Derived_Type, Full_Der);
4310 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
4311 Full_P := Full_View (Parent_Type);
4312 Exchange_Declarations (Parent_Type);
4313 Copy_And_Build;
4314 Exchange_Declarations (Full_P);
4316 else
4317 Build_Derived_Record_Type
4318 (N, Full_View (Parent_Type), Derived_Type,
4319 Derive_Subps => False);
4320 end if;
4322 -- In any case, the primitive operations are inherited from
4323 -- the parent type, not from the internal full view.
4325 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
4327 if Derive_Subps then
4328 Derive_Subprograms (Parent_Type, Derived_Type);
4329 end if;
4331 else
4332 -- Untagged type, No discriminants on either view
4334 if Nkind (Subtype_Indication (Type_Definition (N))) =
4335 N_Subtype_Indication
4336 then
4337 Error_Msg_N
4338 ("illegal constraint on type without discriminants", N);
4339 end if;
4341 if Present (Discriminant_Specifications (N))
4342 and then Present (Full_View (Parent_Type))
4343 and then not Is_Tagged_Type (Full_View (Parent_Type))
4344 then
4345 Error_Msg_N
4346 ("cannot add discriminants to untagged type", N);
4347 end if;
4349 Set_Stored_Constraint (Derived_Type, No_Elist);
4350 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4351 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
4352 Set_Has_Controlled_Component
4353 (Derived_Type, Has_Controlled_Component
4354 (Parent_Type));
4356 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4358 if not Is_Controlled (Parent_Type) then
4359 Set_Finalize_Storage_Only
4360 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
4361 end if;
4363 -- Construct the implicit full view by deriving from full view of
4364 -- the parent type. In order to get proper visibility, we install
4365 -- the parent scope and its declarations.
4367 -- ??? if the parent is untagged private and its completion is
4368 -- tagged, this mechanism will not work because we cannot derive
4369 -- from the tagged full view unless we have an extension
4371 if Present (Full_View (Parent_Type))
4372 and then not Is_Tagged_Type (Full_View (Parent_Type))
4373 and then not Is_Completion
4374 then
4375 Full_Der :=
4376 Make_Defining_Identifier (Sloc (Derived_Type),
4377 Chars => Chars (Derived_Type));
4378 Set_Is_Itype (Full_Der);
4379 Set_Has_Private_Declaration (Full_Der);
4380 Set_Has_Private_Declaration (Derived_Type);
4381 Set_Associated_Node_For_Itype (Full_Der, N);
4382 Set_Parent (Full_Der, Parent (Derived_Type));
4383 Set_Full_View (Derived_Type, Full_Der);
4385 if not In_Open_Scopes (Par_Scope) then
4386 Install_Private_Declarations (Par_Scope);
4387 Install_Visible_Declarations (Par_Scope);
4388 Copy_And_Build;
4389 Uninstall_Declarations (Par_Scope);
4391 -- If parent scope is open and in another unit, and parent has a
4392 -- completion, then the derivation is taking place in the visible
4393 -- part of a child unit. In that case retrieve the full view of
4394 -- the parent momentarily.
4396 elsif not In_Same_Source_Unit (N, Parent_Type) then
4397 Full_P := Full_View (Parent_Type);
4398 Exchange_Declarations (Parent_Type);
4399 Copy_And_Build;
4400 Exchange_Declarations (Full_P);
4402 -- Otherwise it is a local derivation
4404 else
4405 Copy_And_Build;
4406 end if;
4408 Set_Scope (Full_Der, Current_Scope);
4409 Set_Is_First_Subtype (Full_Der,
4410 Is_First_Subtype (Derived_Type));
4411 Set_Has_Size_Clause (Full_Der, False);
4412 Set_Has_Alignment_Clause (Full_Der, False);
4413 Set_Next_Entity (Full_Der, Empty);
4414 Set_Has_Delayed_Freeze (Full_Der);
4415 Set_Is_Frozen (Full_Der, False);
4416 Set_Freeze_Node (Full_Der, Empty);
4417 Set_Depends_On_Private (Full_Der,
4418 Has_Private_Component (Full_Der));
4419 Set_Public_Status (Full_Der);
4420 end if;
4421 end if;
4423 Set_Has_Unknown_Discriminants (Derived_Type,
4424 Has_Unknown_Discriminants (Parent_Type));
4426 if Is_Private_Type (Derived_Type) then
4427 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4428 end if;
4430 if Is_Private_Type (Parent_Type)
4431 and then Base_Type (Parent_Type) = Parent_Type
4432 and then In_Open_Scopes (Scope (Parent_Type))
4433 then
4434 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
4436 if Is_Child_Unit (Scope (Current_Scope))
4437 and then Is_Completion
4438 and then In_Private_Part (Current_Scope)
4439 and then Scope (Parent_Type) /= Current_Scope
4440 then
4441 -- This is the unusual case where a type completed by a private
4442 -- derivation occurs within a package nested in a child unit,
4443 -- and the parent is declared in an ancestor. In this case, the
4444 -- full view of the parent type will become visible in the body
4445 -- of the enclosing child, and only then will the current type
4446 -- be possibly non-private. We build a underlying full view that
4447 -- will be installed when the enclosing child body is compiled.
4449 declare
4450 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
4452 begin
4453 Full_Der :=
4454 Make_Defining_Identifier (Sloc (Derived_Type),
4455 Chars (Derived_Type));
4456 Set_Is_Itype (Full_Der);
4457 Set_Itype (IR, Full_Der);
4458 Insert_After (N, IR);
4460 -- The full view will be used to swap entities on entry/exit
4461 -- to the body, and must appear in the entity list for the
4462 -- package.
4464 Append_Entity (Full_Der, Scope (Derived_Type));
4465 Set_Has_Private_Declaration (Full_Der);
4466 Set_Has_Private_Declaration (Derived_Type);
4467 Set_Associated_Node_For_Itype (Full_Der, N);
4468 Set_Parent (Full_Der, Parent (Derived_Type));
4469 Full_P := Full_View (Parent_Type);
4470 Exchange_Declarations (Parent_Type);
4471 Copy_And_Build;
4472 Exchange_Declarations (Full_P);
4473 Set_Underlying_Full_View (Derived_Type, Full_Der);
4474 end;
4475 end if;
4476 end if;
4477 end Build_Derived_Private_Type;
4479 -------------------------------
4480 -- Build_Derived_Record_Type --
4481 -------------------------------
4483 -- 1. INTRODUCTION
4485 -- Ideally we would like to use the same model of type derivation for
4486 -- tagged and untagged record types. Unfortunately this is not quite
4487 -- possible because the semantics of representation clauses is different
4488 -- for tagged and untagged records under inheritance. Consider the
4489 -- following:
4491 -- type R (...) is [tagged] record ... end record;
4492 -- type T (...) is new R (...) [with ...];
4494 -- The representation clauses of T can specify a completely different
4495 -- record layout from R's. Hence the same component can be placed in
4496 -- two very different positions in objects of type T and R. If R and T
4497 -- are tagged types, representation clauses for T can only specify the
4498 -- layout of non inherited components, thus components that are common
4499 -- in R and T have the same position in objects of type R and T.
4501 -- This has two implications. The first is that the entire tree for R's
4502 -- declaration needs to be copied for T in the untagged case, so that T
4503 -- can be viewed as a record type of its own with its own representation
4504 -- clauses. The second implication is the way we handle discriminants.
4505 -- Specifically, in the untagged case we need a way to communicate to Gigi
4506 -- what are the real discriminants in the record, while for the semantics
4507 -- we need to consider those introduced by the user to rename the
4508 -- discriminants in the parent type. This is handled by introducing the
4509 -- notion of stored discriminants. See below for more.
4511 -- Fortunately the way regular components are inherited can be handled in
4512 -- the same way in tagged and untagged types.
4514 -- To complicate things a bit more the private view of a private extension
4515 -- cannot be handled in the same way as the full view (for one thing the
4516 -- semantic rules are somewhat different). We will explain what differs
4517 -- below.
4519 -- 2. DISCRIMINANTS UNDER INHERITANCE
4521 -- The semantic rules governing the discriminants of derived types are
4522 -- quite subtle.
4524 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
4525 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
4527 -- If parent type has discriminants, then the discriminants that are
4528 -- declared in the derived type are [3.4 (11)]:
4530 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
4531 -- there is one;
4533 -- o Otherwise, each discriminant of the parent type (implicitly declared
4534 -- in the same order with the same specifications). In this case, the
4535 -- discriminants are said to be "inherited", or if unknown in the parent
4536 -- are also unknown in the derived type.
4538 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
4540 -- o The parent subtype shall be constrained;
4542 -- o If the parent type is not a tagged type, then each discriminant of
4543 -- the derived type shall be used in the constraint defining a parent
4544 -- subtype [Implementation note: this ensures that the new discriminant
4545 -- can share storage with an existing discriminant.].
4547 -- For the derived type each discriminant of the parent type is either
4548 -- inherited, constrained to equal some new discriminant of the derived
4549 -- type, or constrained to the value of an expression.
4551 -- When inherited or constrained to equal some new discriminant, the
4552 -- parent discriminant and the discriminant of the derived type are said
4553 -- to "correspond".
4555 -- If a discriminant of the parent type is constrained to a specific value
4556 -- in the derived type definition, then the discriminant is said to be
4557 -- "specified" by that derived type definition.
4559 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
4561 -- We have spoken about stored discriminants in point 1 (introduction)
4562 -- above. There are two sort of stored discriminants: implicit and
4563 -- explicit. As long as the derived type inherits the same discriminants as
4564 -- the root record type, stored discriminants are the same as regular
4565 -- discriminants, and are said to be implicit. However, if any discriminant
4566 -- in the root type was renamed in the derived type, then the derived
4567 -- type will contain explicit stored discriminants. Explicit stored
4568 -- discriminants are discriminants in addition to the semantically visible
4569 -- discriminants defined for the derived type. Stored discriminants are
4570 -- used by Gigi to figure out what are the physical discriminants in
4571 -- objects of the derived type (see precise definition in einfo.ads).
4572 -- As an example, consider the following:
4574 -- type R (D1, D2, D3 : Int) is record ... end record;
4575 -- type T1 is new R;
4576 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
4577 -- type T3 is new T2;
4578 -- type T4 (Y : Int) is new T3 (Y, 99);
4580 -- The following table summarizes the discriminants and stored
4581 -- discriminants in R and T1 through T4.
4583 -- Type Discrim Stored Discrim Comment
4584 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
4585 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
4586 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
4587 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
4588 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
4590 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
4591 -- find the corresponding discriminant in the parent type, while
4592 -- Original_Record_Component (abbreviated ORC below), the actual physical
4593 -- component that is renamed. Finally the field Is_Completely_Hidden
4594 -- (abbreviated ICH below) is set for all explicit stored discriminants
4595 -- (see einfo.ads for more info). For the above example this gives:
4597 -- Discrim CD ORC ICH
4598 -- ^^^^^^^ ^^ ^^^ ^^^
4599 -- D1 in R empty itself no
4600 -- D2 in R empty itself no
4601 -- D3 in R empty itself no
4603 -- D1 in T1 D1 in R itself no
4604 -- D2 in T1 D2 in R itself no
4605 -- D3 in T1 D3 in R itself no
4607 -- X1 in T2 D3 in T1 D3 in T2 no
4608 -- X2 in T2 D1 in T1 D1 in T2 no
4609 -- D1 in T2 empty itself yes
4610 -- D2 in T2 empty itself yes
4611 -- D3 in T2 empty itself yes
4613 -- X1 in T3 X1 in T2 D3 in T3 no
4614 -- X2 in T3 X2 in T2 D1 in T3 no
4615 -- D1 in T3 empty itself yes
4616 -- D2 in T3 empty itself yes
4617 -- D3 in T3 empty itself yes
4619 -- Y in T4 X1 in T3 D3 in T3 no
4620 -- D1 in T3 empty itself yes
4621 -- D2 in T3 empty itself yes
4622 -- D3 in T3 empty itself yes
4624 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
4626 -- Type derivation for tagged types is fairly straightforward. if no
4627 -- discriminants are specified by the derived type, these are inherited
4628 -- from the parent. No explicit stored discriminants are ever necessary.
4629 -- The only manipulation that is done to the tree is that of adding a
4630 -- _parent field with parent type and constrained to the same constraint
4631 -- specified for the parent in the derived type definition. For instance:
4633 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4634 -- type T1 is new R with null record;
4635 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4637 -- are changed into:
4639 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4640 -- _parent : R (D1, D2, D3);
4641 -- end record;
4643 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4644 -- _parent : T1 (X2, 88, X1);
4645 -- end record;
4647 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4648 -- ORC and ICH fields are:
4650 -- Discrim CD ORC ICH
4651 -- ^^^^^^^ ^^ ^^^ ^^^
4652 -- D1 in R empty itself no
4653 -- D2 in R empty itself no
4654 -- D3 in R empty itself no
4656 -- D1 in T1 D1 in R D1 in R no
4657 -- D2 in T1 D2 in R D2 in R no
4658 -- D3 in T1 D3 in R D3 in R no
4660 -- X1 in T2 D3 in T1 D3 in R no
4661 -- X2 in T2 D1 in T1 D1 in R no
4663 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
4665 -- Regardless of whether we dealing with a tagged or untagged type
4666 -- we will transform all derived type declarations of the form
4668 -- type T is new R (...) [with ...];
4669 -- or
4670 -- subtype S is R (...);
4671 -- type T is new S [with ...];
4672 -- into
4673 -- type BT is new R [with ...];
4674 -- subtype T is BT (...);
4676 -- That is, the base derived type is constrained only if it has no
4677 -- discriminants. The reason for doing this is that GNAT's semantic model
4678 -- assumes that a base type with discriminants is unconstrained.
4680 -- Note that, strictly speaking, the above transformation is not always
4681 -- correct. Consider for instance the following excerpt from ACVC b34011a:
4683 -- procedure B34011A is
4684 -- type REC (D : integer := 0) is record
4685 -- I : Integer;
4686 -- end record;
4688 -- package P is
4689 -- type T6 is new Rec;
4690 -- function F return T6;
4691 -- end P;
4693 -- use P;
4694 -- package Q6 is
4695 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4696 -- end Q6;
4698 -- The definition of Q6.U is illegal. However transforming Q6.U into
4700 -- type BaseU is new T6;
4701 -- subtype U is BaseU (Q6.F.I)
4703 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4704 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4705 -- the transformation described above.
4707 -- There is another instance where the above transformation is incorrect.
4708 -- Consider:
4710 -- package Pack is
4711 -- type Base (D : Integer) is tagged null record;
4712 -- procedure P (X : Base);
4714 -- type Der is new Base (2) with null record;
4715 -- procedure P (X : Der);
4716 -- end Pack;
4718 -- Then the above transformation turns this into
4720 -- type Der_Base is new Base with null record;
4721 -- -- procedure P (X : Base) is implicitly inherited here
4722 -- -- as procedure P (X : Der_Base).
4724 -- subtype Der is Der_Base (2);
4725 -- procedure P (X : Der);
4726 -- -- The overriding of P (X : Der_Base) is illegal since we
4727 -- -- have a parameter conformance problem.
4729 -- To get around this problem, after having semantically processed Der_Base
4730 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4731 -- Discriminant_Constraint from Der so that when parameter conformance is
4732 -- checked when P is overridden, no semantic errors are flagged.
4734 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
4736 -- Regardless of whether we are dealing with a tagged or untagged type
4737 -- we will transform all derived type declarations of the form
4739 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4740 -- type T is new R [with ...];
4741 -- into
4742 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4744 -- The reason for such transformation is that it allows us to implement a
4745 -- very clean form of component inheritance as explained below.
4747 -- Note that this transformation is not achieved by direct tree rewriting
4748 -- and manipulation, but rather by redoing the semantic actions that the
4749 -- above transformation will entail. This is done directly in routine
4750 -- Inherit_Components.
4752 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
4754 -- In both tagged and untagged derived types, regular non discriminant
4755 -- components are inherited in the derived type from the parent type. In
4756 -- the absence of discriminants component, inheritance is straightforward
4757 -- as components can simply be copied from the parent.
4759 -- If the parent has discriminants, inheriting components constrained with
4760 -- these discriminants requires caution. Consider the following example:
4762 -- type R (D1, D2 : Positive) is [tagged] record
4763 -- S : String (D1 .. D2);
4764 -- end record;
4766 -- type T1 is new R [with null record];
4767 -- type T2 (X : positive) is new R (1, X) [with null record];
4769 -- As explained in 6. above, T1 is rewritten as
4770 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4771 -- which makes the treatment for T1 and T2 identical.
4773 -- What we want when inheriting S, is that references to D1 and D2 in R are
4774 -- replaced with references to their correct constraints, ie D1 and D2 in
4775 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4776 -- with either discriminant references in the derived type or expressions.
4777 -- This replacement is achieved as follows: before inheriting R's
4778 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4779 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4780 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4781 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4782 -- by String (1 .. X).
4784 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
4786 -- We explain here the rules governing private type extensions relevant to
4787 -- type derivation. These rules are explained on the following example:
4789 -- type D [(...)] is new A [(...)] with private; <-- partial view
4790 -- type D [(...)] is new P [(...)] with null record; <-- full view
4792 -- Type A is called the ancestor subtype of the private extension.
4793 -- Type P is the parent type of the full view of the private extension. It
4794 -- must be A or a type derived from A.
4796 -- The rules concerning the discriminants of private type extensions are
4797 -- [7.3(10-13)]:
4799 -- o If a private extension inherits known discriminants from the ancestor
4800 -- subtype, then the full view shall also inherit its discriminants from
4801 -- the ancestor subtype and the parent subtype of the full view shall be
4802 -- constrained if and only if the ancestor subtype is constrained.
4804 -- o If a partial view has unknown discriminants, then the full view may
4805 -- define a definite or an indefinite subtype, with or without
4806 -- discriminants.
4808 -- o If a partial view has neither known nor unknown discriminants, then
4809 -- the full view shall define a definite subtype.
4811 -- o If the ancestor subtype of a private extension has constrained
4812 -- discriminants, then the parent subtype of the full view shall impose a
4813 -- statically matching constraint on those discriminants.
4815 -- This means that only the following forms of private extensions are
4816 -- allowed:
4818 -- type D is new A with private; <-- partial view
4819 -- type D is new P with null record; <-- full view
4821 -- If A has no discriminants than P has no discriminants, otherwise P must
4822 -- inherit A's discriminants.
4824 -- type D is new A (...) with private; <-- partial view
4825 -- type D is new P (:::) with null record; <-- full view
4827 -- P must inherit A's discriminants and (...) and (:::) must statically
4828 -- match.
4830 -- subtype A is R (...);
4831 -- type D is new A with private; <-- partial view
4832 -- type D is new P with null record; <-- full view
4834 -- P must have inherited R's discriminants and must be derived from A or
4835 -- any of its subtypes.
4837 -- type D (..) is new A with private; <-- partial view
4838 -- type D (..) is new P [(:::)] with null record; <-- full view
4840 -- No specific constraints on P's discriminants or constraint (:::).
4841 -- Note that A can be unconstrained, but the parent subtype P must either
4842 -- be constrained or (:::) must be present.
4844 -- type D (..) is new A [(...)] with private; <-- partial view
4845 -- type D (..) is new P [(:::)] with null record; <-- full view
4847 -- P's constraints on A's discriminants must statically match those
4848 -- imposed by (...).
4850 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
4852 -- The full view of a private extension is handled exactly as described
4853 -- above. The model chose for the private view of a private extension is
4854 -- the same for what concerns discriminants (ie they receive the same
4855 -- treatment as in the tagged case). However, the private view of the
4856 -- private extension always inherits the components of the parent base,
4857 -- without replacing any discriminant reference. Strictly speaking this is
4858 -- incorrect. However, Gigi never uses this view to generate code so this
4859 -- is a purely semantic issue. In theory, a set of transformations similar
4860 -- to those given in 5. and 6. above could be applied to private views of
4861 -- private extensions to have the same model of component inheritance as
4862 -- for non private extensions. However, this is not done because it would
4863 -- further complicate private type processing. Semantically speaking, this
4864 -- leaves us in an uncomfortable situation. As an example consider:
4866 -- package Pack is
4867 -- type R (D : integer) is tagged record
4868 -- S : String (1 .. D);
4869 -- end record;
4870 -- procedure P (X : R);
4871 -- type T is new R (1) with private;
4872 -- private
4873 -- type T is new R (1) with null record;
4874 -- end;
4876 -- This is transformed into:
4878 -- package Pack is
4879 -- type R (D : integer) is tagged record
4880 -- S : String (1 .. D);
4881 -- end record;
4882 -- procedure P (X : R);
4883 -- type T is new R (1) with private;
4884 -- private
4885 -- type BaseT is new R with null record;
4886 -- subtype T is BaseT (1);
4887 -- end;
4889 -- (strictly speaking the above is incorrect Ada)
4891 -- From the semantic standpoint the private view of private extension T
4892 -- should be flagged as constrained since one can clearly have
4894 -- Obj : T;
4896 -- in a unit withing Pack. However, when deriving subprograms for the
4897 -- private view of private extension T, T must be seen as unconstrained
4898 -- since T has discriminants (this is a constraint of the current
4899 -- subprogram derivation model). Thus, when processing the private view of
4900 -- a private extension such as T, we first mark T as unconstrained, we
4901 -- process it, we perform program derivation and just before returning from
4902 -- Build_Derived_Record_Type we mark T as constrained.
4904 -- ??? Are there are other uncomfortable cases that we will have to
4905 -- deal with.
4907 -- 10. RECORD_TYPE_WITH_PRIVATE complications
4909 -- Types that are derived from a visible record type and have a private
4910 -- extension present other peculiarities. They behave mostly like private
4911 -- types, but if they have primitive operations defined, these will not
4912 -- have the proper signatures for further inheritance, because other
4913 -- primitive operations will use the implicit base that we define for
4914 -- private derivations below. This affect subprogram inheritance (see
4915 -- Derive_Subprograms for details). We also derive the implicit base from
4916 -- the base type of the full view, so that the implicit base is a record
4917 -- type and not another private type, This avoids infinite loops.
4919 procedure Build_Derived_Record_Type
4920 (N : Node_Id;
4921 Parent_Type : Entity_Id;
4922 Derived_Type : Entity_Id;
4923 Derive_Subps : Boolean := True)
4925 Loc : constant Source_Ptr := Sloc (N);
4926 Parent_Base : Entity_Id;
4927 Type_Def : Node_Id;
4928 Indic : Node_Id;
4929 Discrim : Entity_Id;
4930 Last_Discrim : Entity_Id;
4931 Constrs : Elist_Id;
4933 Discs : Elist_Id := New_Elmt_List;
4934 -- An empty Discs list means that there were no constraints in the
4935 -- subtype indication or that there was an error processing it.
4937 Assoc_List : Elist_Id;
4938 New_Discrs : Elist_Id;
4939 New_Base : Entity_Id;
4940 New_Decl : Node_Id;
4941 New_Indic : Node_Id;
4943 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
4944 Discriminant_Specs : constant Boolean :=
4945 Present (Discriminant_Specifications (N));
4946 Private_Extension : constant Boolean :=
4947 (Nkind (N) = N_Private_Extension_Declaration);
4949 Constraint_Present : Boolean;
4950 Inherit_Discrims : Boolean := False;
4952 Save_Etype : Entity_Id;
4953 Save_Discr_Constr : Elist_Id;
4954 Save_Next_Entity : Entity_Id;
4956 begin
4957 if Ekind (Parent_Type) = E_Record_Type_With_Private
4958 and then Present (Full_View (Parent_Type))
4959 and then Has_Discriminants (Parent_Type)
4960 then
4961 Parent_Base := Base_Type (Full_View (Parent_Type));
4962 else
4963 Parent_Base := Base_Type (Parent_Type);
4964 end if;
4966 -- Before we start the previously documented transformations, here is
4967 -- a little fix for size and alignment of tagged types. Normally when
4968 -- we derive type D from type P, we copy the size and alignment of P
4969 -- as the default for D, and in the absence of explicit representation
4970 -- clauses for D, the size and alignment are indeed the same as the
4971 -- parent.
4973 -- But this is wrong for tagged types, since fields may be added,
4974 -- and the default size may need to be larger, and the default
4975 -- alignment may need to be larger.
4977 -- We therefore reset the size and alignment fields in the tagged
4978 -- case. Note that the size and alignment will in any case be at
4979 -- least as large as the parent type (since the derived type has
4980 -- a copy of the parent type in the _parent field)
4982 if Is_Tagged then
4983 Init_Size_Align (Derived_Type);
4984 end if;
4986 -- STEP 0a: figure out what kind of derived type declaration we have
4988 if Private_Extension then
4989 Type_Def := N;
4990 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
4992 else
4993 Type_Def := Type_Definition (N);
4995 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4996 -- Parent_Base can be a private type or private extension. However,
4997 -- for tagged types with an extension the newly added fields are
4998 -- visible and hence the Derived_Type is always an E_Record_Type.
4999 -- (except that the parent may have its own private fields).
5000 -- For untagged types we preserve the Ekind of the Parent_Base.
5002 if Present (Record_Extension_Part (Type_Def)) then
5003 Set_Ekind (Derived_Type, E_Record_Type);
5004 else
5005 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5006 end if;
5007 end if;
5009 -- Indic can either be an N_Identifier if the subtype indication
5010 -- contains no constraint or an N_Subtype_Indication if the subtype
5011 -- indication has a constraint.
5013 Indic := Subtype_Indication (Type_Def);
5014 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
5016 -- Check that the type has visible discriminants. The type may be
5017 -- a private type with unknown discriminants whose full view has
5018 -- discriminants which are invisible.
5020 if Constraint_Present then
5021 if not Has_Discriminants (Parent_Base)
5022 or else
5023 (Has_Unknown_Discriminants (Parent_Base)
5024 and then Is_Private_Type (Parent_Base))
5025 then
5026 Error_Msg_N
5027 ("invalid constraint: type has no discriminant",
5028 Constraint (Indic));
5030 Constraint_Present := False;
5031 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5033 elsif Is_Constrained (Parent_Type) then
5034 Error_Msg_N
5035 ("invalid constraint: parent type is already constrained",
5036 Constraint (Indic));
5038 Constraint_Present := False;
5039 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5040 end if;
5041 end if;
5043 -- STEP 0b: If needed, apply transformation given in point 5. above
5045 if not Private_Extension
5046 and then Has_Discriminants (Parent_Type)
5047 and then not Discriminant_Specs
5048 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
5049 then
5050 -- First, we must analyze the constraint (see comment in point 5.)
5052 if Constraint_Present then
5053 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
5055 if Has_Discriminants (Derived_Type)
5056 and then Has_Private_Declaration (Derived_Type)
5057 and then Present (Discriminant_Constraint (Derived_Type))
5058 then
5059 -- Verify that constraints of the full view conform to those
5060 -- given in partial view.
5062 declare
5063 C1, C2 : Elmt_Id;
5065 begin
5066 C1 := First_Elmt (New_Discrs);
5067 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
5069 while Present (C1) and then Present (C2) loop
5070 if not
5071 Fully_Conformant_Expressions (Node (C1), Node (C2))
5072 then
5073 Error_Msg_N (
5074 "constraint not conformant to previous declaration",
5075 Node (C1));
5076 end if;
5077 Next_Elmt (C1);
5078 Next_Elmt (C2);
5079 end loop;
5080 end;
5081 end if;
5082 end if;
5084 -- Insert and analyze the declaration for the unconstrained base type
5086 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
5088 New_Decl :=
5089 Make_Full_Type_Declaration (Loc,
5090 Defining_Identifier => New_Base,
5091 Type_Definition =>
5092 Make_Derived_Type_Definition (Loc,
5093 Abstract_Present => Abstract_Present (Type_Def),
5094 Subtype_Indication =>
5095 New_Occurrence_Of (Parent_Base, Loc),
5096 Record_Extension_Part =>
5097 Relocate_Node (Record_Extension_Part (Type_Def))));
5099 Set_Parent (New_Decl, Parent (N));
5100 Mark_Rewrite_Insertion (New_Decl);
5101 Insert_Before (N, New_Decl);
5103 -- Note that this call passes False for the Derive_Subps parameter
5104 -- because subprogram derivation is deferred until after creating
5105 -- the subtype (see below).
5107 Build_Derived_Type
5108 (New_Decl, Parent_Base, New_Base,
5109 Is_Completion => True, Derive_Subps => False);
5111 -- ??? This needs re-examination to determine whether the
5112 -- above call can simply be replaced by a call to Analyze.
5114 Set_Analyzed (New_Decl);
5116 -- Insert and analyze the declaration for the constrained subtype
5118 if Constraint_Present then
5119 New_Indic :=
5120 Make_Subtype_Indication (Loc,
5121 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5122 Constraint => Relocate_Node (Constraint (Indic)));
5124 else
5125 declare
5126 Constr_List : constant List_Id := New_List;
5127 C : Elmt_Id;
5128 Expr : Node_Id;
5130 begin
5131 C := First_Elmt (Discriminant_Constraint (Parent_Type));
5132 while Present (C) loop
5133 Expr := Node (C);
5135 -- It is safe here to call New_Copy_Tree since
5136 -- Force_Evaluation was called on each constraint in
5137 -- Build_Discriminant_Constraints.
5139 Append (New_Copy_Tree (Expr), To => Constr_List);
5141 Next_Elmt (C);
5142 end loop;
5144 New_Indic :=
5145 Make_Subtype_Indication (Loc,
5146 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5147 Constraint =>
5148 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
5149 end;
5150 end if;
5152 Rewrite (N,
5153 Make_Subtype_Declaration (Loc,
5154 Defining_Identifier => Derived_Type,
5155 Subtype_Indication => New_Indic));
5157 Analyze (N);
5159 -- Derivation of subprograms must be delayed until the full subtype
5160 -- has been established to ensure proper overriding of subprograms
5161 -- inherited by full types. If the derivations occurred as part of
5162 -- the call to Build_Derived_Type above, then the check for type
5163 -- conformance would fail because earlier primitive subprograms
5164 -- could still refer to the full type prior the change to the new
5165 -- subtype and hence would not match the new base type created here.
5167 Derive_Subprograms (Parent_Type, Derived_Type);
5169 -- For tagged types the Discriminant_Constraint of the new base itype
5170 -- is inherited from the first subtype so that no subtype conformance
5171 -- problem arise when the first subtype overrides primitive
5172 -- operations inherited by the implicit base type.
5174 if Is_Tagged then
5175 Set_Discriminant_Constraint
5176 (New_Base, Discriminant_Constraint (Derived_Type));
5177 end if;
5179 return;
5180 end if;
5182 -- If we get here Derived_Type will have no discriminants or it will be
5183 -- a discriminated unconstrained base type.
5185 -- STEP 1a: perform preliminary actions/checks for derived tagged types
5187 if Is_Tagged then
5189 -- The parent type is frozen for non-private extensions (RM 13.14(7))
5191 if not Private_Extension then
5192 Freeze_Before (N, Parent_Type);
5193 end if;
5195 if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
5196 and then not Is_Generic_Type (Derived_Type)
5197 then
5198 if Is_Controlled (Parent_Type) then
5199 Error_Msg_N
5200 ("controlled type must be declared at the library level",
5201 Indic);
5202 else
5203 Error_Msg_N
5204 ("type extension at deeper accessibility level than parent",
5205 Indic);
5206 end if;
5208 else
5209 declare
5210 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
5212 begin
5213 if Present (GB)
5214 and then GB /= Enclosing_Generic_Body (Parent_Base)
5215 then
5216 Error_Msg_NE
5217 ("parent type of& must not be outside generic body"
5218 & " ('R'M 3.9.1(4))",
5219 Indic, Derived_Type);
5220 end if;
5221 end;
5222 end if;
5223 end if;
5225 -- STEP 1b : preliminary cleanup of the full view of private types
5227 -- If the type is already marked as having discriminants, then it's the
5228 -- completion of a private type or private extension and we need to
5229 -- retain the discriminants from the partial view if the current
5230 -- declaration has Discriminant_Specifications so that we can verify
5231 -- conformance. However, we must remove any existing components that
5232 -- were inherited from the parent (and attached in Copy_And_Swap)
5233 -- because the full type inherits all appropriate components anyway, and
5234 -- we do not want the partial view's components interfering.
5236 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
5237 Discrim := First_Discriminant (Derived_Type);
5238 loop
5239 Last_Discrim := Discrim;
5240 Next_Discriminant (Discrim);
5241 exit when No (Discrim);
5242 end loop;
5244 Set_Last_Entity (Derived_Type, Last_Discrim);
5246 -- In all other cases wipe out the list of inherited components (even
5247 -- inherited discriminants), it will be properly rebuilt here.
5249 else
5250 Set_First_Entity (Derived_Type, Empty);
5251 Set_Last_Entity (Derived_Type, Empty);
5252 end if;
5254 -- STEP 1c: Initialize some flags for the Derived_Type
5256 -- The following flags must be initialized here so that
5257 -- Process_Discriminants can check that discriminants of tagged types
5258 -- do not have a default initial value and that access discriminants
5259 -- are only specified for limited records. For completeness, these
5260 -- flags are also initialized along with all the other flags below.
5262 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5263 Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
5265 -- STEP 2a: process discriminants of derived type if any
5267 New_Scope (Derived_Type);
5269 if Discriminant_Specs then
5270 Set_Has_Unknown_Discriminants (Derived_Type, False);
5272 -- The following call initializes fields Has_Discriminants and
5273 -- Discriminant_Constraint, unless we are processing the completion
5274 -- of a private type declaration.
5276 Check_Or_Process_Discriminants (N, Derived_Type);
5278 -- For non-tagged types the constraint on the Parent_Type must be
5279 -- present and is used to rename the discriminants.
5281 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
5282 Error_Msg_N ("untagged parent must have discriminants", Indic);
5284 elsif not Is_Tagged and then not Constraint_Present then
5285 Error_Msg_N
5286 ("discriminant constraint needed for derived untagged records",
5287 Indic);
5289 -- Otherwise the parent subtype must be constrained unless we have a
5290 -- private extension.
5292 elsif not Constraint_Present
5293 and then not Private_Extension
5294 and then not Is_Constrained (Parent_Type)
5295 then
5296 Error_Msg_N
5297 ("unconstrained type not allowed in this context", Indic);
5299 elsif Constraint_Present then
5300 -- The following call sets the field Corresponding_Discriminant
5301 -- for the discriminants in the Derived_Type.
5303 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
5305 -- For untagged types all new discriminants must rename
5306 -- discriminants in the parent. For private extensions new
5307 -- discriminants cannot rename old ones (implied by [7.3(13)]).
5309 Discrim := First_Discriminant (Derived_Type);
5310 while Present (Discrim) loop
5311 if not Is_Tagged
5312 and then not Present (Corresponding_Discriminant (Discrim))
5313 then
5314 Error_Msg_N
5315 ("new discriminants must constrain old ones", Discrim);
5317 elsif Private_Extension
5318 and then Present (Corresponding_Discriminant (Discrim))
5319 then
5320 Error_Msg_N
5321 ("only static constraints allowed for parent"
5322 & " discriminants in the partial view", Indic);
5323 exit;
5324 end if;
5326 -- If a new discriminant is used in the constraint, then its
5327 -- subtype must be statically compatible with the parent
5328 -- discriminant's subtype (3.7(15)).
5330 if Present (Corresponding_Discriminant (Discrim))
5331 and then
5332 not Subtypes_Statically_Compatible
5333 (Etype (Discrim),
5334 Etype (Corresponding_Discriminant (Discrim)))
5335 then
5336 Error_Msg_N
5337 ("subtype must be compatible with parent discriminant",
5338 Discrim);
5339 end if;
5341 Next_Discriminant (Discrim);
5342 end loop;
5344 -- Check whether the constraints of the full view statically
5345 -- match those imposed by the parent subtype [7.3(13)].
5347 if Present (Stored_Constraint (Derived_Type)) then
5348 declare
5349 C1, C2 : Elmt_Id;
5351 begin
5352 C1 := First_Elmt (Discs);
5353 C2 := First_Elmt (Stored_Constraint (Derived_Type));
5354 while Present (C1) and then Present (C2) loop
5355 if not
5356 Fully_Conformant_Expressions (Node (C1), Node (C2))
5357 then
5358 Error_Msg_N (
5359 "not conformant with previous declaration",
5360 Node (C1));
5361 end if;
5363 Next_Elmt (C1);
5364 Next_Elmt (C2);
5365 end loop;
5366 end;
5367 end if;
5368 end if;
5370 -- STEP 2b: No new discriminants, inherit discriminants if any
5372 else
5373 if Private_Extension then
5374 Set_Has_Unknown_Discriminants
5375 (Derived_Type,
5376 Has_Unknown_Discriminants (Parent_Type)
5377 or else Unknown_Discriminants_Present (N));
5379 -- The partial view of the parent may have unknown discriminants,
5380 -- but if the full view has discriminants and the parent type is
5381 -- in scope they must be inherited.
5383 elsif Has_Unknown_Discriminants (Parent_Type)
5384 and then
5385 (not Has_Discriminants (Parent_Type)
5386 or else not In_Open_Scopes (Scope (Parent_Type)))
5387 then
5388 Set_Has_Unknown_Discriminants (Derived_Type);
5389 end if;
5391 if not Has_Unknown_Discriminants (Derived_Type)
5392 and then not Has_Unknown_Discriminants (Parent_Base)
5393 and then Has_Discriminants (Parent_Type)
5394 then
5395 Inherit_Discrims := True;
5396 Set_Has_Discriminants
5397 (Derived_Type, True);
5398 Set_Discriminant_Constraint
5399 (Derived_Type, Discriminant_Constraint (Parent_Base));
5400 end if;
5402 -- The following test is true for private types (remember
5403 -- transformation 5. is not applied to those) and in an error
5404 -- situation.
5406 if Constraint_Present then
5407 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
5408 end if;
5410 -- For now mark a new derived type as constrained only if it has no
5411 -- discriminants. At the end of Build_Derived_Record_Type we properly
5412 -- set this flag in the case of private extensions. See comments in
5413 -- point 9. just before body of Build_Derived_Record_Type.
5415 Set_Is_Constrained
5416 (Derived_Type,
5417 not (Inherit_Discrims
5418 or else Has_Unknown_Discriminants (Derived_Type)));
5419 end if;
5421 -- STEP 3: initialize fields of derived type
5423 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5424 Set_Stored_Constraint (Derived_Type, No_Elist);
5426 -- Fields inherited from the Parent_Type
5428 Set_Discard_Names
5429 (Derived_Type, Einfo.Discard_Names (Parent_Type));
5430 Set_Has_Specified_Layout
5431 (Derived_Type, Has_Specified_Layout (Parent_Type));
5432 Set_Is_Limited_Composite
5433 (Derived_Type, Is_Limited_Composite (Parent_Type));
5434 Set_Is_Limited_Record
5435 (Derived_Type, Is_Limited_Record (Parent_Type));
5436 Set_Is_Private_Composite
5437 (Derived_Type, Is_Private_Composite (Parent_Type));
5439 -- Fields inherited from the Parent_Base
5441 Set_Has_Controlled_Component
5442 (Derived_Type, Has_Controlled_Component (Parent_Base));
5443 Set_Has_Non_Standard_Rep
5444 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5445 Set_Has_Primitive_Operations
5446 (Derived_Type, Has_Primitive_Operations (Parent_Base));
5448 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5450 if not Is_Controlled (Parent_Type) then
5451 Set_Finalize_Storage_Only
5452 (Derived_Type, Finalize_Storage_Only (Parent_Type));
5453 end if;
5455 -- Set fields for private derived types
5457 if Is_Private_Type (Derived_Type) then
5458 Set_Depends_On_Private (Derived_Type, True);
5459 Set_Private_Dependents (Derived_Type, New_Elmt_List);
5461 -- Inherit fields from non private record types. If this is the
5462 -- completion of a derivation from a private type, the parent itself
5463 -- is private, and the attributes come from its full view, which must
5464 -- be present.
5466 else
5467 if Is_Private_Type (Parent_Base)
5468 and then not Is_Record_Type (Parent_Base)
5469 then
5470 Set_Component_Alignment
5471 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
5472 Set_C_Pass_By_Copy
5473 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
5474 else
5475 Set_Component_Alignment
5476 (Derived_Type, Component_Alignment (Parent_Base));
5478 Set_C_Pass_By_Copy
5479 (Derived_Type, C_Pass_By_Copy (Parent_Base));
5480 end if;
5481 end if;
5483 -- Set fields for tagged types
5485 if Is_Tagged then
5486 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
5488 -- All tagged types defined in Ada.Finalization are controlled
5490 if Chars (Scope (Derived_Type)) = Name_Finalization
5491 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
5492 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
5493 then
5494 Set_Is_Controlled (Derived_Type);
5495 else
5496 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
5497 end if;
5499 Make_Class_Wide_Type (Derived_Type);
5500 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
5502 if Has_Discriminants (Derived_Type)
5503 and then Constraint_Present
5504 then
5505 Set_Stored_Constraint
5506 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
5507 end if;
5509 else
5510 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
5511 Set_Has_Non_Standard_Rep
5512 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5513 end if;
5515 -- STEP 4: Inherit components from the parent base and constrain them.
5516 -- Apply the second transformation described in point 6. above.
5518 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
5519 or else not Has_Discriminants (Parent_Type)
5520 or else not Is_Constrained (Parent_Type)
5521 then
5522 Constrs := Discs;
5523 else
5524 Constrs := Discriminant_Constraint (Parent_Type);
5525 end if;
5527 Assoc_List := Inherit_Components (N,
5528 Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
5530 -- STEP 5a: Copy the parent record declaration for untagged types
5532 if not Is_Tagged then
5534 -- Discriminant_Constraint (Derived_Type) has been properly
5535 -- constructed. Save it and temporarily set it to Empty because we
5536 -- do not want the call to New_Copy_Tree below to mess this list.
5538 if Has_Discriminants (Derived_Type) then
5539 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
5540 Set_Discriminant_Constraint (Derived_Type, No_Elist);
5541 else
5542 Save_Discr_Constr := No_Elist;
5543 end if;
5545 -- Save the Etype field of Derived_Type. It is correctly set now,
5546 -- but the call to New_Copy tree may remap it to point to itself,
5547 -- which is not what we want. Ditto for the Next_Entity field.
5549 Save_Etype := Etype (Derived_Type);
5550 Save_Next_Entity := Next_Entity (Derived_Type);
5552 -- Assoc_List maps all stored discriminants in the Parent_Base to
5553 -- stored discriminants in the Derived_Type. It is fundamental that
5554 -- no types or itypes with discriminants other than the stored
5555 -- discriminants appear in the entities declared inside
5556 -- Derived_Type, since the back end cannot deal with it.
5558 New_Decl :=
5559 New_Copy_Tree
5560 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
5562 -- Restore the fields saved prior to the New_Copy_Tree call
5563 -- and compute the stored constraint.
5565 Set_Etype (Derived_Type, Save_Etype);
5566 Set_Next_Entity (Derived_Type, Save_Next_Entity);
5568 if Has_Discriminants (Derived_Type) then
5569 Set_Discriminant_Constraint
5570 (Derived_Type, Save_Discr_Constr);
5571 Set_Stored_Constraint
5572 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
5573 Replace_Components (Derived_Type, New_Decl);
5574 end if;
5576 -- Insert the new derived type declaration
5578 Rewrite (N, New_Decl);
5580 -- STEP 5b: Complete the processing for record extensions in generics
5582 -- There is no completion for record extensions declared in the
5583 -- parameter part of a generic, so we need to complete processing for
5584 -- these generic record extensions here. The Record_Type_Definition call
5585 -- will change the Ekind of the components from E_Void to E_Component.
5587 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
5588 Record_Type_Definition (Empty, Derived_Type);
5590 -- STEP 5c: Process the record extension for non private tagged types
5592 elsif not Private_Extension then
5594 -- Add the _parent field in the derived type
5596 Expand_Record_Extension (Derived_Type, Type_Def);
5598 -- Analyze the record extension
5600 Record_Type_Definition
5601 (Record_Extension_Part (Type_Def), Derived_Type);
5602 end if;
5604 End_Scope;
5606 if Etype (Derived_Type) = Any_Type then
5607 return;
5608 end if;
5610 -- Set delayed freeze and then derive subprograms, we need to do
5611 -- this in this order so that derived subprograms inherit the
5612 -- derived freeze if necessary.
5614 Set_Has_Delayed_Freeze (Derived_Type);
5615 if Derive_Subps then
5616 Derive_Subprograms (Parent_Type, Derived_Type);
5617 end if;
5619 -- If we have a private extension which defines a constrained derived
5620 -- type mark as constrained here after we have derived subprograms. See
5621 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5623 if Private_Extension and then Inherit_Discrims then
5624 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
5625 Set_Is_Constrained (Derived_Type, True);
5626 Set_Discriminant_Constraint (Derived_Type, Discs);
5628 elsif Is_Constrained (Parent_Type) then
5629 Set_Is_Constrained
5630 (Derived_Type, True);
5631 Set_Discriminant_Constraint
5632 (Derived_Type, Discriminant_Constraint (Parent_Type));
5633 end if;
5634 end if;
5636 -- Update the class_wide type, which shares the now-completed
5637 -- entity list with its specific type.
5639 if Is_Tagged then
5640 Set_First_Entity
5641 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
5642 Set_Last_Entity
5643 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
5644 end if;
5646 end Build_Derived_Record_Type;
5648 ------------------------
5649 -- Build_Derived_Type --
5650 ------------------------
5652 procedure Build_Derived_Type
5653 (N : Node_Id;
5654 Parent_Type : Entity_Id;
5655 Derived_Type : Entity_Id;
5656 Is_Completion : Boolean;
5657 Derive_Subps : Boolean := True)
5659 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5661 begin
5662 -- Set common attributes
5664 Set_Scope (Derived_Type, Current_Scope);
5666 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5667 Set_Etype (Derived_Type, Parent_Base);
5668 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
5670 Set_Size_Info (Derived_Type, Parent_Type);
5671 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5672 Set_Convention (Derived_Type, Convention (Parent_Type));
5673 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
5675 -- The derived type inherits the representation clauses of the parent.
5676 -- However, for a private type that is completed by a derivation, there
5677 -- may be operation attributes that have been specified already (stream
5678 -- attributes and External_Tag) and those must be provided. Finally,
5679 -- if the partial view is a private extension, the representation items
5680 -- of the parent have been inherited already, and should not be chained
5681 -- twice to the derived type.
5683 if Is_Tagged_Type (Parent_Type)
5684 and then Present (First_Rep_Item (Derived_Type))
5685 then
5686 -- The existing items are either operational items or items inherited
5687 -- from a private extension declaration.
5689 declare
5690 Rep : Node_Id := First_Rep_Item (Derived_Type);
5691 Found : Boolean := False;
5693 begin
5694 while Present (Rep) loop
5695 if Rep = First_Rep_Item (Parent_Type) then
5696 Found := True;
5697 exit;
5698 else
5699 Rep := Next_Rep_Item (Rep);
5700 end if;
5701 end loop;
5703 if not Found then
5704 Set_Next_Rep_Item
5705 (First_Rep_Item (Derived_Type), First_Rep_Item (Parent_Type));
5706 end if;
5707 end;
5709 else
5710 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
5711 end if;
5713 case Ekind (Parent_Type) is
5714 when Numeric_Kind =>
5715 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
5717 when Array_Kind =>
5718 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
5720 when E_Record_Type
5721 | E_Record_Subtype
5722 | Class_Wide_Kind =>
5723 Build_Derived_Record_Type
5724 (N, Parent_Type, Derived_Type, Derive_Subps);
5725 return;
5727 when Enumeration_Kind =>
5728 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
5730 when Access_Kind =>
5731 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
5733 when Incomplete_Or_Private_Kind =>
5734 Build_Derived_Private_Type
5735 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
5737 -- For discriminated types, the derivation includes deriving
5738 -- primitive operations. For others it is done below.
5740 if Is_Tagged_Type (Parent_Type)
5741 or else Has_Discriminants (Parent_Type)
5742 or else (Present (Full_View (Parent_Type))
5743 and then Has_Discriminants (Full_View (Parent_Type)))
5744 then
5745 return;
5746 end if;
5748 when Concurrent_Kind =>
5749 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
5751 when others =>
5752 raise Program_Error;
5753 end case;
5755 if Etype (Derived_Type) = Any_Type then
5756 return;
5757 end if;
5759 -- Set delayed freeze and then derive subprograms, we need to do this
5760 -- in this order so that derived subprograms inherit the derived freeze
5761 -- if necessary.
5763 Set_Has_Delayed_Freeze (Derived_Type);
5764 if Derive_Subps then
5765 Derive_Subprograms (Parent_Type, Derived_Type);
5766 end if;
5768 Set_Has_Primitive_Operations
5769 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
5770 end Build_Derived_Type;
5772 -----------------------
5773 -- Build_Discriminal --
5774 -----------------------
5776 procedure Build_Discriminal (Discrim : Entity_Id) is
5777 D_Minal : Entity_Id;
5778 CR_Disc : Entity_Id;
5780 begin
5781 -- A discriminal has the same name as the discriminant
5783 D_Minal :=
5784 Make_Defining_Identifier (Sloc (Discrim),
5785 Chars => Chars (Discrim));
5787 Set_Ekind (D_Minal, E_In_Parameter);
5788 Set_Mechanism (D_Minal, Default_Mechanism);
5789 Set_Etype (D_Minal, Etype (Discrim));
5791 Set_Discriminal (Discrim, D_Minal);
5792 Set_Discriminal_Link (D_Minal, Discrim);
5794 -- For task types, build at once the discriminants of the corresponding
5795 -- record, which are needed if discriminants are used in entry defaults
5796 -- and in family bounds.
5798 if Is_Concurrent_Type (Current_Scope)
5799 or else Is_Limited_Type (Current_Scope)
5800 then
5801 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5803 Set_Ekind (CR_Disc, E_In_Parameter);
5804 Set_Mechanism (CR_Disc, Default_Mechanism);
5805 Set_Etype (CR_Disc, Etype (Discrim));
5806 Set_CR_Discriminant (Discrim, CR_Disc);
5807 end if;
5808 end Build_Discriminal;
5810 ------------------------------------
5811 -- Build_Discriminant_Constraints --
5812 ------------------------------------
5814 function Build_Discriminant_Constraints
5815 (T : Entity_Id;
5816 Def : Node_Id;
5817 Derived_Def : Boolean := False) return Elist_Id
5819 C : constant Node_Id := Constraint (Def);
5820 Nb_Discr : constant Nat := Number_Discriminants (T);
5822 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
5823 -- Saves the expression corresponding to a given discriminant in T
5825 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
5826 -- Return the Position number within array Discr_Expr of a discriminant
5827 -- D within the discriminant list of the discriminated type T.
5829 ------------------
5830 -- Pos_Of_Discr --
5831 ------------------
5833 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
5834 Disc : Entity_Id;
5836 begin
5837 Disc := First_Discriminant (T);
5838 for J in Discr_Expr'Range loop
5839 if Disc = D then
5840 return J;
5841 end if;
5843 Next_Discriminant (Disc);
5844 end loop;
5846 -- Note: Since this function is called on discriminants that are
5847 -- known to belong to the discriminated type, falling through the
5848 -- loop with no match signals an internal compiler error.
5850 raise Program_Error;
5851 end Pos_Of_Discr;
5853 -- Declarations local to Build_Discriminant_Constraints
5855 Discr : Entity_Id;
5856 E : Entity_Id;
5857 Elist : constant Elist_Id := New_Elmt_List;
5859 Constr : Node_Id;
5860 Expr : Node_Id;
5861 Id : Node_Id;
5862 Position : Nat;
5863 Found : Boolean;
5865 Discrim_Present : Boolean := False;
5867 -- Start of processing for Build_Discriminant_Constraints
5869 begin
5870 -- The following loop will process positional associations only.
5871 -- For a positional association, the (single) discriminant is
5872 -- implicitly specified by position, in textual order (RM 3.7.2).
5874 Discr := First_Discriminant (T);
5875 Constr := First (Constraints (C));
5877 for D in Discr_Expr'Range loop
5878 exit when Nkind (Constr) = N_Discriminant_Association;
5880 if No (Constr) then
5881 Error_Msg_N ("too few discriminants given in constraint", C);
5882 return New_Elmt_List;
5884 elsif Nkind (Constr) = N_Range
5885 or else (Nkind (Constr) = N_Attribute_Reference
5886 and then
5887 Attribute_Name (Constr) = Name_Range)
5888 then
5889 Error_Msg_N
5890 ("a range is not a valid discriminant constraint", Constr);
5891 Discr_Expr (D) := Error;
5893 else
5894 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
5895 Discr_Expr (D) := Constr;
5896 end if;
5898 Next_Discriminant (Discr);
5899 Next (Constr);
5900 end loop;
5902 if No (Discr) and then Present (Constr) then
5903 Error_Msg_N ("too many discriminants given in constraint", Constr);
5904 return New_Elmt_List;
5905 end if;
5907 -- Named associations can be given in any order, but if both positional
5908 -- and named associations are used in the same discriminant constraint,
5909 -- then positional associations must occur first, at their normal
5910 -- position. Hence once a named association is used, the rest of the
5911 -- discriminant constraint must use only named associations.
5913 while Present (Constr) loop
5915 -- Positional association forbidden after a named association
5917 if Nkind (Constr) /= N_Discriminant_Association then
5918 Error_Msg_N ("positional association follows named one", Constr);
5919 return New_Elmt_List;
5921 -- Otherwise it is a named association
5923 else
5924 -- E records the type of the discriminants in the named
5925 -- association. All the discriminants specified in the same name
5926 -- association must have the same type.
5928 E := Empty;
5930 -- Search the list of discriminants in T to see if the simple name
5931 -- given in the constraint matches any of them.
5933 Id := First (Selector_Names (Constr));
5934 while Present (Id) loop
5935 Found := False;
5937 -- If Original_Discriminant is present, we are processing a
5938 -- generic instantiation and this is an instance node. We need
5939 -- to find the name of the corresponding discriminant in the
5940 -- actual record type T and not the name of the discriminant in
5941 -- the generic formal. Example:
5943 -- generic
5944 -- type G (D : int) is private;
5945 -- package P is
5946 -- subtype W is G (D => 1);
5947 -- end package;
5948 -- type Rec (X : int) is record ... end record;
5949 -- package Q is new P (G => Rec);
5951 -- At the point of the instantiation, formal type G is Rec
5952 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5953 -- which really looks like "subtype W is Rec (D => 1);" at
5954 -- the point of instantiation, we want to find the discriminant
5955 -- that corresponds to D in Rec, ie X.
5957 if Present (Original_Discriminant (Id)) then
5958 Discr := Find_Corresponding_Discriminant (Id, T);
5959 Found := True;
5961 else
5962 Discr := First_Discriminant (T);
5963 while Present (Discr) loop
5964 if Chars (Discr) = Chars (Id) then
5965 Found := True;
5966 exit;
5967 end if;
5969 Next_Discriminant (Discr);
5970 end loop;
5972 if not Found then
5973 Error_Msg_N ("& does not match any discriminant", Id);
5974 return New_Elmt_List;
5976 -- The following is only useful for the benefit of generic
5977 -- instances but it does not interfere with other
5978 -- processing for the non-generic case so we do it in all
5979 -- cases (for generics this statement is executed when
5980 -- processing the generic definition, see comment at the
5981 -- beginning of this if statement).
5983 else
5984 Set_Original_Discriminant (Id, Discr);
5985 end if;
5986 end if;
5988 Position := Pos_Of_Discr (T, Discr);
5990 if Present (Discr_Expr (Position)) then
5991 Error_Msg_N ("duplicate constraint for discriminant&", Id);
5993 else
5994 -- Each discriminant specified in the same named association
5995 -- must be associated with a separate copy of the
5996 -- corresponding expression.
5998 if Present (Next (Id)) then
5999 Expr := New_Copy_Tree (Expression (Constr));
6000 Set_Parent (Expr, Parent (Expression (Constr)));
6001 else
6002 Expr := Expression (Constr);
6003 end if;
6005 Discr_Expr (Position) := Expr;
6006 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
6007 end if;
6009 -- A discriminant association with more than one discriminant
6010 -- name is only allowed if the named discriminants are all of
6011 -- the same type (RM 3.7.1(8)).
6013 if E = Empty then
6014 E := Base_Type (Etype (Discr));
6016 elsif Base_Type (Etype (Discr)) /= E then
6017 Error_Msg_N
6018 ("all discriminants in an association " &
6019 "must have the same type", Id);
6020 end if;
6022 Next (Id);
6023 end loop;
6024 end if;
6026 Next (Constr);
6027 end loop;
6029 -- A discriminant constraint must provide exactly one value for each
6030 -- discriminant of the type (RM 3.7.1(8)).
6032 for J in Discr_Expr'Range loop
6033 if No (Discr_Expr (J)) then
6034 Error_Msg_N ("too few discriminants given in constraint", C);
6035 return New_Elmt_List;
6036 end if;
6037 end loop;
6039 -- Determine if there are discriminant expressions in the constraint
6041 for J in Discr_Expr'Range loop
6042 if Denotes_Discriminant (Discr_Expr (J), Check_Protected => True) then
6043 Discrim_Present := True;
6044 end if;
6045 end loop;
6047 -- Build an element list consisting of the expressions given in the
6048 -- discriminant constraint and apply the appropriate checks. The list
6049 -- is constructed after resolving any named discriminant associations
6050 -- and therefore the expressions appear in the textual order of the
6051 -- discriminants.
6053 Discr := First_Discriminant (T);
6054 for J in Discr_Expr'Range loop
6055 if Discr_Expr (J) /= Error then
6057 Append_Elmt (Discr_Expr (J), Elist);
6059 -- If any of the discriminant constraints is given by a
6060 -- discriminant and we are in a derived type declaration we
6061 -- have a discriminant renaming. Establish link between new
6062 -- and old discriminant.
6064 if Denotes_Discriminant (Discr_Expr (J)) then
6065 if Derived_Def then
6066 Set_Corresponding_Discriminant
6067 (Entity (Discr_Expr (J)), Discr);
6068 end if;
6070 -- Force the evaluation of non-discriminant expressions.
6071 -- If we have found a discriminant in the constraint 3.4(26)
6072 -- and 3.8(18) demand that no range checks are performed are
6073 -- after evaluation. If the constraint is for a component
6074 -- definition that has a per-object constraint, expressions are
6075 -- evaluated but not checked either. In all other cases perform
6076 -- a range check.
6078 else
6079 if Discrim_Present then
6080 null;
6082 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
6083 and then
6084 Has_Per_Object_Constraint
6085 (Defining_Identifier (Parent (Parent (Def))))
6086 then
6087 null;
6089 elsif Is_Access_Type (Etype (Discr)) then
6090 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
6092 else
6093 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
6094 end if;
6096 Force_Evaluation (Discr_Expr (J));
6097 end if;
6099 -- Check that the designated type of an access discriminant's
6100 -- expression is not a class-wide type unless the discriminant's
6101 -- designated type is also class-wide.
6103 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
6104 and then not Is_Class_Wide_Type
6105 (Designated_Type (Etype (Discr)))
6106 and then Etype (Discr_Expr (J)) /= Any_Type
6107 and then Is_Class_Wide_Type
6108 (Designated_Type (Etype (Discr_Expr (J))))
6109 then
6110 Wrong_Type (Discr_Expr (J), Etype (Discr));
6111 end if;
6112 end if;
6114 Next_Discriminant (Discr);
6115 end loop;
6117 return Elist;
6118 end Build_Discriminant_Constraints;
6120 ---------------------------------
6121 -- Build_Discriminated_Subtype --
6122 ---------------------------------
6124 procedure Build_Discriminated_Subtype
6125 (T : Entity_Id;
6126 Def_Id : Entity_Id;
6127 Elist : Elist_Id;
6128 Related_Nod : Node_Id;
6129 For_Access : Boolean := False)
6131 Has_Discrs : constant Boolean := Has_Discriminants (T);
6132 Constrained : constant Boolean
6133 := (Has_Discrs
6134 and then not Is_Empty_Elmt_List (Elist)
6135 and then not Is_Class_Wide_Type (T))
6136 or else Is_Constrained (T);
6138 begin
6139 if Ekind (T) = E_Record_Type then
6140 if For_Access then
6141 Set_Ekind (Def_Id, E_Private_Subtype);
6142 Set_Is_For_Access_Subtype (Def_Id, True);
6143 else
6144 Set_Ekind (Def_Id, E_Record_Subtype);
6145 end if;
6147 elsif Ekind (T) = E_Task_Type then
6148 Set_Ekind (Def_Id, E_Task_Subtype);
6150 elsif Ekind (T) = E_Protected_Type then
6151 Set_Ekind (Def_Id, E_Protected_Subtype);
6153 elsif Is_Private_Type (T) then
6154 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
6156 elsif Is_Class_Wide_Type (T) then
6157 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
6159 else
6160 -- Incomplete type. attach subtype to list of dependents, to be
6161 -- completed with full view of parent type, unless is it the
6162 -- designated subtype of a record component within an init_proc.
6163 -- This last case arises for a component of an access type whose
6164 -- designated type is incomplete (e.g. a Taft Amendment type).
6165 -- The designated subtype is within an inner scope, and needs no
6166 -- elaboration, because only the access type is needed in the
6167 -- initialization procedure.
6169 Set_Ekind (Def_Id, Ekind (T));
6171 if For_Access and then Within_Init_Proc then
6172 null;
6173 else
6174 Append_Elmt (Def_Id, Private_Dependents (T));
6175 end if;
6176 end if;
6178 Set_Etype (Def_Id, T);
6179 Init_Size_Align (Def_Id);
6180 Set_Has_Discriminants (Def_Id, Has_Discrs);
6181 Set_Is_Constrained (Def_Id, Constrained);
6183 Set_First_Entity (Def_Id, First_Entity (T));
6184 Set_Last_Entity (Def_Id, Last_Entity (T));
6185 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6187 if Is_Tagged_Type (T) then
6188 Set_Is_Tagged_Type (Def_Id);
6189 Make_Class_Wide_Type (Def_Id);
6190 end if;
6192 Set_Stored_Constraint (Def_Id, No_Elist);
6194 if Has_Discrs then
6195 Set_Discriminant_Constraint (Def_Id, Elist);
6196 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
6197 end if;
6199 if Is_Tagged_Type (T) then
6200 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
6201 Set_Is_Abstract (Def_Id, Is_Abstract (T));
6202 end if;
6204 -- Subtypes introduced by component declarations do not need to be
6205 -- marked as delayed, and do not get freeze nodes, because the semantics
6206 -- verifies that the parents of the subtypes are frozen before the
6207 -- enclosing record is frozen.
6209 if not Is_Type (Scope (Def_Id)) then
6210 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
6212 if Is_Private_Type (T)
6213 and then Present (Full_View (T))
6214 then
6215 Conditional_Delay (Def_Id, Full_View (T));
6216 else
6217 Conditional_Delay (Def_Id, T);
6218 end if;
6219 end if;
6221 if Is_Record_Type (T) then
6222 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
6224 if Has_Discrs
6225 and then not Is_Empty_Elmt_List (Elist)
6226 and then not For_Access
6227 then
6228 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
6229 elsif not For_Access then
6230 Set_Cloned_Subtype (Def_Id, T);
6231 end if;
6232 end if;
6234 end Build_Discriminated_Subtype;
6236 ------------------------
6237 -- Build_Scalar_Bound --
6238 ------------------------
6240 function Build_Scalar_Bound
6241 (Bound : Node_Id;
6242 Par_T : Entity_Id;
6243 Der_T : Entity_Id) return Node_Id
6245 New_Bound : Entity_Id;
6247 begin
6248 -- Note: not clear why this is needed, how can the original bound
6249 -- be unanalyzed at this point? and if it is, what business do we
6250 -- have messing around with it? and why is the base type of the
6251 -- parent type the right type for the resolution. It probably is
6252 -- not! It is OK for the new bound we are creating, but not for
6253 -- the old one??? Still if it never happens, no problem!
6255 Analyze_And_Resolve (Bound, Base_Type (Par_T));
6257 if Nkind (Bound) = N_Integer_Literal
6258 or else Nkind (Bound) = N_Real_Literal
6259 then
6260 New_Bound := New_Copy (Bound);
6261 Set_Etype (New_Bound, Der_T);
6262 Set_Analyzed (New_Bound);
6264 elsif Is_Entity_Name (Bound) then
6265 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
6267 -- The following is almost certainly wrong. What business do we have
6268 -- relocating a node (Bound) that is presumably still attached to
6269 -- the tree elsewhere???
6271 else
6272 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
6273 end if;
6275 Set_Etype (New_Bound, Der_T);
6276 return New_Bound;
6277 end Build_Scalar_Bound;
6279 --------------------------------
6280 -- Build_Underlying_Full_View --
6281 --------------------------------
6283 procedure Build_Underlying_Full_View
6284 (N : Node_Id;
6285 Typ : Entity_Id;
6286 Par : Entity_Id)
6288 Loc : constant Source_Ptr := Sloc (N);
6289 Subt : constant Entity_Id :=
6290 Make_Defining_Identifier
6291 (Loc, New_External_Name (Chars (Typ), 'S'));
6293 Constr : Node_Id;
6294 Indic : Node_Id;
6295 C : Node_Id;
6296 Id : Node_Id;
6298 procedure Set_Discriminant_Name (Id : Node_Id);
6299 -- If the derived type has discriminants, they may rename discriminants
6300 -- of the parent. When building the full view of the parent, we need to
6301 -- recover the names of the original discriminants if the constraint is
6302 -- given by named associations.
6304 ---------------------------
6305 -- Set_Discriminant_Name --
6306 ---------------------------
6308 procedure Set_Discriminant_Name (Id : Node_Id) is
6309 Disc : Entity_Id;
6311 begin
6312 Set_Original_Discriminant (Id, Empty);
6314 if Has_Discriminants (Typ) then
6315 Disc := First_Discriminant (Typ);
6317 while Present (Disc) loop
6318 if Chars (Disc) = Chars (Id)
6319 and then Present (Corresponding_Discriminant (Disc))
6320 then
6321 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
6322 end if;
6323 Next_Discriminant (Disc);
6324 end loop;
6325 end if;
6326 end Set_Discriminant_Name;
6328 -- Start of processing for Build_Underlying_Full_View
6330 begin
6331 if Nkind (N) = N_Full_Type_Declaration then
6332 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
6334 elsif Nkind (N) = N_Subtype_Declaration then
6335 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
6337 elsif Nkind (N) = N_Component_Declaration then
6338 Constr :=
6339 New_Copy_Tree
6340 (Constraint (Subtype_Indication (Component_Definition (N))));
6342 else
6343 raise Program_Error;
6344 end if;
6346 C := First (Constraints (Constr));
6347 while Present (C) loop
6348 if Nkind (C) = N_Discriminant_Association then
6349 Id := First (Selector_Names (C));
6350 while Present (Id) loop
6351 Set_Discriminant_Name (Id);
6352 Next (Id);
6353 end loop;
6354 end if;
6356 Next (C);
6357 end loop;
6359 Indic :=
6360 Make_Subtype_Declaration (Loc,
6361 Defining_Identifier => Subt,
6362 Subtype_Indication =>
6363 Make_Subtype_Indication (Loc,
6364 Subtype_Mark => New_Reference_To (Par, Loc),
6365 Constraint => New_Copy_Tree (Constr)));
6367 -- If this is a component subtype for an outer itype, it is not
6368 -- a list member, so simply set the parent link for analysis: if
6369 -- the enclosing type does not need to be in a declarative list,
6370 -- neither do the components.
6372 if Is_List_Member (N)
6373 and then Nkind (N) /= N_Component_Declaration
6374 then
6375 Insert_Before (N, Indic);
6376 else
6377 Set_Parent (Indic, Parent (N));
6378 end if;
6380 Analyze (Indic);
6381 Set_Underlying_Full_View (Typ, Full_View (Subt));
6382 end Build_Underlying_Full_View;
6384 -------------------------------
6385 -- Check_Abstract_Overriding --
6386 -------------------------------
6388 procedure Check_Abstract_Overriding (T : Entity_Id) is
6389 Op_List : Elist_Id;
6390 Elmt : Elmt_Id;
6391 Subp : Entity_Id;
6392 Type_Def : Node_Id;
6394 begin
6395 Op_List := Primitive_Operations (T);
6397 -- Loop to check primitive operations
6399 Elmt := First_Elmt (Op_List);
6400 while Present (Elmt) loop
6401 Subp := Node (Elmt);
6403 -- Special exception, do not complain about failure to override the
6404 -- stream routines _Input and _Output, since we always provide
6405 -- automatic overridings for these subprograms.
6407 if Is_Abstract (Subp)
6408 and then not Is_TSS (Subp, TSS_Stream_Input)
6409 and then not Is_TSS (Subp, TSS_Stream_Output)
6410 and then not Is_Abstract (T)
6411 then
6412 if Present (Alias (Subp)) then
6413 -- Only perform the check for a derived subprogram when
6414 -- the type has an explicit record extension. This avoids
6415 -- incorrectly flagging abstract subprograms for the case
6416 -- of a type without an extension derived from a formal type
6417 -- with a tagged actual (can occur within a private part).
6419 Type_Def := Type_Definition (Parent (T));
6420 if Nkind (Type_Def) = N_Derived_Type_Definition
6421 and then Present (Record_Extension_Part (Type_Def))
6422 then
6423 Error_Msg_NE
6424 ("type must be declared abstract or & overridden",
6425 T, Subp);
6426 end if;
6427 else
6428 Error_Msg_NE
6429 ("abstract subprogram not allowed for type&",
6430 Subp, T);
6431 Error_Msg_NE
6432 ("nonabstract type has abstract subprogram&",
6433 T, Subp);
6434 end if;
6435 end if;
6437 Next_Elmt (Elmt);
6438 end loop;
6439 end Check_Abstract_Overriding;
6441 ------------------------------------------------
6442 -- Check_Access_Discriminant_Requires_Limited --
6443 ------------------------------------------------
6445 procedure Check_Access_Discriminant_Requires_Limited
6446 (D : Node_Id;
6447 Loc : Node_Id)
6449 begin
6450 -- A discriminant_specification for an access discriminant
6451 -- shall appear only in the declaration for a task or protected
6452 -- type, or for a type with the reserved word 'limited' in
6453 -- its definition or in one of its ancestors. (RM 3.7(10))
6455 if Nkind (Discriminant_Type (D)) = N_Access_Definition
6456 and then not Is_Concurrent_Type (Current_Scope)
6457 and then not Is_Concurrent_Record_Type (Current_Scope)
6458 and then not Is_Limited_Record (Current_Scope)
6459 and then Ekind (Current_Scope) /= E_Limited_Private_Type
6460 then
6461 Error_Msg_N
6462 ("access discriminants allowed only for limited types", Loc);
6463 end if;
6464 end Check_Access_Discriminant_Requires_Limited;
6466 -----------------------------------
6467 -- Check_Aliased_Component_Types --
6468 -----------------------------------
6470 procedure Check_Aliased_Component_Types (T : Entity_Id) is
6471 C : Entity_Id;
6473 begin
6474 -- ??? Also need to check components of record extensions, but not
6475 -- components of protected types (which are always limited).
6477 if not Is_Limited_Type (T) then
6478 if Ekind (T) = E_Record_Type then
6479 C := First_Component (T);
6480 while Present (C) loop
6481 if Is_Aliased (C)
6482 and then Has_Discriminants (Etype (C))
6483 and then not Is_Constrained (Etype (C))
6484 and then not In_Instance
6485 then
6486 Error_Msg_N
6487 ("aliased component must be constrained ('R'M 3.6(11))",
6489 end if;
6491 Next_Component (C);
6492 end loop;
6494 elsif Ekind (T) = E_Array_Type then
6495 if Has_Aliased_Components (T)
6496 and then Has_Discriminants (Component_Type (T))
6497 and then not Is_Constrained (Component_Type (T))
6498 and then not In_Instance
6499 then
6500 Error_Msg_N
6501 ("aliased component type must be constrained ('R'M 3.6(11))",
6503 end if;
6504 end if;
6505 end if;
6506 end Check_Aliased_Component_Types;
6508 ----------------------
6509 -- Check_Completion --
6510 ----------------------
6512 procedure Check_Completion (Body_Id : Node_Id := Empty) is
6513 E : Entity_Id;
6515 procedure Post_Error;
6516 -- Post error message for lack of completion for entity E
6518 ----------------
6519 -- Post_Error --
6520 ----------------
6522 procedure Post_Error is
6523 begin
6524 if not Comes_From_Source (E) then
6526 if Ekind (E) = E_Task_Type
6527 or else Ekind (E) = E_Protected_Type
6528 then
6529 -- It may be an anonymous protected type created for a
6530 -- single variable. Post error on variable, if present.
6532 declare
6533 Var : Entity_Id;
6535 begin
6536 Var := First_Entity (Current_Scope);
6538 while Present (Var) loop
6539 exit when Etype (Var) = E
6540 and then Comes_From_Source (Var);
6542 Next_Entity (Var);
6543 end loop;
6545 if Present (Var) then
6546 E := Var;
6547 end if;
6548 end;
6549 end if;
6550 end if;
6552 -- If a generated entity has no completion, then either previous
6553 -- semantic errors have disabled the expansion phase, or else we had
6554 -- missing subunits, or else we are compiling without expan- sion,
6555 -- or else something is very wrong.
6557 if not Comes_From_Source (E) then
6558 pragma Assert
6559 (Serious_Errors_Detected > 0
6560 or else Configurable_Run_Time_Violations > 0
6561 or else Subunits_Missing
6562 or else not Expander_Active);
6563 return;
6565 -- Here for source entity
6567 else
6568 -- Here if no body to post the error message, so we post the error
6569 -- on the declaration that has no completion. This is not really
6570 -- the right place to post it, think about this later ???
6572 if No (Body_Id) then
6573 if Is_Type (E) then
6574 Error_Msg_NE
6575 ("missing full declaration for }", Parent (E), E);
6576 else
6577 Error_Msg_NE
6578 ("missing body for &", Parent (E), E);
6579 end if;
6581 -- Package body has no completion for a declaration that appears
6582 -- in the corresponding spec. Post error on the body, with a
6583 -- reference to the non-completed declaration.
6585 else
6586 Error_Msg_Sloc := Sloc (E);
6588 if Is_Type (E) then
6589 Error_Msg_NE
6590 ("missing full declaration for }!", Body_Id, E);
6592 elsif Is_Overloadable (E)
6593 and then Current_Entity_In_Scope (E) /= E
6594 then
6595 -- It may be that the completion is mistyped and appears
6596 -- as a distinct overloading of the entity.
6598 declare
6599 Candidate : constant Entity_Id :=
6600 Current_Entity_In_Scope (E);
6601 Decl : constant Node_Id :=
6602 Unit_Declaration_Node (Candidate);
6604 begin
6605 if Is_Overloadable (Candidate)
6606 and then Ekind (Candidate) = Ekind (E)
6607 and then Nkind (Decl) = N_Subprogram_Body
6608 and then Acts_As_Spec (Decl)
6609 then
6610 Check_Type_Conformant (Candidate, E);
6612 else
6613 Error_Msg_NE ("missing body for & declared#!",
6614 Body_Id, E);
6615 end if;
6616 end;
6617 else
6618 Error_Msg_NE ("missing body for & declared#!",
6619 Body_Id, E);
6620 end if;
6621 end if;
6622 end if;
6623 end Post_Error;
6625 -- Start processing for Check_Completion
6627 begin
6628 E := First_Entity (Current_Scope);
6629 while Present (E) loop
6630 if Is_Intrinsic_Subprogram (E) then
6631 null;
6633 -- The following situation requires special handling: a child
6634 -- unit that appears in the context clause of the body of its
6635 -- parent:
6637 -- procedure Parent.Child (...);
6639 -- with Parent.Child;
6640 -- package body Parent is
6642 -- Here Parent.Child appears as a local entity, but should not
6643 -- be flagged as requiring completion, because it is a
6644 -- compilation unit.
6646 elsif Ekind (E) = E_Function
6647 or else Ekind (E) = E_Procedure
6648 or else Ekind (E) = E_Generic_Function
6649 or else Ekind (E) = E_Generic_Procedure
6650 then
6651 if not Has_Completion (E)
6652 and then not Is_Abstract (E)
6653 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
6654 N_Compilation_Unit
6655 and then Chars (E) /= Name_uSize
6656 then
6657 Post_Error;
6658 end if;
6660 elsif Is_Entry (E) then
6661 if not Has_Completion (E) and then
6662 (Ekind (Scope (E)) = E_Protected_Object
6663 or else Ekind (Scope (E)) = E_Protected_Type)
6664 then
6665 Post_Error;
6666 end if;
6668 elsif Is_Package (E) then
6669 if Unit_Requires_Body (E) then
6670 if not Has_Completion (E)
6671 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
6672 N_Compilation_Unit
6673 then
6674 Post_Error;
6675 end if;
6677 elsif not Is_Child_Unit (E) then
6678 May_Need_Implicit_Body (E);
6679 end if;
6681 elsif Ekind (E) = E_Incomplete_Type
6682 and then No (Underlying_Type (E))
6683 then
6684 Post_Error;
6686 elsif (Ekind (E) = E_Task_Type or else
6687 Ekind (E) = E_Protected_Type)
6688 and then not Has_Completion (E)
6689 then
6690 Post_Error;
6692 -- A single task declared in the current scope is a constant, verify
6693 -- that the body of its anonymous type is in the same scope. If the
6694 -- task is defined elsewhere, this may be a renaming declaration for
6695 -- which no completion is needed.
6697 elsif Ekind (E) = E_Constant
6698 and then Ekind (Etype (E)) = E_Task_Type
6699 and then not Has_Completion (Etype (E))
6700 and then Scope (Etype (E)) = Current_Scope
6701 then
6702 Post_Error;
6704 elsif Ekind (E) = E_Protected_Object
6705 and then not Has_Completion (Etype (E))
6706 then
6707 Post_Error;
6709 elsif Ekind (E) = E_Record_Type then
6710 if Is_Tagged_Type (E) then
6711 Check_Abstract_Overriding (E);
6712 end if;
6714 Check_Aliased_Component_Types (E);
6716 elsif Ekind (E) = E_Array_Type then
6717 Check_Aliased_Component_Types (E);
6719 end if;
6721 Next_Entity (E);
6722 end loop;
6723 end Check_Completion;
6725 ----------------------------
6726 -- Check_Delta_Expression --
6727 ----------------------------
6729 procedure Check_Delta_Expression (E : Node_Id) is
6730 begin
6731 if not (Is_Real_Type (Etype (E))) then
6732 Wrong_Type (E, Any_Real);
6734 elsif not Is_OK_Static_Expression (E) then
6735 Flag_Non_Static_Expr
6736 ("non-static expression used for delta value!", E);
6738 elsif not UR_Is_Positive (Expr_Value_R (E)) then
6739 Error_Msg_N ("delta expression must be positive", E);
6741 else
6742 return;
6743 end if;
6745 -- If any of above errors occurred, then replace the incorrect
6746 -- expression by the real 0.1, which should prevent further errors.
6748 Rewrite (E,
6749 Make_Real_Literal (Sloc (E), Ureal_Tenth));
6750 Analyze_And_Resolve (E, Standard_Float);
6751 end Check_Delta_Expression;
6753 -----------------------------
6754 -- Check_Digits_Expression --
6755 -----------------------------
6757 procedure Check_Digits_Expression (E : Node_Id) is
6758 begin
6759 if not (Is_Integer_Type (Etype (E))) then
6760 Wrong_Type (E, Any_Integer);
6762 elsif not Is_OK_Static_Expression (E) then
6763 Flag_Non_Static_Expr
6764 ("non-static expression used for digits value!", E);
6766 elsif Expr_Value (E) <= 0 then
6767 Error_Msg_N ("digits value must be greater than zero", E);
6769 else
6770 return;
6771 end if;
6773 -- If any of above errors occurred, then replace the incorrect
6774 -- expression by the integer 1, which should prevent further errors.
6776 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
6777 Analyze_And_Resolve (E, Standard_Integer);
6779 end Check_Digits_Expression;
6781 --------------------------
6782 -- Check_Initialization --
6783 --------------------------
6785 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
6786 begin
6787 if (Is_Limited_Type (T)
6788 or else Is_Limited_Composite (T))
6789 and then not In_Instance
6790 and then not In_Inlined_Body
6791 then
6792 -- Ada 2005 (AI-287): Relax the strictness of the front-end in
6793 -- case of limited aggregates and extension aggregates.
6795 if Ada_Version >= Ada_05
6796 and then (Nkind (Exp) = N_Aggregate
6797 or else Nkind (Exp) = N_Extension_Aggregate)
6798 then
6799 null;
6800 else
6801 Error_Msg_N
6802 ("cannot initialize entities of limited type", Exp);
6803 Explain_Limited_Type (T, Exp);
6804 end if;
6805 end if;
6806 end Check_Initialization;
6808 ------------------------------------
6809 -- Check_Or_Process_Discriminants --
6810 ------------------------------------
6812 -- If an incomplete or private type declaration was already given for
6813 -- the type, the discriminants may have already been processed if they
6814 -- were present on the incomplete declaration. In this case a full
6815 -- conformance check is performed otherwise just process them.
6817 procedure Check_Or_Process_Discriminants
6818 (N : Node_Id;
6819 T : Entity_Id;
6820 Prev : Entity_Id := Empty)
6822 begin
6823 if Has_Discriminants (T) then
6825 -- Make the discriminants visible to component declarations
6827 declare
6828 D : Entity_Id := First_Discriminant (T);
6829 Prev : Entity_Id;
6831 begin
6832 while Present (D) loop
6833 Prev := Current_Entity (D);
6834 Set_Current_Entity (D);
6835 Set_Is_Immediately_Visible (D);
6836 Set_Homonym (D, Prev);
6838 -- Ada 2005 (AI-230): Access discriminant allowed in
6839 -- non-limited record types.
6841 if Ada_Version < Ada_05 then
6843 -- This restriction gets applied to the full type here; it
6844 -- has already been applied earlier to the partial view
6846 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
6847 end if;
6849 Next_Discriminant (D);
6850 end loop;
6851 end;
6853 elsif Present (Discriminant_Specifications (N)) then
6854 Process_Discriminants (N, Prev);
6855 end if;
6856 end Check_Or_Process_Discriminants;
6858 ----------------------
6859 -- Check_Real_Bound --
6860 ----------------------
6862 procedure Check_Real_Bound (Bound : Node_Id) is
6863 begin
6864 if not Is_Real_Type (Etype (Bound)) then
6865 Error_Msg_N
6866 ("bound in real type definition must be of real type", Bound);
6868 elsif not Is_OK_Static_Expression (Bound) then
6869 Flag_Non_Static_Expr
6870 ("non-static expression used for real type bound!", Bound);
6872 else
6873 return;
6874 end if;
6876 Rewrite
6877 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
6878 Analyze (Bound);
6879 Resolve (Bound, Standard_Float);
6880 end Check_Real_Bound;
6882 ------------------------------
6883 -- Complete_Private_Subtype --
6884 ------------------------------
6886 procedure Complete_Private_Subtype
6887 (Priv : Entity_Id;
6888 Full : Entity_Id;
6889 Full_Base : Entity_Id;
6890 Related_Nod : Node_Id)
6892 Save_Next_Entity : Entity_Id;
6893 Save_Homonym : Entity_Id;
6895 begin
6896 -- Set semantic attributes for (implicit) private subtype completion.
6897 -- If the full type has no discriminants, then it is a copy of the full
6898 -- view of the base. Otherwise, it is a subtype of the base with a
6899 -- possible discriminant constraint. Save and restore the original
6900 -- Next_Entity field of full to ensure that the calls to Copy_Node
6901 -- do not corrupt the entity chain.
6903 -- Note that the type of the full view is the same entity as the
6904 -- type of the partial view. In this fashion, the subtype has
6905 -- access to the correct view of the parent.
6907 Save_Next_Entity := Next_Entity (Full);
6908 Save_Homonym := Homonym (Priv);
6910 case Ekind (Full_Base) is
6911 when E_Record_Type |
6912 E_Record_Subtype |
6913 Class_Wide_Kind |
6914 Private_Kind |
6915 Task_Kind |
6916 Protected_Kind =>
6917 Copy_Node (Priv, Full);
6919 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
6920 Set_First_Entity (Full, First_Entity (Full_Base));
6921 Set_Last_Entity (Full, Last_Entity (Full_Base));
6923 when others =>
6924 Copy_Node (Full_Base, Full);
6925 Set_Chars (Full, Chars (Priv));
6926 Conditional_Delay (Full, Priv);
6927 Set_Sloc (Full, Sloc (Priv));
6928 end case;
6930 Set_Next_Entity (Full, Save_Next_Entity);
6931 Set_Homonym (Full, Save_Homonym);
6932 Set_Associated_Node_For_Itype (Full, Related_Nod);
6934 -- Set common attributes for all subtypes
6936 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
6938 -- The Etype of the full view is inconsistent. Gigi needs to see the
6939 -- structural full view, which is what the current scheme gives:
6940 -- the Etype of the full view is the etype of the full base. However,
6941 -- if the full base is a derived type, the full view then looks like
6942 -- a subtype of the parent, not a subtype of the full base. If instead
6943 -- we write:
6945 -- Set_Etype (Full, Full_Base);
6947 -- then we get inconsistencies in the front-end (confusion between
6948 -- views). Several outstanding bugs are related to this ???
6950 Set_Is_First_Subtype (Full, False);
6951 Set_Scope (Full, Scope (Priv));
6952 Set_Size_Info (Full, Full_Base);
6953 Set_RM_Size (Full, RM_Size (Full_Base));
6954 Set_Is_Itype (Full);
6956 -- A subtype of a private-type-without-discriminants, whose full-view
6957 -- has discriminants with default expressions, is not constrained!
6959 if not Has_Discriminants (Priv) then
6960 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
6962 if Has_Discriminants (Full_Base) then
6963 Set_Discriminant_Constraint
6964 (Full, Discriminant_Constraint (Full_Base));
6966 -- The partial view may have been indefinite, the full view
6967 -- might not be.
6969 Set_Has_Unknown_Discriminants
6970 (Full, Has_Unknown_Discriminants (Full_Base));
6971 end if;
6972 end if;
6974 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
6975 Set_Depends_On_Private (Full, Has_Private_Component (Full));
6977 -- Freeze the private subtype entity if its parent is delayed, and not
6978 -- already frozen. We skip this processing if the type is an anonymous
6979 -- subtype of a record component, or is the corresponding record of a
6980 -- protected type, since ???
6982 if not Is_Type (Scope (Full)) then
6983 Set_Has_Delayed_Freeze (Full,
6984 Has_Delayed_Freeze (Full_Base)
6985 and then (not Is_Frozen (Full_Base)));
6986 end if;
6988 Set_Freeze_Node (Full, Empty);
6989 Set_Is_Frozen (Full, False);
6990 Set_Full_View (Priv, Full);
6992 if Has_Discriminants (Full) then
6993 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
6994 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
6996 if Has_Unknown_Discriminants (Full) then
6997 Set_Discriminant_Constraint (Full, No_Elist);
6998 end if;
6999 end if;
7001 if Ekind (Full_Base) = E_Record_Type
7002 and then Has_Discriminants (Full_Base)
7003 and then Has_Discriminants (Priv) -- might not, if errors
7004 and then not Has_Unknown_Discriminants (Priv)
7005 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
7006 then
7007 Create_Constrained_Components
7008 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
7010 -- If the full base is itself derived from private, build a congruent
7011 -- subtype of its underlying type, for use by the back end. For a
7012 -- constrained record component, the declaration cannot be placed on
7013 -- the component list, but it must neverthess be built an analyzed, to
7014 -- supply enough information for gigi to compute the size of component.
7016 elsif Ekind (Full_Base) in Private_Kind
7017 and then Is_Derived_Type (Full_Base)
7018 and then Has_Discriminants (Full_Base)
7019 and then (Ekind (Current_Scope) /= E_Record_Subtype)
7020 then
7021 if not Is_Itype (Priv)
7022 and then
7023 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
7024 then
7025 Build_Underlying_Full_View
7026 (Parent (Priv), Full, Etype (Full_Base));
7028 elsif Nkind (Related_Nod) = N_Component_Declaration then
7029 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
7030 end if;
7032 elsif Is_Record_Type (Full_Base) then
7034 -- Show Full is simply a renaming of Full_Base
7036 Set_Cloned_Subtype (Full, Full_Base);
7037 end if;
7039 -- It is unsafe to share to bounds of a scalar type, because the Itype
7040 -- is elaborated on demand, and if a bound is non-static then different
7041 -- orders of elaboration in different units will lead to different
7042 -- external symbols.
7044 if Is_Scalar_Type (Full_Base) then
7045 Set_Scalar_Range (Full,
7046 Make_Range (Sloc (Related_Nod),
7047 Low_Bound =>
7048 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
7049 High_Bound =>
7050 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
7052 -- This completion inherits the bounds of the full parent, but if
7053 -- the parent is an unconstrained floating point type, so is the
7054 -- completion.
7056 if Is_Floating_Point_Type (Full_Base) then
7057 Set_Includes_Infinities
7058 (Scalar_Range (Full), Has_Infinities (Full_Base));
7059 end if;
7060 end if;
7062 -- ??? It seems that a lot of fields are missing that should be copied
7063 -- from Full_Base to Full. Here are some that are introduced in a
7064 -- non-disruptive way but a cleanup is necessary.
7066 if Is_Tagged_Type (Full_Base) then
7067 Set_Is_Tagged_Type (Full);
7068 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
7069 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
7071 -- If this is a subtype of a protected or task type, constrain its
7072 -- corresponding record, unless this is a subtype without constraints,
7073 -- i.e. a simple renaming as with an actual subtype in an instance.
7075 elsif Is_Concurrent_Type (Full_Base) then
7076 if Has_Discriminants (Full)
7077 and then Present (Corresponding_Record_Type (Full_Base))
7078 and then
7079 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
7080 then
7081 Set_Corresponding_Record_Type (Full,
7082 Constrain_Corresponding_Record
7083 (Full, Corresponding_Record_Type (Full_Base),
7084 Related_Nod, Full_Base));
7086 else
7087 Set_Corresponding_Record_Type (Full,
7088 Corresponding_Record_Type (Full_Base));
7089 end if;
7090 end if;
7091 end Complete_Private_Subtype;
7093 ----------------------------
7094 -- Constant_Redeclaration --
7095 ----------------------------
7097 procedure Constant_Redeclaration
7098 (Id : Entity_Id;
7099 N : Node_Id;
7100 T : out Entity_Id)
7102 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
7103 Obj_Def : constant Node_Id := Object_Definition (N);
7104 New_T : Entity_Id;
7106 procedure Check_Recursive_Declaration (Typ : Entity_Id);
7107 -- If deferred constant is an access type initialized with an
7108 -- allocator, check whether there is an illegal recursion in the
7109 -- definition, through a default value of some record subcomponent.
7110 -- This is normally detected when generating init procs, but requires
7111 -- this additional mechanism when expansion is disabled.
7113 ---------------------------------
7114 -- Check_Recursive_Declaration --
7115 ---------------------------------
7117 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
7118 Comp : Entity_Id;
7120 begin
7121 if Is_Record_Type (Typ) then
7122 Comp := First_Component (Typ);
7123 while Present (Comp) loop
7124 if Comes_From_Source (Comp) then
7125 if Present (Expression (Parent (Comp)))
7126 and then Is_Entity_Name (Expression (Parent (Comp)))
7127 and then Entity (Expression (Parent (Comp))) = Prev
7128 then
7129 Error_Msg_Sloc := Sloc (Parent (Comp));
7130 Error_Msg_NE
7131 ("illegal circularity with declaration for&#",
7132 N, Comp);
7133 return;
7135 elsif Is_Record_Type (Etype (Comp)) then
7136 Check_Recursive_Declaration (Etype (Comp));
7137 end if;
7138 end if;
7140 Next_Component (Comp);
7141 end loop;
7142 end if;
7143 end Check_Recursive_Declaration;
7145 -- Start of processing for Constant_Redeclaration
7147 begin
7148 if Nkind (Parent (Prev)) = N_Object_Declaration then
7149 if Nkind (Object_Definition
7150 (Parent (Prev))) = N_Subtype_Indication
7151 then
7152 -- Find type of new declaration. The constraints of the two
7153 -- views must match statically, but there is no point in
7154 -- creating an itype for the full view.
7156 if Nkind (Obj_Def) = N_Subtype_Indication then
7157 Find_Type (Subtype_Mark (Obj_Def));
7158 New_T := Entity (Subtype_Mark (Obj_Def));
7160 else
7161 Find_Type (Obj_Def);
7162 New_T := Entity (Obj_Def);
7163 end if;
7165 T := Etype (Prev);
7167 else
7168 -- The full view may impose a constraint, even if the partial
7169 -- view does not, so construct the subtype.
7171 New_T := Find_Type_Of_Object (Obj_Def, N);
7172 T := New_T;
7173 end if;
7175 else
7176 -- Current declaration is illegal, diagnosed below in Enter_Name
7178 T := Empty;
7179 New_T := Any_Type;
7180 end if;
7182 -- If previous full declaration exists, or if a homograph is present,
7183 -- let Enter_Name handle it, either with an error, or with the removal
7184 -- of an overridden implicit subprogram.
7186 if Ekind (Prev) /= E_Constant
7187 or else Present (Expression (Parent (Prev)))
7188 or else Present (Full_View (Prev))
7189 then
7190 Enter_Name (Id);
7192 -- Verify that types of both declarations match
7194 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
7195 Error_Msg_Sloc := Sloc (Prev);
7196 Error_Msg_N ("type does not match declaration#", N);
7197 Set_Full_View (Prev, Id);
7198 Set_Etype (Id, Any_Type);
7200 -- If so, process the full constant declaration
7202 else
7203 Set_Full_View (Prev, Id);
7204 Set_Is_Public (Id, Is_Public (Prev));
7205 Set_Is_Internal (Id);
7206 Append_Entity (Id, Current_Scope);
7208 -- Check ALIASED present if present before (RM 7.4(7))
7210 if Is_Aliased (Prev)
7211 and then not Aliased_Present (N)
7212 then
7213 Error_Msg_Sloc := Sloc (Prev);
7214 Error_Msg_N ("ALIASED required (see declaration#)", N);
7215 end if;
7217 -- Check that placement is in private part and that the incomplete
7218 -- declaration appeared in the visible part.
7220 if Ekind (Current_Scope) = E_Package
7221 and then not In_Private_Part (Current_Scope)
7222 then
7223 Error_Msg_Sloc := Sloc (Prev);
7224 Error_Msg_N ("full constant for declaration#"
7225 & " must be in private part", N);
7227 elsif Ekind (Current_Scope) = E_Package
7228 and then List_Containing (Parent (Prev))
7229 /= Visible_Declarations
7230 (Specification (Unit_Declaration_Node (Current_Scope)))
7231 then
7232 Error_Msg_N
7233 ("deferred constant must be declared in visible part",
7234 Parent (Prev));
7235 end if;
7237 if Is_Access_Type (T)
7238 and then Nkind (Expression (N)) = N_Allocator
7239 then
7240 Check_Recursive_Declaration (Designated_Type (T));
7241 end if;
7242 end if;
7243 end Constant_Redeclaration;
7245 ----------------------
7246 -- Constrain_Access --
7247 ----------------------
7249 procedure Constrain_Access
7250 (Def_Id : in out Entity_Id;
7251 S : Node_Id;
7252 Related_Nod : Node_Id)
7254 T : constant Entity_Id := Entity (Subtype_Mark (S));
7255 Desig_Type : constant Entity_Id := Designated_Type (T);
7256 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
7257 Constraint_OK : Boolean := True;
7259 begin
7260 if Is_Array_Type (Desig_Type) then
7261 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
7263 elsif (Is_Record_Type (Desig_Type)
7264 or else Is_Incomplete_Or_Private_Type (Desig_Type))
7265 and then not Is_Constrained (Desig_Type)
7266 then
7267 -- ??? The following code is a temporary kludge to ignore a
7268 -- discriminant constraint on access type if it is constraining
7269 -- the current record. Avoid creating the implicit subtype of the
7270 -- record we are currently compiling since right now, we cannot
7271 -- handle these. For now, just return the access type itself.
7273 if Desig_Type = Current_Scope
7274 and then No (Def_Id)
7275 then
7276 Set_Ekind (Desig_Subtype, E_Record_Subtype);
7277 Def_Id := Entity (Subtype_Mark (S));
7279 -- This call added to ensure that the constraint is analyzed
7280 -- (needed for a B test). Note that we still return early from
7281 -- this procedure to avoid recursive processing. ???
7283 Constrain_Discriminated_Type
7284 (Desig_Subtype, S, Related_Nod, For_Access => True);
7285 return;
7286 end if;
7288 if Ekind (T) = E_General_Access_Type
7289 and then Has_Private_Declaration (Desig_Type)
7290 and then In_Open_Scopes (Scope (Desig_Type))
7291 then
7292 -- Enforce rule that the constraint is illegal if there is
7293 -- an unconstrained view of the designated type. This means
7294 -- that the partial view (either a private type declaration or
7295 -- a derivation from a private type) has no discriminants.
7296 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
7297 -- by ACATS B371001).
7299 declare
7300 Pack : constant Node_Id :=
7301 Unit_Declaration_Node (Scope (Desig_Type));
7302 Decls : List_Id;
7303 Decl : Node_Id;
7305 begin
7306 if Nkind (Pack) = N_Package_Declaration then
7307 Decls := Visible_Declarations (Specification (Pack));
7308 Decl := First (Decls);
7309 while Present (Decl) loop
7310 if (Nkind (Decl) = N_Private_Type_Declaration
7311 and then
7312 Chars (Defining_Identifier (Decl)) =
7313 Chars (Desig_Type))
7315 or else
7316 (Nkind (Decl) = N_Full_Type_Declaration
7317 and then
7318 Chars (Defining_Identifier (Decl)) =
7319 Chars (Desig_Type)
7320 and then Is_Derived_Type (Desig_Type)
7321 and then
7322 Has_Private_Declaration (Etype (Desig_Type)))
7323 then
7324 if No (Discriminant_Specifications (Decl)) then
7325 Error_Msg_N
7326 ("cannot constrain general access type " &
7327 "if designated type has unconstrained view", S);
7328 end if;
7330 exit;
7331 end if;
7333 Next (Decl);
7334 end loop;
7335 end if;
7336 end;
7337 end if;
7339 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
7340 For_Access => True);
7342 elsif (Is_Task_Type (Desig_Type)
7343 or else Is_Protected_Type (Desig_Type))
7344 and then not Is_Constrained (Desig_Type)
7345 then
7346 Constrain_Concurrent
7347 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
7349 else
7350 Error_Msg_N ("invalid constraint on access type", S);
7351 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
7352 Constraint_OK := False;
7353 end if;
7355 if No (Def_Id) then
7356 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
7357 else
7358 Set_Ekind (Def_Id, E_Access_Subtype);
7359 end if;
7361 if Constraint_OK then
7362 Set_Etype (Def_Id, Base_Type (T));
7364 if Is_Private_Type (Desig_Type) then
7365 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
7366 end if;
7367 else
7368 Set_Etype (Def_Id, Any_Type);
7369 end if;
7371 Set_Size_Info (Def_Id, T);
7372 Set_Is_Constrained (Def_Id, Constraint_OK);
7373 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
7374 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7375 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
7377 -- Itypes created for constrained record components do not receive
7378 -- a freeze node, they are elaborated when first seen.
7380 if not Is_Record_Type (Current_Scope) then
7381 Conditional_Delay (Def_Id, T);
7382 end if;
7383 end Constrain_Access;
7385 ---------------------
7386 -- Constrain_Array --
7387 ---------------------
7389 procedure Constrain_Array
7390 (Def_Id : in out Entity_Id;
7391 SI : Node_Id;
7392 Related_Nod : Node_Id;
7393 Related_Id : Entity_Id;
7394 Suffix : Character)
7396 C : constant Node_Id := Constraint (SI);
7397 Number_Of_Constraints : Nat := 0;
7398 Index : Node_Id;
7399 S, T : Entity_Id;
7400 Constraint_OK : Boolean := True;
7402 begin
7403 T := Entity (Subtype_Mark (SI));
7405 if Ekind (T) in Access_Kind then
7406 T := Designated_Type (T);
7407 end if;
7409 -- If an index constraint follows a subtype mark in a subtype indication
7410 -- then the type or subtype denoted by the subtype mark must not already
7411 -- impose an index constraint. The subtype mark must denote either an
7412 -- unconstrained array type or an access type whose designated type
7413 -- is such an array type... (RM 3.6.1)
7415 if Is_Constrained (T) then
7416 Error_Msg_N
7417 ("array type is already constrained", Subtype_Mark (SI));
7418 Constraint_OK := False;
7420 else
7421 S := First (Constraints (C));
7423 while Present (S) loop
7424 Number_Of_Constraints := Number_Of_Constraints + 1;
7425 Next (S);
7426 end loop;
7428 -- In either case, the index constraint must provide a discrete
7429 -- range for each index of the array type and the type of each
7430 -- discrete range must be the same as that of the corresponding
7431 -- index. (RM 3.6.1)
7433 if Number_Of_Constraints /= Number_Dimensions (T) then
7434 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
7435 Constraint_OK := False;
7437 else
7438 S := First (Constraints (C));
7439 Index := First_Index (T);
7440 Analyze (Index);
7442 -- Apply constraints to each index type
7444 for J in 1 .. Number_Of_Constraints loop
7445 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
7446 Next (Index);
7447 Next (S);
7448 end loop;
7450 end if;
7451 end if;
7453 if No (Def_Id) then
7454 Def_Id :=
7455 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
7456 Set_Parent (Def_Id, Related_Nod);
7458 else
7459 Set_Ekind (Def_Id, E_Array_Subtype);
7460 end if;
7462 Set_Size_Info (Def_Id, (T));
7463 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7464 Set_Etype (Def_Id, Base_Type (T));
7466 if Constraint_OK then
7467 Set_First_Index (Def_Id, First (Constraints (C)));
7468 end if;
7470 Set_Is_Constrained (Def_Id, True);
7471 Set_Is_Aliased (Def_Id, Is_Aliased (T));
7472 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7474 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
7475 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
7477 -- If the subtype is not that of a record component, build a freeze
7478 -- node if parent still needs one.
7480 -- If the subtype is not that of a record component, make sure
7481 -- that the Depends_On_Private status is set (explanation ???)
7482 -- and also that a conditional delay is set.
7484 if not Is_Type (Scope (Def_Id)) then
7485 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
7486 Conditional_Delay (Def_Id, T);
7487 end if;
7489 end Constrain_Array;
7491 ------------------------------
7492 -- Constrain_Component_Type --
7493 ------------------------------
7495 function Constrain_Component_Type
7496 (Compon_Type : Entity_Id;
7497 Constrained_Typ : Entity_Id;
7498 Related_Node : Node_Id;
7499 Typ : Entity_Id;
7500 Constraints : Elist_Id) return Entity_Id
7502 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
7504 function Build_Constrained_Array_Type
7505 (Old_Type : Entity_Id) return Entity_Id;
7506 -- If Old_Type is an array type, one of whose indices is constrained
7507 -- by a discriminant, build an Itype whose constraint replaces the
7508 -- discriminant with its value in the constraint.
7510 function Build_Constrained_Discriminated_Type
7511 (Old_Type : Entity_Id) return Entity_Id;
7512 -- Ditto for record components
7514 function Build_Constrained_Access_Type
7515 (Old_Type : Entity_Id) return Entity_Id;
7516 -- Ditto for access types. Makes use of previous two functions, to
7517 -- constrain designated type.
7519 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
7520 -- T is an array or discriminated type, C is a list of constraints
7521 -- that apply to T. This routine builds the constrained subtype.
7523 function Is_Discriminant (Expr : Node_Id) return Boolean;
7524 -- Returns True if Expr is a discriminant
7526 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
7527 -- Find the value of discriminant Discrim in Constraint
7529 -----------------------------------
7530 -- Build_Constrained_Access_Type --
7531 -----------------------------------
7533 function Build_Constrained_Access_Type
7534 (Old_Type : Entity_Id) return Entity_Id
7536 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
7537 Itype : Entity_Id;
7538 Desig_Subtype : Entity_Id;
7539 Scop : Entity_Id;
7541 begin
7542 -- if the original access type was not embedded in the enclosing
7543 -- type definition, there is no need to produce a new access
7544 -- subtype. In fact every access type with an explicit constraint
7545 -- generates an itype whose scope is the enclosing record.
7547 if not Is_Type (Scope (Old_Type)) then
7548 return Old_Type;
7550 elsif Is_Array_Type (Desig_Type) then
7551 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
7553 elsif Has_Discriminants (Desig_Type) then
7555 -- This may be an access type to an enclosing record type for
7556 -- which we are constructing the constrained components. Return
7557 -- the enclosing record subtype. This is not always correct,
7558 -- but avoids infinite recursion. ???
7560 Desig_Subtype := Any_Type;
7562 for J in reverse 0 .. Scope_Stack.Last loop
7563 Scop := Scope_Stack.Table (J).Entity;
7565 if Is_Type (Scop)
7566 and then Base_Type (Scop) = Base_Type (Desig_Type)
7567 then
7568 Desig_Subtype := Scop;
7569 end if;
7571 exit when not Is_Type (Scop);
7572 end loop;
7574 if Desig_Subtype = Any_Type then
7575 Desig_Subtype :=
7576 Build_Constrained_Discriminated_Type (Desig_Type);
7577 end if;
7579 else
7580 return Old_Type;
7581 end if;
7583 if Desig_Subtype /= Desig_Type then
7585 -- The Related_Node better be here or else we won't be able
7586 -- to attach new itypes to a node in the tree.
7588 pragma Assert (Present (Related_Node));
7590 Itype := Create_Itype (E_Access_Subtype, Related_Node);
7592 Set_Etype (Itype, Base_Type (Old_Type));
7593 Set_Size_Info (Itype, (Old_Type));
7594 Set_Directly_Designated_Type (Itype, Desig_Subtype);
7595 Set_Depends_On_Private (Itype, Has_Private_Component
7596 (Old_Type));
7597 Set_Is_Access_Constant (Itype, Is_Access_Constant
7598 (Old_Type));
7600 -- The new itype needs freezing when it depends on a not frozen
7601 -- type and the enclosing subtype needs freezing.
7603 if Has_Delayed_Freeze (Constrained_Typ)
7604 and then not Is_Frozen (Constrained_Typ)
7605 then
7606 Conditional_Delay (Itype, Base_Type (Old_Type));
7607 end if;
7609 return Itype;
7611 else
7612 return Old_Type;
7613 end if;
7614 end Build_Constrained_Access_Type;
7616 ----------------------------------
7617 -- Build_Constrained_Array_Type --
7618 ----------------------------------
7620 function Build_Constrained_Array_Type
7621 (Old_Type : Entity_Id) return Entity_Id
7623 Lo_Expr : Node_Id;
7624 Hi_Expr : Node_Id;
7625 Old_Index : Node_Id;
7626 Range_Node : Node_Id;
7627 Constr_List : List_Id;
7629 Need_To_Create_Itype : Boolean := False;
7631 begin
7632 Old_Index := First_Index (Old_Type);
7633 while Present (Old_Index) loop
7634 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
7636 if Is_Discriminant (Lo_Expr)
7637 or else Is_Discriminant (Hi_Expr)
7638 then
7639 Need_To_Create_Itype := True;
7640 end if;
7642 Next_Index (Old_Index);
7643 end loop;
7645 if Need_To_Create_Itype then
7646 Constr_List := New_List;
7648 Old_Index := First_Index (Old_Type);
7649 while Present (Old_Index) loop
7650 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
7652 if Is_Discriminant (Lo_Expr) then
7653 Lo_Expr := Get_Discr_Value (Lo_Expr);
7654 end if;
7656 if Is_Discriminant (Hi_Expr) then
7657 Hi_Expr := Get_Discr_Value (Hi_Expr);
7658 end if;
7660 Range_Node :=
7661 Make_Range
7662 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
7664 Append (Range_Node, To => Constr_List);
7666 Next_Index (Old_Index);
7667 end loop;
7669 return Build_Subtype (Old_Type, Constr_List);
7671 else
7672 return Old_Type;
7673 end if;
7674 end Build_Constrained_Array_Type;
7676 ------------------------------------------
7677 -- Build_Constrained_Discriminated_Type --
7678 ------------------------------------------
7680 function Build_Constrained_Discriminated_Type
7681 (Old_Type : Entity_Id) return Entity_Id
7683 Expr : Node_Id;
7684 Constr_List : List_Id;
7685 Old_Constraint : Elmt_Id;
7687 Need_To_Create_Itype : Boolean := False;
7689 begin
7690 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
7691 while Present (Old_Constraint) loop
7692 Expr := Node (Old_Constraint);
7694 if Is_Discriminant (Expr) then
7695 Need_To_Create_Itype := True;
7696 end if;
7698 Next_Elmt (Old_Constraint);
7699 end loop;
7701 if Need_To_Create_Itype then
7702 Constr_List := New_List;
7704 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
7705 while Present (Old_Constraint) loop
7706 Expr := Node (Old_Constraint);
7708 if Is_Discriminant (Expr) then
7709 Expr := Get_Discr_Value (Expr);
7710 end if;
7712 Append (New_Copy_Tree (Expr), To => Constr_List);
7714 Next_Elmt (Old_Constraint);
7715 end loop;
7717 return Build_Subtype (Old_Type, Constr_List);
7719 else
7720 return Old_Type;
7721 end if;
7722 end Build_Constrained_Discriminated_Type;
7724 -------------------
7725 -- Build_Subtype --
7726 -------------------
7728 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
7729 Indic : Node_Id;
7730 Subtyp_Decl : Node_Id;
7731 Def_Id : Entity_Id;
7732 Btyp : Entity_Id := Base_Type (T);
7734 begin
7735 -- The Related_Node better be here or else we won't be able to
7736 -- attach new itypes to a node in the tree.
7738 pragma Assert (Present (Related_Node));
7740 -- If the view of the component's type is incomplete or private
7741 -- with unknown discriminants, then the constraint must be applied
7742 -- to the full type.
7744 if Has_Unknown_Discriminants (Btyp)
7745 and then Present (Underlying_Type (Btyp))
7746 then
7747 Btyp := Underlying_Type (Btyp);
7748 end if;
7750 Indic :=
7751 Make_Subtype_Indication (Loc,
7752 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7753 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
7755 Def_Id := Create_Itype (Ekind (T), Related_Node);
7757 Subtyp_Decl :=
7758 Make_Subtype_Declaration (Loc,
7759 Defining_Identifier => Def_Id,
7760 Subtype_Indication => Indic);
7762 Set_Parent (Subtyp_Decl, Parent (Related_Node));
7764 -- Itypes must be analyzed with checks off (see package Itypes)
7766 Analyze (Subtyp_Decl, Suppress => All_Checks);
7768 return Def_Id;
7769 end Build_Subtype;
7771 ---------------------
7772 -- Get_Discr_Value --
7773 ---------------------
7775 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
7776 D : Entity_Id := First_Discriminant (Typ);
7777 E : Elmt_Id := First_Elmt (Constraints);
7778 G : Elmt_Id;
7780 begin
7781 -- The discriminant may be declared for the type, in which case we
7782 -- find it by iterating over the list of discriminants. If the
7783 -- discriminant is inherited from a parent type, it appears as the
7784 -- corresponding discriminant of the current type. This will be the
7785 -- case when constraining an inherited component whose constraint is
7786 -- given by a discriminant of the parent.
7788 while Present (D) loop
7789 if D = Entity (Discrim)
7790 or else Corresponding_Discriminant (D) = Entity (Discrim)
7791 then
7792 return Node (E);
7793 end if;
7795 Next_Discriminant (D);
7796 Next_Elmt (E);
7797 end loop;
7799 -- The corresponding_Discriminant mechanism is incomplete, because
7800 -- the correspondence between new and old discriminants is not one
7801 -- to one: one new discriminant can constrain several old ones. In
7802 -- that case, scan sequentially the stored_constraint, the list of
7803 -- discriminants of the parents, and the constraints.
7805 if Is_Derived_Type (Typ)
7806 and then Present (Stored_Constraint (Typ))
7807 and then Scope (Entity (Discrim)) = Etype (Typ)
7808 then
7809 D := First_Discriminant (Etype (Typ));
7810 E := First_Elmt (Constraints);
7811 G := First_Elmt (Stored_Constraint (Typ));
7813 while Present (D) loop
7814 if D = Entity (Discrim) then
7815 return Node (E);
7816 end if;
7818 Next_Discriminant (D);
7819 Next_Elmt (E);
7820 Next_Elmt (G);
7821 end loop;
7822 end if;
7824 -- Something is wrong if we did not find the value
7826 raise Program_Error;
7827 end Get_Discr_Value;
7829 ---------------------
7830 -- Is_Discriminant --
7831 ---------------------
7833 function Is_Discriminant (Expr : Node_Id) return Boolean is
7834 Discrim_Scope : Entity_Id;
7836 begin
7837 if Denotes_Discriminant (Expr) then
7838 Discrim_Scope := Scope (Entity (Expr));
7840 -- Either we have a reference to one of Typ's discriminants,
7842 pragma Assert (Discrim_Scope = Typ
7844 -- or to the discriminants of the parent type, in the case
7845 -- of a derivation of a tagged type with variants.
7847 or else Discrim_Scope = Etype (Typ)
7848 or else Full_View (Discrim_Scope) = Etype (Typ)
7850 -- or same as above for the case where the discriminants
7851 -- were declared in Typ's private view.
7853 or else (Is_Private_Type (Discrim_Scope)
7854 and then Chars (Discrim_Scope) = Chars (Typ))
7856 -- or else we are deriving from the full view and the
7857 -- discriminant is declared in the private entity.
7859 or else (Is_Private_Type (Typ)
7860 and then Chars (Discrim_Scope) = Chars (Typ))
7862 -- or we have a class-wide type, in which case make sure the
7863 -- discriminant found belongs to the root type.
7865 or else (Is_Class_Wide_Type (Typ)
7866 and then Etype (Typ) = Discrim_Scope));
7868 return True;
7869 end if;
7871 -- In all other cases we have something wrong
7873 return False;
7874 end Is_Discriminant;
7876 -- Start of processing for Constrain_Component_Type
7878 begin
7879 if Is_Array_Type (Compon_Type) then
7880 return Build_Constrained_Array_Type (Compon_Type);
7882 elsif Has_Discriminants (Compon_Type) then
7883 return Build_Constrained_Discriminated_Type (Compon_Type);
7885 elsif Is_Access_Type (Compon_Type) then
7886 return Build_Constrained_Access_Type (Compon_Type);
7887 end if;
7889 return Compon_Type;
7890 end Constrain_Component_Type;
7892 --------------------------
7893 -- Constrain_Concurrent --
7894 --------------------------
7896 -- For concurrent types, the associated record value type carries the same
7897 -- discriminants, so when we constrain a concurrent type, we must constrain
7898 -- the value type as well.
7900 procedure Constrain_Concurrent
7901 (Def_Id : in out Entity_Id;
7902 SI : Node_Id;
7903 Related_Nod : Node_Id;
7904 Related_Id : Entity_Id;
7905 Suffix : Character)
7907 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
7908 T_Val : Entity_Id;
7910 begin
7911 if Ekind (T_Ent) in Access_Kind then
7912 T_Ent := Designated_Type (T_Ent);
7913 end if;
7915 T_Val := Corresponding_Record_Type (T_Ent);
7917 if Present (T_Val) then
7919 if No (Def_Id) then
7920 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7921 end if;
7923 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7925 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7926 Set_Corresponding_Record_Type (Def_Id,
7927 Constrain_Corresponding_Record
7928 (Def_Id, T_Val, Related_Nod, Related_Id));
7930 else
7931 -- If there is no associated record, expansion is disabled and this
7932 -- is a generic context. Create a subtype in any case, so that
7933 -- semantic analysis can proceed.
7935 if No (Def_Id) then
7936 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7937 end if;
7939 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7940 end if;
7941 end Constrain_Concurrent;
7943 ------------------------------------
7944 -- Constrain_Corresponding_Record --
7945 ------------------------------------
7947 function Constrain_Corresponding_Record
7948 (Prot_Subt : Entity_Id;
7949 Corr_Rec : Entity_Id;
7950 Related_Nod : Node_Id;
7951 Related_Id : Entity_Id) return Entity_Id
7953 T_Sub : constant Entity_Id :=
7954 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
7956 begin
7957 Set_Etype (T_Sub, Corr_Rec);
7958 Init_Size_Align (T_Sub);
7959 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
7960 Set_Is_Constrained (T_Sub, True);
7961 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
7962 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
7964 Conditional_Delay (T_Sub, Corr_Rec);
7966 if Has_Discriminants (Prot_Subt) then -- False only if errors.
7967 Set_Discriminant_Constraint
7968 (T_Sub, Discriminant_Constraint (Prot_Subt));
7969 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
7970 Create_Constrained_Components
7971 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
7972 end if;
7974 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
7976 return T_Sub;
7977 end Constrain_Corresponding_Record;
7979 -----------------------
7980 -- Constrain_Decimal --
7981 -----------------------
7983 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
7984 T : constant Entity_Id := Entity (Subtype_Mark (S));
7985 C : constant Node_Id := Constraint (S);
7986 Loc : constant Source_Ptr := Sloc (C);
7987 Range_Expr : Node_Id;
7988 Digits_Expr : Node_Id;
7989 Digits_Val : Uint;
7990 Bound_Val : Ureal;
7992 begin
7993 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
7995 if Nkind (C) = N_Range_Constraint then
7996 Range_Expr := Range_Expression (C);
7997 Digits_Val := Digits_Value (T);
7999 else
8000 pragma Assert (Nkind (C) = N_Digits_Constraint);
8001 Digits_Expr := Digits_Expression (C);
8002 Analyze_And_Resolve (Digits_Expr, Any_Integer);
8004 Check_Digits_Expression (Digits_Expr);
8005 Digits_Val := Expr_Value (Digits_Expr);
8007 if Digits_Val > Digits_Value (T) then
8008 Error_Msg_N
8009 ("digits expression is incompatible with subtype", C);
8010 Digits_Val := Digits_Value (T);
8011 end if;
8013 if Present (Range_Constraint (C)) then
8014 Range_Expr := Range_Expression (Range_Constraint (C));
8015 else
8016 Range_Expr := Empty;
8017 end if;
8018 end if;
8020 Set_Etype (Def_Id, Base_Type (T));
8021 Set_Size_Info (Def_Id, (T));
8022 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8023 Set_Delta_Value (Def_Id, Delta_Value (T));
8024 Set_Scale_Value (Def_Id, Scale_Value (T));
8025 Set_Small_Value (Def_Id, Small_Value (T));
8026 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
8027 Set_Digits_Value (Def_Id, Digits_Val);
8029 -- Manufacture range from given digits value if no range present
8031 if No (Range_Expr) then
8032 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
8033 Range_Expr :=
8034 Make_Range (Loc,
8035 Low_Bound =>
8036 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
8037 High_Bound =>
8038 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
8039 end if;
8041 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
8042 Set_Discrete_RM_Size (Def_Id);
8044 -- Unconditionally delay the freeze, since we cannot set size
8045 -- information in all cases correctly until the freeze point.
8047 Set_Has_Delayed_Freeze (Def_Id);
8048 end Constrain_Decimal;
8050 ----------------------------------
8051 -- Constrain_Discriminated_Type --
8052 ----------------------------------
8054 procedure Constrain_Discriminated_Type
8055 (Def_Id : Entity_Id;
8056 S : Node_Id;
8057 Related_Nod : Node_Id;
8058 For_Access : Boolean := False)
8060 E : constant Entity_Id := Entity (Subtype_Mark (S));
8061 T : Entity_Id;
8062 C : Node_Id;
8063 Elist : Elist_Id := New_Elmt_List;
8065 procedure Fixup_Bad_Constraint;
8066 -- This is called after finding a bad constraint, and after having
8067 -- posted an appropriate error message. The mission is to leave the
8068 -- entity T in as reasonable state as possible!
8070 --------------------------
8071 -- Fixup_Bad_Constraint --
8072 --------------------------
8074 procedure Fixup_Bad_Constraint is
8075 begin
8076 -- Set a reasonable Ekind for the entity. For an incomplete type,
8077 -- we can't do much, but for other types, we can set the proper
8078 -- corresponding subtype kind.
8080 if Ekind (T) = E_Incomplete_Type then
8081 Set_Ekind (Def_Id, Ekind (T));
8082 else
8083 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8084 end if;
8086 Set_Etype (Def_Id, Any_Type);
8087 Set_Error_Posted (Def_Id);
8088 end Fixup_Bad_Constraint;
8090 -- Start of processing for Constrain_Discriminated_Type
8092 begin
8093 C := Constraint (S);
8095 -- A discriminant constraint is only allowed in a subtype indication,
8096 -- after a subtype mark. This subtype mark must denote either a type
8097 -- with discriminants, or an access type whose designated type is a
8098 -- type with discriminants. A discriminant constraint specifies the
8099 -- values of these discriminants (RM 3.7.2(5)).
8101 T := Base_Type (Entity (Subtype_Mark (S)));
8103 if Ekind (T) in Access_Kind then
8104 T := Designated_Type (T);
8105 end if;
8107 -- Check that the type has visible discriminants. The type may be
8108 -- a private type with unknown discriminants whose full view has
8109 -- discriminants which are invisible.
8111 if not Has_Discriminants (T)
8112 or else
8113 (Has_Unknown_Discriminants (T)
8114 and then Is_Private_Type (T))
8115 then
8116 Error_Msg_N ("invalid constraint: type has no discriminant", C);
8117 Fixup_Bad_Constraint;
8118 return;
8120 elsif Is_Constrained (E)
8121 or else (Ekind (E) = E_Class_Wide_Subtype
8122 and then Present (Discriminant_Constraint (E)))
8123 then
8124 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
8125 Fixup_Bad_Constraint;
8126 return;
8127 end if;
8129 -- T may be an unconstrained subtype (e.g. a generic actual).
8130 -- Constraint applies to the base type.
8132 T := Base_Type (T);
8134 Elist := Build_Discriminant_Constraints (T, S);
8136 -- If the list returned was empty we had an error in building the
8137 -- discriminant constraint. We have also already signalled an error
8138 -- in the incomplete type case
8140 if Is_Empty_Elmt_List (Elist) then
8141 Fixup_Bad_Constraint;
8142 return;
8143 end if;
8145 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
8146 end Constrain_Discriminated_Type;
8148 ---------------------------
8149 -- Constrain_Enumeration --
8150 ---------------------------
8152 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
8153 T : constant Entity_Id := Entity (Subtype_Mark (S));
8154 C : constant Node_Id := Constraint (S);
8156 begin
8157 Set_Ekind (Def_Id, E_Enumeration_Subtype);
8159 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
8161 Set_Etype (Def_Id, Base_Type (T));
8162 Set_Size_Info (Def_Id, (T));
8163 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8164 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
8166 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8168 Set_Discrete_RM_Size (Def_Id);
8169 end Constrain_Enumeration;
8171 ----------------------
8172 -- Constrain_Float --
8173 ----------------------
8175 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
8176 T : constant Entity_Id := Entity (Subtype_Mark (S));
8177 C : Node_Id;
8178 D : Node_Id;
8179 Rais : Node_Id;
8181 begin
8182 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
8184 Set_Etype (Def_Id, Base_Type (T));
8185 Set_Size_Info (Def_Id, (T));
8186 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8188 -- Process the constraint
8190 C := Constraint (S);
8192 -- Digits constraint present
8194 if Nkind (C) = N_Digits_Constraint then
8195 Check_Restriction (No_Obsolescent_Features, C);
8197 if Warn_On_Obsolescent_Feature then
8198 Error_Msg_N
8199 ("subtype digits constraint is an " &
8200 "obsolescent feature ('R'M 'J.3(8))?", C);
8201 end if;
8203 D := Digits_Expression (C);
8204 Analyze_And_Resolve (D, Any_Integer);
8205 Check_Digits_Expression (D);
8206 Set_Digits_Value (Def_Id, Expr_Value (D));
8208 -- Check that digits value is in range. Obviously we can do this
8209 -- at compile time, but it is strictly a runtime check, and of
8210 -- course there is an ACVC test that checks this!
8212 if Digits_Value (Def_Id) > Digits_Value (T) then
8213 Error_Msg_Uint_1 := Digits_Value (T);
8214 Error_Msg_N ("?digits value is too large, maximum is ^", D);
8215 Rais :=
8216 Make_Raise_Constraint_Error (Sloc (D),
8217 Reason => CE_Range_Check_Failed);
8218 Insert_Action (Declaration_Node (Def_Id), Rais);
8219 end if;
8221 C := Range_Constraint (C);
8223 -- No digits constraint present
8225 else
8226 Set_Digits_Value (Def_Id, Digits_Value (T));
8227 end if;
8229 -- Range constraint present
8231 if Nkind (C) = N_Range_Constraint then
8232 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8234 -- No range constraint present
8236 else
8237 pragma Assert (No (C));
8238 Set_Scalar_Range (Def_Id, Scalar_Range (T));
8239 end if;
8241 Set_Is_Constrained (Def_Id);
8242 end Constrain_Float;
8244 ---------------------
8245 -- Constrain_Index --
8246 ---------------------
8248 procedure Constrain_Index
8249 (Index : Node_Id;
8250 S : Node_Id;
8251 Related_Nod : Node_Id;
8252 Related_Id : Entity_Id;
8253 Suffix : Character;
8254 Suffix_Index : Nat)
8256 Def_Id : Entity_Id;
8257 R : Node_Id := Empty;
8258 T : constant Entity_Id := Etype (Index);
8260 begin
8261 if Nkind (S) = N_Range
8262 or else
8263 (Nkind (S) = N_Attribute_Reference
8264 and then Attribute_Name (S) = Name_Range)
8265 then
8266 -- A Range attribute will transformed into N_Range by Resolve
8268 Analyze (S);
8269 Set_Etype (S, T);
8270 R := S;
8272 Process_Range_Expr_In_Decl (R, T, Empty_List);
8274 if not Error_Posted (S)
8275 and then
8276 (Nkind (S) /= N_Range
8277 or else not Covers (T, (Etype (Low_Bound (S))))
8278 or else not Covers (T, (Etype (High_Bound (S)))))
8279 then
8280 if Base_Type (T) /= Any_Type
8281 and then Etype (Low_Bound (S)) /= Any_Type
8282 and then Etype (High_Bound (S)) /= Any_Type
8283 then
8284 Error_Msg_N ("range expected", S);
8285 end if;
8286 end if;
8288 elsif Nkind (S) = N_Subtype_Indication then
8290 -- The parser has verified that this is a discrete indication
8292 Resolve_Discrete_Subtype_Indication (S, T);
8293 R := Range_Expression (Constraint (S));
8295 elsif Nkind (S) = N_Discriminant_Association then
8297 -- Syntactically valid in subtype indication
8299 Error_Msg_N ("invalid index constraint", S);
8300 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
8301 return;
8303 -- Subtype_Mark case, no anonymous subtypes to construct
8305 else
8306 Analyze (S);
8308 if Is_Entity_Name (S) then
8309 if not Is_Type (Entity (S)) then
8310 Error_Msg_N ("expect subtype mark for index constraint", S);
8312 elsif Base_Type (Entity (S)) /= Base_Type (T) then
8313 Wrong_Type (S, Base_Type (T));
8314 end if;
8316 return;
8318 else
8319 Error_Msg_N ("invalid index constraint", S);
8320 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
8321 return;
8322 end if;
8323 end if;
8325 Def_Id :=
8326 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
8328 Set_Etype (Def_Id, Base_Type (T));
8330 if Is_Modular_Integer_Type (T) then
8331 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
8333 elsif Is_Integer_Type (T) then
8334 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
8336 else
8337 Set_Ekind (Def_Id, E_Enumeration_Subtype);
8338 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
8339 end if;
8341 Set_Size_Info (Def_Id, (T));
8342 Set_RM_Size (Def_Id, RM_Size (T));
8343 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8345 Set_Scalar_Range (Def_Id, R);
8347 Set_Etype (S, Def_Id);
8348 Set_Discrete_RM_Size (Def_Id);
8349 end Constrain_Index;
8351 -----------------------
8352 -- Constrain_Integer --
8353 -----------------------
8355 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
8356 T : constant Entity_Id := Entity (Subtype_Mark (S));
8357 C : constant Node_Id := Constraint (S);
8359 begin
8360 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8362 if Is_Modular_Integer_Type (T) then
8363 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
8364 else
8365 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
8366 end if;
8368 Set_Etype (Def_Id, Base_Type (T));
8369 Set_Size_Info (Def_Id, (T));
8370 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8371 Set_Discrete_RM_Size (Def_Id);
8372 end Constrain_Integer;
8374 ------------------------------
8375 -- Constrain_Ordinary_Fixed --
8376 ------------------------------
8378 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
8379 T : constant Entity_Id := Entity (Subtype_Mark (S));
8380 C : Node_Id;
8381 D : Node_Id;
8382 Rais : Node_Id;
8384 begin
8385 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
8386 Set_Etype (Def_Id, Base_Type (T));
8387 Set_Size_Info (Def_Id, (T));
8388 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8389 Set_Small_Value (Def_Id, Small_Value (T));
8391 -- Process the constraint
8393 C := Constraint (S);
8395 -- Delta constraint present
8397 if Nkind (C) = N_Delta_Constraint then
8398 Check_Restriction (No_Obsolescent_Features, C);
8400 if Warn_On_Obsolescent_Feature then
8401 Error_Msg_S
8402 ("subtype delta constraint is an " &
8403 "obsolescent feature ('R'M 'J.3(7))?");
8404 end if;
8406 D := Delta_Expression (C);
8407 Analyze_And_Resolve (D, Any_Real);
8408 Check_Delta_Expression (D);
8409 Set_Delta_Value (Def_Id, Expr_Value_R (D));
8411 -- Check that delta value is in range. Obviously we can do this
8412 -- at compile time, but it is strictly a runtime check, and of
8413 -- course there is an ACVC test that checks this!
8415 if Delta_Value (Def_Id) < Delta_Value (T) then
8416 Error_Msg_N ("?delta value is too small", D);
8417 Rais :=
8418 Make_Raise_Constraint_Error (Sloc (D),
8419 Reason => CE_Range_Check_Failed);
8420 Insert_Action (Declaration_Node (Def_Id), Rais);
8421 end if;
8423 C := Range_Constraint (C);
8425 -- No delta constraint present
8427 else
8428 Set_Delta_Value (Def_Id, Delta_Value (T));
8429 end if;
8431 -- Range constraint present
8433 if Nkind (C) = N_Range_Constraint then
8434 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8436 -- No range constraint present
8438 else
8439 pragma Assert (No (C));
8440 Set_Scalar_Range (Def_Id, Scalar_Range (T));
8442 end if;
8444 Set_Discrete_RM_Size (Def_Id);
8446 -- Unconditionally delay the freeze, since we cannot set size
8447 -- information in all cases correctly until the freeze point.
8449 Set_Has_Delayed_Freeze (Def_Id);
8450 end Constrain_Ordinary_Fixed;
8452 ---------------------------
8453 -- Convert_Scalar_Bounds --
8454 ---------------------------
8456 procedure Convert_Scalar_Bounds
8457 (N : Node_Id;
8458 Parent_Type : Entity_Id;
8459 Derived_Type : Entity_Id;
8460 Loc : Source_Ptr)
8462 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
8464 Lo : Node_Id;
8465 Hi : Node_Id;
8466 Rng : Node_Id;
8468 begin
8469 Lo := Build_Scalar_Bound
8470 (Type_Low_Bound (Derived_Type),
8471 Parent_Type, Implicit_Base);
8473 Hi := Build_Scalar_Bound
8474 (Type_High_Bound (Derived_Type),
8475 Parent_Type, Implicit_Base);
8477 Rng :=
8478 Make_Range (Loc,
8479 Low_Bound => Lo,
8480 High_Bound => Hi);
8482 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
8484 Set_Parent (Rng, N);
8485 Set_Scalar_Range (Derived_Type, Rng);
8487 -- Analyze the bounds
8489 Analyze_And_Resolve (Lo, Implicit_Base);
8490 Analyze_And_Resolve (Hi, Implicit_Base);
8492 -- Analyze the range itself, except that we do not analyze it if
8493 -- the bounds are real literals, and we have a fixed-point type.
8494 -- The reason for this is that we delay setting the bounds in this
8495 -- case till we know the final Small and Size values (see circuit
8496 -- in Freeze.Freeze_Fixed_Point_Type for further details).
8498 if Is_Fixed_Point_Type (Parent_Type)
8499 and then Nkind (Lo) = N_Real_Literal
8500 and then Nkind (Hi) = N_Real_Literal
8501 then
8502 return;
8504 -- Here we do the analysis of the range
8506 -- Note: we do this manually, since if we do a normal Analyze and
8507 -- Resolve call, there are problems with the conversions used for
8508 -- the derived type range.
8510 else
8511 Set_Etype (Rng, Implicit_Base);
8512 Set_Analyzed (Rng, True);
8513 end if;
8514 end Convert_Scalar_Bounds;
8516 -------------------
8517 -- Copy_And_Swap --
8518 -------------------
8520 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
8521 begin
8522 -- Initialize new full declaration entity by copying the pertinent
8523 -- fields of the corresponding private declaration entity.
8525 -- We temporarily set Ekind to a value appropriate for a type to
8526 -- avoid assert failures in Einfo from checking for setting type
8527 -- attributes on something that is not a type. Ekind (Priv) is an
8528 -- appropriate choice, since it allowed the attributes to be set
8529 -- in the first place. This Ekind value will be modified later.
8531 Set_Ekind (Full, Ekind (Priv));
8533 -- Also set Etype temporarily to Any_Type, again, in the absence
8534 -- of errors, it will be properly reset, and if there are errors,
8535 -- then we want a value of Any_Type to remain.
8537 Set_Etype (Full, Any_Type);
8539 -- Now start copying attributes
8541 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
8543 if Has_Discriminants (Full) then
8544 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
8545 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
8546 end if;
8548 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
8549 Set_Homonym (Full, Homonym (Priv));
8550 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
8551 Set_Is_Public (Full, Is_Public (Priv));
8552 Set_Is_Pure (Full, Is_Pure (Priv));
8553 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
8555 Conditional_Delay (Full, Priv);
8557 if Is_Tagged_Type (Full) then
8558 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
8560 if Priv = Base_Type (Priv) then
8561 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
8562 end if;
8563 end if;
8565 Set_Is_Volatile (Full, Is_Volatile (Priv));
8566 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
8567 Set_Scope (Full, Scope (Priv));
8568 Set_Next_Entity (Full, Next_Entity (Priv));
8569 Set_First_Entity (Full, First_Entity (Priv));
8570 Set_Last_Entity (Full, Last_Entity (Priv));
8572 -- If access types have been recorded for later handling, keep them in
8573 -- the full view so that they get handled when the full view freeze
8574 -- node is expanded.
8576 if Present (Freeze_Node (Priv))
8577 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
8578 then
8579 Ensure_Freeze_Node (Full);
8580 Set_Access_Types_To_Process
8581 (Freeze_Node (Full),
8582 Access_Types_To_Process (Freeze_Node (Priv)));
8583 end if;
8585 -- Swap the two entities. Now Privat is the full type entity and
8586 -- Full is the private one. They will be swapped back at the end
8587 -- of the private part. This swapping ensures that the entity that
8588 -- is visible in the private part is the full declaration.
8590 Exchange_Entities (Priv, Full);
8591 Append_Entity (Full, Scope (Full));
8592 end Copy_And_Swap;
8594 -------------------------------------
8595 -- Copy_Array_Base_Type_Attributes --
8596 -------------------------------------
8598 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
8599 begin
8600 Set_Component_Alignment (T1, Component_Alignment (T2));
8601 Set_Component_Type (T1, Component_Type (T2));
8602 Set_Component_Size (T1, Component_Size (T2));
8603 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
8604 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
8605 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
8606 Set_Has_Task (T1, Has_Task (T2));
8607 Set_Is_Packed (T1, Is_Packed (T2));
8608 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
8609 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
8610 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
8611 end Copy_Array_Base_Type_Attributes;
8613 -----------------------------------
8614 -- Copy_Array_Subtype_Attributes --
8615 -----------------------------------
8617 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
8618 begin
8619 Set_Size_Info (T1, T2);
8621 Set_First_Index (T1, First_Index (T2));
8622 Set_Is_Aliased (T1, Is_Aliased (T2));
8623 Set_Is_Atomic (T1, Is_Atomic (T2));
8624 Set_Is_Volatile (T1, Is_Volatile (T2));
8625 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
8626 Set_Is_Constrained (T1, Is_Constrained (T2));
8627 Set_Depends_On_Private (T1, Has_Private_Component (T2));
8628 Set_First_Rep_Item (T1, First_Rep_Item (T2));
8629 Set_Convention (T1, Convention (T2));
8630 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
8631 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
8632 end Copy_Array_Subtype_Attributes;
8634 -----------------------------------
8635 -- Create_Constrained_Components --
8636 -----------------------------------
8638 procedure Create_Constrained_Components
8639 (Subt : Entity_Id;
8640 Decl_Node : Node_Id;
8641 Typ : Entity_Id;
8642 Constraints : Elist_Id)
8644 Loc : constant Source_Ptr := Sloc (Subt);
8645 Comp_List : constant Elist_Id := New_Elmt_List;
8646 Parent_Type : constant Entity_Id := Etype (Typ);
8647 Assoc_List : constant List_Id := New_List;
8648 Discr_Val : Elmt_Id;
8649 Errors : Boolean;
8650 New_C : Entity_Id;
8651 Old_C : Entity_Id;
8652 Is_Static : Boolean := True;
8654 procedure Collect_Fixed_Components (Typ : Entity_Id);
8655 -- Collect parent type components that do not appear in a variant part
8657 procedure Create_All_Components;
8658 -- Iterate over Comp_List to create the components of the subtype
8660 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
8661 -- Creates a new component from Old_Compon, copying all the fields from
8662 -- it, including its Etype, inserts the new component in the Subt entity
8663 -- chain and returns the new component.
8665 function Is_Variant_Record (T : Entity_Id) return Boolean;
8666 -- If true, and discriminants are static, collect only components from
8667 -- variants selected by discriminant values.
8669 ------------------------------
8670 -- Collect_Fixed_Components --
8671 ------------------------------
8673 procedure Collect_Fixed_Components (Typ : Entity_Id) is
8674 begin
8675 -- Build association list for discriminants, and find components of the
8676 -- variant part selected by the values of the discriminants.
8678 Old_C := First_Discriminant (Typ);
8679 Discr_Val := First_Elmt (Constraints);
8680 while Present (Old_C) loop
8681 Append_To (Assoc_List,
8682 Make_Component_Association (Loc,
8683 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
8684 Expression => New_Copy (Node (Discr_Val))));
8686 Next_Elmt (Discr_Val);
8687 Next_Discriminant (Old_C);
8688 end loop;
8690 -- The tag, and the possible parent and controller components
8691 -- are unconditionally in the subtype.
8693 if Is_Tagged_Type (Typ)
8694 or else Has_Controlled_Component (Typ)
8695 then
8696 Old_C := First_Component (Typ);
8697 while Present (Old_C) loop
8698 if Chars ((Old_C)) = Name_uTag
8699 or else Chars ((Old_C)) = Name_uParent
8700 or else Chars ((Old_C)) = Name_uController
8701 then
8702 Append_Elmt (Old_C, Comp_List);
8703 end if;
8705 Next_Component (Old_C);
8706 end loop;
8707 end if;
8708 end Collect_Fixed_Components;
8710 ---------------------------
8711 -- Create_All_Components --
8712 ---------------------------
8714 procedure Create_All_Components is
8715 Comp : Elmt_Id;
8717 begin
8718 Comp := First_Elmt (Comp_List);
8719 while Present (Comp) loop
8720 Old_C := Node (Comp);
8721 New_C := Create_Component (Old_C);
8723 Set_Etype
8724 (New_C,
8725 Constrain_Component_Type
8726 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
8727 Set_Is_Public (New_C, Is_Public (Subt));
8729 Next_Elmt (Comp);
8730 end loop;
8731 end Create_All_Components;
8733 ----------------------
8734 -- Create_Component --
8735 ----------------------
8737 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
8738 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
8740 begin
8741 -- Set the parent so we have a proper link for freezing etc. This
8742 -- is not a real parent pointer, since of course our parent does
8743 -- not own up to us and reference us, we are an illegitimate
8744 -- child of the original parent!
8746 Set_Parent (New_Compon, Parent (Old_Compon));
8748 -- We do not want this node marked as Comes_From_Source, since
8749 -- otherwise it would get first class status and a separate
8750 -- cross-reference line would be generated. Illegitimate
8751 -- children do not rate such recognition.
8753 Set_Comes_From_Source (New_Compon, False);
8755 -- But it is a real entity, and a birth certificate must be
8756 -- properly registered by entering it into the entity list.
8758 Enter_Name (New_Compon);
8759 return New_Compon;
8760 end Create_Component;
8762 -----------------------
8763 -- Is_Variant_Record --
8764 -----------------------
8766 function Is_Variant_Record (T : Entity_Id) return Boolean is
8767 begin
8768 return Nkind (Parent (T)) = N_Full_Type_Declaration
8769 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
8770 and then Present (Component_List (Type_Definition (Parent (T))))
8771 and then Present (
8772 Variant_Part (Component_List (Type_Definition (Parent (T)))));
8773 end Is_Variant_Record;
8775 -- Start of processing for Create_Constrained_Components
8777 begin
8778 pragma Assert (Subt /= Base_Type (Subt));
8779 pragma Assert (Typ = Base_Type (Typ));
8781 Set_First_Entity (Subt, Empty);
8782 Set_Last_Entity (Subt, Empty);
8784 -- Check whether constraint is fully static, in which case we can
8785 -- optimize the list of components.
8787 Discr_Val := First_Elmt (Constraints);
8788 while Present (Discr_Val) loop
8789 if not Is_OK_Static_Expression (Node (Discr_Val)) then
8790 Is_Static := False;
8791 exit;
8792 end if;
8794 Next_Elmt (Discr_Val);
8795 end loop;
8797 New_Scope (Subt);
8799 -- Inherit the discriminants of the parent type
8801 Old_C := First_Discriminant (Typ);
8802 while Present (Old_C) loop
8803 New_C := Create_Component (Old_C);
8804 Set_Is_Public (New_C, Is_Public (Subt));
8805 Next_Discriminant (Old_C);
8806 end loop;
8808 if Is_Static
8809 and then Is_Variant_Record (Typ)
8810 then
8811 Collect_Fixed_Components (Typ);
8813 Gather_Components (
8814 Typ,
8815 Component_List (Type_Definition (Parent (Typ))),
8816 Governed_By => Assoc_List,
8817 Into => Comp_List,
8818 Report_Errors => Errors);
8819 pragma Assert (not Errors);
8821 Create_All_Components;
8823 -- If the subtype declaration is created for a tagged type derivation
8824 -- with constraints, we retrieve the record definition of the parent
8825 -- type to select the components of the proper variant.
8827 elsif Is_Static
8828 and then Is_Tagged_Type (Typ)
8829 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
8830 and then
8831 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
8832 and then Is_Variant_Record (Parent_Type)
8833 then
8834 Collect_Fixed_Components (Typ);
8836 Gather_Components (
8837 Typ,
8838 Component_List (Type_Definition (Parent (Parent_Type))),
8839 Governed_By => Assoc_List,
8840 Into => Comp_List,
8841 Report_Errors => Errors);
8842 pragma Assert (not Errors);
8844 -- If the tagged derivation has a type extension, collect all the
8845 -- new components therein.
8847 if Present
8848 (Record_Extension_Part (Type_Definition (Parent (Typ))))
8849 then
8850 Old_C := First_Component (Typ);
8851 while Present (Old_C) loop
8852 if Original_Record_Component (Old_C) = Old_C
8853 and then Chars (Old_C) /= Name_uTag
8854 and then Chars (Old_C) /= Name_uParent
8855 and then Chars (Old_C) /= Name_uController
8856 then
8857 Append_Elmt (Old_C, Comp_List);
8858 end if;
8860 Next_Component (Old_C);
8861 end loop;
8862 end if;
8864 Create_All_Components;
8866 else
8867 -- If the discriminants are not static, or if this is a multi-level
8868 -- type extension, we have to include all the components of the
8869 -- parent type.
8871 Old_C := First_Component (Typ);
8872 while Present (Old_C) loop
8873 New_C := Create_Component (Old_C);
8875 Set_Etype
8876 (New_C,
8877 Constrain_Component_Type
8878 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
8879 Set_Is_Public (New_C, Is_Public (Subt));
8881 Next_Component (Old_C);
8882 end loop;
8883 end if;
8885 End_Scope;
8886 end Create_Constrained_Components;
8888 ------------------------------------------
8889 -- Decimal_Fixed_Point_Type_Declaration --
8890 ------------------------------------------
8892 procedure Decimal_Fixed_Point_Type_Declaration
8893 (T : Entity_Id;
8894 Def : Node_Id)
8896 Loc : constant Source_Ptr := Sloc (Def);
8897 Digs_Expr : constant Node_Id := Digits_Expression (Def);
8898 Delta_Expr : constant Node_Id := Delta_Expression (Def);
8899 Implicit_Base : Entity_Id;
8900 Digs_Val : Uint;
8901 Delta_Val : Ureal;
8902 Scale_Val : Uint;
8903 Bound_Val : Ureal;
8905 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
8907 begin
8908 Check_Restriction (No_Fixed_Point, Def);
8910 -- Create implicit base type
8912 Implicit_Base :=
8913 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
8914 Set_Etype (Implicit_Base, Implicit_Base);
8916 -- Analyze and process delta expression
8918 Analyze_And_Resolve (Delta_Expr, Universal_Real);
8920 Check_Delta_Expression (Delta_Expr);
8921 Delta_Val := Expr_Value_R (Delta_Expr);
8923 -- Check delta is power of 10, and determine scale value from it
8925 declare
8926 Val : Ureal := Delta_Val;
8928 begin
8929 Scale_Val := Uint_0;
8931 if Val < Ureal_1 then
8932 while Val < Ureal_1 loop
8933 Val := Val * Ureal_10;
8934 Scale_Val := Scale_Val + 1;
8935 end loop;
8937 if Scale_Val > 18 then
8938 Error_Msg_N ("scale exceeds maximum value of 18", Def);
8939 Scale_Val := UI_From_Int (+18);
8940 end if;
8942 else
8943 while Val > Ureal_1 loop
8944 Val := Val / Ureal_10;
8945 Scale_Val := Scale_Val - 1;
8946 end loop;
8948 if Scale_Val < -18 then
8949 Error_Msg_N ("scale is less than minimum value of -18", Def);
8950 Scale_Val := UI_From_Int (-18);
8951 end if;
8952 end if;
8954 if Val /= Ureal_1 then
8955 Error_Msg_N ("delta expression must be a power of 10", Def);
8956 Delta_Val := Ureal_10 ** (-Scale_Val);
8957 end if;
8958 end;
8960 -- Set delta, scale and small (small = delta for decimal type)
8962 Set_Delta_Value (Implicit_Base, Delta_Val);
8963 Set_Scale_Value (Implicit_Base, Scale_Val);
8964 Set_Small_Value (Implicit_Base, Delta_Val);
8966 -- Analyze and process digits expression
8968 Analyze_And_Resolve (Digs_Expr, Any_Integer);
8969 Check_Digits_Expression (Digs_Expr);
8970 Digs_Val := Expr_Value (Digs_Expr);
8972 if Digs_Val > 18 then
8973 Digs_Val := UI_From_Int (+18);
8974 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
8975 end if;
8977 Set_Digits_Value (Implicit_Base, Digs_Val);
8978 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
8980 -- Set range of base type from digits value for now. This will be
8981 -- expanded to represent the true underlying base range by Freeze.
8983 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
8985 -- Set size to zero for now, size will be set at freeze time. We have
8986 -- to do this for ordinary fixed-point, because the size depends on
8987 -- the specified small, and we might as well do the same for decimal
8988 -- fixed-point.
8990 Init_Size_Align (Implicit_Base);
8992 -- If there are bounds given in the declaration use them as the
8993 -- bounds of the first named subtype.
8995 if Present (Real_Range_Specification (Def)) then
8996 declare
8997 RRS : constant Node_Id := Real_Range_Specification (Def);
8998 Low : constant Node_Id := Low_Bound (RRS);
8999 High : constant Node_Id := High_Bound (RRS);
9000 Low_Val : Ureal;
9001 High_Val : Ureal;
9003 begin
9004 Analyze_And_Resolve (Low, Any_Real);
9005 Analyze_And_Resolve (High, Any_Real);
9006 Check_Real_Bound (Low);
9007 Check_Real_Bound (High);
9008 Low_Val := Expr_Value_R (Low);
9009 High_Val := Expr_Value_R (High);
9011 if Low_Val < (-Bound_Val) then
9012 Error_Msg_N
9013 ("range low bound too small for digits value", Low);
9014 Low_Val := -Bound_Val;
9015 end if;
9017 if High_Val > Bound_Val then
9018 Error_Msg_N
9019 ("range high bound too large for digits value", High);
9020 High_Val := Bound_Val;
9021 end if;
9023 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
9024 end;
9026 -- If no explicit range, use range that corresponds to given
9027 -- digits value. This will end up as the final range for the
9028 -- first subtype.
9030 else
9031 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
9032 end if;
9034 -- Complete entity for first subtype
9036 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
9037 Set_Etype (T, Implicit_Base);
9038 Set_Size_Info (T, Implicit_Base);
9039 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
9040 Set_Digits_Value (T, Digs_Val);
9041 Set_Delta_Value (T, Delta_Val);
9042 Set_Small_Value (T, Delta_Val);
9043 Set_Scale_Value (T, Scale_Val);
9044 Set_Is_Constrained (T);
9045 end Decimal_Fixed_Point_Type_Declaration;
9047 -----------------------
9048 -- Derive_Subprogram --
9049 -----------------------
9051 procedure Derive_Subprogram
9052 (New_Subp : in out Entity_Id;
9053 Parent_Subp : Entity_Id;
9054 Derived_Type : Entity_Id;
9055 Parent_Type : Entity_Id;
9056 Actual_Subp : Entity_Id := Empty)
9058 Formal : Entity_Id;
9059 New_Formal : Entity_Id;
9060 Visible_Subp : Entity_Id := Parent_Subp;
9062 function Is_Private_Overriding return Boolean;
9063 -- If Subp is a private overriding of a visible operation, the in-
9064 -- herited operation derives from the overridden op (even though
9065 -- its body is the overriding one) and the inherited operation is
9066 -- visible now. See sem_disp to see the details of the handling of
9067 -- the overridden subprogram, which is removed from the list of
9068 -- primitive operations of the type. The overridden subprogram is
9069 -- saved locally in Visible_Subp, and used to diagnose abstract
9070 -- operations that need overriding in the derived type.
9072 procedure Replace_Type (Id, New_Id : Entity_Id);
9073 -- When the type is an anonymous access type, create a new access type
9074 -- designating the derived type.
9076 procedure Set_Derived_Name;
9077 -- This procedure sets the appropriate Chars name for New_Subp. This
9078 -- is normally just a copy of the parent name. An exception arises for
9079 -- type support subprograms, where the name is changed to reflect the
9080 -- name of the derived type, e.g. if type foo is derived from type bar,
9081 -- then a procedure barDA is derived with a name fooDA.
9083 ---------------------------
9084 -- Is_Private_Overriding --
9085 ---------------------------
9087 function Is_Private_Overriding return Boolean is
9088 Prev : Entity_Id;
9090 begin
9091 -- The visible operation that is overriden is a homonym of the
9092 -- parent subprogram. We scan the homonym chain to find the one
9093 -- whose alias is the subprogram we are deriving.
9095 Prev := Homonym (Parent_Subp);
9096 while Present (Prev) loop
9097 if Is_Dispatching_Operation (Parent_Subp)
9098 and then Present (Prev)
9099 and then Ekind (Prev) = Ekind (Parent_Subp)
9100 and then Alias (Prev) = Parent_Subp
9101 and then Scope (Parent_Subp) = Scope (Prev)
9102 and then not Is_Hidden (Prev)
9103 then
9104 Visible_Subp := Prev;
9105 return True;
9106 end if;
9108 Prev := Homonym (Prev);
9109 end loop;
9111 return False;
9112 end Is_Private_Overriding;
9114 ------------------
9115 -- Replace_Type --
9116 ------------------
9118 procedure Replace_Type (Id, New_Id : Entity_Id) is
9119 Acc_Type : Entity_Id;
9120 IR : Node_Id;
9121 Par : constant Node_Id := Parent (Derived_Type);
9123 begin
9124 -- When the type is an anonymous access type, create a new access
9125 -- type designating the derived type. This itype must be elaborated
9126 -- at the point of the derivation, not on subsequent calls that may
9127 -- be out of the proper scope for Gigi, so we insert a reference to
9128 -- it after the derivation.
9130 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
9131 declare
9132 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
9134 begin
9135 if Ekind (Desig_Typ) = E_Record_Type_With_Private
9136 and then Present (Full_View (Desig_Typ))
9137 and then not Is_Private_Type (Parent_Type)
9138 then
9139 Desig_Typ := Full_View (Desig_Typ);
9140 end if;
9142 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
9143 Acc_Type := New_Copy (Etype (Id));
9144 Set_Etype (Acc_Type, Acc_Type);
9145 Set_Scope (Acc_Type, New_Subp);
9147 -- Compute size of anonymous access type
9149 if Is_Array_Type (Desig_Typ)
9150 and then not Is_Constrained (Desig_Typ)
9151 then
9152 Init_Size (Acc_Type, 2 * System_Address_Size);
9153 else
9154 Init_Size (Acc_Type, System_Address_Size);
9155 end if;
9157 Init_Alignment (Acc_Type);
9158 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
9160 Set_Etype (New_Id, Acc_Type);
9161 Set_Scope (New_Id, New_Subp);
9163 -- Create a reference to it
9165 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
9166 Set_Itype (IR, Acc_Type);
9167 Insert_After (Parent (Derived_Type), IR);
9169 else
9170 Set_Etype (New_Id, Etype (Id));
9171 end if;
9172 end;
9174 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
9175 or else
9176 (Ekind (Etype (Id)) = E_Record_Type_With_Private
9177 and then Present (Full_View (Etype (Id)))
9178 and then
9179 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
9180 then
9181 -- Constraint checks on formals are generated during expansion,
9182 -- based on the signature of the original subprogram. The bounds
9183 -- of the derived type are not relevant, and thus we can use
9184 -- the base type for the formals. However, the return type may be
9185 -- used in a context that requires that the proper static bounds
9186 -- be used (a case statement, for example) and for those cases
9187 -- we must use the derived type (first subtype), not its base.
9189 -- If the derived_type_definition has no constraints, we know that
9190 -- the derived type has the same constraints as the first subtype
9191 -- of the parent, and we can also use it rather than its base,
9192 -- which can lead to more efficient code.
9194 if Etype (Id) = Parent_Type then
9195 if Is_Scalar_Type (Parent_Type)
9196 and then
9197 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
9198 then
9199 Set_Etype (New_Id, Derived_Type);
9201 elsif Nkind (Par) = N_Full_Type_Declaration
9202 and then
9203 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
9204 and then
9205 Is_Entity_Name
9206 (Subtype_Indication (Type_Definition (Par)))
9207 then
9208 Set_Etype (New_Id, Derived_Type);
9210 else
9211 Set_Etype (New_Id, Base_Type (Derived_Type));
9212 end if;
9214 else
9215 Set_Etype (New_Id, Base_Type (Derived_Type));
9216 end if;
9218 else
9219 Set_Etype (New_Id, Etype (Id));
9220 end if;
9221 end Replace_Type;
9223 ----------------------
9224 -- Set_Derived_Name --
9225 ----------------------
9227 procedure Set_Derived_Name is
9228 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
9229 begin
9230 if Nm = TSS_Null then
9231 Set_Chars (New_Subp, Chars (Parent_Subp));
9232 else
9233 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
9234 end if;
9235 end Set_Derived_Name;
9237 -- Start of processing for Derive_Subprogram
9239 begin
9240 New_Subp :=
9241 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
9242 Set_Ekind (New_Subp, Ekind (Parent_Subp));
9244 -- Check whether the inherited subprogram is a private operation that
9245 -- should be inherited but not yet made visible. Such subprograms can
9246 -- become visible at a later point (e.g., the private part of a public
9247 -- child unit) via Declare_Inherited_Private_Subprograms. If the
9248 -- following predicate is true, then this is not such a private
9249 -- operation and the subprogram simply inherits the name of the parent
9250 -- subprogram. Note the special check for the names of controlled
9251 -- operations, which are currently exempted from being inherited with
9252 -- a hidden name because they must be findable for generation of
9253 -- implicit run-time calls.
9255 if not Is_Hidden (Parent_Subp)
9256 or else Is_Internal (Parent_Subp)
9257 or else Is_Private_Overriding
9258 or else Is_Internal_Name (Chars (Parent_Subp))
9259 or else Chars (Parent_Subp) = Name_Initialize
9260 or else Chars (Parent_Subp) = Name_Adjust
9261 or else Chars (Parent_Subp) = Name_Finalize
9262 then
9263 Set_Derived_Name;
9265 -- If parent is hidden, this can be a regular derivation if the
9266 -- parent is immediately visible in a non-instantiating context,
9267 -- or if we are in the private part of an instance. This test
9268 -- should still be refined ???
9270 -- The test for In_Instance_Not_Visible avoids inheriting the derived
9271 -- operation as a non-visible operation in cases where the parent
9272 -- subprogram might not be visible now, but was visible within the
9273 -- original generic, so it would be wrong to make the inherited
9274 -- subprogram non-visible now. (Not clear if this test is fully
9275 -- correct; are there any cases where we should declare the inherited
9276 -- operation as not visible to avoid it being overridden, e.g., when
9277 -- the parent type is a generic actual with private primitives ???)
9279 -- (they should be treated the same as other private inherited
9280 -- subprograms, but it's not clear how to do this cleanly). ???
9282 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
9283 and then Is_Immediately_Visible (Parent_Subp)
9284 and then not In_Instance)
9285 or else In_Instance_Not_Visible
9286 then
9287 Set_Derived_Name;
9289 -- The type is inheriting a private operation, so enter
9290 -- it with a special name so it can't be overridden.
9292 else
9293 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
9294 end if;
9296 Set_Parent (New_Subp, Parent (Derived_Type));
9297 Replace_Type (Parent_Subp, New_Subp);
9298 Conditional_Delay (New_Subp, Parent_Subp);
9300 Formal := First_Formal (Parent_Subp);
9301 while Present (Formal) loop
9302 New_Formal := New_Copy (Formal);
9304 -- Normally we do not go copying parents, but in the case of
9305 -- formals, we need to link up to the declaration (which is the
9306 -- parameter specification), and it is fine to link up to the
9307 -- original formal's parameter specification in this case.
9309 Set_Parent (New_Formal, Parent (Formal));
9311 Append_Entity (New_Formal, New_Subp);
9313 Replace_Type (Formal, New_Formal);
9314 Next_Formal (Formal);
9315 end loop;
9317 -- If this derivation corresponds to a tagged generic actual, then
9318 -- primitive operations rename those of the actual. Otherwise the
9319 -- primitive operations rename those of the parent type, If the
9320 -- parent renames an intrinsic operator, so does the new subprogram.
9321 -- We except concatenation, which is always properly typed, and does
9322 -- not get expanded as other intrinsic operations.
9324 if No (Actual_Subp) then
9325 if Is_Intrinsic_Subprogram (Parent_Subp) then
9326 Set_Is_Intrinsic_Subprogram (New_Subp);
9328 if Present (Alias (Parent_Subp))
9329 and then Chars (Parent_Subp) /= Name_Op_Concat
9330 then
9331 Set_Alias (New_Subp, Alias (Parent_Subp));
9332 else
9333 Set_Alias (New_Subp, Parent_Subp);
9334 end if;
9336 else
9337 Set_Alias (New_Subp, Parent_Subp);
9338 end if;
9340 else
9341 Set_Alias (New_Subp, Actual_Subp);
9342 end if;
9344 -- Derived subprograms of a tagged type must inherit the convention
9345 -- of the parent subprogram (a requirement of AI-117). Derived
9346 -- subprograms of untagged types simply get convention Ada by default.
9348 if Is_Tagged_Type (Derived_Type) then
9349 Set_Convention (New_Subp, Convention (Parent_Subp));
9350 end if;
9352 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
9353 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
9355 if Ekind (Parent_Subp) = E_Procedure then
9356 Set_Is_Valued_Procedure
9357 (New_Subp, Is_Valued_Procedure (Parent_Subp));
9358 end if;
9360 -- A derived function with a controlling result is abstract. If the
9361 -- Derived_Type is a nonabstract formal generic derived type, then
9362 -- inherited operations are not abstract: the required check is done at
9363 -- instantiation time. If the derivation is for a generic actual, the
9364 -- function is not abstract unless the actual is.
9366 if Is_Generic_Type (Derived_Type)
9367 and then not Is_Abstract (Derived_Type)
9368 then
9369 null;
9371 elsif Is_Abstract (Alias (New_Subp))
9372 or else (Is_Tagged_Type (Derived_Type)
9373 and then Etype (New_Subp) = Derived_Type
9374 and then No (Actual_Subp))
9375 then
9376 Set_Is_Abstract (New_Subp);
9378 -- Finally, if the parent type is abstract we must verify that all
9379 -- inherited operations are either non-abstract or overridden, or
9380 -- that the derived type itself is abstract (this check is performed
9381 -- at the end of a package declaration, in Check_Abstract_Overriding).
9382 -- A private overriding in the parent type will not be visible in the
9383 -- derivation if we are not in an inner package or in a child unit of
9384 -- the parent type, in which case the abstractness of the inherited
9385 -- operation is carried to the new subprogram.
9387 elsif Is_Abstract (Parent_Type)
9388 and then not In_Open_Scopes (Scope (Parent_Type))
9389 and then Is_Private_Overriding
9390 and then Is_Abstract (Visible_Subp)
9391 then
9392 Set_Alias (New_Subp, Visible_Subp);
9393 Set_Is_Abstract (New_Subp);
9394 end if;
9396 New_Overloaded_Entity (New_Subp, Derived_Type);
9398 -- Check for case of a derived subprogram for the instantiation of a
9399 -- formal derived tagged type, if so mark the subprogram as dispatching
9400 -- and inherit the dispatching attributes of the parent subprogram. The
9401 -- derived subprogram is effectively renaming of the actual subprogram,
9402 -- so it needs to have the same attributes as the actual.
9404 if Present (Actual_Subp)
9405 and then Is_Dispatching_Operation (Parent_Subp)
9406 then
9407 Set_Is_Dispatching_Operation (New_Subp);
9408 if Present (DTC_Entity (Parent_Subp)) then
9409 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
9410 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
9411 end if;
9412 end if;
9414 -- Indicate that a derived subprogram does not require a body and that
9415 -- it does not require processing of default expressions.
9417 Set_Has_Completion (New_Subp);
9418 Set_Default_Expressions_Processed (New_Subp);
9420 if Ekind (New_Subp) = E_Function then
9421 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
9422 end if;
9423 end Derive_Subprogram;
9425 ------------------------
9426 -- Derive_Subprograms --
9427 ------------------------
9429 procedure Derive_Subprograms
9430 (Parent_Type : Entity_Id;
9431 Derived_Type : Entity_Id;
9432 Generic_Actual : Entity_Id := Empty)
9434 Op_List : constant Elist_Id :=
9435 Collect_Primitive_Operations (Parent_Type);
9436 Act_List : Elist_Id;
9437 Act_Elmt : Elmt_Id;
9438 Elmt : Elmt_Id;
9439 Subp : Entity_Id;
9440 New_Subp : Entity_Id := Empty;
9441 Parent_Base : Entity_Id;
9443 begin
9444 if Ekind (Parent_Type) = E_Record_Type_With_Private
9445 and then Has_Discriminants (Parent_Type)
9446 and then Present (Full_View (Parent_Type))
9447 then
9448 Parent_Base := Full_View (Parent_Type);
9449 else
9450 Parent_Base := Parent_Type;
9451 end if;
9453 if Present (Generic_Actual) then
9454 Act_List := Collect_Primitive_Operations (Generic_Actual);
9455 Act_Elmt := First_Elmt (Act_List);
9456 else
9457 Act_Elmt := No_Elmt;
9458 end if;
9460 -- Literals are derived earlier in the process of building the derived
9461 -- type, and are skipped here.
9463 Elmt := First_Elmt (Op_List);
9464 while Present (Elmt) loop
9465 Subp := Node (Elmt);
9467 if Ekind (Subp) /= E_Enumeration_Literal then
9468 if No (Generic_Actual) then
9469 Derive_Subprogram
9470 (New_Subp, Subp, Derived_Type, Parent_Base);
9472 else
9473 Derive_Subprogram (New_Subp, Subp,
9474 Derived_Type, Parent_Base, Node (Act_Elmt));
9475 Next_Elmt (Act_Elmt);
9476 end if;
9477 end if;
9479 Next_Elmt (Elmt);
9480 end loop;
9481 end Derive_Subprograms;
9483 --------------------------------
9484 -- Derived_Standard_Character --
9485 --------------------------------
9487 procedure Derived_Standard_Character
9488 (N : Node_Id;
9489 Parent_Type : Entity_Id;
9490 Derived_Type : Entity_Id)
9492 Loc : constant Source_Ptr := Sloc (N);
9493 Def : constant Node_Id := Type_Definition (N);
9494 Indic : constant Node_Id := Subtype_Indication (Def);
9495 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9496 Implicit_Base : constant Entity_Id :=
9497 Create_Itype
9498 (E_Enumeration_Type, N, Derived_Type, 'B');
9500 Lo : Node_Id;
9501 Hi : Node_Id;
9503 begin
9504 Discard_Node (Process_Subtype (Indic, N));
9506 Set_Etype (Implicit_Base, Parent_Base);
9507 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
9508 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
9510 Set_Is_Character_Type (Implicit_Base, True);
9511 Set_Has_Delayed_Freeze (Implicit_Base);
9513 -- The bounds of the implicit base are the bounds of the parent base.
9514 -- Note that their type is the parent base.
9516 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
9517 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
9519 Set_Scalar_Range (Implicit_Base,
9520 Make_Range (Loc,
9521 Low_Bound => Lo,
9522 High_Bound => Hi));
9524 Conditional_Delay (Derived_Type, Parent_Type);
9526 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
9527 Set_Etype (Derived_Type, Implicit_Base);
9528 Set_Size_Info (Derived_Type, Parent_Type);
9530 if Unknown_RM_Size (Derived_Type) then
9531 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9532 end if;
9534 Set_Is_Character_Type (Derived_Type, True);
9536 if Nkind (Indic) /= N_Subtype_Indication then
9538 -- If no explicit constraint, the bounds are those
9539 -- of the parent type.
9541 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
9542 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
9543 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
9544 end if;
9546 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
9548 -- Because the implicit base is used in the conversion of the bounds,
9549 -- we have to freeze it now. This is similar to what is done for
9550 -- numeric types, and it equally suspicious, but otherwise a non-
9551 -- static bound will have a reference to an unfrozen type, which is
9552 -- rejected by Gigi (???).
9554 Freeze_Before (N, Implicit_Base);
9555 end Derived_Standard_Character;
9557 ------------------------------
9558 -- Derived_Type_Declaration --
9559 ------------------------------
9561 procedure Derived_Type_Declaration
9562 (T : Entity_Id;
9563 N : Node_Id;
9564 Is_Completion : Boolean)
9566 Def : constant Node_Id := Type_Definition (N);
9567 Indic : constant Node_Id := Subtype_Indication (Def);
9568 Extension : constant Node_Id := Record_Extension_Part (Def);
9569 Parent_Type : Entity_Id;
9570 Parent_Scope : Entity_Id;
9571 Taggd : Boolean;
9573 begin
9574 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
9576 if Parent_Type = Any_Type
9577 or else Etype (Parent_Type) = Any_Type
9578 or else (Is_Class_Wide_Type (Parent_Type)
9579 and then Etype (Parent_Type) = T)
9580 then
9581 -- If Parent_Type is undefined or illegal, make new type into a
9582 -- subtype of Any_Type, and set a few attributes to prevent cascaded
9583 -- errors. If this is a self-definition, emit error now.
9585 if T = Parent_Type
9586 or else T = Etype (Parent_Type)
9587 then
9588 Error_Msg_N ("type cannot be used in its own definition", Indic);
9589 end if;
9591 Set_Ekind (T, Ekind (Parent_Type));
9592 Set_Etype (T, Any_Type);
9593 Set_Scalar_Range (T, Scalar_Range (Any_Type));
9595 if Is_Tagged_Type (T) then
9596 Set_Primitive_Operations (T, New_Elmt_List);
9597 end if;
9599 return;
9601 -- Ada 2005 (AI-231): Static check
9603 elsif Is_Access_Type (Parent_Type)
9604 and then Null_Exclusion_Present (Type_Definition (N))
9605 and then Can_Never_Be_Null (Parent_Type)
9606 then
9607 Error_Msg_N ("(Ada 2005) null exclusion not allowed if parent is "
9608 & "already non-null", Type_Definition (N));
9609 end if;
9611 -- Only composite types other than array types are allowed to have
9612 -- discriminants.
9614 if Present (Discriminant_Specifications (N))
9615 and then (Is_Elementary_Type (Parent_Type)
9616 or else Is_Array_Type (Parent_Type))
9617 and then not Error_Posted (N)
9618 then
9619 Error_Msg_N
9620 ("elementary or array type cannot have discriminants",
9621 Defining_Identifier (First (Discriminant_Specifications (N))));
9622 Set_Has_Discriminants (T, False);
9623 end if;
9625 -- In Ada 83, a derived type defined in a package specification cannot
9626 -- be used for further derivation until the end of its visible part.
9627 -- Note that derivation in the private part of the package is allowed.
9629 if Ada_Version = Ada_83
9630 and then Is_Derived_Type (Parent_Type)
9631 and then In_Visible_Part (Scope (Parent_Type))
9632 then
9633 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
9634 Error_Msg_N
9635 ("(Ada 83): premature use of type for derivation", Indic);
9636 end if;
9637 end if;
9639 -- Check for early use of incomplete or private type
9641 if Ekind (Parent_Type) = E_Void
9642 or else Ekind (Parent_Type) = E_Incomplete_Type
9643 then
9644 Error_Msg_N ("premature derivation of incomplete type", Indic);
9645 return;
9647 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
9648 and then not Is_Generic_Type (Parent_Type)
9649 and then not Is_Generic_Type (Root_Type (Parent_Type))
9650 and then not Is_Generic_Actual_Type (Parent_Type))
9651 or else Has_Private_Component (Parent_Type)
9652 then
9653 -- The ancestor type of a formal type can be incomplete, in which
9654 -- case only the operations of the partial view are available in
9655 -- the generic. Subsequent checks may be required when the full
9656 -- view is analyzed, to verify that derivation from a tagged type
9657 -- has an extension.
9659 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
9660 null;
9662 elsif No (Underlying_Type (Parent_Type))
9663 or else Has_Private_Component (Parent_Type)
9664 then
9665 Error_Msg_N
9666 ("premature derivation of derived or private type", Indic);
9668 -- Flag the type itself as being in error, this prevents some
9669 -- nasty problems with people looking at the malformed type.
9671 Set_Error_Posted (T);
9673 -- Check that within the immediate scope of an untagged partial
9674 -- view it's illegal to derive from the partial view if the
9675 -- full view is tagged. (7.3(7))
9677 -- We verify that the Parent_Type is a partial view by checking
9678 -- that it is not a Full_Type_Declaration (i.e. a private type or
9679 -- private extension declaration), to distinguish a partial view
9680 -- from a derivation from a private type which also appears as
9681 -- E_Private_Type.
9683 elsif Present (Full_View (Parent_Type))
9684 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
9685 and then not Is_Tagged_Type (Parent_Type)
9686 and then Is_Tagged_Type (Full_View (Parent_Type))
9687 then
9688 Parent_Scope := Scope (T);
9689 while Present (Parent_Scope)
9690 and then Parent_Scope /= Standard_Standard
9691 loop
9692 if Parent_Scope = Scope (Parent_Type) then
9693 Error_Msg_N
9694 ("premature derivation from type with tagged full view",
9695 Indic);
9696 end if;
9698 Parent_Scope := Scope (Parent_Scope);
9699 end loop;
9700 end if;
9701 end if;
9703 -- Check that form of derivation is appropriate
9705 Taggd := Is_Tagged_Type (Parent_Type);
9707 -- Perhaps the parent type should be changed to the class-wide type's
9708 -- specific type in this case to prevent cascading errors ???
9710 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
9711 Error_Msg_N ("parent type must not be a class-wide type", Indic);
9712 return;
9713 end if;
9715 if Present (Extension) and then not Taggd then
9716 Error_Msg_N
9717 ("type derived from untagged type cannot have extension", Indic);
9719 elsif No (Extension) and then Taggd then
9721 -- If this declaration is within a private part (or body) of a
9722 -- generic instantiation then the derivation is allowed (the parent
9723 -- type can only appear tagged in this case if it's a generic actual
9724 -- type, since it would otherwise have been rejected in the analysis
9725 -- of the generic template).
9727 if not Is_Generic_Actual_Type (Parent_Type)
9728 or else In_Visible_Part (Scope (Parent_Type))
9729 then
9730 Error_Msg_N
9731 ("type derived from tagged type must have extension", Indic);
9732 end if;
9733 end if;
9735 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
9736 end Derived_Type_Declaration;
9738 ----------------------------------
9739 -- Enumeration_Type_Declaration --
9740 ----------------------------------
9742 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
9743 Ev : Uint;
9744 L : Node_Id;
9745 R_Node : Node_Id;
9746 B_Node : Node_Id;
9748 begin
9749 -- Create identifier node representing lower bound
9751 B_Node := New_Node (N_Identifier, Sloc (Def));
9752 L := First (Literals (Def));
9753 Set_Chars (B_Node, Chars (L));
9754 Set_Entity (B_Node, L);
9755 Set_Etype (B_Node, T);
9756 Set_Is_Static_Expression (B_Node, True);
9758 R_Node := New_Node (N_Range, Sloc (Def));
9759 Set_Low_Bound (R_Node, B_Node);
9761 Set_Ekind (T, E_Enumeration_Type);
9762 Set_First_Literal (T, L);
9763 Set_Etype (T, T);
9764 Set_Is_Constrained (T);
9766 Ev := Uint_0;
9768 -- Loop through literals of enumeration type setting pos and rep values
9769 -- except that if the Ekind is already set, then it means that the
9770 -- literal was already constructed (case of a derived type declaration
9771 -- and we should not disturb the Pos and Rep values.
9773 while Present (L) loop
9774 if Ekind (L) /= E_Enumeration_Literal then
9775 Set_Ekind (L, E_Enumeration_Literal);
9776 Set_Enumeration_Pos (L, Ev);
9777 Set_Enumeration_Rep (L, Ev);
9778 Set_Is_Known_Valid (L, True);
9779 end if;
9781 Set_Etype (L, T);
9782 New_Overloaded_Entity (L);
9783 Generate_Definition (L);
9784 Set_Convention (L, Convention_Intrinsic);
9786 if Nkind (L) = N_Defining_Character_Literal then
9787 Set_Is_Character_Type (T, True);
9788 end if;
9790 Ev := Ev + 1;
9791 Next (L);
9792 end loop;
9794 -- Now create a node representing upper bound
9796 B_Node := New_Node (N_Identifier, Sloc (Def));
9797 Set_Chars (B_Node, Chars (Last (Literals (Def))));
9798 Set_Entity (B_Node, Last (Literals (Def)));
9799 Set_Etype (B_Node, T);
9800 Set_Is_Static_Expression (B_Node, True);
9802 Set_High_Bound (R_Node, B_Node);
9803 Set_Scalar_Range (T, R_Node);
9804 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
9805 Set_Enum_Esize (T);
9807 -- Set Discard_Names if configuration pragma set, or if there is
9808 -- a parameterless pragma in the current declarative region
9810 if Global_Discard_Names
9811 or else Discard_Names (Scope (T))
9812 then
9813 Set_Discard_Names (T);
9814 end if;
9816 -- Process end label if there is one
9818 if Present (Def) then
9819 Process_End_Label (Def, 'e', T);
9820 end if;
9821 end Enumeration_Type_Declaration;
9823 ---------------------------------
9824 -- Expand_To_Stored_Constraint --
9825 ---------------------------------
9827 function Expand_To_Stored_Constraint
9828 (Typ : Entity_Id;
9829 Constraint : Elist_Id) return Elist_Id
9831 Explicitly_Discriminated_Type : Entity_Id;
9832 Expansion : Elist_Id;
9833 Discriminant : Entity_Id;
9835 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
9836 -- Find the nearest type that actually specifies discriminants
9838 ---------------------------------
9839 -- Type_With_Explicit_Discrims --
9840 ---------------------------------
9842 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
9843 Typ : constant E := Base_Type (Id);
9845 begin
9846 if Ekind (Typ) in Incomplete_Or_Private_Kind then
9847 if Present (Full_View (Typ)) then
9848 return Type_With_Explicit_Discrims (Full_View (Typ));
9849 end if;
9851 else
9852 if Has_Discriminants (Typ) then
9853 return Typ;
9854 end if;
9855 end if;
9857 if Etype (Typ) = Typ then
9858 return Empty;
9859 elsif Has_Discriminants (Typ) then
9860 return Typ;
9861 else
9862 return Type_With_Explicit_Discrims (Etype (Typ));
9863 end if;
9865 end Type_With_Explicit_Discrims;
9867 -- Start of processing for Expand_To_Stored_Constraint
9869 begin
9870 if No (Constraint)
9871 or else Is_Empty_Elmt_List (Constraint)
9872 then
9873 return No_Elist;
9874 end if;
9876 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
9878 if No (Explicitly_Discriminated_Type) then
9879 return No_Elist;
9880 end if;
9882 Expansion := New_Elmt_List;
9884 Discriminant :=
9885 First_Stored_Discriminant (Explicitly_Discriminated_Type);
9886 while Present (Discriminant) loop
9887 Append_Elmt (
9888 Get_Discriminant_Value (
9889 Discriminant, Explicitly_Discriminated_Type, Constraint),
9890 Expansion);
9891 Next_Stored_Discriminant (Discriminant);
9892 end loop;
9894 return Expansion;
9895 end Expand_To_Stored_Constraint;
9897 --------------------
9898 -- Find_Type_Name --
9899 --------------------
9901 function Find_Type_Name (N : Node_Id) return Entity_Id is
9902 Id : constant Entity_Id := Defining_Identifier (N);
9903 Prev : Entity_Id;
9904 New_Id : Entity_Id;
9905 Prev_Par : Node_Id;
9907 begin
9908 -- Find incomplete declaration, if one was given
9910 Prev := Current_Entity_In_Scope (Id);
9912 if Present (Prev) then
9914 -- Previous declaration exists. Error if not incomplete/private case
9915 -- except if previous declaration is implicit, etc. Enter_Name will
9916 -- emit error if appropriate.
9918 Prev_Par := Parent (Prev);
9920 if not Is_Incomplete_Or_Private_Type (Prev) then
9921 Enter_Name (Id);
9922 New_Id := Id;
9924 elsif Nkind (N) /= N_Full_Type_Declaration
9925 and then Nkind (N) /= N_Task_Type_Declaration
9926 and then Nkind (N) /= N_Protected_Type_Declaration
9927 then
9928 -- Completion must be a full type declarations (RM 7.3(4))
9930 Error_Msg_Sloc := Sloc (Prev);
9931 Error_Msg_NE ("invalid completion of }", Id, Prev);
9933 -- Set scope of Id to avoid cascaded errors. Entity is never
9934 -- examined again, except when saving globals in generics.
9936 Set_Scope (Id, Current_Scope);
9937 New_Id := Id;
9939 -- Case of full declaration of incomplete type
9941 elsif Ekind (Prev) = E_Incomplete_Type then
9943 -- Indicate that the incomplete declaration has a matching full
9944 -- declaration. The defining occurrence of the incomplete
9945 -- declaration remains the visible one, and the procedure
9946 -- Get_Full_View dereferences it whenever the type is used.
9948 if Present (Full_View (Prev)) then
9949 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9950 end if;
9952 Set_Full_View (Prev, Id);
9953 Append_Entity (Id, Current_Scope);
9954 Set_Is_Public (Id, Is_Public (Prev));
9955 Set_Is_Internal (Id);
9956 New_Id := Prev;
9958 -- Case of full declaration of private type
9960 else
9961 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
9962 if Etype (Prev) /= Prev then
9964 -- Prev is a private subtype or a derived type, and needs
9965 -- no completion.
9967 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9968 New_Id := Id;
9970 elsif Ekind (Prev) = E_Private_Type
9971 and then
9972 (Nkind (N) = N_Task_Type_Declaration
9973 or else Nkind (N) = N_Protected_Type_Declaration)
9974 then
9975 Error_Msg_N
9976 ("completion of nonlimited type cannot be limited", N);
9977 end if;
9979 elsif Nkind (N) /= N_Full_Type_Declaration
9980 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
9981 then
9982 Error_Msg_N
9983 ("full view of private extension must be an extension", N);
9985 elsif not (Abstract_Present (Parent (Prev)))
9986 and then Abstract_Present (Type_Definition (N))
9987 then
9988 Error_Msg_N
9989 ("full view of non-abstract extension cannot be abstract", N);
9990 end if;
9992 if not In_Private_Part (Current_Scope) then
9993 Error_Msg_N
9994 ("declaration of full view must appear in private part", N);
9995 end if;
9997 Copy_And_Swap (Prev, Id);
9998 Set_Has_Private_Declaration (Prev);
9999 Set_Has_Private_Declaration (Id);
10001 -- If no error, propagate freeze_node from private to full view.
10002 -- It may have been generated for an early operational item.
10004 if Present (Freeze_Node (Id))
10005 and then Serious_Errors_Detected = 0
10006 and then No (Full_View (Id))
10007 then
10008 Set_Freeze_Node (Prev, Freeze_Node (Id));
10009 Set_Freeze_Node (Id, Empty);
10010 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
10011 end if;
10013 Set_Full_View (Id, Prev);
10014 New_Id := Prev;
10015 end if;
10017 -- Verify that full declaration conforms to incomplete one
10019 if Is_Incomplete_Or_Private_Type (Prev)
10020 and then Present (Discriminant_Specifications (Prev_Par))
10021 then
10022 if Present (Discriminant_Specifications (N)) then
10023 if Ekind (Prev) = E_Incomplete_Type then
10024 Check_Discriminant_Conformance (N, Prev, Prev);
10025 else
10026 Check_Discriminant_Conformance (N, Prev, Id);
10027 end if;
10029 else
10030 Error_Msg_N
10031 ("missing discriminants in full type declaration", N);
10033 -- To avoid cascaded errors on subsequent use, share the
10034 -- discriminants of the partial view.
10036 Set_Discriminant_Specifications (N,
10037 Discriminant_Specifications (Prev_Par));
10038 end if;
10039 end if;
10041 -- A prior untagged private type can have an associated class-wide
10042 -- type due to use of the class attribute, and in this case also the
10043 -- full type is required to be tagged.
10045 if Is_Type (Prev)
10046 and then (Is_Tagged_Type (Prev)
10047 or else Present (Class_Wide_Type (Prev)))
10048 then
10049 -- The full declaration is either a tagged record or an
10050 -- extension otherwise this is an error
10052 if Nkind (Type_Definition (N)) = N_Record_Definition then
10053 if not Tagged_Present (Type_Definition (N)) then
10054 Error_Msg_NE
10055 ("full declaration of } must be tagged", Prev, Id);
10056 Set_Is_Tagged_Type (Id);
10057 Set_Primitive_Operations (Id, New_Elmt_List);
10058 end if;
10060 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
10061 if No (Record_Extension_Part (Type_Definition (N))) then
10062 Error_Msg_NE (
10063 "full declaration of } must be a record extension",
10064 Prev, Id);
10065 Set_Is_Tagged_Type (Id);
10066 Set_Primitive_Operations (Id, New_Elmt_List);
10067 end if;
10069 else
10070 Error_Msg_NE
10071 ("full declaration of } must be a tagged type", Prev, Id);
10073 end if;
10074 end if;
10076 return New_Id;
10078 else
10079 -- New type declaration
10081 Enter_Name (Id);
10082 return Id;
10083 end if;
10084 end Find_Type_Name;
10086 -------------------------
10087 -- Find_Type_Of_Object --
10088 -------------------------
10090 function Find_Type_Of_Object
10091 (Obj_Def : Node_Id;
10092 Related_Nod : Node_Id) return Entity_Id
10094 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
10095 P : Node_Id := Parent (Obj_Def);
10096 T : Entity_Id;
10097 Nam : Name_Id;
10099 begin
10100 -- If the parent is a component_definition node we climb to the
10101 -- component_declaration node
10103 if Nkind (P) = N_Component_Definition then
10104 P := Parent (P);
10105 end if;
10107 -- Case of an anonymous array subtype
10109 if Def_Kind = N_Constrained_Array_Definition
10110 or else Def_Kind = N_Unconstrained_Array_Definition
10111 then
10112 T := Empty;
10113 Array_Type_Declaration (T, Obj_Def);
10115 -- Create an explicit subtype whenever possible
10117 elsif Nkind (P) /= N_Component_Declaration
10118 and then Def_Kind = N_Subtype_Indication
10119 then
10120 -- Base name of subtype on object name, which will be unique in
10121 -- the current scope.
10123 -- If this is a duplicate declaration, return base type, to avoid
10124 -- generating duplicate anonymous types.
10126 if Error_Posted (P) then
10127 Analyze (Subtype_Mark (Obj_Def));
10128 return Entity (Subtype_Mark (Obj_Def));
10129 end if;
10131 Nam :=
10132 New_External_Name
10133 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
10135 T := Make_Defining_Identifier (Sloc (P), Nam);
10137 Insert_Action (Obj_Def,
10138 Make_Subtype_Declaration (Sloc (P),
10139 Defining_Identifier => T,
10140 Subtype_Indication => Relocate_Node (Obj_Def)));
10142 -- This subtype may need freezing, and this will not be done
10143 -- automatically if the object declaration is not in declarative
10144 -- part. Since this is an object declaration, the type cannot always
10145 -- be frozen here. Deferred constants do not freeze their type
10146 -- (which often enough will be private).
10148 if Nkind (P) = N_Object_Declaration
10149 and then Constant_Present (P)
10150 and then No (Expression (P))
10151 then
10152 null;
10154 else
10155 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
10156 end if;
10158 else
10159 T := Process_Subtype (Obj_Def, Related_Nod);
10160 end if;
10162 return T;
10163 end Find_Type_Of_Object;
10165 --------------------------------
10166 -- Find_Type_Of_Subtype_Indic --
10167 --------------------------------
10169 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
10170 Typ : Entity_Id;
10172 begin
10173 -- Case of subtype mark with a constraint
10175 if Nkind (S) = N_Subtype_Indication then
10176 Find_Type (Subtype_Mark (S));
10177 Typ := Entity (Subtype_Mark (S));
10179 if not
10180 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
10181 then
10182 Error_Msg_N
10183 ("incorrect constraint for this kind of type", Constraint (S));
10184 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
10185 end if;
10187 -- Otherwise we have a subtype mark without a constraint
10189 elsif Error_Posted (S) then
10190 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
10191 return Any_Type;
10193 else
10194 Find_Type (S);
10195 Typ := Entity (S);
10196 end if;
10198 if Typ = Standard_Wide_Character
10199 or else Typ = Standard_Wide_Wide_Character
10200 or else Typ = Standard_Wide_String
10201 or else Typ = Standard_Wide_Wide_String
10202 then
10203 Check_Restriction (No_Wide_Characters, S);
10204 end if;
10206 return Typ;
10207 end Find_Type_Of_Subtype_Indic;
10209 -------------------------------------
10210 -- Floating_Point_Type_Declaration --
10211 -------------------------------------
10213 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
10214 Digs : constant Node_Id := Digits_Expression (Def);
10215 Digs_Val : Uint;
10216 Base_Typ : Entity_Id;
10217 Implicit_Base : Entity_Id;
10218 Bound : Node_Id;
10220 function Can_Derive_From (E : Entity_Id) return Boolean;
10221 -- Find if given digits value allows derivation from specified type
10223 ---------------------
10224 -- Can_Derive_From --
10225 ---------------------
10227 function Can_Derive_From (E : Entity_Id) return Boolean is
10228 Spec : constant Entity_Id := Real_Range_Specification (Def);
10230 begin
10231 if Digs_Val > Digits_Value (E) then
10232 return False;
10233 end if;
10235 if Present (Spec) then
10236 if Expr_Value_R (Type_Low_Bound (E)) >
10237 Expr_Value_R (Low_Bound (Spec))
10238 then
10239 return False;
10240 end if;
10242 if Expr_Value_R (Type_High_Bound (E)) <
10243 Expr_Value_R (High_Bound (Spec))
10244 then
10245 return False;
10246 end if;
10247 end if;
10249 return True;
10250 end Can_Derive_From;
10252 -- Start of processing for Floating_Point_Type_Declaration
10254 begin
10255 Check_Restriction (No_Floating_Point, Def);
10257 -- Create an implicit base type
10259 Implicit_Base :=
10260 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
10262 -- Analyze and verify digits value
10264 Analyze_And_Resolve (Digs, Any_Integer);
10265 Check_Digits_Expression (Digs);
10266 Digs_Val := Expr_Value (Digs);
10268 -- Process possible range spec and find correct type to derive from
10270 Process_Real_Range_Specification (Def);
10272 if Can_Derive_From (Standard_Short_Float) then
10273 Base_Typ := Standard_Short_Float;
10274 elsif Can_Derive_From (Standard_Float) then
10275 Base_Typ := Standard_Float;
10276 elsif Can_Derive_From (Standard_Long_Float) then
10277 Base_Typ := Standard_Long_Float;
10278 elsif Can_Derive_From (Standard_Long_Long_Float) then
10279 Base_Typ := Standard_Long_Long_Float;
10281 -- If we can't derive from any existing type, use long_long_float
10282 -- and give appropriate message explaining the problem.
10284 else
10285 Base_Typ := Standard_Long_Long_Float;
10287 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
10288 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
10289 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
10291 else
10292 Error_Msg_N
10293 ("range too large for any predefined type",
10294 Real_Range_Specification (Def));
10295 end if;
10296 end if;
10298 -- If there are bounds given in the declaration use them as the bounds
10299 -- of the type, otherwise use the bounds of the predefined base type
10300 -- that was chosen based on the Digits value.
10302 if Present (Real_Range_Specification (Def)) then
10303 Set_Scalar_Range (T, Real_Range_Specification (Def));
10304 Set_Is_Constrained (T);
10306 -- The bounds of this range must be converted to machine numbers
10307 -- in accordance with RM 4.9(38).
10309 Bound := Type_Low_Bound (T);
10311 if Nkind (Bound) = N_Real_Literal then
10312 Set_Realval
10313 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
10314 Set_Is_Machine_Number (Bound);
10315 end if;
10317 Bound := Type_High_Bound (T);
10319 if Nkind (Bound) = N_Real_Literal then
10320 Set_Realval
10321 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
10322 Set_Is_Machine_Number (Bound);
10323 end if;
10325 else
10326 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
10327 end if;
10329 -- Complete definition of implicit base and declared first subtype
10331 Set_Etype (Implicit_Base, Base_Typ);
10333 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
10334 Set_Size_Info (Implicit_Base, (Base_Typ));
10335 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
10336 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
10337 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
10338 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
10340 Set_Ekind (T, E_Floating_Point_Subtype);
10341 Set_Etype (T, Implicit_Base);
10343 Set_Size_Info (T, (Implicit_Base));
10344 Set_RM_Size (T, RM_Size (Implicit_Base));
10345 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10346 Set_Digits_Value (T, Digs_Val);
10347 end Floating_Point_Type_Declaration;
10349 ----------------------------
10350 -- Get_Discriminant_Value --
10351 ----------------------------
10353 -- This is the situation:
10355 -- There is a non-derived type
10357 -- type T0 (Dx, Dy, Dz...)
10359 -- There are zero or more levels of derivation, with each derivation
10360 -- either purely inheriting the discriminants, or defining its own.
10362 -- type Ti is new Ti-1
10363 -- or
10364 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
10365 -- or
10366 -- subtype Ti is ...
10368 -- The subtype issue is avoided by the use of Original_Record_Component,
10369 -- and the fact that derived subtypes also derive the constraints.
10371 -- This chain leads back from
10373 -- Typ_For_Constraint
10375 -- Typ_For_Constraint has discriminants, and the value for each
10376 -- discriminant is given by its corresponding Elmt of Constraints.
10378 -- Discriminant is some discriminant in this hierarchy
10380 -- We need to return its value
10382 -- We do this by recursively searching each level, and looking for
10383 -- Discriminant. Once we get to the bottom, we start backing up
10384 -- returning the value for it which may in turn be a discriminant
10385 -- further up, so on the backup we continue the substitution.
10387 function Get_Discriminant_Value
10388 (Discriminant : Entity_Id;
10389 Typ_For_Constraint : Entity_Id;
10390 Constraint : Elist_Id) return Node_Id
10392 function Search_Derivation_Levels
10393 (Ti : Entity_Id;
10394 Discrim_Values : Elist_Id;
10395 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
10396 -- This is the routine that performs the recursive search of levels
10397 -- as described above.
10399 ------------------------------
10400 -- Search_Derivation_Levels --
10401 ------------------------------
10403 function Search_Derivation_Levels
10404 (Ti : Entity_Id;
10405 Discrim_Values : Elist_Id;
10406 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
10408 Assoc : Elmt_Id;
10409 Disc : Entity_Id;
10410 Result : Node_Or_Entity_Id;
10411 Result_Entity : Node_Id;
10413 begin
10414 -- If inappropriate type, return Error, this happens only in
10415 -- cascaded error situations, and we want to avoid a blow up.
10417 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
10418 return Error;
10419 end if;
10421 -- Look deeper if possible. Use Stored_Constraints only for
10422 -- untagged types. For tagged types use the given constraint.
10423 -- This asymmetry needs explanation???
10425 if not Stored_Discrim_Values
10426 and then Present (Stored_Constraint (Ti))
10427 and then not Is_Tagged_Type (Ti)
10428 then
10429 Result :=
10430 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
10431 else
10432 declare
10433 Td : constant Entity_Id := Etype (Ti);
10435 begin
10436 if Td = Ti then
10437 Result := Discriminant;
10439 else
10440 if Present (Stored_Constraint (Ti)) then
10441 Result :=
10442 Search_Derivation_Levels
10443 (Td, Stored_Constraint (Ti), True);
10444 else
10445 Result :=
10446 Search_Derivation_Levels
10447 (Td, Discrim_Values, Stored_Discrim_Values);
10448 end if;
10449 end if;
10450 end;
10451 end if;
10453 -- Extra underlying places to search, if not found above. For
10454 -- concurrent types, the relevant discriminant appears in the
10455 -- corresponding record. For a type derived from a private type
10456 -- without discriminant, the full view inherits the discriminants
10457 -- of the full view of the parent.
10459 if Result = Discriminant then
10460 if Is_Concurrent_Type (Ti)
10461 and then Present (Corresponding_Record_Type (Ti))
10462 then
10463 Result :=
10464 Search_Derivation_Levels (
10465 Corresponding_Record_Type (Ti),
10466 Discrim_Values,
10467 Stored_Discrim_Values);
10469 elsif Is_Private_Type (Ti)
10470 and then not Has_Discriminants (Ti)
10471 and then Present (Full_View (Ti))
10472 and then Etype (Full_View (Ti)) /= Ti
10473 then
10474 Result :=
10475 Search_Derivation_Levels (
10476 Full_View (Ti),
10477 Discrim_Values,
10478 Stored_Discrim_Values);
10479 end if;
10480 end if;
10482 -- If Result is not a (reference to a) discriminant, return it,
10483 -- otherwise set Result_Entity to the discriminant.
10485 if Nkind (Result) = N_Defining_Identifier then
10486 pragma Assert (Result = Discriminant);
10487 Result_Entity := Result;
10489 else
10490 if not Denotes_Discriminant (Result) then
10491 return Result;
10492 end if;
10494 Result_Entity := Entity (Result);
10495 end if;
10497 -- See if this level of derivation actually has discriminants
10498 -- because tagged derivations can add them, hence the lower
10499 -- levels need not have any.
10501 if not Has_Discriminants (Ti) then
10502 return Result;
10503 end if;
10505 -- Scan Ti's discriminants for Result_Entity,
10506 -- and return its corresponding value, if any.
10508 Result_Entity := Original_Record_Component (Result_Entity);
10510 Assoc := First_Elmt (Discrim_Values);
10512 if Stored_Discrim_Values then
10513 Disc := First_Stored_Discriminant (Ti);
10514 else
10515 Disc := First_Discriminant (Ti);
10516 end if;
10518 while Present (Disc) loop
10519 pragma Assert (Present (Assoc));
10521 if Original_Record_Component (Disc) = Result_Entity then
10522 return Node (Assoc);
10523 end if;
10525 Next_Elmt (Assoc);
10527 if Stored_Discrim_Values then
10528 Next_Stored_Discriminant (Disc);
10529 else
10530 Next_Discriminant (Disc);
10531 end if;
10532 end loop;
10534 -- Could not find it
10536 return Result;
10537 end Search_Derivation_Levels;
10539 Result : Node_Or_Entity_Id;
10541 -- Start of processing for Get_Discriminant_Value
10543 begin
10544 -- ??? This routine is a gigantic mess and will be deleted. For the
10545 -- time being just test for the trivial case before calling recurse.
10547 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
10548 declare
10549 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
10550 E : Elmt_Id := First_Elmt (Constraint);
10552 begin
10553 while Present (D) loop
10554 if Chars (D) = Chars (Discriminant) then
10555 return Node (E);
10556 end if;
10558 Next_Discriminant (D);
10559 Next_Elmt (E);
10560 end loop;
10561 end;
10562 end if;
10564 Result := Search_Derivation_Levels
10565 (Typ_For_Constraint, Constraint, False);
10567 -- ??? hack to disappear when this routine is gone
10569 if Nkind (Result) = N_Defining_Identifier then
10570 declare
10571 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
10572 E : Elmt_Id := First_Elmt (Constraint);
10574 begin
10575 while Present (D) loop
10576 if Corresponding_Discriminant (D) = Discriminant then
10577 return Node (E);
10578 end if;
10580 Next_Discriminant (D);
10581 Next_Elmt (E);
10582 end loop;
10583 end;
10584 end if;
10586 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
10587 return Result;
10588 end Get_Discriminant_Value;
10590 --------------------------
10591 -- Has_Range_Constraint --
10592 --------------------------
10594 function Has_Range_Constraint (N : Node_Id) return Boolean is
10595 C : constant Node_Id := Constraint (N);
10597 begin
10598 if Nkind (C) = N_Range_Constraint then
10599 return True;
10601 elsif Nkind (C) = N_Digits_Constraint then
10602 return
10603 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
10604 or else
10605 Present (Range_Constraint (C));
10607 elsif Nkind (C) = N_Delta_Constraint then
10608 return Present (Range_Constraint (C));
10610 else
10611 return False;
10612 end if;
10613 end Has_Range_Constraint;
10615 ------------------------
10616 -- Inherit_Components --
10617 ------------------------
10619 function Inherit_Components
10620 (N : Node_Id;
10621 Parent_Base : Entity_Id;
10622 Derived_Base : Entity_Id;
10623 Is_Tagged : Boolean;
10624 Inherit_Discr : Boolean;
10625 Discs : Elist_Id) return Elist_Id
10627 Assoc_List : constant Elist_Id := New_Elmt_List;
10629 procedure Inherit_Component
10630 (Old_C : Entity_Id;
10631 Plain_Discrim : Boolean := False;
10632 Stored_Discrim : Boolean := False);
10633 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
10634 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
10635 -- True, Old_C is a stored discriminant. If they are both false then
10636 -- Old_C is a regular component.
10638 -----------------------
10639 -- Inherit_Component --
10640 -----------------------
10642 procedure Inherit_Component
10643 (Old_C : Entity_Id;
10644 Plain_Discrim : Boolean := False;
10645 Stored_Discrim : Boolean := False)
10647 New_C : constant Entity_Id := New_Copy (Old_C);
10649 Discrim : Entity_Id;
10650 Corr_Discrim : Entity_Id;
10652 begin
10653 pragma Assert (not Is_Tagged or else not Stored_Discrim);
10655 Set_Parent (New_C, Parent (Old_C));
10657 -- Regular discriminants and components must be inserted
10658 -- in the scope of the Derived_Base. Do it here.
10660 if not Stored_Discrim then
10661 Enter_Name (New_C);
10662 end if;
10664 -- For tagged types the Original_Record_Component must point to
10665 -- whatever this field was pointing to in the parent type. This has
10666 -- already been achieved by the call to New_Copy above.
10668 if not Is_Tagged then
10669 Set_Original_Record_Component (New_C, New_C);
10670 end if;
10672 -- If we have inherited a component then see if its Etype contains
10673 -- references to Parent_Base discriminants. In this case, replace
10674 -- these references with the constraints given in Discs. We do not
10675 -- do this for the partial view of private types because this is
10676 -- not needed (only the components of the full view will be used
10677 -- for code generation) and cause problem. We also avoid this
10678 -- transformation in some error situations.
10680 if Ekind (New_C) = E_Component then
10681 if (Is_Private_Type (Derived_Base)
10682 and then not Is_Generic_Type (Derived_Base))
10683 or else (Is_Empty_Elmt_List (Discs)
10684 and then not Expander_Active)
10685 then
10686 Set_Etype (New_C, Etype (Old_C));
10687 else
10688 Set_Etype (New_C, Constrain_Component_Type (Etype (Old_C),
10689 Derived_Base, N, Parent_Base, Discs));
10690 end if;
10691 end if;
10693 -- In derived tagged types it is illegal to reference a non
10694 -- discriminant component in the parent type. To catch this, mark
10695 -- these components with an Ekind of E_Void. This will be reset in
10696 -- Record_Type_Definition after processing the record extension of
10697 -- the derived type.
10699 if Is_Tagged and then Ekind (New_C) = E_Component then
10700 Set_Ekind (New_C, E_Void);
10701 end if;
10703 if Plain_Discrim then
10704 Set_Corresponding_Discriminant (New_C, Old_C);
10705 Build_Discriminal (New_C);
10707 -- If we are explicitly inheriting a stored discriminant it will be
10708 -- completely hidden.
10710 elsif Stored_Discrim then
10711 Set_Corresponding_Discriminant (New_C, Empty);
10712 Set_Discriminal (New_C, Empty);
10713 Set_Is_Completely_Hidden (New_C);
10715 -- Set the Original_Record_Component of each discriminant in the
10716 -- derived base to point to the corresponding stored that we just
10717 -- created.
10719 Discrim := First_Discriminant (Derived_Base);
10720 while Present (Discrim) loop
10721 Corr_Discrim := Corresponding_Discriminant (Discrim);
10723 -- Corr_Discrimm could be missing in an error situation
10725 if Present (Corr_Discrim)
10726 and then Original_Record_Component (Corr_Discrim) = Old_C
10727 then
10728 Set_Original_Record_Component (Discrim, New_C);
10729 end if;
10731 Next_Discriminant (Discrim);
10732 end loop;
10734 Append_Entity (New_C, Derived_Base);
10735 end if;
10737 if not Is_Tagged then
10738 Append_Elmt (Old_C, Assoc_List);
10739 Append_Elmt (New_C, Assoc_List);
10740 end if;
10741 end Inherit_Component;
10743 -- Variables local to Inherit_Component
10745 Loc : constant Source_Ptr := Sloc (N);
10747 Parent_Discrim : Entity_Id;
10748 Stored_Discrim : Entity_Id;
10749 D : Entity_Id;
10750 Component : Entity_Id;
10752 -- Start of processing for Inherit_Components
10754 begin
10755 if not Is_Tagged then
10756 Append_Elmt (Parent_Base, Assoc_List);
10757 Append_Elmt (Derived_Base, Assoc_List);
10758 end if;
10760 -- Inherit parent discriminants if needed
10762 if Inherit_Discr then
10763 Parent_Discrim := First_Discriminant (Parent_Base);
10764 while Present (Parent_Discrim) loop
10765 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
10766 Next_Discriminant (Parent_Discrim);
10767 end loop;
10768 end if;
10770 -- Create explicit stored discrims for untagged types when necessary
10772 if not Has_Unknown_Discriminants (Derived_Base)
10773 and then Has_Discriminants (Parent_Base)
10774 and then not Is_Tagged
10775 and then
10776 (not Inherit_Discr
10777 or else First_Discriminant (Parent_Base) /=
10778 First_Stored_Discriminant (Parent_Base))
10779 then
10780 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
10781 while Present (Stored_Discrim) loop
10782 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
10783 Next_Stored_Discriminant (Stored_Discrim);
10784 end loop;
10785 end if;
10787 -- See if we can apply the second transformation for derived types, as
10788 -- explained in point 6. in the comments above Build_Derived_Record_Type
10789 -- This is achieved by appending Derived_Base discriminants into Discs,
10790 -- which has the side effect of returning a non empty Discs list to the
10791 -- caller of Inherit_Components, which is what we want. This must be
10792 -- done for private derived types if there are explicit stored
10793 -- discriminants, to ensure that we can retrieve the values of the
10794 -- constraints provided in the ancestors.
10796 if Inherit_Discr
10797 and then Is_Empty_Elmt_List (Discs)
10798 and then Present (First_Discriminant (Derived_Base))
10799 and then
10800 (not Is_Private_Type (Derived_Base)
10801 or else Is_Completely_Hidden
10802 (First_Stored_Discriminant (Derived_Base))
10803 or else Is_Generic_Type (Derived_Base))
10804 then
10805 D := First_Discriminant (Derived_Base);
10806 while Present (D) loop
10807 Append_Elmt (New_Reference_To (D, Loc), Discs);
10808 Next_Discriminant (D);
10809 end loop;
10810 end if;
10812 -- Finally, inherit non-discriminant components unless they are not
10813 -- visible because defined or inherited from the full view of the
10814 -- parent. Don't inherit the _parent field of the parent type.
10816 Component := First_Entity (Parent_Base);
10817 while Present (Component) loop
10818 if Ekind (Component) /= E_Component
10819 or else Chars (Component) = Name_uParent
10820 then
10821 null;
10823 -- If the derived type is within the parent type's declarative
10824 -- region, then the components can still be inherited even though
10825 -- they aren't visible at this point. This can occur for cases
10826 -- such as within public child units where the components must
10827 -- become visible upon entering the child unit's private part.
10829 elsif not Is_Visible_Component (Component)
10830 and then not In_Open_Scopes (Scope (Parent_Base))
10831 then
10832 null;
10834 elsif Ekind (Derived_Base) = E_Private_Type
10835 or else Ekind (Derived_Base) = E_Limited_Private_Type
10836 then
10837 null;
10839 else
10840 Inherit_Component (Component);
10841 end if;
10843 Next_Entity (Component);
10844 end loop;
10846 -- For tagged derived types, inherited discriminants cannot be used in
10847 -- component declarations of the record extension part. To achieve this
10848 -- we mark the inherited discriminants as not visible.
10850 if Is_Tagged and then Inherit_Discr then
10851 D := First_Discriminant (Derived_Base);
10852 while Present (D) loop
10853 Set_Is_Immediately_Visible (D, False);
10854 Next_Discriminant (D);
10855 end loop;
10856 end if;
10858 return Assoc_List;
10859 end Inherit_Components;
10861 ------------------------------
10862 -- Is_Valid_Constraint_Kind --
10863 ------------------------------
10865 function Is_Valid_Constraint_Kind
10866 (T_Kind : Type_Kind;
10867 Constraint_Kind : Node_Kind) return Boolean
10869 begin
10870 case T_Kind is
10871 when Enumeration_Kind |
10872 Integer_Kind =>
10873 return Constraint_Kind = N_Range_Constraint;
10875 when Decimal_Fixed_Point_Kind =>
10876 return
10877 Constraint_Kind = N_Digits_Constraint
10878 or else
10879 Constraint_Kind = N_Range_Constraint;
10881 when Ordinary_Fixed_Point_Kind =>
10882 return
10883 Constraint_Kind = N_Delta_Constraint
10884 or else
10885 Constraint_Kind = N_Range_Constraint;
10887 when Float_Kind =>
10888 return
10889 Constraint_Kind = N_Digits_Constraint
10890 or else
10891 Constraint_Kind = N_Range_Constraint;
10893 when Access_Kind |
10894 Array_Kind |
10895 E_Record_Type |
10896 E_Record_Subtype |
10897 Class_Wide_Kind |
10898 E_Incomplete_Type |
10899 Private_Kind |
10900 Concurrent_Kind =>
10901 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
10903 when others =>
10904 return True; -- Error will be detected later
10905 end case;
10906 end Is_Valid_Constraint_Kind;
10908 --------------------------
10909 -- Is_Visible_Component --
10910 --------------------------
10912 function Is_Visible_Component (C : Entity_Id) return Boolean is
10913 Original_Comp : Entity_Id := Empty;
10914 Original_Scope : Entity_Id;
10915 Type_Scope : Entity_Id;
10917 function Is_Local_Type (Typ : Entity_Id) return Boolean;
10918 -- Check whether parent type of inherited component is declared locally,
10919 -- possibly within a nested package or instance. The current scope is
10920 -- the derived record itself.
10922 -------------------
10923 -- Is_Local_Type --
10924 -------------------
10926 function Is_Local_Type (Typ : Entity_Id) return Boolean is
10927 Scop : Entity_Id := Scope (Typ);
10929 begin
10930 while Present (Scop)
10931 and then Scop /= Standard_Standard
10932 loop
10933 if Scop = Scope (Current_Scope) then
10934 return True;
10935 end if;
10937 Scop := Scope (Scop);
10938 end loop;
10940 return False;
10941 end Is_Local_Type;
10943 -- Start of processing for Is_Visible_Component
10945 begin
10946 if Ekind (C) = E_Component
10947 or else Ekind (C) = E_Discriminant
10948 then
10949 Original_Comp := Original_Record_Component (C);
10950 end if;
10952 if No (Original_Comp) then
10954 -- Premature usage, or previous error
10956 return False;
10958 else
10959 Original_Scope := Scope (Original_Comp);
10960 Type_Scope := Scope (Base_Type (Scope (C)));
10961 end if;
10963 -- This test only concerns tagged types
10965 if not Is_Tagged_Type (Original_Scope) then
10966 return True;
10968 -- If it is _Parent or _Tag, there is no visibility issue
10970 elsif not Comes_From_Source (Original_Comp) then
10971 return True;
10973 -- If we are in the body of an instantiation, the component is visible
10974 -- even when the parent type (possibly defined in an enclosing unit or
10975 -- in a parent unit) might not.
10977 elsif In_Instance_Body then
10978 return True;
10980 -- Discriminants are always visible
10982 elsif Ekind (Original_Comp) = E_Discriminant
10983 and then not Has_Unknown_Discriminants (Original_Scope)
10984 then
10985 return True;
10987 -- If the component has been declared in an ancestor which is currently
10988 -- a private type, then it is not visible. The same applies if the
10989 -- component's containing type is not in an open scope and the original
10990 -- component's enclosing type is a visible full type of a private type
10991 -- (which can occur in cases where an attempt is being made to reference
10992 -- a component in a sibling package that is inherited from a visible
10993 -- component of a type in an ancestor package; the component in the
10994 -- sibling package should not be visible even though the component it
10995 -- inherited from is visible). This does not apply however in the case
10996 -- where the scope of the type is a private child unit, or when the
10997 -- parent comes from a local package in which the ancestor is currently
10998 -- visible. The latter suppression of visibility is needed for cases
10999 -- that are tested in B730006.
11001 elsif Is_Private_Type (Original_Scope)
11002 or else
11003 (not Is_Private_Descendant (Type_Scope)
11004 and then not In_Open_Scopes (Type_Scope)
11005 and then Has_Private_Declaration (Original_Scope))
11006 then
11007 -- If the type derives from an entity in a formal package, there
11008 -- are no additional visible components.
11010 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
11011 N_Formal_Package_Declaration
11012 then
11013 return False;
11015 -- if we are not in the private part of the current package, there
11016 -- are no additional visible components.
11018 elsif Ekind (Scope (Current_Scope)) = E_Package
11019 and then not In_Private_Part (Scope (Current_Scope))
11020 then
11021 return False;
11022 else
11023 return
11024 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
11025 and then Is_Local_Type (Type_Scope);
11026 end if;
11028 -- There is another weird way in which a component may be invisible
11029 -- when the private and the full view are not derived from the same
11030 -- ancestor. Here is an example :
11032 -- type A1 is tagged record F1 : integer; end record;
11033 -- type A2 is new A1 with record F2 : integer; end record;
11034 -- type T is new A1 with private;
11035 -- private
11036 -- type T is new A2 with null record;
11038 -- In this case, the full view of T inherits F1 and F2 but the private
11039 -- view inherits only F1
11041 else
11042 declare
11043 Ancestor : Entity_Id := Scope (C);
11045 begin
11046 loop
11047 if Ancestor = Original_Scope then
11048 return True;
11049 elsif Ancestor = Etype (Ancestor) then
11050 return False;
11051 end if;
11053 Ancestor := Etype (Ancestor);
11054 end loop;
11056 return True;
11057 end;
11058 end if;
11059 end Is_Visible_Component;
11061 --------------------------
11062 -- Make_Class_Wide_Type --
11063 --------------------------
11065 procedure Make_Class_Wide_Type (T : Entity_Id) is
11066 CW_Type : Entity_Id;
11067 CW_Name : Name_Id;
11068 Next_E : Entity_Id;
11070 begin
11071 -- The class wide type can have been defined by the partial view in
11072 -- which case everything is already done
11074 if Present (Class_Wide_Type (T)) then
11075 return;
11076 end if;
11078 CW_Type :=
11079 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
11081 -- Inherit root type characteristics
11083 CW_Name := Chars (CW_Type);
11084 Next_E := Next_Entity (CW_Type);
11085 Copy_Node (T, CW_Type);
11086 Set_Comes_From_Source (CW_Type, False);
11087 Set_Chars (CW_Type, CW_Name);
11088 Set_Parent (CW_Type, Parent (T));
11089 Set_Next_Entity (CW_Type, Next_E);
11090 Set_Has_Delayed_Freeze (CW_Type);
11092 -- Customize the class-wide type: It has no prim. op., it cannot be
11093 -- abstract and its Etype points back to the specific root type.
11095 Set_Ekind (CW_Type, E_Class_Wide_Type);
11096 Set_Is_Tagged_Type (CW_Type, True);
11097 Set_Primitive_Operations (CW_Type, New_Elmt_List);
11098 Set_Is_Abstract (CW_Type, False);
11099 Set_Is_Constrained (CW_Type, False);
11100 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
11101 Init_Size_Align (CW_Type);
11103 if Ekind (T) = E_Class_Wide_Subtype then
11104 Set_Etype (CW_Type, Etype (Base_Type (T)));
11105 else
11106 Set_Etype (CW_Type, T);
11107 end if;
11109 -- If this is the class_wide type of a constrained subtype, it does
11110 -- not have discriminants.
11112 Set_Has_Discriminants (CW_Type,
11113 Has_Discriminants (T) and then not Is_Constrained (T));
11115 Set_Has_Unknown_Discriminants (CW_Type, True);
11116 Set_Class_Wide_Type (T, CW_Type);
11117 Set_Equivalent_Type (CW_Type, Empty);
11119 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
11121 Set_Class_Wide_Type (CW_Type, CW_Type);
11122 end Make_Class_Wide_Type;
11124 ----------------
11125 -- Make_Index --
11126 ----------------
11128 procedure Make_Index
11129 (I : Node_Id;
11130 Related_Nod : Node_Id;
11131 Related_Id : Entity_Id := Empty;
11132 Suffix_Index : Nat := 1)
11134 R : Node_Id;
11135 T : Entity_Id;
11136 Def_Id : Entity_Id := Empty;
11137 Found : Boolean := False;
11139 begin
11140 -- For a discrete range used in a constrained array definition and
11141 -- defined by a range, an implicit conversion to the predefined type
11142 -- INTEGER is assumed if each bound is either a numeric literal, a named
11143 -- number, or an attribute, and the type of both bounds (prior to the
11144 -- implicit conversion) is the type universal_integer. Otherwise, both
11145 -- bounds must be of the same discrete type, other than universal
11146 -- integer; this type must be determinable independently of the
11147 -- context, but using the fact that the type must be discrete and that
11148 -- both bounds must have the same type.
11150 -- Character literals also have a universal type in the absence of
11151 -- of additional context, and are resolved to Standard_Character.
11153 if Nkind (I) = N_Range then
11155 -- The index is given by a range constraint. The bounds are known
11156 -- to be of a consistent type.
11158 if not Is_Overloaded (I) then
11159 T := Etype (I);
11161 -- If the bounds are universal, choose the specific predefined
11162 -- type.
11164 if T = Universal_Integer then
11165 T := Standard_Integer;
11167 elsif T = Any_Character then
11169 if Ada_Version >= Ada_95 then
11170 Error_Msg_N
11171 ("ambiguous character literals (could be Wide_Character)",
11173 end if;
11175 T := Standard_Character;
11176 end if;
11178 else
11179 T := Any_Type;
11181 declare
11182 Ind : Interp_Index;
11183 It : Interp;
11185 begin
11186 Get_First_Interp (I, Ind, It);
11188 while Present (It.Typ) loop
11189 if Is_Discrete_Type (It.Typ) then
11191 if Found
11192 and then not Covers (It.Typ, T)
11193 and then not Covers (T, It.Typ)
11194 then
11195 Error_Msg_N ("ambiguous bounds in discrete range", I);
11196 exit;
11197 else
11198 T := It.Typ;
11199 Found := True;
11200 end if;
11201 end if;
11203 Get_Next_Interp (Ind, It);
11204 end loop;
11206 if T = Any_Type then
11207 Error_Msg_N ("discrete type required for range", I);
11208 Set_Etype (I, Any_Type);
11209 return;
11211 elsif T = Universal_Integer then
11212 T := Standard_Integer;
11213 end if;
11214 end;
11215 end if;
11217 if not Is_Discrete_Type (T) then
11218 Error_Msg_N ("discrete type required for range", I);
11219 Set_Etype (I, Any_Type);
11220 return;
11221 end if;
11223 if Nkind (Low_Bound (I)) = N_Attribute_Reference
11224 and then Attribute_Name (Low_Bound (I)) = Name_First
11225 and then Is_Entity_Name (Prefix (Low_Bound (I)))
11226 and then Is_Type (Entity (Prefix (Low_Bound (I))))
11227 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
11228 then
11229 -- The type of the index will be the type of the prefix, as long
11230 -- as the upper bound is 'Last of the same type.
11232 Def_Id := Entity (Prefix (Low_Bound (I)));
11234 if Nkind (High_Bound (I)) /= N_Attribute_Reference
11235 or else Attribute_Name (High_Bound (I)) /= Name_Last
11236 or else not Is_Entity_Name (Prefix (High_Bound (I)))
11237 or else Entity (Prefix (High_Bound (I))) /= Def_Id
11238 then
11239 Def_Id := Empty;
11240 end if;
11241 end if;
11243 R := I;
11244 Process_Range_Expr_In_Decl (R, T);
11246 elsif Nkind (I) = N_Subtype_Indication then
11248 -- The index is given by a subtype with a range constraint
11250 T := Base_Type (Entity (Subtype_Mark (I)));
11252 if not Is_Discrete_Type (T) then
11253 Error_Msg_N ("discrete type required for range", I);
11254 Set_Etype (I, Any_Type);
11255 return;
11256 end if;
11258 R := Range_Expression (Constraint (I));
11260 Resolve (R, T);
11261 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
11263 elsif Nkind (I) = N_Attribute_Reference then
11265 -- The parser guarantees that the attribute is a RANGE attribute
11267 -- If the node denotes the range of a type mark, that is also the
11268 -- resulting type, and we do no need to create an Itype for it.
11270 if Is_Entity_Name (Prefix (I))
11271 and then Comes_From_Source (I)
11272 and then Is_Type (Entity (Prefix (I)))
11273 and then Is_Discrete_Type (Entity (Prefix (I)))
11274 then
11275 Def_Id := Entity (Prefix (I));
11276 end if;
11278 Analyze_And_Resolve (I);
11279 T := Etype (I);
11280 R := I;
11282 -- If none of the above, must be a subtype. We convert this to a
11283 -- range attribute reference because in the case of declared first
11284 -- named subtypes, the types in the range reference can be different
11285 -- from the type of the entity. A range attribute normalizes the
11286 -- reference and obtains the correct types for the bounds.
11288 -- This transformation is in the nature of an expansion, is only
11289 -- done if expansion is active. In particular, it is not done on
11290 -- formal generic types, because we need to retain the name of the
11291 -- original index for instantiation purposes.
11293 else
11294 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
11295 Error_Msg_N ("invalid subtype mark in discrete range ", I);
11296 Set_Etype (I, Any_Integer);
11297 return;
11299 else
11300 -- The type mark may be that of an incomplete type. It is only
11301 -- now that we can get the full view, previous analysis does
11302 -- not look specifically for a type mark.
11304 Set_Entity (I, Get_Full_View (Entity (I)));
11305 Set_Etype (I, Entity (I));
11306 Def_Id := Entity (I);
11308 if not Is_Discrete_Type (Def_Id) then
11309 Error_Msg_N ("discrete type required for index", I);
11310 Set_Etype (I, Any_Type);
11311 return;
11312 end if;
11313 end if;
11315 if Expander_Active then
11316 Rewrite (I,
11317 Make_Attribute_Reference (Sloc (I),
11318 Attribute_Name => Name_Range,
11319 Prefix => Relocate_Node (I)));
11321 -- The original was a subtype mark that does not freeze. This
11322 -- means that the rewritten version must not freeze either.
11324 Set_Must_Not_Freeze (I);
11325 Set_Must_Not_Freeze (Prefix (I));
11327 -- Is order critical??? if so, document why, if not
11328 -- use Analyze_And_Resolve
11330 Analyze (I);
11331 T := Etype (I);
11332 Resolve (I);
11333 R := I;
11335 -- If expander is inactive, type is legal, nothing else to construct
11337 else
11338 return;
11339 end if;
11340 end if;
11342 if not Is_Discrete_Type (T) then
11343 Error_Msg_N ("discrete type required for range", I);
11344 Set_Etype (I, Any_Type);
11345 return;
11347 elsif T = Any_Type then
11348 Set_Etype (I, Any_Type);
11349 return;
11350 end if;
11352 -- We will now create the appropriate Itype to describe the range, but
11353 -- first a check. If we originally had a subtype, then we just label
11354 -- the range with this subtype. Not only is there no need to construct
11355 -- a new subtype, but it is wrong to do so for two reasons:
11357 -- 1. A legality concern, if we have a subtype, it must not freeze,
11358 -- and the Itype would cause freezing incorrectly
11360 -- 2. An efficiency concern, if we created an Itype, it would not be
11361 -- recognized as the same type for the purposes of eliminating
11362 -- checks in some circumstances.
11364 -- We signal this case by setting the subtype entity in Def_Id
11366 if No (Def_Id) then
11367 Def_Id :=
11368 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
11369 Set_Etype (Def_Id, Base_Type (T));
11371 if Is_Signed_Integer_Type (T) then
11372 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11374 elsif Is_Modular_Integer_Type (T) then
11375 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11377 else
11378 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11379 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11380 Set_First_Literal (Def_Id, First_Literal (T));
11381 end if;
11383 Set_Size_Info (Def_Id, (T));
11384 Set_RM_Size (Def_Id, RM_Size (T));
11385 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11387 Set_Scalar_Range (Def_Id, R);
11388 Conditional_Delay (Def_Id, T);
11390 -- In the subtype indication case, if the immediate parent of the
11391 -- new subtype is non-static, then the subtype we create is non-
11392 -- static, even if its bounds are static.
11394 if Nkind (I) = N_Subtype_Indication
11395 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
11396 then
11397 Set_Is_Non_Static_Subtype (Def_Id);
11398 end if;
11399 end if;
11401 -- Final step is to label the index with this constructed type
11403 Set_Etype (I, Def_Id);
11404 end Make_Index;
11406 ------------------------------
11407 -- Modular_Type_Declaration --
11408 ------------------------------
11410 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
11411 Mod_Expr : constant Node_Id := Expression (Def);
11412 M_Val : Uint;
11414 procedure Set_Modular_Size (Bits : Int);
11415 -- Sets RM_Size to Bits, and Esize to normal word size above this
11417 ----------------------
11418 -- Set_Modular_Size --
11419 ----------------------
11421 procedure Set_Modular_Size (Bits : Int) is
11422 begin
11423 Set_RM_Size (T, UI_From_Int (Bits));
11425 if Bits <= 8 then
11426 Init_Esize (T, 8);
11428 elsif Bits <= 16 then
11429 Init_Esize (T, 16);
11431 elsif Bits <= 32 then
11432 Init_Esize (T, 32);
11434 else
11435 Init_Esize (T, System_Max_Binary_Modulus_Power);
11436 end if;
11437 end Set_Modular_Size;
11439 -- Start of processing for Modular_Type_Declaration
11441 begin
11442 Analyze_And_Resolve (Mod_Expr, Any_Integer);
11443 Set_Etype (T, T);
11444 Set_Ekind (T, E_Modular_Integer_Type);
11445 Init_Alignment (T);
11446 Set_Is_Constrained (T);
11448 if not Is_OK_Static_Expression (Mod_Expr) then
11449 Flag_Non_Static_Expr
11450 ("non-static expression used for modular type bound!", Mod_Expr);
11451 M_Val := 2 ** System_Max_Binary_Modulus_Power;
11452 else
11453 M_Val := Expr_Value (Mod_Expr);
11454 end if;
11456 if M_Val < 1 then
11457 Error_Msg_N ("modulus value must be positive", Mod_Expr);
11458 M_Val := 2 ** System_Max_Binary_Modulus_Power;
11459 end if;
11461 Set_Modulus (T, M_Val);
11463 -- Create bounds for the modular type based on the modulus given in
11464 -- the type declaration and then analyze and resolve those bounds.
11466 Set_Scalar_Range (T,
11467 Make_Range (Sloc (Mod_Expr),
11468 Low_Bound =>
11469 Make_Integer_Literal (Sloc (Mod_Expr), 0),
11470 High_Bound =>
11471 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
11473 -- Properly analyze the literals for the range. We do this manually
11474 -- because we can't go calling Resolve, since we are resolving these
11475 -- bounds with the type, and this type is certainly not complete yet!
11477 Set_Etype (Low_Bound (Scalar_Range (T)), T);
11478 Set_Etype (High_Bound (Scalar_Range (T)), T);
11479 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
11480 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
11482 -- Loop through powers of two to find number of bits required
11484 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
11486 -- Binary case
11488 if M_Val = 2 ** Bits then
11489 Set_Modular_Size (Bits);
11490 return;
11492 -- Non-binary case
11494 elsif M_Val < 2 ** Bits then
11495 Set_Non_Binary_Modulus (T);
11497 if Bits > System_Max_Nonbinary_Modulus_Power then
11498 Error_Msg_Uint_1 :=
11499 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
11500 Error_Msg_N
11501 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
11502 Set_Modular_Size (System_Max_Binary_Modulus_Power);
11503 return;
11505 else
11506 -- In the non-binary case, set size as per RM 13.3(55)
11508 Set_Modular_Size (Bits);
11509 return;
11510 end if;
11511 end if;
11513 end loop;
11515 -- If we fall through, then the size exceed System.Max_Binary_Modulus
11516 -- so we just signal an error and set the maximum size.
11518 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
11519 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
11521 Set_Modular_Size (System_Max_Binary_Modulus_Power);
11522 Init_Alignment (T);
11524 end Modular_Type_Declaration;
11526 --------------------------
11527 -- New_Concatenation_Op --
11528 --------------------------
11530 procedure New_Concatenation_Op (Typ : Entity_Id) is
11531 Loc : constant Source_Ptr := Sloc (Typ);
11532 Op : Entity_Id;
11534 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
11535 -- Create abbreviated declaration for the formal of a predefined
11536 -- Operator 'Op' of type 'Typ'
11538 --------------------
11539 -- Make_Op_Formal --
11540 --------------------
11542 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
11543 Formal : Entity_Id;
11544 begin
11545 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
11546 Set_Etype (Formal, Typ);
11547 Set_Mechanism (Formal, Default_Mechanism);
11548 return Formal;
11549 end Make_Op_Formal;
11551 -- Start of processing for New_Concatenation_Op
11553 begin
11554 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
11556 Set_Ekind (Op, E_Operator);
11557 Set_Scope (Op, Current_Scope);
11558 Set_Etype (Op, Typ);
11559 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
11560 Set_Is_Immediately_Visible (Op);
11561 Set_Is_Intrinsic_Subprogram (Op);
11562 Set_Has_Completion (Op);
11563 Append_Entity (Op, Current_Scope);
11565 Set_Name_Entity_Id (Name_Op_Concat, Op);
11567 Append_Entity (Make_Op_Formal (Typ, Op), Op);
11568 Append_Entity (Make_Op_Formal (Typ, Op), Op);
11569 end New_Concatenation_Op;
11571 -------------------------------------------
11572 -- Ordinary_Fixed_Point_Type_Declaration --
11573 -------------------------------------------
11575 procedure Ordinary_Fixed_Point_Type_Declaration
11576 (T : Entity_Id;
11577 Def : Node_Id)
11579 Loc : constant Source_Ptr := Sloc (Def);
11580 Delta_Expr : constant Node_Id := Delta_Expression (Def);
11581 RRS : constant Node_Id := Real_Range_Specification (Def);
11582 Implicit_Base : Entity_Id;
11583 Delta_Val : Ureal;
11584 Small_Val : Ureal;
11585 Low_Val : Ureal;
11586 High_Val : Ureal;
11588 begin
11589 Check_Restriction (No_Fixed_Point, Def);
11591 -- Create implicit base type
11593 Implicit_Base :=
11594 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
11595 Set_Etype (Implicit_Base, Implicit_Base);
11597 -- Analyze and process delta expression
11599 Analyze_And_Resolve (Delta_Expr, Any_Real);
11601 Check_Delta_Expression (Delta_Expr);
11602 Delta_Val := Expr_Value_R (Delta_Expr);
11604 Set_Delta_Value (Implicit_Base, Delta_Val);
11606 -- Compute default small from given delta, which is the largest power
11607 -- of two that does not exceed the given delta value.
11609 declare
11610 Tmp : Ureal := Ureal_1;
11611 Scale : Int := 0;
11613 begin
11614 if Delta_Val < Ureal_1 then
11615 while Delta_Val < Tmp loop
11616 Tmp := Tmp / Ureal_2;
11617 Scale := Scale + 1;
11618 end loop;
11620 else
11621 loop
11622 Tmp := Tmp * Ureal_2;
11623 exit when Tmp > Delta_Val;
11624 Scale := Scale - 1;
11625 end loop;
11626 end if;
11628 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
11629 end;
11631 Set_Small_Value (Implicit_Base, Small_Val);
11633 -- If no range was given, set a dummy range
11635 if RRS <= Empty_Or_Error then
11636 Low_Val := -Small_Val;
11637 High_Val := Small_Val;
11639 -- Otherwise analyze and process given range
11641 else
11642 declare
11643 Low : constant Node_Id := Low_Bound (RRS);
11644 High : constant Node_Id := High_Bound (RRS);
11646 begin
11647 Analyze_And_Resolve (Low, Any_Real);
11648 Analyze_And_Resolve (High, Any_Real);
11649 Check_Real_Bound (Low);
11650 Check_Real_Bound (High);
11652 -- Obtain and set the range
11654 Low_Val := Expr_Value_R (Low);
11655 High_Val := Expr_Value_R (High);
11657 if Low_Val > High_Val then
11658 Error_Msg_NE ("?fixed point type& has null range", Def, T);
11659 end if;
11660 end;
11661 end if;
11663 -- The range for both the implicit base and the declared first subtype
11664 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
11665 -- set a temporary range in place. Note that the bounds of the base
11666 -- type will be widened to be symmetrical and to fill the available
11667 -- bits when the type is frozen.
11669 -- We could do this with all discrete types, and probably should, but
11670 -- we absolutely have to do it for fixed-point, since the end-points
11671 -- of the range and the size are determined by the small value, which
11672 -- could be reset before the freeze point.
11674 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
11675 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
11677 Init_Size_Align (Implicit_Base);
11679 -- Complete definition of first subtype
11681 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
11682 Set_Etype (T, Implicit_Base);
11683 Init_Size_Align (T);
11684 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11685 Set_Small_Value (T, Small_Val);
11686 Set_Delta_Value (T, Delta_Val);
11687 Set_Is_Constrained (T);
11689 end Ordinary_Fixed_Point_Type_Declaration;
11691 ----------------------------------------
11692 -- Prepare_Private_Subtype_Completion --
11693 ----------------------------------------
11695 procedure Prepare_Private_Subtype_Completion
11696 (Id : Entity_Id;
11697 Related_Nod : Node_Id)
11699 Id_B : constant Entity_Id := Base_Type (Id);
11700 Full_B : constant Entity_Id := Full_View (Id_B);
11701 Full : Entity_Id;
11703 begin
11704 if Present (Full_B) then
11706 -- The Base_Type is already completed, we can complete the subtype
11707 -- now. We have to create a new entity with the same name, Thus we
11708 -- can't use Create_Itype.
11710 -- This is messy, should be fixed ???
11712 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
11713 Set_Is_Itype (Full);
11714 Set_Associated_Node_For_Itype (Full, Related_Nod);
11715 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
11716 end if;
11718 -- The parent subtype may be private, but the base might not, in some
11719 -- nested instances. In that case, the subtype does not need to be
11720 -- exchanged. It would still be nice to make private subtypes and their
11721 -- bases consistent at all times ???
11723 if Is_Private_Type (Id_B) then
11724 Append_Elmt (Id, Private_Dependents (Id_B));
11725 end if;
11727 end Prepare_Private_Subtype_Completion;
11729 ---------------------------
11730 -- Process_Discriminants --
11731 ---------------------------
11733 procedure Process_Discriminants
11734 (N : Node_Id;
11735 Prev : Entity_Id := Empty)
11737 Elist : constant Elist_Id := New_Elmt_List;
11738 Id : Node_Id;
11739 Discr : Node_Id;
11740 Discr_Number : Uint;
11741 Discr_Type : Entity_Id;
11742 Default_Present : Boolean := False;
11743 Default_Not_Present : Boolean := False;
11745 begin
11746 -- A composite type other than an array type can have discriminants.
11747 -- Discriminants of non-limited types must have a discrete type.
11748 -- On entry, the current scope is the composite type.
11750 -- The discriminants are initially entered into the scope of the type
11751 -- via Enter_Name with the default Ekind of E_Void to prevent premature
11752 -- use, as explained at the end of this procedure.
11754 Discr := First (Discriminant_Specifications (N));
11755 while Present (Discr) loop
11756 Enter_Name (Defining_Identifier (Discr));
11758 -- For navigation purposes we add a reference to the discriminant
11759 -- in the entity for the type. If the current declaration is a
11760 -- completion, place references on the partial view. Otherwise the
11761 -- type is the current scope.
11763 if Present (Prev) then
11765 -- The references go on the partial view, if present. If the
11766 -- partial view has discriminants, the references have been
11767 -- generated already.
11769 if not Has_Discriminants (Prev) then
11770 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
11771 end if;
11772 else
11773 Generate_Reference
11774 (Current_Scope, Defining_Identifier (Discr), 'd');
11775 end if;
11777 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
11778 Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
11780 -- Ada 2005 (AI-254)
11782 if Present (Access_To_Subprogram_Definition
11783 (Discriminant_Type (Discr)))
11784 and then Protected_Present (Access_To_Subprogram_Definition
11785 (Discriminant_Type (Discr)))
11786 then
11787 Discr_Type :=
11788 Replace_Anonymous_Access_To_Protected_Subprogram
11789 (Discr, Discr_Type);
11790 end if;
11792 else
11793 Find_Type (Discriminant_Type (Discr));
11794 Discr_Type := Etype (Discriminant_Type (Discr));
11796 if Error_Posted (Discriminant_Type (Discr)) then
11797 Discr_Type := Any_Type;
11798 end if;
11799 end if;
11801 if Is_Access_Type (Discr_Type) then
11803 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
11804 -- record types
11806 if Ada_Version < Ada_05 then
11807 Check_Access_Discriminant_Requires_Limited
11808 (Discr, Discriminant_Type (Discr));
11809 end if;
11811 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
11812 Error_Msg_N
11813 ("(Ada 83) access discriminant not allowed", Discr);
11814 end if;
11816 elsif not Is_Discrete_Type (Discr_Type) then
11817 Error_Msg_N ("discriminants must have a discrete or access type",
11818 Discriminant_Type (Discr));
11819 end if;
11821 Set_Etype (Defining_Identifier (Discr), Discr_Type);
11823 -- If a discriminant specification includes the assignment compound
11824 -- delimiter followed by an expression, the expression is the default
11825 -- expression of the discriminant; the default expression must be of
11826 -- the type of the discriminant. (RM 3.7.1) Since this expression is
11827 -- a default expression, we do the special preanalysis, since this
11828 -- expression does not freeze (see "Handling of Default and Per-
11829 -- Object Expressions" in spec of package Sem).
11831 if Present (Expression (Discr)) then
11832 Analyze_Per_Use_Expression (Expression (Discr), Discr_Type);
11834 if Nkind (N) = N_Formal_Type_Declaration then
11835 Error_Msg_N
11836 ("discriminant defaults not allowed for formal type",
11837 Expression (Discr));
11839 -- Tagged types cannot have defaulted discriminants, but a
11840 -- non-tagged private type with defaulted discriminants
11841 -- can have a tagged completion.
11843 elsif Is_Tagged_Type (Current_Scope)
11844 and then Comes_From_Source (N)
11845 then
11846 Error_Msg_N
11847 ("discriminants of tagged type cannot have defaults",
11848 Expression (Discr));
11850 else
11851 Default_Present := True;
11852 Append_Elmt (Expression (Discr), Elist);
11854 -- Tag the defining identifiers for the discriminants with
11855 -- their corresponding default expressions from the tree.
11857 Set_Discriminant_Default_Value
11858 (Defining_Identifier (Discr), Expression (Discr));
11859 end if;
11861 else
11862 Default_Not_Present := True;
11863 end if;
11865 -- Ada 2005 (AI-231): Set the null-excluding attribute and carry
11866 -- out some static checks.
11868 if Ada_Version >= Ada_05
11869 and then (Null_Exclusion_Present (Discr)
11870 or else Can_Never_Be_Null (Discr_Type))
11871 then
11872 Set_Can_Never_Be_Null (Defining_Identifier (Discr));
11873 Null_Exclusion_Static_Checks (Discr);
11874 end if;
11876 Next (Discr);
11877 end loop;
11879 -- An element list consisting of the default expressions of the
11880 -- discriminants is constructed in the above loop and used to set
11881 -- the Discriminant_Constraint attribute for the type. If an object
11882 -- is declared of this (record or task) type without any explicit
11883 -- discriminant constraint given, this element list will form the
11884 -- actual parameters for the corresponding initialization procedure
11885 -- for the type.
11887 Set_Discriminant_Constraint (Current_Scope, Elist);
11888 Set_Stored_Constraint (Current_Scope, No_Elist);
11890 -- Default expressions must be provided either for all or for none
11891 -- of the discriminants of a discriminant part. (RM 3.7.1)
11893 if Default_Present and then Default_Not_Present then
11894 Error_Msg_N
11895 ("incomplete specification of defaults for discriminants", N);
11896 end if;
11898 -- The use of the name of a discriminant is not allowed in default
11899 -- expressions of a discriminant part if the specification of the
11900 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
11902 -- To detect this, the discriminant names are entered initially with an
11903 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
11904 -- attempt to use a void entity (for example in an expression that is
11905 -- type-checked) produces the error message: premature usage. Now after
11906 -- completing the semantic analysis of the discriminant part, we can set
11907 -- the Ekind of all the discriminants appropriately.
11909 Discr := First (Discriminant_Specifications (N));
11910 Discr_Number := Uint_1;
11912 while Present (Discr) loop
11913 Id := Defining_Identifier (Discr);
11914 Set_Ekind (Id, E_Discriminant);
11915 Init_Component_Location (Id);
11916 Init_Esize (Id);
11917 Set_Discriminant_Number (Id, Discr_Number);
11919 -- Make sure this is always set, even in illegal programs
11921 Set_Corresponding_Discriminant (Id, Empty);
11923 -- Initialize the Original_Record_Component to the entity itself.
11924 -- Inherit_Components will propagate the right value to
11925 -- discriminants in derived record types.
11927 Set_Original_Record_Component (Id, Id);
11929 -- Create the discriminal for the discriminant
11931 Build_Discriminal (Id);
11933 Next (Discr);
11934 Discr_Number := Discr_Number + 1;
11935 end loop;
11937 Set_Has_Discriminants (Current_Scope);
11938 end Process_Discriminants;
11940 -----------------------
11941 -- Process_Full_View --
11942 -----------------------
11944 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
11945 Priv_Parent : Entity_Id;
11946 Full_Parent : Entity_Id;
11947 Full_Indic : Node_Id;
11949 begin
11950 -- First some sanity checks that must be done after semantic
11951 -- decoration of the full view and thus cannot be placed with other
11952 -- similar checks in Find_Type_Name
11954 if not Is_Limited_Type (Priv_T)
11955 and then (Is_Limited_Type (Full_T)
11956 or else Is_Limited_Composite (Full_T))
11957 then
11958 Error_Msg_N
11959 ("completion of nonlimited type cannot be limited", Full_T);
11960 Explain_Limited_Type (Full_T, Full_T);
11962 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
11963 Error_Msg_N
11964 ("completion of nonabstract type cannot be abstract", Full_T);
11966 elsif Is_Tagged_Type (Priv_T)
11967 and then Is_Limited_Type (Priv_T)
11968 and then not Is_Limited_Type (Full_T)
11969 then
11970 -- GNAT allow its own definition of Limited_Controlled to disobey
11971 -- this rule in order in ease the implementation. The next test is
11972 -- safe because Root_Controlled is defined in a private system child
11974 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
11975 Set_Is_Limited_Composite (Full_T);
11976 else
11977 Error_Msg_N
11978 ("completion of limited tagged type must be limited", Full_T);
11979 end if;
11981 elsif Is_Generic_Type (Priv_T) then
11982 Error_Msg_N ("generic type cannot have a completion", Full_T);
11983 end if;
11985 if Is_Tagged_Type (Priv_T)
11986 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
11987 and then Is_Derived_Type (Full_T)
11988 then
11989 Priv_Parent := Etype (Priv_T);
11991 -- The full view of a private extension may have been transformed
11992 -- into an unconstrained derived type declaration and a subtype
11993 -- declaration (see build_derived_record_type for details).
11995 if Nkind (N) = N_Subtype_Declaration then
11996 Full_Indic := Subtype_Indication (N);
11997 Full_Parent := Etype (Base_Type (Full_T));
11998 else
11999 Full_Indic := Subtype_Indication (Type_Definition (N));
12000 Full_Parent := Etype (Full_T);
12001 end if;
12003 -- Check that the parent type of the full type is a descendant of
12004 -- the ancestor subtype given in the private extension. If either
12005 -- entity has an Etype equal to Any_Type then we had some previous
12006 -- error situation [7.3(8)].
12008 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
12009 return;
12011 elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
12012 Error_Msg_N
12013 ("parent of full type must descend from parent"
12014 & " of private extension", Full_Indic);
12016 -- Check the rules of 7.3(10): if the private extension inherits
12017 -- known discriminants, then the full type must also inherit those
12018 -- discriminants from the same (ancestor) type, and the parent
12019 -- subtype of the full type must be constrained if and only if
12020 -- the ancestor subtype of the private extension is constrained.
12022 elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
12023 and then not Has_Unknown_Discriminants (Priv_T)
12024 and then Has_Discriminants (Base_Type (Priv_Parent))
12025 then
12026 declare
12027 Priv_Indic : constant Node_Id :=
12028 Subtype_Indication (Parent (Priv_T));
12030 Priv_Constr : constant Boolean :=
12031 Is_Constrained (Priv_Parent)
12032 or else
12033 Nkind (Priv_Indic) = N_Subtype_Indication
12034 or else Is_Constrained (Entity (Priv_Indic));
12036 Full_Constr : constant Boolean :=
12037 Is_Constrained (Full_Parent)
12038 or else
12039 Nkind (Full_Indic) = N_Subtype_Indication
12040 or else Is_Constrained (Entity (Full_Indic));
12042 Priv_Discr : Entity_Id;
12043 Full_Discr : Entity_Id;
12045 begin
12046 Priv_Discr := First_Discriminant (Priv_Parent);
12047 Full_Discr := First_Discriminant (Full_Parent);
12049 while Present (Priv_Discr) and then Present (Full_Discr) loop
12050 if Original_Record_Component (Priv_Discr) =
12051 Original_Record_Component (Full_Discr)
12052 or else
12053 Corresponding_Discriminant (Priv_Discr) =
12054 Corresponding_Discriminant (Full_Discr)
12055 then
12056 null;
12057 else
12058 exit;
12059 end if;
12061 Next_Discriminant (Priv_Discr);
12062 Next_Discriminant (Full_Discr);
12063 end loop;
12065 if Present (Priv_Discr) or else Present (Full_Discr) then
12066 Error_Msg_N
12067 ("full view must inherit discriminants of the parent type"
12068 & " used in the private extension", Full_Indic);
12070 elsif Priv_Constr and then not Full_Constr then
12071 Error_Msg_N
12072 ("parent subtype of full type must be constrained",
12073 Full_Indic);
12075 elsif Full_Constr and then not Priv_Constr then
12076 Error_Msg_N
12077 ("parent subtype of full type must be unconstrained",
12078 Full_Indic);
12079 end if;
12080 end;
12082 -- Check the rules of 7.3(12): if a partial view has neither known
12083 -- or unknown discriminants, then the full type declaration shall
12084 -- define a definite subtype.
12086 elsif not Has_Unknown_Discriminants (Priv_T)
12087 and then not Has_Discriminants (Priv_T)
12088 and then not Is_Constrained (Full_T)
12089 then
12090 Error_Msg_N
12091 ("full view must define a constrained type if partial view"
12092 & " has no discriminants", Full_T);
12093 end if;
12095 -- ??????? Do we implement the following properly ?????
12096 -- If the ancestor subtype of a private extension has constrained
12097 -- discriminants, then the parent subtype of the full view shall
12098 -- impose a statically matching constraint on those discriminants
12099 -- [7.3(13)].
12101 else
12102 -- For untagged types, verify that a type without discriminants
12103 -- is not completed with an unconstrained type.
12105 if not Is_Indefinite_Subtype (Priv_T)
12106 and then Is_Indefinite_Subtype (Full_T)
12107 then
12108 Error_Msg_N ("full view of type must be definite subtype", Full_T);
12109 end if;
12110 end if;
12112 -- Create a full declaration for all its subtypes recorded in
12113 -- Private_Dependents and swap them similarly to the base type. These
12114 -- are subtypes that have been define before the full declaration of
12115 -- the private type. We also swap the entry in Private_Dependents list
12116 -- so we can properly restore the private view on exit from the scope.
12118 declare
12119 Priv_Elmt : Elmt_Id;
12120 Priv : Entity_Id;
12121 Full : Entity_Id;
12123 begin
12124 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
12125 while Present (Priv_Elmt) loop
12126 Priv := Node (Priv_Elmt);
12128 if Ekind (Priv) = E_Private_Subtype
12129 or else Ekind (Priv) = E_Limited_Private_Subtype
12130 or else Ekind (Priv) = E_Record_Subtype_With_Private
12131 then
12132 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
12133 Set_Is_Itype (Full);
12134 Set_Parent (Full, Parent (Priv));
12135 Set_Associated_Node_For_Itype (Full, N);
12137 -- Now we need to complete the private subtype, but since the
12138 -- base type has already been swapped, we must also swap the
12139 -- subtypes (and thus, reverse the arguments in the call to
12140 -- Complete_Private_Subtype).
12142 Copy_And_Swap (Priv, Full);
12143 Complete_Private_Subtype (Full, Priv, Full_T, N);
12144 Replace_Elmt (Priv_Elmt, Full);
12145 end if;
12147 Next_Elmt (Priv_Elmt);
12148 end loop;
12149 end;
12151 -- If the private view was tagged, copy the new Primitive
12152 -- operations from the private view to the full view.
12154 if Is_Tagged_Type (Full_T) then
12155 declare
12156 Priv_List : Elist_Id;
12157 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
12158 P1, P2 : Elmt_Id;
12159 Prim : Entity_Id;
12160 D_Type : Entity_Id;
12162 begin
12163 if Is_Tagged_Type (Priv_T) then
12164 Priv_List := Primitive_Operations (Priv_T);
12166 P1 := First_Elmt (Priv_List);
12167 while Present (P1) loop
12168 Prim := Node (P1);
12170 -- Transfer explicit primitives, not those inherited from
12171 -- parent of partial view, which will be re-inherited on
12172 -- the full view.
12174 if Comes_From_Source (Prim) then
12175 P2 := First_Elmt (Full_List);
12176 while Present (P2) and then Node (P2) /= Prim loop
12177 Next_Elmt (P2);
12178 end loop;
12180 -- If not found, that is a new one
12182 if No (P2) then
12183 Append_Elmt (Prim, Full_List);
12184 end if;
12185 end if;
12187 Next_Elmt (P1);
12188 end loop;
12190 else
12191 -- In this case the partial view is untagged, so here we
12192 -- locate all of the earlier primitives that need to be
12193 -- treated as dispatching (those that appear between the two
12194 -- views). Note that these additional operations must all be
12195 -- new operations (any earlier operations that override
12196 -- inherited operations of the full view will already have
12197 -- been inserted in the primitives list and marked as
12198 -- dispatching by Check_Operation_From_Private_View. Note that
12199 -- implicit "/=" operators are excluded from being added to
12200 -- the primitives list since they shouldn't be treated as
12201 -- dispatching (tagged "/=" is handled specially).
12203 Prim := Next_Entity (Full_T);
12204 while Present (Prim) and then Prim /= Priv_T loop
12205 if Ekind (Prim) = E_Procedure
12206 or else
12207 Ekind (Prim) = E_Function
12208 then
12210 D_Type := Find_Dispatching_Type (Prim);
12212 if D_Type = Full_T
12213 and then (Chars (Prim) /= Name_Op_Ne
12214 or else Comes_From_Source (Prim))
12215 then
12216 Check_Controlling_Formals (Full_T, Prim);
12218 if not Is_Dispatching_Operation (Prim) then
12219 Append_Elmt (Prim, Full_List);
12220 Set_Is_Dispatching_Operation (Prim, True);
12221 Set_DT_Position (Prim, No_Uint);
12222 end if;
12224 elsif Is_Dispatching_Operation (Prim)
12225 and then D_Type /= Full_T
12226 then
12228 -- Verify that it is not otherwise controlled by
12229 -- a formal or a return value ot type T.
12231 Check_Controlling_Formals (D_Type, Prim);
12232 end if;
12233 end if;
12235 Next_Entity (Prim);
12236 end loop;
12237 end if;
12239 -- For the tagged case, the two views can share the same
12240 -- Primitive Operation list and the same class wide type.
12241 -- Update attributes of the class-wide type which depend on
12242 -- the full declaration.
12244 if Is_Tagged_Type (Priv_T) then
12245 Set_Primitive_Operations (Priv_T, Full_List);
12246 Set_Class_Wide_Type
12247 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
12249 -- Any other attributes should be propagated to C_W ???
12251 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
12253 end if;
12254 end;
12255 end if;
12256 end Process_Full_View;
12258 -----------------------------------
12259 -- Process_Incomplete_Dependents --
12260 -----------------------------------
12262 procedure Process_Incomplete_Dependents
12263 (N : Node_Id;
12264 Full_T : Entity_Id;
12265 Inc_T : Entity_Id)
12267 Inc_Elmt : Elmt_Id;
12268 Priv_Dep : Entity_Id;
12269 New_Subt : Entity_Id;
12271 Disc_Constraint : Elist_Id;
12273 begin
12274 if No (Private_Dependents (Inc_T)) then
12275 return;
12277 else
12278 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
12280 -- Itypes that may be generated by the completion of an incomplete
12281 -- subtype are not used by the back-end and not attached to the tree.
12282 -- They are created only for constraint-checking purposes.
12283 end if;
12285 while Present (Inc_Elmt) loop
12286 Priv_Dep := Node (Inc_Elmt);
12288 if Ekind (Priv_Dep) = E_Subprogram_Type then
12290 -- An Access_To_Subprogram type may have a return type or a
12291 -- parameter type that is incomplete. Replace with the full view.
12293 if Etype (Priv_Dep) = Inc_T then
12294 Set_Etype (Priv_Dep, Full_T);
12295 end if;
12297 declare
12298 Formal : Entity_Id;
12300 begin
12301 Formal := First_Formal (Priv_Dep);
12303 while Present (Formal) loop
12305 if Etype (Formal) = Inc_T then
12306 Set_Etype (Formal, Full_T);
12307 end if;
12309 Next_Formal (Formal);
12310 end loop;
12311 end;
12313 elsif Is_Overloadable (Priv_Dep) then
12315 if Is_Tagged_Type (Full_T) then
12317 -- Subprogram has an access parameter whose designated type
12318 -- was incomplete. Reexamine declaration now, because it may
12319 -- be a primitive operation of the full type.
12321 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
12322 Set_Is_Dispatching_Operation (Priv_Dep);
12323 Check_Controlling_Formals (Full_T, Priv_Dep);
12324 end if;
12326 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
12328 -- Can happen during processing of a body before the completion
12329 -- of a TA type. Ignore, because spec is also on dependent list.
12331 return;
12333 -- Dependent is a subtype
12335 else
12336 -- We build a new subtype indication using the full view of the
12337 -- incomplete parent. The discriminant constraints have been
12338 -- elaborated already at the point of the subtype declaration.
12340 New_Subt := Create_Itype (E_Void, N);
12342 if Has_Discriminants (Full_T) then
12343 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
12344 else
12345 Disc_Constraint := No_Elist;
12346 end if;
12348 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
12349 Set_Full_View (Priv_Dep, New_Subt);
12350 end if;
12352 Next_Elmt (Inc_Elmt);
12353 end loop;
12354 end Process_Incomplete_Dependents;
12356 --------------------------------
12357 -- Process_Range_Expr_In_Decl --
12358 --------------------------------
12360 procedure Process_Range_Expr_In_Decl
12361 (R : Node_Id;
12362 T : Entity_Id;
12363 Check_List : List_Id := Empty_List;
12364 R_Check_Off : Boolean := False)
12366 Lo, Hi : Node_Id;
12367 R_Checks : Check_Result;
12368 Type_Decl : Node_Id;
12369 Def_Id : Entity_Id;
12371 begin
12372 Analyze_And_Resolve (R, Base_Type (T));
12374 if Nkind (R) = N_Range then
12375 Lo := Low_Bound (R);
12376 Hi := High_Bound (R);
12378 -- If there were errors in the declaration, try and patch up some
12379 -- common mistakes in the bounds. The cases handled are literals
12380 -- which are Integer where the expected type is Real and vice versa.
12381 -- These corrections allow the compilation process to proceed further
12382 -- along since some basic assumptions of the format of the bounds
12383 -- are guaranteed.
12385 if Etype (R) = Any_Type then
12387 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
12388 Rewrite (Lo,
12389 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
12391 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
12392 Rewrite (Hi,
12393 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
12395 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
12396 Rewrite (Lo,
12397 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
12399 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
12400 Rewrite (Hi,
12401 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
12402 end if;
12404 Set_Etype (Lo, T);
12405 Set_Etype (Hi, T);
12406 end if;
12408 -- If the bounds of the range have been mistakenly given as string
12409 -- literals (perhaps in place of character literals), then an error
12410 -- has already been reported, but we rewrite the string literal as a
12411 -- bound of the range's type to avoid blowups in later processing
12412 -- that looks at static values.
12414 if Nkind (Lo) = N_String_Literal then
12415 Rewrite (Lo,
12416 Make_Attribute_Reference (Sloc (Lo),
12417 Attribute_Name => Name_First,
12418 Prefix => New_Reference_To (T, Sloc (Lo))));
12419 Analyze_And_Resolve (Lo);
12420 end if;
12422 if Nkind (Hi) = N_String_Literal then
12423 Rewrite (Hi,
12424 Make_Attribute_Reference (Sloc (Hi),
12425 Attribute_Name => Name_First,
12426 Prefix => New_Reference_To (T, Sloc (Hi))));
12427 Analyze_And_Resolve (Hi);
12428 end if;
12430 -- If bounds aren't scalar at this point then exit, avoiding
12431 -- problems with further processing of the range in this procedure.
12433 if not Is_Scalar_Type (Etype (Lo)) then
12434 return;
12435 end if;
12437 -- Resolve (actually Sem_Eval) has checked that the bounds are in
12438 -- then range of the base type. Here we check whether the bounds
12439 -- are in the range of the subtype itself. Note that if the bounds
12440 -- represent the null range the Constraint_Error exception should
12441 -- not be raised.
12443 -- ??? The following code should be cleaned up as follows
12445 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
12446 -- is done in the call to Range_Check (R, T); below
12448 -- 2. The use of R_Check_Off should be investigated and possibly
12449 -- removed, this would clean up things a bit.
12451 if Is_Null_Range (Lo, Hi) then
12452 null;
12454 else
12455 -- Capture values of bounds and generate temporaries for them
12456 -- if needed, before applying checks, since checks may cause
12457 -- duplication of the expression without forcing evaluation.
12459 if Expander_Active then
12460 Force_Evaluation (Lo);
12461 Force_Evaluation (Hi);
12462 end if;
12464 -- We use a flag here instead of suppressing checks on the
12465 -- type because the type we check against isn't necessarily
12466 -- the place where we put the check.
12468 if not R_Check_Off then
12469 R_Checks := Range_Check (R, T);
12470 Type_Decl := Parent (R);
12472 -- Look up tree to find an appropriate insertion point.
12473 -- This seems really junk code, and very brittle, couldn't
12474 -- we just use an insert actions call of some kind ???
12476 while Present (Type_Decl) and then not
12477 (Nkind (Type_Decl) = N_Full_Type_Declaration
12478 or else
12479 Nkind (Type_Decl) = N_Subtype_Declaration
12480 or else
12481 Nkind (Type_Decl) = N_Loop_Statement
12482 or else
12483 Nkind (Type_Decl) = N_Task_Type_Declaration
12484 or else
12485 Nkind (Type_Decl) = N_Single_Task_Declaration
12486 or else
12487 Nkind (Type_Decl) = N_Protected_Type_Declaration
12488 or else
12489 Nkind (Type_Decl) = N_Single_Protected_Declaration)
12490 loop
12491 Type_Decl := Parent (Type_Decl);
12492 end loop;
12494 -- Why would Type_Decl not be present??? Without this test,
12495 -- short regression tests fail.
12497 if Present (Type_Decl) then
12499 -- Case of loop statement (more comments ???)
12501 if Nkind (Type_Decl) = N_Loop_Statement then
12502 declare
12503 Indic : Node_Id := Parent (R);
12505 begin
12506 while Present (Indic) and then not
12507 (Nkind (Indic) = N_Subtype_Indication)
12508 loop
12509 Indic := Parent (Indic);
12510 end loop;
12512 if Present (Indic) then
12513 Def_Id := Etype (Subtype_Mark (Indic));
12515 Insert_Range_Checks
12516 (R_Checks,
12517 Type_Decl,
12518 Def_Id,
12519 Sloc (Type_Decl),
12521 Do_Before => True);
12522 end if;
12523 end;
12525 -- All other cases (more comments ???)
12527 else
12528 Def_Id := Defining_Identifier (Type_Decl);
12530 if (Ekind (Def_Id) = E_Record_Type
12531 and then Depends_On_Discriminant (R))
12532 or else
12533 (Ekind (Def_Id) = E_Protected_Type
12534 and then Has_Discriminants (Def_Id))
12535 then
12536 Append_Range_Checks
12537 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
12539 else
12540 Insert_Range_Checks
12541 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
12543 end if;
12544 end if;
12545 end if;
12546 end if;
12547 end if;
12549 elsif Expander_Active then
12550 Get_Index_Bounds (R, Lo, Hi);
12551 Force_Evaluation (Lo);
12552 Force_Evaluation (Hi);
12553 end if;
12554 end Process_Range_Expr_In_Decl;
12556 --------------------------------------
12557 -- Process_Real_Range_Specification --
12558 --------------------------------------
12560 procedure Process_Real_Range_Specification (Def : Node_Id) is
12561 Spec : constant Node_Id := Real_Range_Specification (Def);
12562 Lo : Node_Id;
12563 Hi : Node_Id;
12564 Err : Boolean := False;
12566 procedure Analyze_Bound (N : Node_Id);
12567 -- Analyze and check one bound
12569 -------------------
12570 -- Analyze_Bound --
12571 -------------------
12573 procedure Analyze_Bound (N : Node_Id) is
12574 begin
12575 Analyze_And_Resolve (N, Any_Real);
12577 if not Is_OK_Static_Expression (N) then
12578 Flag_Non_Static_Expr
12579 ("bound in real type definition is not static!", N);
12580 Err := True;
12581 end if;
12582 end Analyze_Bound;
12584 -- Start of processing for Process_Real_Range_Specification
12586 begin
12587 if Present (Spec) then
12588 Lo := Low_Bound (Spec);
12589 Hi := High_Bound (Spec);
12590 Analyze_Bound (Lo);
12591 Analyze_Bound (Hi);
12593 -- If error, clear away junk range specification
12595 if Err then
12596 Set_Real_Range_Specification (Def, Empty);
12597 end if;
12598 end if;
12599 end Process_Real_Range_Specification;
12601 ---------------------
12602 -- Process_Subtype --
12603 ---------------------
12605 function Process_Subtype
12606 (S : Node_Id;
12607 Related_Nod : Node_Id;
12608 Related_Id : Entity_Id := Empty;
12609 Suffix : Character := ' ') return Entity_Id
12611 P : Node_Id;
12612 Def_Id : Entity_Id;
12613 Full_View_Id : Entity_Id;
12614 Subtype_Mark_Id : Entity_Id;
12616 procedure Check_Incomplete (T : Entity_Id);
12617 -- Called to verify that an incomplete type is not used prematurely
12619 ----------------------
12620 -- Check_Incomplete --
12621 ----------------------
12623 procedure Check_Incomplete (T : Entity_Id) is
12624 begin
12625 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
12626 Error_Msg_N ("invalid use of type before its full declaration", T);
12627 end if;
12628 end Check_Incomplete;
12630 -- Start of processing for Process_Subtype
12632 begin
12633 -- Case of no constraints present
12635 if Nkind (S) /= N_Subtype_Indication then
12637 Find_Type (S);
12638 Check_Incomplete (S);
12640 -- Ada 2005 (AI-231): Static check
12642 if Ada_Version >= Ada_05
12643 and then Present (Parent (S))
12644 and then Null_Exclusion_Present (Parent (S))
12645 and then Nkind (Parent (S)) /= N_Access_To_Object_Definition
12646 and then not Is_Access_Type (Entity (S))
12647 then
12648 Error_Msg_N
12649 ("(Ada 2005) null-exclusion part requires an access type", S);
12650 end if;
12651 return Entity (S);
12653 -- Case of constraint present, so that we have an N_Subtype_Indication
12654 -- node (this node is created only if constraints are present).
12656 else
12658 Find_Type (Subtype_Mark (S));
12660 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
12661 and then not
12662 (Nkind (Parent (S)) = N_Subtype_Declaration
12663 and then
12664 Is_Itype (Defining_Identifier (Parent (S))))
12665 then
12666 Check_Incomplete (Subtype_Mark (S));
12667 end if;
12669 P := Parent (S);
12670 Subtype_Mark_Id := Entity (Subtype_Mark (S));
12672 -- Explicit subtype declaration case
12674 if Nkind (P) = N_Subtype_Declaration then
12675 Def_Id := Defining_Identifier (P);
12677 -- Explicit derived type definition case
12679 elsif Nkind (P) = N_Derived_Type_Definition then
12680 Def_Id := Defining_Identifier (Parent (P));
12682 -- Implicit case, the Def_Id must be created as an implicit type.
12683 -- The one exception arises in the case of concurrent types, array
12684 -- and access types, where other subsidiary implicit types may be
12685 -- created and must appear before the main implicit type. In these
12686 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
12687 -- has not yet been called to create Def_Id.
12689 else
12690 if Is_Array_Type (Subtype_Mark_Id)
12691 or else Is_Concurrent_Type (Subtype_Mark_Id)
12692 or else Is_Access_Type (Subtype_Mark_Id)
12693 then
12694 Def_Id := Empty;
12696 -- For the other cases, we create a new unattached Itype,
12697 -- and set the indication to ensure it gets attached later.
12699 else
12700 Def_Id :=
12701 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12702 end if;
12703 end if;
12705 -- If the kind of constraint is invalid for this kind of type,
12706 -- then give an error, and then pretend no constraint was given.
12708 if not Is_Valid_Constraint_Kind
12709 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
12710 then
12711 Error_Msg_N
12712 ("incorrect constraint for this kind of type", Constraint (S));
12714 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
12716 -- Set Ekind of orphan itype, to prevent cascaded errors.
12718 if Present (Def_Id) then
12719 Set_Ekind (Def_Id, Ekind (Any_Type));
12720 end if;
12722 -- Make recursive call, having got rid of the bogus constraint
12724 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
12725 end if;
12727 -- Remaining processing depends on type
12729 case Ekind (Subtype_Mark_Id) is
12730 when Access_Kind =>
12731 Constrain_Access (Def_Id, S, Related_Nod);
12733 when Array_Kind =>
12734 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
12736 when Decimal_Fixed_Point_Kind =>
12737 Constrain_Decimal (Def_Id, S);
12739 when Enumeration_Kind =>
12740 Constrain_Enumeration (Def_Id, S);
12742 when Ordinary_Fixed_Point_Kind =>
12743 Constrain_Ordinary_Fixed (Def_Id, S);
12745 when Float_Kind =>
12746 Constrain_Float (Def_Id, S);
12748 when Integer_Kind =>
12749 Constrain_Integer (Def_Id, S);
12751 when E_Record_Type |
12752 E_Record_Subtype |
12753 Class_Wide_Kind |
12754 E_Incomplete_Type =>
12755 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
12757 when Private_Kind =>
12758 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
12759 Set_Private_Dependents (Def_Id, New_Elmt_List);
12761 -- In case of an invalid constraint prevent further processing
12762 -- since the type constructed is missing expected fields.
12764 if Etype (Def_Id) = Any_Type then
12765 return Def_Id;
12766 end if;
12768 -- If the full view is that of a task with discriminants,
12769 -- we must constrain both the concurrent type and its
12770 -- corresponding record type. Otherwise we will just propagate
12771 -- the constraint to the full view, if available.
12773 if Present (Full_View (Subtype_Mark_Id))
12774 and then Has_Discriminants (Subtype_Mark_Id)
12775 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
12776 then
12777 Full_View_Id :=
12778 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12780 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
12781 Constrain_Concurrent (Full_View_Id, S,
12782 Related_Nod, Related_Id, Suffix);
12783 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
12784 Set_Full_View (Def_Id, Full_View_Id);
12786 else
12787 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
12788 end if;
12790 when Concurrent_Kind =>
12791 Constrain_Concurrent (Def_Id, S,
12792 Related_Nod, Related_Id, Suffix);
12794 when others =>
12795 Error_Msg_N ("invalid subtype mark in subtype indication", S);
12796 end case;
12798 -- Size and Convention are always inherited from the base type
12800 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
12801 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
12803 return Def_Id;
12804 end if;
12805 end Process_Subtype;
12807 -----------------------------
12808 -- Record_Type_Declaration --
12809 -----------------------------
12811 procedure Record_Type_Declaration
12812 (T : Entity_Id;
12813 N : Node_Id;
12814 Prev : Entity_Id)
12816 Def : constant Node_Id := Type_Definition (N);
12818 Is_Tagged : Boolean;
12819 Tag_Comp : Entity_Id;
12821 begin
12822 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
12823 -- if it detected an error for declaration T. This arises in the case of
12824 -- private tagged types where the full view omits the word tagged.
12826 Is_Tagged :=
12827 Tagged_Present (Def)
12828 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
12830 -- Records constitute a scope for the component declarations within.
12831 -- The scope is created prior to the processing of these declarations.
12832 -- Discriminants are processed first, so that they are visible when
12833 -- processing the other components. The Ekind of the record type itself
12834 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
12836 -- Enter record scope
12838 New_Scope (T);
12840 -- These flags must be initialized before calling Process_Discriminants
12841 -- because this routine makes use of them.
12843 Set_Is_Tagged_Type (T, Is_Tagged);
12844 Set_Is_Limited_Record (T, Limited_Present (Def));
12846 -- Type is abstract if full declaration carries keyword, or if
12847 -- previous partial view did.
12849 Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
12851 Set_Ekind (T, E_Record_Type);
12852 Set_Etype (T, T);
12853 Init_Size_Align (T);
12855 Set_Stored_Constraint (T, No_Elist);
12857 -- If an incomplete or private type declaration was already given for
12858 -- the type, then this scope already exists, and the discriminants have
12859 -- been declared within. We must verify that the full declaration
12860 -- matches the incomplete one.
12862 Check_Or_Process_Discriminants (N, T, Prev);
12864 Set_Is_Constrained (T, not Has_Discriminants (T));
12865 Set_Has_Delayed_Freeze (T, True);
12867 -- For tagged types add a manually analyzed component corresponding
12868 -- to the component _tag, the corresponding piece of tree will be
12869 -- expanded as part of the freezing actions if it is not a CPP_Class.
12871 if Is_Tagged then
12873 -- Do not add the tag unless we are in expansion mode
12875 if Expander_Active then
12876 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
12877 Enter_Name (Tag_Comp);
12879 Set_Is_Tag (Tag_Comp);
12880 Set_Ekind (Tag_Comp, E_Component);
12881 Set_Etype (Tag_Comp, RTE (RE_Tag));
12882 Set_DT_Entry_Count (Tag_Comp, No_Uint);
12883 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
12884 Init_Component_Location (Tag_Comp);
12885 end if;
12887 Make_Class_Wide_Type (T);
12888 Set_Primitive_Operations (T, New_Elmt_List);
12889 end if;
12891 -- We must suppress range checks when processing the components
12892 -- of a record in the presence of discriminants, since we don't
12893 -- want spurious checks to be generated during their analysis, but
12894 -- must reset the Suppress_Range_Checks flags after having processed
12895 -- the record definition.
12897 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
12898 Set_Kill_Range_Checks (T, True);
12899 Record_Type_Definition (Def, Prev);
12900 Set_Kill_Range_Checks (T, False);
12901 else
12902 Record_Type_Definition (Def, Prev);
12903 end if;
12905 -- Exit from record scope
12907 End_Scope;
12908 end Record_Type_Declaration;
12910 ----------------------------
12911 -- Record_Type_Definition --
12912 ----------------------------
12914 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
12915 Component : Entity_Id;
12916 Ctrl_Components : Boolean := False;
12917 Final_Storage_Only : Boolean;
12918 T : Entity_Id;
12920 begin
12921 if Ekind (Prev_T) = E_Incomplete_Type then
12922 T := Full_View (Prev_T);
12923 else
12924 T := Prev_T;
12925 end if;
12927 Final_Storage_Only := not Is_Controlled (T);
12929 -- If the component list of a record type is defined by the reserved
12930 -- word null and there is no discriminant part, then the record type has
12931 -- no components and all records of the type are null records (RM 3.7)
12932 -- This procedure is also called to process the extension part of a
12933 -- record extension, in which case the current scope may have inherited
12934 -- components.
12936 if No (Def)
12937 or else No (Component_List (Def))
12938 or else Null_Present (Component_List (Def))
12939 then
12940 null;
12942 else
12943 Analyze_Declarations (Component_Items (Component_List (Def)));
12945 if Present (Variant_Part (Component_List (Def))) then
12946 Analyze (Variant_Part (Component_List (Def)));
12947 end if;
12948 end if;
12950 -- After completing the semantic analysis of the record definition,
12951 -- record components, both new and inherited, are accessible. Set
12952 -- their kind accordingly.
12954 Component := First_Entity (Current_Scope);
12955 while Present (Component) loop
12956 if Ekind (Component) = E_Void then
12957 Set_Ekind (Component, E_Component);
12958 Init_Component_Location (Component);
12959 end if;
12961 if Has_Task (Etype (Component)) then
12962 Set_Has_Task (T);
12963 end if;
12965 if Ekind (Component) /= E_Component then
12966 null;
12968 elsif Has_Controlled_Component (Etype (Component))
12969 or else (Chars (Component) /= Name_uParent
12970 and then Is_Controlled (Etype (Component)))
12971 then
12972 Set_Has_Controlled_Component (T, True);
12973 Final_Storage_Only := Final_Storage_Only
12974 and then Finalize_Storage_Only (Etype (Component));
12975 Ctrl_Components := True;
12976 end if;
12978 Next_Entity (Component);
12979 end loop;
12981 -- A type is Finalize_Storage_Only only if all its controlled
12982 -- components are so.
12984 if Ctrl_Components then
12985 Set_Finalize_Storage_Only (T, Final_Storage_Only);
12986 end if;
12988 -- Place reference to end record on the proper entity, which may
12989 -- be a partial view.
12991 if Present (Def) then
12992 Process_End_Label (Def, 'e', Prev_T);
12993 end if;
12994 end Record_Type_Definition;
12996 ------------------------
12997 -- Replace_Components --
12998 ------------------------
13000 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
13001 function Process (N : Node_Id) return Traverse_Result;
13003 -------------
13004 -- Process --
13005 -------------
13007 function Process (N : Node_Id) return Traverse_Result is
13008 Comp : Entity_Id;
13010 begin
13011 if Nkind (N) = N_Discriminant_Specification then
13012 Comp := First_Discriminant (Typ);
13014 while Present (Comp) loop
13015 if Chars (Comp) = Chars (Defining_Identifier (N)) then
13016 Set_Defining_Identifier (N, Comp);
13017 exit;
13018 end if;
13020 Next_Discriminant (Comp);
13021 end loop;
13023 elsif Nkind (N) = N_Component_Declaration then
13024 Comp := First_Component (Typ);
13026 while Present (Comp) loop
13027 if Chars (Comp) = Chars (Defining_Identifier (N)) then
13028 Set_Defining_Identifier (N, Comp);
13029 exit;
13030 end if;
13032 Next_Component (Comp);
13033 end loop;
13034 end if;
13036 return OK;
13037 end Process;
13039 procedure Replace is new Traverse_Proc (Process);
13041 -- Start of processing for Replace_Components
13043 begin
13044 Replace (Decl);
13045 end Replace_Components;
13047 -------------------------------
13048 -- Set_Completion_Referenced --
13049 -------------------------------
13051 procedure Set_Completion_Referenced (E : Entity_Id) is
13052 begin
13053 -- If in main unit, mark entity that is a completion as referenced,
13054 -- warnings go on the partial view when needed.
13056 if In_Extended_Main_Source_Unit (E) then
13057 Set_Referenced (E);
13058 end if;
13059 end Set_Completion_Referenced;
13061 ---------------------
13062 -- Set_Fixed_Range --
13063 ---------------------
13065 -- The range for fixed-point types is complicated by the fact that we
13066 -- do not know the exact end points at the time of the declaration. This
13067 -- is true for three reasons:
13069 -- A size clause may affect the fudging of the end-points
13070 -- A small clause may affect the values of the end-points
13071 -- We try to include the end-points if it does not affect the size
13073 -- This means that the actual end-points must be established at the point
13074 -- when the type is frozen. Meanwhile, we first narrow the range as
13075 -- permitted (so that it will fit if necessary in a small specified size),
13076 -- and then build a range subtree with these narrowed bounds.
13078 -- Set_Fixed_Range constructs the range from real literal values, and sets
13079 -- the range as the Scalar_Range of the given fixed-point type entity.
13081 -- The parent of this range is set to point to the entity so that it is
13082 -- properly hooked into the tree (unlike normal Scalar_Range entries for
13083 -- other scalar types, which are just pointers to the range in the
13084 -- original tree, this would otherwise be an orphan).
13086 -- The tree is left unanalyzed. When the type is frozen, the processing
13087 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
13088 -- analyzed, and uses this as an indication that it should complete
13089 -- work on the range (it will know the final small and size values).
13091 procedure Set_Fixed_Range
13092 (E : Entity_Id;
13093 Loc : Source_Ptr;
13094 Lo : Ureal;
13095 Hi : Ureal)
13097 S : constant Node_Id :=
13098 Make_Range (Loc,
13099 Low_Bound => Make_Real_Literal (Loc, Lo),
13100 High_Bound => Make_Real_Literal (Loc, Hi));
13102 begin
13103 Set_Scalar_Range (E, S);
13104 Set_Parent (S, E);
13105 end Set_Fixed_Range;
13107 ----------------------------------
13108 -- Set_Scalar_Range_For_Subtype --
13109 ----------------------------------
13111 procedure Set_Scalar_Range_For_Subtype
13112 (Def_Id : Entity_Id;
13113 R : Node_Id;
13114 Subt : Entity_Id)
13116 Kind : constant Entity_Kind := Ekind (Def_Id);
13118 begin
13119 Set_Scalar_Range (Def_Id, R);
13121 -- We need to link the range into the tree before resolving it so
13122 -- that types that are referenced, including importantly the subtype
13123 -- itself, are properly frozen (Freeze_Expression requires that the
13124 -- expression be properly linked into the tree). Of course if it is
13125 -- already linked in, then we do not disturb the current link.
13127 if No (Parent (R)) then
13128 Set_Parent (R, Def_Id);
13129 end if;
13131 -- Reset the kind of the subtype during analysis of the range, to
13132 -- catch possible premature use in the bounds themselves.
13134 Set_Ekind (Def_Id, E_Void);
13135 Process_Range_Expr_In_Decl (R, Subt);
13136 Set_Ekind (Def_Id, Kind);
13138 end Set_Scalar_Range_For_Subtype;
13140 --------------------------------------------------------
13141 -- Set_Stored_Constraint_From_Discriminant_Constraint --
13142 --------------------------------------------------------
13144 procedure Set_Stored_Constraint_From_Discriminant_Constraint
13145 (E : Entity_Id)
13147 begin
13148 -- Make sure set if encountered during Expand_To_Stored_Constraint
13150 Set_Stored_Constraint (E, No_Elist);
13152 -- Give it the right value
13154 if Is_Constrained (E) and then Has_Discriminants (E) then
13155 Set_Stored_Constraint (E,
13156 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
13157 end if;
13158 end Set_Stored_Constraint_From_Discriminant_Constraint;
13160 -------------------------------------
13161 -- Signed_Integer_Type_Declaration --
13162 -------------------------------------
13164 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
13165 Implicit_Base : Entity_Id;
13166 Base_Typ : Entity_Id;
13167 Lo_Val : Uint;
13168 Hi_Val : Uint;
13169 Errs : Boolean := False;
13170 Lo : Node_Id;
13171 Hi : Node_Id;
13173 function Can_Derive_From (E : Entity_Id) return Boolean;
13174 -- Determine whether given bounds allow derivation from specified type
13176 procedure Check_Bound (Expr : Node_Id);
13177 -- Check bound to make sure it is integral and static. If not, post
13178 -- appropriate error message and set Errs flag
13180 ---------------------
13181 -- Can_Derive_From --
13182 ---------------------
13184 -- Note we check both bounds against both end values, to deal with
13185 -- strange types like ones with a range of 0 .. -12341234.
13187 function Can_Derive_From (E : Entity_Id) return Boolean is
13188 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
13189 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
13190 begin
13191 return Lo <= Lo_Val and then Lo_Val <= Hi
13192 and then
13193 Lo <= Hi_Val and then Hi_Val <= Hi;
13194 end Can_Derive_From;
13196 -----------------
13197 -- Check_Bound --
13198 -----------------
13200 procedure Check_Bound (Expr : Node_Id) is
13201 begin
13202 -- If a range constraint is used as an integer type definition, each
13203 -- bound of the range must be defined by a static expression of some
13204 -- integer type, but the two bounds need not have the same integer
13205 -- type (Negative bounds are allowed.) (RM 3.5.4)
13207 if not Is_Integer_Type (Etype (Expr)) then
13208 Error_Msg_N
13209 ("integer type definition bounds must be of integer type", Expr);
13210 Errs := True;
13212 elsif not Is_OK_Static_Expression (Expr) then
13213 Flag_Non_Static_Expr
13214 ("non-static expression used for integer type bound!", Expr);
13215 Errs := True;
13217 -- The bounds are folded into literals, and we set their type to be
13218 -- universal, to avoid typing difficulties: we cannot set the type
13219 -- of the literal to the new type, because this would be a forward
13220 -- reference for the back end, and if the original type is user-
13221 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
13223 else
13224 if Is_Entity_Name (Expr) then
13225 Fold_Uint (Expr, Expr_Value (Expr), True);
13226 end if;
13228 Set_Etype (Expr, Universal_Integer);
13229 end if;
13230 end Check_Bound;
13232 -- Start of processing for Signed_Integer_Type_Declaration
13234 begin
13235 -- Create an anonymous base type
13237 Implicit_Base :=
13238 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
13240 -- Analyze and check the bounds, they can be of any integer type
13242 Lo := Low_Bound (Def);
13243 Hi := High_Bound (Def);
13245 -- Arbitrarily use Integer as the type if either bound had an error
13247 if Hi = Error or else Lo = Error then
13248 Base_Typ := Any_Integer;
13249 Set_Error_Posted (T, True);
13251 -- Here both bounds are OK expressions
13253 else
13254 Analyze_And_Resolve (Lo, Any_Integer);
13255 Analyze_And_Resolve (Hi, Any_Integer);
13257 Check_Bound (Lo);
13258 Check_Bound (Hi);
13260 if Errs then
13261 Hi := Type_High_Bound (Standard_Long_Long_Integer);
13262 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
13263 end if;
13265 -- Find type to derive from
13267 Lo_Val := Expr_Value (Lo);
13268 Hi_Val := Expr_Value (Hi);
13270 if Can_Derive_From (Standard_Short_Short_Integer) then
13271 Base_Typ := Base_Type (Standard_Short_Short_Integer);
13273 elsif Can_Derive_From (Standard_Short_Integer) then
13274 Base_Typ := Base_Type (Standard_Short_Integer);
13276 elsif Can_Derive_From (Standard_Integer) then
13277 Base_Typ := Base_Type (Standard_Integer);
13279 elsif Can_Derive_From (Standard_Long_Integer) then
13280 Base_Typ := Base_Type (Standard_Long_Integer);
13282 elsif Can_Derive_From (Standard_Long_Long_Integer) then
13283 Base_Typ := Base_Type (Standard_Long_Long_Integer);
13285 else
13286 Base_Typ := Base_Type (Standard_Long_Long_Integer);
13287 Error_Msg_N ("integer type definition bounds out of range", Def);
13288 Hi := Type_High_Bound (Standard_Long_Long_Integer);
13289 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
13290 end if;
13291 end if;
13293 -- Complete both implicit base and declared first subtype entities
13295 Set_Etype (Implicit_Base, Base_Typ);
13296 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
13297 Set_Size_Info (Implicit_Base, (Base_Typ));
13298 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
13299 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
13301 Set_Ekind (T, E_Signed_Integer_Subtype);
13302 Set_Etype (T, Implicit_Base);
13304 Set_Size_Info (T, (Implicit_Base));
13305 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13306 Set_Scalar_Range (T, Def);
13307 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
13308 Set_Is_Constrained (T);
13309 end Signed_Integer_Type_Declaration;
13311 end Sem_Ch3;