Fix bootstrap/PR63632
[official-gcc.git] / gcc / ira-costs.c
blob8b6c9f9047d999306670b068d34089ddcb15439f
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
108 /* Execution frequency of the current insn. */
109 static int frequency;
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost class. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
135 /* Helper for cost_classes hashing. */
137 struct cost_classes_hasher
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
157 return (hv1->num == hv2->num
158 && memcmp (hv1->classes, hv2->classes,
159 sizeof (enum reg_class) * hv1->num) == 0);
162 /* Delete cost classes info V from the hash table. */
163 inline void
164 cost_classes_hasher::remove (value_type *v)
166 ira_free (v);
169 /* Hash table of unique cost classes. */
170 static hash_table<cost_classes_hasher> *cost_classes_htab;
172 /* Map allocno class -> cost classes for pseudo of given allocno
173 class. */
174 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
176 /* Map mode -> cost classes for pseudo of give mode. */
177 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
179 /* Initialize info about the cost classes for each pseudo. */
180 static void
181 initiate_regno_cost_classes (void)
183 int size = sizeof (cost_classes_t) * max_reg_num ();
185 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
186 memset (regno_cost_classes, 0, size);
187 memset (cost_classes_aclass_cache, 0,
188 sizeof (cost_classes_t) * N_REG_CLASSES);
189 memset (cost_classes_mode_cache, 0,
190 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
191 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
194 /* Create new cost classes from cost classes FROM and set up members
195 index and hard_regno_index. Return the new classes. The function
196 implements some common code of two functions
197 setup_regno_cost_classes_by_aclass and
198 setup_regno_cost_classes_by_mode. */
199 static cost_classes_t
200 setup_cost_classes (cost_classes_t from)
202 cost_classes_t classes_ptr;
203 enum reg_class cl;
204 int i, j, hard_regno;
206 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
207 classes_ptr->num = from->num;
208 for (i = 0; i < N_REG_CLASSES; i++)
209 classes_ptr->index[i] = -1;
210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
211 classes_ptr->hard_regno_index[i] = -1;
212 for (i = 0; i < from->num; i++)
214 cl = classes_ptr->classes[i] = from->classes[i];
215 classes_ptr->index[cl] = i;
216 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
218 hard_regno = ira_class_hard_regs[cl][j];
219 if (classes_ptr->hard_regno_index[hard_regno] < 0)
220 classes_ptr->hard_regno_index[hard_regno] = i;
223 return classes_ptr;
226 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
227 This function is used when we know an initial approximation of
228 allocno class of the pseudo already, e.g. on the second iteration
229 of class cost calculation or after class cost calculation in
230 register-pressure sensitive insn scheduling or register-pressure
231 sensitive loop-invariant motion. */
232 static void
233 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
235 static struct cost_classes classes;
236 cost_classes_t classes_ptr;
237 enum reg_class cl;
238 int i;
239 cost_classes **slot;
240 HARD_REG_SET temp, temp2;
241 bool exclude_p;
243 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
245 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
246 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
247 /* We exclude classes from consideration which are subsets of
248 ACLASS only if ACLASS is an uniform class. */
249 exclude_p = ira_uniform_class_p[aclass];
250 classes.num = 0;
251 for (i = 0; i < ira_important_classes_num; i++)
253 cl = ira_important_classes[i];
254 if (exclude_p)
256 /* Exclude non-uniform classes which are subsets of
257 ACLASS. */
258 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
259 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
260 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
261 continue;
263 classes.classes[classes.num++] = cl;
265 slot = cost_classes_htab->find_slot (&classes, INSERT);
266 if (*slot == NULL)
268 classes_ptr = setup_cost_classes (&classes);
269 *slot = classes_ptr;
271 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
273 regno_cost_classes[regno] = classes_ptr;
276 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
277 decrease number of cost classes for the pseudo, if hard registers
278 of some important classes can not hold a value of MODE. So the
279 pseudo can not get hard register of some important classes and cost
280 calculation for such important classes is only wasting CPU
281 time. */
282 static void
283 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
285 static struct cost_classes classes;
286 cost_classes_t classes_ptr;
287 enum reg_class cl;
288 int i;
289 cost_classes **slot;
290 HARD_REG_SET temp;
292 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
294 classes.num = 0;
295 for (i = 0; i < ira_important_classes_num; i++)
297 cl = ira_important_classes[i];
298 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
299 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
300 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
301 continue;
302 classes.classes[classes.num++] = cl;
304 slot = cost_classes_htab->find_slot (&classes, INSERT);
305 if (*slot == NULL)
307 classes_ptr = setup_cost_classes (&classes);
308 *slot = classes_ptr;
310 else
311 classes_ptr = (cost_classes_t) *slot;
312 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
314 regno_cost_classes[regno] = classes_ptr;
317 /* Finalize info about the cost classes for each pseudo. */
318 static void
319 finish_regno_cost_classes (void)
321 ira_free (regno_cost_classes);
322 delete cost_classes_htab;
323 cost_classes_htab = NULL;
328 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
329 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
330 be a pseudo register. */
331 static int
332 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
333 secondary_reload_info *prev_sri)
335 secondary_reload_info sri;
336 reg_class_t secondary_class = NO_REGS;
338 /* If X is a SCRATCH, there is actually nothing to move since we are
339 assuming optimal allocation. */
340 if (GET_CODE (x) == SCRATCH)
341 return 0;
343 /* Get the class we will actually use for a reload. */
344 rclass = targetm.preferred_reload_class (x, rclass);
346 /* If we need a secondary reload for an intermediate, the cost is
347 that to load the input into the intermediate register, then to
348 copy it. */
349 sri.prev_sri = prev_sri;
350 sri.extra_cost = 0;
351 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
353 if (secondary_class != NO_REGS)
355 ira_init_register_move_cost_if_necessary (mode);
356 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
357 + sri.extra_cost
358 + copy_cost (x, mode, secondary_class, to_p, &sri));
361 /* For memory, use the memory move cost, for (hard) registers, use
362 the cost to move between the register classes, and use 2 for
363 everything else (constants). */
364 if (MEM_P (x) || rclass == NO_REGS)
365 return sri.extra_cost
366 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
367 else if (REG_P (x))
369 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
371 ira_init_register_move_cost_if_necessary (mode);
372 return (sri.extra_cost
373 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
375 else
376 /* If this is a constant, we may eventually want to call rtx_cost
377 here. */
378 return sri.extra_cost + COSTS_N_INSNS (1);
383 /* Record the cost of using memory or hard registers of various
384 classes for the operands in INSN.
386 N_ALTS is the number of alternatives.
387 N_OPS is the number of operands.
388 OPS is an array of the operands.
389 MODES are the modes of the operands, in case any are VOIDmode.
390 CONSTRAINTS are the constraints to use for the operands. This array
391 is modified by this procedure.
393 This procedure works alternative by alternative. For each
394 alternative we assume that we will be able to allocate all allocnos
395 to their ideal register class and calculate the cost of using that
396 alternative. Then we compute, for each operand that is a
397 pseudo-register, the cost of having the allocno allocated to each
398 register class and using it in that alternative. To this cost is
399 added the cost of the alternative.
401 The cost of each class for this insn is its lowest cost among all
402 the alternatives. */
403 static void
404 record_reg_classes (int n_alts, int n_ops, rtx *ops,
405 enum machine_mode *modes, const char **constraints,
406 rtx_insn *insn, enum reg_class *pref)
408 int alt;
409 int i, j, k;
410 int insn_allows_mem[MAX_RECOG_OPERANDS];
411 move_table *move_in_cost, *move_out_cost;
412 short (*mem_cost)[2];
414 for (i = 0; i < n_ops; i++)
415 insn_allows_mem[i] = 0;
417 /* Process each alternative, each time minimizing an operand's cost
418 with the cost for each operand in that alternative. */
419 alternative_mask preferred = get_preferred_alternatives (insn);
420 for (alt = 0; alt < n_alts; alt++)
422 enum reg_class classes[MAX_RECOG_OPERANDS];
423 int allows_mem[MAX_RECOG_OPERANDS];
424 enum reg_class rclass;
425 int alt_fail = 0;
426 int alt_cost = 0, op_cost_add;
428 if (!TEST_BIT (preferred, alt))
430 for (i = 0; i < recog_data.n_operands; i++)
431 constraints[i] = skip_alternative (constraints[i]);
433 continue;
436 for (i = 0; i < n_ops; i++)
438 unsigned char c;
439 const char *p = constraints[i];
440 rtx op = ops[i];
441 enum machine_mode mode = modes[i];
442 int allows_addr = 0;
443 int win = 0;
445 /* Initially show we know nothing about the register class. */
446 classes[i] = NO_REGS;
447 allows_mem[i] = 0;
449 /* If this operand has no constraints at all, we can
450 conclude nothing about it since anything is valid. */
451 if (*p == 0)
453 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
454 memset (this_op_costs[i], 0, struct_costs_size);
455 continue;
458 /* If this alternative is only relevant when this operand
459 matches a previous operand, we do different things
460 depending on whether this operand is a allocno-reg or not.
461 We must process any modifiers for the operand before we
462 can make this test. */
463 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
464 p++;
466 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
468 /* Copy class and whether memory is allowed from the
469 matching alternative. Then perform any needed cost
470 computations and/or adjustments. */
471 j = p[0] - '0';
472 classes[i] = classes[j];
473 allows_mem[i] = allows_mem[j];
474 if (allows_mem[i])
475 insn_allows_mem[i] = 1;
477 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
479 /* If this matches the other operand, we have no
480 added cost and we win. */
481 if (rtx_equal_p (ops[j], op))
482 win = 1;
483 /* If we can put the other operand into a register,
484 add to the cost of this alternative the cost to
485 copy this operand to the register used for the
486 other operand. */
487 else if (classes[j] != NO_REGS)
489 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
490 win = 1;
493 else if (! REG_P (ops[j])
494 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
496 /* This op is an allocno but the one it matches is
497 not. */
499 /* If we can't put the other operand into a
500 register, this alternative can't be used. */
502 if (classes[j] == NO_REGS)
503 alt_fail = 1;
504 /* Otherwise, add to the cost of this alternative
505 the cost to copy the other operand to the hard
506 register used for this operand. */
507 else
508 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
510 else
512 /* The costs of this operand are not the same as the
513 other operand since move costs are not symmetric.
514 Moreover, if we cannot tie them, this alternative
515 needs to do a copy, which is one insn. */
516 struct costs *pp = this_op_costs[i];
517 int *pp_costs = pp->cost;
518 cost_classes_t cost_classes_ptr
519 = regno_cost_classes[REGNO (op)];
520 enum reg_class *cost_classes = cost_classes_ptr->classes;
521 bool in_p = recog_data.operand_type[i] != OP_OUT;
522 bool out_p = recog_data.operand_type[i] != OP_IN;
523 enum reg_class op_class = classes[i];
525 ira_init_register_move_cost_if_necessary (mode);
526 if (! in_p)
528 ira_assert (out_p);
529 if (op_class == NO_REGS)
531 mem_cost = ira_memory_move_cost[mode];
532 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
534 rclass = cost_classes[k];
535 pp_costs[k] = mem_cost[rclass][0] * frequency;
538 else
540 move_out_cost = ira_may_move_out_cost[mode];
541 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
543 rclass = cost_classes[k];
544 pp_costs[k]
545 = move_out_cost[op_class][rclass] * frequency;
549 else if (! out_p)
551 ira_assert (in_p);
552 if (op_class == NO_REGS)
554 mem_cost = ira_memory_move_cost[mode];
555 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
557 rclass = cost_classes[k];
558 pp_costs[k] = mem_cost[rclass][1] * frequency;
561 else
563 move_in_cost = ira_may_move_in_cost[mode];
564 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
566 rclass = cost_classes[k];
567 pp_costs[k]
568 = move_in_cost[rclass][op_class] * frequency;
572 else
574 if (op_class == NO_REGS)
576 mem_cost = ira_memory_move_cost[mode];
577 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
579 rclass = cost_classes[k];
580 pp_costs[k] = ((mem_cost[rclass][0]
581 + mem_cost[rclass][1])
582 * frequency);
585 else
587 move_in_cost = ira_may_move_in_cost[mode];
588 move_out_cost = ira_may_move_out_cost[mode];
589 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
591 rclass = cost_classes[k];
592 pp_costs[k] = ((move_in_cost[rclass][op_class]
593 + move_out_cost[op_class][rclass])
594 * frequency);
599 /* If the alternative actually allows memory, make
600 things a bit cheaper since we won't need an extra
601 insn to load it. */
602 pp->mem_cost
603 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
604 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
605 - allows_mem[i]) * frequency;
607 /* If we have assigned a class to this allocno in
608 our first pass, add a cost to this alternative
609 corresponding to what we would add if this
610 allocno were not in the appropriate class. */
611 if (pref)
613 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
615 if (pref_class == NO_REGS)
616 alt_cost
617 += ((out_p
618 ? ira_memory_move_cost[mode][op_class][0] : 0)
619 + (in_p
620 ? ira_memory_move_cost[mode][op_class][1]
621 : 0));
622 else if (ira_reg_class_intersect
623 [pref_class][op_class] == NO_REGS)
624 alt_cost
625 += ira_register_move_cost[mode][pref_class][op_class];
627 if (REGNO (ops[i]) != REGNO (ops[j])
628 && ! find_reg_note (insn, REG_DEAD, op))
629 alt_cost += 2;
631 /* This is in place of ordinary cost computation for
632 this operand, so skip to the end of the
633 alternative (should be just one character). */
634 while (*p && *p++ != ',')
637 constraints[i] = p;
638 continue;
642 /* Scan all the constraint letters. See if the operand
643 matches any of the constraints. Collect the valid
644 register classes and see if this operand accepts
645 memory. */
646 while ((c = *p))
648 switch (c)
650 case '*':
651 /* Ignore the next letter for this pass. */
652 c = *++p;
653 break;
655 case '?':
656 alt_cost += 2;
657 break;
659 case 'g':
660 if (MEM_P (op)
661 || (CONSTANT_P (op)
662 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
663 win = 1;
664 insn_allows_mem[i] = allows_mem[i] = 1;
665 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
666 break;
668 default:
669 enum constraint_num cn = lookup_constraint (p);
670 enum reg_class cl;
671 switch (get_constraint_type (cn))
673 case CT_REGISTER:
674 cl = reg_class_for_constraint (cn);
675 if (cl != NO_REGS)
676 classes[i] = ira_reg_class_subunion[classes[i]][cl];
677 break;
679 case CT_CONST_INT:
680 if (CONST_INT_P (op)
681 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
682 win = 1;
683 break;
685 case CT_MEMORY:
686 /* Every MEM can be reloaded to fit. */
687 insn_allows_mem[i] = allows_mem[i] = 1;
688 if (MEM_P (op))
689 win = 1;
690 break;
692 case CT_ADDRESS:
693 /* Every address can be reloaded to fit. */
694 allows_addr = 1;
695 if (address_operand (op, GET_MODE (op))
696 || constraint_satisfied_p (op, cn))
697 win = 1;
698 /* We know this operand is an address, so we
699 want it to be allocated to a hard register
700 that can be the base of an address,
701 i.e. BASE_REG_CLASS. */
702 classes[i]
703 = ira_reg_class_subunion[classes[i]]
704 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
705 ADDRESS, SCRATCH)];
706 break;
708 case CT_FIXED_FORM:
709 if (constraint_satisfied_p (op, cn))
710 win = 1;
711 break;
713 break;
715 p += CONSTRAINT_LEN (c, p);
716 if (c == ',')
717 break;
720 constraints[i] = p;
722 /* How we account for this operand now depends on whether it
723 is a pseudo register or not. If it is, we first check if
724 any register classes are valid. If not, we ignore this
725 alternative, since we want to assume that all allocnos get
726 allocated for register preferencing. If some register
727 class is valid, compute the costs of moving the allocno
728 into that class. */
729 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
731 if (classes[i] == NO_REGS && ! allows_mem[i])
733 /* We must always fail if the operand is a REG, but
734 we did not find a suitable class and memory is
735 not allowed.
737 Otherwise we may perform an uninitialized read
738 from this_op_costs after the `continue' statement
739 below. */
740 alt_fail = 1;
742 else
744 unsigned int regno = REGNO (op);
745 struct costs *pp = this_op_costs[i];
746 int *pp_costs = pp->cost;
747 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
748 enum reg_class *cost_classes = cost_classes_ptr->classes;
749 bool in_p = recog_data.operand_type[i] != OP_OUT;
750 bool out_p = recog_data.operand_type[i] != OP_IN;
751 enum reg_class op_class = classes[i];
753 ira_init_register_move_cost_if_necessary (mode);
754 if (! in_p)
756 ira_assert (out_p);
757 if (op_class == NO_REGS)
759 mem_cost = ira_memory_move_cost[mode];
760 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
762 rclass = cost_classes[k];
763 pp_costs[k] = mem_cost[rclass][0] * frequency;
766 else
768 move_out_cost = ira_may_move_out_cost[mode];
769 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
771 rclass = cost_classes[k];
772 pp_costs[k]
773 = move_out_cost[op_class][rclass] * frequency;
777 else if (! out_p)
779 ira_assert (in_p);
780 if (op_class == NO_REGS)
782 mem_cost = ira_memory_move_cost[mode];
783 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
785 rclass = cost_classes[k];
786 pp_costs[k] = mem_cost[rclass][1] * frequency;
789 else
791 move_in_cost = ira_may_move_in_cost[mode];
792 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
794 rclass = cost_classes[k];
795 pp_costs[k]
796 = move_in_cost[rclass][op_class] * frequency;
800 else
802 if (op_class == NO_REGS)
804 mem_cost = ira_memory_move_cost[mode];
805 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
807 rclass = cost_classes[k];
808 pp_costs[k] = ((mem_cost[rclass][0]
809 + mem_cost[rclass][1])
810 * frequency);
813 else
815 move_in_cost = ira_may_move_in_cost[mode];
816 move_out_cost = ira_may_move_out_cost[mode];
817 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
819 rclass = cost_classes[k];
820 pp_costs[k] = ((move_in_cost[rclass][op_class]
821 + move_out_cost[op_class][rclass])
822 * frequency);
827 if (op_class == NO_REGS)
828 /* Although we don't need insn to reload from
829 memory, still accessing memory is usually more
830 expensive than a register. */
831 pp->mem_cost = frequency;
832 else
833 /* If the alternative actually allows memory, make
834 things a bit cheaper since we won't need an
835 extra insn to load it. */
836 pp->mem_cost
837 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
838 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
839 - allows_mem[i]) * frequency;
840 /* If we have assigned a class to this allocno in
841 our first pass, add a cost to this alternative
842 corresponding to what we would add if this
843 allocno were not in the appropriate class. */
844 if (pref)
846 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
848 if (pref_class == NO_REGS)
850 if (op_class != NO_REGS)
851 alt_cost
852 += ((out_p
853 ? ira_memory_move_cost[mode][op_class][0]
854 : 0)
855 + (in_p
856 ? ira_memory_move_cost[mode][op_class][1]
857 : 0));
859 else if (op_class == NO_REGS)
860 alt_cost
861 += ((out_p
862 ? ira_memory_move_cost[mode][pref_class][1]
863 : 0)
864 + (in_p
865 ? ira_memory_move_cost[mode][pref_class][0]
866 : 0));
867 else if (ira_reg_class_intersect[pref_class][op_class]
868 == NO_REGS)
869 alt_cost += (ira_register_move_cost
870 [mode][pref_class][op_class]);
875 /* Otherwise, if this alternative wins, either because we
876 have already determined that or if we have a hard
877 register of the proper class, there is no cost for this
878 alternative. */
879 else if (win || (REG_P (op)
880 && reg_fits_class_p (op, classes[i],
881 0, GET_MODE (op))))
884 /* If registers are valid, the cost of this alternative
885 includes copying the object to and/or from a
886 register. */
887 else if (classes[i] != NO_REGS)
889 if (recog_data.operand_type[i] != OP_OUT)
890 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
892 if (recog_data.operand_type[i] != OP_IN)
893 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
895 /* The only other way this alternative can be used is if
896 this is a constant that could be placed into memory. */
897 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
898 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
899 else
900 alt_fail = 1;
903 if (alt_fail)
904 continue;
906 op_cost_add = alt_cost * frequency;
907 /* Finally, update the costs with the information we've
908 calculated about this alternative. */
909 for (i = 0; i < n_ops; i++)
910 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
912 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
913 int *pp_costs = pp->cost, *qq_costs = qq->cost;
914 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
915 cost_classes_t cost_classes_ptr
916 = regno_cost_classes[REGNO (ops[i])];
918 pp->mem_cost = MIN (pp->mem_cost,
919 (qq->mem_cost + op_cost_add) * scale);
921 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
922 pp_costs[k]
923 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
927 if (allocno_p)
928 for (i = 0; i < n_ops; i++)
930 ira_allocno_t a;
931 rtx op = ops[i];
933 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
934 continue;
935 a = ira_curr_regno_allocno_map [REGNO (op)];
936 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
937 ALLOCNO_BAD_SPILL_P (a) = true;
944 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
945 static inline bool
946 ok_for_index_p_nonstrict (rtx reg)
948 unsigned regno = REGNO (reg);
950 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
953 /* A version of regno_ok_for_base_p for use here, when all
954 pseudo-registers should count as OK. Arguments as for
955 regno_ok_for_base_p. */
956 static inline bool
957 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
958 enum rtx_code outer_code, enum rtx_code index_code)
960 unsigned regno = REGNO (reg);
962 if (regno >= FIRST_PSEUDO_REGISTER)
963 return true;
964 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
967 /* Record the pseudo registers we must reload into hard registers in a
968 subexpression of a memory address, X.
970 If CONTEXT is 0, we are looking at the base part of an address,
971 otherwise we are looking at the index part.
973 MODE and AS are the mode and address space of the memory reference;
974 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
975 These four arguments are passed down to base_reg_class.
977 SCALE is twice the amount to multiply the cost by (it is twice so
978 we can represent half-cost adjustments). */
979 static void
980 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
981 int context, enum rtx_code outer_code,
982 enum rtx_code index_code, int scale)
984 enum rtx_code code = GET_CODE (x);
985 enum reg_class rclass;
987 if (context == 1)
988 rclass = INDEX_REG_CLASS;
989 else
990 rclass = base_reg_class (mode, as, outer_code, index_code);
992 switch (code)
994 case CONST_INT:
995 case CONST:
996 case CC0:
997 case PC:
998 case SYMBOL_REF:
999 case LABEL_REF:
1000 return;
1002 case PLUS:
1003 /* When we have an address that is a sum, we must determine
1004 whether registers are "base" or "index" regs. If there is a
1005 sum of two registers, we must choose one to be the "base".
1006 Luckily, we can use the REG_POINTER to make a good choice
1007 most of the time. We only need to do this on machines that
1008 can have two registers in an address and where the base and
1009 index register classes are different.
1011 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1012 but that seems bogus since it should only be set when we are
1013 sure the register is being used as a pointer. */
1015 rtx arg0 = XEXP (x, 0);
1016 rtx arg1 = XEXP (x, 1);
1017 enum rtx_code code0 = GET_CODE (arg0);
1018 enum rtx_code code1 = GET_CODE (arg1);
1020 /* Look inside subregs. */
1021 if (code0 == SUBREG)
1022 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1023 if (code1 == SUBREG)
1024 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1026 /* If this machine only allows one register per address, it
1027 must be in the first operand. */
1028 if (MAX_REGS_PER_ADDRESS == 1)
1029 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1031 /* If index and base registers are the same on this machine,
1032 just record registers in any non-constant operands. We
1033 assume here, as well as in the tests below, that all
1034 addresses are in canonical form. */
1035 else if (INDEX_REG_CLASS
1036 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1038 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1039 if (! CONSTANT_P (arg1))
1040 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1043 /* If the second operand is a constant integer, it doesn't
1044 change what class the first operand must be. */
1045 else if (CONST_SCALAR_INT_P (arg1))
1046 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1047 /* If the second operand is a symbolic constant, the first
1048 operand must be an index register. */
1049 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1050 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1051 /* If both operands are registers but one is already a hard
1052 register of index or reg-base class, give the other the
1053 class that the hard register is not. */
1054 else if (code0 == REG && code1 == REG
1055 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1056 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1057 || ok_for_index_p_nonstrict (arg0)))
1058 record_address_regs (mode, as, arg1,
1059 ok_for_base_p_nonstrict (arg0, mode, as,
1060 PLUS, REG) ? 1 : 0,
1061 PLUS, REG, scale);
1062 else if (code0 == REG && code1 == REG
1063 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1064 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1065 || ok_for_index_p_nonstrict (arg1)))
1066 record_address_regs (mode, as, arg0,
1067 ok_for_base_p_nonstrict (arg1, mode, as,
1068 PLUS, REG) ? 1 : 0,
1069 PLUS, REG, scale);
1070 /* If one operand is known to be a pointer, it must be the
1071 base with the other operand the index. Likewise if the
1072 other operand is a MULT. */
1073 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1075 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1076 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1078 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1080 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1081 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1083 /* Otherwise, count equal chances that each might be a base or
1084 index register. This case should be rare. */
1085 else
1087 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1088 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1089 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1090 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1093 break;
1095 /* Double the importance of an allocno that is incremented or
1096 decremented, since it would take two extra insns if it ends
1097 up in the wrong place. */
1098 case POST_MODIFY:
1099 case PRE_MODIFY:
1100 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1101 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1102 if (REG_P (XEXP (XEXP (x, 1), 1)))
1103 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1104 2 * scale);
1105 break;
1107 case POST_INC:
1108 case PRE_INC:
1109 case POST_DEC:
1110 case PRE_DEC:
1111 /* Double the importance of an allocno that is incremented or
1112 decremented, since it would take two extra insns if it ends
1113 up in the wrong place. */
1114 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1115 break;
1117 case REG:
1119 struct costs *pp;
1120 int *pp_costs;
1121 enum reg_class i;
1122 int k, regno, add_cost;
1123 cost_classes_t cost_classes_ptr;
1124 enum reg_class *cost_classes;
1125 move_table *move_in_cost;
1127 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1128 break;
1130 regno = REGNO (x);
1131 if (allocno_p)
1132 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1133 pp = COSTS (costs, COST_INDEX (regno));
1134 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1135 if (INT_MAX - add_cost < pp->mem_cost)
1136 pp->mem_cost = INT_MAX;
1137 else
1138 pp->mem_cost += add_cost;
1139 cost_classes_ptr = regno_cost_classes[regno];
1140 cost_classes = cost_classes_ptr->classes;
1141 pp_costs = pp->cost;
1142 ira_init_register_move_cost_if_necessary (Pmode);
1143 move_in_cost = ira_may_move_in_cost[Pmode];
1144 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1146 i = cost_classes[k];
1147 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1148 if (INT_MAX - add_cost < pp_costs[k])
1149 pp_costs[k] = INT_MAX;
1150 else
1151 pp_costs[k] += add_cost;
1154 break;
1156 default:
1158 const char *fmt = GET_RTX_FORMAT (code);
1159 int i;
1160 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1161 if (fmt[i] == 'e')
1162 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1163 scale);
1170 /* Calculate the costs of insn operands. */
1171 static void
1172 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1174 const char *constraints[MAX_RECOG_OPERANDS];
1175 enum machine_mode modes[MAX_RECOG_OPERANDS];
1176 rtx ops[MAX_RECOG_OPERANDS];
1177 rtx set;
1178 int i;
1180 for (i = 0; i < recog_data.n_operands; i++)
1182 constraints[i] = recog_data.constraints[i];
1183 modes[i] = recog_data.operand_mode[i];
1186 /* If we get here, we are set up to record the costs of all the
1187 operands for this insn. Start by initializing the costs. Then
1188 handle any address registers. Finally record the desired classes
1189 for any allocnos, doing it twice if some pair of operands are
1190 commutative. */
1191 for (i = 0; i < recog_data.n_operands; i++)
1193 memcpy (op_costs[i], init_cost, struct_costs_size);
1195 ops[i] = recog_data.operand[i];
1196 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1197 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1199 if (MEM_P (recog_data.operand[i]))
1200 record_address_regs (GET_MODE (recog_data.operand[i]),
1201 MEM_ADDR_SPACE (recog_data.operand[i]),
1202 XEXP (recog_data.operand[i], 0),
1203 0, MEM, SCRATCH, frequency * 2);
1204 else if (constraints[i][0] == 'p'
1205 || (insn_extra_address_constraint
1206 (lookup_constraint (constraints[i]))))
1207 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1208 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1209 frequency * 2);
1212 /* Check for commutative in a separate loop so everything will have
1213 been initialized. We must do this even if one operand is a
1214 constant--see addsi3 in m68k.md. */
1215 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1216 if (constraints[i][0] == '%')
1218 const char *xconstraints[MAX_RECOG_OPERANDS];
1219 int j;
1221 /* Handle commutative operands by swapping the constraints.
1222 We assume the modes are the same. */
1223 for (j = 0; j < recog_data.n_operands; j++)
1224 xconstraints[j] = constraints[j];
1226 xconstraints[i] = constraints[i+1];
1227 xconstraints[i+1] = constraints[i];
1228 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1229 recog_data.operand, modes,
1230 xconstraints, insn, pref);
1232 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1233 recog_data.operand, modes,
1234 constraints, insn, pref);
1236 /* If this insn is a single set copying operand 1 to operand 0 and
1237 one operand is an allocno with the other a hard reg or an allocno
1238 that prefers a hard register that is in its own register class
1239 then we may want to adjust the cost of that register class to -1.
1241 Avoid the adjustment if the source does not die to avoid
1242 stressing of register allocator by preferencing two colliding
1243 registers into single class.
1245 Also avoid the adjustment if a copy between hard registers of the
1246 class is expensive (ten times the cost of a default copy is
1247 considered arbitrarily expensive). This avoids losing when the
1248 preferred class is very expensive as the source of a copy
1249 instruction. */
1250 if ((set = single_set (insn)) != NULL_RTX
1251 /* In rare cases the single set insn might have less 2 operands
1252 as the source can be a fixed special reg. */
1253 && recog_data.n_operands > 1
1254 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1256 int regno, other_regno;
1257 rtx dest = SET_DEST (set);
1258 rtx src = SET_SRC (set);
1260 dest = SET_DEST (set);
1261 src = SET_SRC (set);
1262 if (GET_CODE (dest) == SUBREG
1263 && (GET_MODE_SIZE (GET_MODE (dest))
1264 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1265 dest = SUBREG_REG (dest);
1266 if (GET_CODE (src) == SUBREG
1267 && (GET_MODE_SIZE (GET_MODE (src))
1268 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1269 src = SUBREG_REG (src);
1270 if (REG_P (src) && REG_P (dest)
1271 && find_regno_note (insn, REG_DEAD, REGNO (src))
1272 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1273 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1274 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1275 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1277 enum machine_mode mode = GET_MODE (src);
1278 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1279 enum reg_class *cost_classes = cost_classes_ptr->classes;
1280 reg_class_t rclass;
1281 int k, nr;
1283 i = regno == (int) REGNO (src) ? 1 : 0;
1284 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1286 rclass = cost_classes[k];
1287 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1288 && (reg_class_size[(int) rclass]
1289 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1291 if (reg_class_size[rclass] == 1)
1292 op_costs[i]->cost[k] = -frequency;
1293 else
1295 for (nr = 0;
1296 nr < hard_regno_nregs[other_regno][mode];
1297 nr++)
1298 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1299 other_regno + nr))
1300 break;
1302 if (nr == hard_regno_nregs[other_regno][mode])
1303 op_costs[i]->cost[k] = -frequency;
1313 /* Process one insn INSN. Scan it and record each time it would save
1314 code to put a certain allocnos in a certain class. Return the last
1315 insn processed, so that the scan can be continued from there. */
1316 static rtx_insn *
1317 scan_one_insn (rtx_insn *insn)
1319 enum rtx_code pat_code;
1320 rtx set, note;
1321 int i, k;
1322 bool counted_mem;
1324 if (!NONDEBUG_INSN_P (insn))
1325 return insn;
1327 pat_code = GET_CODE (PATTERN (insn));
1328 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1329 return insn;
1331 counted_mem = false;
1332 set = single_set (insn);
1333 extract_insn (insn);
1335 /* If this insn loads a parameter from its stack slot, then it
1336 represents a savings, rather than a cost, if the parameter is
1337 stored in memory. Record this fact.
1339 Similarly if we're loading other constants from memory (constant
1340 pool, TOC references, small data areas, etc) and this is the only
1341 assignment to the destination pseudo.
1343 Don't do this if SET_SRC (set) isn't a general operand, if it is
1344 a memory requiring special instructions to load it, decreasing
1345 mem_cost might result in it being loaded using the specialized
1346 instruction into a register, then stored into stack and loaded
1347 again from the stack. See PR52208.
1349 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1350 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1351 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1352 && ((MEM_P (XEXP (note, 0))
1353 && !side_effects_p (SET_SRC (set)))
1354 || (CONSTANT_P (XEXP (note, 0))
1355 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1356 XEXP (note, 0))
1357 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1358 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1360 enum reg_class cl = GENERAL_REGS;
1361 rtx reg = SET_DEST (set);
1362 int num = COST_INDEX (REGNO (reg));
1364 COSTS (costs, num)->mem_cost
1365 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1366 record_address_regs (GET_MODE (SET_SRC (set)),
1367 MEM_ADDR_SPACE (SET_SRC (set)),
1368 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1369 frequency * 2);
1370 counted_mem = true;
1373 record_operand_costs (insn, pref);
1375 /* Now add the cost for each operand to the total costs for its
1376 allocno. */
1377 for (i = 0; i < recog_data.n_operands; i++)
1378 if (REG_P (recog_data.operand[i])
1379 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1381 int regno = REGNO (recog_data.operand[i]);
1382 struct costs *p = COSTS (costs, COST_INDEX (regno));
1383 struct costs *q = op_costs[i];
1384 int *p_costs = p->cost, *q_costs = q->cost;
1385 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1386 int add_cost;
1388 /* If the already accounted for the memory "cost" above, don't
1389 do so again. */
1390 if (!counted_mem)
1392 add_cost = q->mem_cost;
1393 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1394 p->mem_cost = INT_MAX;
1395 else
1396 p->mem_cost += add_cost;
1398 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1400 add_cost = q_costs[k];
1401 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1402 p_costs[k] = INT_MAX;
1403 else
1404 p_costs[k] += add_cost;
1408 return insn;
1413 /* Print allocnos costs to file F. */
1414 static void
1415 print_allocno_costs (FILE *f)
1417 int k;
1418 ira_allocno_t a;
1419 ira_allocno_iterator ai;
1421 ira_assert (allocno_p);
1422 fprintf (f, "\n");
1423 FOR_EACH_ALLOCNO (a, ai)
1425 int i, rclass;
1426 basic_block bb;
1427 int regno = ALLOCNO_REGNO (a);
1428 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1429 enum reg_class *cost_classes = cost_classes_ptr->classes;
1431 i = ALLOCNO_NUM (a);
1432 fprintf (f, " a%d(r%d,", i, regno);
1433 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1434 fprintf (f, "b%d", bb->index);
1435 else
1436 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1437 fprintf (f, ") costs:");
1438 for (k = 0; k < cost_classes_ptr->num; k++)
1440 rclass = cost_classes[k];
1441 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1442 && ! invalid_mode_change_p (regno, (enum reg_class) rclass))
1444 fprintf (f, " %s:%d", reg_class_names[rclass],
1445 COSTS (costs, i)->cost[k]);
1446 if (flag_ira_region == IRA_REGION_ALL
1447 || flag_ira_region == IRA_REGION_MIXED)
1448 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1451 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1452 if (flag_ira_region == IRA_REGION_ALL
1453 || flag_ira_region == IRA_REGION_MIXED)
1454 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1455 fprintf (f, "\n");
1459 /* Print pseudo costs to file F. */
1460 static void
1461 print_pseudo_costs (FILE *f)
1463 int regno, k;
1464 int rclass;
1465 cost_classes_t cost_classes_ptr;
1466 enum reg_class *cost_classes;
1468 ira_assert (! allocno_p);
1469 fprintf (f, "\n");
1470 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1472 if (REG_N_REFS (regno) <= 0)
1473 continue;
1474 cost_classes_ptr = regno_cost_classes[regno];
1475 cost_classes = cost_classes_ptr->classes;
1476 fprintf (f, " r%d costs:", regno);
1477 for (k = 0; k < cost_classes_ptr->num; k++)
1479 rclass = cost_classes[k];
1480 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1481 && ! invalid_mode_change_p (regno, (enum reg_class) rclass))
1482 fprintf (f, " %s:%d", reg_class_names[rclass],
1483 COSTS (costs, regno)->cost[k]);
1485 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1489 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1490 costs. */
1491 static void
1492 process_bb_for_costs (basic_block bb)
1494 rtx_insn *insn;
1496 frequency = REG_FREQ_FROM_BB (bb);
1497 if (frequency == 0)
1498 frequency = 1;
1499 FOR_BB_INSNS (bb, insn)
1500 insn = scan_one_insn (insn);
1503 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1504 costs. */
1505 static void
1506 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1508 basic_block bb;
1510 bb = loop_tree_node->bb;
1511 if (bb != NULL)
1512 process_bb_for_costs (bb);
1515 /* Find costs of register classes and memory for allocnos or pseudos
1516 and their best costs. Set up preferred, alternative and allocno
1517 classes for pseudos. */
1518 static void
1519 find_costs_and_classes (FILE *dump_file)
1521 int i, k, start, max_cost_classes_num;
1522 int pass;
1523 basic_block bb;
1524 enum reg_class *regno_best_class;
1526 init_recog ();
1527 regno_best_class
1528 = (enum reg_class *) ira_allocate (max_reg_num ()
1529 * sizeof (enum reg_class));
1530 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1531 regno_best_class[i] = NO_REGS;
1532 if (!resize_reg_info () && allocno_p
1533 && pseudo_classes_defined_p && flag_expensive_optimizations)
1535 ira_allocno_t a;
1536 ira_allocno_iterator ai;
1538 pref = pref_buffer;
1539 max_cost_classes_num = 1;
1540 FOR_EACH_ALLOCNO (a, ai)
1542 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1543 setup_regno_cost_classes_by_aclass
1544 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1545 max_cost_classes_num
1546 = MAX (max_cost_classes_num,
1547 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1549 start = 1;
1551 else
1553 pref = NULL;
1554 max_cost_classes_num = ira_important_classes_num;
1555 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1556 if (regno_reg_rtx[i] != NULL_RTX)
1557 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1558 else
1559 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1560 start = 0;
1562 if (allocno_p)
1563 /* Clear the flag for the next compiled function. */
1564 pseudo_classes_defined_p = false;
1565 /* Normally we scan the insns once and determine the best class to
1566 use for each allocno. However, if -fexpensive-optimizations are
1567 on, we do so twice, the second time using the tentative best
1568 classes to guide the selection. */
1569 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1571 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1572 fprintf (dump_file,
1573 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1575 if (pass != start)
1577 max_cost_classes_num = 1;
1578 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1580 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1581 max_cost_classes_num
1582 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1586 struct_costs_size
1587 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1588 /* Zero out our accumulation of the cost of each class for each
1589 allocno. */
1590 memset (costs, 0, cost_elements_num * struct_costs_size);
1592 if (allocno_p)
1594 /* Scan the instructions and record each time it would save code
1595 to put a certain allocno in a certain class. */
1596 ira_traverse_loop_tree (true, ira_loop_tree_root,
1597 process_bb_node_for_costs, NULL);
1599 memcpy (total_allocno_costs, costs,
1600 max_struct_costs_size * ira_allocnos_num);
1602 else
1604 basic_block bb;
1606 FOR_EACH_BB_FN (bb, cfun)
1607 process_bb_for_costs (bb);
1610 if (pass == 0)
1611 pref = pref_buffer;
1613 /* Now for each allocno look at how desirable each class is and
1614 find which class is preferred. */
1615 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1617 ira_allocno_t a, parent_a;
1618 int rclass, a_num, parent_a_num, add_cost;
1619 ira_loop_tree_node_t parent;
1620 int best_cost, allocno_cost;
1621 enum reg_class best, alt_class;
1622 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1623 enum reg_class *cost_classes = cost_classes_ptr->classes;
1624 int *i_costs = temp_costs->cost;
1625 int i_mem_cost;
1626 int equiv_savings = regno_equiv_gains[i];
1628 if (! allocno_p)
1630 if (regno_reg_rtx[i] == NULL_RTX)
1631 continue;
1632 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1633 i_mem_cost = temp_costs->mem_cost;
1635 else
1637 if (ira_regno_allocno_map[i] == NULL)
1638 continue;
1639 memset (temp_costs, 0, struct_costs_size);
1640 i_mem_cost = 0;
1641 /* Find cost of all allocnos with the same regno. */
1642 for (a = ira_regno_allocno_map[i];
1643 a != NULL;
1644 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1646 int *a_costs, *p_costs;
1648 a_num = ALLOCNO_NUM (a);
1649 if ((flag_ira_region == IRA_REGION_ALL
1650 || flag_ira_region == IRA_REGION_MIXED)
1651 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1652 && (parent_a = parent->regno_allocno_map[i]) != NULL
1653 /* There are no caps yet. */
1654 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1655 (a)->border_allocnos,
1656 ALLOCNO_NUM (a)))
1658 /* Propagate costs to upper levels in the region
1659 tree. */
1660 parent_a_num = ALLOCNO_NUM (parent_a);
1661 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1662 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1663 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1665 add_cost = a_costs[k];
1666 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1667 p_costs[k] = INT_MAX;
1668 else
1669 p_costs[k] += add_cost;
1671 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1672 if (add_cost > 0
1673 && (INT_MAX - add_cost
1674 < COSTS (total_allocno_costs,
1675 parent_a_num)->mem_cost))
1676 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1677 = INT_MAX;
1678 else
1679 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1680 += add_cost;
1682 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1683 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1685 a_costs = COSTS (costs, a_num)->cost;
1686 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1688 add_cost = a_costs[k];
1689 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1690 i_costs[k] = INT_MAX;
1691 else
1692 i_costs[k] += add_cost;
1694 add_cost = COSTS (costs, a_num)->mem_cost;
1695 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1696 i_mem_cost = INT_MAX;
1697 else
1698 i_mem_cost += add_cost;
1701 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1702 i_mem_cost = 0;
1703 else if (equiv_savings < 0)
1704 i_mem_cost = -equiv_savings;
1705 else if (equiv_savings > 0)
1707 i_mem_cost = 0;
1708 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1709 i_costs[k] += equiv_savings;
1712 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1713 best = ALL_REGS;
1714 alt_class = NO_REGS;
1715 /* Find best common class for all allocnos with the same
1716 regno. */
1717 for (k = 0; k < cost_classes_ptr->num; k++)
1719 rclass = cost_classes[k];
1720 /* Ignore classes that are too small or invalid for this
1721 operand. */
1722 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1723 || invalid_mode_change_p (i, (enum reg_class) rclass))
1724 continue;
1725 if (i_costs[k] < best_cost)
1727 best_cost = i_costs[k];
1728 best = (enum reg_class) rclass;
1730 else if (i_costs[k] == best_cost)
1731 best = ira_reg_class_subunion[best][rclass];
1732 if (pass == flag_expensive_optimizations
1733 /* We still prefer registers to memory even at this
1734 stage if their costs are the same. We will make
1735 a final decision during assigning hard registers
1736 when we have all info including more accurate
1737 costs which might be affected by assigning hard
1738 registers to other pseudos because the pseudos
1739 involved in moves can be coalesced. */
1740 && i_costs[k] <= i_mem_cost
1741 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1742 > reg_class_size[alt_class]))
1743 alt_class = reg_class_subunion[alt_class][rclass];
1745 alt_class = ira_allocno_class_translate[alt_class];
1746 if (best_cost > i_mem_cost)
1747 regno_aclass[i] = NO_REGS;
1748 else if (!optimize && !targetm.class_likely_spilled_p (best))
1749 /* Registers in the alternative class are likely to need
1750 longer or slower sequences than registers in the best class.
1751 When optimizing we make some effort to use the best class
1752 over the alternative class where possible, but at -O0 we
1753 effectively give the alternative class equal weight.
1754 We then run the risk of using slower alternative registers
1755 when plenty of registers from the best class are still free.
1756 This is especially true because live ranges tend to be very
1757 short in -O0 code and so register pressure tends to be low.
1759 Avoid that by ignoring the alternative class if the best
1760 class has plenty of registers. */
1761 regno_aclass[i] = best;
1762 else
1764 /* Make the common class the biggest class of best and
1765 alt_class. */
1766 regno_aclass[i]
1767 = ira_reg_class_superunion[best][alt_class];
1768 ira_assert (regno_aclass[i] != NO_REGS
1769 && ira_reg_allocno_class_p[regno_aclass[i]]);
1771 if (pass == flag_expensive_optimizations)
1773 if (best_cost > i_mem_cost)
1774 best = alt_class = NO_REGS;
1775 else if (best == alt_class)
1776 alt_class = NO_REGS;
1777 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1778 if ((!allocno_p || internal_flag_ira_verbose > 2)
1779 && dump_file != NULL)
1780 fprintf (dump_file,
1781 " r%d: preferred %s, alternative %s, allocno %s\n",
1782 i, reg_class_names[best], reg_class_names[alt_class],
1783 reg_class_names[regno_aclass[i]]);
1785 regno_best_class[i] = best;
1786 if (! allocno_p)
1788 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1789 continue;
1791 for (a = ira_regno_allocno_map[i];
1792 a != NULL;
1793 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1795 enum reg_class aclass = regno_aclass[i];
1796 int a_num = ALLOCNO_NUM (a);
1797 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1798 int *a_costs = COSTS (costs, a_num)->cost;
1800 if (aclass == NO_REGS)
1801 best = NO_REGS;
1802 else
1804 /* Finding best class which is subset of the common
1805 class. */
1806 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1807 allocno_cost = best_cost;
1808 best = ALL_REGS;
1809 for (k = 0; k < cost_classes_ptr->num; k++)
1811 rclass = cost_classes[k];
1812 if (! ira_class_subset_p[rclass][aclass])
1813 continue;
1814 /* Ignore classes that are too small or invalid
1815 for this operand. */
1816 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1817 || invalid_mode_change_p (i, (enum reg_class) rclass))
1819 else if (total_a_costs[k] < best_cost)
1821 best_cost = total_a_costs[k];
1822 allocno_cost = a_costs[k];
1823 best = (enum reg_class) rclass;
1825 else if (total_a_costs[k] == best_cost)
1827 best = ira_reg_class_subunion[best][rclass];
1828 allocno_cost = MAX (allocno_cost, a_costs[k]);
1831 ALLOCNO_CLASS_COST (a) = allocno_cost;
1833 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1834 && (pass == 0 || pref[a_num] != best))
1836 fprintf (dump_file, " a%d (r%d,", a_num, i);
1837 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1838 fprintf (dump_file, "b%d", bb->index);
1839 else
1840 fprintf (dump_file, "l%d",
1841 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1842 fprintf (dump_file, ") best %s, allocno %s\n",
1843 reg_class_names[best],
1844 reg_class_names[aclass]);
1846 pref[a_num] = best;
1847 if (pass == flag_expensive_optimizations && best != aclass
1848 && ira_class_hard_regs_num[best] > 0
1849 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1850 >= ira_class_hard_regs_num[best]))
1852 int ind = cost_classes_ptr->index[aclass];
1854 ira_assert (ind >= 0);
1855 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1856 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1857 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1858 / (ira_register_move_cost
1859 [ALLOCNO_MODE (a)][best][aclass]));
1860 for (k = 0; k < cost_classes_ptr->num; k++)
1861 if (ira_class_subset_p[cost_classes[k]][best])
1862 a_costs[k] = a_costs[ind];
1867 if (internal_flag_ira_verbose > 4 && dump_file)
1869 if (allocno_p)
1870 print_allocno_costs (dump_file);
1871 else
1872 print_pseudo_costs (dump_file);
1873 fprintf (dump_file,"\n");
1876 ira_free (regno_best_class);
1881 /* Process moves involving hard regs to modify allocno hard register
1882 costs. We can do this only after determining allocno class. If a
1883 hard register forms a register class, then moves with the hard
1884 register are already taken into account in class costs for the
1885 allocno. */
1886 static void
1887 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1889 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1890 bool to_p;
1891 ira_allocno_t a, curr_a;
1892 ira_loop_tree_node_t curr_loop_tree_node;
1893 enum reg_class rclass;
1894 basic_block bb;
1895 rtx_insn *insn;
1896 rtx set, src, dst;
1898 bb = loop_tree_node->bb;
1899 if (bb == NULL)
1900 return;
1901 freq = REG_FREQ_FROM_BB (bb);
1902 if (freq == 0)
1903 freq = 1;
1904 FOR_BB_INSNS (bb, insn)
1906 if (!NONDEBUG_INSN_P (insn))
1907 continue;
1908 set = single_set (insn);
1909 if (set == NULL_RTX)
1910 continue;
1911 dst = SET_DEST (set);
1912 src = SET_SRC (set);
1913 if (! REG_P (dst) || ! REG_P (src))
1914 continue;
1915 dst_regno = REGNO (dst);
1916 src_regno = REGNO (src);
1917 if (dst_regno >= FIRST_PSEUDO_REGISTER
1918 && src_regno < FIRST_PSEUDO_REGISTER)
1920 hard_regno = src_regno;
1921 a = ira_curr_regno_allocno_map[dst_regno];
1922 to_p = true;
1924 else if (src_regno >= FIRST_PSEUDO_REGISTER
1925 && dst_regno < FIRST_PSEUDO_REGISTER)
1927 hard_regno = dst_regno;
1928 a = ira_curr_regno_allocno_map[src_regno];
1929 to_p = false;
1931 else
1932 continue;
1933 rclass = ALLOCNO_CLASS (a);
1934 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1935 continue;
1936 i = ira_class_hard_reg_index[rclass][hard_regno];
1937 if (i < 0)
1938 continue;
1939 a_regno = ALLOCNO_REGNO (a);
1940 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
1941 curr_loop_tree_node != NULL;
1942 curr_loop_tree_node = curr_loop_tree_node->parent)
1943 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
1944 ira_add_allocno_pref (curr_a, hard_regno, freq);
1946 int cost;
1947 enum reg_class hard_reg_class;
1948 enum machine_mode mode;
1950 mode = ALLOCNO_MODE (a);
1951 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1952 ira_init_register_move_cost_if_necessary (mode);
1953 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1954 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1955 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1956 ALLOCNO_CLASS_COST (a));
1957 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1958 rclass, 0);
1959 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1960 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1961 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1962 ALLOCNO_HARD_REG_COSTS (a)[i]);
1967 /* After we find hard register and memory costs for allocnos, define
1968 its class and modify hard register cost because insns moving
1969 allocno to/from hard registers. */
1970 static void
1971 setup_allocno_class_and_costs (void)
1973 int i, j, n, regno, hard_regno, num;
1974 int *reg_costs;
1975 enum reg_class aclass, rclass;
1976 ira_allocno_t a;
1977 ira_allocno_iterator ai;
1978 cost_classes_t cost_classes_ptr;
1980 ira_assert (allocno_p);
1981 FOR_EACH_ALLOCNO (a, ai)
1983 i = ALLOCNO_NUM (a);
1984 regno = ALLOCNO_REGNO (a);
1985 aclass = regno_aclass[regno];
1986 cost_classes_ptr = regno_cost_classes[regno];
1987 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1988 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1989 ira_set_allocno_class (a, aclass);
1990 if (aclass == NO_REGS)
1991 continue;
1992 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1994 n = ira_class_hard_regs_num[aclass];
1995 ALLOCNO_HARD_REG_COSTS (a)
1996 = reg_costs = ira_allocate_cost_vector (aclass);
1997 for (j = n - 1; j >= 0; j--)
1999 hard_regno = ira_class_hard_regs[aclass][j];
2000 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2001 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2002 else
2004 rclass = REGNO_REG_CLASS (hard_regno);
2005 num = cost_classes_ptr->index[rclass];
2006 if (num < 0)
2008 num = cost_classes_ptr->hard_regno_index[hard_regno];
2009 ira_assert (num >= 0);
2011 reg_costs[j] = COSTS (costs, i)->cost[num];
2016 if (optimize)
2017 ira_traverse_loop_tree (true, ira_loop_tree_root,
2018 process_bb_node_for_hard_reg_moves, NULL);
2023 /* Function called once during compiler work. */
2024 void
2025 ira_init_costs_once (void)
2027 int i;
2029 init_cost = NULL;
2030 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2032 op_costs[i] = NULL;
2033 this_op_costs[i] = NULL;
2035 temp_costs = NULL;
2038 /* Free allocated temporary cost vectors. */
2039 void
2040 target_ira_int::free_ira_costs ()
2042 int i;
2044 free (x_init_cost);
2045 x_init_cost = NULL;
2046 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2048 free (x_op_costs[i]);
2049 free (x_this_op_costs[i]);
2050 x_op_costs[i] = x_this_op_costs[i] = NULL;
2052 free (x_temp_costs);
2053 x_temp_costs = NULL;
2056 /* This is called each time register related information is
2057 changed. */
2058 void
2059 ira_init_costs (void)
2061 int i;
2063 this_target_ira_int->free_ira_costs ();
2064 max_struct_costs_size
2065 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2066 /* Don't use ira_allocate because vectors live through several IRA
2067 calls. */
2068 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2069 init_cost->mem_cost = 1000000;
2070 for (i = 0; i < ira_important_classes_num; i++)
2071 init_cost->cost[i] = 1000000;
2072 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2074 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2075 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2077 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2082 /* Common initialization function for ira_costs and
2083 ira_set_pseudo_classes. */
2084 static void
2085 init_costs (void)
2087 init_subregs_of_mode ();
2088 costs = (struct costs *) ira_allocate (max_struct_costs_size
2089 * cost_elements_num);
2090 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2091 * cost_elements_num);
2092 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2093 * max_reg_num ());
2094 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2095 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2098 /* Common finalization function for ira_costs and
2099 ira_set_pseudo_classes. */
2100 static void
2101 finish_costs (void)
2103 finish_subregs_of_mode ();
2104 ira_free (regno_equiv_gains);
2105 ira_free (regno_aclass);
2106 ira_free (pref_buffer);
2107 ira_free (costs);
2110 /* Entry function which defines register class, memory and hard
2111 register costs for each allocno. */
2112 void
2113 ira_costs (void)
2115 allocno_p = true;
2116 cost_elements_num = ira_allocnos_num;
2117 init_costs ();
2118 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2119 * ira_allocnos_num);
2120 initiate_regno_cost_classes ();
2121 calculate_elim_costs_all_insns ();
2122 find_costs_and_classes (ira_dump_file);
2123 setup_allocno_class_and_costs ();
2124 finish_regno_cost_classes ();
2125 finish_costs ();
2126 ira_free (total_allocno_costs);
2129 /* Entry function which defines classes for pseudos.
2130 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2131 void
2132 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2134 allocno_p = false;
2135 internal_flag_ira_verbose = flag_ira_verbose;
2136 cost_elements_num = max_reg_num ();
2137 init_costs ();
2138 initiate_regno_cost_classes ();
2139 find_costs_and_classes (dump_file);
2140 finish_regno_cost_classes ();
2141 if (define_pseudo_classes)
2142 pseudo_classes_defined_p = true;
2144 finish_costs ();
2149 /* Change hard register costs for allocnos which lives through
2150 function calls. This is called only when we found all intersected
2151 calls during building allocno live ranges. */
2152 void
2153 ira_tune_allocno_costs (void)
2155 int j, n, regno;
2156 int cost, min_cost, *reg_costs;
2157 enum reg_class aclass, rclass;
2158 enum machine_mode mode;
2159 ira_allocno_t a;
2160 ira_allocno_iterator ai;
2161 ira_allocno_object_iterator oi;
2162 ira_object_t obj;
2163 bool skip_p;
2164 HARD_REG_SET *crossed_calls_clobber_regs;
2166 FOR_EACH_ALLOCNO (a, ai)
2168 aclass = ALLOCNO_CLASS (a);
2169 if (aclass == NO_REGS)
2170 continue;
2171 mode = ALLOCNO_MODE (a);
2172 n = ira_class_hard_regs_num[aclass];
2173 min_cost = INT_MAX;
2174 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2175 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2177 ira_allocate_and_set_costs
2178 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2179 ALLOCNO_CLASS_COST (a));
2180 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2181 for (j = n - 1; j >= 0; j--)
2183 regno = ira_class_hard_regs[aclass][j];
2184 skip_p = false;
2185 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2187 if (ira_hard_reg_set_intersection_p (regno, mode,
2188 OBJECT_CONFLICT_HARD_REGS
2189 (obj)))
2191 skip_p = true;
2192 break;
2195 if (skip_p)
2196 continue;
2197 rclass = REGNO_REG_CLASS (regno);
2198 cost = 0;
2199 crossed_calls_clobber_regs
2200 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2201 if (ira_hard_reg_set_intersection_p (regno, mode,
2202 *crossed_calls_clobber_regs)
2203 && (ira_hard_reg_set_intersection_p (regno, mode,
2204 call_used_reg_set)
2205 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2206 cost += (ALLOCNO_CALL_FREQ (a)
2207 * (ira_memory_move_cost[mode][rclass][0]
2208 + ira_memory_move_cost[mode][rclass][1]));
2209 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2210 cost += ((ira_memory_move_cost[mode][rclass][0]
2211 + ira_memory_move_cost[mode][rclass][1])
2212 * ALLOCNO_FREQ (a)
2213 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2214 #endif
2215 if (INT_MAX - cost < reg_costs[j])
2216 reg_costs[j] = INT_MAX;
2217 else
2218 reg_costs[j] += cost;
2219 if (min_cost > reg_costs[j])
2220 min_cost = reg_costs[j];
2223 if (min_cost != INT_MAX)
2224 ALLOCNO_CLASS_COST (a) = min_cost;
2226 /* Some targets allow pseudos to be allocated to unaligned sequences
2227 of hard registers. However, selecting an unaligned sequence can
2228 unnecessarily restrict later allocations. So increase the cost of
2229 unaligned hard regs to encourage the use of aligned hard regs. */
2231 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2233 if (nregs > 1)
2235 ira_allocate_and_set_costs
2236 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2237 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2238 for (j = n - 1; j >= 0; j--)
2240 regno = ira_non_ordered_class_hard_regs[aclass][j];
2241 if ((regno % nregs) != 0)
2243 int index = ira_class_hard_reg_index[aclass][regno];
2244 ira_assert (index != -1);
2245 reg_costs[index] += ALLOCNO_FREQ (a);
2253 /* Add COST to the estimated gain for eliminating REGNO with its
2254 equivalence. If COST is zero, record that no such elimination is
2255 possible. */
2257 void
2258 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2260 if (cost == 0)
2261 regno_equiv_gains[regno] = 0;
2262 else
2263 regno_equiv_gains[regno] += cost;