20090811-1.c: Skip for incompatible options, do not override other options.
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blobbffd7f26c43754eb6f07462a9ca1cb3206a5d5b5
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
29 that can be optimized to
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "gimple-pretty-print.h"
102 /* FIXME: RTL headers have to be included here for optabs. */
103 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
104 #include "expr.h" /* Because optabs.h wants sepops. */
105 #include "optabs.h"
107 /* This structure represents one basic block that either computes a
108 division, or is a common dominator for basic block that compute a
109 division. */
110 struct occurrence {
111 /* The basic block represented by this structure. */
112 basic_block bb;
114 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
115 inserted in BB. */
116 tree recip_def;
118 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
119 was inserted in BB. */
120 gimple recip_def_stmt;
122 /* Pointer to a list of "struct occurrence"s for blocks dominated
123 by BB. */
124 struct occurrence *children;
126 /* Pointer to the next "struct occurrence"s in the list of blocks
127 sharing a common dominator. */
128 struct occurrence *next;
130 /* The number of divisions that are in BB before compute_merit. The
131 number of divisions that are in BB or post-dominate it after
132 compute_merit. */
133 int num_divisions;
135 /* True if the basic block has a division, false if it is a common
136 dominator for basic blocks that do. If it is false and trapping
137 math is active, BB is not a candidate for inserting a reciprocal. */
138 bool bb_has_division;
141 static struct
143 /* Number of 1.0/X ops inserted. */
144 int rdivs_inserted;
146 /* Number of 1.0/FUNC ops inserted. */
147 int rfuncs_inserted;
148 } reciprocal_stats;
150 static struct
152 /* Number of cexpi calls inserted. */
153 int inserted;
154 } sincos_stats;
156 static struct
158 /* Number of hand-written 32-bit bswaps found. */
159 int found_32bit;
161 /* Number of hand-written 64-bit bswaps found. */
162 int found_64bit;
163 } bswap_stats;
165 static struct
167 /* Number of widening multiplication ops inserted. */
168 int widen_mults_inserted;
170 /* Number of integer multiply-and-accumulate ops inserted. */
171 int maccs_inserted;
173 /* Number of fp fused multiply-add ops inserted. */
174 int fmas_inserted;
175 } widen_mul_stats;
177 /* The instance of "struct occurrence" representing the highest
178 interesting block in the dominator tree. */
179 static struct occurrence *occ_head;
181 /* Allocation pool for getting instances of "struct occurrence". */
182 static alloc_pool occ_pool;
186 /* Allocate and return a new struct occurrence for basic block BB, and
187 whose children list is headed by CHILDREN. */
188 static struct occurrence *
189 occ_new (basic_block bb, struct occurrence *children)
191 struct occurrence *occ;
193 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
194 memset (occ, 0, sizeof (struct occurrence));
196 occ->bb = bb;
197 occ->children = children;
198 return occ;
202 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
203 list of "struct occurrence"s, one per basic block, having IDOM as
204 their common dominator.
206 We try to insert NEW_OCC as deep as possible in the tree, and we also
207 insert any other block that is a common dominator for BB and one
208 block already in the tree. */
210 static void
211 insert_bb (struct occurrence *new_occ, basic_block idom,
212 struct occurrence **p_head)
214 struct occurrence *occ, **p_occ;
216 for (p_occ = p_head; (occ = *p_occ) != NULL; )
218 basic_block bb = new_occ->bb, occ_bb = occ->bb;
219 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
220 if (dom == bb)
222 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
223 from its list. */
224 *p_occ = occ->next;
225 occ->next = new_occ->children;
226 new_occ->children = occ;
228 /* Try the next block (it may as well be dominated by BB). */
231 else if (dom == occ_bb)
233 /* OCC_BB dominates BB. Tail recurse to look deeper. */
234 insert_bb (new_occ, dom, &occ->children);
235 return;
238 else if (dom != idom)
240 gcc_assert (!dom->aux);
242 /* There is a dominator between IDOM and BB, add it and make
243 two children out of NEW_OCC and OCC. First, remove OCC from
244 its list. */
245 *p_occ = occ->next;
246 new_occ->next = occ;
247 occ->next = NULL;
249 /* None of the previous blocks has DOM as a dominator: if we tail
250 recursed, we would reexamine them uselessly. Just switch BB with
251 DOM, and go on looking for blocks dominated by DOM. */
252 new_occ = occ_new (dom, new_occ);
255 else
257 /* Nothing special, go on with the next element. */
258 p_occ = &occ->next;
262 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
263 new_occ->next = *p_head;
264 *p_head = new_occ;
267 /* Register that we found a division in BB. */
269 static inline void
270 register_division_in (basic_block bb)
272 struct occurrence *occ;
274 occ = (struct occurrence *) bb->aux;
275 if (!occ)
277 occ = occ_new (bb, NULL);
278 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
281 occ->bb_has_division = true;
282 occ->num_divisions++;
286 /* Compute the number of divisions that postdominate each block in OCC and
287 its children. */
289 static void
290 compute_merit (struct occurrence *occ)
292 struct occurrence *occ_child;
293 basic_block dom = occ->bb;
295 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
297 basic_block bb;
298 if (occ_child->children)
299 compute_merit (occ_child);
301 if (flag_exceptions)
302 bb = single_noncomplex_succ (dom);
303 else
304 bb = dom;
306 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
307 occ->num_divisions += occ_child->num_divisions;
312 /* Return whether USE_STMT is a floating-point division by DEF. */
313 static inline bool
314 is_division_by (gimple use_stmt, tree def)
316 return is_gimple_assign (use_stmt)
317 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
318 && gimple_assign_rhs2 (use_stmt) == def
319 /* Do not recognize x / x as valid division, as we are getting
320 confused later by replacing all immediate uses x in such
321 a stmt. */
322 && gimple_assign_rhs1 (use_stmt) != def;
325 /* Walk the subset of the dominator tree rooted at OCC, setting the
326 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
327 the given basic block. The field may be left NULL, of course,
328 if it is not possible or profitable to do the optimization.
330 DEF_BSI is an iterator pointing at the statement defining DEF.
331 If RECIP_DEF is set, a dominator already has a computation that can
332 be used. */
334 static void
335 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
336 tree def, tree recip_def, int threshold)
338 tree type;
339 gimple new_stmt;
340 gimple_stmt_iterator gsi;
341 struct occurrence *occ_child;
343 if (!recip_def
344 && (occ->bb_has_division || !flag_trapping_math)
345 && occ->num_divisions >= threshold)
347 /* Make a variable with the replacement and substitute it. */
348 type = TREE_TYPE (def);
349 recip_def = make_rename_temp (type, "reciptmp");
350 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
351 build_one_cst (type), def);
353 if (occ->bb_has_division)
355 /* Case 1: insert before an existing division. */
356 gsi = gsi_after_labels (occ->bb);
357 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
358 gsi_next (&gsi);
360 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
362 else if (def_gsi && occ->bb == def_gsi->bb)
364 /* Case 2: insert right after the definition. Note that this will
365 never happen if the definition statement can throw, because in
366 that case the sole successor of the statement's basic block will
367 dominate all the uses as well. */
368 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
370 else
372 /* Case 3: insert in a basic block not containing defs/uses. */
373 gsi = gsi_after_labels (occ->bb);
374 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
377 reciprocal_stats.rdivs_inserted++;
379 occ->recip_def_stmt = new_stmt;
382 occ->recip_def = recip_def;
383 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
384 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
388 /* Replace the division at USE_P with a multiplication by the reciprocal, if
389 possible. */
391 static inline void
392 replace_reciprocal (use_operand_p use_p)
394 gimple use_stmt = USE_STMT (use_p);
395 basic_block bb = gimple_bb (use_stmt);
396 struct occurrence *occ = (struct occurrence *) bb->aux;
398 if (optimize_bb_for_speed_p (bb)
399 && occ->recip_def && use_stmt != occ->recip_def_stmt)
401 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
402 SET_USE (use_p, occ->recip_def);
403 fold_stmt_inplace (use_stmt);
404 update_stmt (use_stmt);
409 /* Free OCC and return one more "struct occurrence" to be freed. */
411 static struct occurrence *
412 free_bb (struct occurrence *occ)
414 struct occurrence *child, *next;
416 /* First get the two pointers hanging off OCC. */
417 next = occ->next;
418 child = occ->children;
419 occ->bb->aux = NULL;
420 pool_free (occ_pool, occ);
422 /* Now ensure that we don't recurse unless it is necessary. */
423 if (!child)
424 return next;
425 else
427 while (next)
428 next = free_bb (next);
430 return child;
435 /* Look for floating-point divisions among DEF's uses, and try to
436 replace them by multiplications with the reciprocal. Add
437 as many statements computing the reciprocal as needed.
439 DEF must be a GIMPLE register of a floating-point type. */
441 static void
442 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
444 use_operand_p use_p;
445 imm_use_iterator use_iter;
446 struct occurrence *occ;
447 int count = 0, threshold;
449 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
451 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
453 gimple use_stmt = USE_STMT (use_p);
454 if (is_division_by (use_stmt, def))
456 register_division_in (gimple_bb (use_stmt));
457 count++;
461 /* Do the expensive part only if we can hope to optimize something. */
462 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
463 if (count >= threshold)
465 gimple use_stmt;
466 for (occ = occ_head; occ; occ = occ->next)
468 compute_merit (occ);
469 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
472 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
474 if (is_division_by (use_stmt, def))
476 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
477 replace_reciprocal (use_p);
482 for (occ = occ_head; occ; )
483 occ = free_bb (occ);
485 occ_head = NULL;
488 static bool
489 gate_cse_reciprocals (void)
491 return optimize && flag_reciprocal_math;
494 /* Go through all the floating-point SSA_NAMEs, and call
495 execute_cse_reciprocals_1 on each of them. */
496 static unsigned int
497 execute_cse_reciprocals (void)
499 basic_block bb;
500 tree arg;
502 occ_pool = create_alloc_pool ("dominators for recip",
503 sizeof (struct occurrence),
504 n_basic_blocks / 3 + 1);
506 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
507 calculate_dominance_info (CDI_DOMINATORS);
508 calculate_dominance_info (CDI_POST_DOMINATORS);
510 #ifdef ENABLE_CHECKING
511 FOR_EACH_BB (bb)
512 gcc_assert (!bb->aux);
513 #endif
515 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
516 if (gimple_default_def (cfun, arg)
517 && FLOAT_TYPE_P (TREE_TYPE (arg))
518 && is_gimple_reg (arg))
519 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
521 FOR_EACH_BB (bb)
523 gimple_stmt_iterator gsi;
524 gimple phi;
525 tree def;
527 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
529 phi = gsi_stmt (gsi);
530 def = PHI_RESULT (phi);
531 if (FLOAT_TYPE_P (TREE_TYPE (def))
532 && is_gimple_reg (def))
533 execute_cse_reciprocals_1 (NULL, def);
536 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
538 gimple stmt = gsi_stmt (gsi);
540 if (gimple_has_lhs (stmt)
541 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
542 && FLOAT_TYPE_P (TREE_TYPE (def))
543 && TREE_CODE (def) == SSA_NAME)
544 execute_cse_reciprocals_1 (&gsi, def);
547 if (optimize_bb_for_size_p (bb))
548 continue;
550 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
551 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
553 gimple stmt = gsi_stmt (gsi);
554 tree fndecl;
556 if (is_gimple_assign (stmt)
557 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
559 tree arg1 = gimple_assign_rhs2 (stmt);
560 gimple stmt1;
562 if (TREE_CODE (arg1) != SSA_NAME)
563 continue;
565 stmt1 = SSA_NAME_DEF_STMT (arg1);
567 if (is_gimple_call (stmt1)
568 && gimple_call_lhs (stmt1)
569 && (fndecl = gimple_call_fndecl (stmt1))
570 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
571 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
573 enum built_in_function code;
574 bool md_code, fail;
575 imm_use_iterator ui;
576 use_operand_p use_p;
578 code = DECL_FUNCTION_CODE (fndecl);
579 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
581 fndecl = targetm.builtin_reciprocal (code, md_code, false);
582 if (!fndecl)
583 continue;
585 /* Check that all uses of the SSA name are divisions,
586 otherwise replacing the defining statement will do
587 the wrong thing. */
588 fail = false;
589 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
591 gimple stmt2 = USE_STMT (use_p);
592 if (is_gimple_debug (stmt2))
593 continue;
594 if (!is_gimple_assign (stmt2)
595 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
596 || gimple_assign_rhs1 (stmt2) == arg1
597 || gimple_assign_rhs2 (stmt2) != arg1)
599 fail = true;
600 break;
603 if (fail)
604 continue;
606 gimple_replace_lhs (stmt1, arg1);
607 gimple_call_set_fndecl (stmt1, fndecl);
608 update_stmt (stmt1);
609 reciprocal_stats.rfuncs_inserted++;
611 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
613 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
614 fold_stmt_inplace (stmt);
615 update_stmt (stmt);
622 statistics_counter_event (cfun, "reciprocal divs inserted",
623 reciprocal_stats.rdivs_inserted);
624 statistics_counter_event (cfun, "reciprocal functions inserted",
625 reciprocal_stats.rfuncs_inserted);
627 free_dominance_info (CDI_DOMINATORS);
628 free_dominance_info (CDI_POST_DOMINATORS);
629 free_alloc_pool (occ_pool);
630 return 0;
633 struct gimple_opt_pass pass_cse_reciprocals =
636 GIMPLE_PASS,
637 "recip", /* name */
638 gate_cse_reciprocals, /* gate */
639 execute_cse_reciprocals, /* execute */
640 NULL, /* sub */
641 NULL, /* next */
642 0, /* static_pass_number */
643 TV_NONE, /* tv_id */
644 PROP_ssa, /* properties_required */
645 0, /* properties_provided */
646 0, /* properties_destroyed */
647 0, /* todo_flags_start */
648 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
649 | TODO_verify_stmts /* todo_flags_finish */
653 /* Records an occurrence at statement USE_STMT in the vector of trees
654 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
655 is not yet initialized. Returns true if the occurrence was pushed on
656 the vector. Adjusts *TOP_BB to be the basic block dominating all
657 statements in the vector. */
659 static bool
660 maybe_record_sincos (VEC(gimple, heap) **stmts,
661 basic_block *top_bb, gimple use_stmt)
663 basic_block use_bb = gimple_bb (use_stmt);
664 if (*top_bb
665 && (*top_bb == use_bb
666 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
667 VEC_safe_push (gimple, heap, *stmts, use_stmt);
668 else if (!*top_bb
669 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
671 VEC_safe_push (gimple, heap, *stmts, use_stmt);
672 *top_bb = use_bb;
674 else
675 return false;
677 return true;
680 /* Look for sin, cos and cexpi calls with the same argument NAME and
681 create a single call to cexpi CSEing the result in this case.
682 We first walk over all immediate uses of the argument collecting
683 statements that we can CSE in a vector and in a second pass replace
684 the statement rhs with a REALPART or IMAGPART expression on the
685 result of the cexpi call we insert before the use statement that
686 dominates all other candidates. */
688 static bool
689 execute_cse_sincos_1 (tree name)
691 gimple_stmt_iterator gsi;
692 imm_use_iterator use_iter;
693 tree fndecl, res, type;
694 gimple def_stmt, use_stmt, stmt;
695 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
696 VEC(gimple, heap) *stmts = NULL;
697 basic_block top_bb = NULL;
698 int i;
699 bool cfg_changed = false;
701 type = TREE_TYPE (name);
702 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
704 if (gimple_code (use_stmt) != GIMPLE_CALL
705 || !gimple_call_lhs (use_stmt)
706 || !(fndecl = gimple_call_fndecl (use_stmt))
707 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
708 continue;
710 switch (DECL_FUNCTION_CODE (fndecl))
712 CASE_FLT_FN (BUILT_IN_COS):
713 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
714 break;
716 CASE_FLT_FN (BUILT_IN_SIN):
717 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
718 break;
720 CASE_FLT_FN (BUILT_IN_CEXPI):
721 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
722 break;
724 default:;
728 if (seen_cos + seen_sin + seen_cexpi <= 1)
730 VEC_free(gimple, heap, stmts);
731 return false;
734 /* Simply insert cexpi at the beginning of top_bb but not earlier than
735 the name def statement. */
736 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
737 if (!fndecl)
738 return false;
739 res = create_tmp_reg (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
740 stmt = gimple_build_call (fndecl, 1, name);
741 res = make_ssa_name (res, stmt);
742 gimple_call_set_lhs (stmt, res);
744 def_stmt = SSA_NAME_DEF_STMT (name);
745 if (!SSA_NAME_IS_DEFAULT_DEF (name)
746 && gimple_code (def_stmt) != GIMPLE_PHI
747 && gimple_bb (def_stmt) == top_bb)
749 gsi = gsi_for_stmt (def_stmt);
750 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
752 else
754 gsi = gsi_after_labels (top_bb);
755 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
757 update_stmt (stmt);
758 sincos_stats.inserted++;
760 /* And adjust the recorded old call sites. */
761 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
763 tree rhs = NULL;
764 fndecl = gimple_call_fndecl (use_stmt);
766 switch (DECL_FUNCTION_CODE (fndecl))
768 CASE_FLT_FN (BUILT_IN_COS):
769 rhs = fold_build1 (REALPART_EXPR, type, res);
770 break;
772 CASE_FLT_FN (BUILT_IN_SIN):
773 rhs = fold_build1 (IMAGPART_EXPR, type, res);
774 break;
776 CASE_FLT_FN (BUILT_IN_CEXPI):
777 rhs = res;
778 break;
780 default:;
781 gcc_unreachable ();
784 /* Replace call with a copy. */
785 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
787 gsi = gsi_for_stmt (use_stmt);
788 gsi_replace (&gsi, stmt, true);
789 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
790 cfg_changed = true;
793 VEC_free(gimple, heap, stmts);
795 return cfg_changed;
798 /* To evaluate powi(x,n), the floating point value x raised to the
799 constant integer exponent n, we use a hybrid algorithm that
800 combines the "window method" with look-up tables. For an
801 introduction to exponentiation algorithms and "addition chains",
802 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
803 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
804 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
805 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
807 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
808 multiplications to inline before calling the system library's pow
809 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
810 so this default never requires calling pow, powf or powl. */
812 #ifndef POWI_MAX_MULTS
813 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
814 #endif
816 /* The size of the "optimal power tree" lookup table. All
817 exponents less than this value are simply looked up in the
818 powi_table below. This threshold is also used to size the
819 cache of pseudo registers that hold intermediate results. */
820 #define POWI_TABLE_SIZE 256
822 /* The size, in bits of the window, used in the "window method"
823 exponentiation algorithm. This is equivalent to a radix of
824 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
825 #define POWI_WINDOW_SIZE 3
827 /* The following table is an efficient representation of an
828 "optimal power tree". For each value, i, the corresponding
829 value, j, in the table states than an optimal evaluation
830 sequence for calculating pow(x,i) can be found by evaluating
831 pow(x,j)*pow(x,i-j). An optimal power tree for the first
832 100 integers is given in Knuth's "Seminumerical algorithms". */
834 static const unsigned char powi_table[POWI_TABLE_SIZE] =
836 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
837 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
838 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
839 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
840 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
841 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
842 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
843 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
844 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
845 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
846 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
847 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
848 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
849 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
850 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
851 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
852 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
853 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
854 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
855 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
856 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
857 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
858 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
859 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
860 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
861 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
862 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
863 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
864 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
865 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
866 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
867 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
871 /* Return the number of multiplications required to calculate
872 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
873 subroutine of powi_cost. CACHE is an array indicating
874 which exponents have already been calculated. */
876 static int
877 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
879 /* If we've already calculated this exponent, then this evaluation
880 doesn't require any additional multiplications. */
881 if (cache[n])
882 return 0;
884 cache[n] = true;
885 return powi_lookup_cost (n - powi_table[n], cache)
886 + powi_lookup_cost (powi_table[n], cache) + 1;
889 /* Return the number of multiplications required to calculate
890 powi(x,n) for an arbitrary x, given the exponent N. This
891 function needs to be kept in sync with powi_as_mults below. */
893 static int
894 powi_cost (HOST_WIDE_INT n)
896 bool cache[POWI_TABLE_SIZE];
897 unsigned HOST_WIDE_INT digit;
898 unsigned HOST_WIDE_INT val;
899 int result;
901 if (n == 0)
902 return 0;
904 /* Ignore the reciprocal when calculating the cost. */
905 val = (n < 0) ? -n : n;
907 /* Initialize the exponent cache. */
908 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
909 cache[1] = true;
911 result = 0;
913 while (val >= POWI_TABLE_SIZE)
915 if (val & 1)
917 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
918 result += powi_lookup_cost (digit, cache)
919 + POWI_WINDOW_SIZE + 1;
920 val >>= POWI_WINDOW_SIZE;
922 else
924 val >>= 1;
925 result++;
929 return result + powi_lookup_cost (val, cache);
932 /* Recursive subroutine of powi_as_mults. This function takes the
933 array, CACHE, of already calculated exponents and an exponent N and
934 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
936 static tree
937 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
938 HOST_WIDE_INT n, tree *cache, tree target)
940 tree op0, op1, ssa_target;
941 unsigned HOST_WIDE_INT digit;
942 gimple mult_stmt;
944 if (n < POWI_TABLE_SIZE && cache[n])
945 return cache[n];
947 ssa_target = make_ssa_name (target, NULL);
949 if (n < POWI_TABLE_SIZE)
951 cache[n] = ssa_target;
952 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache, target);
953 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache, target);
955 else if (n & 1)
957 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
958 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache, target);
959 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache, target);
961 else
963 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache, target);
964 op1 = op0;
967 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
968 gimple_set_location (mult_stmt, loc);
969 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
971 return ssa_target;
974 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
975 This function needs to be kept in sync with powi_cost above. */
977 static tree
978 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
979 tree arg0, HOST_WIDE_INT n)
981 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0), target;
982 gimple div_stmt;
984 if (n == 0)
985 return build_real (type, dconst1);
987 memset (cache, 0, sizeof (cache));
988 cache[1] = arg0;
990 target = create_tmp_reg (type, "powmult");
991 add_referenced_var (target);
993 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache, target);
995 if (n >= 0)
996 return result;
998 /* If the original exponent was negative, reciprocate the result. */
999 target = make_ssa_name (target, NULL);
1000 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1001 build_real (type, dconst1),
1002 result);
1003 gimple_set_location (div_stmt, loc);
1004 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1006 return target;
1009 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1010 location info LOC. If the arguments are appropriate, create an
1011 equivalent sequence of statements prior to GSI using an optimal
1012 number of multiplications, and return an expession holding the
1013 result. */
1015 static tree
1016 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1017 tree arg0, HOST_WIDE_INT n)
1019 /* Avoid largest negative number. */
1020 if (n != -n
1021 && ((n >= -1 && n <= 2)
1022 || (optimize_function_for_speed_p (cfun)
1023 && powi_cost (n) <= POWI_MAX_MULTS)))
1024 return powi_as_mults (gsi, loc, arg0, n);
1026 return NULL_TREE;
1029 /* Build a gimple call statement that calls FN with argument ARG.
1030 Set the lhs of the call statement to a fresh SSA name for
1031 variable VAR. If VAR is NULL, first allocate it. Insert the
1032 statement prior to GSI's current position, and return the fresh
1033 SSA name. */
1035 static tree
1036 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1037 tree *var, tree fn, tree arg)
1039 gimple call_stmt;
1040 tree ssa_target;
1042 if (!*var)
1044 *var = create_tmp_reg (TREE_TYPE (arg), "powroot");
1045 add_referenced_var (*var);
1048 call_stmt = gimple_build_call (fn, 1, arg);
1049 ssa_target = make_ssa_name (*var, NULL);
1050 gimple_set_lhs (call_stmt, ssa_target);
1051 gimple_set_location (call_stmt, loc);
1052 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1054 return ssa_target;
1057 /* Build a gimple binary operation with the given CODE and arguments
1058 ARG0, ARG1, assigning the result to a new SSA name for variable
1059 TARGET. Insert the statement prior to GSI's current position, and
1060 return the fresh SSA name.*/
1062 static tree
1063 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1064 tree target, enum tree_code code, tree arg0, tree arg1)
1066 tree result = make_ssa_name (target, NULL);
1067 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1068 gimple_set_location (stmt, loc);
1069 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1070 return result;
1073 /* Build a gimple reference operation with the given CODE and argument
1074 ARG, assigning the result to a new SSA name for variable TARGET.
1075 Insert the statement prior to GSI's current position, and return
1076 the fresh SSA name. */
1078 static inline tree
1079 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1080 tree target, enum tree_code code, tree arg0)
1082 tree result = make_ssa_name (target, NULL);
1083 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1084 gimple_set_location (stmt, loc);
1085 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1086 return result;
1089 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1090 with location info LOC. If possible, create an equivalent and
1091 less expensive sequence of statements prior to GSI, and return an
1092 expession holding the result. */
1094 static tree
1095 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1096 tree arg0, tree arg1)
1098 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1099 REAL_VALUE_TYPE c2, dconst3;
1100 HOST_WIDE_INT n;
1101 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1102 tree target = NULL_TREE;
1103 enum machine_mode mode;
1104 bool hw_sqrt_exists;
1106 /* If the exponent isn't a constant, there's nothing of interest
1107 to be done. */
1108 if (TREE_CODE (arg1) != REAL_CST)
1109 return NULL_TREE;
1111 /* If the exponent is equivalent to an integer, expand to an optimal
1112 multiplication sequence when profitable. */
1113 c = TREE_REAL_CST (arg1);
1114 n = real_to_integer (&c);
1115 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1117 if (real_identical (&c, &cint)
1118 && ((n >= -1 && n <= 2)
1119 || (flag_unsafe_math_optimizations
1120 && optimize_insn_for_speed_p ()
1121 && powi_cost (n) <= POWI_MAX_MULTS)))
1122 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1124 /* Attempt various optimizations using sqrt and cbrt. */
1125 type = TREE_TYPE (arg0);
1126 mode = TYPE_MODE (type);
1127 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1129 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1130 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1131 sqrt(-0) = -0. */
1132 if (sqrtfn
1133 && REAL_VALUES_EQUAL (c, dconsthalf)
1134 && !HONOR_SIGNED_ZEROS (mode))
1135 return build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1137 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1138 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1139 so do this optimization even if -Os. Don't do this optimization
1140 if we don't have a hardware sqrt insn. */
1141 dconst1_4 = dconst1;
1142 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1143 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1145 if (flag_unsafe_math_optimizations
1146 && sqrtfn
1147 && REAL_VALUES_EQUAL (c, dconst1_4)
1148 && hw_sqrt_exists)
1150 /* sqrt(x) */
1151 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1153 /* sqrt(sqrt(x)) */
1154 return build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
1157 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1158 optimizing for space. Don't do this optimization if we don't have
1159 a hardware sqrt insn. */
1160 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1161 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1163 if (flag_unsafe_math_optimizations
1164 && sqrtfn
1165 && optimize_function_for_speed_p (cfun)
1166 && REAL_VALUES_EQUAL (c, dconst3_4)
1167 && hw_sqrt_exists)
1169 /* sqrt(x) */
1170 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1172 /* sqrt(sqrt(x)) */
1173 sqrt_sqrt = build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
1175 /* sqrt(x) * sqrt(sqrt(x)) */
1176 return build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1177 sqrt_arg0, sqrt_sqrt);
1180 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1181 optimizations since 1./3. is not exactly representable. If x
1182 is negative and finite, the correct value of pow(x,1./3.) is
1183 a NaN with the "invalid" exception raised, because the value
1184 of 1./3. actually has an even denominator. The correct value
1185 of cbrt(x) is a negative real value. */
1186 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1187 dconst1_3 = real_value_truncate (mode, dconst_third ());
1189 if (flag_unsafe_math_optimizations
1190 && cbrtfn
1191 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1192 && REAL_VALUES_EQUAL (c, dconst1_3))
1193 return build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1195 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1196 if we don't have a hardware sqrt insn. */
1197 dconst1_6 = dconst1_3;
1198 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1200 if (flag_unsafe_math_optimizations
1201 && sqrtfn
1202 && cbrtfn
1203 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1204 && optimize_function_for_speed_p (cfun)
1205 && hw_sqrt_exists
1206 && REAL_VALUES_EQUAL (c, dconst1_6))
1208 /* sqrt(x) */
1209 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1211 /* cbrt(sqrt(x)) */
1212 return build_and_insert_call (gsi, loc, &target, cbrtfn, sqrt_arg0);
1215 /* Optimize pow(x,c), where n = 2c for some nonzero integer n, into
1217 sqrt(x) * powi(x, n/2), n > 0;
1218 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1220 Do not calculate the powi factor when n/2 = 0. */
1221 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1222 n = real_to_integer (&c2);
1223 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1225 if (flag_unsafe_math_optimizations
1226 && sqrtfn
1227 && real_identical (&c2, &cint))
1229 tree powi_x_ndiv2 = NULL_TREE;
1231 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1232 possible or profitable, give up. Skip the degenerate case when
1233 n is 1 or -1, where the result is always 1. */
1234 if (abs (n) != 1)
1236 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0, abs(n/2));
1237 if (!powi_x_ndiv2)
1238 return NULL_TREE;
1241 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1242 result of the optimal multiply sequence just calculated. */
1243 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1245 if (abs (n) == 1)
1246 result = sqrt_arg0;
1247 else
1248 result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1249 sqrt_arg0, powi_x_ndiv2);
1251 /* If n is negative, reciprocate the result. */
1252 if (n < 0)
1253 result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1254 build_real (type, dconst1), result);
1255 return result;
1258 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1260 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1261 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1263 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1264 different from pow(x, 1./3.) due to rounding and behavior with
1265 negative x, we need to constrain this transformation to unsafe
1266 math and positive x or finite math. */
1267 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1268 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1269 real_round (&c2, mode, &c2);
1270 n = real_to_integer (&c2);
1271 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1272 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1273 real_convert (&c2, mode, &c2);
1275 if (flag_unsafe_math_optimizations
1276 && cbrtfn
1277 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1278 && real_identical (&c2, &c)
1279 && optimize_function_for_speed_p (cfun)
1280 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1282 tree powi_x_ndiv3 = NULL_TREE;
1284 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1285 possible or profitable, give up. Skip the degenerate case when
1286 abs(n) < 3, where the result is always 1. */
1287 if (abs (n) >= 3)
1289 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1290 abs (n / 3));
1291 if (!powi_x_ndiv3)
1292 return NULL_TREE;
1295 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1296 as that creates an unnecessary variable. Instead, just produce
1297 either cbrt(x) or cbrt(x) * cbrt(x). */
1298 cbrt_x = build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1300 if (abs (n) % 3 == 1)
1301 powi_cbrt_x = cbrt_x;
1302 else
1303 powi_cbrt_x = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1304 cbrt_x, cbrt_x);
1306 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1307 if (abs (n) < 3)
1308 result = powi_cbrt_x;
1309 else
1310 result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1311 powi_x_ndiv3, powi_cbrt_x);
1313 /* If n is negative, reciprocate the result. */
1314 if (n < 0)
1315 result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1316 build_real (type, dconst1), result);
1318 return result;
1321 /* No optimizations succeeded. */
1322 return NULL_TREE;
1325 /* ARG is the argument to a cabs builtin call in GSI with location info
1326 LOC. Create a sequence of statements prior to GSI that calculates
1327 sqrt(R*R + I*I), where R and I are the real and imaginary components
1328 of ARG, respectively. Return an expression holding the result. */
1330 static tree
1331 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1333 tree target, real_part, imag_part, addend1, addend2, sum, result;
1334 tree type = TREE_TYPE (TREE_TYPE (arg));
1335 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1336 enum machine_mode mode = TYPE_MODE (type);
1338 if (!flag_unsafe_math_optimizations
1339 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1340 || !sqrtfn
1341 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1342 return NULL_TREE;
1344 target = create_tmp_reg (type, "cabs");
1345 add_referenced_var (target);
1347 real_part = build_and_insert_ref (gsi, loc, type, target,
1348 REALPART_EXPR, arg);
1349 addend1 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1350 real_part, real_part);
1351 imag_part = build_and_insert_ref (gsi, loc, type, target,
1352 IMAGPART_EXPR, arg);
1353 addend2 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1354 imag_part, imag_part);
1355 sum = build_and_insert_binop (gsi, loc, target, PLUS_EXPR, addend1, addend2);
1356 result = build_and_insert_call (gsi, loc, &target, sqrtfn, sum);
1358 return result;
1361 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1362 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1363 an optimal number of multiplies, when n is a constant. */
1365 static unsigned int
1366 execute_cse_sincos (void)
1368 basic_block bb;
1369 bool cfg_changed = false;
1371 calculate_dominance_info (CDI_DOMINATORS);
1372 memset (&sincos_stats, 0, sizeof (sincos_stats));
1374 FOR_EACH_BB (bb)
1376 gimple_stmt_iterator gsi;
1378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1380 gimple stmt = gsi_stmt (gsi);
1381 tree fndecl;
1383 if (is_gimple_call (stmt)
1384 && gimple_call_lhs (stmt)
1385 && (fndecl = gimple_call_fndecl (stmt))
1386 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1388 tree arg, arg0, arg1, result;
1389 HOST_WIDE_INT n;
1390 location_t loc;
1392 switch (DECL_FUNCTION_CODE (fndecl))
1394 CASE_FLT_FN (BUILT_IN_COS):
1395 CASE_FLT_FN (BUILT_IN_SIN):
1396 CASE_FLT_FN (BUILT_IN_CEXPI):
1397 /* Make sure we have either sincos or cexp. */
1398 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1399 break;
1401 arg = gimple_call_arg (stmt, 0);
1402 if (TREE_CODE (arg) == SSA_NAME)
1403 cfg_changed |= execute_cse_sincos_1 (arg);
1404 break;
1406 CASE_FLT_FN (BUILT_IN_POW):
1407 arg0 = gimple_call_arg (stmt, 0);
1408 arg1 = gimple_call_arg (stmt, 1);
1410 loc = gimple_location (stmt);
1411 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1413 if (result)
1415 tree lhs = gimple_get_lhs (stmt);
1416 gimple new_stmt = gimple_build_assign (lhs, result);
1417 gimple_set_location (new_stmt, loc);
1418 unlink_stmt_vdef (stmt);
1419 gsi_replace (&gsi, new_stmt, true);
1421 break;
1423 CASE_FLT_FN (BUILT_IN_POWI):
1424 arg0 = gimple_call_arg (stmt, 0);
1425 arg1 = gimple_call_arg (stmt, 1);
1426 if (!host_integerp (arg1, 0))
1427 break;
1429 n = TREE_INT_CST_LOW (arg1);
1430 loc = gimple_location (stmt);
1431 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1433 if (result)
1435 tree lhs = gimple_get_lhs (stmt);
1436 gimple new_stmt = gimple_build_assign (lhs, result);
1437 gimple_set_location (new_stmt, loc);
1438 unlink_stmt_vdef (stmt);
1439 gsi_replace (&gsi, new_stmt, true);
1441 break;
1443 CASE_FLT_FN (BUILT_IN_CABS):
1444 arg0 = gimple_call_arg (stmt, 0);
1445 loc = gimple_location (stmt);
1446 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1448 if (result)
1450 tree lhs = gimple_get_lhs (stmt);
1451 gimple new_stmt = gimple_build_assign (lhs, result);
1452 gimple_set_location (new_stmt, loc);
1453 unlink_stmt_vdef (stmt);
1454 gsi_replace (&gsi, new_stmt, true);
1456 break;
1458 default:;
1464 statistics_counter_event (cfun, "sincos statements inserted",
1465 sincos_stats.inserted);
1467 free_dominance_info (CDI_DOMINATORS);
1468 return cfg_changed ? TODO_cleanup_cfg : 0;
1471 static bool
1472 gate_cse_sincos (void)
1474 /* We no longer require either sincos or cexp, since powi expansion
1475 piggybacks on this pass. */
1476 return optimize;
1479 struct gimple_opt_pass pass_cse_sincos =
1482 GIMPLE_PASS,
1483 "sincos", /* name */
1484 gate_cse_sincos, /* gate */
1485 execute_cse_sincos, /* execute */
1486 NULL, /* sub */
1487 NULL, /* next */
1488 0, /* static_pass_number */
1489 TV_NONE, /* tv_id */
1490 PROP_ssa, /* properties_required */
1491 0, /* properties_provided */
1492 0, /* properties_destroyed */
1493 0, /* todo_flags_start */
1494 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1495 | TODO_verify_stmts /* todo_flags_finish */
1499 /* A symbolic number is used to detect byte permutation and selection
1500 patterns. Therefore the field N contains an artificial number
1501 consisting of byte size markers:
1503 0 - byte has the value 0
1504 1..size - byte contains the content of the byte
1505 number indexed with that value minus one */
1507 struct symbolic_number {
1508 unsigned HOST_WIDEST_INT n;
1509 int size;
1512 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1513 number N. Return false if the requested operation is not permitted
1514 on a symbolic number. */
1516 static inline bool
1517 do_shift_rotate (enum tree_code code,
1518 struct symbolic_number *n,
1519 int count)
1521 if (count % 8 != 0)
1522 return false;
1524 /* Zero out the extra bits of N in order to avoid them being shifted
1525 into the significant bits. */
1526 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1527 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1529 switch (code)
1531 case LSHIFT_EXPR:
1532 n->n <<= count;
1533 break;
1534 case RSHIFT_EXPR:
1535 n->n >>= count;
1536 break;
1537 case LROTATE_EXPR:
1538 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1539 break;
1540 case RROTATE_EXPR:
1541 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1542 break;
1543 default:
1544 return false;
1546 return true;
1549 /* Perform sanity checking for the symbolic number N and the gimple
1550 statement STMT. */
1552 static inline bool
1553 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1555 tree lhs_type;
1557 lhs_type = gimple_expr_type (stmt);
1559 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1560 return false;
1562 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1563 return false;
1565 return true;
1568 /* find_bswap_1 invokes itself recursively with N and tries to perform
1569 the operation given by the rhs of STMT on the result. If the
1570 operation could successfully be executed the function returns the
1571 tree expression of the source operand and NULL otherwise. */
1573 static tree
1574 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1576 enum tree_code code;
1577 tree rhs1, rhs2 = NULL;
1578 gimple rhs1_stmt, rhs2_stmt;
1579 tree source_expr1;
1580 enum gimple_rhs_class rhs_class;
1582 if (!limit || !is_gimple_assign (stmt))
1583 return NULL_TREE;
1585 rhs1 = gimple_assign_rhs1 (stmt);
1587 if (TREE_CODE (rhs1) != SSA_NAME)
1588 return NULL_TREE;
1590 code = gimple_assign_rhs_code (stmt);
1591 rhs_class = gimple_assign_rhs_class (stmt);
1592 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1594 if (rhs_class == GIMPLE_BINARY_RHS)
1595 rhs2 = gimple_assign_rhs2 (stmt);
1597 /* Handle unary rhs and binary rhs with integer constants as second
1598 operand. */
1600 if (rhs_class == GIMPLE_UNARY_RHS
1601 || (rhs_class == GIMPLE_BINARY_RHS
1602 && TREE_CODE (rhs2) == INTEGER_CST))
1604 if (code != BIT_AND_EXPR
1605 && code != LSHIFT_EXPR
1606 && code != RSHIFT_EXPR
1607 && code != LROTATE_EXPR
1608 && code != RROTATE_EXPR
1609 && code != NOP_EXPR
1610 && code != CONVERT_EXPR)
1611 return NULL_TREE;
1613 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1615 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1616 to initialize the symbolic number. */
1617 if (!source_expr1)
1619 /* Set up the symbolic number N by setting each byte to a
1620 value between 1 and the byte size of rhs1. The highest
1621 order byte is set to n->size and the lowest order
1622 byte to 1. */
1623 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1624 if (n->size % BITS_PER_UNIT != 0)
1625 return NULL_TREE;
1626 n->size /= BITS_PER_UNIT;
1627 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1628 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1630 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1631 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1632 (n->size * BITS_PER_UNIT)) - 1;
1634 source_expr1 = rhs1;
1637 switch (code)
1639 case BIT_AND_EXPR:
1641 int i;
1642 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1643 unsigned HOST_WIDEST_INT tmp = val;
1645 /* Only constants masking full bytes are allowed. */
1646 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1647 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1648 return NULL_TREE;
1650 n->n &= val;
1652 break;
1653 case LSHIFT_EXPR:
1654 case RSHIFT_EXPR:
1655 case LROTATE_EXPR:
1656 case RROTATE_EXPR:
1657 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1658 return NULL_TREE;
1659 break;
1660 CASE_CONVERT:
1662 int type_size;
1664 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1665 if (type_size % BITS_PER_UNIT != 0)
1666 return NULL_TREE;
1668 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1670 /* If STMT casts to a smaller type mask out the bits not
1671 belonging to the target type. */
1672 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1674 n->size = type_size / BITS_PER_UNIT;
1676 break;
1677 default:
1678 return NULL_TREE;
1680 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1683 /* Handle binary rhs. */
1685 if (rhs_class == GIMPLE_BINARY_RHS)
1687 struct symbolic_number n1, n2;
1688 tree source_expr2;
1690 if (code != BIT_IOR_EXPR)
1691 return NULL_TREE;
1693 if (TREE_CODE (rhs2) != SSA_NAME)
1694 return NULL_TREE;
1696 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1698 switch (code)
1700 case BIT_IOR_EXPR:
1701 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1703 if (!source_expr1)
1704 return NULL_TREE;
1706 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1708 if (source_expr1 != source_expr2
1709 || n1.size != n2.size)
1710 return NULL_TREE;
1712 n->size = n1.size;
1713 n->n = n1.n | n2.n;
1715 if (!verify_symbolic_number_p (n, stmt))
1716 return NULL_TREE;
1718 break;
1719 default:
1720 return NULL_TREE;
1722 return source_expr1;
1724 return NULL_TREE;
1727 /* Check if STMT completes a bswap implementation consisting of ORs,
1728 SHIFTs and ANDs. Return the source tree expression on which the
1729 byte swap is performed and NULL if no bswap was found. */
1731 static tree
1732 find_bswap (gimple stmt)
1734 /* The number which the find_bswap result should match in order to
1735 have a full byte swap. The number is shifted to the left according
1736 to the size of the symbolic number before using it. */
1737 unsigned HOST_WIDEST_INT cmp =
1738 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1739 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1741 struct symbolic_number n;
1742 tree source_expr;
1744 /* The last parameter determines the depth search limit. It usually
1745 correlates directly to the number of bytes to be touched. We
1746 increase that number by one here in order to also cover signed ->
1747 unsigned conversions of the src operand as can be seen in
1748 libgcc. */
1749 source_expr = find_bswap_1 (stmt, &n,
1750 TREE_INT_CST_LOW (
1751 TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
1753 if (!source_expr)
1754 return NULL_TREE;
1756 /* Zero out the extra bits of N and CMP. */
1757 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1759 unsigned HOST_WIDEST_INT mask =
1760 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1762 n.n &= mask;
1763 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1766 /* A complete byte swap should make the symbolic number to start
1767 with the largest digit in the highest order byte. */
1768 if (cmp != n.n)
1769 return NULL_TREE;
1771 return source_expr;
1774 /* Find manual byte swap implementations and turn them into a bswap
1775 builtin invokation. */
1777 static unsigned int
1778 execute_optimize_bswap (void)
1780 basic_block bb;
1781 bool bswap32_p, bswap64_p;
1782 bool changed = false;
1783 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1785 if (BITS_PER_UNIT != 8)
1786 return 0;
1788 if (sizeof (HOST_WIDEST_INT) < 8)
1789 return 0;
1791 bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
1792 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1793 bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
1794 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1795 || (bswap32_p && word_mode == SImode)));
1797 if (!bswap32_p && !bswap64_p)
1798 return 0;
1800 /* Determine the argument type of the builtins. The code later on
1801 assumes that the return and argument type are the same. */
1802 if (bswap32_p)
1804 tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
1805 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1808 if (bswap64_p)
1810 tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
1811 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1814 memset (&bswap_stats, 0, sizeof (bswap_stats));
1816 FOR_EACH_BB (bb)
1818 gimple_stmt_iterator gsi;
1820 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1822 gimple stmt = gsi_stmt (gsi);
1823 tree bswap_src, bswap_type;
1824 tree bswap_tmp;
1825 tree fndecl = NULL_TREE;
1826 int type_size;
1827 gimple call;
1829 if (!is_gimple_assign (stmt)
1830 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1831 continue;
1833 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1835 switch (type_size)
1837 case 32:
1838 if (bswap32_p)
1840 fndecl = built_in_decls[BUILT_IN_BSWAP32];
1841 bswap_type = bswap32_type;
1843 break;
1844 case 64:
1845 if (bswap64_p)
1847 fndecl = built_in_decls[BUILT_IN_BSWAP64];
1848 bswap_type = bswap64_type;
1850 break;
1851 default:
1852 continue;
1855 if (!fndecl)
1856 continue;
1858 bswap_src = find_bswap (stmt);
1860 if (!bswap_src)
1861 continue;
1863 changed = true;
1864 if (type_size == 32)
1865 bswap_stats.found_32bit++;
1866 else
1867 bswap_stats.found_64bit++;
1869 bswap_tmp = bswap_src;
1871 /* Convert the src expression if necessary. */
1872 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1874 gimple convert_stmt;
1876 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1877 add_referenced_var (bswap_tmp);
1878 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1880 convert_stmt = gimple_build_assign_with_ops (
1881 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1882 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1885 call = gimple_build_call (fndecl, 1, bswap_tmp);
1887 bswap_tmp = gimple_assign_lhs (stmt);
1889 /* Convert the result if necessary. */
1890 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1892 gimple convert_stmt;
1894 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1895 add_referenced_var (bswap_tmp);
1896 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1897 convert_stmt = gimple_build_assign_with_ops (
1898 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1899 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1902 gimple_call_set_lhs (call, bswap_tmp);
1904 if (dump_file)
1906 fprintf (dump_file, "%d bit bswap implementation found at: ",
1907 (int)type_size);
1908 print_gimple_stmt (dump_file, stmt, 0, 0);
1911 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1912 gsi_remove (&gsi, true);
1916 statistics_counter_event (cfun, "32-bit bswap implementations found",
1917 bswap_stats.found_32bit);
1918 statistics_counter_event (cfun, "64-bit bswap implementations found",
1919 bswap_stats.found_64bit);
1921 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1922 | TODO_verify_stmts : 0);
1925 static bool
1926 gate_optimize_bswap (void)
1928 return flag_expensive_optimizations && optimize;
1931 struct gimple_opt_pass pass_optimize_bswap =
1934 GIMPLE_PASS,
1935 "bswap", /* name */
1936 gate_optimize_bswap, /* gate */
1937 execute_optimize_bswap, /* execute */
1938 NULL, /* sub */
1939 NULL, /* next */
1940 0, /* static_pass_number */
1941 TV_NONE, /* tv_id */
1942 PROP_ssa, /* properties_required */
1943 0, /* properties_provided */
1944 0, /* properties_destroyed */
1945 0, /* todo_flags_start */
1946 0 /* todo_flags_finish */
1950 /* Return true if RHS is a suitable operand for a widening multiplication.
1951 There are two cases:
1953 - RHS makes some value twice as wide. Store that value in *NEW_RHS_OUT
1954 if so, and store its type in *TYPE_OUT.
1956 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
1957 but leave *TYPE_OUT untouched. */
1959 static bool
1960 is_widening_mult_rhs_p (tree rhs, tree *type_out, tree *new_rhs_out)
1962 gimple stmt;
1963 tree type, type1, rhs1;
1964 enum tree_code rhs_code;
1966 if (TREE_CODE (rhs) == SSA_NAME)
1968 type = TREE_TYPE (rhs);
1969 stmt = SSA_NAME_DEF_STMT (rhs);
1970 if (!is_gimple_assign (stmt))
1971 return false;
1973 rhs_code = gimple_assign_rhs_code (stmt);
1974 if (TREE_CODE (type) == INTEGER_TYPE
1975 ? !CONVERT_EXPR_CODE_P (rhs_code)
1976 : rhs_code != FIXED_CONVERT_EXPR)
1977 return false;
1979 rhs1 = gimple_assign_rhs1 (stmt);
1980 type1 = TREE_TYPE (rhs1);
1981 if (TREE_CODE (type1) != TREE_CODE (type)
1982 || TYPE_PRECISION (type1) * 2 != TYPE_PRECISION (type))
1983 return false;
1985 *new_rhs_out = rhs1;
1986 *type_out = type1;
1987 return true;
1990 if (TREE_CODE (rhs) == INTEGER_CST)
1992 *new_rhs_out = rhs;
1993 *type_out = NULL;
1994 return true;
1997 return false;
2000 /* Return true if STMT performs a widening multiplication. If so,
2001 store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT
2002 respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting
2003 those operands to types *TYPE1_OUT and *TYPE2_OUT would give the
2004 operands of the multiplication. */
2006 static bool
2007 is_widening_mult_p (gimple stmt,
2008 tree *type1_out, tree *rhs1_out,
2009 tree *type2_out, tree *rhs2_out)
2011 tree type;
2013 type = TREE_TYPE (gimple_assign_lhs (stmt));
2014 if (TREE_CODE (type) != INTEGER_TYPE
2015 && TREE_CODE (type) != FIXED_POINT_TYPE)
2016 return false;
2018 if (!is_widening_mult_rhs_p (gimple_assign_rhs1 (stmt), type1_out, rhs1_out))
2019 return false;
2021 if (!is_widening_mult_rhs_p (gimple_assign_rhs2 (stmt), type2_out, rhs2_out))
2022 return false;
2024 if (*type1_out == NULL)
2026 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2027 return false;
2028 *type1_out = *type2_out;
2031 if (*type2_out == NULL)
2033 if (!int_fits_type_p (*rhs2_out, *type1_out))
2034 return false;
2035 *type2_out = *type1_out;
2038 return true;
2041 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2042 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2043 value is true iff we converted the statement. */
2045 static bool
2046 convert_mult_to_widen (gimple stmt)
2048 tree lhs, rhs1, rhs2, type, type1, type2;
2049 enum insn_code handler;
2051 lhs = gimple_assign_lhs (stmt);
2052 type = TREE_TYPE (lhs);
2053 if (TREE_CODE (type) != INTEGER_TYPE)
2054 return false;
2056 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2057 return false;
2059 if (TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2))
2060 handler = optab_handler (umul_widen_optab, TYPE_MODE (type));
2061 else if (!TYPE_UNSIGNED (type1) && !TYPE_UNSIGNED (type2))
2062 handler = optab_handler (smul_widen_optab, TYPE_MODE (type));
2063 else
2064 handler = optab_handler (usmul_widen_optab, TYPE_MODE (type));
2066 if (handler == CODE_FOR_nothing)
2067 return false;
2069 gimple_assign_set_rhs1 (stmt, fold_convert (type1, rhs1));
2070 gimple_assign_set_rhs2 (stmt, fold_convert (type2, rhs2));
2071 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2072 update_stmt (stmt);
2073 widen_mul_stats.widen_mults_inserted++;
2074 return true;
2077 /* Process a single gimple statement STMT, which is found at the
2078 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2079 rhs (given by CODE), and try to convert it into a
2080 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2081 is true iff we converted the statement. */
2083 static bool
2084 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2085 enum tree_code code)
2087 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2088 tree type, type1, type2;
2089 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2090 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2091 optab this_optab;
2092 enum tree_code wmult_code;
2094 lhs = gimple_assign_lhs (stmt);
2095 type = TREE_TYPE (lhs);
2096 if (TREE_CODE (type) != INTEGER_TYPE
2097 && TREE_CODE (type) != FIXED_POINT_TYPE)
2098 return false;
2100 if (code == MINUS_EXPR)
2101 wmult_code = WIDEN_MULT_MINUS_EXPR;
2102 else
2103 wmult_code = WIDEN_MULT_PLUS_EXPR;
2105 rhs1 = gimple_assign_rhs1 (stmt);
2106 rhs2 = gimple_assign_rhs2 (stmt);
2108 if (TREE_CODE (rhs1) == SSA_NAME)
2110 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2111 if (is_gimple_assign (rhs1_stmt))
2112 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2114 else
2115 return false;
2117 if (TREE_CODE (rhs2) == SSA_NAME)
2119 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2120 if (is_gimple_assign (rhs2_stmt))
2121 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2123 else
2124 return false;
2126 if (code == PLUS_EXPR && rhs1_code == MULT_EXPR)
2128 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2129 &type2, &mult_rhs2))
2130 return false;
2131 add_rhs = rhs2;
2133 else if (rhs2_code == MULT_EXPR)
2135 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2136 &type2, &mult_rhs2))
2137 return false;
2138 add_rhs = rhs1;
2140 else if (code == PLUS_EXPR && rhs1_code == WIDEN_MULT_EXPR)
2142 mult_rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2143 mult_rhs2 = gimple_assign_rhs2 (rhs1_stmt);
2144 type1 = TREE_TYPE (mult_rhs1);
2145 type2 = TREE_TYPE (mult_rhs2);
2146 add_rhs = rhs2;
2148 else if (rhs2_code == WIDEN_MULT_EXPR)
2150 mult_rhs1 = gimple_assign_rhs1 (rhs2_stmt);
2151 mult_rhs2 = gimple_assign_rhs2 (rhs2_stmt);
2152 type1 = TREE_TYPE (mult_rhs1);
2153 type2 = TREE_TYPE (mult_rhs2);
2154 add_rhs = rhs1;
2156 else
2157 return false;
2159 if (TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2))
2160 return false;
2162 /* Verify that the machine can perform a widening multiply
2163 accumulate in this mode/signedness combination, otherwise
2164 this transformation is likely to pessimize code. */
2165 this_optab = optab_for_tree_code (wmult_code, type1, optab_default);
2166 if (optab_handler (this_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2167 return false;
2169 /* ??? May need some type verification here? */
2171 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code,
2172 fold_convert (type1, mult_rhs1),
2173 fold_convert (type2, mult_rhs2),
2174 add_rhs);
2175 update_stmt (gsi_stmt (*gsi));
2176 widen_mul_stats.maccs_inserted++;
2177 return true;
2180 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2181 with uses in additions and subtractions to form fused multiply-add
2182 operations. Returns true if successful and MUL_STMT should be removed. */
2184 static bool
2185 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2187 tree mul_result = gimple_get_lhs (mul_stmt);
2188 tree type = TREE_TYPE (mul_result);
2189 gimple use_stmt, neguse_stmt, fma_stmt;
2190 use_operand_p use_p;
2191 imm_use_iterator imm_iter;
2193 if (FLOAT_TYPE_P (type)
2194 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2195 return false;
2197 /* We don't want to do bitfield reduction ops. */
2198 if (INTEGRAL_TYPE_P (type)
2199 && (TYPE_PRECISION (type)
2200 != GET_MODE_PRECISION (TYPE_MODE (type))))
2201 return false;
2203 /* If the target doesn't support it, don't generate it. We assume that
2204 if fma isn't available then fms, fnma or fnms are not either. */
2205 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2206 return false;
2208 /* Make sure that the multiplication statement becomes dead after
2209 the transformation, thus that all uses are transformed to FMAs.
2210 This means we assume that an FMA operation has the same cost
2211 as an addition. */
2212 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2214 enum tree_code use_code;
2215 tree result = mul_result;
2216 bool negate_p = false;
2218 use_stmt = USE_STMT (use_p);
2220 if (is_gimple_debug (use_stmt))
2221 continue;
2223 /* For now restrict this operations to single basic blocks. In theory
2224 we would want to support sinking the multiplication in
2225 m = a*b;
2226 if ()
2227 ma = m + c;
2228 else
2229 d = m;
2230 to form a fma in the then block and sink the multiplication to the
2231 else block. */
2232 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2233 return false;
2235 if (!is_gimple_assign (use_stmt))
2236 return false;
2238 use_code = gimple_assign_rhs_code (use_stmt);
2240 /* A negate on the multiplication leads to FNMA. */
2241 if (use_code == NEGATE_EXPR)
2243 ssa_op_iter iter;
2244 use_operand_p usep;
2246 result = gimple_assign_lhs (use_stmt);
2248 /* Make sure the negate statement becomes dead with this
2249 single transformation. */
2250 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2251 &use_p, &neguse_stmt))
2252 return false;
2254 /* Make sure the multiplication isn't also used on that stmt. */
2255 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2256 if (USE_FROM_PTR (usep) == mul_result)
2257 return false;
2259 /* Re-validate. */
2260 use_stmt = neguse_stmt;
2261 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2262 return false;
2263 if (!is_gimple_assign (use_stmt))
2264 return false;
2266 use_code = gimple_assign_rhs_code (use_stmt);
2267 negate_p = true;
2270 switch (use_code)
2272 case MINUS_EXPR:
2273 if (gimple_assign_rhs2 (use_stmt) == result)
2274 negate_p = !negate_p;
2275 break;
2276 case PLUS_EXPR:
2277 break;
2278 default:
2279 /* FMA can only be formed from PLUS and MINUS. */
2280 return false;
2283 /* We can't handle a * b + a * b. */
2284 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2285 return false;
2287 /* While it is possible to validate whether or not the exact form
2288 that we've recognized is available in the backend, the assumption
2289 is that the transformation is never a loss. For instance, suppose
2290 the target only has the plain FMA pattern available. Consider
2291 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2292 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2293 still have 3 operations, but in the FMA form the two NEGs are
2294 independant and could be run in parallel. */
2297 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2299 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2300 enum tree_code use_code;
2301 tree addop, mulop1 = op1, result = mul_result;
2302 bool negate_p = false;
2304 if (is_gimple_debug (use_stmt))
2305 continue;
2307 use_code = gimple_assign_rhs_code (use_stmt);
2308 if (use_code == NEGATE_EXPR)
2310 result = gimple_assign_lhs (use_stmt);
2311 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2312 gsi_remove (&gsi, true);
2313 release_defs (use_stmt);
2315 use_stmt = neguse_stmt;
2316 gsi = gsi_for_stmt (use_stmt);
2317 use_code = gimple_assign_rhs_code (use_stmt);
2318 negate_p = true;
2321 if (gimple_assign_rhs1 (use_stmt) == result)
2323 addop = gimple_assign_rhs2 (use_stmt);
2324 /* a * b - c -> a * b + (-c) */
2325 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2326 addop = force_gimple_operand_gsi (&gsi,
2327 build1 (NEGATE_EXPR,
2328 type, addop),
2329 true, NULL_TREE, true,
2330 GSI_SAME_STMT);
2332 else
2334 addop = gimple_assign_rhs1 (use_stmt);
2335 /* a - b * c -> (-b) * c + a */
2336 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2337 negate_p = !negate_p;
2340 if (negate_p)
2341 mulop1 = force_gimple_operand_gsi (&gsi,
2342 build1 (NEGATE_EXPR,
2343 type, mulop1),
2344 true, NULL_TREE, true,
2345 GSI_SAME_STMT);
2347 fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
2348 gimple_assign_lhs (use_stmt),
2349 mulop1, op2,
2350 addop);
2351 gsi_replace (&gsi, fma_stmt, true);
2352 widen_mul_stats.fmas_inserted++;
2355 return true;
2358 /* Find integer multiplications where the operands are extended from
2359 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2360 where appropriate. */
2362 static unsigned int
2363 execute_optimize_widening_mul (void)
2365 basic_block bb;
2366 bool cfg_changed = false;
2368 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2370 FOR_EACH_BB (bb)
2372 gimple_stmt_iterator gsi;
2374 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2376 gimple stmt = gsi_stmt (gsi);
2377 enum tree_code code;
2379 if (is_gimple_assign (stmt))
2381 code = gimple_assign_rhs_code (stmt);
2382 switch (code)
2384 case MULT_EXPR:
2385 if (!convert_mult_to_widen (stmt)
2386 && convert_mult_to_fma (stmt,
2387 gimple_assign_rhs1 (stmt),
2388 gimple_assign_rhs2 (stmt)))
2390 gsi_remove (&gsi, true);
2391 release_defs (stmt);
2392 continue;
2394 break;
2396 case PLUS_EXPR:
2397 case MINUS_EXPR:
2398 convert_plusminus_to_widen (&gsi, stmt, code);
2399 break;
2401 default:;
2404 else if (is_gimple_call (stmt)
2405 && gimple_call_lhs (stmt))
2407 tree fndecl = gimple_call_fndecl (stmt);
2408 if (fndecl
2409 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2411 switch (DECL_FUNCTION_CODE (fndecl))
2413 case BUILT_IN_POWF:
2414 case BUILT_IN_POW:
2415 case BUILT_IN_POWL:
2416 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2417 && REAL_VALUES_EQUAL
2418 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2419 dconst2)
2420 && convert_mult_to_fma (stmt,
2421 gimple_call_arg (stmt, 0),
2422 gimple_call_arg (stmt, 0)))
2424 unlink_stmt_vdef (stmt);
2425 gsi_remove (&gsi, true);
2426 release_defs (stmt);
2427 if (gimple_purge_dead_eh_edges (bb))
2428 cfg_changed = true;
2429 continue;
2431 break;
2433 default:;
2437 gsi_next (&gsi);
2441 statistics_counter_event (cfun, "widening multiplications inserted",
2442 widen_mul_stats.widen_mults_inserted);
2443 statistics_counter_event (cfun, "widening maccs inserted",
2444 widen_mul_stats.maccs_inserted);
2445 statistics_counter_event (cfun, "fused multiply-adds inserted",
2446 widen_mul_stats.fmas_inserted);
2448 return cfg_changed ? TODO_cleanup_cfg : 0;
2451 static bool
2452 gate_optimize_widening_mul (void)
2454 return flag_expensive_optimizations && optimize;
2457 struct gimple_opt_pass pass_optimize_widening_mul =
2460 GIMPLE_PASS,
2461 "widening_mul", /* name */
2462 gate_optimize_widening_mul, /* gate */
2463 execute_optimize_widening_mul, /* execute */
2464 NULL, /* sub */
2465 NULL, /* next */
2466 0, /* static_pass_number */
2467 TV_NONE, /* tv_id */
2468 PROP_ssa, /* properties_required */
2469 0, /* properties_provided */
2470 0, /* properties_destroyed */
2471 0, /* todo_flags_start */
2472 TODO_verify_ssa
2473 | TODO_verify_stmts
2474 | TODO_dump_func
2475 | TODO_update_ssa /* todo_flags_finish */