20090811-1.c: Skip for incompatible options, do not override other options.
[official-gcc.git] / gcc / combine.c
blob5b68bab12d796c32598fc948bc0d03fde917f165
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
315 struct insn_link {
316 rtx insn;
317 struct insn_link *next;
320 static struct insn_link **uid_log_links;
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
328 /* Links for LOG_LINKS are allocated from this obstack. */
330 static struct obstack insn_link_obstack;
332 /* Allocate a link. */
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
337 struct insn_link *l
338 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 sizeof (struct insn_link));
340 l->insn = insn;
341 l->next = next;
342 return l;
345 /* Incremented for each basic block. */
347 static int label_tick;
349 /* Reset to label_tick for each extended basic block in scanning order. */
351 static int label_tick_ebb_start;
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
356 static enum machine_mode nonzero_bits_mode;
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
362 in a loop. */
364 static int nonzero_sign_valid;
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
372 struct undo
374 struct undo *next;
375 enum undo_kind kind;
376 union { rtx r; int i; enum machine_mode m; } old_contents;
377 union { rtx *r; int *i; } where;
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
386 struct undobuf
388 struct undo *undos;
389 struct undo *frees;
390 rtx other_insn;
393 static struct undobuf undobuf;
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
398 static int n_occurrences;
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 enum machine_mode,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
504 register. */
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
509 rtx ret;
510 unsigned int nregs;
512 ret = split_insns (pattern, insn);
513 nregs = max_reg_num ();
514 if (nregs > VEC_length (reg_stat_type, reg_stat))
515 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516 return ret;
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
528 rtx x = *loc;
529 enum rtx_code code = GET_CODE (x);
530 rtx *result = NULL;
531 rtx *this_result;
532 int i;
533 const char *fmt;
535 switch (code)
537 case CONST_INT:
538 case CONST:
539 case LABEL_REF:
540 case SYMBOL_REF:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case CLOBBER:
544 return 0;
546 case SET:
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x)) != CC0
552 && GET_CODE (SET_DEST (x)) != PC
553 && !REG_P (SET_DEST (x))
554 && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 break;
562 return find_single_use_1 (dest, &SET_SRC (x));
564 case MEM:
565 case SUBREG:
566 return find_single_use_1 (dest, &XEXP (x, 0));
568 default:
569 break;
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
575 fmt = GET_RTX_FORMAT (code);
576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
578 if (fmt[i] == 'e')
580 if (dest == XEXP (x, i)
581 || (REG_P (dest) && REG_P (XEXP (x, i))
582 && REGNO (dest) == REGNO (XEXP (x, i))))
583 this_result = loc;
584 else
585 this_result = find_single_use_1 (dest, &XEXP (x, i));
587 if (result == NULL)
588 result = this_result;
589 else if (this_result)
590 /* Duplicate usage. */
591 return NULL;
593 else if (fmt[i] == 'E')
595 int j;
597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
599 if (XVECEXP (x, i, j) == dest
600 || (REG_P (dest)
601 && REG_P (XVECEXP (x, i, j))
602 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 return NULL;
615 return result;
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
621 it is used.
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
636 basic_block bb;
637 rtx next;
638 rtx *result;
639 struct insn_link *link;
641 #ifdef HAVE_cc0
642 if (dest == cc0_rtx)
644 next = NEXT_INSN (insn);
645 if (next == 0
646 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 return 0;
649 result = find_single_use_1 (dest, &PATTERN (next));
650 if (result && ploc)
651 *ploc = next;
652 return result;
654 #endif
656 if (!REG_P (dest))
657 return 0;
659 bb = BLOCK_FOR_INSN (insn);
660 for (next = NEXT_INSN (insn);
661 next && BLOCK_FOR_INSN (next) == bb;
662 next = NEXT_INSN (next))
663 if (INSN_P (next) && dead_or_set_p (next, dest))
665 FOR_EACH_LOG_LINK (link, next)
666 if (link->insn == insn)
667 break;
669 if (link)
671 result = find_single_use_1 (dest, &PATTERN (next));
672 if (ploc)
673 *ploc = next;
674 return result;
678 return 0;
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
685 the undo table. */
687 static void
688 do_SUBST (rtx *into, rtx newval)
690 struct undo *buf;
691 rtx oldval = *into;
693 if (oldval == newval)
694 return;
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702 && CONST_INT_P (newval))
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval)
707 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval))));
717 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval, 0))));
721 if (undobuf.frees)
722 buf = undobuf.frees, undobuf.frees = buf->next;
723 else
724 buf = XNEW (struct undo);
726 buf->kind = UNDO_RTX;
727 buf->where.r = into;
728 buf->old_contents.r = oldval;
729 *into = newval;
731 buf->next = undobuf.undos, undobuf.undos = buf;
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
738 not safe. */
740 static void
741 do_SUBST_INT (int *into, int newval)
743 struct undo *buf;
744 int oldval = *into;
746 if (oldval == newval)
747 return;
749 if (undobuf.frees)
750 buf = undobuf.frees, undobuf.frees = buf->next;
751 else
752 buf = XNEW (struct undo);
754 buf->kind = UNDO_INT;
755 buf->where.i = into;
756 buf->old_contents.i = oldval;
757 *into = newval;
759 buf->next = undobuf.undos, undobuf.undos = buf;
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
767 well. */
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
772 struct undo *buf;
773 enum machine_mode oldval = GET_MODE (*into);
775 if (oldval == newval)
776 return;
778 if (undobuf.frees)
779 buf = undobuf.frees, undobuf.frees = buf->next;
780 else
781 buf = XNEW (struct undo);
783 buf->kind = UNDO_MODE;
784 buf->where.r = into;
785 buf->old_contents.m = oldval;
786 adjust_reg_mode (*into, newval);
788 buf->next = undobuf.undos, undobuf.undos = buf;
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
793 /* Subroutine of try_combine. Determine whether the replacement patterns
794 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
795 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
796 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
797 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
798 of all the instructions can be estimated and the replacements are more
799 expensive than the original sequence. */
801 static bool
802 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
803 rtx newi2pat, rtx newotherpat)
805 int i0_cost, i1_cost, i2_cost, i3_cost;
806 int new_i2_cost, new_i3_cost;
807 int old_cost, new_cost;
809 /* Lookup the original insn_rtx_costs. */
810 i2_cost = INSN_COST (i2);
811 i3_cost = INSN_COST (i3);
813 if (i1)
815 i1_cost = INSN_COST (i1);
816 if (i0)
818 i0_cost = INSN_COST (i0);
819 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
820 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
822 else
824 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
825 ? i1_cost + i2_cost + i3_cost : 0);
826 i0_cost = 0;
829 else
831 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
832 i1_cost = i0_cost = 0;
835 /* Calculate the replacement insn_rtx_costs. */
836 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
837 if (newi2pat)
839 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
840 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
841 ? new_i2_cost + new_i3_cost : 0;
843 else
845 new_cost = new_i3_cost;
846 new_i2_cost = 0;
849 if (undobuf.other_insn)
851 int old_other_cost, new_other_cost;
853 old_other_cost = INSN_COST (undobuf.other_insn);
854 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
855 if (old_other_cost > 0 && new_other_cost > 0)
857 old_cost += old_other_cost;
858 new_cost += new_other_cost;
860 else
861 old_cost = 0;
864 /* Disallow this combination if both new_cost and old_cost are greater than
865 zero, and new_cost is greater than old cost. */
866 if (old_cost > 0 && new_cost > old_cost)
868 if (dump_file)
870 if (i0)
872 fprintf (dump_file,
873 "rejecting combination of insns %d, %d, %d and %d\n",
874 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
875 INSN_UID (i3));
876 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
877 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
879 else if (i1)
881 fprintf (dump_file,
882 "rejecting combination of insns %d, %d and %d\n",
883 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
884 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
885 i1_cost, i2_cost, i3_cost, old_cost);
887 else
889 fprintf (dump_file,
890 "rejecting combination of insns %d and %d\n",
891 INSN_UID (i2), INSN_UID (i3));
892 fprintf (dump_file, "original costs %d + %d = %d\n",
893 i2_cost, i3_cost, old_cost);
896 if (newi2pat)
898 fprintf (dump_file, "replacement costs %d + %d = %d\n",
899 new_i2_cost, new_i3_cost, new_cost);
901 else
902 fprintf (dump_file, "replacement cost %d\n", new_cost);
905 return false;
908 /* Update the uid_insn_cost array with the replacement costs. */
909 INSN_COST (i2) = new_i2_cost;
910 INSN_COST (i3) = new_i3_cost;
911 if (i1)
913 INSN_COST (i1) = 0;
914 if (i0)
915 INSN_COST (i0) = 0;
918 return true;
922 /* Delete any insns that copy a register to itself. */
924 static void
925 delete_noop_moves (void)
927 rtx insn, next;
928 basic_block bb;
930 FOR_EACH_BB (bb)
932 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
934 next = NEXT_INSN (insn);
935 if (INSN_P (insn) && noop_move_p (insn))
937 if (dump_file)
938 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
940 delete_insn_and_edges (insn);
947 /* Fill in log links field for all insns. */
949 static void
950 create_log_links (void)
952 basic_block bb;
953 rtx *next_use, insn;
954 df_ref *def_vec, *use_vec;
956 next_use = XCNEWVEC (rtx, max_reg_num ());
958 /* Pass through each block from the end, recording the uses of each
959 register and establishing log links when def is encountered.
960 Note that we do not clear next_use array in order to save time,
961 so we have to test whether the use is in the same basic block as def.
963 There are a few cases below when we do not consider the definition or
964 usage -- these are taken from original flow.c did. Don't ask me why it is
965 done this way; I don't know and if it works, I don't want to know. */
967 FOR_EACH_BB (bb)
969 FOR_BB_INSNS_REVERSE (bb, insn)
971 if (!NONDEBUG_INSN_P (insn))
972 continue;
974 /* Log links are created only once. */
975 gcc_assert (!LOG_LINKS (insn));
977 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
979 df_ref def = *def_vec;
980 int regno = DF_REF_REGNO (def);
981 rtx use_insn;
983 if (!next_use[regno])
984 continue;
986 /* Do not consider if it is pre/post modification in MEM. */
987 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
988 continue;
990 /* Do not make the log link for frame pointer. */
991 if ((regno == FRAME_POINTER_REGNUM
992 && (! reload_completed || frame_pointer_needed))
993 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
994 || (regno == HARD_FRAME_POINTER_REGNUM
995 && (! reload_completed || frame_pointer_needed))
996 #endif
997 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
999 #endif
1001 continue;
1003 use_insn = next_use[regno];
1004 if (BLOCK_FOR_INSN (use_insn) == bb)
1006 /* flow.c claimed:
1008 We don't build a LOG_LINK for hard registers contained
1009 in ASM_OPERANDs. If these registers get replaced,
1010 we might wind up changing the semantics of the insn,
1011 even if reload can make what appear to be valid
1012 assignments later. */
1013 if (regno >= FIRST_PSEUDO_REGISTER
1014 || asm_noperands (PATTERN (use_insn)) < 0)
1016 /* Don't add duplicate links between instructions. */
1017 struct insn_link *links;
1018 FOR_EACH_LOG_LINK (links, use_insn)
1019 if (insn == links->insn)
1020 break;
1022 if (!links)
1023 LOG_LINKS (use_insn)
1024 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1027 next_use[regno] = NULL_RTX;
1030 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1032 df_ref use = *use_vec;
1033 int regno = DF_REF_REGNO (use);
1035 /* Do not consider the usage of the stack pointer
1036 by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 continue;
1040 next_use[regno] = insn;
1045 free (next_use);
1048 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1049 true if we found a LOG_LINK that proves that A feeds B. This only works
1050 if there are no instructions between A and B which could have a link
1051 depending on A, since in that case we would not record a link for B.
1052 We also check the implicit dependency created by a cc0 setter/user
1053 pair. */
1055 static bool
1056 insn_a_feeds_b (rtx a, rtx b)
1058 struct insn_link *links;
1059 FOR_EACH_LOG_LINK (links, b)
1060 if (links->insn == a)
1061 return true;
1062 #ifdef HAVE_cc0
1063 if (sets_cc0_p (a))
1064 return true;
1065 #endif
1066 return false;
1069 /* Main entry point for combiner. F is the first insn of the function.
1070 NREGS is the first unused pseudo-reg number.
1072 Return nonzero if the combiner has turned an indirect jump
1073 instruction into a direct jump. */
1074 static int
1075 combine_instructions (rtx f, unsigned int nregs)
1077 rtx insn, next;
1078 #ifdef HAVE_cc0
1079 rtx prev;
1080 #endif
1081 struct insn_link *links, *nextlinks;
1082 rtx first;
1083 basic_block last_bb;
1085 int new_direct_jump_p = 0;
1087 for (first = f; first && !INSN_P (first); )
1088 first = NEXT_INSN (first);
1089 if (!first)
1090 return 0;
1092 combine_attempts = 0;
1093 combine_merges = 0;
1094 combine_extras = 0;
1095 combine_successes = 0;
1097 rtl_hooks = combine_rtl_hooks;
1099 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1101 init_recog_no_volatile ();
1103 /* Allocate array for insn info. */
1104 max_uid_known = get_max_uid ();
1105 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1106 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1107 gcc_obstack_init (&insn_link_obstack);
1109 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1111 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1112 problems when, for example, we have j <<= 1 in a loop. */
1114 nonzero_sign_valid = 0;
1115 label_tick = label_tick_ebb_start = 1;
1117 /* Scan all SETs and see if we can deduce anything about what
1118 bits are known to be zero for some registers and how many copies
1119 of the sign bit are known to exist for those registers.
1121 Also set any known values so that we can use it while searching
1122 for what bits are known to be set. */
1124 setup_incoming_promotions (first);
1125 /* Allow the entry block and the first block to fall into the same EBB.
1126 Conceptually the incoming promotions are assigned to the entry block. */
1127 last_bb = ENTRY_BLOCK_PTR;
1129 create_log_links ();
1130 FOR_EACH_BB (this_basic_block)
1132 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1133 last_call_luid = 0;
1134 mem_last_set = -1;
1136 label_tick++;
1137 if (!single_pred_p (this_basic_block)
1138 || single_pred (this_basic_block) != last_bb)
1139 label_tick_ebb_start = label_tick;
1140 last_bb = this_basic_block;
1142 FOR_BB_INSNS (this_basic_block, insn)
1143 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1145 #ifdef AUTO_INC_DEC
1146 rtx links;
1147 #endif
1149 subst_low_luid = DF_INSN_LUID (insn);
1150 subst_insn = insn;
1152 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1153 insn);
1154 record_dead_and_set_regs (insn);
1156 #ifdef AUTO_INC_DEC
1157 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1158 if (REG_NOTE_KIND (links) == REG_INC)
1159 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1160 insn);
1161 #endif
1163 /* Record the current insn_rtx_cost of this instruction. */
1164 if (NONJUMP_INSN_P (insn))
1165 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1166 optimize_this_for_speed_p);
1167 if (dump_file)
1168 fprintf(dump_file, "insn_cost %d: %d\n",
1169 INSN_UID (insn), INSN_COST (insn));
1173 nonzero_sign_valid = 1;
1175 /* Now scan all the insns in forward order. */
1176 label_tick = label_tick_ebb_start = 1;
1177 init_reg_last ();
1178 setup_incoming_promotions (first);
1179 last_bb = ENTRY_BLOCK_PTR;
1181 FOR_EACH_BB (this_basic_block)
1183 rtx last_combined_insn = NULL_RTX;
1184 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1185 last_call_luid = 0;
1186 mem_last_set = -1;
1188 label_tick++;
1189 if (!single_pred_p (this_basic_block)
1190 || single_pred (this_basic_block) != last_bb)
1191 label_tick_ebb_start = label_tick;
1192 last_bb = this_basic_block;
1194 rtl_profile_for_bb (this_basic_block);
1195 for (insn = BB_HEAD (this_basic_block);
1196 insn != NEXT_INSN (BB_END (this_basic_block));
1197 insn = next ? next : NEXT_INSN (insn))
1199 next = 0;
1200 if (NONDEBUG_INSN_P (insn))
1202 while (last_combined_insn
1203 && INSN_DELETED_P (last_combined_insn))
1204 last_combined_insn = PREV_INSN (last_combined_insn);
1205 if (last_combined_insn == NULL_RTX
1206 || BARRIER_P (last_combined_insn)
1207 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1208 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1209 last_combined_insn = insn;
1211 /* See if we know about function return values before this
1212 insn based upon SUBREG flags. */
1213 check_promoted_subreg (insn, PATTERN (insn));
1215 /* See if we can find hardregs and subreg of pseudos in
1216 narrower modes. This could help turning TRUNCATEs
1217 into SUBREGs. */
1218 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1220 /* Try this insn with each insn it links back to. */
1222 FOR_EACH_LOG_LINK (links, insn)
1223 if ((next = try_combine (insn, links->insn, NULL_RTX,
1224 NULL_RTX, &new_direct_jump_p,
1225 last_combined_insn)) != 0)
1226 goto retry;
1228 /* Try each sequence of three linked insns ending with this one. */
1230 FOR_EACH_LOG_LINK (links, insn)
1232 rtx link = links->insn;
1234 /* If the linked insn has been replaced by a note, then there
1235 is no point in pursuing this chain any further. */
1236 if (NOTE_P (link))
1237 continue;
1239 FOR_EACH_LOG_LINK (nextlinks, link)
1240 if ((next = try_combine (insn, link, nextlinks->insn,
1241 NULL_RTX, &new_direct_jump_p,
1242 last_combined_insn)) != 0)
1243 goto retry;
1246 #ifdef HAVE_cc0
1247 /* Try to combine a jump insn that uses CC0
1248 with a preceding insn that sets CC0, and maybe with its
1249 logical predecessor as well.
1250 This is how we make decrement-and-branch insns.
1251 We need this special code because data flow connections
1252 via CC0 do not get entered in LOG_LINKS. */
1254 if (JUMP_P (insn)
1255 && (prev = prev_nonnote_insn (insn)) != 0
1256 && NONJUMP_INSN_P (prev)
1257 && sets_cc0_p (PATTERN (prev)))
1259 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1260 &new_direct_jump_p,
1261 last_combined_insn)) != 0)
1262 goto retry;
1264 FOR_EACH_LOG_LINK (nextlinks, prev)
1265 if ((next = try_combine (insn, prev, nextlinks->insn,
1266 NULL_RTX, &new_direct_jump_p,
1267 last_combined_insn)) != 0)
1268 goto retry;
1271 /* Do the same for an insn that explicitly references CC0. */
1272 if (NONJUMP_INSN_P (insn)
1273 && (prev = prev_nonnote_insn (insn)) != 0
1274 && NONJUMP_INSN_P (prev)
1275 && sets_cc0_p (PATTERN (prev))
1276 && GET_CODE (PATTERN (insn)) == SET
1277 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1279 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1280 &new_direct_jump_p,
1281 last_combined_insn)) != 0)
1282 goto retry;
1284 FOR_EACH_LOG_LINK (nextlinks, prev)
1285 if ((next = try_combine (insn, prev, nextlinks->insn,
1286 NULL_RTX, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 goto retry;
1291 /* Finally, see if any of the insns that this insn links to
1292 explicitly references CC0. If so, try this insn, that insn,
1293 and its predecessor if it sets CC0. */
1294 FOR_EACH_LOG_LINK (links, insn)
1295 if (NONJUMP_INSN_P (links->insn)
1296 && GET_CODE (PATTERN (links->insn)) == SET
1297 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1298 && (prev = prev_nonnote_insn (links->insn)) != 0
1299 && NONJUMP_INSN_P (prev)
1300 && sets_cc0_p (PATTERN (prev))
1301 && (next = try_combine (insn, links->insn,
1302 prev, NULL_RTX, &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1304 goto retry;
1305 #endif
1307 /* Try combining an insn with two different insns whose results it
1308 uses. */
1309 FOR_EACH_LOG_LINK (links, insn)
1310 for (nextlinks = links->next; nextlinks;
1311 nextlinks = nextlinks->next)
1312 if ((next = try_combine (insn, links->insn,
1313 nextlinks->insn, NULL_RTX,
1314 &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1318 /* Try four-instruction combinations. */
1319 FOR_EACH_LOG_LINK (links, insn)
1321 struct insn_link *next1;
1322 rtx link = links->insn;
1324 /* If the linked insn has been replaced by a note, then there
1325 is no point in pursuing this chain any further. */
1326 if (NOTE_P (link))
1327 continue;
1329 FOR_EACH_LOG_LINK (next1, link)
1331 rtx link1 = next1->insn;
1332 if (NOTE_P (link1))
1333 continue;
1334 /* I0 -> I1 -> I2 -> I3. */
1335 FOR_EACH_LOG_LINK (nextlinks, link1)
1336 if ((next = try_combine (insn, link, link1,
1337 nextlinks->insn,
1338 &new_direct_jump_p,
1339 last_combined_insn)) != 0)
1340 goto retry;
1341 /* I0, I1 -> I2, I2 -> I3. */
1342 for (nextlinks = next1->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, link, link1,
1345 nextlinks->insn,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1351 for (next1 = links->next; next1; next1 = next1->next)
1353 rtx link1 = next1->insn;
1354 if (NOTE_P (link1))
1355 continue;
1356 /* I0 -> I2; I1, I2 -> I3. */
1357 FOR_EACH_LOG_LINK (nextlinks, link)
1358 if ((next = try_combine (insn, link, link1,
1359 nextlinks->insn,
1360 &new_direct_jump_p,
1361 last_combined_insn)) != 0)
1362 goto retry;
1363 /* I0 -> I1; I1, I2 -> I3. */
1364 FOR_EACH_LOG_LINK (nextlinks, link1)
1365 if ((next = try_combine (insn, link, link1,
1366 nextlinks->insn,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1373 /* Try this insn with each REG_EQUAL note it links back to. */
1374 FOR_EACH_LOG_LINK (links, insn)
1376 rtx set, note;
1377 rtx temp = links->insn;
1378 if ((set = single_set (temp)) != 0
1379 && (note = find_reg_equal_equiv_note (temp)) != 0
1380 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1381 /* Avoid using a register that may already been marked
1382 dead by an earlier instruction. */
1383 && ! unmentioned_reg_p (note, SET_SRC (set))
1384 && (GET_MODE (note) == VOIDmode
1385 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1386 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1388 /* Temporarily replace the set's source with the
1389 contents of the REG_EQUAL note. The insn will
1390 be deleted or recognized by try_combine. */
1391 rtx orig = SET_SRC (set);
1392 SET_SRC (set) = note;
1393 i2mod = temp;
1394 i2mod_old_rhs = copy_rtx (orig);
1395 i2mod_new_rhs = copy_rtx (note);
1396 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1397 &new_direct_jump_p,
1398 last_combined_insn);
1399 i2mod = NULL_RTX;
1400 if (next)
1401 goto retry;
1402 SET_SRC (set) = orig;
1406 if (!NOTE_P (insn))
1407 record_dead_and_set_regs (insn);
1409 retry:
1415 default_rtl_profile ();
1416 clear_bb_flags ();
1417 new_direct_jump_p |= purge_all_dead_edges ();
1418 delete_noop_moves ();
1420 /* Clean up. */
1421 obstack_free (&insn_link_obstack, NULL);
1422 free (uid_log_links);
1423 free (uid_insn_cost);
1424 VEC_free (reg_stat_type, heap, reg_stat);
1427 struct undo *undo, *next;
1428 for (undo = undobuf.frees; undo; undo = next)
1430 next = undo->next;
1431 free (undo);
1433 undobuf.frees = 0;
1436 total_attempts += combine_attempts;
1437 total_merges += combine_merges;
1438 total_extras += combine_extras;
1439 total_successes += combine_successes;
1441 nonzero_sign_valid = 0;
1442 rtl_hooks = general_rtl_hooks;
1444 /* Make recognizer allow volatile MEMs again. */
1445 init_recog ();
1447 return new_direct_jump_p;
1450 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1452 static void
1453 init_reg_last (void)
1455 unsigned int i;
1456 reg_stat_type *p;
1458 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1459 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1462 /* Set up any promoted values for incoming argument registers. */
1464 static void
1465 setup_incoming_promotions (rtx first)
1467 tree arg;
1468 bool strictly_local = false;
1470 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1471 arg = DECL_CHAIN (arg))
1473 rtx x, reg = DECL_INCOMING_RTL (arg);
1474 int uns1, uns3;
1475 enum machine_mode mode1, mode2, mode3, mode4;
1477 /* Only continue if the incoming argument is in a register. */
1478 if (!REG_P (reg))
1479 continue;
1481 /* Determine, if possible, whether all call sites of the current
1482 function lie within the current compilation unit. (This does
1483 take into account the exporting of a function via taking its
1484 address, and so forth.) */
1485 strictly_local = cgraph_local_info (current_function_decl)->local;
1487 /* The mode and signedness of the argument before any promotions happen
1488 (equal to the mode of the pseudo holding it at that stage). */
1489 mode1 = TYPE_MODE (TREE_TYPE (arg));
1490 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1492 /* The mode and signedness of the argument after any source language and
1493 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1494 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1495 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1497 /* The mode and signedness of the argument as it is actually passed,
1498 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1499 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1500 TREE_TYPE (cfun->decl), 0);
1502 /* The mode of the register in which the argument is being passed. */
1503 mode4 = GET_MODE (reg);
1505 /* Eliminate sign extensions in the callee when:
1506 (a) A mode promotion has occurred; */
1507 if (mode1 == mode3)
1508 continue;
1509 /* (b) The mode of the register is the same as the mode of
1510 the argument as it is passed; */
1511 if (mode3 != mode4)
1512 continue;
1513 /* (c) There's no language level extension; */
1514 if (mode1 == mode2)
1516 /* (c.1) All callers are from the current compilation unit. If that's
1517 the case we don't have to rely on an ABI, we only have to know
1518 what we're generating right now, and we know that we will do the
1519 mode1 to mode2 promotion with the given sign. */
1520 else if (!strictly_local)
1521 continue;
1522 /* (c.2) The combination of the two promotions is useful. This is
1523 true when the signs match, or if the first promotion is unsigned.
1524 In the later case, (sign_extend (zero_extend x)) is the same as
1525 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1526 else if (uns1)
1527 uns3 = true;
1528 else if (uns3)
1529 continue;
1531 /* Record that the value was promoted from mode1 to mode3,
1532 so that any sign extension at the head of the current
1533 function may be eliminated. */
1534 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1535 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1536 record_value_for_reg (reg, first, x);
1540 /* Called via note_stores. If X is a pseudo that is narrower than
1541 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1543 If we are setting only a portion of X and we can't figure out what
1544 portion, assume all bits will be used since we don't know what will
1545 be happening.
1547 Similarly, set how many bits of X are known to be copies of the sign bit
1548 at all locations in the function. This is the smallest number implied
1549 by any set of X. */
1551 static void
1552 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1554 rtx insn = (rtx) data;
1555 unsigned int num;
1557 if (REG_P (x)
1558 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1559 /* If this register is undefined at the start of the file, we can't
1560 say what its contents were. */
1561 && ! REGNO_REG_SET_P
1562 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1563 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1565 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1567 if (set == 0 || GET_CODE (set) == CLOBBER)
1569 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1570 rsp->sign_bit_copies = 1;
1571 return;
1574 /* If this register is being initialized using itself, and the
1575 register is uninitialized in this basic block, and there are
1576 no LOG_LINKS which set the register, then part of the
1577 register is uninitialized. In that case we can't assume
1578 anything about the number of nonzero bits.
1580 ??? We could do better if we checked this in
1581 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1582 could avoid making assumptions about the insn which initially
1583 sets the register, while still using the information in other
1584 insns. We would have to be careful to check every insn
1585 involved in the combination. */
1587 if (insn
1588 && reg_referenced_p (x, PATTERN (insn))
1589 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1590 REGNO (x)))
1592 struct insn_link *link;
1594 FOR_EACH_LOG_LINK (link, insn)
1595 if (dead_or_set_p (link->insn, x))
1596 break;
1597 if (!link)
1599 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1600 rsp->sign_bit_copies = 1;
1601 return;
1605 /* If this is a complex assignment, see if we can convert it into a
1606 simple assignment. */
1607 set = expand_field_assignment (set);
1609 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1610 set what we know about X. */
1612 if (SET_DEST (set) == x
1613 || (GET_CODE (SET_DEST (set)) == SUBREG
1614 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1615 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1616 && SUBREG_REG (SET_DEST (set)) == x))
1618 rtx src = SET_SRC (set);
1620 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1621 /* If X is narrower than a word and SRC is a non-negative
1622 constant that would appear negative in the mode of X,
1623 sign-extend it for use in reg_stat[].nonzero_bits because some
1624 machines (maybe most) will actually do the sign-extension
1625 and this is the conservative approach.
1627 ??? For 2.5, try to tighten up the MD files in this regard
1628 instead of this kludge. */
1630 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1631 && CONST_INT_P (src)
1632 && INTVAL (src) > 0
1633 && 0 != (UINTVAL (src)
1634 & ((unsigned HOST_WIDE_INT) 1
1635 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1636 src = GEN_INT (UINTVAL (src)
1637 | ((unsigned HOST_WIDE_INT) (-1)
1638 << GET_MODE_BITSIZE (GET_MODE (x))));
1639 #endif
1641 /* Don't call nonzero_bits if it cannot change anything. */
1642 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1643 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1644 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1645 if (rsp->sign_bit_copies == 0
1646 || rsp->sign_bit_copies > num)
1647 rsp->sign_bit_copies = num;
1649 else
1651 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1652 rsp->sign_bit_copies = 1;
1657 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1658 optionally insns that were previously combined into I3 or that will be
1659 combined into the merger of INSN and I3. The order is PRED, PRED2,
1660 INSN, SUCC, SUCC2, I3.
1662 Return 0 if the combination is not allowed for any reason.
1664 If the combination is allowed, *PDEST will be set to the single
1665 destination of INSN and *PSRC to the single source, and this function
1666 will return 1. */
1668 static int
1669 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1670 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1671 rtx *pdest, rtx *psrc)
1673 int i;
1674 const_rtx set = 0;
1675 rtx src, dest;
1676 rtx p;
1677 #ifdef AUTO_INC_DEC
1678 rtx link;
1679 #endif
1680 bool all_adjacent = true;
1682 if (succ)
1684 if (succ2)
1686 if (next_active_insn (succ2) != i3)
1687 all_adjacent = false;
1688 if (next_active_insn (succ) != succ2)
1689 all_adjacent = false;
1691 else if (next_active_insn (succ) != i3)
1692 all_adjacent = false;
1693 if (next_active_insn (insn) != succ)
1694 all_adjacent = false;
1696 else if (next_active_insn (insn) != i3)
1697 all_adjacent = false;
1699 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1700 or a PARALLEL consisting of such a SET and CLOBBERs.
1702 If INSN has CLOBBER parallel parts, ignore them for our processing.
1703 By definition, these happen during the execution of the insn. When it
1704 is merged with another insn, all bets are off. If they are, in fact,
1705 needed and aren't also supplied in I3, they may be added by
1706 recog_for_combine. Otherwise, it won't match.
1708 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1709 note.
1711 Get the source and destination of INSN. If more than one, can't
1712 combine. */
1714 if (GET_CODE (PATTERN (insn)) == SET)
1715 set = PATTERN (insn);
1716 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1717 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1719 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1721 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1723 switch (GET_CODE (elt))
1725 /* This is important to combine floating point insns
1726 for the SH4 port. */
1727 case USE:
1728 /* Combining an isolated USE doesn't make sense.
1729 We depend here on combinable_i3pat to reject them. */
1730 /* The code below this loop only verifies that the inputs of
1731 the SET in INSN do not change. We call reg_set_between_p
1732 to verify that the REG in the USE does not change between
1733 I3 and INSN.
1734 If the USE in INSN was for a pseudo register, the matching
1735 insn pattern will likely match any register; combining this
1736 with any other USE would only be safe if we knew that the
1737 used registers have identical values, or if there was
1738 something to tell them apart, e.g. different modes. For
1739 now, we forgo such complicated tests and simply disallow
1740 combining of USES of pseudo registers with any other USE. */
1741 if (REG_P (XEXP (elt, 0))
1742 && GET_CODE (PATTERN (i3)) == PARALLEL)
1744 rtx i3pat = PATTERN (i3);
1745 int i = XVECLEN (i3pat, 0) - 1;
1746 unsigned int regno = REGNO (XEXP (elt, 0));
1750 rtx i3elt = XVECEXP (i3pat, 0, i);
1752 if (GET_CODE (i3elt) == USE
1753 && REG_P (XEXP (i3elt, 0))
1754 && (REGNO (XEXP (i3elt, 0)) == regno
1755 ? reg_set_between_p (XEXP (elt, 0),
1756 PREV_INSN (insn), i3)
1757 : regno >= FIRST_PSEUDO_REGISTER))
1758 return 0;
1760 while (--i >= 0);
1762 break;
1764 /* We can ignore CLOBBERs. */
1765 case CLOBBER:
1766 break;
1768 case SET:
1769 /* Ignore SETs whose result isn't used but not those that
1770 have side-effects. */
1771 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1772 && insn_nothrow_p (insn)
1773 && !side_effects_p (elt))
1774 break;
1776 /* If we have already found a SET, this is a second one and
1777 so we cannot combine with this insn. */
1778 if (set)
1779 return 0;
1781 set = elt;
1782 break;
1784 default:
1785 /* Anything else means we can't combine. */
1786 return 0;
1790 if (set == 0
1791 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1792 so don't do anything with it. */
1793 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1794 return 0;
1796 else
1797 return 0;
1799 if (set == 0)
1800 return 0;
1802 set = expand_field_assignment (set);
1803 src = SET_SRC (set), dest = SET_DEST (set);
1805 /* Don't eliminate a store in the stack pointer. */
1806 if (dest == stack_pointer_rtx
1807 /* Don't combine with an insn that sets a register to itself if it has
1808 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1809 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1810 /* Can't merge an ASM_OPERANDS. */
1811 || GET_CODE (src) == ASM_OPERANDS
1812 /* Can't merge a function call. */
1813 || GET_CODE (src) == CALL
1814 /* Don't eliminate a function call argument. */
1815 || (CALL_P (i3)
1816 && (find_reg_fusage (i3, USE, dest)
1817 || (REG_P (dest)
1818 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1819 && global_regs[REGNO (dest)])))
1820 /* Don't substitute into an incremented register. */
1821 || FIND_REG_INC_NOTE (i3, dest)
1822 || (succ && FIND_REG_INC_NOTE (succ, dest))
1823 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1824 /* Don't substitute into a non-local goto, this confuses CFG. */
1825 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1826 /* Make sure that DEST is not used after SUCC but before I3. */
1827 || (!all_adjacent
1828 && ((succ2
1829 && (reg_used_between_p (dest, succ2, i3)
1830 || reg_used_between_p (dest, succ, succ2)))
1831 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1832 /* Make sure that the value that is to be substituted for the register
1833 does not use any registers whose values alter in between. However,
1834 If the insns are adjacent, a use can't cross a set even though we
1835 think it might (this can happen for a sequence of insns each setting
1836 the same destination; last_set of that register might point to
1837 a NOTE). If INSN has a REG_EQUIV note, the register is always
1838 equivalent to the memory so the substitution is valid even if there
1839 are intervening stores. Also, don't move a volatile asm or
1840 UNSPEC_VOLATILE across any other insns. */
1841 || (! all_adjacent
1842 && (((!MEM_P (src)
1843 || ! find_reg_note (insn, REG_EQUIV, src))
1844 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1845 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1846 || GET_CODE (src) == UNSPEC_VOLATILE))
1847 /* Don't combine across a CALL_INSN, because that would possibly
1848 change whether the life span of some REGs crosses calls or not,
1849 and it is a pain to update that information.
1850 Exception: if source is a constant, moving it later can't hurt.
1851 Accept that as a special case. */
1852 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1853 return 0;
1855 /* DEST must either be a REG or CC0. */
1856 if (REG_P (dest))
1858 /* If register alignment is being enforced for multi-word items in all
1859 cases except for parameters, it is possible to have a register copy
1860 insn referencing a hard register that is not allowed to contain the
1861 mode being copied and which would not be valid as an operand of most
1862 insns. Eliminate this problem by not combining with such an insn.
1864 Also, on some machines we don't want to extend the life of a hard
1865 register. */
1867 if (REG_P (src)
1868 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1869 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1870 /* Don't extend the life of a hard register unless it is
1871 user variable (if we have few registers) or it can't
1872 fit into the desired register (meaning something special
1873 is going on).
1874 Also avoid substituting a return register into I3, because
1875 reload can't handle a conflict with constraints of other
1876 inputs. */
1877 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1878 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1879 return 0;
1881 else if (GET_CODE (dest) != CC0)
1882 return 0;
1885 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1886 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1887 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1889 /* Don't substitute for a register intended as a clobberable
1890 operand. */
1891 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1892 if (rtx_equal_p (reg, dest))
1893 return 0;
1895 /* If the clobber represents an earlyclobber operand, we must not
1896 substitute an expression containing the clobbered register.
1897 As we do not analyze the constraint strings here, we have to
1898 make the conservative assumption. However, if the register is
1899 a fixed hard reg, the clobber cannot represent any operand;
1900 we leave it up to the machine description to either accept or
1901 reject use-and-clobber patterns. */
1902 if (!REG_P (reg)
1903 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1904 || !fixed_regs[REGNO (reg)])
1905 if (reg_overlap_mentioned_p (reg, src))
1906 return 0;
1909 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1910 or not), reject, unless nothing volatile comes between it and I3 */
1912 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1914 /* Make sure neither succ nor succ2 contains a volatile reference. */
1915 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1916 return 0;
1917 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1918 return 0;
1919 /* We'll check insns between INSN and I3 below. */
1922 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1923 to be an explicit register variable, and was chosen for a reason. */
1925 if (GET_CODE (src) == ASM_OPERANDS
1926 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1927 return 0;
1929 /* If there are any volatile insns between INSN and I3, reject, because
1930 they might affect machine state. */
1932 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1933 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1934 return 0;
1936 /* If INSN contains an autoincrement or autodecrement, make sure that
1937 register is not used between there and I3, and not already used in
1938 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1939 Also insist that I3 not be a jump; if it were one
1940 and the incremented register were spilled, we would lose. */
1942 #ifdef AUTO_INC_DEC
1943 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1944 if (REG_NOTE_KIND (link) == REG_INC
1945 && (JUMP_P (i3)
1946 || reg_used_between_p (XEXP (link, 0), insn, i3)
1947 || (pred != NULL_RTX
1948 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1949 || (pred2 != NULL_RTX
1950 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1951 || (succ != NULL_RTX
1952 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1953 || (succ2 != NULL_RTX
1954 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1955 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1956 return 0;
1957 #endif
1959 #ifdef HAVE_cc0
1960 /* Don't combine an insn that follows a CC0-setting insn.
1961 An insn that uses CC0 must not be separated from the one that sets it.
1962 We do, however, allow I2 to follow a CC0-setting insn if that insn
1963 is passed as I1; in that case it will be deleted also.
1964 We also allow combining in this case if all the insns are adjacent
1965 because that would leave the two CC0 insns adjacent as well.
1966 It would be more logical to test whether CC0 occurs inside I1 or I2,
1967 but that would be much slower, and this ought to be equivalent. */
1969 p = prev_nonnote_insn (insn);
1970 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1971 && ! all_adjacent)
1972 return 0;
1973 #endif
1975 /* If we get here, we have passed all the tests and the combination is
1976 to be allowed. */
1978 *pdest = dest;
1979 *psrc = src;
1981 return 1;
1984 /* LOC is the location within I3 that contains its pattern or the component
1985 of a PARALLEL of the pattern. We validate that it is valid for combining.
1987 One problem is if I3 modifies its output, as opposed to replacing it
1988 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1989 doing so would produce an insn that is not equivalent to the original insns.
1991 Consider:
1993 (set (reg:DI 101) (reg:DI 100))
1994 (set (subreg:SI (reg:DI 101) 0) <foo>)
1996 This is NOT equivalent to:
1998 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1999 (set (reg:DI 101) (reg:DI 100))])
2001 Not only does this modify 100 (in which case it might still be valid
2002 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2004 We can also run into a problem if I2 sets a register that I1
2005 uses and I1 gets directly substituted into I3 (not via I2). In that
2006 case, we would be getting the wrong value of I2DEST into I3, so we
2007 must reject the combination. This case occurs when I2 and I1 both
2008 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2009 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2010 of a SET must prevent combination from occurring. The same situation
2011 can occur for I0, in which case I0_NOT_IN_SRC is set.
2013 Before doing the above check, we first try to expand a field assignment
2014 into a set of logical operations.
2016 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2017 we place a register that is both set and used within I3. If more than one
2018 such register is detected, we fail.
2020 Return 1 if the combination is valid, zero otherwise. */
2022 static int
2023 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2024 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2026 rtx x = *loc;
2028 if (GET_CODE (x) == SET)
2030 rtx set = x ;
2031 rtx dest = SET_DEST (set);
2032 rtx src = SET_SRC (set);
2033 rtx inner_dest = dest;
2034 rtx subdest;
2036 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2037 || GET_CODE (inner_dest) == SUBREG
2038 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2039 inner_dest = XEXP (inner_dest, 0);
2041 /* Check for the case where I3 modifies its output, as discussed
2042 above. We don't want to prevent pseudos from being combined
2043 into the address of a MEM, so only prevent the combination if
2044 i1 or i2 set the same MEM. */
2045 if ((inner_dest != dest &&
2046 (!MEM_P (inner_dest)
2047 || rtx_equal_p (i2dest, inner_dest)
2048 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2049 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2050 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2051 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2052 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2054 /* This is the same test done in can_combine_p except we can't test
2055 all_adjacent; we don't have to, since this instruction will stay
2056 in place, thus we are not considering increasing the lifetime of
2057 INNER_DEST.
2059 Also, if this insn sets a function argument, combining it with
2060 something that might need a spill could clobber a previous
2061 function argument; the all_adjacent test in can_combine_p also
2062 checks this; here, we do a more specific test for this case. */
2064 || (REG_P (inner_dest)
2065 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2066 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2067 GET_MODE (inner_dest))))
2068 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2069 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2070 return 0;
2072 /* If DEST is used in I3, it is being killed in this insn, so
2073 record that for later. We have to consider paradoxical
2074 subregs here, since they kill the whole register, but we
2075 ignore partial subregs, STRICT_LOW_PART, etc.
2076 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2077 STACK_POINTER_REGNUM, since these are always considered to be
2078 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2079 subdest = dest;
2080 if (GET_CODE (subdest) == SUBREG
2081 && (GET_MODE_SIZE (GET_MODE (subdest))
2082 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2083 subdest = SUBREG_REG (subdest);
2084 if (pi3dest_killed
2085 && REG_P (subdest)
2086 && reg_referenced_p (subdest, PATTERN (i3))
2087 && REGNO (subdest) != FRAME_POINTER_REGNUM
2088 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2089 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2090 #endif
2091 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2092 && (REGNO (subdest) != ARG_POINTER_REGNUM
2093 || ! fixed_regs [REGNO (subdest)])
2094 #endif
2095 && REGNO (subdest) != STACK_POINTER_REGNUM)
2097 if (*pi3dest_killed)
2098 return 0;
2100 *pi3dest_killed = subdest;
2104 else if (GET_CODE (x) == PARALLEL)
2106 int i;
2108 for (i = 0; i < XVECLEN (x, 0); i++)
2109 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2110 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2111 return 0;
2114 return 1;
2117 /* Return 1 if X is an arithmetic expression that contains a multiplication
2118 and division. We don't count multiplications by powers of two here. */
2120 static int
2121 contains_muldiv (rtx x)
2123 switch (GET_CODE (x))
2125 case MOD: case DIV: case UMOD: case UDIV:
2126 return 1;
2128 case MULT:
2129 return ! (CONST_INT_P (XEXP (x, 1))
2130 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2131 default:
2132 if (BINARY_P (x))
2133 return contains_muldiv (XEXP (x, 0))
2134 || contains_muldiv (XEXP (x, 1));
2136 if (UNARY_P (x))
2137 return contains_muldiv (XEXP (x, 0));
2139 return 0;
2143 /* Determine whether INSN can be used in a combination. Return nonzero if
2144 not. This is used in try_combine to detect early some cases where we
2145 can't perform combinations. */
2147 static int
2148 cant_combine_insn_p (rtx insn)
2150 rtx set;
2151 rtx src, dest;
2153 /* If this isn't really an insn, we can't do anything.
2154 This can occur when flow deletes an insn that it has merged into an
2155 auto-increment address. */
2156 if (! INSN_P (insn))
2157 return 1;
2159 /* Never combine loads and stores involving hard regs that are likely
2160 to be spilled. The register allocator can usually handle such
2161 reg-reg moves by tying. If we allow the combiner to make
2162 substitutions of likely-spilled regs, reload might die.
2163 As an exception, we allow combinations involving fixed regs; these are
2164 not available to the register allocator so there's no risk involved. */
2166 set = single_set (insn);
2167 if (! set)
2168 return 0;
2169 src = SET_SRC (set);
2170 dest = SET_DEST (set);
2171 if (GET_CODE (src) == SUBREG)
2172 src = SUBREG_REG (src);
2173 if (GET_CODE (dest) == SUBREG)
2174 dest = SUBREG_REG (dest);
2175 if (REG_P (src) && REG_P (dest)
2176 && ((HARD_REGISTER_P (src)
2177 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2178 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2179 || (HARD_REGISTER_P (dest)
2180 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2181 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2182 return 1;
2184 return 0;
2187 struct likely_spilled_retval_info
2189 unsigned regno, nregs;
2190 unsigned mask;
2193 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2194 hard registers that are known to be written to / clobbered in full. */
2195 static void
2196 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2198 struct likely_spilled_retval_info *const info =
2199 (struct likely_spilled_retval_info *) data;
2200 unsigned regno, nregs;
2201 unsigned new_mask;
2203 if (!REG_P (XEXP (set, 0)))
2204 return;
2205 regno = REGNO (x);
2206 if (regno >= info->regno + info->nregs)
2207 return;
2208 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2209 if (regno + nregs <= info->regno)
2210 return;
2211 new_mask = (2U << (nregs - 1)) - 1;
2212 if (regno < info->regno)
2213 new_mask >>= info->regno - regno;
2214 else
2215 new_mask <<= regno - info->regno;
2216 info->mask &= ~new_mask;
2219 /* Return nonzero iff part of the return value is live during INSN, and
2220 it is likely spilled. This can happen when more than one insn is needed
2221 to copy the return value, e.g. when we consider to combine into the
2222 second copy insn for a complex value. */
2224 static int
2225 likely_spilled_retval_p (rtx insn)
2227 rtx use = BB_END (this_basic_block);
2228 rtx reg, p;
2229 unsigned regno, nregs;
2230 /* We assume here that no machine mode needs more than
2231 32 hard registers when the value overlaps with a register
2232 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2233 unsigned mask;
2234 struct likely_spilled_retval_info info;
2236 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2237 return 0;
2238 reg = XEXP (PATTERN (use), 0);
2239 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2240 return 0;
2241 regno = REGNO (reg);
2242 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2243 if (nregs == 1)
2244 return 0;
2245 mask = (2U << (nregs - 1)) - 1;
2247 /* Disregard parts of the return value that are set later. */
2248 info.regno = regno;
2249 info.nregs = nregs;
2250 info.mask = mask;
2251 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2252 if (INSN_P (p))
2253 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2254 mask = info.mask;
2256 /* Check if any of the (probably) live return value registers is
2257 likely spilled. */
2258 nregs --;
2261 if ((mask & 1 << nregs)
2262 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2263 return 1;
2264 } while (nregs--);
2265 return 0;
2268 /* Adjust INSN after we made a change to its destination.
2270 Changing the destination can invalidate notes that say something about
2271 the results of the insn and a LOG_LINK pointing to the insn. */
2273 static void
2274 adjust_for_new_dest (rtx insn)
2276 /* For notes, be conservative and simply remove them. */
2277 remove_reg_equal_equiv_notes (insn);
2279 /* The new insn will have a destination that was previously the destination
2280 of an insn just above it. Call distribute_links to make a LOG_LINK from
2281 the next use of that destination. */
2282 distribute_links (alloc_insn_link (insn, NULL));
2284 df_insn_rescan (insn);
2287 /* Return TRUE if combine can reuse reg X in mode MODE.
2288 ADDED_SETS is nonzero if the original set is still required. */
2289 static bool
2290 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2292 unsigned int regno;
2294 if (!REG_P(x))
2295 return false;
2297 regno = REGNO (x);
2298 /* Allow hard registers if the new mode is legal, and occupies no more
2299 registers than the old mode. */
2300 if (regno < FIRST_PSEUDO_REGISTER)
2301 return (HARD_REGNO_MODE_OK (regno, mode)
2302 && (hard_regno_nregs[regno][GET_MODE (x)]
2303 >= hard_regno_nregs[regno][mode]));
2305 /* Or a pseudo that is only used once. */
2306 return (REG_N_SETS (regno) == 1 && !added_sets
2307 && !REG_USERVAR_P (x));
2311 /* Check whether X, the destination of a set, refers to part of
2312 the register specified by REG. */
2314 static bool
2315 reg_subword_p (rtx x, rtx reg)
2317 /* Check that reg is an integer mode register. */
2318 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2319 return false;
2321 if (GET_CODE (x) == STRICT_LOW_PART
2322 || GET_CODE (x) == ZERO_EXTRACT)
2323 x = XEXP (x, 0);
2325 return GET_CODE (x) == SUBREG
2326 && SUBREG_REG (x) == reg
2327 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2330 #ifdef AUTO_INC_DEC
2331 /* Replace auto-increment addressing modes with explicit operations to access
2332 the same addresses without modifying the corresponding registers. */
2334 static rtx
2335 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2337 rtx x = src;
2338 const RTX_CODE code = GET_CODE (x);
2339 int i;
2340 const char *fmt;
2342 switch (code)
2344 case REG:
2345 case CONST_INT:
2346 case CONST_DOUBLE:
2347 case CONST_FIXED:
2348 case CONST_VECTOR:
2349 case SYMBOL_REF:
2350 case CODE_LABEL:
2351 case PC:
2352 case CC0:
2353 case SCRATCH:
2354 /* SCRATCH must be shared because they represent distinct values. */
2355 return x;
2356 case CLOBBER:
2357 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2358 return x;
2359 break;
2361 case CONST:
2362 if (shared_const_p (x))
2363 return x;
2364 break;
2366 case MEM:
2367 mem_mode = GET_MODE (x);
2368 break;
2370 case PRE_INC:
2371 case PRE_DEC:
2372 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2373 return gen_rtx_PLUS (GET_MODE (x),
2374 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2375 GEN_INT (code == PRE_INC
2376 ? GET_MODE_SIZE (mem_mode)
2377 : -GET_MODE_SIZE (mem_mode)));
2379 case POST_INC:
2380 case POST_DEC:
2381 case PRE_MODIFY:
2382 case POST_MODIFY:
2383 return cleanup_auto_inc_dec (code == PRE_MODIFY
2384 ? XEXP (x, 1) : XEXP (x, 0),
2385 mem_mode);
2387 default:
2388 break;
2391 /* Copy the various flags, fields, and other information. We assume
2392 that all fields need copying, and then clear the fields that should
2393 not be copied. That is the sensible default behavior, and forces
2394 us to explicitly document why we are *not* copying a flag. */
2395 x = shallow_copy_rtx (x);
2397 /* We do not copy the USED flag, which is used as a mark bit during
2398 walks over the RTL. */
2399 RTX_FLAG (x, used) = 0;
2401 /* We do not copy FRAME_RELATED for INSNs. */
2402 if (INSN_P (x))
2403 RTX_FLAG (x, frame_related) = 0;
2405 fmt = GET_RTX_FORMAT (code);
2406 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2407 if (fmt[i] == 'e')
2408 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2409 else if (fmt[i] == 'E' || fmt[i] == 'V')
2411 int j;
2412 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2413 for (j = 0; j < XVECLEN (x, i); j++)
2414 XVECEXP (x, i, j)
2415 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2418 return x;
2420 #endif
2422 /* Auxiliary data structure for propagate_for_debug_stmt. */
2424 struct rtx_subst_pair
2426 rtx to;
2427 bool adjusted;
2430 /* DATA points to an rtx_subst_pair. Return the value that should be
2431 substituted. */
2433 static rtx
2434 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2436 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2438 if (!rtx_equal_p (from, old_rtx))
2439 return NULL_RTX;
2440 if (!pair->adjusted)
2442 pair->adjusted = true;
2443 #ifdef AUTO_INC_DEC
2444 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2445 #else
2446 pair->to = copy_rtx (pair->to);
2447 #endif
2448 pair->to = make_compound_operation (pair->to, SET);
2449 return pair->to;
2451 return copy_rtx (pair->to);
2454 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2455 and LAST, not including INSN, but including LAST. Also stop at the end
2456 of THIS_BASIC_BLOCK. */
2458 static void
2459 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2461 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2463 struct rtx_subst_pair p;
2464 p.to = src;
2465 p.adjusted = false;
2467 next = NEXT_INSN (insn);
2468 last = NEXT_INSN (last);
2469 while (next != last && next != end)
2471 insn = next;
2472 next = NEXT_INSN (insn);
2473 if (DEBUG_INSN_P (insn))
2475 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2476 dest, propagate_for_debug_subst, &p);
2477 if (loc == INSN_VAR_LOCATION_LOC (insn))
2478 continue;
2479 INSN_VAR_LOCATION_LOC (insn) = loc;
2480 df_insn_rescan (insn);
2485 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2486 Note that the INSN should be deleted *after* removing dead edges, so
2487 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2488 but not for a (set (pc) (label_ref FOO)). */
2490 static void
2491 update_cfg_for_uncondjump (rtx insn)
2493 basic_block bb = BLOCK_FOR_INSN (insn);
2494 gcc_assert (BB_END (bb) == insn);
2496 purge_dead_edges (bb);
2498 delete_insn (insn);
2499 if (EDGE_COUNT (bb->succs) == 1)
2501 rtx insn;
2503 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2505 /* Remove barriers from the footer if there are any. */
2506 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2507 if (BARRIER_P (insn))
2509 if (PREV_INSN (insn))
2510 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2511 else
2512 bb->il.rtl->footer = NEXT_INSN (insn);
2513 if (NEXT_INSN (insn))
2514 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2516 else if (LABEL_P (insn))
2517 break;
2521 /* Try to combine the insns I0, I1 and I2 into I3.
2522 Here I0, I1 and I2 appear earlier than I3.
2523 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2526 If we are combining more than two insns and the resulting insn is not
2527 recognized, try splitting it into two insns. If that happens, I2 and I3
2528 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2529 Otherwise, I0, I1 and I2 are pseudo-deleted.
2531 Return 0 if the combination does not work. Then nothing is changed.
2532 If we did the combination, return the insn at which combine should
2533 resume scanning.
2535 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2536 new direct jump instruction.
2538 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2539 been I3 passed to an earlier try_combine within the same basic
2540 block. */
2542 static rtx
2543 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2544 rtx last_combined_insn)
2546 /* New patterns for I3 and I2, respectively. */
2547 rtx newpat, newi2pat = 0;
2548 rtvec newpat_vec_with_clobbers = 0;
2549 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2550 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2551 dead. */
2552 int added_sets_0, added_sets_1, added_sets_2;
2553 /* Total number of SETs to put into I3. */
2554 int total_sets;
2555 /* Nonzero if I2's or I1's body now appears in I3. */
2556 int i2_is_used = 0, i1_is_used = 0;
2557 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2558 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2559 /* Contains I3 if the destination of I3 is used in its source, which means
2560 that the old life of I3 is being killed. If that usage is placed into
2561 I2 and not in I3, a REG_DEAD note must be made. */
2562 rtx i3dest_killed = 0;
2563 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2564 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2565 /* Copy of SET_SRC of I1, if needed. */
2566 rtx i1src_copy = 0;
2567 /* Set if I2DEST was reused as a scratch register. */
2568 bool i2scratch = false;
2569 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2570 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2571 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2572 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2573 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2574 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2575 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2576 /* Notes that must be added to REG_NOTES in I3 and I2. */
2577 rtx new_i3_notes, new_i2_notes;
2578 /* Notes that we substituted I3 into I2 instead of the normal case. */
2579 int i3_subst_into_i2 = 0;
2580 /* Notes that I1, I2 or I3 is a MULT operation. */
2581 int have_mult = 0;
2582 int swap_i2i3 = 0;
2583 int changed_i3_dest = 0;
2585 int maxreg;
2586 rtx temp;
2587 struct insn_link *link;
2588 rtx other_pat = 0;
2589 rtx new_other_notes;
2590 int i;
2592 /* Only try four-insn combinations when there's high likelihood of
2593 success. Look for simple insns, such as loads of constants or
2594 binary operations involving a constant. */
2595 if (i0)
2597 int i;
2598 int ngood = 0;
2599 int nshift = 0;
2601 if (!flag_expensive_optimizations)
2602 return 0;
2604 for (i = 0; i < 4; i++)
2606 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2607 rtx set = single_set (insn);
2608 rtx src;
2609 if (!set)
2610 continue;
2611 src = SET_SRC (set);
2612 if (CONSTANT_P (src))
2614 ngood += 2;
2615 break;
2617 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2618 ngood++;
2619 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2620 || GET_CODE (src) == LSHIFTRT)
2621 nshift++;
2623 if (ngood < 2 && nshift < 2)
2624 return 0;
2627 /* Exit early if one of the insns involved can't be used for
2628 combinations. */
2629 if (cant_combine_insn_p (i3)
2630 || cant_combine_insn_p (i2)
2631 || (i1 && cant_combine_insn_p (i1))
2632 || (i0 && cant_combine_insn_p (i0))
2633 || likely_spilled_retval_p (i3))
2634 return 0;
2636 combine_attempts++;
2637 undobuf.other_insn = 0;
2639 /* Reset the hard register usage information. */
2640 CLEAR_HARD_REG_SET (newpat_used_regs);
2642 if (dump_file && (dump_flags & TDF_DETAILS))
2644 if (i0)
2645 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2646 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2647 else if (i1)
2648 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2649 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2650 else
2651 fprintf (dump_file, "\nTrying %d -> %d:\n",
2652 INSN_UID (i2), INSN_UID (i3));
2655 /* If multiple insns feed into one of I2 or I3, they can be in any
2656 order. To simplify the code below, reorder them in sequence. */
2657 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2658 temp = i2, i2 = i0, i0 = temp;
2659 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2660 temp = i1, i1 = i0, i0 = temp;
2661 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2662 temp = i1, i1 = i2, i2 = temp;
2664 added_links_insn = 0;
2666 /* First check for one important special case that the code below will
2667 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2668 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2669 we may be able to replace that destination with the destination of I3.
2670 This occurs in the common code where we compute both a quotient and
2671 remainder into a structure, in which case we want to do the computation
2672 directly into the structure to avoid register-register copies.
2674 Note that this case handles both multiple sets in I2 and also cases
2675 where I2 has a number of CLOBBERs inside the PARALLEL.
2677 We make very conservative checks below and only try to handle the
2678 most common cases of this. For example, we only handle the case
2679 where I2 and I3 are adjacent to avoid making difficult register
2680 usage tests. */
2682 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2683 && REG_P (SET_SRC (PATTERN (i3)))
2684 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2685 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2686 && GET_CODE (PATTERN (i2)) == PARALLEL
2687 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2688 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2689 below would need to check what is inside (and reg_overlap_mentioned_p
2690 doesn't support those codes anyway). Don't allow those destinations;
2691 the resulting insn isn't likely to be recognized anyway. */
2692 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2693 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2694 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2695 SET_DEST (PATTERN (i3)))
2696 && next_active_insn (i2) == i3)
2698 rtx p2 = PATTERN (i2);
2700 /* Make sure that the destination of I3,
2701 which we are going to substitute into one output of I2,
2702 is not used within another output of I2. We must avoid making this:
2703 (parallel [(set (mem (reg 69)) ...)
2704 (set (reg 69) ...)])
2705 which is not well-defined as to order of actions.
2706 (Besides, reload can't handle output reloads for this.)
2708 The problem can also happen if the dest of I3 is a memory ref,
2709 if another dest in I2 is an indirect memory ref. */
2710 for (i = 0; i < XVECLEN (p2, 0); i++)
2711 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2712 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2713 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2714 SET_DEST (XVECEXP (p2, 0, i))))
2715 break;
2717 if (i == XVECLEN (p2, 0))
2718 for (i = 0; i < XVECLEN (p2, 0); i++)
2719 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2720 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2722 combine_merges++;
2724 subst_insn = i3;
2725 subst_low_luid = DF_INSN_LUID (i2);
2727 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2728 i2src = SET_SRC (XVECEXP (p2, 0, i));
2729 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2730 i2dest_killed = dead_or_set_p (i2, i2dest);
2732 /* Replace the dest in I2 with our dest and make the resulting
2733 insn the new pattern for I3. Then skip to where we validate
2734 the pattern. Everything was set up above. */
2735 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2736 newpat = p2;
2737 i3_subst_into_i2 = 1;
2738 goto validate_replacement;
2742 /* If I2 is setting a pseudo to a constant and I3 is setting some
2743 sub-part of it to another constant, merge them by making a new
2744 constant. */
2745 if (i1 == 0
2746 && (temp = single_set (i2)) != 0
2747 && (CONST_INT_P (SET_SRC (temp))
2748 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2749 && GET_CODE (PATTERN (i3)) == SET
2750 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2751 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2752 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2754 rtx dest = SET_DEST (PATTERN (i3));
2755 int offset = -1;
2756 int width = 0;
2758 if (GET_CODE (dest) == ZERO_EXTRACT)
2760 if (CONST_INT_P (XEXP (dest, 1))
2761 && CONST_INT_P (XEXP (dest, 2)))
2763 width = INTVAL (XEXP (dest, 1));
2764 offset = INTVAL (XEXP (dest, 2));
2765 dest = XEXP (dest, 0);
2766 if (BITS_BIG_ENDIAN)
2767 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2770 else
2772 if (GET_CODE (dest) == STRICT_LOW_PART)
2773 dest = XEXP (dest, 0);
2774 width = GET_MODE_BITSIZE (GET_MODE (dest));
2775 offset = 0;
2778 if (offset >= 0)
2780 /* If this is the low part, we're done. */
2781 if (subreg_lowpart_p (dest))
2783 /* Handle the case where inner is twice the size of outer. */
2784 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2785 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2786 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2787 /* Otherwise give up for now. */
2788 else
2789 offset = -1;
2792 if (offset >= 0
2793 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2794 <= HOST_BITS_PER_DOUBLE_INT))
2796 double_int m, o, i;
2797 rtx inner = SET_SRC (PATTERN (i3));
2798 rtx outer = SET_SRC (temp);
2800 o = rtx_to_double_int (outer);
2801 i = rtx_to_double_int (inner);
2803 m = double_int_mask (width);
2804 i = double_int_and (i, m);
2805 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2806 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2807 o = double_int_ior (double_int_and_not (o, m), i);
2809 combine_merges++;
2810 subst_insn = i3;
2811 subst_low_luid = DF_INSN_LUID (i2);
2812 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2813 i2dest = SET_DEST (temp);
2814 i2dest_killed = dead_or_set_p (i2, i2dest);
2816 /* Replace the source in I2 with the new constant and make the
2817 resulting insn the new pattern for I3. Then skip to where we
2818 validate the pattern. Everything was set up above. */
2819 SUBST (SET_SRC (temp),
2820 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2822 newpat = PATTERN (i2);
2824 /* The dest of I3 has been replaced with the dest of I2. */
2825 changed_i3_dest = 1;
2826 goto validate_replacement;
2830 #ifndef HAVE_cc0
2831 /* If we have no I1 and I2 looks like:
2832 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2833 (set Y OP)])
2834 make up a dummy I1 that is
2835 (set Y OP)
2836 and change I2 to be
2837 (set (reg:CC X) (compare:CC Y (const_int 0)))
2839 (We can ignore any trailing CLOBBERs.)
2841 This undoes a previous combination and allows us to match a branch-and-
2842 decrement insn. */
2844 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2845 && XVECLEN (PATTERN (i2), 0) >= 2
2846 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2847 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2848 == MODE_CC)
2849 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2850 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2851 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2852 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2853 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2854 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2856 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2857 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2858 break;
2860 if (i == 1)
2862 /* We make I1 with the same INSN_UID as I2. This gives it
2863 the same DF_INSN_LUID for value tracking. Our fake I1 will
2864 never appear in the insn stream so giving it the same INSN_UID
2865 as I2 will not cause a problem. */
2867 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2868 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2869 INSN_LOCATOR (i2), -1, NULL_RTX);
2871 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2872 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2873 SET_DEST (PATTERN (i1)));
2876 #endif
2878 /* Verify that I2 and I1 are valid for combining. */
2879 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2880 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2881 &i1dest, &i1src))
2882 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2883 &i0dest, &i0src)))
2885 undo_all ();
2886 return 0;
2889 /* Record whether I2DEST is used in I2SRC and similarly for the other
2890 cases. Knowing this will help in register status updating below. */
2891 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2892 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2893 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2894 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2895 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2896 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2897 i2dest_killed = dead_or_set_p (i2, i2dest);
2898 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2899 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2901 /* For the earlier insns, determine which of the subsequent ones they
2902 feed. */
2903 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2904 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2905 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2906 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2907 && reg_overlap_mentioned_p (i0dest, i2src))));
2909 /* Ensure that I3's pattern can be the destination of combines. */
2910 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2911 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2912 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2913 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2914 &i3dest_killed))
2916 undo_all ();
2917 return 0;
2920 /* See if any of the insns is a MULT operation. Unless one is, we will
2921 reject a combination that is, since it must be slower. Be conservative
2922 here. */
2923 if (GET_CODE (i2src) == MULT
2924 || (i1 != 0 && GET_CODE (i1src) == MULT)
2925 || (i0 != 0 && GET_CODE (i0src) == MULT)
2926 || (GET_CODE (PATTERN (i3)) == SET
2927 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2928 have_mult = 1;
2930 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2931 We used to do this EXCEPT in one case: I3 has a post-inc in an
2932 output operand. However, that exception can give rise to insns like
2933 mov r3,(r3)+
2934 which is a famous insn on the PDP-11 where the value of r3 used as the
2935 source was model-dependent. Avoid this sort of thing. */
2937 #if 0
2938 if (!(GET_CODE (PATTERN (i3)) == SET
2939 && REG_P (SET_SRC (PATTERN (i3)))
2940 && MEM_P (SET_DEST (PATTERN (i3)))
2941 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2942 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2943 /* It's not the exception. */
2944 #endif
2945 #ifdef AUTO_INC_DEC
2947 rtx link;
2948 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2949 if (REG_NOTE_KIND (link) == REG_INC
2950 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2951 || (i1 != 0
2952 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2954 undo_all ();
2955 return 0;
2958 #endif
2960 /* See if the SETs in I1 or I2 need to be kept around in the merged
2961 instruction: whenever the value set there is still needed past I3.
2962 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2964 For the SET in I1, we have two cases: If I1 and I2 independently
2965 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2966 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2967 in I1 needs to be kept around unless I1DEST dies or is set in either
2968 I2 or I3. The same consideration applies to I0. */
2970 added_sets_2 = !dead_or_set_p (i3, i2dest);
2972 if (i1)
2973 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2974 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2975 else
2976 added_sets_1 = 0;
2978 if (i0)
2979 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2980 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2981 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2982 else
2983 added_sets_0 = 0;
2985 /* We are about to copy insns for the case where they need to be kept
2986 around. Check that they can be copied in the merged instruction. */
2988 if (targetm.cannot_copy_insn_p
2989 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2990 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2991 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2993 undo_all ();
2994 return 0;
2997 /* If the set in I2 needs to be kept around, we must make a copy of
2998 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2999 PATTERN (I2), we are only substituting for the original I1DEST, not into
3000 an already-substituted copy. This also prevents making self-referential
3001 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3002 I2DEST. */
3004 if (added_sets_2)
3006 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3007 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3008 else
3009 i2pat = copy_rtx (PATTERN (i2));
3012 if (added_sets_1)
3014 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3015 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3016 else
3017 i1pat = copy_rtx (PATTERN (i1));
3020 if (added_sets_0)
3022 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3023 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3024 else
3025 i0pat = copy_rtx (PATTERN (i0));
3028 combine_merges++;
3030 /* Substitute in the latest insn for the regs set by the earlier ones. */
3032 maxreg = max_reg_num ();
3034 subst_insn = i3;
3036 #ifndef HAVE_cc0
3037 /* Many machines that don't use CC0 have insns that can both perform an
3038 arithmetic operation and set the condition code. These operations will
3039 be represented as a PARALLEL with the first element of the vector
3040 being a COMPARE of an arithmetic operation with the constant zero.
3041 The second element of the vector will set some pseudo to the result
3042 of the same arithmetic operation. If we simplify the COMPARE, we won't
3043 match such a pattern and so will generate an extra insn. Here we test
3044 for this case, where both the comparison and the operation result are
3045 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3046 I2SRC. Later we will make the PARALLEL that contains I2. */
3048 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3049 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3050 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3051 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3053 rtx newpat_dest;
3054 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3055 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3056 enum machine_mode compare_mode, orig_compare_mode;
3057 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3059 newpat = PATTERN (i3);
3060 newpat_dest = SET_DEST (newpat);
3061 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3063 if (undobuf.other_insn == 0
3064 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3065 &cc_use_insn)))
3067 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3068 compare_code = simplify_compare_const (compare_code,
3069 op0, &op1);
3070 #ifdef CANONICALIZE_COMPARISON
3071 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3072 #endif
3075 /* Do the rest only if op1 is const0_rtx, which may be the
3076 result of simplification. */
3077 if (op1 == const0_rtx)
3079 /* If a single use of the CC is found, prepare to modify it
3080 when SELECT_CC_MODE returns a new CC-class mode, or when
3081 the above simplify_compare_const() returned a new comparison
3082 operator. undobuf.other_insn is assigned the CC use insn
3083 when modifying it. */
3084 if (cc_use_loc)
3086 #ifdef SELECT_CC_MODE
3087 enum machine_mode new_mode
3088 = SELECT_CC_MODE (compare_code, op0, op1);
3089 if (new_mode != orig_compare_mode
3090 && can_change_dest_mode (SET_DEST (newpat),
3091 added_sets_2, new_mode))
3093 unsigned int regno = REGNO (newpat_dest);
3094 compare_mode = new_mode;
3095 if (regno < FIRST_PSEUDO_REGISTER)
3096 newpat_dest = gen_rtx_REG (compare_mode, regno);
3097 else
3099 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3100 newpat_dest = regno_reg_rtx[regno];
3103 #endif
3104 /* Cases for modifying the CC-using comparison. */
3105 if (compare_code != orig_compare_code
3106 /* ??? Do we need to verify the zero rtx? */
3107 && XEXP (*cc_use_loc, 1) == const0_rtx)
3109 /* Replace cc_use_loc with entire new RTX. */
3110 SUBST (*cc_use_loc,
3111 gen_rtx_fmt_ee (compare_code, compare_mode,
3112 newpat_dest, const0_rtx));
3113 undobuf.other_insn = cc_use_insn;
3115 else if (compare_mode != orig_compare_mode)
3117 /* Just replace the CC reg with a new mode. */
3118 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3119 undobuf.other_insn = cc_use_insn;
3123 /* Now we modify the current newpat:
3124 First, SET_DEST(newpat) is updated if the CC mode has been
3125 altered. For targets without SELECT_CC_MODE, this should be
3126 optimized away. */
3127 if (compare_mode != orig_compare_mode)
3128 SUBST (SET_DEST (newpat), newpat_dest);
3129 /* This is always done to propagate i2src into newpat. */
3130 SUBST (SET_SRC (newpat),
3131 gen_rtx_COMPARE (compare_mode, op0, op1));
3132 /* Create new version of i2pat if needed; the below PARALLEL
3133 creation needs this to work correctly. */
3134 if (! rtx_equal_p (i2src, op0))
3135 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3136 i2_is_used = 1;
3139 #endif
3141 if (i2_is_used == 0)
3143 /* It is possible that the source of I2 or I1 may be performing
3144 an unneeded operation, such as a ZERO_EXTEND of something
3145 that is known to have the high part zero. Handle that case
3146 by letting subst look at the inner insns.
3148 Another way to do this would be to have a function that tries
3149 to simplify a single insn instead of merging two or more
3150 insns. We don't do this because of the potential of infinite
3151 loops and because of the potential extra memory required.
3152 However, doing it the way we are is a bit of a kludge and
3153 doesn't catch all cases.
3155 But only do this if -fexpensive-optimizations since it slows
3156 things down and doesn't usually win.
3158 This is not done in the COMPARE case above because the
3159 unmodified I2PAT is used in the PARALLEL and so a pattern
3160 with a modified I2SRC would not match. */
3162 if (flag_expensive_optimizations)
3164 /* Pass pc_rtx so no substitutions are done, just
3165 simplifications. */
3166 if (i1)
3168 subst_low_luid = DF_INSN_LUID (i1);
3169 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3172 subst_low_luid = DF_INSN_LUID (i2);
3173 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3176 n_occurrences = 0; /* `subst' counts here */
3177 subst_low_luid = DF_INSN_LUID (i2);
3179 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3180 copy of I2SRC each time we substitute it, in order to avoid creating
3181 self-referential RTL when we will be substituting I1SRC for I1DEST
3182 later. Likewise if I0 feeds into I2, either directly or indirectly
3183 through I1, and I0DEST is in I0SRC. */
3184 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3185 (i1_feeds_i2_n && i1dest_in_i1src)
3186 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3187 && i0dest_in_i0src));
3188 substed_i2 = 1;
3190 /* Record whether I2's body now appears within I3's body. */
3191 i2_is_used = n_occurrences;
3194 /* If we already got a failure, don't try to do more. Otherwise, try to
3195 substitute I1 if we have it. */
3197 if (i1 && GET_CODE (newpat) != CLOBBER)
3199 /* Check that an autoincrement side-effect on I1 has not been lost.
3200 This happens if I1DEST is mentioned in I2 and dies there, and
3201 has disappeared from the new pattern. */
3202 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3203 && i1_feeds_i2_n
3204 && dead_or_set_p (i2, i1dest)
3205 && !reg_overlap_mentioned_p (i1dest, newpat))
3206 /* Before we can do this substitution, we must redo the test done
3207 above (see detailed comments there) that ensures I1DEST isn't
3208 mentioned in any SETs in NEWPAT that are field assignments. */
3209 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3210 0, 0, 0))
3212 undo_all ();
3213 return 0;
3216 n_occurrences = 0;
3217 subst_low_luid = DF_INSN_LUID (i1);
3219 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3220 copy of I1SRC each time we substitute it, in order to avoid creating
3221 self-referential RTL when we will be substituting I0SRC for I0DEST
3222 later. */
3223 newpat = subst (newpat, i1dest, i1src, 0, 0,
3224 i0_feeds_i1_n && i0dest_in_i0src);
3225 substed_i1 = 1;
3227 /* Record whether I1's body now appears within I3's body. */
3228 i1_is_used = n_occurrences;
3231 /* Likewise for I0 if we have it. */
3233 if (i0 && GET_CODE (newpat) != CLOBBER)
3235 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3236 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3237 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3238 && !reg_overlap_mentioned_p (i0dest, newpat))
3239 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3240 0, 0, 0))
3242 undo_all ();
3243 return 0;
3246 /* If the following substitution will modify I1SRC, make a copy of it
3247 for the case where it is substituted for I1DEST in I2PAT later. */
3248 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3249 i1src_copy = copy_rtx (i1src);
3251 n_occurrences = 0;
3252 subst_low_luid = DF_INSN_LUID (i0);
3253 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3254 substed_i0 = 1;
3257 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3258 to count all the ways that I2SRC and I1SRC can be used. */
3259 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3260 && i2_is_used + added_sets_2 > 1)
3261 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3262 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3263 > 1))
3264 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3265 && (n_occurrences + added_sets_0
3266 + (added_sets_1 && i0_feeds_i1_n)
3267 + (added_sets_2 && i0_feeds_i2_n)
3268 > 1))
3269 /* Fail if we tried to make a new register. */
3270 || max_reg_num () != maxreg
3271 /* Fail if we couldn't do something and have a CLOBBER. */
3272 || GET_CODE (newpat) == CLOBBER
3273 /* Fail if this new pattern is a MULT and we didn't have one before
3274 at the outer level. */
3275 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3276 && ! have_mult))
3278 undo_all ();
3279 return 0;
3282 /* If the actions of the earlier insns must be kept
3283 in addition to substituting them into the latest one,
3284 we must make a new PARALLEL for the latest insn
3285 to hold additional the SETs. */
3287 if (added_sets_0 || added_sets_1 || added_sets_2)
3289 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3290 combine_extras++;
3292 if (GET_CODE (newpat) == PARALLEL)
3294 rtvec old = XVEC (newpat, 0);
3295 total_sets = XVECLEN (newpat, 0) + extra_sets;
3296 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3297 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3298 sizeof (old->elem[0]) * old->num_elem);
3300 else
3302 rtx old = newpat;
3303 total_sets = 1 + extra_sets;
3304 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3305 XVECEXP (newpat, 0, 0) = old;
3308 if (added_sets_0)
3309 XVECEXP (newpat, 0, --total_sets) = i0pat;
3311 if (added_sets_1)
3313 rtx t = i1pat;
3314 if (i0_feeds_i1_n)
3315 t = subst (t, i0dest, i0src, 0, 0, 0);
3317 XVECEXP (newpat, 0, --total_sets) = t;
3319 if (added_sets_2)
3321 rtx t = i2pat;
3322 if (i1_feeds_i2_n)
3323 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3324 i0_feeds_i1_n && i0dest_in_i0src);
3325 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3326 t = subst (t, i0dest, i0src, 0, 0, 0);
3328 XVECEXP (newpat, 0, --total_sets) = t;
3332 validate_replacement:
3334 /* Note which hard regs this insn has as inputs. */
3335 mark_used_regs_combine (newpat);
3337 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3338 consider splitting this pattern, we might need these clobbers. */
3339 if (i1 && GET_CODE (newpat) == PARALLEL
3340 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3342 int len = XVECLEN (newpat, 0);
3344 newpat_vec_with_clobbers = rtvec_alloc (len);
3345 for (i = 0; i < len; i++)
3346 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3349 /* Is the result of combination a valid instruction? */
3350 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3352 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3353 the second SET's destination is a register that is unused and isn't
3354 marked as an instruction that might trap in an EH region. In that case,
3355 we just need the first SET. This can occur when simplifying a divmod
3356 insn. We *must* test for this case here because the code below that
3357 splits two independent SETs doesn't handle this case correctly when it
3358 updates the register status.
3360 It's pointless doing this if we originally had two sets, one from
3361 i3, and one from i2. Combining then splitting the parallel results
3362 in the original i2 again plus an invalid insn (which we delete).
3363 The net effect is only to move instructions around, which makes
3364 debug info less accurate.
3366 Also check the case where the first SET's destination is unused.
3367 That would not cause incorrect code, but does cause an unneeded
3368 insn to remain. */
3370 if (insn_code_number < 0
3371 && !(added_sets_2 && i1 == 0)
3372 && GET_CODE (newpat) == PARALLEL
3373 && XVECLEN (newpat, 0) == 2
3374 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3375 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3376 && asm_noperands (newpat) < 0)
3378 rtx set0 = XVECEXP (newpat, 0, 0);
3379 rtx set1 = XVECEXP (newpat, 0, 1);
3381 if (((REG_P (SET_DEST (set1))
3382 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3383 || (GET_CODE (SET_DEST (set1)) == SUBREG
3384 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3385 && insn_nothrow_p (i3)
3386 && !side_effects_p (SET_SRC (set1)))
3388 newpat = set0;
3389 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3392 else if (((REG_P (SET_DEST (set0))
3393 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3394 || (GET_CODE (SET_DEST (set0)) == SUBREG
3395 && find_reg_note (i3, REG_UNUSED,
3396 SUBREG_REG (SET_DEST (set0)))))
3397 && insn_nothrow_p (i3)
3398 && !side_effects_p (SET_SRC (set0)))
3400 newpat = set1;
3401 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3403 if (insn_code_number >= 0)
3404 changed_i3_dest = 1;
3408 /* If we were combining three insns and the result is a simple SET
3409 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3410 insns. There are two ways to do this. It can be split using a
3411 machine-specific method (like when you have an addition of a large
3412 constant) or by combine in the function find_split_point. */
3414 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3415 && asm_noperands (newpat) < 0)
3417 rtx parallel, m_split, *split;
3419 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3420 use I2DEST as a scratch register will help. In the latter case,
3421 convert I2DEST to the mode of the source of NEWPAT if we can. */
3423 m_split = combine_split_insns (newpat, i3);
3425 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3426 inputs of NEWPAT. */
3428 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3429 possible to try that as a scratch reg. This would require adding
3430 more code to make it work though. */
3432 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3434 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3436 /* First try to split using the original register as a
3437 scratch register. */
3438 parallel = gen_rtx_PARALLEL (VOIDmode,
3439 gen_rtvec (2, newpat,
3440 gen_rtx_CLOBBER (VOIDmode,
3441 i2dest)));
3442 m_split = combine_split_insns (parallel, i3);
3444 /* If that didn't work, try changing the mode of I2DEST if
3445 we can. */
3446 if (m_split == 0
3447 && new_mode != GET_MODE (i2dest)
3448 && new_mode != VOIDmode
3449 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3451 enum machine_mode old_mode = GET_MODE (i2dest);
3452 rtx ni2dest;
3454 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3455 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3456 else
3458 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3459 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3462 parallel = (gen_rtx_PARALLEL
3463 (VOIDmode,
3464 gen_rtvec (2, newpat,
3465 gen_rtx_CLOBBER (VOIDmode,
3466 ni2dest))));
3467 m_split = combine_split_insns (parallel, i3);
3469 if (m_split == 0
3470 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3472 struct undo *buf;
3474 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3475 buf = undobuf.undos;
3476 undobuf.undos = buf->next;
3477 buf->next = undobuf.frees;
3478 undobuf.frees = buf;
3482 i2scratch = m_split != 0;
3485 /* If recog_for_combine has discarded clobbers, try to use them
3486 again for the split. */
3487 if (m_split == 0 && newpat_vec_with_clobbers)
3489 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3490 m_split = combine_split_insns (parallel, i3);
3493 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3495 m_split = PATTERN (m_split);
3496 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3497 if (insn_code_number >= 0)
3498 newpat = m_split;
3500 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3501 && (next_nonnote_nondebug_insn (i2) == i3
3502 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3504 rtx i2set, i3set;
3505 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3506 newi2pat = PATTERN (m_split);
3508 i3set = single_set (NEXT_INSN (m_split));
3509 i2set = single_set (m_split);
3511 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3513 /* If I2 or I3 has multiple SETs, we won't know how to track
3514 register status, so don't use these insns. If I2's destination
3515 is used between I2 and I3, we also can't use these insns. */
3517 if (i2_code_number >= 0 && i2set && i3set
3518 && (next_nonnote_nondebug_insn (i2) == i3
3519 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3520 insn_code_number = recog_for_combine (&newi3pat, i3,
3521 &new_i3_notes);
3522 if (insn_code_number >= 0)
3523 newpat = newi3pat;
3525 /* It is possible that both insns now set the destination of I3.
3526 If so, we must show an extra use of it. */
3528 if (insn_code_number >= 0)
3530 rtx new_i3_dest = SET_DEST (i3set);
3531 rtx new_i2_dest = SET_DEST (i2set);
3533 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3534 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3535 || GET_CODE (new_i3_dest) == SUBREG)
3536 new_i3_dest = XEXP (new_i3_dest, 0);
3538 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3539 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3540 || GET_CODE (new_i2_dest) == SUBREG)
3541 new_i2_dest = XEXP (new_i2_dest, 0);
3543 if (REG_P (new_i3_dest)
3544 && REG_P (new_i2_dest)
3545 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3546 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3550 /* If we can split it and use I2DEST, go ahead and see if that
3551 helps things be recognized. Verify that none of the registers
3552 are set between I2 and I3. */
3553 if (insn_code_number < 0
3554 && (split = find_split_point (&newpat, i3, false)) != 0
3555 #ifdef HAVE_cc0
3556 && REG_P (i2dest)
3557 #endif
3558 /* We need I2DEST in the proper mode. If it is a hard register
3559 or the only use of a pseudo, we can change its mode.
3560 Make sure we don't change a hard register to have a mode that
3561 isn't valid for it, or change the number of registers. */
3562 && (GET_MODE (*split) == GET_MODE (i2dest)
3563 || GET_MODE (*split) == VOIDmode
3564 || can_change_dest_mode (i2dest, added_sets_2,
3565 GET_MODE (*split)))
3566 && (next_nonnote_nondebug_insn (i2) == i3
3567 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3568 /* We can't overwrite I2DEST if its value is still used by
3569 NEWPAT. */
3570 && ! reg_referenced_p (i2dest, newpat))
3572 rtx newdest = i2dest;
3573 enum rtx_code split_code = GET_CODE (*split);
3574 enum machine_mode split_mode = GET_MODE (*split);
3575 bool subst_done = false;
3576 newi2pat = NULL_RTX;
3578 i2scratch = true;
3580 /* *SPLIT may be part of I2SRC, so make sure we have the
3581 original expression around for later debug processing.
3582 We should not need I2SRC any more in other cases. */
3583 if (MAY_HAVE_DEBUG_INSNS)
3584 i2src = copy_rtx (i2src);
3585 else
3586 i2src = NULL;
3588 /* Get NEWDEST as a register in the proper mode. We have already
3589 validated that we can do this. */
3590 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3592 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3593 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3594 else
3596 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3597 newdest = regno_reg_rtx[REGNO (i2dest)];
3601 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3602 an ASHIFT. This can occur if it was inside a PLUS and hence
3603 appeared to be a memory address. This is a kludge. */
3604 if (split_code == MULT
3605 && CONST_INT_P (XEXP (*split, 1))
3606 && INTVAL (XEXP (*split, 1)) > 0
3607 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3609 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3610 XEXP (*split, 0), GEN_INT (i)));
3611 /* Update split_code because we may not have a multiply
3612 anymore. */
3613 split_code = GET_CODE (*split);
3616 #ifdef INSN_SCHEDULING
3617 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3618 be written as a ZERO_EXTEND. */
3619 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3621 #ifdef LOAD_EXTEND_OP
3622 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3623 what it really is. */
3624 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3625 == SIGN_EXTEND)
3626 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3627 SUBREG_REG (*split)));
3628 else
3629 #endif
3630 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3631 SUBREG_REG (*split)));
3633 #endif
3635 /* Attempt to split binary operators using arithmetic identities. */
3636 if (BINARY_P (SET_SRC (newpat))
3637 && split_mode == GET_MODE (SET_SRC (newpat))
3638 && ! side_effects_p (SET_SRC (newpat)))
3640 rtx setsrc = SET_SRC (newpat);
3641 enum machine_mode mode = GET_MODE (setsrc);
3642 enum rtx_code code = GET_CODE (setsrc);
3643 rtx src_op0 = XEXP (setsrc, 0);
3644 rtx src_op1 = XEXP (setsrc, 1);
3646 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3647 if (rtx_equal_p (src_op0, src_op1))
3649 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3650 SUBST (XEXP (setsrc, 0), newdest);
3651 SUBST (XEXP (setsrc, 1), newdest);
3652 subst_done = true;
3654 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3655 else if ((code == PLUS || code == MULT)
3656 && GET_CODE (src_op0) == code
3657 && GET_CODE (XEXP (src_op0, 0)) == code
3658 && (INTEGRAL_MODE_P (mode)
3659 || (FLOAT_MODE_P (mode)
3660 && flag_unsafe_math_optimizations)))
3662 rtx p = XEXP (XEXP (src_op0, 0), 0);
3663 rtx q = XEXP (XEXP (src_op0, 0), 1);
3664 rtx r = XEXP (src_op0, 1);
3665 rtx s = src_op1;
3667 /* Split both "((X op Y) op X) op Y" and
3668 "((X op Y) op Y) op X" as "T op T" where T is
3669 "X op Y". */
3670 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3671 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3673 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3674 XEXP (src_op0, 0));
3675 SUBST (XEXP (setsrc, 0), newdest);
3676 SUBST (XEXP (setsrc, 1), newdest);
3677 subst_done = true;
3679 /* Split "((X op X) op Y) op Y)" as "T op T" where
3680 T is "X op Y". */
3681 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3683 rtx tmp = simplify_gen_binary (code, mode, p, r);
3684 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3685 SUBST (XEXP (setsrc, 0), newdest);
3686 SUBST (XEXP (setsrc, 1), newdest);
3687 subst_done = true;
3692 if (!subst_done)
3694 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3695 SUBST (*split, newdest);
3698 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3700 /* recog_for_combine might have added CLOBBERs to newi2pat.
3701 Make sure NEWPAT does not depend on the clobbered regs. */
3702 if (GET_CODE (newi2pat) == PARALLEL)
3703 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3704 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3706 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3707 if (reg_overlap_mentioned_p (reg, newpat))
3709 undo_all ();
3710 return 0;
3714 /* If the split point was a MULT and we didn't have one before,
3715 don't use one now. */
3716 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3717 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3721 /* Check for a case where we loaded from memory in a narrow mode and
3722 then sign extended it, but we need both registers. In that case,
3723 we have a PARALLEL with both loads from the same memory location.
3724 We can split this into a load from memory followed by a register-register
3725 copy. This saves at least one insn, more if register allocation can
3726 eliminate the copy.
3728 We cannot do this if the destination of the first assignment is a
3729 condition code register or cc0. We eliminate this case by making sure
3730 the SET_DEST and SET_SRC have the same mode.
3732 We cannot do this if the destination of the second assignment is
3733 a register that we have already assumed is zero-extended. Similarly
3734 for a SUBREG of such a register. */
3736 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3737 && GET_CODE (newpat) == PARALLEL
3738 && XVECLEN (newpat, 0) == 2
3739 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3740 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3741 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3742 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3743 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3744 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3745 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3746 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3747 DF_INSN_LUID (i2))
3748 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3749 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3750 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3751 (REG_P (temp)
3752 && VEC_index (reg_stat_type, reg_stat,
3753 REGNO (temp))->nonzero_bits != 0
3754 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3755 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3756 && (VEC_index (reg_stat_type, reg_stat,
3757 REGNO (temp))->nonzero_bits
3758 != GET_MODE_MASK (word_mode))))
3759 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3760 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3761 (REG_P (temp)
3762 && VEC_index (reg_stat_type, reg_stat,
3763 REGNO (temp))->nonzero_bits != 0
3764 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3765 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3766 && (VEC_index (reg_stat_type, reg_stat,
3767 REGNO (temp))->nonzero_bits
3768 != GET_MODE_MASK (word_mode)))))
3769 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3770 SET_SRC (XVECEXP (newpat, 0, 1)))
3771 && ! find_reg_note (i3, REG_UNUSED,
3772 SET_DEST (XVECEXP (newpat, 0, 0))))
3774 rtx ni2dest;
3776 newi2pat = XVECEXP (newpat, 0, 0);
3777 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3778 newpat = XVECEXP (newpat, 0, 1);
3779 SUBST (SET_SRC (newpat),
3780 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3781 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3783 if (i2_code_number >= 0)
3784 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3786 if (insn_code_number >= 0)
3787 swap_i2i3 = 1;
3790 /* Similarly, check for a case where we have a PARALLEL of two independent
3791 SETs but we started with three insns. In this case, we can do the sets
3792 as two separate insns. This case occurs when some SET allows two
3793 other insns to combine, but the destination of that SET is still live. */
3795 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3796 && GET_CODE (newpat) == PARALLEL
3797 && XVECLEN (newpat, 0) == 2
3798 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3799 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3800 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3801 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3802 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3803 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3804 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3805 XVECEXP (newpat, 0, 0))
3806 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3807 XVECEXP (newpat, 0, 1))
3808 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3809 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3811 /* Normally, it doesn't matter which of the two is done first,
3812 but the one that references cc0 can't be the second, and
3813 one which uses any regs/memory set in between i2 and i3 can't
3814 be first. */
3815 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3816 DF_INSN_LUID (i2))
3817 #ifdef HAVE_cc0
3818 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3819 #endif
3822 newi2pat = XVECEXP (newpat, 0, 1);
3823 newpat = XVECEXP (newpat, 0, 0);
3825 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3826 DF_INSN_LUID (i2))
3827 #ifdef HAVE_cc0
3828 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3829 #endif
3832 newi2pat = XVECEXP (newpat, 0, 0);
3833 newpat = XVECEXP (newpat, 0, 1);
3835 else
3837 undo_all ();
3838 return 0;
3841 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3843 if (i2_code_number >= 0)
3845 /* recog_for_combine might have added CLOBBERs to newi2pat.
3846 Make sure NEWPAT does not depend on the clobbered regs. */
3847 if (GET_CODE (newi2pat) == PARALLEL)
3849 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3850 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3852 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3853 if (reg_overlap_mentioned_p (reg, newpat))
3855 undo_all ();
3856 return 0;
3861 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3865 /* If it still isn't recognized, fail and change things back the way they
3866 were. */
3867 if ((insn_code_number < 0
3868 /* Is the result a reasonable ASM_OPERANDS? */
3869 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3871 undo_all ();
3872 return 0;
3875 /* If we had to change another insn, make sure it is valid also. */
3876 if (undobuf.other_insn)
3878 CLEAR_HARD_REG_SET (newpat_used_regs);
3880 other_pat = PATTERN (undobuf.other_insn);
3881 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3882 &new_other_notes);
3884 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3886 undo_all ();
3887 return 0;
3891 #ifdef HAVE_cc0
3892 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3893 they are adjacent to each other or not. */
3895 rtx p = prev_nonnote_insn (i3);
3896 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3897 && sets_cc0_p (newi2pat))
3899 undo_all ();
3900 return 0;
3903 #endif
3905 /* Only allow this combination if insn_rtx_costs reports that the
3906 replacement instructions are cheaper than the originals. */
3907 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3909 undo_all ();
3910 return 0;
3913 if (MAY_HAVE_DEBUG_INSNS)
3915 struct undo *undo;
3917 for (undo = undobuf.undos; undo; undo = undo->next)
3918 if (undo->kind == UNDO_MODE)
3920 rtx reg = *undo->where.r;
3921 enum machine_mode new_mode = GET_MODE (reg);
3922 enum machine_mode old_mode = undo->old_contents.m;
3924 /* Temporarily revert mode back. */
3925 adjust_reg_mode (reg, old_mode);
3927 if (reg == i2dest && i2scratch)
3929 /* If we used i2dest as a scratch register with a
3930 different mode, substitute it for the original
3931 i2src while its original mode is temporarily
3932 restored, and then clear i2scratch so that we don't
3933 do it again later. */
3934 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3935 i2scratch = false;
3936 /* Put back the new mode. */
3937 adjust_reg_mode (reg, new_mode);
3939 else
3941 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3942 rtx first, last;
3944 if (reg == i2dest)
3946 first = i2;
3947 last = last_combined_insn;
3949 else
3951 first = i3;
3952 last = undobuf.other_insn;
3953 gcc_assert (last);
3954 if (DF_INSN_LUID (last)
3955 < DF_INSN_LUID (last_combined_insn))
3956 last = last_combined_insn;
3959 /* We're dealing with a reg that changed mode but not
3960 meaning, so we want to turn it into a subreg for
3961 the new mode. However, because of REG sharing and
3962 because its mode had already changed, we have to do
3963 it in two steps. First, replace any debug uses of
3964 reg, with its original mode temporarily restored,
3965 with this copy we have created; then, replace the
3966 copy with the SUBREG of the original shared reg,
3967 once again changed to the new mode. */
3968 propagate_for_debug (first, last, reg, tempreg);
3969 adjust_reg_mode (reg, new_mode);
3970 propagate_for_debug (first, last, tempreg,
3971 lowpart_subreg (old_mode, reg, new_mode));
3976 /* If we will be able to accept this, we have made a
3977 change to the destination of I3. This requires us to
3978 do a few adjustments. */
3980 if (changed_i3_dest)
3982 PATTERN (i3) = newpat;
3983 adjust_for_new_dest (i3);
3986 /* We now know that we can do this combination. Merge the insns and
3987 update the status of registers and LOG_LINKS. */
3989 if (undobuf.other_insn)
3991 rtx note, next;
3993 PATTERN (undobuf.other_insn) = other_pat;
3995 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3996 are still valid. Then add any non-duplicate notes added by
3997 recog_for_combine. */
3998 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4000 next = XEXP (note, 1);
4002 if (REG_NOTE_KIND (note) == REG_UNUSED
4003 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
4004 remove_note (undobuf.other_insn, note);
4007 distribute_notes (new_other_notes, undobuf.other_insn,
4008 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4009 NULL_RTX);
4012 if (swap_i2i3)
4014 rtx insn;
4015 struct insn_link *link;
4016 rtx ni2dest;
4018 /* I3 now uses what used to be its destination and which is now
4019 I2's destination. This requires us to do a few adjustments. */
4020 PATTERN (i3) = newpat;
4021 adjust_for_new_dest (i3);
4023 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4024 so we still will.
4026 However, some later insn might be using I2's dest and have
4027 a LOG_LINK pointing at I3. We must remove this link.
4028 The simplest way to remove the link is to point it at I1,
4029 which we know will be a NOTE. */
4031 /* newi2pat is usually a SET here; however, recog_for_combine might
4032 have added some clobbers. */
4033 if (GET_CODE (newi2pat) == PARALLEL)
4034 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4035 else
4036 ni2dest = SET_DEST (newi2pat);
4038 for (insn = NEXT_INSN (i3);
4039 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4040 || insn != BB_HEAD (this_basic_block->next_bb));
4041 insn = NEXT_INSN (insn))
4043 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4045 FOR_EACH_LOG_LINK (link, insn)
4046 if (link->insn == i3)
4047 link->insn = i1;
4049 break;
4055 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4056 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4057 rtx midnotes = 0;
4058 int from_luid;
4059 /* Compute which registers we expect to eliminate. newi2pat may be setting
4060 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4061 same as i3dest, in which case newi2pat may be setting i1dest. */
4062 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4063 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4064 || !i2dest_killed
4065 ? 0 : i2dest);
4066 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4067 || (newi2pat && reg_set_p (i1dest, newi2pat))
4068 || !i1dest_killed
4069 ? 0 : i1dest);
4070 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4071 || (newi2pat && reg_set_p (i0dest, newi2pat))
4072 || !i0dest_killed
4073 ? 0 : i0dest);
4075 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4076 clear them. */
4077 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4078 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4079 if (i1)
4080 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4081 if (i0)
4082 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4084 /* Ensure that we do not have something that should not be shared but
4085 occurs multiple times in the new insns. Check this by first
4086 resetting all the `used' flags and then copying anything is shared. */
4088 reset_used_flags (i3notes);
4089 reset_used_flags (i2notes);
4090 reset_used_flags (i1notes);
4091 reset_used_flags (i0notes);
4092 reset_used_flags (newpat);
4093 reset_used_flags (newi2pat);
4094 if (undobuf.other_insn)
4095 reset_used_flags (PATTERN (undobuf.other_insn));
4097 i3notes = copy_rtx_if_shared (i3notes);
4098 i2notes = copy_rtx_if_shared (i2notes);
4099 i1notes = copy_rtx_if_shared (i1notes);
4100 i0notes = copy_rtx_if_shared (i0notes);
4101 newpat = copy_rtx_if_shared (newpat);
4102 newi2pat = copy_rtx_if_shared (newi2pat);
4103 if (undobuf.other_insn)
4104 reset_used_flags (PATTERN (undobuf.other_insn));
4106 INSN_CODE (i3) = insn_code_number;
4107 PATTERN (i3) = newpat;
4109 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4111 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4113 reset_used_flags (call_usage);
4114 call_usage = copy_rtx (call_usage);
4116 if (substed_i2)
4118 /* I2SRC must still be meaningful at this point. Some splitting
4119 operations can invalidate I2SRC, but those operations do not
4120 apply to calls. */
4121 gcc_assert (i2src);
4122 replace_rtx (call_usage, i2dest, i2src);
4125 if (substed_i1)
4126 replace_rtx (call_usage, i1dest, i1src);
4127 if (substed_i0)
4128 replace_rtx (call_usage, i0dest, i0src);
4130 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4133 if (undobuf.other_insn)
4134 INSN_CODE (undobuf.other_insn) = other_code_number;
4136 /* We had one special case above where I2 had more than one set and
4137 we replaced a destination of one of those sets with the destination
4138 of I3. In that case, we have to update LOG_LINKS of insns later
4139 in this basic block. Note that this (expensive) case is rare.
4141 Also, in this case, we must pretend that all REG_NOTEs for I2
4142 actually came from I3, so that REG_UNUSED notes from I2 will be
4143 properly handled. */
4145 if (i3_subst_into_i2)
4147 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4148 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4149 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4150 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4151 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4152 && ! find_reg_note (i2, REG_UNUSED,
4153 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4154 for (temp = NEXT_INSN (i2);
4155 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4156 || BB_HEAD (this_basic_block) != temp);
4157 temp = NEXT_INSN (temp))
4158 if (temp != i3 && INSN_P (temp))
4159 FOR_EACH_LOG_LINK (link, temp)
4160 if (link->insn == i2)
4161 link->insn = i3;
4163 if (i3notes)
4165 rtx link = i3notes;
4166 while (XEXP (link, 1))
4167 link = XEXP (link, 1);
4168 XEXP (link, 1) = i2notes;
4170 else
4171 i3notes = i2notes;
4172 i2notes = 0;
4175 LOG_LINKS (i3) = NULL;
4176 REG_NOTES (i3) = 0;
4177 LOG_LINKS (i2) = NULL;
4178 REG_NOTES (i2) = 0;
4180 if (newi2pat)
4182 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4183 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4184 INSN_CODE (i2) = i2_code_number;
4185 PATTERN (i2) = newi2pat;
4187 else
4189 if (MAY_HAVE_DEBUG_INSNS && i2src)
4190 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4191 SET_INSN_DELETED (i2);
4194 if (i1)
4196 LOG_LINKS (i1) = NULL;
4197 REG_NOTES (i1) = 0;
4198 if (MAY_HAVE_DEBUG_INSNS)
4199 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4200 SET_INSN_DELETED (i1);
4203 if (i0)
4205 LOG_LINKS (i0) = NULL;
4206 REG_NOTES (i0) = 0;
4207 if (MAY_HAVE_DEBUG_INSNS)
4208 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4209 SET_INSN_DELETED (i0);
4212 /* Get death notes for everything that is now used in either I3 or
4213 I2 and used to die in a previous insn. If we built two new
4214 patterns, move from I1 to I2 then I2 to I3 so that we get the
4215 proper movement on registers that I2 modifies. */
4217 if (i0)
4218 from_luid = DF_INSN_LUID (i0);
4219 else if (i1)
4220 from_luid = DF_INSN_LUID (i1);
4221 else
4222 from_luid = DF_INSN_LUID (i2);
4223 if (newi2pat)
4224 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4225 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4227 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4228 if (i3notes)
4229 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4230 elim_i2, elim_i1, elim_i0);
4231 if (i2notes)
4232 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4233 elim_i2, elim_i1, elim_i0);
4234 if (i1notes)
4235 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4236 elim_i2, elim_i1, elim_i0);
4237 if (i0notes)
4238 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4239 elim_i2, elim_i1, elim_i0);
4240 if (midnotes)
4241 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4242 elim_i2, elim_i1, elim_i0);
4244 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4245 know these are REG_UNUSED and want them to go to the desired insn,
4246 so we always pass it as i3. */
4248 if (newi2pat && new_i2_notes)
4249 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4250 NULL_RTX);
4252 if (new_i3_notes)
4253 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4254 NULL_RTX);
4256 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4257 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4258 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4259 in that case, it might delete I2. Similarly for I2 and I1.
4260 Show an additional death due to the REG_DEAD note we make here. If
4261 we discard it in distribute_notes, we will decrement it again. */
4263 if (i3dest_killed)
4265 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4266 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4267 NULL_RTX),
4268 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4269 else
4270 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4271 NULL_RTX),
4272 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4273 elim_i2, elim_i1, elim_i0);
4276 if (i2dest_in_i2src)
4278 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4279 if (newi2pat && reg_set_p (i2dest, newi2pat))
4280 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4281 NULL_RTX, NULL_RTX);
4282 else
4283 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4284 NULL_RTX, NULL_RTX, NULL_RTX);
4287 if (i1dest_in_i1src)
4289 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4290 if (newi2pat && reg_set_p (i1dest, newi2pat))
4291 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4292 NULL_RTX, NULL_RTX);
4293 else
4294 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4295 NULL_RTX, NULL_RTX, NULL_RTX);
4298 if (i0dest_in_i0src)
4300 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4301 if (newi2pat && reg_set_p (i0dest, newi2pat))
4302 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4303 NULL_RTX, NULL_RTX);
4304 else
4305 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4306 NULL_RTX, NULL_RTX, NULL_RTX);
4309 distribute_links (i3links);
4310 distribute_links (i2links);
4311 distribute_links (i1links);
4312 distribute_links (i0links);
4314 if (REG_P (i2dest))
4316 struct insn_link *link;
4317 rtx i2_insn = 0, i2_val = 0, set;
4319 /* The insn that used to set this register doesn't exist, and
4320 this life of the register may not exist either. See if one of
4321 I3's links points to an insn that sets I2DEST. If it does,
4322 that is now the last known value for I2DEST. If we don't update
4323 this and I2 set the register to a value that depended on its old
4324 contents, we will get confused. If this insn is used, thing
4325 will be set correctly in combine_instructions. */
4326 FOR_EACH_LOG_LINK (link, i3)
4327 if ((set = single_set (link->insn)) != 0
4328 && rtx_equal_p (i2dest, SET_DEST (set)))
4329 i2_insn = link->insn, i2_val = SET_SRC (set);
4331 record_value_for_reg (i2dest, i2_insn, i2_val);
4333 /* If the reg formerly set in I2 died only once and that was in I3,
4334 zero its use count so it won't make `reload' do any work. */
4335 if (! added_sets_2
4336 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4337 && ! i2dest_in_i2src)
4338 INC_REG_N_SETS (REGNO (i2dest), -1);
4341 if (i1 && REG_P (i1dest))
4343 struct insn_link *link;
4344 rtx i1_insn = 0, i1_val = 0, set;
4346 FOR_EACH_LOG_LINK (link, i3)
4347 if ((set = single_set (link->insn)) != 0
4348 && rtx_equal_p (i1dest, SET_DEST (set)))
4349 i1_insn = link->insn, i1_val = SET_SRC (set);
4351 record_value_for_reg (i1dest, i1_insn, i1_val);
4353 if (! added_sets_1 && ! i1dest_in_i1src)
4354 INC_REG_N_SETS (REGNO (i1dest), -1);
4357 if (i0 && REG_P (i0dest))
4359 struct insn_link *link;
4360 rtx i0_insn = 0, i0_val = 0, set;
4362 FOR_EACH_LOG_LINK (link, i3)
4363 if ((set = single_set (link->insn)) != 0
4364 && rtx_equal_p (i0dest, SET_DEST (set)))
4365 i0_insn = link->insn, i0_val = SET_SRC (set);
4367 record_value_for_reg (i0dest, i0_insn, i0_val);
4369 if (! added_sets_0 && ! i0dest_in_i0src)
4370 INC_REG_N_SETS (REGNO (i0dest), -1);
4373 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4374 been made to this insn. The order of
4375 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4376 can affect nonzero_bits of newpat */
4377 if (newi2pat)
4378 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4379 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4382 if (undobuf.other_insn != NULL_RTX)
4384 if (dump_file)
4386 fprintf (dump_file, "modifying other_insn ");
4387 dump_insn_slim (dump_file, undobuf.other_insn);
4389 df_insn_rescan (undobuf.other_insn);
4392 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4394 if (dump_file)
4396 fprintf (dump_file, "modifying insn i1 ");
4397 dump_insn_slim (dump_file, i0);
4399 df_insn_rescan (i0);
4402 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4404 if (dump_file)
4406 fprintf (dump_file, "modifying insn i1 ");
4407 dump_insn_slim (dump_file, i1);
4409 df_insn_rescan (i1);
4412 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4414 if (dump_file)
4416 fprintf (dump_file, "modifying insn i2 ");
4417 dump_insn_slim (dump_file, i2);
4419 df_insn_rescan (i2);
4422 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4424 if (dump_file)
4426 fprintf (dump_file, "modifying insn i3 ");
4427 dump_insn_slim (dump_file, i3);
4429 df_insn_rescan (i3);
4432 /* Set new_direct_jump_p if a new return or simple jump instruction
4433 has been created. Adjust the CFG accordingly. */
4435 if (returnjump_p (i3) || any_uncondjump_p (i3))
4437 *new_direct_jump_p = 1;
4438 mark_jump_label (PATTERN (i3), i3, 0);
4439 update_cfg_for_uncondjump (i3);
4442 if (undobuf.other_insn != NULL_RTX
4443 && (returnjump_p (undobuf.other_insn)
4444 || any_uncondjump_p (undobuf.other_insn)))
4446 *new_direct_jump_p = 1;
4447 update_cfg_for_uncondjump (undobuf.other_insn);
4450 /* A noop might also need cleaning up of CFG, if it comes from the
4451 simplification of a jump. */
4452 if (JUMP_P (i3)
4453 && GET_CODE (newpat) == SET
4454 && SET_SRC (newpat) == pc_rtx
4455 && SET_DEST (newpat) == pc_rtx)
4457 *new_direct_jump_p = 1;
4458 update_cfg_for_uncondjump (i3);
4461 if (undobuf.other_insn != NULL_RTX
4462 && JUMP_P (undobuf.other_insn)
4463 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4464 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4465 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4467 *new_direct_jump_p = 1;
4468 update_cfg_for_uncondjump (undobuf.other_insn);
4471 combine_successes++;
4472 undo_commit ();
4474 if (added_links_insn
4475 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4476 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4477 return added_links_insn;
4478 else
4479 return newi2pat ? i2 : i3;
4482 /* Undo all the modifications recorded in undobuf. */
4484 static void
4485 undo_all (void)
4487 struct undo *undo, *next;
4489 for (undo = undobuf.undos; undo; undo = next)
4491 next = undo->next;
4492 switch (undo->kind)
4494 case UNDO_RTX:
4495 *undo->where.r = undo->old_contents.r;
4496 break;
4497 case UNDO_INT:
4498 *undo->where.i = undo->old_contents.i;
4499 break;
4500 case UNDO_MODE:
4501 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4502 break;
4503 default:
4504 gcc_unreachable ();
4507 undo->next = undobuf.frees;
4508 undobuf.frees = undo;
4511 undobuf.undos = 0;
4514 /* We've committed to accepting the changes we made. Move all
4515 of the undos to the free list. */
4517 static void
4518 undo_commit (void)
4520 struct undo *undo, *next;
4522 for (undo = undobuf.undos; undo; undo = next)
4524 next = undo->next;
4525 undo->next = undobuf.frees;
4526 undobuf.frees = undo;
4528 undobuf.undos = 0;
4531 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4532 where we have an arithmetic expression and return that point. LOC will
4533 be inside INSN.
4535 try_combine will call this function to see if an insn can be split into
4536 two insns. */
4538 static rtx *
4539 find_split_point (rtx *loc, rtx insn, bool set_src)
4541 rtx x = *loc;
4542 enum rtx_code code = GET_CODE (x);
4543 rtx *split;
4544 unsigned HOST_WIDE_INT len = 0;
4545 HOST_WIDE_INT pos = 0;
4546 int unsignedp = 0;
4547 rtx inner = NULL_RTX;
4549 /* First special-case some codes. */
4550 switch (code)
4552 case SUBREG:
4553 #ifdef INSN_SCHEDULING
4554 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4555 point. */
4556 if (MEM_P (SUBREG_REG (x)))
4557 return loc;
4558 #endif
4559 return find_split_point (&SUBREG_REG (x), insn, false);
4561 case MEM:
4562 #ifdef HAVE_lo_sum
4563 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4564 using LO_SUM and HIGH. */
4565 if (GET_CODE (XEXP (x, 0)) == CONST
4566 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4568 enum machine_mode address_mode
4569 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4571 SUBST (XEXP (x, 0),
4572 gen_rtx_LO_SUM (address_mode,
4573 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4574 XEXP (x, 0)));
4575 return &XEXP (XEXP (x, 0), 0);
4577 #endif
4579 /* If we have a PLUS whose second operand is a constant and the
4580 address is not valid, perhaps will can split it up using
4581 the machine-specific way to split large constants. We use
4582 the first pseudo-reg (one of the virtual regs) as a placeholder;
4583 it will not remain in the result. */
4584 if (GET_CODE (XEXP (x, 0)) == PLUS
4585 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4586 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4587 MEM_ADDR_SPACE (x)))
4589 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4590 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4591 XEXP (x, 0)),
4592 subst_insn);
4594 /* This should have produced two insns, each of which sets our
4595 placeholder. If the source of the second is a valid address,
4596 we can make put both sources together and make a split point
4597 in the middle. */
4599 if (seq
4600 && NEXT_INSN (seq) != NULL_RTX
4601 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4602 && NONJUMP_INSN_P (seq)
4603 && GET_CODE (PATTERN (seq)) == SET
4604 && SET_DEST (PATTERN (seq)) == reg
4605 && ! reg_mentioned_p (reg,
4606 SET_SRC (PATTERN (seq)))
4607 && NONJUMP_INSN_P (NEXT_INSN (seq))
4608 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4609 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4610 && memory_address_addr_space_p
4611 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4612 MEM_ADDR_SPACE (x)))
4614 rtx src1 = SET_SRC (PATTERN (seq));
4615 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4617 /* Replace the placeholder in SRC2 with SRC1. If we can
4618 find where in SRC2 it was placed, that can become our
4619 split point and we can replace this address with SRC2.
4620 Just try two obvious places. */
4622 src2 = replace_rtx (src2, reg, src1);
4623 split = 0;
4624 if (XEXP (src2, 0) == src1)
4625 split = &XEXP (src2, 0);
4626 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4627 && XEXP (XEXP (src2, 0), 0) == src1)
4628 split = &XEXP (XEXP (src2, 0), 0);
4630 if (split)
4632 SUBST (XEXP (x, 0), src2);
4633 return split;
4637 /* If that didn't work, perhaps the first operand is complex and
4638 needs to be computed separately, so make a split point there.
4639 This will occur on machines that just support REG + CONST
4640 and have a constant moved through some previous computation. */
4642 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4643 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4644 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4645 return &XEXP (XEXP (x, 0), 0);
4648 /* If we have a PLUS whose first operand is complex, try computing it
4649 separately by making a split there. */
4650 if (GET_CODE (XEXP (x, 0)) == PLUS
4651 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4652 MEM_ADDR_SPACE (x))
4653 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4654 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4655 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4656 return &XEXP (XEXP (x, 0), 0);
4657 break;
4659 case SET:
4660 #ifdef HAVE_cc0
4661 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4662 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4663 we need to put the operand into a register. So split at that
4664 point. */
4666 if (SET_DEST (x) == cc0_rtx
4667 && GET_CODE (SET_SRC (x)) != COMPARE
4668 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4669 && !OBJECT_P (SET_SRC (x))
4670 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4671 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4672 return &SET_SRC (x);
4673 #endif
4675 /* See if we can split SET_SRC as it stands. */
4676 split = find_split_point (&SET_SRC (x), insn, true);
4677 if (split && split != &SET_SRC (x))
4678 return split;
4680 /* See if we can split SET_DEST as it stands. */
4681 split = find_split_point (&SET_DEST (x), insn, false);
4682 if (split && split != &SET_DEST (x))
4683 return split;
4685 /* See if this is a bitfield assignment with everything constant. If
4686 so, this is an IOR of an AND, so split it into that. */
4687 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4688 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4689 <= HOST_BITS_PER_WIDE_INT)
4690 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4691 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4692 && CONST_INT_P (SET_SRC (x))
4693 && ((INTVAL (XEXP (SET_DEST (x), 1))
4694 + INTVAL (XEXP (SET_DEST (x), 2)))
4695 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4696 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4698 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4699 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4700 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4701 rtx dest = XEXP (SET_DEST (x), 0);
4702 enum machine_mode mode = GET_MODE (dest);
4703 unsigned HOST_WIDE_INT mask
4704 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4705 rtx or_mask;
4707 if (BITS_BIG_ENDIAN)
4708 pos = GET_MODE_BITSIZE (mode) - len - pos;
4710 or_mask = gen_int_mode (src << pos, mode);
4711 if (src == mask)
4712 SUBST (SET_SRC (x),
4713 simplify_gen_binary (IOR, mode, dest, or_mask));
4714 else
4716 rtx negmask = gen_int_mode (~(mask << pos), mode);
4717 SUBST (SET_SRC (x),
4718 simplify_gen_binary (IOR, mode,
4719 simplify_gen_binary (AND, mode,
4720 dest, negmask),
4721 or_mask));
4724 SUBST (SET_DEST (x), dest);
4726 split = find_split_point (&SET_SRC (x), insn, true);
4727 if (split && split != &SET_SRC (x))
4728 return split;
4731 /* Otherwise, see if this is an operation that we can split into two.
4732 If so, try to split that. */
4733 code = GET_CODE (SET_SRC (x));
4735 switch (code)
4737 case AND:
4738 /* If we are AND'ing with a large constant that is only a single
4739 bit and the result is only being used in a context where we
4740 need to know if it is zero or nonzero, replace it with a bit
4741 extraction. This will avoid the large constant, which might
4742 have taken more than one insn to make. If the constant were
4743 not a valid argument to the AND but took only one insn to make,
4744 this is no worse, but if it took more than one insn, it will
4745 be better. */
4747 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4748 && REG_P (XEXP (SET_SRC (x), 0))
4749 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4750 && REG_P (SET_DEST (x))
4751 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4752 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4753 && XEXP (*split, 0) == SET_DEST (x)
4754 && XEXP (*split, 1) == const0_rtx)
4756 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4757 XEXP (SET_SRC (x), 0),
4758 pos, NULL_RTX, 1, 1, 0, 0);
4759 if (extraction != 0)
4761 SUBST (SET_SRC (x), extraction);
4762 return find_split_point (loc, insn, false);
4765 break;
4767 case NE:
4768 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4769 is known to be on, this can be converted into a NEG of a shift. */
4770 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4771 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4772 && 1 <= (pos = exact_log2
4773 (nonzero_bits (XEXP (SET_SRC (x), 0),
4774 GET_MODE (XEXP (SET_SRC (x), 0))))))
4776 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4778 SUBST (SET_SRC (x),
4779 gen_rtx_NEG (mode,
4780 gen_rtx_LSHIFTRT (mode,
4781 XEXP (SET_SRC (x), 0),
4782 GEN_INT (pos))));
4784 split = find_split_point (&SET_SRC (x), insn, true);
4785 if (split && split != &SET_SRC (x))
4786 return split;
4788 break;
4790 case SIGN_EXTEND:
4791 inner = XEXP (SET_SRC (x), 0);
4793 /* We can't optimize if either mode is a partial integer
4794 mode as we don't know how many bits are significant
4795 in those modes. */
4796 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4797 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4798 break;
4800 pos = 0;
4801 len = GET_MODE_BITSIZE (GET_MODE (inner));
4802 unsignedp = 0;
4803 break;
4805 case SIGN_EXTRACT:
4806 case ZERO_EXTRACT:
4807 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4808 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4810 inner = XEXP (SET_SRC (x), 0);
4811 len = INTVAL (XEXP (SET_SRC (x), 1));
4812 pos = INTVAL (XEXP (SET_SRC (x), 2));
4814 if (BITS_BIG_ENDIAN)
4815 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4816 unsignedp = (code == ZERO_EXTRACT);
4818 break;
4820 default:
4821 break;
4824 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4826 enum machine_mode mode = GET_MODE (SET_SRC (x));
4828 /* For unsigned, we have a choice of a shift followed by an
4829 AND or two shifts. Use two shifts for field sizes where the
4830 constant might be too large. We assume here that we can
4831 always at least get 8-bit constants in an AND insn, which is
4832 true for every current RISC. */
4834 if (unsignedp && len <= 8)
4836 SUBST (SET_SRC (x),
4837 gen_rtx_AND (mode,
4838 gen_rtx_LSHIFTRT
4839 (mode, gen_lowpart (mode, inner),
4840 GEN_INT (pos)),
4841 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4842 - 1)));
4844 split = find_split_point (&SET_SRC (x), insn, true);
4845 if (split && split != &SET_SRC (x))
4846 return split;
4848 else
4850 SUBST (SET_SRC (x),
4851 gen_rtx_fmt_ee
4852 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4853 gen_rtx_ASHIFT (mode,
4854 gen_lowpart (mode, inner),
4855 GEN_INT (GET_MODE_BITSIZE (mode)
4856 - len - pos)),
4857 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4859 split = find_split_point (&SET_SRC (x), insn, true);
4860 if (split && split != &SET_SRC (x))
4861 return split;
4865 /* See if this is a simple operation with a constant as the second
4866 operand. It might be that this constant is out of range and hence
4867 could be used as a split point. */
4868 if (BINARY_P (SET_SRC (x))
4869 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4870 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4871 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4872 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4873 return &XEXP (SET_SRC (x), 1);
4875 /* Finally, see if this is a simple operation with its first operand
4876 not in a register. The operation might require this operand in a
4877 register, so return it as a split point. We can always do this
4878 because if the first operand were another operation, we would have
4879 already found it as a split point. */
4880 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4881 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4882 return &XEXP (SET_SRC (x), 0);
4884 return 0;
4886 case AND:
4887 case IOR:
4888 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4889 it is better to write this as (not (ior A B)) so we can split it.
4890 Similarly for IOR. */
4891 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4893 SUBST (*loc,
4894 gen_rtx_NOT (GET_MODE (x),
4895 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4896 GET_MODE (x),
4897 XEXP (XEXP (x, 0), 0),
4898 XEXP (XEXP (x, 1), 0))));
4899 return find_split_point (loc, insn, set_src);
4902 /* Many RISC machines have a large set of logical insns. If the
4903 second operand is a NOT, put it first so we will try to split the
4904 other operand first. */
4905 if (GET_CODE (XEXP (x, 1)) == NOT)
4907 rtx tem = XEXP (x, 0);
4908 SUBST (XEXP (x, 0), XEXP (x, 1));
4909 SUBST (XEXP (x, 1), tem);
4911 break;
4913 case PLUS:
4914 case MINUS:
4915 /* Canonicalization can produce (minus A (mult B C)), where C is a
4916 constant. It may be better to try splitting (plus (mult B -C) A)
4917 instead if this isn't a multiply by a power of two. */
4918 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4919 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4920 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4922 enum machine_mode mode = GET_MODE (x);
4923 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4924 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4925 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4926 XEXP (XEXP (x, 1), 0),
4927 GEN_INT (other_int)),
4928 XEXP (x, 0)));
4929 return find_split_point (loc, insn, set_src);
4932 /* Split at a multiply-accumulate instruction. However if this is
4933 the SET_SRC, we likely do not have such an instruction and it's
4934 worthless to try this split. */
4935 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4936 return loc;
4938 default:
4939 break;
4942 /* Otherwise, select our actions depending on our rtx class. */
4943 switch (GET_RTX_CLASS (code))
4945 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4946 case RTX_TERNARY:
4947 split = find_split_point (&XEXP (x, 2), insn, false);
4948 if (split)
4949 return split;
4950 /* ... fall through ... */
4951 case RTX_BIN_ARITH:
4952 case RTX_COMM_ARITH:
4953 case RTX_COMPARE:
4954 case RTX_COMM_COMPARE:
4955 split = find_split_point (&XEXP (x, 1), insn, false);
4956 if (split)
4957 return split;
4958 /* ... fall through ... */
4959 case RTX_UNARY:
4960 /* Some machines have (and (shift ...) ...) insns. If X is not
4961 an AND, but XEXP (X, 0) is, use it as our split point. */
4962 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4963 return &XEXP (x, 0);
4965 split = find_split_point (&XEXP (x, 0), insn, false);
4966 if (split)
4967 return split;
4968 return loc;
4970 default:
4971 /* Otherwise, we don't have a split point. */
4972 return 0;
4976 /* Throughout X, replace FROM with TO, and return the result.
4977 The result is TO if X is FROM;
4978 otherwise the result is X, but its contents may have been modified.
4979 If they were modified, a record was made in undobuf so that
4980 undo_all will (among other things) return X to its original state.
4982 If the number of changes necessary is too much to record to undo,
4983 the excess changes are not made, so the result is invalid.
4984 The changes already made can still be undone.
4985 undobuf.num_undo is incremented for such changes, so by testing that
4986 the caller can tell whether the result is valid.
4988 `n_occurrences' is incremented each time FROM is replaced.
4990 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4992 IN_COND is nonzero if we are at the top level of a condition.
4994 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4995 by copying if `n_occurrences' is nonzero. */
4997 static rtx
4998 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5000 enum rtx_code code = GET_CODE (x);
5001 enum machine_mode op0_mode = VOIDmode;
5002 const char *fmt;
5003 int len, i;
5004 rtx new_rtx;
5006 /* Two expressions are equal if they are identical copies of a shared
5007 RTX or if they are both registers with the same register number
5008 and mode. */
5010 #define COMBINE_RTX_EQUAL_P(X,Y) \
5011 ((X) == (Y) \
5012 || (REG_P (X) && REG_P (Y) \
5013 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5015 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5017 n_occurrences++;
5018 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5021 /* If X and FROM are the same register but different modes, they
5022 will not have been seen as equal above. However, the log links code
5023 will make a LOG_LINKS entry for that case. If we do nothing, we
5024 will try to rerecognize our original insn and, when it succeeds,
5025 we will delete the feeding insn, which is incorrect.
5027 So force this insn not to match in this (rare) case. */
5028 if (! in_dest && code == REG && REG_P (from)
5029 && reg_overlap_mentioned_p (x, from))
5030 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5032 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5033 of which may contain things that can be combined. */
5034 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5035 return x;
5037 /* It is possible to have a subexpression appear twice in the insn.
5038 Suppose that FROM is a register that appears within TO.
5039 Then, after that subexpression has been scanned once by `subst',
5040 the second time it is scanned, TO may be found. If we were
5041 to scan TO here, we would find FROM within it and create a
5042 self-referent rtl structure which is completely wrong. */
5043 if (COMBINE_RTX_EQUAL_P (x, to))
5044 return to;
5046 /* Parallel asm_operands need special attention because all of the
5047 inputs are shared across the arms. Furthermore, unsharing the
5048 rtl results in recognition failures. Failure to handle this case
5049 specially can result in circular rtl.
5051 Solve this by doing a normal pass across the first entry of the
5052 parallel, and only processing the SET_DESTs of the subsequent
5053 entries. Ug. */
5055 if (code == PARALLEL
5056 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5057 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5059 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5061 /* If this substitution failed, this whole thing fails. */
5062 if (GET_CODE (new_rtx) == CLOBBER
5063 && XEXP (new_rtx, 0) == const0_rtx)
5064 return new_rtx;
5066 SUBST (XVECEXP (x, 0, 0), new_rtx);
5068 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5070 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5072 if (!REG_P (dest)
5073 && GET_CODE (dest) != CC0
5074 && GET_CODE (dest) != PC)
5076 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5078 /* If this substitution failed, this whole thing fails. */
5079 if (GET_CODE (new_rtx) == CLOBBER
5080 && XEXP (new_rtx, 0) == const0_rtx)
5081 return new_rtx;
5083 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5087 else
5089 len = GET_RTX_LENGTH (code);
5090 fmt = GET_RTX_FORMAT (code);
5092 /* We don't need to process a SET_DEST that is a register, CC0,
5093 or PC, so set up to skip this common case. All other cases
5094 where we want to suppress replacing something inside a
5095 SET_SRC are handled via the IN_DEST operand. */
5096 if (code == SET
5097 && (REG_P (SET_DEST (x))
5098 || GET_CODE (SET_DEST (x)) == CC0
5099 || GET_CODE (SET_DEST (x)) == PC))
5100 fmt = "ie";
5102 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5103 constant. */
5104 if (fmt[0] == 'e')
5105 op0_mode = GET_MODE (XEXP (x, 0));
5107 for (i = 0; i < len; i++)
5109 if (fmt[i] == 'E')
5111 int j;
5112 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5114 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5116 new_rtx = (unique_copy && n_occurrences
5117 ? copy_rtx (to) : to);
5118 n_occurrences++;
5120 else
5122 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5123 unique_copy);
5125 /* If this substitution failed, this whole thing
5126 fails. */
5127 if (GET_CODE (new_rtx) == CLOBBER
5128 && XEXP (new_rtx, 0) == const0_rtx)
5129 return new_rtx;
5132 SUBST (XVECEXP (x, i, j), new_rtx);
5135 else if (fmt[i] == 'e')
5137 /* If this is a register being set, ignore it. */
5138 new_rtx = XEXP (x, i);
5139 if (in_dest
5140 && i == 0
5141 && (((code == SUBREG || code == ZERO_EXTRACT)
5142 && REG_P (new_rtx))
5143 || code == STRICT_LOW_PART))
5146 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5148 /* In general, don't install a subreg involving two
5149 modes not tieable. It can worsen register
5150 allocation, and can even make invalid reload
5151 insns, since the reg inside may need to be copied
5152 from in the outside mode, and that may be invalid
5153 if it is an fp reg copied in integer mode.
5155 We allow two exceptions to this: It is valid if
5156 it is inside another SUBREG and the mode of that
5157 SUBREG and the mode of the inside of TO is
5158 tieable and it is valid if X is a SET that copies
5159 FROM to CC0. */
5161 if (GET_CODE (to) == SUBREG
5162 && ! MODES_TIEABLE_P (GET_MODE (to),
5163 GET_MODE (SUBREG_REG (to)))
5164 && ! (code == SUBREG
5165 && MODES_TIEABLE_P (GET_MODE (x),
5166 GET_MODE (SUBREG_REG (to))))
5167 #ifdef HAVE_cc0
5168 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5169 #endif
5171 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5173 #ifdef CANNOT_CHANGE_MODE_CLASS
5174 if (code == SUBREG
5175 && REG_P (to)
5176 && REGNO (to) < FIRST_PSEUDO_REGISTER
5177 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5178 GET_MODE (to),
5179 GET_MODE (x)))
5180 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5181 #endif
5183 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5184 n_occurrences++;
5186 else
5187 /* If we are in a SET_DEST, suppress most cases unless we
5188 have gone inside a MEM, in which case we want to
5189 simplify the address. We assume here that things that
5190 are actually part of the destination have their inner
5191 parts in the first expression. This is true for SUBREG,
5192 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5193 things aside from REG and MEM that should appear in a
5194 SET_DEST. */
5195 new_rtx = subst (XEXP (x, i), from, to,
5196 (((in_dest
5197 && (code == SUBREG || code == STRICT_LOW_PART
5198 || code == ZERO_EXTRACT))
5199 || code == SET)
5200 && i == 0),
5201 code == IF_THEN_ELSE && i == 0,
5202 unique_copy);
5204 /* If we found that we will have to reject this combination,
5205 indicate that by returning the CLOBBER ourselves, rather than
5206 an expression containing it. This will speed things up as
5207 well as prevent accidents where two CLOBBERs are considered
5208 to be equal, thus producing an incorrect simplification. */
5210 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5211 return new_rtx;
5213 if (GET_CODE (x) == SUBREG
5214 && (CONST_INT_P (new_rtx)
5215 || GET_CODE (new_rtx) == CONST_DOUBLE))
5217 enum machine_mode mode = GET_MODE (x);
5219 x = simplify_subreg (GET_MODE (x), new_rtx,
5220 GET_MODE (SUBREG_REG (x)),
5221 SUBREG_BYTE (x));
5222 if (! x)
5223 x = gen_rtx_CLOBBER (mode, const0_rtx);
5225 else if (CONST_INT_P (new_rtx)
5226 && GET_CODE (x) == ZERO_EXTEND)
5228 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5229 new_rtx, GET_MODE (XEXP (x, 0)));
5230 gcc_assert (x);
5232 else
5233 SUBST (XEXP (x, i), new_rtx);
5238 /* Check if we are loading something from the constant pool via float
5239 extension; in this case we would undo compress_float_constant
5240 optimization and degenerate constant load to an immediate value. */
5241 if (GET_CODE (x) == FLOAT_EXTEND
5242 && MEM_P (XEXP (x, 0))
5243 && MEM_READONLY_P (XEXP (x, 0)))
5245 rtx tmp = avoid_constant_pool_reference (x);
5246 if (x != tmp)
5247 return x;
5250 /* Try to simplify X. If the simplification changed the code, it is likely
5251 that further simplification will help, so loop, but limit the number
5252 of repetitions that will be performed. */
5254 for (i = 0; i < 4; i++)
5256 /* If X is sufficiently simple, don't bother trying to do anything
5257 with it. */
5258 if (code != CONST_INT && code != REG && code != CLOBBER)
5259 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5261 if (GET_CODE (x) == code)
5262 break;
5264 code = GET_CODE (x);
5266 /* We no longer know the original mode of operand 0 since we
5267 have changed the form of X) */
5268 op0_mode = VOIDmode;
5271 return x;
5274 /* Simplify X, a piece of RTL. We just operate on the expression at the
5275 outer level; call `subst' to simplify recursively. Return the new
5276 expression.
5278 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5279 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5280 of a condition. */
5282 static rtx
5283 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5284 int in_cond)
5286 enum rtx_code code = GET_CODE (x);
5287 enum machine_mode mode = GET_MODE (x);
5288 rtx temp;
5289 int i;
5291 /* If this is a commutative operation, put a constant last and a complex
5292 expression first. We don't need to do this for comparisons here. */
5293 if (COMMUTATIVE_ARITH_P (x)
5294 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5296 temp = XEXP (x, 0);
5297 SUBST (XEXP (x, 0), XEXP (x, 1));
5298 SUBST (XEXP (x, 1), temp);
5301 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5302 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5303 things. Check for cases where both arms are testing the same
5304 condition.
5306 Don't do anything if all operands are very simple. */
5308 if ((BINARY_P (x)
5309 && ((!OBJECT_P (XEXP (x, 0))
5310 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5311 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5312 || (!OBJECT_P (XEXP (x, 1))
5313 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5314 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5315 || (UNARY_P (x)
5316 && (!OBJECT_P (XEXP (x, 0))
5317 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5318 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5320 rtx cond, true_rtx, false_rtx;
5322 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5323 if (cond != 0
5324 /* If everything is a comparison, what we have is highly unlikely
5325 to be simpler, so don't use it. */
5326 && ! (COMPARISON_P (x)
5327 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5329 rtx cop1 = const0_rtx;
5330 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5332 if (cond_code == NE && COMPARISON_P (cond))
5333 return x;
5335 /* Simplify the alternative arms; this may collapse the true and
5336 false arms to store-flag values. Be careful to use copy_rtx
5337 here since true_rtx or false_rtx might share RTL with x as a
5338 result of the if_then_else_cond call above. */
5339 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5340 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5342 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5343 is unlikely to be simpler. */
5344 if (general_operand (true_rtx, VOIDmode)
5345 && general_operand (false_rtx, VOIDmode))
5347 enum rtx_code reversed;
5349 /* Restarting if we generate a store-flag expression will cause
5350 us to loop. Just drop through in this case. */
5352 /* If the result values are STORE_FLAG_VALUE and zero, we can
5353 just make the comparison operation. */
5354 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5355 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5356 cond, cop1);
5357 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5358 && ((reversed = reversed_comparison_code_parts
5359 (cond_code, cond, cop1, NULL))
5360 != UNKNOWN))
5361 x = simplify_gen_relational (reversed, mode, VOIDmode,
5362 cond, cop1);
5364 /* Likewise, we can make the negate of a comparison operation
5365 if the result values are - STORE_FLAG_VALUE and zero. */
5366 else if (CONST_INT_P (true_rtx)
5367 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5368 && false_rtx == const0_rtx)
5369 x = simplify_gen_unary (NEG, mode,
5370 simplify_gen_relational (cond_code,
5371 mode, VOIDmode,
5372 cond, cop1),
5373 mode);
5374 else if (CONST_INT_P (false_rtx)
5375 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5376 && true_rtx == const0_rtx
5377 && ((reversed = reversed_comparison_code_parts
5378 (cond_code, cond, cop1, NULL))
5379 != UNKNOWN))
5380 x = simplify_gen_unary (NEG, mode,
5381 simplify_gen_relational (reversed,
5382 mode, VOIDmode,
5383 cond, cop1),
5384 mode);
5385 else
5386 return gen_rtx_IF_THEN_ELSE (mode,
5387 simplify_gen_relational (cond_code,
5388 mode,
5389 VOIDmode,
5390 cond,
5391 cop1),
5392 true_rtx, false_rtx);
5394 code = GET_CODE (x);
5395 op0_mode = VOIDmode;
5400 /* Try to fold this expression in case we have constants that weren't
5401 present before. */
5402 temp = 0;
5403 switch (GET_RTX_CLASS (code))
5405 case RTX_UNARY:
5406 if (op0_mode == VOIDmode)
5407 op0_mode = GET_MODE (XEXP (x, 0));
5408 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5409 break;
5410 case RTX_COMPARE:
5411 case RTX_COMM_COMPARE:
5413 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5414 if (cmp_mode == VOIDmode)
5416 cmp_mode = GET_MODE (XEXP (x, 1));
5417 if (cmp_mode == VOIDmode)
5418 cmp_mode = op0_mode;
5420 temp = simplify_relational_operation (code, mode, cmp_mode,
5421 XEXP (x, 0), XEXP (x, 1));
5423 break;
5424 case RTX_COMM_ARITH:
5425 case RTX_BIN_ARITH:
5426 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5427 break;
5428 case RTX_BITFIELD_OPS:
5429 case RTX_TERNARY:
5430 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5431 XEXP (x, 1), XEXP (x, 2));
5432 break;
5433 default:
5434 break;
5437 if (temp)
5439 x = temp;
5440 code = GET_CODE (temp);
5441 op0_mode = VOIDmode;
5442 mode = GET_MODE (temp);
5445 /* First see if we can apply the inverse distributive law. */
5446 if (code == PLUS || code == MINUS
5447 || code == AND || code == IOR || code == XOR)
5449 x = apply_distributive_law (x);
5450 code = GET_CODE (x);
5451 op0_mode = VOIDmode;
5454 /* If CODE is an associative operation not otherwise handled, see if we
5455 can associate some operands. This can win if they are constants or
5456 if they are logically related (i.e. (a & b) & a). */
5457 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5458 || code == AND || code == IOR || code == XOR
5459 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5460 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5461 || (flag_associative_math && FLOAT_MODE_P (mode))))
5463 if (GET_CODE (XEXP (x, 0)) == code)
5465 rtx other = XEXP (XEXP (x, 0), 0);
5466 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5467 rtx inner_op1 = XEXP (x, 1);
5468 rtx inner;
5470 /* Make sure we pass the constant operand if any as the second
5471 one if this is a commutative operation. */
5472 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5474 rtx tem = inner_op0;
5475 inner_op0 = inner_op1;
5476 inner_op1 = tem;
5478 inner = simplify_binary_operation (code == MINUS ? PLUS
5479 : code == DIV ? MULT
5480 : code,
5481 mode, inner_op0, inner_op1);
5483 /* For commutative operations, try the other pair if that one
5484 didn't simplify. */
5485 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5487 other = XEXP (XEXP (x, 0), 1);
5488 inner = simplify_binary_operation (code, mode,
5489 XEXP (XEXP (x, 0), 0),
5490 XEXP (x, 1));
5493 if (inner)
5494 return simplify_gen_binary (code, mode, other, inner);
5498 /* A little bit of algebraic simplification here. */
5499 switch (code)
5501 case MEM:
5502 /* Ensure that our address has any ASHIFTs converted to MULT in case
5503 address-recognizing predicates are called later. */
5504 temp = make_compound_operation (XEXP (x, 0), MEM);
5505 SUBST (XEXP (x, 0), temp);
5506 break;
5508 case SUBREG:
5509 if (op0_mode == VOIDmode)
5510 op0_mode = GET_MODE (SUBREG_REG (x));
5512 /* See if this can be moved to simplify_subreg. */
5513 if (CONSTANT_P (SUBREG_REG (x))
5514 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5515 /* Don't call gen_lowpart if the inner mode
5516 is VOIDmode and we cannot simplify it, as SUBREG without
5517 inner mode is invalid. */
5518 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5519 || gen_lowpart_common (mode, SUBREG_REG (x))))
5520 return gen_lowpart (mode, SUBREG_REG (x));
5522 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5523 break;
5525 rtx temp;
5526 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5527 SUBREG_BYTE (x));
5528 if (temp)
5529 return temp;
5532 /* Don't change the mode of the MEM if that would change the meaning
5533 of the address. */
5534 if (MEM_P (SUBREG_REG (x))
5535 && (MEM_VOLATILE_P (SUBREG_REG (x))
5536 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5537 return gen_rtx_CLOBBER (mode, const0_rtx);
5539 /* Note that we cannot do any narrowing for non-constants since
5540 we might have been counting on using the fact that some bits were
5541 zero. We now do this in the SET. */
5543 break;
5545 case NEG:
5546 temp = expand_compound_operation (XEXP (x, 0));
5548 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5549 replaced by (lshiftrt X C). This will convert
5550 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5552 if (GET_CODE (temp) == ASHIFTRT
5553 && CONST_INT_P (XEXP (temp, 1))
5554 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5555 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5556 INTVAL (XEXP (temp, 1)));
5558 /* If X has only a single bit that might be nonzero, say, bit I, convert
5559 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5560 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5561 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5562 or a SUBREG of one since we'd be making the expression more
5563 complex if it was just a register. */
5565 if (!REG_P (temp)
5566 && ! (GET_CODE (temp) == SUBREG
5567 && REG_P (SUBREG_REG (temp)))
5568 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5570 rtx temp1 = simplify_shift_const
5571 (NULL_RTX, ASHIFTRT, mode,
5572 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5573 GET_MODE_BITSIZE (mode) - 1 - i),
5574 GET_MODE_BITSIZE (mode) - 1 - i);
5576 /* If all we did was surround TEMP with the two shifts, we
5577 haven't improved anything, so don't use it. Otherwise,
5578 we are better off with TEMP1. */
5579 if (GET_CODE (temp1) != ASHIFTRT
5580 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5581 || XEXP (XEXP (temp1, 0), 0) != temp)
5582 return temp1;
5584 break;
5586 case TRUNCATE:
5587 /* We can't handle truncation to a partial integer mode here
5588 because we don't know the real bitsize of the partial
5589 integer mode. */
5590 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5591 break;
5593 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5594 SUBST (XEXP (x, 0),
5595 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5596 GET_MODE_MASK (mode), 0));
5598 /* We can truncate a constant value and return it. */
5599 if (CONST_INT_P (XEXP (x, 0)))
5600 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5602 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5603 whose value is a comparison can be replaced with a subreg if
5604 STORE_FLAG_VALUE permits. */
5605 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5606 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5607 && (temp = get_last_value (XEXP (x, 0)))
5608 && COMPARISON_P (temp))
5609 return gen_lowpart (mode, XEXP (x, 0));
5610 break;
5612 case CONST:
5613 /* (const (const X)) can become (const X). Do it this way rather than
5614 returning the inner CONST since CONST can be shared with a
5615 REG_EQUAL note. */
5616 if (GET_CODE (XEXP (x, 0)) == CONST)
5617 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5618 break;
5620 #ifdef HAVE_lo_sum
5621 case LO_SUM:
5622 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5623 can add in an offset. find_split_point will split this address up
5624 again if it doesn't match. */
5625 if (GET_CODE (XEXP (x, 0)) == HIGH
5626 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5627 return XEXP (x, 1);
5628 break;
5629 #endif
5631 case PLUS:
5632 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5633 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5634 bit-field and can be replaced by either a sign_extend or a
5635 sign_extract. The `and' may be a zero_extend and the two
5636 <c>, -<c> constants may be reversed. */
5637 if (GET_CODE (XEXP (x, 0)) == XOR
5638 && CONST_INT_P (XEXP (x, 1))
5639 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5640 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5641 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5642 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5643 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5644 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5645 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5646 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5647 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5648 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5649 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5650 == (unsigned int) i + 1))))
5651 return simplify_shift_const
5652 (NULL_RTX, ASHIFTRT, mode,
5653 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5654 XEXP (XEXP (XEXP (x, 0), 0), 0),
5655 GET_MODE_BITSIZE (mode) - (i + 1)),
5656 GET_MODE_BITSIZE (mode) - (i + 1));
5658 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5659 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5660 the bitsize of the mode - 1. This allows simplification of
5661 "a = (b & 8) == 0;" */
5662 if (XEXP (x, 1) == constm1_rtx
5663 && !REG_P (XEXP (x, 0))
5664 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5665 && REG_P (SUBREG_REG (XEXP (x, 0))))
5666 && nonzero_bits (XEXP (x, 0), mode) == 1)
5667 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5668 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5669 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5670 GET_MODE_BITSIZE (mode) - 1),
5671 GET_MODE_BITSIZE (mode) - 1);
5673 /* If we are adding two things that have no bits in common, convert
5674 the addition into an IOR. This will often be further simplified,
5675 for example in cases like ((a & 1) + (a & 2)), which can
5676 become a & 3. */
5678 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5679 && (nonzero_bits (XEXP (x, 0), mode)
5680 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5682 /* Try to simplify the expression further. */
5683 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5684 temp = combine_simplify_rtx (tor, mode, in_dest, 0);
5686 /* If we could, great. If not, do not go ahead with the IOR
5687 replacement, since PLUS appears in many special purpose
5688 address arithmetic instructions. */
5689 if (GET_CODE (temp) != CLOBBER && temp != tor)
5690 return temp;
5692 break;
5694 case MINUS:
5695 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5696 (and <foo> (const_int pow2-1)) */
5697 if (GET_CODE (XEXP (x, 1)) == AND
5698 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5699 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5700 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5701 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5702 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5703 break;
5705 case MULT:
5706 /* If we have (mult (plus A B) C), apply the distributive law and then
5707 the inverse distributive law to see if things simplify. This
5708 occurs mostly in addresses, often when unrolling loops. */
5710 if (GET_CODE (XEXP (x, 0)) == PLUS)
5712 rtx result = distribute_and_simplify_rtx (x, 0);
5713 if (result)
5714 return result;
5717 /* Try simplify a*(b/c) as (a*b)/c. */
5718 if (FLOAT_MODE_P (mode) && flag_associative_math
5719 && GET_CODE (XEXP (x, 0)) == DIV)
5721 rtx tem = simplify_binary_operation (MULT, mode,
5722 XEXP (XEXP (x, 0), 0),
5723 XEXP (x, 1));
5724 if (tem)
5725 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5727 break;
5729 case UDIV:
5730 /* If this is a divide by a power of two, treat it as a shift if
5731 its first operand is a shift. */
5732 if (CONST_INT_P (XEXP (x, 1))
5733 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5734 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5735 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5736 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5737 || GET_CODE (XEXP (x, 0)) == ROTATE
5738 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5739 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5740 break;
5742 case EQ: case NE:
5743 case GT: case GTU: case GE: case GEU:
5744 case LT: case LTU: case LE: case LEU:
5745 case UNEQ: case LTGT:
5746 case UNGT: case UNGE:
5747 case UNLT: case UNLE:
5748 case UNORDERED: case ORDERED:
5749 /* If the first operand is a condition code, we can't do anything
5750 with it. */
5751 if (GET_CODE (XEXP (x, 0)) == COMPARE
5752 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5753 && ! CC0_P (XEXP (x, 0))))
5755 rtx op0 = XEXP (x, 0);
5756 rtx op1 = XEXP (x, 1);
5757 enum rtx_code new_code;
5759 if (GET_CODE (op0) == COMPARE)
5760 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5762 /* Simplify our comparison, if possible. */
5763 new_code = simplify_comparison (code, &op0, &op1);
5765 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5766 if only the low-order bit is possibly nonzero in X (such as when
5767 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5768 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5769 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5770 (plus X 1).
5772 Remove any ZERO_EXTRACT we made when thinking this was a
5773 comparison. It may now be simpler to use, e.g., an AND. If a
5774 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5775 the call to make_compound_operation in the SET case.
5777 Don't apply these optimizations if the caller would
5778 prefer a comparison rather than a value.
5779 E.g., for the condition in an IF_THEN_ELSE most targets need
5780 an explicit comparison. */
5782 if (in_cond)
5785 else if (STORE_FLAG_VALUE == 1
5786 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5787 && op1 == const0_rtx
5788 && mode == GET_MODE (op0)
5789 && nonzero_bits (op0, mode) == 1)
5790 return gen_lowpart (mode,
5791 expand_compound_operation (op0));
5793 else if (STORE_FLAG_VALUE == 1
5794 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5795 && op1 == const0_rtx
5796 && mode == GET_MODE (op0)
5797 && (num_sign_bit_copies (op0, mode)
5798 == GET_MODE_BITSIZE (mode)))
5800 op0 = expand_compound_operation (op0);
5801 return simplify_gen_unary (NEG, mode,
5802 gen_lowpart (mode, op0),
5803 mode);
5806 else if (STORE_FLAG_VALUE == 1
5807 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5808 && op1 == const0_rtx
5809 && mode == GET_MODE (op0)
5810 && nonzero_bits (op0, mode) == 1)
5812 op0 = expand_compound_operation (op0);
5813 return simplify_gen_binary (XOR, mode,
5814 gen_lowpart (mode, op0),
5815 const1_rtx);
5818 else if (STORE_FLAG_VALUE == 1
5819 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5820 && op1 == const0_rtx
5821 && mode == GET_MODE (op0)
5822 && (num_sign_bit_copies (op0, mode)
5823 == GET_MODE_BITSIZE (mode)))
5825 op0 = expand_compound_operation (op0);
5826 return plus_constant (gen_lowpart (mode, op0), 1);
5829 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5830 those above. */
5831 if (in_cond)
5834 else if (STORE_FLAG_VALUE == -1
5835 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5836 && op1 == const0_rtx
5837 && (num_sign_bit_copies (op0, mode)
5838 == GET_MODE_BITSIZE (mode)))
5839 return gen_lowpart (mode,
5840 expand_compound_operation (op0));
5842 else if (STORE_FLAG_VALUE == -1
5843 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5844 && op1 == const0_rtx
5845 && mode == GET_MODE (op0)
5846 && nonzero_bits (op0, mode) == 1)
5848 op0 = expand_compound_operation (op0);
5849 return simplify_gen_unary (NEG, mode,
5850 gen_lowpart (mode, op0),
5851 mode);
5854 else if (STORE_FLAG_VALUE == -1
5855 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5856 && op1 == const0_rtx
5857 && mode == GET_MODE (op0)
5858 && (num_sign_bit_copies (op0, mode)
5859 == GET_MODE_BITSIZE (mode)))
5861 op0 = expand_compound_operation (op0);
5862 return simplify_gen_unary (NOT, mode,
5863 gen_lowpart (mode, op0),
5864 mode);
5867 /* If X is 0/1, (eq X 0) is X-1. */
5868 else if (STORE_FLAG_VALUE == -1
5869 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5870 && op1 == const0_rtx
5871 && mode == GET_MODE (op0)
5872 && nonzero_bits (op0, mode) == 1)
5874 op0 = expand_compound_operation (op0);
5875 return plus_constant (gen_lowpart (mode, op0), -1);
5878 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5879 one bit that might be nonzero, we can convert (ne x 0) to
5880 (ashift x c) where C puts the bit in the sign bit. Remove any
5881 AND with STORE_FLAG_VALUE when we are done, since we are only
5882 going to test the sign bit. */
5883 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5884 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5885 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5886 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5887 && op1 == const0_rtx
5888 && mode == GET_MODE (op0)
5889 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5891 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5892 expand_compound_operation (op0),
5893 GET_MODE_BITSIZE (mode) - 1 - i);
5894 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5895 return XEXP (x, 0);
5896 else
5897 return x;
5900 /* If the code changed, return a whole new comparison. */
5901 if (new_code != code)
5902 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5904 /* Otherwise, keep this operation, but maybe change its operands.
5905 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5906 SUBST (XEXP (x, 0), op0);
5907 SUBST (XEXP (x, 1), op1);
5909 break;
5911 case IF_THEN_ELSE:
5912 return simplify_if_then_else (x);
5914 case ZERO_EXTRACT:
5915 case SIGN_EXTRACT:
5916 case ZERO_EXTEND:
5917 case SIGN_EXTEND:
5918 /* If we are processing SET_DEST, we are done. */
5919 if (in_dest)
5920 return x;
5922 return expand_compound_operation (x);
5924 case SET:
5925 return simplify_set (x);
5927 case AND:
5928 case IOR:
5929 return simplify_logical (x);
5931 case ASHIFT:
5932 case LSHIFTRT:
5933 case ASHIFTRT:
5934 case ROTATE:
5935 case ROTATERT:
5936 /* If this is a shift by a constant amount, simplify it. */
5937 if (CONST_INT_P (XEXP (x, 1)))
5938 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5939 INTVAL (XEXP (x, 1)));
5941 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5942 SUBST (XEXP (x, 1),
5943 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5944 ((unsigned HOST_WIDE_INT) 1
5945 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5946 - 1,
5947 0));
5948 break;
5950 default:
5951 break;
5954 return x;
5957 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5959 static rtx
5960 simplify_if_then_else (rtx x)
5962 enum machine_mode mode = GET_MODE (x);
5963 rtx cond = XEXP (x, 0);
5964 rtx true_rtx = XEXP (x, 1);
5965 rtx false_rtx = XEXP (x, 2);
5966 enum rtx_code true_code = GET_CODE (cond);
5967 int comparison_p = COMPARISON_P (cond);
5968 rtx temp;
5969 int i;
5970 enum rtx_code false_code;
5971 rtx reversed;
5973 /* Simplify storing of the truth value. */
5974 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5975 return simplify_gen_relational (true_code, mode, VOIDmode,
5976 XEXP (cond, 0), XEXP (cond, 1));
5978 /* Also when the truth value has to be reversed. */
5979 if (comparison_p
5980 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5981 && (reversed = reversed_comparison (cond, mode)))
5982 return reversed;
5984 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5985 in it is being compared against certain values. Get the true and false
5986 comparisons and see if that says anything about the value of each arm. */
5988 if (comparison_p
5989 && ((false_code = reversed_comparison_code (cond, NULL))
5990 != UNKNOWN)
5991 && REG_P (XEXP (cond, 0)))
5993 HOST_WIDE_INT nzb;
5994 rtx from = XEXP (cond, 0);
5995 rtx true_val = XEXP (cond, 1);
5996 rtx false_val = true_val;
5997 int swapped = 0;
5999 /* If FALSE_CODE is EQ, swap the codes and arms. */
6001 if (false_code == EQ)
6003 swapped = 1, true_code = EQ, false_code = NE;
6004 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6007 /* If we are comparing against zero and the expression being tested has
6008 only a single bit that might be nonzero, that is its value when it is
6009 not equal to zero. Similarly if it is known to be -1 or 0. */
6011 if (true_code == EQ && true_val == const0_rtx
6012 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6014 false_code = EQ;
6015 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
6017 else if (true_code == EQ && true_val == const0_rtx
6018 && (num_sign_bit_copies (from, GET_MODE (from))
6019 == GET_MODE_BITSIZE (GET_MODE (from))))
6021 false_code = EQ;
6022 false_val = constm1_rtx;
6025 /* Now simplify an arm if we know the value of the register in the
6026 branch and it is used in the arm. Be careful due to the potential
6027 of locally-shared RTL. */
6029 if (reg_mentioned_p (from, true_rtx))
6030 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6031 from, true_val),
6032 pc_rtx, pc_rtx, 0, 0, 0);
6033 if (reg_mentioned_p (from, false_rtx))
6034 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6035 from, false_val),
6036 pc_rtx, pc_rtx, 0, 0, 0);
6038 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6039 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6041 true_rtx = XEXP (x, 1);
6042 false_rtx = XEXP (x, 2);
6043 true_code = GET_CODE (cond);
6046 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6047 reversed, do so to avoid needing two sets of patterns for
6048 subtract-and-branch insns. Similarly if we have a constant in the true
6049 arm, the false arm is the same as the first operand of the comparison, or
6050 the false arm is more complicated than the true arm. */
6052 if (comparison_p
6053 && reversed_comparison_code (cond, NULL) != UNKNOWN
6054 && (true_rtx == pc_rtx
6055 || (CONSTANT_P (true_rtx)
6056 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6057 || true_rtx == const0_rtx
6058 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6059 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6060 && !OBJECT_P (false_rtx))
6061 || reg_mentioned_p (true_rtx, false_rtx)
6062 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6064 true_code = reversed_comparison_code (cond, NULL);
6065 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6066 SUBST (XEXP (x, 1), false_rtx);
6067 SUBST (XEXP (x, 2), true_rtx);
6069 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6070 cond = XEXP (x, 0);
6072 /* It is possible that the conditional has been simplified out. */
6073 true_code = GET_CODE (cond);
6074 comparison_p = COMPARISON_P (cond);
6077 /* If the two arms are identical, we don't need the comparison. */
6079 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6080 return true_rtx;
6082 /* Convert a == b ? b : a to "a". */
6083 if (true_code == EQ && ! side_effects_p (cond)
6084 && !HONOR_NANS (mode)
6085 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6086 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6087 return false_rtx;
6088 else if (true_code == NE && ! side_effects_p (cond)
6089 && !HONOR_NANS (mode)
6090 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6091 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6092 return true_rtx;
6094 /* Look for cases where we have (abs x) or (neg (abs X)). */
6096 if (GET_MODE_CLASS (mode) == MODE_INT
6097 && comparison_p
6098 && XEXP (cond, 1) == const0_rtx
6099 && GET_CODE (false_rtx) == NEG
6100 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6101 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6102 && ! side_effects_p (true_rtx))
6103 switch (true_code)
6105 case GT:
6106 case GE:
6107 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6108 case LT:
6109 case LE:
6110 return
6111 simplify_gen_unary (NEG, mode,
6112 simplify_gen_unary (ABS, mode, true_rtx, mode),
6113 mode);
6114 default:
6115 break;
6118 /* Look for MIN or MAX. */
6120 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6121 && comparison_p
6122 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6123 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6124 && ! side_effects_p (cond))
6125 switch (true_code)
6127 case GE:
6128 case GT:
6129 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6130 case LE:
6131 case LT:
6132 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6133 case GEU:
6134 case GTU:
6135 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6136 case LEU:
6137 case LTU:
6138 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6139 default:
6140 break;
6143 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6144 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6145 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6146 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6147 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6148 neither 1 or -1, but it isn't worth checking for. */
6150 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6151 && comparison_p
6152 && GET_MODE_CLASS (mode) == MODE_INT
6153 && ! side_effects_p (x))
6155 rtx t = make_compound_operation (true_rtx, SET);
6156 rtx f = make_compound_operation (false_rtx, SET);
6157 rtx cond_op0 = XEXP (cond, 0);
6158 rtx cond_op1 = XEXP (cond, 1);
6159 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6160 enum machine_mode m = mode;
6161 rtx z = 0, c1 = NULL_RTX;
6163 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6164 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6165 || GET_CODE (t) == ASHIFT
6166 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6167 && rtx_equal_p (XEXP (t, 0), f))
6168 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6170 /* If an identity-zero op is commutative, check whether there
6171 would be a match if we swapped the operands. */
6172 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6173 || GET_CODE (t) == XOR)
6174 && rtx_equal_p (XEXP (t, 1), f))
6175 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6176 else if (GET_CODE (t) == SIGN_EXTEND
6177 && (GET_CODE (XEXP (t, 0)) == PLUS
6178 || GET_CODE (XEXP (t, 0)) == MINUS
6179 || GET_CODE (XEXP (t, 0)) == IOR
6180 || GET_CODE (XEXP (t, 0)) == XOR
6181 || GET_CODE (XEXP (t, 0)) == ASHIFT
6182 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6183 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6184 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6185 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6186 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6187 && (num_sign_bit_copies (f, GET_MODE (f))
6188 > (unsigned int)
6189 (GET_MODE_BITSIZE (mode)
6190 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6192 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6193 extend_op = SIGN_EXTEND;
6194 m = GET_MODE (XEXP (t, 0));
6196 else if (GET_CODE (t) == SIGN_EXTEND
6197 && (GET_CODE (XEXP (t, 0)) == PLUS
6198 || GET_CODE (XEXP (t, 0)) == IOR
6199 || GET_CODE (XEXP (t, 0)) == XOR)
6200 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6201 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6202 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6203 && (num_sign_bit_copies (f, GET_MODE (f))
6204 > (unsigned int)
6205 (GET_MODE_BITSIZE (mode)
6206 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6208 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6209 extend_op = SIGN_EXTEND;
6210 m = GET_MODE (XEXP (t, 0));
6212 else if (GET_CODE (t) == ZERO_EXTEND
6213 && (GET_CODE (XEXP (t, 0)) == PLUS
6214 || GET_CODE (XEXP (t, 0)) == MINUS
6215 || GET_CODE (XEXP (t, 0)) == IOR
6216 || GET_CODE (XEXP (t, 0)) == XOR
6217 || GET_CODE (XEXP (t, 0)) == ASHIFT
6218 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6219 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6220 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6221 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6222 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6223 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6224 && ((nonzero_bits (f, GET_MODE (f))
6225 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6226 == 0))
6228 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6229 extend_op = ZERO_EXTEND;
6230 m = GET_MODE (XEXP (t, 0));
6232 else if (GET_CODE (t) == ZERO_EXTEND
6233 && (GET_CODE (XEXP (t, 0)) == PLUS
6234 || GET_CODE (XEXP (t, 0)) == IOR
6235 || GET_CODE (XEXP (t, 0)) == XOR)
6236 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6237 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6238 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6239 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6240 && ((nonzero_bits (f, GET_MODE (f))
6241 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6242 == 0))
6244 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6245 extend_op = ZERO_EXTEND;
6246 m = GET_MODE (XEXP (t, 0));
6249 if (z)
6251 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6252 cond_op0, cond_op1),
6253 pc_rtx, pc_rtx, 0, 0, 0);
6254 temp = simplify_gen_binary (MULT, m, temp,
6255 simplify_gen_binary (MULT, m, c1,
6256 const_true_rtx));
6257 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6258 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6260 if (extend_op != UNKNOWN)
6261 temp = simplify_gen_unary (extend_op, mode, temp, m);
6263 return temp;
6267 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6268 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6269 negation of a single bit, we can convert this operation to a shift. We
6270 can actually do this more generally, but it doesn't seem worth it. */
6272 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6273 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6274 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6275 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6276 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6277 == GET_MODE_BITSIZE (mode))
6278 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6279 return
6280 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6281 gen_lowpart (mode, XEXP (cond, 0)), i);
6283 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6284 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6285 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6286 && GET_MODE (XEXP (cond, 0)) == mode
6287 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6288 == nonzero_bits (XEXP (cond, 0), mode)
6289 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6290 return XEXP (cond, 0);
6292 return x;
6295 /* Simplify X, a SET expression. Return the new expression. */
6297 static rtx
6298 simplify_set (rtx x)
6300 rtx src = SET_SRC (x);
6301 rtx dest = SET_DEST (x);
6302 enum machine_mode mode
6303 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6304 rtx other_insn;
6305 rtx *cc_use;
6307 /* (set (pc) (return)) gets written as (return). */
6308 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6309 return src;
6311 /* Now that we know for sure which bits of SRC we are using, see if we can
6312 simplify the expression for the object knowing that we only need the
6313 low-order bits. */
6315 if (GET_MODE_CLASS (mode) == MODE_INT
6316 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6318 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6319 SUBST (SET_SRC (x), src);
6322 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6323 the comparison result and try to simplify it unless we already have used
6324 undobuf.other_insn. */
6325 if ((GET_MODE_CLASS (mode) == MODE_CC
6326 || GET_CODE (src) == COMPARE
6327 || CC0_P (dest))
6328 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6329 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6330 && COMPARISON_P (*cc_use)
6331 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6333 enum rtx_code old_code = GET_CODE (*cc_use);
6334 enum rtx_code new_code;
6335 rtx op0, op1, tmp;
6336 int other_changed = 0;
6337 rtx inner_compare = NULL_RTX;
6338 enum machine_mode compare_mode = GET_MODE (dest);
6340 if (GET_CODE (src) == COMPARE)
6342 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6343 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6345 inner_compare = op0;
6346 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6349 else
6350 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6352 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6353 op0, op1);
6354 if (!tmp)
6355 new_code = old_code;
6356 else if (!CONSTANT_P (tmp))
6358 new_code = GET_CODE (tmp);
6359 op0 = XEXP (tmp, 0);
6360 op1 = XEXP (tmp, 1);
6362 else
6364 rtx pat = PATTERN (other_insn);
6365 undobuf.other_insn = other_insn;
6366 SUBST (*cc_use, tmp);
6368 /* Attempt to simplify CC user. */
6369 if (GET_CODE (pat) == SET)
6371 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6372 if (new_rtx != NULL_RTX)
6373 SUBST (SET_SRC (pat), new_rtx);
6376 /* Convert X into a no-op move. */
6377 SUBST (SET_DEST (x), pc_rtx);
6378 SUBST (SET_SRC (x), pc_rtx);
6379 return x;
6382 /* Simplify our comparison, if possible. */
6383 new_code = simplify_comparison (new_code, &op0, &op1);
6385 #ifdef SELECT_CC_MODE
6386 /* If this machine has CC modes other than CCmode, check to see if we
6387 need to use a different CC mode here. */
6388 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6389 compare_mode = GET_MODE (op0);
6390 else if (inner_compare
6391 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6392 && new_code == old_code
6393 && op0 == XEXP (inner_compare, 0)
6394 && op1 == XEXP (inner_compare, 1))
6395 compare_mode = GET_MODE (inner_compare);
6396 else
6397 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6399 #ifndef HAVE_cc0
6400 /* If the mode changed, we have to change SET_DEST, the mode in the
6401 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6402 a hard register, just build new versions with the proper mode. If it
6403 is a pseudo, we lose unless it is only time we set the pseudo, in
6404 which case we can safely change its mode. */
6405 if (compare_mode != GET_MODE (dest))
6407 if (can_change_dest_mode (dest, 0, compare_mode))
6409 unsigned int regno = REGNO (dest);
6410 rtx new_dest;
6412 if (regno < FIRST_PSEUDO_REGISTER)
6413 new_dest = gen_rtx_REG (compare_mode, regno);
6414 else
6416 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6417 new_dest = regno_reg_rtx[regno];
6420 SUBST (SET_DEST (x), new_dest);
6421 SUBST (XEXP (*cc_use, 0), new_dest);
6422 other_changed = 1;
6424 dest = new_dest;
6427 #endif /* cc0 */
6428 #endif /* SELECT_CC_MODE */
6430 /* If the code changed, we have to build a new comparison in
6431 undobuf.other_insn. */
6432 if (new_code != old_code)
6434 int other_changed_previously = other_changed;
6435 unsigned HOST_WIDE_INT mask;
6436 rtx old_cc_use = *cc_use;
6438 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6439 dest, const0_rtx));
6440 other_changed = 1;
6442 /* If the only change we made was to change an EQ into an NE or
6443 vice versa, OP0 has only one bit that might be nonzero, and OP1
6444 is zero, check if changing the user of the condition code will
6445 produce a valid insn. If it won't, we can keep the original code
6446 in that insn by surrounding our operation with an XOR. */
6448 if (((old_code == NE && new_code == EQ)
6449 || (old_code == EQ && new_code == NE))
6450 && ! other_changed_previously && op1 == const0_rtx
6451 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6452 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6454 rtx pat = PATTERN (other_insn), note = 0;
6456 if ((recog_for_combine (&pat, other_insn, &note) < 0
6457 && ! check_asm_operands (pat)))
6459 *cc_use = old_cc_use;
6460 other_changed = 0;
6462 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6463 op0, GEN_INT (mask));
6468 if (other_changed)
6469 undobuf.other_insn = other_insn;
6471 /* Otherwise, if we didn't previously have a COMPARE in the
6472 correct mode, we need one. */
6473 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6475 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6476 src = SET_SRC (x);
6478 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6480 SUBST (SET_SRC (x), op0);
6481 src = SET_SRC (x);
6483 /* Otherwise, update the COMPARE if needed. */
6484 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6486 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6487 src = SET_SRC (x);
6490 else
6492 /* Get SET_SRC in a form where we have placed back any
6493 compound expressions. Then do the checks below. */
6494 src = make_compound_operation (src, SET);
6495 SUBST (SET_SRC (x), src);
6498 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6499 and X being a REG or (subreg (reg)), we may be able to convert this to
6500 (set (subreg:m2 x) (op)).
6502 We can always do this if M1 is narrower than M2 because that means that
6503 we only care about the low bits of the result.
6505 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6506 perform a narrower operation than requested since the high-order bits will
6507 be undefined. On machine where it is defined, this transformation is safe
6508 as long as M1 and M2 have the same number of words. */
6510 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6511 && !OBJECT_P (SUBREG_REG (src))
6512 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6513 / UNITS_PER_WORD)
6514 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6515 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6516 #ifndef WORD_REGISTER_OPERATIONS
6517 && (GET_MODE_SIZE (GET_MODE (src))
6518 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6519 #endif
6520 #ifdef CANNOT_CHANGE_MODE_CLASS
6521 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6522 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6523 GET_MODE (SUBREG_REG (src)),
6524 GET_MODE (src)))
6525 #endif
6526 && (REG_P (dest)
6527 || (GET_CODE (dest) == SUBREG
6528 && REG_P (SUBREG_REG (dest)))))
6530 SUBST (SET_DEST (x),
6531 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6532 dest));
6533 SUBST (SET_SRC (x), SUBREG_REG (src));
6535 src = SET_SRC (x), dest = SET_DEST (x);
6538 #ifdef HAVE_cc0
6539 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6540 in SRC. */
6541 if (dest == cc0_rtx
6542 && GET_CODE (src) == SUBREG
6543 && subreg_lowpart_p (src)
6544 && (GET_MODE_BITSIZE (GET_MODE (src))
6545 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6547 rtx inner = SUBREG_REG (src);
6548 enum machine_mode inner_mode = GET_MODE (inner);
6550 /* Here we make sure that we don't have a sign bit on. */
6551 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6552 && (nonzero_bits (inner, inner_mode)
6553 < ((unsigned HOST_WIDE_INT) 1
6554 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6556 SUBST (SET_SRC (x), inner);
6557 src = SET_SRC (x);
6560 #endif
6562 #ifdef LOAD_EXTEND_OP
6563 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6564 would require a paradoxical subreg. Replace the subreg with a
6565 zero_extend to avoid the reload that would otherwise be required. */
6567 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6568 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6569 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6570 && SUBREG_BYTE (src) == 0
6571 && (GET_MODE_SIZE (GET_MODE (src))
6572 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6573 && MEM_P (SUBREG_REG (src)))
6575 SUBST (SET_SRC (x),
6576 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6577 GET_MODE (src), SUBREG_REG (src)));
6579 src = SET_SRC (x);
6581 #endif
6583 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6584 are comparing an item known to be 0 or -1 against 0, use a logical
6585 operation instead. Check for one of the arms being an IOR of the other
6586 arm with some value. We compute three terms to be IOR'ed together. In
6587 practice, at most two will be nonzero. Then we do the IOR's. */
6589 if (GET_CODE (dest) != PC
6590 && GET_CODE (src) == IF_THEN_ELSE
6591 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6592 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6593 && XEXP (XEXP (src, 0), 1) == const0_rtx
6594 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6595 #ifdef HAVE_conditional_move
6596 && ! can_conditionally_move_p (GET_MODE (src))
6597 #endif
6598 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6599 GET_MODE (XEXP (XEXP (src, 0), 0)))
6600 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6601 && ! side_effects_p (src))
6603 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6604 ? XEXP (src, 1) : XEXP (src, 2));
6605 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6606 ? XEXP (src, 2) : XEXP (src, 1));
6607 rtx term1 = const0_rtx, term2, term3;
6609 if (GET_CODE (true_rtx) == IOR
6610 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6611 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6612 else if (GET_CODE (true_rtx) == IOR
6613 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6614 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6615 else if (GET_CODE (false_rtx) == IOR
6616 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6617 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6618 else if (GET_CODE (false_rtx) == IOR
6619 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6620 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6622 term2 = simplify_gen_binary (AND, GET_MODE (src),
6623 XEXP (XEXP (src, 0), 0), true_rtx);
6624 term3 = simplify_gen_binary (AND, GET_MODE (src),
6625 simplify_gen_unary (NOT, GET_MODE (src),
6626 XEXP (XEXP (src, 0), 0),
6627 GET_MODE (src)),
6628 false_rtx);
6630 SUBST (SET_SRC (x),
6631 simplify_gen_binary (IOR, GET_MODE (src),
6632 simplify_gen_binary (IOR, GET_MODE (src),
6633 term1, term2),
6634 term3));
6636 src = SET_SRC (x);
6639 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6640 whole thing fail. */
6641 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6642 return src;
6643 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6644 return dest;
6645 else
6646 /* Convert this into a field assignment operation, if possible. */
6647 return make_field_assignment (x);
6650 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6651 result. */
6653 static rtx
6654 simplify_logical (rtx x)
6656 enum machine_mode mode = GET_MODE (x);
6657 rtx op0 = XEXP (x, 0);
6658 rtx op1 = XEXP (x, 1);
6660 switch (GET_CODE (x))
6662 case AND:
6663 /* We can call simplify_and_const_int only if we don't lose
6664 any (sign) bits when converting INTVAL (op1) to
6665 "unsigned HOST_WIDE_INT". */
6666 if (CONST_INT_P (op1)
6667 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6668 || INTVAL (op1) > 0))
6670 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6671 if (GET_CODE (x) != AND)
6672 return x;
6674 op0 = XEXP (x, 0);
6675 op1 = XEXP (x, 1);
6678 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6679 apply the distributive law and then the inverse distributive
6680 law to see if things simplify. */
6681 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6683 rtx result = distribute_and_simplify_rtx (x, 0);
6684 if (result)
6685 return result;
6687 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6689 rtx result = distribute_and_simplify_rtx (x, 1);
6690 if (result)
6691 return result;
6693 break;
6695 case IOR:
6696 /* If we have (ior (and A B) C), apply the distributive law and then
6697 the inverse distributive law to see if things simplify. */
6699 if (GET_CODE (op0) == AND)
6701 rtx result = distribute_and_simplify_rtx (x, 0);
6702 if (result)
6703 return result;
6706 if (GET_CODE (op1) == AND)
6708 rtx result = distribute_and_simplify_rtx (x, 1);
6709 if (result)
6710 return result;
6712 break;
6714 default:
6715 gcc_unreachable ();
6718 return x;
6721 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6722 operations" because they can be replaced with two more basic operations.
6723 ZERO_EXTEND is also considered "compound" because it can be replaced with
6724 an AND operation, which is simpler, though only one operation.
6726 The function expand_compound_operation is called with an rtx expression
6727 and will convert it to the appropriate shifts and AND operations,
6728 simplifying at each stage.
6730 The function make_compound_operation is called to convert an expression
6731 consisting of shifts and ANDs into the equivalent compound expression.
6732 It is the inverse of this function, loosely speaking. */
6734 static rtx
6735 expand_compound_operation (rtx x)
6737 unsigned HOST_WIDE_INT pos = 0, len;
6738 int unsignedp = 0;
6739 unsigned int modewidth;
6740 rtx tem;
6742 switch (GET_CODE (x))
6744 case ZERO_EXTEND:
6745 unsignedp = 1;
6746 case SIGN_EXTEND:
6747 /* We can't necessarily use a const_int for a multiword mode;
6748 it depends on implicitly extending the value.
6749 Since we don't know the right way to extend it,
6750 we can't tell whether the implicit way is right.
6752 Even for a mode that is no wider than a const_int,
6753 we can't win, because we need to sign extend one of its bits through
6754 the rest of it, and we don't know which bit. */
6755 if (CONST_INT_P (XEXP (x, 0)))
6756 return x;
6758 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6759 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6760 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6761 reloaded. If not for that, MEM's would very rarely be safe.
6763 Reject MODEs bigger than a word, because we might not be able
6764 to reference a two-register group starting with an arbitrary register
6765 (and currently gen_lowpart might crash for a SUBREG). */
6767 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6768 return x;
6770 /* Reject MODEs that aren't scalar integers because turning vector
6771 or complex modes into shifts causes problems. */
6773 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6774 return x;
6776 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6777 /* If the inner object has VOIDmode (the only way this can happen
6778 is if it is an ASM_OPERANDS), we can't do anything since we don't
6779 know how much masking to do. */
6780 if (len == 0)
6781 return x;
6783 break;
6785 case ZERO_EXTRACT:
6786 unsignedp = 1;
6788 /* ... fall through ... */
6790 case SIGN_EXTRACT:
6791 /* If the operand is a CLOBBER, just return it. */
6792 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6793 return XEXP (x, 0);
6795 if (!CONST_INT_P (XEXP (x, 1))
6796 || !CONST_INT_P (XEXP (x, 2))
6797 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6798 return x;
6800 /* Reject MODEs that aren't scalar integers because turning vector
6801 or complex modes into shifts causes problems. */
6803 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6804 return x;
6806 len = INTVAL (XEXP (x, 1));
6807 pos = INTVAL (XEXP (x, 2));
6809 /* This should stay within the object being extracted, fail otherwise. */
6810 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6811 return x;
6813 if (BITS_BIG_ENDIAN)
6814 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6816 break;
6818 default:
6819 return x;
6821 /* Convert sign extension to zero extension, if we know that the high
6822 bit is not set, as this is easier to optimize. It will be converted
6823 back to cheaper alternative in make_extraction. */
6824 if (GET_CODE (x) == SIGN_EXTEND
6825 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6826 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6827 & ~(((unsigned HOST_WIDE_INT)
6828 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6829 >> 1))
6830 == 0)))
6832 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6833 rtx temp2 = expand_compound_operation (temp);
6835 /* Make sure this is a profitable operation. */
6836 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6837 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6838 return temp2;
6839 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6840 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6841 return temp;
6842 else
6843 return x;
6846 /* We can optimize some special cases of ZERO_EXTEND. */
6847 if (GET_CODE (x) == ZERO_EXTEND)
6849 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6850 know that the last value didn't have any inappropriate bits
6851 set. */
6852 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6853 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6854 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6855 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6856 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6857 return XEXP (XEXP (x, 0), 0);
6859 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6860 if (GET_CODE (XEXP (x, 0)) == SUBREG
6861 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6862 && subreg_lowpart_p (XEXP (x, 0))
6863 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6864 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6865 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6866 return SUBREG_REG (XEXP (x, 0));
6868 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6869 is a comparison and STORE_FLAG_VALUE permits. This is like
6870 the first case, but it works even when GET_MODE (x) is larger
6871 than HOST_WIDE_INT. */
6872 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6873 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6874 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6875 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6876 <= HOST_BITS_PER_WIDE_INT)
6877 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6878 return XEXP (XEXP (x, 0), 0);
6880 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6881 if (GET_CODE (XEXP (x, 0)) == SUBREG
6882 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6883 && subreg_lowpart_p (XEXP (x, 0))
6884 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6885 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6886 <= HOST_BITS_PER_WIDE_INT)
6887 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6888 return SUBREG_REG (XEXP (x, 0));
6892 /* If we reach here, we want to return a pair of shifts. The inner
6893 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6894 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6895 logical depending on the value of UNSIGNEDP.
6897 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6898 converted into an AND of a shift.
6900 We must check for the case where the left shift would have a negative
6901 count. This can happen in a case like (x >> 31) & 255 on machines
6902 that can't shift by a constant. On those machines, we would first
6903 combine the shift with the AND to produce a variable-position
6904 extraction. Then the constant of 31 would be substituted in
6905 to produce such a position. */
6907 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6908 if (modewidth >= pos + len)
6910 enum machine_mode mode = GET_MODE (x);
6911 tem = gen_lowpart (mode, XEXP (x, 0));
6912 if (!tem || GET_CODE (tem) == CLOBBER)
6913 return x;
6914 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6915 tem, modewidth - pos - len);
6916 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6917 mode, tem, modewidth - len);
6919 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6920 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6921 simplify_shift_const (NULL_RTX, LSHIFTRT,
6922 GET_MODE (x),
6923 XEXP (x, 0), pos),
6924 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6925 else
6926 /* Any other cases we can't handle. */
6927 return x;
6929 /* If we couldn't do this for some reason, return the original
6930 expression. */
6931 if (GET_CODE (tem) == CLOBBER)
6932 return x;
6934 return tem;
6937 /* X is a SET which contains an assignment of one object into
6938 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6939 or certain SUBREGS). If possible, convert it into a series of
6940 logical operations.
6942 We half-heartedly support variable positions, but do not at all
6943 support variable lengths. */
6945 static const_rtx
6946 expand_field_assignment (const_rtx x)
6948 rtx inner;
6949 rtx pos; /* Always counts from low bit. */
6950 int len;
6951 rtx mask, cleared, masked;
6952 enum machine_mode compute_mode;
6954 /* Loop until we find something we can't simplify. */
6955 while (1)
6957 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6958 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6960 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6961 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6962 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6964 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6965 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6967 inner = XEXP (SET_DEST (x), 0);
6968 len = INTVAL (XEXP (SET_DEST (x), 1));
6969 pos = XEXP (SET_DEST (x), 2);
6971 /* A constant position should stay within the width of INNER. */
6972 if (CONST_INT_P (pos)
6973 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6974 break;
6976 if (BITS_BIG_ENDIAN)
6978 if (CONST_INT_P (pos))
6979 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6980 - INTVAL (pos));
6981 else if (GET_CODE (pos) == MINUS
6982 && CONST_INT_P (XEXP (pos, 1))
6983 && (INTVAL (XEXP (pos, 1))
6984 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6985 /* If position is ADJUST - X, new position is X. */
6986 pos = XEXP (pos, 0);
6987 else
6988 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6989 GEN_INT (GET_MODE_BITSIZE (
6990 GET_MODE (inner))
6991 - len),
6992 pos);
6996 /* A SUBREG between two modes that occupy the same numbers of words
6997 can be done by moving the SUBREG to the source. */
6998 else if (GET_CODE (SET_DEST (x)) == SUBREG
6999 /* We need SUBREGs to compute nonzero_bits properly. */
7000 && nonzero_sign_valid
7001 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7002 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7003 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7004 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7006 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7007 gen_lowpart
7008 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7009 SET_SRC (x)));
7010 continue;
7012 else
7013 break;
7015 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7016 inner = SUBREG_REG (inner);
7018 compute_mode = GET_MODE (inner);
7020 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7021 if (! SCALAR_INT_MODE_P (compute_mode))
7023 enum machine_mode imode;
7025 /* Don't do anything for vector or complex integral types. */
7026 if (! FLOAT_MODE_P (compute_mode))
7027 break;
7029 /* Try to find an integral mode to pun with. */
7030 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7031 if (imode == BLKmode)
7032 break;
7034 compute_mode = imode;
7035 inner = gen_lowpart (imode, inner);
7038 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7039 if (len >= HOST_BITS_PER_WIDE_INT)
7040 break;
7042 /* Now compute the equivalent expression. Make a copy of INNER
7043 for the SET_DEST in case it is a MEM into which we will substitute;
7044 we don't want shared RTL in that case. */
7045 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7046 cleared = simplify_gen_binary (AND, compute_mode,
7047 simplify_gen_unary (NOT, compute_mode,
7048 simplify_gen_binary (ASHIFT,
7049 compute_mode,
7050 mask, pos),
7051 compute_mode),
7052 inner);
7053 masked = simplify_gen_binary (ASHIFT, compute_mode,
7054 simplify_gen_binary (
7055 AND, compute_mode,
7056 gen_lowpart (compute_mode, SET_SRC (x)),
7057 mask),
7058 pos);
7060 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7061 simplify_gen_binary (IOR, compute_mode,
7062 cleared, masked));
7065 return x;
7068 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7069 it is an RTX that represents a variable starting position; otherwise,
7070 POS is the (constant) starting bit position (counted from the LSB).
7072 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7073 signed reference.
7075 IN_DEST is nonzero if this is a reference in the destination of a
7076 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7077 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7078 be used.
7080 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7081 ZERO_EXTRACT should be built even for bits starting at bit 0.
7083 MODE is the desired mode of the result (if IN_DEST == 0).
7085 The result is an RTX for the extraction or NULL_RTX if the target
7086 can't handle it. */
7088 static rtx
7089 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7090 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7091 int in_dest, int in_compare)
7093 /* This mode describes the size of the storage area
7094 to fetch the overall value from. Within that, we
7095 ignore the POS lowest bits, etc. */
7096 enum machine_mode is_mode = GET_MODE (inner);
7097 enum machine_mode inner_mode;
7098 enum machine_mode wanted_inner_mode;
7099 enum machine_mode wanted_inner_reg_mode = word_mode;
7100 enum machine_mode pos_mode = word_mode;
7101 enum machine_mode extraction_mode = word_mode;
7102 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7103 rtx new_rtx = 0;
7104 rtx orig_pos_rtx = pos_rtx;
7105 HOST_WIDE_INT orig_pos;
7107 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7109 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7110 consider just the QI as the memory to extract from.
7111 The subreg adds or removes high bits; its mode is
7112 irrelevant to the meaning of this extraction,
7113 since POS and LEN count from the lsb. */
7114 if (MEM_P (SUBREG_REG (inner)))
7115 is_mode = GET_MODE (SUBREG_REG (inner));
7116 inner = SUBREG_REG (inner);
7118 else if (GET_CODE (inner) == ASHIFT
7119 && CONST_INT_P (XEXP (inner, 1))
7120 && pos_rtx == 0 && pos == 0
7121 && len > UINTVAL (XEXP (inner, 1)))
7123 /* We're extracting the least significant bits of an rtx
7124 (ashift X (const_int C)), where LEN > C. Extract the
7125 least significant (LEN - C) bits of X, giving an rtx
7126 whose mode is MODE, then shift it left C times. */
7127 new_rtx = make_extraction (mode, XEXP (inner, 0),
7128 0, 0, len - INTVAL (XEXP (inner, 1)),
7129 unsignedp, in_dest, in_compare);
7130 if (new_rtx != 0)
7131 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7134 inner_mode = GET_MODE (inner);
7136 if (pos_rtx && CONST_INT_P (pos_rtx))
7137 pos = INTVAL (pos_rtx), pos_rtx = 0;
7139 /* See if this can be done without an extraction. We never can if the
7140 width of the field is not the same as that of some integer mode. For
7141 registers, we can only avoid the extraction if the position is at the
7142 low-order bit and this is either not in the destination or we have the
7143 appropriate STRICT_LOW_PART operation available.
7145 For MEM, we can avoid an extract if the field starts on an appropriate
7146 boundary and we can change the mode of the memory reference. */
7148 if (tmode != BLKmode
7149 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7150 && !MEM_P (inner)
7151 && (inner_mode == tmode
7152 || !REG_P (inner)
7153 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7154 GET_MODE_BITSIZE (inner_mode))
7155 || reg_truncated_to_mode (tmode, inner))
7156 && (! in_dest
7157 || (REG_P (inner)
7158 && have_insn_for (STRICT_LOW_PART, tmode))))
7159 || (MEM_P (inner) && pos_rtx == 0
7160 && (pos
7161 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7162 : BITS_PER_UNIT)) == 0
7163 /* We can't do this if we are widening INNER_MODE (it
7164 may not be aligned, for one thing). */
7165 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7166 && (inner_mode == tmode
7167 || (! mode_dependent_address_p (XEXP (inner, 0))
7168 && ! MEM_VOLATILE_P (inner))))))
7170 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7171 field. If the original and current mode are the same, we need not
7172 adjust the offset. Otherwise, we do if bytes big endian.
7174 If INNER is not a MEM, get a piece consisting of just the field
7175 of interest (in this case POS % BITS_PER_WORD must be 0). */
7177 if (MEM_P (inner))
7179 HOST_WIDE_INT offset;
7181 /* POS counts from lsb, but make OFFSET count in memory order. */
7182 if (BYTES_BIG_ENDIAN)
7183 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7184 else
7185 offset = pos / BITS_PER_UNIT;
7187 new_rtx = adjust_address_nv (inner, tmode, offset);
7189 else if (REG_P (inner))
7191 if (tmode != inner_mode)
7193 /* We can't call gen_lowpart in a DEST since we
7194 always want a SUBREG (see below) and it would sometimes
7195 return a new hard register. */
7196 if (pos || in_dest)
7198 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7200 if (WORDS_BIG_ENDIAN
7201 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7202 final_word = ((GET_MODE_SIZE (inner_mode)
7203 - GET_MODE_SIZE (tmode))
7204 / UNITS_PER_WORD) - final_word;
7206 final_word *= UNITS_PER_WORD;
7207 if (BYTES_BIG_ENDIAN &&
7208 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7209 final_word += (GET_MODE_SIZE (inner_mode)
7210 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7212 /* Avoid creating invalid subregs, for example when
7213 simplifying (x>>32)&255. */
7214 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7215 return NULL_RTX;
7217 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7219 else
7220 new_rtx = gen_lowpart (tmode, inner);
7222 else
7223 new_rtx = inner;
7225 else
7226 new_rtx = force_to_mode (inner, tmode,
7227 len >= HOST_BITS_PER_WIDE_INT
7228 ? ~(unsigned HOST_WIDE_INT) 0
7229 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7232 /* If this extraction is going into the destination of a SET,
7233 make a STRICT_LOW_PART unless we made a MEM. */
7235 if (in_dest)
7236 return (MEM_P (new_rtx) ? new_rtx
7237 : (GET_CODE (new_rtx) != SUBREG
7238 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7239 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7241 if (mode == tmode)
7242 return new_rtx;
7244 if (CONST_INT_P (new_rtx)
7245 || GET_CODE (new_rtx) == CONST_DOUBLE)
7246 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7247 mode, new_rtx, tmode);
7249 /* If we know that no extraneous bits are set, and that the high
7250 bit is not set, convert the extraction to the cheaper of
7251 sign and zero extension, that are equivalent in these cases. */
7252 if (flag_expensive_optimizations
7253 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7254 && ((nonzero_bits (new_rtx, tmode)
7255 & ~(((unsigned HOST_WIDE_INT)
7256 GET_MODE_MASK (tmode))
7257 >> 1))
7258 == 0)))
7260 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7261 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7263 /* Prefer ZERO_EXTENSION, since it gives more information to
7264 backends. */
7265 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7266 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7267 return temp;
7268 return temp1;
7271 /* Otherwise, sign- or zero-extend unless we already are in the
7272 proper mode. */
7274 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7275 mode, new_rtx));
7278 /* Unless this is a COMPARE or we have a funny memory reference,
7279 don't do anything with zero-extending field extracts starting at
7280 the low-order bit since they are simple AND operations. */
7281 if (pos_rtx == 0 && pos == 0 && ! in_dest
7282 && ! in_compare && unsignedp)
7283 return 0;
7285 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7286 if the position is not a constant and the length is not 1. In all
7287 other cases, we would only be going outside our object in cases when
7288 an original shift would have been undefined. */
7289 if (MEM_P (inner)
7290 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7291 || (pos_rtx != 0 && len != 1)))
7292 return 0;
7294 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7295 and the mode for the result. */
7296 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7298 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7299 pos_mode = mode_for_extraction (EP_insv, 2);
7300 extraction_mode = mode_for_extraction (EP_insv, 3);
7303 if (! in_dest && unsignedp
7304 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7306 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7307 pos_mode = mode_for_extraction (EP_extzv, 3);
7308 extraction_mode = mode_for_extraction (EP_extzv, 0);
7311 if (! in_dest && ! unsignedp
7312 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7314 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7315 pos_mode = mode_for_extraction (EP_extv, 3);
7316 extraction_mode = mode_for_extraction (EP_extv, 0);
7319 /* Never narrow an object, since that might not be safe. */
7321 if (mode != VOIDmode
7322 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7323 extraction_mode = mode;
7325 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7326 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7327 pos_mode = GET_MODE (pos_rtx);
7329 /* If this is not from memory, the desired mode is the preferred mode
7330 for an extraction pattern's first input operand, or word_mode if there
7331 is none. */
7332 if (!MEM_P (inner))
7333 wanted_inner_mode = wanted_inner_reg_mode;
7334 else
7336 /* Be careful not to go beyond the extracted object and maintain the
7337 natural alignment of the memory. */
7338 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7339 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7340 > GET_MODE_BITSIZE (wanted_inner_mode))
7342 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7343 gcc_assert (wanted_inner_mode != VOIDmode);
7346 /* If we have to change the mode of memory and cannot, the desired mode
7347 is EXTRACTION_MODE. */
7348 if (inner_mode != wanted_inner_mode
7349 && (mode_dependent_address_p (XEXP (inner, 0))
7350 || MEM_VOLATILE_P (inner)
7351 || pos_rtx))
7352 wanted_inner_mode = extraction_mode;
7355 orig_pos = pos;
7357 if (BITS_BIG_ENDIAN)
7359 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7360 BITS_BIG_ENDIAN style. If position is constant, compute new
7361 position. Otherwise, build subtraction.
7362 Note that POS is relative to the mode of the original argument.
7363 If it's a MEM we need to recompute POS relative to that.
7364 However, if we're extracting from (or inserting into) a register,
7365 we want to recompute POS relative to wanted_inner_mode. */
7366 int width = (MEM_P (inner)
7367 ? GET_MODE_BITSIZE (is_mode)
7368 : GET_MODE_BITSIZE (wanted_inner_mode));
7370 if (pos_rtx == 0)
7371 pos = width - len - pos;
7372 else
7373 pos_rtx
7374 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7375 /* POS may be less than 0 now, but we check for that below.
7376 Note that it can only be less than 0 if !MEM_P (inner). */
7379 /* If INNER has a wider mode, and this is a constant extraction, try to
7380 make it smaller and adjust the byte to point to the byte containing
7381 the value. */
7382 if (wanted_inner_mode != VOIDmode
7383 && inner_mode != wanted_inner_mode
7384 && ! pos_rtx
7385 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7386 && MEM_P (inner)
7387 && ! mode_dependent_address_p (XEXP (inner, 0))
7388 && ! MEM_VOLATILE_P (inner))
7390 int offset = 0;
7392 /* The computations below will be correct if the machine is big
7393 endian in both bits and bytes or little endian in bits and bytes.
7394 If it is mixed, we must adjust. */
7396 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7397 adjust OFFSET to compensate. */
7398 if (BYTES_BIG_ENDIAN
7399 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7400 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7402 /* We can now move to the desired byte. */
7403 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7404 * GET_MODE_SIZE (wanted_inner_mode);
7405 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7407 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7408 && is_mode != wanted_inner_mode)
7409 offset = (GET_MODE_SIZE (is_mode)
7410 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7412 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7415 /* If INNER is not memory, get it into the proper mode. If we are changing
7416 its mode, POS must be a constant and smaller than the size of the new
7417 mode. */
7418 else if (!MEM_P (inner))
7420 /* On the LHS, don't create paradoxical subregs implicitely truncating
7421 the register unless TRULY_NOOP_TRUNCATION. */
7422 if (in_dest
7423 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7424 GET_MODE_BITSIZE (wanted_inner_mode)))
7425 return NULL_RTX;
7427 if (GET_MODE (inner) != wanted_inner_mode
7428 && (pos_rtx != 0
7429 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7430 return NULL_RTX;
7432 if (orig_pos < 0)
7433 return NULL_RTX;
7435 inner = force_to_mode (inner, wanted_inner_mode,
7436 pos_rtx
7437 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7438 ? ~(unsigned HOST_WIDE_INT) 0
7439 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7440 << orig_pos),
7444 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7445 have to zero extend. Otherwise, we can just use a SUBREG. */
7446 if (pos_rtx != 0
7447 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7449 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7451 /* If we know that no extraneous bits are set, and that the high
7452 bit is not set, convert extraction to cheaper one - either
7453 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7454 cases. */
7455 if (flag_expensive_optimizations
7456 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7457 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7458 & ~(((unsigned HOST_WIDE_INT)
7459 GET_MODE_MASK (GET_MODE (pos_rtx)))
7460 >> 1))
7461 == 0)))
7463 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7465 /* Prefer ZERO_EXTENSION, since it gives more information to
7466 backends. */
7467 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7468 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7469 temp = temp1;
7471 pos_rtx = temp;
7473 else if (pos_rtx != 0
7474 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7475 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7477 /* Make POS_RTX unless we already have it and it is correct. If we don't
7478 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7479 be a CONST_INT. */
7480 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7481 pos_rtx = orig_pos_rtx;
7483 else if (pos_rtx == 0)
7484 pos_rtx = GEN_INT (pos);
7486 /* Make the required operation. See if we can use existing rtx. */
7487 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7488 extraction_mode, inner, GEN_INT (len), pos_rtx);
7489 if (! in_dest)
7490 new_rtx = gen_lowpart (mode, new_rtx);
7492 return new_rtx;
7495 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7496 with any other operations in X. Return X without that shift if so. */
7498 static rtx
7499 extract_left_shift (rtx x, int count)
7501 enum rtx_code code = GET_CODE (x);
7502 enum machine_mode mode = GET_MODE (x);
7503 rtx tem;
7505 switch (code)
7507 case ASHIFT:
7508 /* This is the shift itself. If it is wide enough, we will return
7509 either the value being shifted if the shift count is equal to
7510 COUNT or a shift for the difference. */
7511 if (CONST_INT_P (XEXP (x, 1))
7512 && INTVAL (XEXP (x, 1)) >= count)
7513 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7514 INTVAL (XEXP (x, 1)) - count);
7515 break;
7517 case NEG: case NOT:
7518 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7519 return simplify_gen_unary (code, mode, tem, mode);
7521 break;
7523 case PLUS: case IOR: case XOR: case AND:
7524 /* If we can safely shift this constant and we find the inner shift,
7525 make a new operation. */
7526 if (CONST_INT_P (XEXP (x, 1))
7527 && (UINTVAL (XEXP (x, 1))
7528 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7529 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7530 return simplify_gen_binary (code, mode, tem,
7531 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7533 break;
7535 default:
7536 break;
7539 return 0;
7542 /* Look at the expression rooted at X. Look for expressions
7543 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7544 Form these expressions.
7546 Return the new rtx, usually just X.
7548 Also, for machines like the VAX that don't have logical shift insns,
7549 try to convert logical to arithmetic shift operations in cases where
7550 they are equivalent. This undoes the canonicalizations to logical
7551 shifts done elsewhere.
7553 We try, as much as possible, to re-use rtl expressions to save memory.
7555 IN_CODE says what kind of expression we are processing. Normally, it is
7556 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7557 being kludges), it is MEM. When processing the arguments of a comparison
7558 or a COMPARE against zero, it is COMPARE. */
7560 static rtx
7561 make_compound_operation (rtx x, enum rtx_code in_code)
7563 enum rtx_code code = GET_CODE (x);
7564 enum machine_mode mode = GET_MODE (x);
7565 int mode_width = GET_MODE_BITSIZE (mode);
7566 rtx rhs, lhs;
7567 enum rtx_code next_code;
7568 int i, j;
7569 rtx new_rtx = 0;
7570 rtx tem;
7571 const char *fmt;
7573 /* Select the code to be used in recursive calls. Once we are inside an
7574 address, we stay there. If we have a comparison, set to COMPARE,
7575 but once inside, go back to our default of SET. */
7577 next_code = (code == MEM ? MEM
7578 : ((code == PLUS || code == MINUS)
7579 && SCALAR_INT_MODE_P (mode)) ? MEM
7580 : ((code == COMPARE || COMPARISON_P (x))
7581 && XEXP (x, 1) == const0_rtx) ? COMPARE
7582 : in_code == COMPARE ? SET : in_code);
7584 /* Process depending on the code of this operation. If NEW is set
7585 nonzero, it will be returned. */
7587 switch (code)
7589 case ASHIFT:
7590 /* Convert shifts by constants into multiplications if inside
7591 an address. */
7592 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7593 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7594 && INTVAL (XEXP (x, 1)) >= 0
7595 && SCALAR_INT_MODE_P (mode))
7597 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7598 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7600 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7601 if (GET_CODE (new_rtx) == NEG)
7603 new_rtx = XEXP (new_rtx, 0);
7604 multval = -multval;
7606 multval = trunc_int_for_mode (multval, mode);
7607 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7609 break;
7611 case PLUS:
7612 lhs = XEXP (x, 0);
7613 rhs = XEXP (x, 1);
7614 lhs = make_compound_operation (lhs, next_code);
7615 rhs = make_compound_operation (rhs, next_code);
7616 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7617 && SCALAR_INT_MODE_P (mode))
7619 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7620 XEXP (lhs, 1));
7621 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7623 else if (GET_CODE (lhs) == MULT
7624 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7626 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7627 simplify_gen_unary (NEG, mode,
7628 XEXP (lhs, 1),
7629 mode));
7630 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7632 else
7634 SUBST (XEXP (x, 0), lhs);
7635 SUBST (XEXP (x, 1), rhs);
7636 goto maybe_swap;
7638 x = gen_lowpart (mode, new_rtx);
7639 goto maybe_swap;
7641 case MINUS:
7642 lhs = XEXP (x, 0);
7643 rhs = XEXP (x, 1);
7644 lhs = make_compound_operation (lhs, next_code);
7645 rhs = make_compound_operation (rhs, next_code);
7646 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7647 && SCALAR_INT_MODE_P (mode))
7649 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7650 XEXP (rhs, 1));
7651 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7653 else if (GET_CODE (rhs) == MULT
7654 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7656 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7657 simplify_gen_unary (NEG, mode,
7658 XEXP (rhs, 1),
7659 mode));
7660 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7662 else
7664 SUBST (XEXP (x, 0), lhs);
7665 SUBST (XEXP (x, 1), rhs);
7666 return x;
7668 return gen_lowpart (mode, new_rtx);
7670 case AND:
7671 /* If the second operand is not a constant, we can't do anything
7672 with it. */
7673 if (!CONST_INT_P (XEXP (x, 1)))
7674 break;
7676 /* If the constant is a power of two minus one and the first operand
7677 is a logical right shift, make an extraction. */
7678 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7679 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7681 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7682 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7683 0, in_code == COMPARE);
7686 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7687 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7688 && subreg_lowpart_p (XEXP (x, 0))
7689 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7690 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7692 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7693 next_code);
7694 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7695 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7696 0, in_code == COMPARE);
7698 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7699 else if ((GET_CODE (XEXP (x, 0)) == XOR
7700 || GET_CODE (XEXP (x, 0)) == IOR)
7701 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7702 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7703 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7705 /* Apply the distributive law, and then try to make extractions. */
7706 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7707 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7708 XEXP (x, 1)),
7709 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7710 XEXP (x, 1)));
7711 new_rtx = make_compound_operation (new_rtx, in_code);
7714 /* If we are have (and (rotate X C) M) and C is larger than the number
7715 of bits in M, this is an extraction. */
7717 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7718 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7719 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7720 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7722 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7723 new_rtx = make_extraction (mode, new_rtx,
7724 (GET_MODE_BITSIZE (mode)
7725 - INTVAL (XEXP (XEXP (x, 0), 1))),
7726 NULL_RTX, i, 1, 0, in_code == COMPARE);
7729 /* On machines without logical shifts, if the operand of the AND is
7730 a logical shift and our mask turns off all the propagated sign
7731 bits, we can replace the logical shift with an arithmetic shift. */
7732 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7733 && !have_insn_for (LSHIFTRT, mode)
7734 && have_insn_for (ASHIFTRT, mode)
7735 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7736 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7737 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7738 && mode_width <= HOST_BITS_PER_WIDE_INT)
7740 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7742 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7743 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7744 SUBST (XEXP (x, 0),
7745 gen_rtx_ASHIFTRT (mode,
7746 make_compound_operation
7747 (XEXP (XEXP (x, 0), 0), next_code),
7748 XEXP (XEXP (x, 0), 1)));
7751 /* If the constant is one less than a power of two, this might be
7752 representable by an extraction even if no shift is present.
7753 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7754 we are in a COMPARE. */
7755 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7756 new_rtx = make_extraction (mode,
7757 make_compound_operation (XEXP (x, 0),
7758 next_code),
7759 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7761 /* If we are in a comparison and this is an AND with a power of two,
7762 convert this into the appropriate bit extract. */
7763 else if (in_code == COMPARE
7764 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7765 new_rtx = make_extraction (mode,
7766 make_compound_operation (XEXP (x, 0),
7767 next_code),
7768 i, NULL_RTX, 1, 1, 0, 1);
7770 break;
7772 case LSHIFTRT:
7773 /* If the sign bit is known to be zero, replace this with an
7774 arithmetic shift. */
7775 if (have_insn_for (ASHIFTRT, mode)
7776 && ! have_insn_for (LSHIFTRT, mode)
7777 && mode_width <= HOST_BITS_PER_WIDE_INT
7778 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7780 new_rtx = gen_rtx_ASHIFTRT (mode,
7781 make_compound_operation (XEXP (x, 0),
7782 next_code),
7783 XEXP (x, 1));
7784 break;
7787 /* ... fall through ... */
7789 case ASHIFTRT:
7790 lhs = XEXP (x, 0);
7791 rhs = XEXP (x, 1);
7793 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7794 this is a SIGN_EXTRACT. */
7795 if (CONST_INT_P (rhs)
7796 && GET_CODE (lhs) == ASHIFT
7797 && CONST_INT_P (XEXP (lhs, 1))
7798 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7799 && INTVAL (rhs) < mode_width)
7801 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7802 new_rtx = make_extraction (mode, new_rtx,
7803 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7804 NULL_RTX, mode_width - INTVAL (rhs),
7805 code == LSHIFTRT, 0, in_code == COMPARE);
7806 break;
7809 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7810 If so, try to merge the shifts into a SIGN_EXTEND. We could
7811 also do this for some cases of SIGN_EXTRACT, but it doesn't
7812 seem worth the effort; the case checked for occurs on Alpha. */
7814 if (!OBJECT_P (lhs)
7815 && ! (GET_CODE (lhs) == SUBREG
7816 && (OBJECT_P (SUBREG_REG (lhs))))
7817 && CONST_INT_P (rhs)
7818 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7819 && INTVAL (rhs) < mode_width
7820 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7821 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7822 0, NULL_RTX, mode_width - INTVAL (rhs),
7823 code == LSHIFTRT, 0, in_code == COMPARE);
7825 break;
7827 case SUBREG:
7828 /* Call ourselves recursively on the inner expression. If we are
7829 narrowing the object and it has a different RTL code from
7830 what it originally did, do this SUBREG as a force_to_mode. */
7832 rtx inner = SUBREG_REG (x), simplified;
7834 tem = make_compound_operation (inner, in_code);
7836 simplified
7837 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7838 if (simplified)
7839 tem = simplified;
7841 if (GET_CODE (tem) != GET_CODE (inner)
7842 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7843 && subreg_lowpart_p (x))
7845 rtx newer
7846 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7848 /* If we have something other than a SUBREG, we might have
7849 done an expansion, so rerun ourselves. */
7850 if (GET_CODE (newer) != SUBREG)
7851 newer = make_compound_operation (newer, in_code);
7853 /* force_to_mode can expand compounds. If it just re-expanded the
7854 compound, use gen_lowpart to convert to the desired mode. */
7855 if (rtx_equal_p (newer, x)
7856 /* Likewise if it re-expanded the compound only partially.
7857 This happens for SUBREG of ZERO_EXTRACT if they extract
7858 the same number of bits. */
7859 || (GET_CODE (newer) == SUBREG
7860 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7861 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7862 && GET_CODE (inner) == AND
7863 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7864 return gen_lowpart (GET_MODE (x), tem);
7866 return newer;
7869 if (simplified)
7870 return tem;
7872 break;
7874 default:
7875 break;
7878 if (new_rtx)
7880 x = gen_lowpart (mode, new_rtx);
7881 code = GET_CODE (x);
7884 /* Now recursively process each operand of this operation. We need to
7885 handle ZERO_EXTEND specially so that we don't lose track of the
7886 inner mode. */
7887 if (GET_CODE (x) == ZERO_EXTEND)
7889 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7890 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7891 new_rtx, GET_MODE (XEXP (x, 0)));
7892 if (tem)
7893 return tem;
7894 SUBST (XEXP (x, 0), new_rtx);
7895 return x;
7898 fmt = GET_RTX_FORMAT (code);
7899 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7900 if (fmt[i] == 'e')
7902 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7903 SUBST (XEXP (x, i), new_rtx);
7905 else if (fmt[i] == 'E')
7906 for (j = 0; j < XVECLEN (x, i); j++)
7908 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7909 SUBST (XVECEXP (x, i, j), new_rtx);
7912 maybe_swap:
7913 /* If this is a commutative operation, the changes to the operands
7914 may have made it noncanonical. */
7915 if (COMMUTATIVE_ARITH_P (x)
7916 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7918 tem = XEXP (x, 0);
7919 SUBST (XEXP (x, 0), XEXP (x, 1));
7920 SUBST (XEXP (x, 1), tem);
7923 return x;
7926 /* Given M see if it is a value that would select a field of bits
7927 within an item, but not the entire word. Return -1 if not.
7928 Otherwise, return the starting position of the field, where 0 is the
7929 low-order bit.
7931 *PLEN is set to the length of the field. */
7933 static int
7934 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7936 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7937 int pos = m ? ctz_hwi (m) : -1;
7938 int len = 0;
7940 if (pos >= 0)
7941 /* Now shift off the low-order zero bits and see if we have a
7942 power of two minus 1. */
7943 len = exact_log2 ((m >> pos) + 1);
7945 if (len <= 0)
7946 pos = -1;
7948 *plen = len;
7949 return pos;
7952 /* If X refers to a register that equals REG in value, replace these
7953 references with REG. */
7954 static rtx
7955 canon_reg_for_combine (rtx x, rtx reg)
7957 rtx op0, op1, op2;
7958 const char *fmt;
7959 int i;
7960 bool copied;
7962 enum rtx_code code = GET_CODE (x);
7963 switch (GET_RTX_CLASS (code))
7965 case RTX_UNARY:
7966 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7967 if (op0 != XEXP (x, 0))
7968 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7969 GET_MODE (reg));
7970 break;
7972 case RTX_BIN_ARITH:
7973 case RTX_COMM_ARITH:
7974 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7975 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7976 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7977 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7978 break;
7980 case RTX_COMPARE:
7981 case RTX_COMM_COMPARE:
7982 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7983 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7984 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7985 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7986 GET_MODE (op0), op0, op1);
7987 break;
7989 case RTX_TERNARY:
7990 case RTX_BITFIELD_OPS:
7991 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7992 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7993 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7994 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7995 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7996 GET_MODE (op0), op0, op1, op2);
7998 case RTX_OBJ:
7999 if (REG_P (x))
8001 if (rtx_equal_p (get_last_value (reg), x)
8002 || rtx_equal_p (reg, get_last_value (x)))
8003 return reg;
8004 else
8005 break;
8008 /* fall through */
8010 default:
8011 fmt = GET_RTX_FORMAT (code);
8012 copied = false;
8013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8014 if (fmt[i] == 'e')
8016 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8017 if (op != XEXP (x, i))
8019 if (!copied)
8021 copied = true;
8022 x = copy_rtx (x);
8024 XEXP (x, i) = op;
8027 else if (fmt[i] == 'E')
8029 int j;
8030 for (j = 0; j < XVECLEN (x, i); j++)
8032 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8033 if (op != XVECEXP (x, i, j))
8035 if (!copied)
8037 copied = true;
8038 x = copy_rtx (x);
8040 XVECEXP (x, i, j) = op;
8045 break;
8048 return x;
8051 /* Return X converted to MODE. If the value is already truncated to
8052 MODE we can just return a subreg even though in the general case we
8053 would need an explicit truncation. */
8055 static rtx
8056 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8058 if (!CONST_INT_P (x)
8059 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8060 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
8061 GET_MODE_BITSIZE (GET_MODE (x)))
8062 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8064 /* Bit-cast X into an integer mode. */
8065 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8066 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8067 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8068 x, GET_MODE (x));
8071 return gen_lowpart (mode, x);
8074 /* See if X can be simplified knowing that we will only refer to it in
8075 MODE and will only refer to those bits that are nonzero in MASK.
8076 If other bits are being computed or if masking operations are done
8077 that select a superset of the bits in MASK, they can sometimes be
8078 ignored.
8080 Return a possibly simplified expression, but always convert X to
8081 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8083 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8084 are all off in X. This is used when X will be complemented, by either
8085 NOT, NEG, or XOR. */
8087 static rtx
8088 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8089 int just_select)
8091 enum rtx_code code = GET_CODE (x);
8092 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8093 enum machine_mode op_mode;
8094 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8095 rtx op0, op1, temp;
8097 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8098 code below will do the wrong thing since the mode of such an
8099 expression is VOIDmode.
8101 Also do nothing if X is a CLOBBER; this can happen if X was
8102 the return value from a call to gen_lowpart. */
8103 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8104 return x;
8106 /* We want to perform the operation is its present mode unless we know
8107 that the operation is valid in MODE, in which case we do the operation
8108 in MODE. */
8109 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8110 && have_insn_for (code, mode))
8111 ? mode : GET_MODE (x));
8113 /* It is not valid to do a right-shift in a narrower mode
8114 than the one it came in with. */
8115 if ((code == LSHIFTRT || code == ASHIFTRT)
8116 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
8117 op_mode = GET_MODE (x);
8119 /* Truncate MASK to fit OP_MODE. */
8120 if (op_mode)
8121 mask &= GET_MODE_MASK (op_mode);
8123 /* When we have an arithmetic operation, or a shift whose count we
8124 do not know, we need to assume that all bits up to the highest-order
8125 bit in MASK will be needed. This is how we form such a mask. */
8126 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8127 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8128 else
8129 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8130 - 1);
8132 /* Determine what bits of X are guaranteed to be (non)zero. */
8133 nonzero = nonzero_bits (x, mode);
8135 /* If none of the bits in X are needed, return a zero. */
8136 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8137 x = const0_rtx;
8139 /* If X is a CONST_INT, return a new one. Do this here since the
8140 test below will fail. */
8141 if (CONST_INT_P (x))
8143 if (SCALAR_INT_MODE_P (mode))
8144 return gen_int_mode (INTVAL (x) & mask, mode);
8145 else
8147 x = GEN_INT (INTVAL (x) & mask);
8148 return gen_lowpart_common (mode, x);
8152 /* If X is narrower than MODE and we want all the bits in X's mode, just
8153 get X in the proper mode. */
8154 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8155 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8156 return gen_lowpart (mode, x);
8158 /* We can ignore the effect of a SUBREG if it narrows the mode or
8159 if the constant masks to zero all the bits the mode doesn't have. */
8160 if (GET_CODE (x) == SUBREG
8161 && subreg_lowpart_p (x)
8162 && ((GET_MODE_SIZE (GET_MODE (x))
8163 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8164 || (0 == (mask
8165 & GET_MODE_MASK (GET_MODE (x))
8166 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8167 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8169 /* The arithmetic simplifications here only work for scalar integer modes. */
8170 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8171 return gen_lowpart_or_truncate (mode, x);
8173 switch (code)
8175 case CLOBBER:
8176 /* If X is a (clobber (const_int)), return it since we know we are
8177 generating something that won't match. */
8178 return x;
8180 case SIGN_EXTEND:
8181 case ZERO_EXTEND:
8182 case ZERO_EXTRACT:
8183 case SIGN_EXTRACT:
8184 x = expand_compound_operation (x);
8185 if (GET_CODE (x) != code)
8186 return force_to_mode (x, mode, mask, next_select);
8187 break;
8189 case TRUNCATE:
8190 /* Similarly for a truncate. */
8191 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8193 case AND:
8194 /* If this is an AND with a constant, convert it into an AND
8195 whose constant is the AND of that constant with MASK. If it
8196 remains an AND of MASK, delete it since it is redundant. */
8198 if (CONST_INT_P (XEXP (x, 1)))
8200 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8201 mask & INTVAL (XEXP (x, 1)));
8203 /* If X is still an AND, see if it is an AND with a mask that
8204 is just some low-order bits. If so, and it is MASK, we don't
8205 need it. */
8207 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8208 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8209 == mask))
8210 x = XEXP (x, 0);
8212 /* If it remains an AND, try making another AND with the bits
8213 in the mode mask that aren't in MASK turned on. If the
8214 constant in the AND is wide enough, this might make a
8215 cheaper constant. */
8217 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8218 && GET_MODE_MASK (GET_MODE (x)) != mask
8219 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8221 unsigned HOST_WIDE_INT cval
8222 = UINTVAL (XEXP (x, 1))
8223 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8224 int width = GET_MODE_BITSIZE (GET_MODE (x));
8225 rtx y;
8227 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8228 number, sign extend it. */
8229 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8230 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8231 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8233 y = simplify_gen_binary (AND, GET_MODE (x),
8234 XEXP (x, 0), GEN_INT (cval));
8235 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8236 < rtx_cost (x, SET, optimize_this_for_speed_p))
8237 x = y;
8240 break;
8243 goto binop;
8245 case PLUS:
8246 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8247 low-order bits (as in an alignment operation) and FOO is already
8248 aligned to that boundary, mask C1 to that boundary as well.
8249 This may eliminate that PLUS and, later, the AND. */
8252 unsigned int width = GET_MODE_BITSIZE (mode);
8253 unsigned HOST_WIDE_INT smask = mask;
8255 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8256 number, sign extend it. */
8258 if (width < HOST_BITS_PER_WIDE_INT
8259 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8260 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8262 if (CONST_INT_P (XEXP (x, 1))
8263 && exact_log2 (- smask) >= 0
8264 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8265 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8266 return force_to_mode (plus_constant (XEXP (x, 0),
8267 (INTVAL (XEXP (x, 1)) & smask)),
8268 mode, smask, next_select);
8271 /* ... fall through ... */
8273 case MULT:
8274 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8275 most significant bit in MASK since carries from those bits will
8276 affect the bits we are interested in. */
8277 mask = fuller_mask;
8278 goto binop;
8280 case MINUS:
8281 /* If X is (minus C Y) where C's least set bit is larger than any bit
8282 in the mask, then we may replace with (neg Y). */
8283 if (CONST_INT_P (XEXP (x, 0))
8284 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8285 & -INTVAL (XEXP (x, 0))))
8286 > mask))
8288 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8289 GET_MODE (x));
8290 return force_to_mode (x, mode, mask, next_select);
8293 /* Similarly, if C contains every bit in the fuller_mask, then we may
8294 replace with (not Y). */
8295 if (CONST_INT_P (XEXP (x, 0))
8296 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8298 x = simplify_gen_unary (NOT, GET_MODE (x),
8299 XEXP (x, 1), GET_MODE (x));
8300 return force_to_mode (x, mode, mask, next_select);
8303 mask = fuller_mask;
8304 goto binop;
8306 case IOR:
8307 case XOR:
8308 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8309 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8310 operation which may be a bitfield extraction. Ensure that the
8311 constant we form is not wider than the mode of X. */
8313 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8314 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8315 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8316 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8317 && CONST_INT_P (XEXP (x, 1))
8318 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8319 + floor_log2 (INTVAL (XEXP (x, 1))))
8320 < GET_MODE_BITSIZE (GET_MODE (x)))
8321 && (UINTVAL (XEXP (x, 1))
8322 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8324 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8325 << INTVAL (XEXP (XEXP (x, 0), 1)));
8326 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8327 XEXP (XEXP (x, 0), 0), temp);
8328 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8329 XEXP (XEXP (x, 0), 1));
8330 return force_to_mode (x, mode, mask, next_select);
8333 binop:
8334 /* For most binary operations, just propagate into the operation and
8335 change the mode if we have an operation of that mode. */
8337 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8338 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8340 /* If we ended up truncating both operands, truncate the result of the
8341 operation instead. */
8342 if (GET_CODE (op0) == TRUNCATE
8343 && GET_CODE (op1) == TRUNCATE)
8345 op0 = XEXP (op0, 0);
8346 op1 = XEXP (op1, 0);
8349 op0 = gen_lowpart_or_truncate (op_mode, op0);
8350 op1 = gen_lowpart_or_truncate (op_mode, op1);
8352 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8353 x = simplify_gen_binary (code, op_mode, op0, op1);
8354 break;
8356 case ASHIFT:
8357 /* For left shifts, do the same, but just for the first operand.
8358 However, we cannot do anything with shifts where we cannot
8359 guarantee that the counts are smaller than the size of the mode
8360 because such a count will have a different meaning in a
8361 wider mode. */
8363 if (! (CONST_INT_P (XEXP (x, 1))
8364 && INTVAL (XEXP (x, 1)) >= 0
8365 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8366 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8367 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8368 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8369 break;
8371 /* If the shift count is a constant and we can do arithmetic in
8372 the mode of the shift, refine which bits we need. Otherwise, use the
8373 conservative form of the mask. */
8374 if (CONST_INT_P (XEXP (x, 1))
8375 && INTVAL (XEXP (x, 1)) >= 0
8376 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8377 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8378 mask >>= INTVAL (XEXP (x, 1));
8379 else
8380 mask = fuller_mask;
8382 op0 = gen_lowpart_or_truncate (op_mode,
8383 force_to_mode (XEXP (x, 0), op_mode,
8384 mask, next_select));
8386 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8387 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8388 break;
8390 case LSHIFTRT:
8391 /* Here we can only do something if the shift count is a constant,
8392 this shift constant is valid for the host, and we can do arithmetic
8393 in OP_MODE. */
8395 if (CONST_INT_P (XEXP (x, 1))
8396 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8397 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8399 rtx inner = XEXP (x, 0);
8400 unsigned HOST_WIDE_INT inner_mask;
8402 /* Select the mask of the bits we need for the shift operand. */
8403 inner_mask = mask << INTVAL (XEXP (x, 1));
8405 /* We can only change the mode of the shift if we can do arithmetic
8406 in the mode of the shift and INNER_MASK is no wider than the
8407 width of X's mode. */
8408 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8409 op_mode = GET_MODE (x);
8411 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8413 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8414 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8417 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8418 shift and AND produces only copies of the sign bit (C2 is one less
8419 than a power of two), we can do this with just a shift. */
8421 if (GET_CODE (x) == LSHIFTRT
8422 && CONST_INT_P (XEXP (x, 1))
8423 /* The shift puts one of the sign bit copies in the least significant
8424 bit. */
8425 && ((INTVAL (XEXP (x, 1))
8426 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8427 >= GET_MODE_BITSIZE (GET_MODE (x)))
8428 && exact_log2 (mask + 1) >= 0
8429 /* Number of bits left after the shift must be more than the mask
8430 needs. */
8431 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8432 <= GET_MODE_BITSIZE (GET_MODE (x)))
8433 /* Must be more sign bit copies than the mask needs. */
8434 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8435 >= exact_log2 (mask + 1)))
8436 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8437 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8438 - exact_log2 (mask + 1)));
8440 goto shiftrt;
8442 case ASHIFTRT:
8443 /* If we are just looking for the sign bit, we don't need this shift at
8444 all, even if it has a variable count. */
8445 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8446 && (mask == ((unsigned HOST_WIDE_INT) 1
8447 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8448 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8450 /* If this is a shift by a constant, get a mask that contains those bits
8451 that are not copies of the sign bit. We then have two cases: If
8452 MASK only includes those bits, this can be a logical shift, which may
8453 allow simplifications. If MASK is a single-bit field not within
8454 those bits, we are requesting a copy of the sign bit and hence can
8455 shift the sign bit to the appropriate location. */
8457 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8458 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8460 int i;
8462 /* If the considered data is wider than HOST_WIDE_INT, we can't
8463 represent a mask for all its bits in a single scalar.
8464 But we only care about the lower bits, so calculate these. */
8466 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8468 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8470 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8471 is the number of bits a full-width mask would have set.
8472 We need only shift if these are fewer than nonzero can
8473 hold. If not, we must keep all bits set in nonzero. */
8475 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8476 < HOST_BITS_PER_WIDE_INT)
8477 nonzero >>= INTVAL (XEXP (x, 1))
8478 + HOST_BITS_PER_WIDE_INT
8479 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8481 else
8483 nonzero = GET_MODE_MASK (GET_MODE (x));
8484 nonzero >>= INTVAL (XEXP (x, 1));
8487 if ((mask & ~nonzero) == 0)
8489 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8490 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8491 if (GET_CODE (x) != ASHIFTRT)
8492 return force_to_mode (x, mode, mask, next_select);
8495 else if ((i = exact_log2 (mask)) >= 0)
8497 x = simplify_shift_const
8498 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8499 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8501 if (GET_CODE (x) != ASHIFTRT)
8502 return force_to_mode (x, mode, mask, next_select);
8506 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8507 even if the shift count isn't a constant. */
8508 if (mask == 1)
8509 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8510 XEXP (x, 0), XEXP (x, 1));
8512 shiftrt:
8514 /* If this is a zero- or sign-extension operation that just affects bits
8515 we don't care about, remove it. Be sure the call above returned
8516 something that is still a shift. */
8518 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8519 && CONST_INT_P (XEXP (x, 1))
8520 && INTVAL (XEXP (x, 1)) >= 0
8521 && (INTVAL (XEXP (x, 1))
8522 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8523 && GET_CODE (XEXP (x, 0)) == ASHIFT
8524 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8525 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8526 next_select);
8528 break;
8530 case ROTATE:
8531 case ROTATERT:
8532 /* If the shift count is constant and we can do computations
8533 in the mode of X, compute where the bits we care about are.
8534 Otherwise, we can't do anything. Don't change the mode of
8535 the shift or propagate MODE into the shift, though. */
8536 if (CONST_INT_P (XEXP (x, 1))
8537 && INTVAL (XEXP (x, 1)) >= 0)
8539 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8540 GET_MODE (x), GEN_INT (mask),
8541 XEXP (x, 1));
8542 if (temp && CONST_INT_P (temp))
8543 SUBST (XEXP (x, 0),
8544 force_to_mode (XEXP (x, 0), GET_MODE (x),
8545 INTVAL (temp), next_select));
8547 break;
8549 case NEG:
8550 /* If we just want the low-order bit, the NEG isn't needed since it
8551 won't change the low-order bit. */
8552 if (mask == 1)
8553 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8555 /* We need any bits less significant than the most significant bit in
8556 MASK since carries from those bits will affect the bits we are
8557 interested in. */
8558 mask = fuller_mask;
8559 goto unop;
8561 case NOT:
8562 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8563 same as the XOR case above. Ensure that the constant we form is not
8564 wider than the mode of X. */
8566 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8567 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8568 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8569 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8570 < GET_MODE_BITSIZE (GET_MODE (x)))
8571 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8573 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8574 GET_MODE (x));
8575 temp = simplify_gen_binary (XOR, GET_MODE (x),
8576 XEXP (XEXP (x, 0), 0), temp);
8577 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8578 temp, XEXP (XEXP (x, 0), 1));
8580 return force_to_mode (x, mode, mask, next_select);
8583 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8584 use the full mask inside the NOT. */
8585 mask = fuller_mask;
8587 unop:
8588 op0 = gen_lowpart_or_truncate (op_mode,
8589 force_to_mode (XEXP (x, 0), mode, mask,
8590 next_select));
8591 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8592 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8593 break;
8595 case NE:
8596 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8597 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8598 which is equal to STORE_FLAG_VALUE. */
8599 if ((mask & ~STORE_FLAG_VALUE) == 0
8600 && XEXP (x, 1) == const0_rtx
8601 && GET_MODE (XEXP (x, 0)) == mode
8602 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8603 && (nonzero_bits (XEXP (x, 0), mode)
8604 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8605 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8607 break;
8609 case IF_THEN_ELSE:
8610 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8611 written in a narrower mode. We play it safe and do not do so. */
8613 SUBST (XEXP (x, 1),
8614 gen_lowpart_or_truncate (GET_MODE (x),
8615 force_to_mode (XEXP (x, 1), mode,
8616 mask, next_select)));
8617 SUBST (XEXP (x, 2),
8618 gen_lowpart_or_truncate (GET_MODE (x),
8619 force_to_mode (XEXP (x, 2), mode,
8620 mask, next_select)));
8621 break;
8623 default:
8624 break;
8627 /* Ensure we return a value of the proper mode. */
8628 return gen_lowpart_or_truncate (mode, x);
8631 /* Return nonzero if X is an expression that has one of two values depending on
8632 whether some other value is zero or nonzero. In that case, we return the
8633 value that is being tested, *PTRUE is set to the value if the rtx being
8634 returned has a nonzero value, and *PFALSE is set to the other alternative.
8636 If we return zero, we set *PTRUE and *PFALSE to X. */
8638 static rtx
8639 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8641 enum machine_mode mode = GET_MODE (x);
8642 enum rtx_code code = GET_CODE (x);
8643 rtx cond0, cond1, true0, true1, false0, false1;
8644 unsigned HOST_WIDE_INT nz;
8646 /* If we are comparing a value against zero, we are done. */
8647 if ((code == NE || code == EQ)
8648 && XEXP (x, 1) == const0_rtx)
8650 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8651 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8652 return XEXP (x, 0);
8655 /* If this is a unary operation whose operand has one of two values, apply
8656 our opcode to compute those values. */
8657 else if (UNARY_P (x)
8658 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8660 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8661 *pfalse = simplify_gen_unary (code, mode, false0,
8662 GET_MODE (XEXP (x, 0)));
8663 return cond0;
8666 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8667 make can't possibly match and would suppress other optimizations. */
8668 else if (code == COMPARE)
8671 /* If this is a binary operation, see if either side has only one of two
8672 values. If either one does or if both do and they are conditional on
8673 the same value, compute the new true and false values. */
8674 else if (BINARY_P (x))
8676 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8677 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8679 if ((cond0 != 0 || cond1 != 0)
8680 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8682 /* If if_then_else_cond returned zero, then true/false are the
8683 same rtl. We must copy one of them to prevent invalid rtl
8684 sharing. */
8685 if (cond0 == 0)
8686 true0 = copy_rtx (true0);
8687 else if (cond1 == 0)
8688 true1 = copy_rtx (true1);
8690 if (COMPARISON_P (x))
8692 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8693 true0, true1);
8694 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8695 false0, false1);
8697 else
8699 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8700 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8703 return cond0 ? cond0 : cond1;
8706 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8707 operands is zero when the other is nonzero, and vice-versa,
8708 and STORE_FLAG_VALUE is 1 or -1. */
8710 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8711 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8712 || code == UMAX)
8713 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8715 rtx op0 = XEXP (XEXP (x, 0), 1);
8716 rtx op1 = XEXP (XEXP (x, 1), 1);
8718 cond0 = XEXP (XEXP (x, 0), 0);
8719 cond1 = XEXP (XEXP (x, 1), 0);
8721 if (COMPARISON_P (cond0)
8722 && COMPARISON_P (cond1)
8723 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8724 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8725 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8726 || ((swap_condition (GET_CODE (cond0))
8727 == reversed_comparison_code (cond1, NULL))
8728 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8729 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8730 && ! side_effects_p (x))
8732 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8733 *pfalse = simplify_gen_binary (MULT, mode,
8734 (code == MINUS
8735 ? simplify_gen_unary (NEG, mode,
8736 op1, mode)
8737 : op1),
8738 const_true_rtx);
8739 return cond0;
8743 /* Similarly for MULT, AND and UMIN, except that for these the result
8744 is always zero. */
8745 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8746 && (code == MULT || code == AND || code == UMIN)
8747 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8749 cond0 = XEXP (XEXP (x, 0), 0);
8750 cond1 = XEXP (XEXP (x, 1), 0);
8752 if (COMPARISON_P (cond0)
8753 && COMPARISON_P (cond1)
8754 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8755 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8756 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8757 || ((swap_condition (GET_CODE (cond0))
8758 == reversed_comparison_code (cond1, NULL))
8759 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8760 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8761 && ! side_effects_p (x))
8763 *ptrue = *pfalse = const0_rtx;
8764 return cond0;
8769 else if (code == IF_THEN_ELSE)
8771 /* If we have IF_THEN_ELSE already, extract the condition and
8772 canonicalize it if it is NE or EQ. */
8773 cond0 = XEXP (x, 0);
8774 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8775 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8776 return XEXP (cond0, 0);
8777 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8779 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8780 return XEXP (cond0, 0);
8782 else
8783 return cond0;
8786 /* If X is a SUBREG, we can narrow both the true and false values
8787 if the inner expression, if there is a condition. */
8788 else if (code == SUBREG
8789 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8790 &true0, &false0)))
8792 true0 = simplify_gen_subreg (mode, true0,
8793 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8794 false0 = simplify_gen_subreg (mode, false0,
8795 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8796 if (true0 && false0)
8798 *ptrue = true0;
8799 *pfalse = false0;
8800 return cond0;
8804 /* If X is a constant, this isn't special and will cause confusions
8805 if we treat it as such. Likewise if it is equivalent to a constant. */
8806 else if (CONSTANT_P (x)
8807 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8810 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8811 will be least confusing to the rest of the compiler. */
8812 else if (mode == BImode)
8814 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8815 return x;
8818 /* If X is known to be either 0 or -1, those are the true and
8819 false values when testing X. */
8820 else if (x == constm1_rtx || x == const0_rtx
8821 || (mode != VOIDmode
8822 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8824 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8825 return x;
8828 /* Likewise for 0 or a single bit. */
8829 else if (SCALAR_INT_MODE_P (mode)
8830 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8831 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8833 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8834 return x;
8837 /* Otherwise fail; show no condition with true and false values the same. */
8838 *ptrue = *pfalse = x;
8839 return 0;
8842 /* Return the value of expression X given the fact that condition COND
8843 is known to be true when applied to REG as its first operand and VAL
8844 as its second. X is known to not be shared and so can be modified in
8845 place.
8847 We only handle the simplest cases, and specifically those cases that
8848 arise with IF_THEN_ELSE expressions. */
8850 static rtx
8851 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8853 enum rtx_code code = GET_CODE (x);
8854 rtx temp;
8855 const char *fmt;
8856 int i, j;
8858 if (side_effects_p (x))
8859 return x;
8861 /* If either operand of the condition is a floating point value,
8862 then we have to avoid collapsing an EQ comparison. */
8863 if (cond == EQ
8864 && rtx_equal_p (x, reg)
8865 && ! FLOAT_MODE_P (GET_MODE (x))
8866 && ! FLOAT_MODE_P (GET_MODE (val)))
8867 return val;
8869 if (cond == UNEQ && rtx_equal_p (x, reg))
8870 return val;
8872 /* If X is (abs REG) and we know something about REG's relationship
8873 with zero, we may be able to simplify this. */
8875 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8876 switch (cond)
8878 case GE: case GT: case EQ:
8879 return XEXP (x, 0);
8880 case LT: case LE:
8881 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8882 XEXP (x, 0),
8883 GET_MODE (XEXP (x, 0)));
8884 default:
8885 break;
8888 /* The only other cases we handle are MIN, MAX, and comparisons if the
8889 operands are the same as REG and VAL. */
8891 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8893 if (rtx_equal_p (XEXP (x, 0), val))
8894 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8896 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8898 if (COMPARISON_P (x))
8900 if (comparison_dominates_p (cond, code))
8901 return const_true_rtx;
8903 code = reversed_comparison_code (x, NULL);
8904 if (code != UNKNOWN
8905 && comparison_dominates_p (cond, code))
8906 return const0_rtx;
8907 else
8908 return x;
8910 else if (code == SMAX || code == SMIN
8911 || code == UMIN || code == UMAX)
8913 int unsignedp = (code == UMIN || code == UMAX);
8915 /* Do not reverse the condition when it is NE or EQ.
8916 This is because we cannot conclude anything about
8917 the value of 'SMAX (x, y)' when x is not equal to y,
8918 but we can when x equals y. */
8919 if ((code == SMAX || code == UMAX)
8920 && ! (cond == EQ || cond == NE))
8921 cond = reverse_condition (cond);
8923 switch (cond)
8925 case GE: case GT:
8926 return unsignedp ? x : XEXP (x, 1);
8927 case LE: case LT:
8928 return unsignedp ? x : XEXP (x, 0);
8929 case GEU: case GTU:
8930 return unsignedp ? XEXP (x, 1) : x;
8931 case LEU: case LTU:
8932 return unsignedp ? XEXP (x, 0) : x;
8933 default:
8934 break;
8939 else if (code == SUBREG)
8941 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8942 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8944 if (SUBREG_REG (x) != r)
8946 /* We must simplify subreg here, before we lose track of the
8947 original inner_mode. */
8948 new_rtx = simplify_subreg (GET_MODE (x), r,
8949 inner_mode, SUBREG_BYTE (x));
8950 if (new_rtx)
8951 return new_rtx;
8952 else
8953 SUBST (SUBREG_REG (x), r);
8956 return x;
8958 /* We don't have to handle SIGN_EXTEND here, because even in the
8959 case of replacing something with a modeless CONST_INT, a
8960 CONST_INT is already (supposed to be) a valid sign extension for
8961 its narrower mode, which implies it's already properly
8962 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8963 story is different. */
8964 else if (code == ZERO_EXTEND)
8966 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8967 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8969 if (XEXP (x, 0) != r)
8971 /* We must simplify the zero_extend here, before we lose
8972 track of the original inner_mode. */
8973 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8974 r, inner_mode);
8975 if (new_rtx)
8976 return new_rtx;
8977 else
8978 SUBST (XEXP (x, 0), r);
8981 return x;
8984 fmt = GET_RTX_FORMAT (code);
8985 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8987 if (fmt[i] == 'e')
8988 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8989 else if (fmt[i] == 'E')
8990 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8991 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8992 cond, reg, val));
8995 return x;
8998 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8999 assignment as a field assignment. */
9001 static int
9002 rtx_equal_for_field_assignment_p (rtx x, rtx y)
9004 if (x == y || rtx_equal_p (x, y))
9005 return 1;
9007 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9008 return 0;
9010 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9011 Note that all SUBREGs of MEM are paradoxical; otherwise they
9012 would have been rewritten. */
9013 if (MEM_P (x) && GET_CODE (y) == SUBREG
9014 && MEM_P (SUBREG_REG (y))
9015 && rtx_equal_p (SUBREG_REG (y),
9016 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9017 return 1;
9019 if (MEM_P (y) && GET_CODE (x) == SUBREG
9020 && MEM_P (SUBREG_REG (x))
9021 && rtx_equal_p (SUBREG_REG (x),
9022 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9023 return 1;
9025 /* We used to see if get_last_value of X and Y were the same but that's
9026 not correct. In one direction, we'll cause the assignment to have
9027 the wrong destination and in the case, we'll import a register into this
9028 insn that might have already have been dead. So fail if none of the
9029 above cases are true. */
9030 return 0;
9033 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9034 Return that assignment if so.
9036 We only handle the most common cases. */
9038 static rtx
9039 make_field_assignment (rtx x)
9041 rtx dest = SET_DEST (x);
9042 rtx src = SET_SRC (x);
9043 rtx assign;
9044 rtx rhs, lhs;
9045 HOST_WIDE_INT c1;
9046 HOST_WIDE_INT pos;
9047 unsigned HOST_WIDE_INT len;
9048 rtx other;
9049 enum machine_mode mode;
9051 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9052 a clear of a one-bit field. We will have changed it to
9053 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9054 for a SUBREG. */
9056 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9057 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9058 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9059 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9061 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9062 1, 1, 1, 0);
9063 if (assign != 0)
9064 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9065 return x;
9068 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9069 && subreg_lowpart_p (XEXP (src, 0))
9070 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9071 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9072 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9073 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9074 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9075 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9077 assign = make_extraction (VOIDmode, dest, 0,
9078 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9079 1, 1, 1, 0);
9080 if (assign != 0)
9081 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9082 return x;
9085 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9086 one-bit field. */
9087 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9088 && XEXP (XEXP (src, 0), 0) == const1_rtx
9089 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9091 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9092 1, 1, 1, 0);
9093 if (assign != 0)
9094 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9095 return x;
9098 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9099 SRC is an AND with all bits of that field set, then we can discard
9100 the AND. */
9101 if (GET_CODE (dest) == ZERO_EXTRACT
9102 && CONST_INT_P (XEXP (dest, 1))
9103 && GET_CODE (src) == AND
9104 && CONST_INT_P (XEXP (src, 1)))
9106 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9107 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9108 unsigned HOST_WIDE_INT ze_mask;
9110 if (width >= HOST_BITS_PER_WIDE_INT)
9111 ze_mask = -1;
9112 else
9113 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9115 /* Complete overlap. We can remove the source AND. */
9116 if ((and_mask & ze_mask) == ze_mask)
9117 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9119 /* Partial overlap. We can reduce the source AND. */
9120 if ((and_mask & ze_mask) != and_mask)
9122 mode = GET_MODE (src);
9123 src = gen_rtx_AND (mode, XEXP (src, 0),
9124 gen_int_mode (and_mask & ze_mask, mode));
9125 return gen_rtx_SET (VOIDmode, dest, src);
9129 /* The other case we handle is assignments into a constant-position
9130 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9131 a mask that has all one bits except for a group of zero bits and
9132 OTHER is known to have zeros where C1 has ones, this is such an
9133 assignment. Compute the position and length from C1. Shift OTHER
9134 to the appropriate position, force it to the required mode, and
9135 make the extraction. Check for the AND in both operands. */
9137 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9138 return x;
9140 rhs = expand_compound_operation (XEXP (src, 0));
9141 lhs = expand_compound_operation (XEXP (src, 1));
9143 if (GET_CODE (rhs) == AND
9144 && CONST_INT_P (XEXP (rhs, 1))
9145 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9146 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9147 else if (GET_CODE (lhs) == AND
9148 && CONST_INT_P (XEXP (lhs, 1))
9149 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9150 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9151 else
9152 return x;
9154 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9155 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
9156 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9157 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9158 return x;
9160 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9161 if (assign == 0)
9162 return x;
9164 /* The mode to use for the source is the mode of the assignment, or of
9165 what is inside a possible STRICT_LOW_PART. */
9166 mode = (GET_CODE (assign) == STRICT_LOW_PART
9167 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9169 /* Shift OTHER right POS places and make it the source, restricting it
9170 to the proper length and mode. */
9172 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9173 GET_MODE (src),
9174 other, pos),
9175 dest);
9176 src = force_to_mode (src, mode,
9177 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9178 ? ~(unsigned HOST_WIDE_INT) 0
9179 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9182 /* If SRC is masked by an AND that does not make a difference in
9183 the value being stored, strip it. */
9184 if (GET_CODE (assign) == ZERO_EXTRACT
9185 && CONST_INT_P (XEXP (assign, 1))
9186 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9187 && GET_CODE (src) == AND
9188 && CONST_INT_P (XEXP (src, 1))
9189 && UINTVAL (XEXP (src, 1))
9190 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9191 src = XEXP (src, 0);
9193 return gen_rtx_SET (VOIDmode, assign, src);
9196 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9197 if so. */
9199 static rtx
9200 apply_distributive_law (rtx x)
9202 enum rtx_code code = GET_CODE (x);
9203 enum rtx_code inner_code;
9204 rtx lhs, rhs, other;
9205 rtx tem;
9207 /* Distributivity is not true for floating point as it can change the
9208 value. So we don't do it unless -funsafe-math-optimizations. */
9209 if (FLOAT_MODE_P (GET_MODE (x))
9210 && ! flag_unsafe_math_optimizations)
9211 return x;
9213 /* The outer operation can only be one of the following: */
9214 if (code != IOR && code != AND && code != XOR
9215 && code != PLUS && code != MINUS)
9216 return x;
9218 lhs = XEXP (x, 0);
9219 rhs = XEXP (x, 1);
9221 /* If either operand is a primitive we can't do anything, so get out
9222 fast. */
9223 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9224 return x;
9226 lhs = expand_compound_operation (lhs);
9227 rhs = expand_compound_operation (rhs);
9228 inner_code = GET_CODE (lhs);
9229 if (inner_code != GET_CODE (rhs))
9230 return x;
9232 /* See if the inner and outer operations distribute. */
9233 switch (inner_code)
9235 case LSHIFTRT:
9236 case ASHIFTRT:
9237 case AND:
9238 case IOR:
9239 /* These all distribute except over PLUS. */
9240 if (code == PLUS || code == MINUS)
9241 return x;
9242 break;
9244 case MULT:
9245 if (code != PLUS && code != MINUS)
9246 return x;
9247 break;
9249 case ASHIFT:
9250 /* This is also a multiply, so it distributes over everything. */
9251 break;
9253 case SUBREG:
9254 /* Non-paradoxical SUBREGs distributes over all operations,
9255 provided the inner modes and byte offsets are the same, this
9256 is an extraction of a low-order part, we don't convert an fp
9257 operation to int or vice versa, this is not a vector mode,
9258 and we would not be converting a single-word operation into a
9259 multi-word operation. The latter test is not required, but
9260 it prevents generating unneeded multi-word operations. Some
9261 of the previous tests are redundant given the latter test,
9262 but are retained because they are required for correctness.
9264 We produce the result slightly differently in this case. */
9266 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9267 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9268 || ! subreg_lowpart_p (lhs)
9269 || (GET_MODE_CLASS (GET_MODE (lhs))
9270 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9271 || (GET_MODE_SIZE (GET_MODE (lhs))
9272 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9273 || VECTOR_MODE_P (GET_MODE (lhs))
9274 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9275 /* Result might need to be truncated. Don't change mode if
9276 explicit truncation is needed. */
9277 || !TRULY_NOOP_TRUNCATION
9278 (GET_MODE_BITSIZE (GET_MODE (x)),
9279 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9280 return x;
9282 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9283 SUBREG_REG (lhs), SUBREG_REG (rhs));
9284 return gen_lowpart (GET_MODE (x), tem);
9286 default:
9287 return x;
9290 /* Set LHS and RHS to the inner operands (A and B in the example
9291 above) and set OTHER to the common operand (C in the example).
9292 There is only one way to do this unless the inner operation is
9293 commutative. */
9294 if (COMMUTATIVE_ARITH_P (lhs)
9295 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9296 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9297 else if (COMMUTATIVE_ARITH_P (lhs)
9298 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9299 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9300 else if (COMMUTATIVE_ARITH_P (lhs)
9301 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9302 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9303 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9304 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9305 else
9306 return x;
9308 /* Form the new inner operation, seeing if it simplifies first. */
9309 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9311 /* There is one exception to the general way of distributing:
9312 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9313 if (code == XOR && inner_code == IOR)
9315 inner_code = AND;
9316 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9319 /* We may be able to continuing distributing the result, so call
9320 ourselves recursively on the inner operation before forming the
9321 outer operation, which we return. */
9322 return simplify_gen_binary (inner_code, GET_MODE (x),
9323 apply_distributive_law (tem), other);
9326 /* See if X is of the form (* (+ A B) C), and if so convert to
9327 (+ (* A C) (* B C)) and try to simplify.
9329 Most of the time, this results in no change. However, if some of
9330 the operands are the same or inverses of each other, simplifications
9331 will result.
9333 For example, (and (ior A B) (not B)) can occur as the result of
9334 expanding a bit field assignment. When we apply the distributive
9335 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9336 which then simplifies to (and (A (not B))).
9338 Note that no checks happen on the validity of applying the inverse
9339 distributive law. This is pointless since we can do it in the
9340 few places where this routine is called.
9342 N is the index of the term that is decomposed (the arithmetic operation,
9343 i.e. (+ A B) in the first example above). !N is the index of the term that
9344 is distributed, i.e. of C in the first example above. */
9345 static rtx
9346 distribute_and_simplify_rtx (rtx x, int n)
9348 enum machine_mode mode;
9349 enum rtx_code outer_code, inner_code;
9350 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9352 /* Distributivity is not true for floating point as it can change the
9353 value. So we don't do it unless -funsafe-math-optimizations. */
9354 if (FLOAT_MODE_P (GET_MODE (x))
9355 && ! flag_unsafe_math_optimizations)
9356 return NULL_RTX;
9358 decomposed = XEXP (x, n);
9359 if (!ARITHMETIC_P (decomposed))
9360 return NULL_RTX;
9362 mode = GET_MODE (x);
9363 outer_code = GET_CODE (x);
9364 distributed = XEXP (x, !n);
9366 inner_code = GET_CODE (decomposed);
9367 inner_op0 = XEXP (decomposed, 0);
9368 inner_op1 = XEXP (decomposed, 1);
9370 /* Special case (and (xor B C) (not A)), which is equivalent to
9371 (xor (ior A B) (ior A C)) */
9372 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9374 distributed = XEXP (distributed, 0);
9375 outer_code = IOR;
9378 if (n == 0)
9380 /* Distribute the second term. */
9381 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9382 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9384 else
9386 /* Distribute the first term. */
9387 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9388 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9391 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9392 new_op0, new_op1));
9393 if (GET_CODE (tmp) != outer_code
9394 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9395 < rtx_cost (x, SET, optimize_this_for_speed_p))
9396 return tmp;
9398 return NULL_RTX;
9401 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9402 in MODE. Return an equivalent form, if different from (and VAROP
9403 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9405 static rtx
9406 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9407 unsigned HOST_WIDE_INT constop)
9409 unsigned HOST_WIDE_INT nonzero;
9410 unsigned HOST_WIDE_INT orig_constop;
9411 rtx orig_varop;
9412 int i;
9414 orig_varop = varop;
9415 orig_constop = constop;
9416 if (GET_CODE (varop) == CLOBBER)
9417 return NULL_RTX;
9419 /* Simplify VAROP knowing that we will be only looking at some of the
9420 bits in it.
9422 Note by passing in CONSTOP, we guarantee that the bits not set in
9423 CONSTOP are not significant and will never be examined. We must
9424 ensure that is the case by explicitly masking out those bits
9425 before returning. */
9426 varop = force_to_mode (varop, mode, constop, 0);
9428 /* If VAROP is a CLOBBER, we will fail so return it. */
9429 if (GET_CODE (varop) == CLOBBER)
9430 return varop;
9432 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9433 to VAROP and return the new constant. */
9434 if (CONST_INT_P (varop))
9435 return gen_int_mode (INTVAL (varop) & constop, mode);
9437 /* See what bits may be nonzero in VAROP. Unlike the general case of
9438 a call to nonzero_bits, here we don't care about bits outside
9439 MODE. */
9441 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9443 /* Turn off all bits in the constant that are known to already be zero.
9444 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9445 which is tested below. */
9447 constop &= nonzero;
9449 /* If we don't have any bits left, return zero. */
9450 if (constop == 0)
9451 return const0_rtx;
9453 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9454 a power of two, we can replace this with an ASHIFT. */
9455 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9456 && (i = exact_log2 (constop)) >= 0)
9457 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9459 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9460 or XOR, then try to apply the distributive law. This may eliminate
9461 operations if either branch can be simplified because of the AND.
9462 It may also make some cases more complex, but those cases probably
9463 won't match a pattern either with or without this. */
9465 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9466 return
9467 gen_lowpart
9468 (mode,
9469 apply_distributive_law
9470 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9471 simplify_and_const_int (NULL_RTX,
9472 GET_MODE (varop),
9473 XEXP (varop, 0),
9474 constop),
9475 simplify_and_const_int (NULL_RTX,
9476 GET_MODE (varop),
9477 XEXP (varop, 1),
9478 constop))));
9480 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9481 the AND and see if one of the operands simplifies to zero. If so, we
9482 may eliminate it. */
9484 if (GET_CODE (varop) == PLUS
9485 && exact_log2 (constop + 1) >= 0)
9487 rtx o0, o1;
9489 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9490 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9491 if (o0 == const0_rtx)
9492 return o1;
9493 if (o1 == const0_rtx)
9494 return o0;
9497 /* Make a SUBREG if necessary. If we can't make it, fail. */
9498 varop = gen_lowpart (mode, varop);
9499 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9500 return NULL_RTX;
9502 /* If we are only masking insignificant bits, return VAROP. */
9503 if (constop == nonzero)
9504 return varop;
9506 if (varop == orig_varop && constop == orig_constop)
9507 return NULL_RTX;
9509 /* Otherwise, return an AND. */
9510 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9514 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9515 in MODE.
9517 Return an equivalent form, if different from X. Otherwise, return X. If
9518 X is zero, we are to always construct the equivalent form. */
9520 static rtx
9521 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9522 unsigned HOST_WIDE_INT constop)
9524 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9525 if (tem)
9526 return tem;
9528 if (!x)
9529 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9530 gen_int_mode (constop, mode));
9531 if (GET_MODE (x) != mode)
9532 x = gen_lowpart (mode, x);
9533 return x;
9536 /* Given a REG, X, compute which bits in X can be nonzero.
9537 We don't care about bits outside of those defined in MODE.
9539 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9540 a shift, AND, or zero_extract, we can do better. */
9542 static rtx
9543 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9544 const_rtx known_x ATTRIBUTE_UNUSED,
9545 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9546 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9547 unsigned HOST_WIDE_INT *nonzero)
9549 rtx tem;
9550 reg_stat_type *rsp;
9552 /* If X is a register whose nonzero bits value is current, use it.
9553 Otherwise, if X is a register whose value we can find, use that
9554 value. Otherwise, use the previously-computed global nonzero bits
9555 for this register. */
9557 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9558 if (rsp->last_set_value != 0
9559 && (rsp->last_set_mode == mode
9560 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9561 && GET_MODE_CLASS (mode) == MODE_INT))
9562 && ((rsp->last_set_label >= label_tick_ebb_start
9563 && rsp->last_set_label < label_tick)
9564 || (rsp->last_set_label == label_tick
9565 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9566 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9567 && REG_N_SETS (REGNO (x)) == 1
9568 && !REGNO_REG_SET_P
9569 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9571 *nonzero &= rsp->last_set_nonzero_bits;
9572 return NULL;
9575 tem = get_last_value (x);
9577 if (tem)
9579 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9580 /* If X is narrower than MODE and TEM is a non-negative
9581 constant that would appear negative in the mode of X,
9582 sign-extend it for use in reg_nonzero_bits because some
9583 machines (maybe most) will actually do the sign-extension
9584 and this is the conservative approach.
9586 ??? For 2.5, try to tighten up the MD files in this regard
9587 instead of this kludge. */
9589 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9590 && CONST_INT_P (tem)
9591 && INTVAL (tem) > 0
9592 && 0 != (UINTVAL (tem)
9593 & ((unsigned HOST_WIDE_INT) 1
9594 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9595 tem = GEN_INT (UINTVAL (tem)
9596 | ((unsigned HOST_WIDE_INT) (-1)
9597 << GET_MODE_BITSIZE (GET_MODE (x))));
9598 #endif
9599 return tem;
9601 else if (nonzero_sign_valid && rsp->nonzero_bits)
9603 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9605 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9606 /* We don't know anything about the upper bits. */
9607 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9608 *nonzero &= mask;
9611 return NULL;
9614 /* Return the number of bits at the high-order end of X that are known to
9615 be equal to the sign bit. X will be used in mode MODE; if MODE is
9616 VOIDmode, X will be used in its own mode. The returned value will always
9617 be between 1 and the number of bits in MODE. */
9619 static rtx
9620 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9621 const_rtx known_x ATTRIBUTE_UNUSED,
9622 enum machine_mode known_mode
9623 ATTRIBUTE_UNUSED,
9624 unsigned int known_ret ATTRIBUTE_UNUSED,
9625 unsigned int *result)
9627 rtx tem;
9628 reg_stat_type *rsp;
9630 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9631 if (rsp->last_set_value != 0
9632 && rsp->last_set_mode == mode
9633 && ((rsp->last_set_label >= label_tick_ebb_start
9634 && rsp->last_set_label < label_tick)
9635 || (rsp->last_set_label == label_tick
9636 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9637 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9638 && REG_N_SETS (REGNO (x)) == 1
9639 && !REGNO_REG_SET_P
9640 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9642 *result = rsp->last_set_sign_bit_copies;
9643 return NULL;
9646 tem = get_last_value (x);
9647 if (tem != 0)
9648 return tem;
9650 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9651 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9652 *result = rsp->sign_bit_copies;
9654 return NULL;
9657 /* Return the number of "extended" bits there are in X, when interpreted
9658 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9659 unsigned quantities, this is the number of high-order zero bits.
9660 For signed quantities, this is the number of copies of the sign bit
9661 minus 1. In both case, this function returns the number of "spare"
9662 bits. For example, if two quantities for which this function returns
9663 at least 1 are added, the addition is known not to overflow.
9665 This function will always return 0 unless called during combine, which
9666 implies that it must be called from a define_split. */
9668 unsigned int
9669 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9671 if (nonzero_sign_valid == 0)
9672 return 0;
9674 return (unsignedp
9675 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9676 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9677 - floor_log2 (nonzero_bits (x, mode)))
9678 : 0)
9679 : num_sign_bit_copies (x, mode) - 1);
9682 /* This function is called from `simplify_shift_const' to merge two
9683 outer operations. Specifically, we have already found that we need
9684 to perform operation *POP0 with constant *PCONST0 at the outermost
9685 position. We would now like to also perform OP1 with constant CONST1
9686 (with *POP0 being done last).
9688 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9689 the resulting operation. *PCOMP_P is set to 1 if we would need to
9690 complement the innermost operand, otherwise it is unchanged.
9692 MODE is the mode in which the operation will be done. No bits outside
9693 the width of this mode matter. It is assumed that the width of this mode
9694 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9696 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9697 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9698 result is simply *PCONST0.
9700 If the resulting operation cannot be expressed as one operation, we
9701 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9703 static int
9704 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9706 enum rtx_code op0 = *pop0;
9707 HOST_WIDE_INT const0 = *pconst0;
9709 const0 &= GET_MODE_MASK (mode);
9710 const1 &= GET_MODE_MASK (mode);
9712 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9713 if (op0 == AND)
9714 const1 &= const0;
9716 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9717 if OP0 is SET. */
9719 if (op1 == UNKNOWN || op0 == SET)
9720 return 1;
9722 else if (op0 == UNKNOWN)
9723 op0 = op1, const0 = const1;
9725 else if (op0 == op1)
9727 switch (op0)
9729 case AND:
9730 const0 &= const1;
9731 break;
9732 case IOR:
9733 const0 |= const1;
9734 break;
9735 case XOR:
9736 const0 ^= const1;
9737 break;
9738 case PLUS:
9739 const0 += const1;
9740 break;
9741 case NEG:
9742 op0 = UNKNOWN;
9743 break;
9744 default:
9745 break;
9749 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9750 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9751 return 0;
9753 /* If the two constants aren't the same, we can't do anything. The
9754 remaining six cases can all be done. */
9755 else if (const0 != const1)
9756 return 0;
9758 else
9759 switch (op0)
9761 case IOR:
9762 if (op1 == AND)
9763 /* (a & b) | b == b */
9764 op0 = SET;
9765 else /* op1 == XOR */
9766 /* (a ^ b) | b == a | b */
9768 break;
9770 case XOR:
9771 if (op1 == AND)
9772 /* (a & b) ^ b == (~a) & b */
9773 op0 = AND, *pcomp_p = 1;
9774 else /* op1 == IOR */
9775 /* (a | b) ^ b == a & ~b */
9776 op0 = AND, const0 = ~const0;
9777 break;
9779 case AND:
9780 if (op1 == IOR)
9781 /* (a | b) & b == b */
9782 op0 = SET;
9783 else /* op1 == XOR */
9784 /* (a ^ b) & b) == (~a) & b */
9785 *pcomp_p = 1;
9786 break;
9787 default:
9788 break;
9791 /* Check for NO-OP cases. */
9792 const0 &= GET_MODE_MASK (mode);
9793 if (const0 == 0
9794 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9795 op0 = UNKNOWN;
9796 else if (const0 == 0 && op0 == AND)
9797 op0 = SET;
9798 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9799 && op0 == AND)
9800 op0 = UNKNOWN;
9802 *pop0 = op0;
9804 /* ??? Slightly redundant with the above mask, but not entirely.
9805 Moving this above means we'd have to sign-extend the mode mask
9806 for the final test. */
9807 if (op0 != UNKNOWN && op0 != NEG)
9808 *pconst0 = trunc_int_for_mode (const0, mode);
9810 return 1;
9813 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9814 the shift in. The original shift operation CODE is performed on OP in
9815 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9816 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9817 result of the shift is subject to operation OUTER_CODE with operand
9818 OUTER_CONST. */
9820 static enum machine_mode
9821 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9822 enum machine_mode orig_mode, enum machine_mode mode,
9823 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9825 if (orig_mode == mode)
9826 return mode;
9827 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9829 /* In general we can't perform in wider mode for right shift and rotate. */
9830 switch (code)
9832 case ASHIFTRT:
9833 /* We can still widen if the bits brought in from the left are identical
9834 to the sign bit of ORIG_MODE. */
9835 if (num_sign_bit_copies (op, mode)
9836 > (unsigned) (GET_MODE_BITSIZE (mode)
9837 - GET_MODE_BITSIZE (orig_mode)))
9838 return mode;
9839 return orig_mode;
9841 case LSHIFTRT:
9842 /* Similarly here but with zero bits. */
9843 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9844 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9845 return mode;
9847 /* We can also widen if the bits brought in will be masked off. This
9848 operation is performed in ORIG_MODE. */
9849 if (outer_code == AND)
9851 int care_bits = low_bitmask_len (orig_mode, outer_const);
9853 if (care_bits >= 0
9854 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9855 return mode;
9857 /* fall through */
9859 case ROTATE:
9860 return orig_mode;
9862 case ROTATERT:
9863 gcc_unreachable ();
9865 default:
9866 return mode;
9870 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9871 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9872 simplify it. Otherwise, return a simplified value.
9874 The shift is normally computed in the widest mode we find in VAROP, as
9875 long as it isn't a different number of words than RESULT_MODE. Exceptions
9876 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9878 static rtx
9879 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9880 rtx varop, int orig_count)
9882 enum rtx_code orig_code = code;
9883 rtx orig_varop = varop;
9884 int count;
9885 enum machine_mode mode = result_mode;
9886 enum machine_mode shift_mode, tmode;
9887 unsigned int mode_words
9888 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9889 /* We form (outer_op (code varop count) (outer_const)). */
9890 enum rtx_code outer_op = UNKNOWN;
9891 HOST_WIDE_INT outer_const = 0;
9892 int complement_p = 0;
9893 rtx new_rtx, x;
9895 /* Make sure and truncate the "natural" shift on the way in. We don't
9896 want to do this inside the loop as it makes it more difficult to
9897 combine shifts. */
9898 if (SHIFT_COUNT_TRUNCATED)
9899 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9901 /* If we were given an invalid count, don't do anything except exactly
9902 what was requested. */
9904 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9905 return NULL_RTX;
9907 count = orig_count;
9909 /* Unless one of the branches of the `if' in this loop does a `continue',
9910 we will `break' the loop after the `if'. */
9912 while (count != 0)
9914 /* If we have an operand of (clobber (const_int 0)), fail. */
9915 if (GET_CODE (varop) == CLOBBER)
9916 return NULL_RTX;
9918 /* Convert ROTATERT to ROTATE. */
9919 if (code == ROTATERT)
9921 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9922 code = ROTATE;
9923 if (VECTOR_MODE_P (result_mode))
9924 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9925 else
9926 count = bitsize - count;
9929 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9930 mode, outer_op, outer_const);
9932 /* Handle cases where the count is greater than the size of the mode
9933 minus 1. For ASHIFT, use the size minus one as the count (this can
9934 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9935 take the count modulo the size. For other shifts, the result is
9936 zero.
9938 Since these shifts are being produced by the compiler by combining
9939 multiple operations, each of which are defined, we know what the
9940 result is supposed to be. */
9942 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9944 if (code == ASHIFTRT)
9945 count = GET_MODE_BITSIZE (shift_mode) - 1;
9946 else if (code == ROTATE || code == ROTATERT)
9947 count %= GET_MODE_BITSIZE (shift_mode);
9948 else
9950 /* We can't simply return zero because there may be an
9951 outer op. */
9952 varop = const0_rtx;
9953 count = 0;
9954 break;
9958 /* If we discovered we had to complement VAROP, leave. Making a NOT
9959 here would cause an infinite loop. */
9960 if (complement_p)
9961 break;
9963 /* An arithmetic right shift of a quantity known to be -1 or 0
9964 is a no-op. */
9965 if (code == ASHIFTRT
9966 && (num_sign_bit_copies (varop, shift_mode)
9967 == GET_MODE_BITSIZE (shift_mode)))
9969 count = 0;
9970 break;
9973 /* If we are doing an arithmetic right shift and discarding all but
9974 the sign bit copies, this is equivalent to doing a shift by the
9975 bitsize minus one. Convert it into that shift because it will often
9976 allow other simplifications. */
9978 if (code == ASHIFTRT
9979 && (count + num_sign_bit_copies (varop, shift_mode)
9980 >= GET_MODE_BITSIZE (shift_mode)))
9981 count = GET_MODE_BITSIZE (shift_mode) - 1;
9983 /* We simplify the tests below and elsewhere by converting
9984 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9985 `make_compound_operation' will convert it to an ASHIFTRT for
9986 those machines (such as VAX) that don't have an LSHIFTRT. */
9987 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9988 && code == ASHIFTRT
9989 && ((nonzero_bits (varop, shift_mode)
9990 & ((unsigned HOST_WIDE_INT) 1
9991 << (GET_MODE_BITSIZE (shift_mode) - 1))) == 0))
9992 code = LSHIFTRT;
9994 if (((code == LSHIFTRT
9995 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9996 && !(nonzero_bits (varop, shift_mode) >> count))
9997 || (code == ASHIFT
9998 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9999 && !((nonzero_bits (varop, shift_mode) << count)
10000 & GET_MODE_MASK (shift_mode))))
10001 && !side_effects_p (varop))
10002 varop = const0_rtx;
10004 switch (GET_CODE (varop))
10006 case SIGN_EXTEND:
10007 case ZERO_EXTEND:
10008 case SIGN_EXTRACT:
10009 case ZERO_EXTRACT:
10010 new_rtx = expand_compound_operation (varop);
10011 if (new_rtx != varop)
10013 varop = new_rtx;
10014 continue;
10016 break;
10018 case MEM:
10019 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10020 minus the width of a smaller mode, we can do this with a
10021 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10022 if ((code == ASHIFTRT || code == LSHIFTRT)
10023 && ! mode_dependent_address_p (XEXP (varop, 0))
10024 && ! MEM_VOLATILE_P (varop)
10025 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10026 MODE_INT, 1)) != BLKmode)
10028 new_rtx = adjust_address_nv (varop, tmode,
10029 BYTES_BIG_ENDIAN ? 0
10030 : count / BITS_PER_UNIT);
10032 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10033 : ZERO_EXTEND, mode, new_rtx);
10034 count = 0;
10035 continue;
10037 break;
10039 case SUBREG:
10040 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10041 the same number of words as what we've seen so far. Then store
10042 the widest mode in MODE. */
10043 if (subreg_lowpart_p (varop)
10044 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10045 > GET_MODE_SIZE (GET_MODE (varop)))
10046 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10047 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10048 == mode_words
10049 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10050 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10052 varop = SUBREG_REG (varop);
10053 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10054 mode = GET_MODE (varop);
10055 continue;
10057 break;
10059 case MULT:
10060 /* Some machines use MULT instead of ASHIFT because MULT
10061 is cheaper. But it is still better on those machines to
10062 merge two shifts into one. */
10063 if (CONST_INT_P (XEXP (varop, 1))
10064 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10066 varop
10067 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10068 XEXP (varop, 0),
10069 GEN_INT (exact_log2 (
10070 UINTVAL (XEXP (varop, 1)))));
10071 continue;
10073 break;
10075 case UDIV:
10076 /* Similar, for when divides are cheaper. */
10077 if (CONST_INT_P (XEXP (varop, 1))
10078 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10080 varop
10081 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10082 XEXP (varop, 0),
10083 GEN_INT (exact_log2 (
10084 UINTVAL (XEXP (varop, 1)))));
10085 continue;
10087 break;
10089 case ASHIFTRT:
10090 /* If we are extracting just the sign bit of an arithmetic
10091 right shift, that shift is not needed. However, the sign
10092 bit of a wider mode may be different from what would be
10093 interpreted as the sign bit in a narrower mode, so, if
10094 the result is narrower, don't discard the shift. */
10095 if (code == LSHIFTRT
10096 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10097 && (GET_MODE_BITSIZE (result_mode)
10098 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10100 varop = XEXP (varop, 0);
10101 continue;
10104 /* ... fall through ... */
10106 case LSHIFTRT:
10107 case ASHIFT:
10108 case ROTATE:
10109 /* Here we have two nested shifts. The result is usually the
10110 AND of a new shift with a mask. We compute the result below. */
10111 if (CONST_INT_P (XEXP (varop, 1))
10112 && INTVAL (XEXP (varop, 1)) >= 0
10113 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
10114 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10115 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10116 && !VECTOR_MODE_P (result_mode))
10118 enum rtx_code first_code = GET_CODE (varop);
10119 unsigned int first_count = INTVAL (XEXP (varop, 1));
10120 unsigned HOST_WIDE_INT mask;
10121 rtx mask_rtx;
10123 /* We have one common special case. We can't do any merging if
10124 the inner code is an ASHIFTRT of a smaller mode. However, if
10125 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10126 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10127 we can convert it to
10128 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
10129 This simplifies certain SIGN_EXTEND operations. */
10130 if (code == ASHIFT && first_code == ASHIFTRT
10131 && count == (GET_MODE_BITSIZE (result_mode)
10132 - GET_MODE_BITSIZE (GET_MODE (varop))))
10134 /* C3 has the low-order C1 bits zero. */
10136 mask = GET_MODE_MASK (mode)
10137 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10139 varop = simplify_and_const_int (NULL_RTX, result_mode,
10140 XEXP (varop, 0), mask);
10141 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10142 varop, count);
10143 count = first_count;
10144 code = ASHIFTRT;
10145 continue;
10148 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10149 than C1 high-order bits equal to the sign bit, we can convert
10150 this to either an ASHIFT or an ASHIFTRT depending on the
10151 two counts.
10153 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10155 if (code == ASHIFTRT && first_code == ASHIFT
10156 && GET_MODE (varop) == shift_mode
10157 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10158 > first_count))
10160 varop = XEXP (varop, 0);
10161 count -= first_count;
10162 if (count < 0)
10164 count = -count;
10165 code = ASHIFT;
10168 continue;
10171 /* There are some cases we can't do. If CODE is ASHIFTRT,
10172 we can only do this if FIRST_CODE is also ASHIFTRT.
10174 We can't do the case when CODE is ROTATE and FIRST_CODE is
10175 ASHIFTRT.
10177 If the mode of this shift is not the mode of the outer shift,
10178 we can't do this if either shift is a right shift or ROTATE.
10180 Finally, we can't do any of these if the mode is too wide
10181 unless the codes are the same.
10183 Handle the case where the shift codes are the same
10184 first. */
10186 if (code == first_code)
10188 if (GET_MODE (varop) != result_mode
10189 && (code == ASHIFTRT || code == LSHIFTRT
10190 || code == ROTATE))
10191 break;
10193 count += first_count;
10194 varop = XEXP (varop, 0);
10195 continue;
10198 if (code == ASHIFTRT
10199 || (code == ROTATE && first_code == ASHIFTRT)
10200 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10201 || (GET_MODE (varop) != result_mode
10202 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10203 || first_code == ROTATE
10204 || code == ROTATE)))
10205 break;
10207 /* To compute the mask to apply after the shift, shift the
10208 nonzero bits of the inner shift the same way the
10209 outer shift will. */
10211 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10213 mask_rtx
10214 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10215 GEN_INT (count));
10217 /* Give up if we can't compute an outer operation to use. */
10218 if (mask_rtx == 0
10219 || !CONST_INT_P (mask_rtx)
10220 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10221 INTVAL (mask_rtx),
10222 result_mode, &complement_p))
10223 break;
10225 /* If the shifts are in the same direction, we add the
10226 counts. Otherwise, we subtract them. */
10227 if ((code == ASHIFTRT || code == LSHIFTRT)
10228 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10229 count += first_count;
10230 else
10231 count -= first_count;
10233 /* If COUNT is positive, the new shift is usually CODE,
10234 except for the two exceptions below, in which case it is
10235 FIRST_CODE. If the count is negative, FIRST_CODE should
10236 always be used */
10237 if (count > 0
10238 && ((first_code == ROTATE && code == ASHIFT)
10239 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10240 code = first_code;
10241 else if (count < 0)
10242 code = first_code, count = -count;
10244 varop = XEXP (varop, 0);
10245 continue;
10248 /* If we have (A << B << C) for any shift, we can convert this to
10249 (A << C << B). This wins if A is a constant. Only try this if
10250 B is not a constant. */
10252 else if (GET_CODE (varop) == code
10253 && CONST_INT_P (XEXP (varop, 0))
10254 && !CONST_INT_P (XEXP (varop, 1)))
10256 rtx new_rtx = simplify_const_binary_operation (code, mode,
10257 XEXP (varop, 0),
10258 GEN_INT (count));
10259 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10260 count = 0;
10261 continue;
10263 break;
10265 case NOT:
10266 if (VECTOR_MODE_P (mode))
10267 break;
10269 /* Make this fit the case below. */
10270 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10271 GEN_INT (GET_MODE_MASK (mode)));
10272 continue;
10274 case IOR:
10275 case AND:
10276 case XOR:
10277 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10278 with C the size of VAROP - 1 and the shift is logical if
10279 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10280 we have an (le X 0) operation. If we have an arithmetic shift
10281 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10282 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10284 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10285 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10286 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10287 && (code == LSHIFTRT || code == ASHIFTRT)
10288 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10289 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10291 count = 0;
10292 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10293 const0_rtx);
10295 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10296 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10298 continue;
10301 /* If we have (shift (logical)), move the logical to the outside
10302 to allow it to possibly combine with another logical and the
10303 shift to combine with another shift. This also canonicalizes to
10304 what a ZERO_EXTRACT looks like. Also, some machines have
10305 (and (shift)) insns. */
10307 if (CONST_INT_P (XEXP (varop, 1))
10308 /* We can't do this if we have (ashiftrt (xor)) and the
10309 constant has its sign bit set in shift_mode. */
10310 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10311 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10312 shift_mode))
10313 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10314 XEXP (varop, 1),
10315 GEN_INT (count))) != 0
10316 && CONST_INT_P (new_rtx)
10317 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10318 INTVAL (new_rtx), result_mode, &complement_p))
10320 varop = XEXP (varop, 0);
10321 continue;
10324 /* If we can't do that, try to simplify the shift in each arm of the
10325 logical expression, make a new logical expression, and apply
10326 the inverse distributive law. This also can't be done
10327 for some (ashiftrt (xor)). */
10328 if (CONST_INT_P (XEXP (varop, 1))
10329 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10330 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10331 shift_mode)))
10333 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10334 XEXP (varop, 0), count);
10335 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10336 XEXP (varop, 1), count);
10338 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10339 lhs, rhs);
10340 varop = apply_distributive_law (varop);
10342 count = 0;
10343 continue;
10345 break;
10347 case EQ:
10348 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10349 says that the sign bit can be tested, FOO has mode MODE, C is
10350 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10351 that may be nonzero. */
10352 if (code == LSHIFTRT
10353 && XEXP (varop, 1) == const0_rtx
10354 && GET_MODE (XEXP (varop, 0)) == result_mode
10355 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10356 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10357 && STORE_FLAG_VALUE == -1
10358 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10359 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10360 &complement_p))
10362 varop = XEXP (varop, 0);
10363 count = 0;
10364 continue;
10366 break;
10368 case NEG:
10369 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10370 than the number of bits in the mode is equivalent to A. */
10371 if (code == LSHIFTRT
10372 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10373 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10375 varop = XEXP (varop, 0);
10376 count = 0;
10377 continue;
10380 /* NEG commutes with ASHIFT since it is multiplication. Move the
10381 NEG outside to allow shifts to combine. */
10382 if (code == ASHIFT
10383 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10384 &complement_p))
10386 varop = XEXP (varop, 0);
10387 continue;
10389 break;
10391 case PLUS:
10392 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10393 is one less than the number of bits in the mode is
10394 equivalent to (xor A 1). */
10395 if (code == LSHIFTRT
10396 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10397 && XEXP (varop, 1) == constm1_rtx
10398 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10399 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10400 &complement_p))
10402 count = 0;
10403 varop = XEXP (varop, 0);
10404 continue;
10407 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10408 that might be nonzero in BAR are those being shifted out and those
10409 bits are known zero in FOO, we can replace the PLUS with FOO.
10410 Similarly in the other operand order. This code occurs when
10411 we are computing the size of a variable-size array. */
10413 if ((code == ASHIFTRT || code == LSHIFTRT)
10414 && count < HOST_BITS_PER_WIDE_INT
10415 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10416 && (nonzero_bits (XEXP (varop, 1), result_mode)
10417 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10419 varop = XEXP (varop, 0);
10420 continue;
10422 else if ((code == ASHIFTRT || code == LSHIFTRT)
10423 && count < HOST_BITS_PER_WIDE_INT
10424 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10425 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10426 >> count)
10427 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10428 & nonzero_bits (XEXP (varop, 1),
10429 result_mode)))
10431 varop = XEXP (varop, 1);
10432 continue;
10435 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10436 if (code == ASHIFT
10437 && CONST_INT_P (XEXP (varop, 1))
10438 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10439 XEXP (varop, 1),
10440 GEN_INT (count))) != 0
10441 && CONST_INT_P (new_rtx)
10442 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10443 INTVAL (new_rtx), result_mode, &complement_p))
10445 varop = XEXP (varop, 0);
10446 continue;
10449 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10450 signbit', and attempt to change the PLUS to an XOR and move it to
10451 the outer operation as is done above in the AND/IOR/XOR case
10452 leg for shift(logical). See details in logical handling above
10453 for reasoning in doing so. */
10454 if (code == LSHIFTRT
10455 && CONST_INT_P (XEXP (varop, 1))
10456 && mode_signbit_p (result_mode, XEXP (varop, 1))
10457 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10458 XEXP (varop, 1),
10459 GEN_INT (count))) != 0
10460 && CONST_INT_P (new_rtx)
10461 && merge_outer_ops (&outer_op, &outer_const, XOR,
10462 INTVAL (new_rtx), result_mode, &complement_p))
10464 varop = XEXP (varop, 0);
10465 continue;
10468 break;
10470 case MINUS:
10471 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10472 with C the size of VAROP - 1 and the shift is logical if
10473 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10474 we have a (gt X 0) operation. If the shift is arithmetic with
10475 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10476 we have a (neg (gt X 0)) operation. */
10478 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10479 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10480 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10481 && (code == LSHIFTRT || code == ASHIFTRT)
10482 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10483 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10484 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10486 count = 0;
10487 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10488 const0_rtx);
10490 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10491 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10493 continue;
10495 break;
10497 case TRUNCATE:
10498 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10499 if the truncate does not affect the value. */
10500 if (code == LSHIFTRT
10501 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10502 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10503 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10504 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10505 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10507 rtx varop_inner = XEXP (varop, 0);
10509 varop_inner
10510 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10511 XEXP (varop_inner, 0),
10512 GEN_INT
10513 (count + INTVAL (XEXP (varop_inner, 1))));
10514 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10515 count = 0;
10516 continue;
10518 break;
10520 default:
10521 break;
10524 break;
10527 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10528 outer_op, outer_const);
10530 /* We have now finished analyzing the shift. The result should be
10531 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10532 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10533 to the result of the shift. OUTER_CONST is the relevant constant,
10534 but we must turn off all bits turned off in the shift. */
10536 if (outer_op == UNKNOWN
10537 && orig_code == code && orig_count == count
10538 && varop == orig_varop
10539 && shift_mode == GET_MODE (varop))
10540 return NULL_RTX;
10542 /* Make a SUBREG if necessary. If we can't make it, fail. */
10543 varop = gen_lowpart (shift_mode, varop);
10544 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10545 return NULL_RTX;
10547 /* If we have an outer operation and we just made a shift, it is
10548 possible that we could have simplified the shift were it not
10549 for the outer operation. So try to do the simplification
10550 recursively. */
10552 if (outer_op != UNKNOWN)
10553 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10554 else
10555 x = NULL_RTX;
10557 if (x == NULL_RTX)
10558 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10560 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10561 turn off all the bits that the shift would have turned off. */
10562 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10563 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10564 GET_MODE_MASK (result_mode) >> orig_count);
10566 /* Do the remainder of the processing in RESULT_MODE. */
10567 x = gen_lowpart_or_truncate (result_mode, x);
10569 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10570 operation. */
10571 if (complement_p)
10572 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10574 if (outer_op != UNKNOWN)
10576 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10577 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10578 outer_const = trunc_int_for_mode (outer_const, result_mode);
10580 if (outer_op == AND)
10581 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10582 else if (outer_op == SET)
10584 /* This means that we have determined that the result is
10585 equivalent to a constant. This should be rare. */
10586 if (!side_effects_p (x))
10587 x = GEN_INT (outer_const);
10589 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10590 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10591 else
10592 x = simplify_gen_binary (outer_op, result_mode, x,
10593 GEN_INT (outer_const));
10596 return x;
10599 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10600 The result of the shift is RESULT_MODE. If we cannot simplify it,
10601 return X or, if it is NULL, synthesize the expression with
10602 simplify_gen_binary. Otherwise, return a simplified value.
10604 The shift is normally computed in the widest mode we find in VAROP, as
10605 long as it isn't a different number of words than RESULT_MODE. Exceptions
10606 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10608 static rtx
10609 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10610 rtx varop, int count)
10612 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10613 if (tem)
10614 return tem;
10616 if (!x)
10617 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10618 if (GET_MODE (x) != result_mode)
10619 x = gen_lowpart (result_mode, x);
10620 return x;
10624 /* Like recog, but we receive the address of a pointer to a new pattern.
10625 We try to match the rtx that the pointer points to.
10626 If that fails, we may try to modify or replace the pattern,
10627 storing the replacement into the same pointer object.
10629 Modifications include deletion or addition of CLOBBERs.
10631 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10632 the CLOBBERs are placed.
10634 The value is the final insn code from the pattern ultimately matched,
10635 or -1. */
10637 static int
10638 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10640 rtx pat = *pnewpat;
10641 int insn_code_number;
10642 int num_clobbers_to_add = 0;
10643 int i;
10644 rtx notes = 0;
10645 rtx old_notes, old_pat;
10647 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10648 we use to indicate that something didn't match. If we find such a
10649 thing, force rejection. */
10650 if (GET_CODE (pat) == PARALLEL)
10651 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10652 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10653 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10654 return -1;
10656 old_pat = PATTERN (insn);
10657 old_notes = REG_NOTES (insn);
10658 PATTERN (insn) = pat;
10659 REG_NOTES (insn) = 0;
10661 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10662 if (dump_file && (dump_flags & TDF_DETAILS))
10664 if (insn_code_number < 0)
10665 fputs ("Failed to match this instruction:\n", dump_file);
10666 else
10667 fputs ("Successfully matched this instruction:\n", dump_file);
10668 print_rtl_single (dump_file, pat);
10671 /* If it isn't, there is the possibility that we previously had an insn
10672 that clobbered some register as a side effect, but the combined
10673 insn doesn't need to do that. So try once more without the clobbers
10674 unless this represents an ASM insn. */
10676 if (insn_code_number < 0 && ! check_asm_operands (pat)
10677 && GET_CODE (pat) == PARALLEL)
10679 int pos;
10681 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10682 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10684 if (i != pos)
10685 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10686 pos++;
10689 SUBST_INT (XVECLEN (pat, 0), pos);
10691 if (pos == 1)
10692 pat = XVECEXP (pat, 0, 0);
10694 PATTERN (insn) = pat;
10695 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10696 if (dump_file && (dump_flags & TDF_DETAILS))
10698 if (insn_code_number < 0)
10699 fputs ("Failed to match this instruction:\n", dump_file);
10700 else
10701 fputs ("Successfully matched this instruction:\n", dump_file);
10702 print_rtl_single (dump_file, pat);
10705 PATTERN (insn) = old_pat;
10706 REG_NOTES (insn) = old_notes;
10708 /* Recognize all noop sets, these will be killed by followup pass. */
10709 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10710 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10712 /* If we had any clobbers to add, make a new pattern than contains
10713 them. Then check to make sure that all of them are dead. */
10714 if (num_clobbers_to_add)
10716 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10717 rtvec_alloc (GET_CODE (pat) == PARALLEL
10718 ? (XVECLEN (pat, 0)
10719 + num_clobbers_to_add)
10720 : num_clobbers_to_add + 1));
10722 if (GET_CODE (pat) == PARALLEL)
10723 for (i = 0; i < XVECLEN (pat, 0); i++)
10724 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10725 else
10726 XVECEXP (newpat, 0, 0) = pat;
10728 add_clobbers (newpat, insn_code_number);
10730 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10731 i < XVECLEN (newpat, 0); i++)
10733 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10734 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10735 return -1;
10736 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10738 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10739 notes = alloc_reg_note (REG_UNUSED,
10740 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10743 pat = newpat;
10746 *pnewpat = pat;
10747 *pnotes = notes;
10749 return insn_code_number;
10752 /* Like gen_lowpart_general but for use by combine. In combine it
10753 is not possible to create any new pseudoregs. However, it is
10754 safe to create invalid memory addresses, because combine will
10755 try to recognize them and all they will do is make the combine
10756 attempt fail.
10758 If for some reason this cannot do its job, an rtx
10759 (clobber (const_int 0)) is returned.
10760 An insn containing that will not be recognized. */
10762 static rtx
10763 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10765 enum machine_mode imode = GET_MODE (x);
10766 unsigned int osize = GET_MODE_SIZE (omode);
10767 unsigned int isize = GET_MODE_SIZE (imode);
10768 rtx result;
10770 if (omode == imode)
10771 return x;
10773 /* Return identity if this is a CONST or symbolic reference. */
10774 if (omode == Pmode
10775 && (GET_CODE (x) == CONST
10776 || GET_CODE (x) == SYMBOL_REF
10777 || GET_CODE (x) == LABEL_REF))
10778 return x;
10780 /* We can only support MODE being wider than a word if X is a
10781 constant integer or has a mode the same size. */
10782 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10783 && ! ((imode == VOIDmode
10784 && (CONST_INT_P (x)
10785 || GET_CODE (x) == CONST_DOUBLE))
10786 || isize == osize))
10787 goto fail;
10789 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10790 won't know what to do. So we will strip off the SUBREG here and
10791 process normally. */
10792 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10794 x = SUBREG_REG (x);
10796 /* For use in case we fall down into the address adjustments
10797 further below, we need to adjust the known mode and size of
10798 x; imode and isize, since we just adjusted x. */
10799 imode = GET_MODE (x);
10801 if (imode == omode)
10802 return x;
10804 isize = GET_MODE_SIZE (imode);
10807 result = gen_lowpart_common (omode, x);
10809 if (result)
10810 return result;
10812 if (MEM_P (x))
10814 int offset = 0;
10816 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10817 address. */
10818 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10819 goto fail;
10821 /* If we want to refer to something bigger than the original memref,
10822 generate a paradoxical subreg instead. That will force a reload
10823 of the original memref X. */
10824 if (isize < osize)
10825 return gen_rtx_SUBREG (omode, x, 0);
10827 if (WORDS_BIG_ENDIAN)
10828 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10830 /* Adjust the address so that the address-after-the-data is
10831 unchanged. */
10832 if (BYTES_BIG_ENDIAN)
10833 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10835 return adjust_address_nv (x, omode, offset);
10838 /* If X is a comparison operator, rewrite it in a new mode. This
10839 probably won't match, but may allow further simplifications. */
10840 else if (COMPARISON_P (x))
10841 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10843 /* If we couldn't simplify X any other way, just enclose it in a
10844 SUBREG. Normally, this SUBREG won't match, but some patterns may
10845 include an explicit SUBREG or we may simplify it further in combine. */
10846 else
10848 int offset = 0;
10849 rtx res;
10851 offset = subreg_lowpart_offset (omode, imode);
10852 if (imode == VOIDmode)
10854 imode = int_mode_for_mode (omode);
10855 x = gen_lowpart_common (imode, x);
10856 if (x == NULL)
10857 goto fail;
10859 res = simplify_gen_subreg (omode, x, imode, offset);
10860 if (res)
10861 return res;
10864 fail:
10865 return gen_rtx_CLOBBER (omode, const0_rtx);
10868 /* Try to simplify a comparison between OP0 and a constant OP1,
10869 where CODE is the comparison code that will be tested, into a
10870 (CODE OP0 const0_rtx) form.
10872 The result is a possibly different comparison code to use.
10873 *POP1 may be updated. */
10875 static enum rtx_code
10876 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10878 enum machine_mode mode = GET_MODE (op0);
10879 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10880 HOST_WIDE_INT const_op = INTVAL (*pop1);
10882 /* Get the constant we are comparing against and turn off all bits
10883 not on in our mode. */
10884 if (mode != VOIDmode)
10885 const_op = trunc_int_for_mode (const_op, mode);
10887 /* If we are comparing against a constant power of two and the value
10888 being compared can only have that single bit nonzero (e.g., it was
10889 `and'ed with that bit), we can replace this with a comparison
10890 with zero. */
10891 if (const_op
10892 && (code == EQ || code == NE || code == GE || code == GEU
10893 || code == LT || code == LTU)
10894 && mode_width <= HOST_BITS_PER_WIDE_INT
10895 && exact_log2 (const_op) >= 0
10896 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10898 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10899 const_op = 0;
10902 /* Similarly, if we are comparing a value known to be either -1 or
10903 0 with -1, change it to the opposite comparison against zero. */
10904 if (const_op == -1
10905 && (code == EQ || code == NE || code == GT || code == LE
10906 || code == GEU || code == LTU)
10907 && num_sign_bit_copies (op0, mode) == mode_width)
10909 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10910 const_op = 0;
10913 /* Do some canonicalizations based on the comparison code. We prefer
10914 comparisons against zero and then prefer equality comparisons.
10915 If we can reduce the size of a constant, we will do that too. */
10916 switch (code)
10918 case LT:
10919 /* < C is equivalent to <= (C - 1) */
10920 if (const_op > 0)
10922 const_op -= 1;
10923 code = LE;
10924 /* ... fall through to LE case below. */
10926 else
10927 break;
10929 case LE:
10930 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10931 if (const_op < 0)
10933 const_op += 1;
10934 code = LT;
10937 /* If we are doing a <= 0 comparison on a value known to have
10938 a zero sign bit, we can replace this with == 0. */
10939 else if (const_op == 0
10940 && mode_width <= HOST_BITS_PER_WIDE_INT
10941 && (nonzero_bits (op0, mode)
10942 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10943 == 0)
10944 code = EQ;
10945 break;
10947 case GE:
10948 /* >= C is equivalent to > (C - 1). */
10949 if (const_op > 0)
10951 const_op -= 1;
10952 code = GT;
10953 /* ... fall through to GT below. */
10955 else
10956 break;
10958 case GT:
10959 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10960 if (const_op < 0)
10962 const_op += 1;
10963 code = GE;
10966 /* If we are doing a > 0 comparison on a value known to have
10967 a zero sign bit, we can replace this with != 0. */
10968 else if (const_op == 0
10969 && mode_width <= HOST_BITS_PER_WIDE_INT
10970 && (nonzero_bits (op0, mode)
10971 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10972 == 0)
10973 code = NE;
10974 break;
10976 case LTU:
10977 /* < C is equivalent to <= (C - 1). */
10978 if (const_op > 0)
10980 const_op -= 1;
10981 code = LEU;
10982 /* ... fall through ... */
10984 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10985 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10986 && (unsigned HOST_WIDE_INT) const_op
10987 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10989 const_op = 0;
10990 code = GE;
10991 break;
10993 else
10994 break;
10996 case LEU:
10997 /* unsigned <= 0 is equivalent to == 0 */
10998 if (const_op == 0)
10999 code = EQ;
11000 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11001 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11002 && (unsigned HOST_WIDE_INT) const_op
11003 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11005 const_op = 0;
11006 code = GE;
11008 break;
11010 case GEU:
11011 /* >= C is equivalent to > (C - 1). */
11012 if (const_op > 1)
11014 const_op -= 1;
11015 code = GTU;
11016 /* ... fall through ... */
11019 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11020 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11021 && (unsigned HOST_WIDE_INT) const_op
11022 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11024 const_op = 0;
11025 code = LT;
11026 break;
11028 else
11029 break;
11031 case GTU:
11032 /* unsigned > 0 is equivalent to != 0 */
11033 if (const_op == 0)
11034 code = NE;
11035 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11036 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11037 && (unsigned HOST_WIDE_INT) const_op
11038 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11040 const_op = 0;
11041 code = LT;
11043 break;
11045 default:
11046 break;
11049 *pop1 = GEN_INT (const_op);
11050 return code;
11053 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11054 comparison code that will be tested.
11056 The result is a possibly different comparison code to use. *POP0 and
11057 *POP1 may be updated.
11059 It is possible that we might detect that a comparison is either always
11060 true or always false. However, we do not perform general constant
11061 folding in combine, so this knowledge isn't useful. Such tautologies
11062 should have been detected earlier. Hence we ignore all such cases. */
11064 static enum rtx_code
11065 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11067 rtx op0 = *pop0;
11068 rtx op1 = *pop1;
11069 rtx tem, tem1;
11070 int i;
11071 enum machine_mode mode, tmode;
11073 /* Try a few ways of applying the same transformation to both operands. */
11074 while (1)
11076 #ifndef WORD_REGISTER_OPERATIONS
11077 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11078 so check specially. */
11079 if (code != GTU && code != GEU && code != LTU && code != LEU
11080 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11081 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11082 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11083 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11084 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11085 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11086 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11087 && CONST_INT_P (XEXP (op0, 1))
11088 && XEXP (op0, 1) == XEXP (op1, 1)
11089 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11090 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11091 && (INTVAL (XEXP (op0, 1))
11092 == (GET_MODE_BITSIZE (GET_MODE (op0))
11093 - (GET_MODE_BITSIZE
11094 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11096 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11097 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11099 #endif
11101 /* If both operands are the same constant shift, see if we can ignore the
11102 shift. We can if the shift is a rotate or if the bits shifted out of
11103 this shift are known to be zero for both inputs and if the type of
11104 comparison is compatible with the shift. */
11105 if (GET_CODE (op0) == GET_CODE (op1)
11106 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11107 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11108 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11109 && (code != GT && code != LT && code != GE && code != LE))
11110 || (GET_CODE (op0) == ASHIFTRT
11111 && (code != GTU && code != LTU
11112 && code != GEU && code != LEU)))
11113 && CONST_INT_P (XEXP (op0, 1))
11114 && INTVAL (XEXP (op0, 1)) >= 0
11115 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11116 && XEXP (op0, 1) == XEXP (op1, 1))
11118 enum machine_mode mode = GET_MODE (op0);
11119 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11120 int shift_count = INTVAL (XEXP (op0, 1));
11122 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11123 mask &= (mask >> shift_count) << shift_count;
11124 else if (GET_CODE (op0) == ASHIFT)
11125 mask = (mask & (mask << shift_count)) >> shift_count;
11127 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11128 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11129 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11130 else
11131 break;
11134 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11135 SUBREGs are of the same mode, and, in both cases, the AND would
11136 be redundant if the comparison was done in the narrower mode,
11137 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11138 and the operand's possibly nonzero bits are 0xffffff01; in that case
11139 if we only care about QImode, we don't need the AND). This case
11140 occurs if the output mode of an scc insn is not SImode and
11141 STORE_FLAG_VALUE == 1 (e.g., the 386).
11143 Similarly, check for a case where the AND's are ZERO_EXTEND
11144 operations from some narrower mode even though a SUBREG is not
11145 present. */
11147 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11148 && CONST_INT_P (XEXP (op0, 1))
11149 && CONST_INT_P (XEXP (op1, 1)))
11151 rtx inner_op0 = XEXP (op0, 0);
11152 rtx inner_op1 = XEXP (op1, 0);
11153 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11154 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11155 int changed = 0;
11157 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
11158 && (GET_MODE_SIZE (GET_MODE (inner_op0))
11159 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
11160 && (GET_MODE (SUBREG_REG (inner_op0))
11161 == GET_MODE (SUBREG_REG (inner_op1)))
11162 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
11163 <= HOST_BITS_PER_WIDE_INT)
11164 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11165 GET_MODE (SUBREG_REG (inner_op0)))))
11166 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11167 GET_MODE (SUBREG_REG (inner_op1))))))
11169 op0 = SUBREG_REG (inner_op0);
11170 op1 = SUBREG_REG (inner_op1);
11172 /* The resulting comparison is always unsigned since we masked
11173 off the original sign bit. */
11174 code = unsigned_condition (code);
11176 changed = 1;
11179 else if (c0 == c1)
11180 for (tmode = GET_CLASS_NARROWEST_MODE
11181 (GET_MODE_CLASS (GET_MODE (op0)));
11182 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11183 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11185 op0 = gen_lowpart (tmode, inner_op0);
11186 op1 = gen_lowpart (tmode, inner_op1);
11187 code = unsigned_condition (code);
11188 changed = 1;
11189 break;
11192 if (! changed)
11193 break;
11196 /* If both operands are NOT, we can strip off the outer operation
11197 and adjust the comparison code for swapped operands; similarly for
11198 NEG, except that this must be an equality comparison. */
11199 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11200 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11201 && (code == EQ || code == NE)))
11202 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11204 else
11205 break;
11208 /* If the first operand is a constant, swap the operands and adjust the
11209 comparison code appropriately, but don't do this if the second operand
11210 is already a constant integer. */
11211 if (swap_commutative_operands_p (op0, op1))
11213 tem = op0, op0 = op1, op1 = tem;
11214 code = swap_condition (code);
11217 /* We now enter a loop during which we will try to simplify the comparison.
11218 For the most part, we only are concerned with comparisons with zero,
11219 but some things may really be comparisons with zero but not start
11220 out looking that way. */
11222 while (CONST_INT_P (op1))
11224 enum machine_mode mode = GET_MODE (op0);
11225 unsigned int mode_width = GET_MODE_BITSIZE (mode);
11226 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11227 int equality_comparison_p;
11228 int sign_bit_comparison_p;
11229 int unsigned_comparison_p;
11230 HOST_WIDE_INT const_op;
11232 /* We only want to handle integral modes. This catches VOIDmode,
11233 CCmode, and the floating-point modes. An exception is that we
11234 can handle VOIDmode if OP0 is a COMPARE or a comparison
11235 operation. */
11237 if (GET_MODE_CLASS (mode) != MODE_INT
11238 && ! (mode == VOIDmode
11239 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11240 break;
11242 /* Try to simplify the compare to constant, possibly changing the
11243 comparison op, and/or changing op1 to zero. */
11244 code = simplify_compare_const (code, op0, &op1);
11245 const_op = INTVAL (op1);
11247 /* Compute some predicates to simplify code below. */
11249 equality_comparison_p = (code == EQ || code == NE);
11250 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11251 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11252 || code == GEU);
11254 /* If this is a sign bit comparison and we can do arithmetic in
11255 MODE, say that we will only be needing the sign bit of OP0. */
11256 if (sign_bit_comparison_p
11257 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11258 op0 = force_to_mode (op0, mode,
11259 (unsigned HOST_WIDE_INT) 1
11260 << (GET_MODE_BITSIZE (mode) - 1),
11263 /* Now try cases based on the opcode of OP0. If none of the cases
11264 does a "continue", we exit this loop immediately after the
11265 switch. */
11267 switch (GET_CODE (op0))
11269 case ZERO_EXTRACT:
11270 /* If we are extracting a single bit from a variable position in
11271 a constant that has only a single bit set and are comparing it
11272 with zero, we can convert this into an equality comparison
11273 between the position and the location of the single bit. */
11274 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11275 have already reduced the shift count modulo the word size. */
11276 if (!SHIFT_COUNT_TRUNCATED
11277 && CONST_INT_P (XEXP (op0, 0))
11278 && XEXP (op0, 1) == const1_rtx
11279 && equality_comparison_p && const_op == 0
11280 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11282 if (BITS_BIG_ENDIAN)
11284 enum machine_mode new_mode
11285 = mode_for_extraction (EP_extzv, 1);
11286 if (new_mode == MAX_MACHINE_MODE)
11287 i = BITS_PER_WORD - 1 - i;
11288 else
11290 mode = new_mode;
11291 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11295 op0 = XEXP (op0, 2);
11296 op1 = GEN_INT (i);
11297 const_op = i;
11299 /* Result is nonzero iff shift count is equal to I. */
11300 code = reverse_condition (code);
11301 continue;
11304 /* ... fall through ... */
11306 case SIGN_EXTRACT:
11307 tem = expand_compound_operation (op0);
11308 if (tem != op0)
11310 op0 = tem;
11311 continue;
11313 break;
11315 case NOT:
11316 /* If testing for equality, we can take the NOT of the constant. */
11317 if (equality_comparison_p
11318 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11320 op0 = XEXP (op0, 0);
11321 op1 = tem;
11322 continue;
11325 /* If just looking at the sign bit, reverse the sense of the
11326 comparison. */
11327 if (sign_bit_comparison_p)
11329 op0 = XEXP (op0, 0);
11330 code = (code == GE ? LT : GE);
11331 continue;
11333 break;
11335 case NEG:
11336 /* If testing for equality, we can take the NEG of the constant. */
11337 if (equality_comparison_p
11338 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11340 op0 = XEXP (op0, 0);
11341 op1 = tem;
11342 continue;
11345 /* The remaining cases only apply to comparisons with zero. */
11346 if (const_op != 0)
11347 break;
11349 /* When X is ABS or is known positive,
11350 (neg X) is < 0 if and only if X != 0. */
11352 if (sign_bit_comparison_p
11353 && (GET_CODE (XEXP (op0, 0)) == ABS
11354 || (mode_width <= HOST_BITS_PER_WIDE_INT
11355 && (nonzero_bits (XEXP (op0, 0), mode)
11356 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11357 == 0)))
11359 op0 = XEXP (op0, 0);
11360 code = (code == LT ? NE : EQ);
11361 continue;
11364 /* If we have NEG of something whose two high-order bits are the
11365 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11366 if (num_sign_bit_copies (op0, mode) >= 2)
11368 op0 = XEXP (op0, 0);
11369 code = swap_condition (code);
11370 continue;
11372 break;
11374 case ROTATE:
11375 /* If we are testing equality and our count is a constant, we
11376 can perform the inverse operation on our RHS. */
11377 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11378 && (tem = simplify_binary_operation (ROTATERT, mode,
11379 op1, XEXP (op0, 1))) != 0)
11381 op0 = XEXP (op0, 0);
11382 op1 = tem;
11383 continue;
11386 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11387 a particular bit. Convert it to an AND of a constant of that
11388 bit. This will be converted into a ZERO_EXTRACT. */
11389 if (const_op == 0 && sign_bit_comparison_p
11390 && CONST_INT_P (XEXP (op0, 1))
11391 && mode_width <= HOST_BITS_PER_WIDE_INT)
11393 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11394 ((unsigned HOST_WIDE_INT) 1
11395 << (mode_width - 1
11396 - INTVAL (XEXP (op0, 1)))));
11397 code = (code == LT ? NE : EQ);
11398 continue;
11401 /* Fall through. */
11403 case ABS:
11404 /* ABS is ignorable inside an equality comparison with zero. */
11405 if (const_op == 0 && equality_comparison_p)
11407 op0 = XEXP (op0, 0);
11408 continue;
11410 break;
11412 case SIGN_EXTEND:
11413 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11414 (compare FOO CONST) if CONST fits in FOO's mode and we
11415 are either testing inequality or have an unsigned
11416 comparison with ZERO_EXTEND or a signed comparison with
11417 SIGN_EXTEND. But don't do it if we don't have a compare
11418 insn of the given mode, since we'd have to revert it
11419 later on, and then we wouldn't know whether to sign- or
11420 zero-extend. */
11421 mode = GET_MODE (XEXP (op0, 0));
11422 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11423 && ! unsigned_comparison_p
11424 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11425 && ((unsigned HOST_WIDE_INT) const_op
11426 < (((unsigned HOST_WIDE_INT) 1
11427 << (GET_MODE_BITSIZE (mode) - 1))))
11428 && have_insn_for (COMPARE, mode))
11430 op0 = XEXP (op0, 0);
11431 continue;
11433 break;
11435 case SUBREG:
11436 /* Check for the case where we are comparing A - C1 with C2, that is
11438 (subreg:MODE (plus (A) (-C1))) op (C2)
11440 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11441 comparison in the wider mode. One of the following two conditions
11442 must be true in order for this to be valid:
11444 1. The mode extension results in the same bit pattern being added
11445 on both sides and the comparison is equality or unsigned. As
11446 C2 has been truncated to fit in MODE, the pattern can only be
11447 all 0s or all 1s.
11449 2. The mode extension results in the sign bit being copied on
11450 each side.
11452 The difficulty here is that we have predicates for A but not for
11453 (A - C1) so we need to check that C1 is within proper bounds so
11454 as to perturbate A as little as possible. */
11456 if (mode_width <= HOST_BITS_PER_WIDE_INT
11457 && subreg_lowpart_p (op0)
11458 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11459 && GET_CODE (SUBREG_REG (op0)) == PLUS
11460 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11462 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11463 rtx a = XEXP (SUBREG_REG (op0), 0);
11464 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11466 if ((c1 > 0
11467 && (unsigned HOST_WIDE_INT) c1
11468 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11469 && (equality_comparison_p || unsigned_comparison_p)
11470 /* (A - C1) zero-extends if it is positive and sign-extends
11471 if it is negative, C2 both zero- and sign-extends. */
11472 && ((0 == (nonzero_bits (a, inner_mode)
11473 & ~GET_MODE_MASK (mode))
11474 && const_op >= 0)
11475 /* (A - C1) sign-extends if it is positive and 1-extends
11476 if it is negative, C2 both sign- and 1-extends. */
11477 || (num_sign_bit_copies (a, inner_mode)
11478 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11479 - mode_width)
11480 && const_op < 0)))
11481 || ((unsigned HOST_WIDE_INT) c1
11482 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11483 /* (A - C1) always sign-extends, like C2. */
11484 && num_sign_bit_copies (a, inner_mode)
11485 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11486 - (mode_width - 1))))
11488 op0 = SUBREG_REG (op0);
11489 continue;
11493 /* If the inner mode is narrower and we are extracting the low part,
11494 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11495 if (subreg_lowpart_p (op0)
11496 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11497 /* Fall through */ ;
11498 else
11499 break;
11501 /* ... fall through ... */
11503 case ZERO_EXTEND:
11504 mode = GET_MODE (XEXP (op0, 0));
11505 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11506 && (unsigned_comparison_p || equality_comparison_p)
11507 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11508 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11509 && have_insn_for (COMPARE, mode))
11511 op0 = XEXP (op0, 0);
11512 continue;
11514 break;
11516 case PLUS:
11517 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11518 this for equality comparisons due to pathological cases involving
11519 overflows. */
11520 if (equality_comparison_p
11521 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11522 op1, XEXP (op0, 1))))
11524 op0 = XEXP (op0, 0);
11525 op1 = tem;
11526 continue;
11529 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11530 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11531 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11533 op0 = XEXP (XEXP (op0, 0), 0);
11534 code = (code == LT ? EQ : NE);
11535 continue;
11537 break;
11539 case MINUS:
11540 /* We used to optimize signed comparisons against zero, but that
11541 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11542 arrive here as equality comparisons, or (GEU, LTU) are
11543 optimized away. No need to special-case them. */
11545 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11546 (eq B (minus A C)), whichever simplifies. We can only do
11547 this for equality comparisons due to pathological cases involving
11548 overflows. */
11549 if (equality_comparison_p
11550 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11551 XEXP (op0, 1), op1)))
11553 op0 = XEXP (op0, 0);
11554 op1 = tem;
11555 continue;
11558 if (equality_comparison_p
11559 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11560 XEXP (op0, 0), op1)))
11562 op0 = XEXP (op0, 1);
11563 op1 = tem;
11564 continue;
11567 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11568 of bits in X minus 1, is one iff X > 0. */
11569 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11570 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11571 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11572 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11574 op0 = XEXP (op0, 1);
11575 code = (code == GE ? LE : GT);
11576 continue;
11578 break;
11580 case XOR:
11581 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11582 if C is zero or B is a constant. */
11583 if (equality_comparison_p
11584 && 0 != (tem = simplify_binary_operation (XOR, mode,
11585 XEXP (op0, 1), op1)))
11587 op0 = XEXP (op0, 0);
11588 op1 = tem;
11589 continue;
11591 break;
11593 case EQ: case NE:
11594 case UNEQ: case LTGT:
11595 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11596 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11597 case UNORDERED: case ORDERED:
11598 /* We can't do anything if OP0 is a condition code value, rather
11599 than an actual data value. */
11600 if (const_op != 0
11601 || CC0_P (XEXP (op0, 0))
11602 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11603 break;
11605 /* Get the two operands being compared. */
11606 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11607 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11608 else
11609 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11611 /* Check for the cases where we simply want the result of the
11612 earlier test or the opposite of that result. */
11613 if (code == NE || code == EQ
11614 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11615 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11616 && (STORE_FLAG_VALUE
11617 & (((unsigned HOST_WIDE_INT) 1
11618 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11619 && (code == LT || code == GE)))
11621 enum rtx_code new_code;
11622 if (code == LT || code == NE)
11623 new_code = GET_CODE (op0);
11624 else
11625 new_code = reversed_comparison_code (op0, NULL);
11627 if (new_code != UNKNOWN)
11629 code = new_code;
11630 op0 = tem;
11631 op1 = tem1;
11632 continue;
11635 break;
11637 case IOR:
11638 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11639 iff X <= 0. */
11640 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11641 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11642 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11644 op0 = XEXP (op0, 1);
11645 code = (code == GE ? GT : LE);
11646 continue;
11648 break;
11650 case AND:
11651 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11652 will be converted to a ZERO_EXTRACT later. */
11653 if (const_op == 0 && equality_comparison_p
11654 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11655 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11657 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11658 XEXP (XEXP (op0, 0), 1));
11659 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11660 continue;
11663 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11664 zero and X is a comparison and C1 and C2 describe only bits set
11665 in STORE_FLAG_VALUE, we can compare with X. */
11666 if (const_op == 0 && equality_comparison_p
11667 && mode_width <= HOST_BITS_PER_WIDE_INT
11668 && CONST_INT_P (XEXP (op0, 1))
11669 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11670 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11671 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11672 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11674 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11675 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11676 if ((~STORE_FLAG_VALUE & mask) == 0
11677 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11678 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11679 && COMPARISON_P (tem))))
11681 op0 = XEXP (XEXP (op0, 0), 0);
11682 continue;
11686 /* If we are doing an equality comparison of an AND of a bit equal
11687 to the sign bit, replace this with a LT or GE comparison of
11688 the underlying value. */
11689 if (equality_comparison_p
11690 && const_op == 0
11691 && CONST_INT_P (XEXP (op0, 1))
11692 && mode_width <= HOST_BITS_PER_WIDE_INT
11693 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11694 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11696 op0 = XEXP (op0, 0);
11697 code = (code == EQ ? GE : LT);
11698 continue;
11701 /* If this AND operation is really a ZERO_EXTEND from a narrower
11702 mode, the constant fits within that mode, and this is either an
11703 equality or unsigned comparison, try to do this comparison in
11704 the narrower mode.
11706 Note that in:
11708 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11709 -> (ne:DI (reg:SI 4) (const_int 0))
11711 unless TRULY_NOOP_TRUNCATION allows it or the register is
11712 known to hold a value of the required mode the
11713 transformation is invalid. */
11714 if ((equality_comparison_p || unsigned_comparison_p)
11715 && CONST_INT_P (XEXP (op0, 1))
11716 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11717 & GET_MODE_MASK (mode))
11718 + 1)) >= 0
11719 && const_op >> i == 0
11720 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11721 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11722 GET_MODE_BITSIZE (GET_MODE (op0)))
11723 || (REG_P (XEXP (op0, 0))
11724 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11726 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11727 continue;
11730 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11731 fits in both M1 and M2 and the SUBREG is either paradoxical
11732 or represents the low part, permute the SUBREG and the AND
11733 and try again. */
11734 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11736 unsigned HOST_WIDE_INT c1;
11737 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11738 /* Require an integral mode, to avoid creating something like
11739 (AND:SF ...). */
11740 if (SCALAR_INT_MODE_P (tmode)
11741 /* It is unsafe to commute the AND into the SUBREG if the
11742 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11743 not defined. As originally written the upper bits
11744 have a defined value due to the AND operation.
11745 However, if we commute the AND inside the SUBREG then
11746 they no longer have defined values and the meaning of
11747 the code has been changed. */
11748 && (0
11749 #ifdef WORD_REGISTER_OPERATIONS
11750 || (mode_width > GET_MODE_BITSIZE (tmode)
11751 && mode_width <= BITS_PER_WORD)
11752 #endif
11753 || (mode_width <= GET_MODE_BITSIZE (tmode)
11754 && subreg_lowpart_p (XEXP (op0, 0))))
11755 && CONST_INT_P (XEXP (op0, 1))
11756 && mode_width <= HOST_BITS_PER_WIDE_INT
11757 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11758 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11759 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11760 && c1 != mask
11761 && c1 != GET_MODE_MASK (tmode))
11763 op0 = simplify_gen_binary (AND, tmode,
11764 SUBREG_REG (XEXP (op0, 0)),
11765 gen_int_mode (c1, tmode));
11766 op0 = gen_lowpart (mode, op0);
11767 continue;
11771 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11772 if (const_op == 0 && equality_comparison_p
11773 && XEXP (op0, 1) == const1_rtx
11774 && GET_CODE (XEXP (op0, 0)) == NOT)
11776 op0 = simplify_and_const_int (NULL_RTX, mode,
11777 XEXP (XEXP (op0, 0), 0), 1);
11778 code = (code == NE ? EQ : NE);
11779 continue;
11782 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11783 (eq (and (lshiftrt X) 1) 0).
11784 Also handle the case where (not X) is expressed using xor. */
11785 if (const_op == 0 && equality_comparison_p
11786 && XEXP (op0, 1) == const1_rtx
11787 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11789 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11790 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11792 if (GET_CODE (shift_op) == NOT
11793 || (GET_CODE (shift_op) == XOR
11794 && CONST_INT_P (XEXP (shift_op, 1))
11795 && CONST_INT_P (shift_count)
11796 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11797 && (UINTVAL (XEXP (shift_op, 1))
11798 == (unsigned HOST_WIDE_INT) 1
11799 << INTVAL (shift_count))))
11802 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11803 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11804 code = (code == NE ? EQ : NE);
11805 continue;
11808 break;
11810 case ASHIFT:
11811 /* If we have (compare (ashift FOO N) (const_int C)) and
11812 the high order N bits of FOO (N+1 if an inequality comparison)
11813 are known to be zero, we can do this by comparing FOO with C
11814 shifted right N bits so long as the low-order N bits of C are
11815 zero. */
11816 if (CONST_INT_P (XEXP (op0, 1))
11817 && INTVAL (XEXP (op0, 1)) >= 0
11818 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11819 < HOST_BITS_PER_WIDE_INT)
11820 && (((unsigned HOST_WIDE_INT) const_op
11821 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11822 - 1)) == 0)
11823 && mode_width <= HOST_BITS_PER_WIDE_INT
11824 && (nonzero_bits (XEXP (op0, 0), mode)
11825 & ~(mask >> (INTVAL (XEXP (op0, 1))
11826 + ! equality_comparison_p))) == 0)
11828 /* We must perform a logical shift, not an arithmetic one,
11829 as we want the top N bits of C to be zero. */
11830 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11832 temp >>= INTVAL (XEXP (op0, 1));
11833 op1 = gen_int_mode (temp, mode);
11834 op0 = XEXP (op0, 0);
11835 continue;
11838 /* If we are doing a sign bit comparison, it means we are testing
11839 a particular bit. Convert it to the appropriate AND. */
11840 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11841 && mode_width <= HOST_BITS_PER_WIDE_INT)
11843 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11844 ((unsigned HOST_WIDE_INT) 1
11845 << (mode_width - 1
11846 - INTVAL (XEXP (op0, 1)))));
11847 code = (code == LT ? NE : EQ);
11848 continue;
11851 /* If this an equality comparison with zero and we are shifting
11852 the low bit to the sign bit, we can convert this to an AND of the
11853 low-order bit. */
11854 if (const_op == 0 && equality_comparison_p
11855 && CONST_INT_P (XEXP (op0, 1))
11856 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11858 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11859 continue;
11861 break;
11863 case ASHIFTRT:
11864 /* If this is an equality comparison with zero, we can do this
11865 as a logical shift, which might be much simpler. */
11866 if (equality_comparison_p && const_op == 0
11867 && CONST_INT_P (XEXP (op0, 1)))
11869 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11870 XEXP (op0, 0),
11871 INTVAL (XEXP (op0, 1)));
11872 continue;
11875 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11876 do the comparison in a narrower mode. */
11877 if (! unsigned_comparison_p
11878 && CONST_INT_P (XEXP (op0, 1))
11879 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11880 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11881 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11882 MODE_INT, 1)) != BLKmode
11883 && (((unsigned HOST_WIDE_INT) const_op
11884 + (GET_MODE_MASK (tmode) >> 1) + 1)
11885 <= GET_MODE_MASK (tmode)))
11887 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11888 continue;
11891 /* Likewise if OP0 is a PLUS of a sign extension with a
11892 constant, which is usually represented with the PLUS
11893 between the shifts. */
11894 if (! unsigned_comparison_p
11895 && CONST_INT_P (XEXP (op0, 1))
11896 && GET_CODE (XEXP (op0, 0)) == PLUS
11897 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11898 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11899 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11900 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11901 MODE_INT, 1)) != BLKmode
11902 && (((unsigned HOST_WIDE_INT) const_op
11903 + (GET_MODE_MASK (tmode) >> 1) + 1)
11904 <= GET_MODE_MASK (tmode)))
11906 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11907 rtx add_const = XEXP (XEXP (op0, 0), 1);
11908 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11909 add_const, XEXP (op0, 1));
11911 op0 = simplify_gen_binary (PLUS, tmode,
11912 gen_lowpart (tmode, inner),
11913 new_const);
11914 continue;
11917 /* ... fall through ... */
11918 case LSHIFTRT:
11919 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11920 the low order N bits of FOO are known to be zero, we can do this
11921 by comparing FOO with C shifted left N bits so long as no
11922 overflow occurs. Even if the low order N bits of FOO aren't known
11923 to be zero, if the comparison is >= or < we can use the same
11924 optimization and for > or <= by setting all the low
11925 order N bits in the comparison constant. */
11926 if (CONST_INT_P (XEXP (op0, 1))
11927 && INTVAL (XEXP (op0, 1)) > 0
11928 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11929 && mode_width <= HOST_BITS_PER_WIDE_INT
11930 && (((unsigned HOST_WIDE_INT) const_op
11931 + (GET_CODE (op0) != LSHIFTRT
11932 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11933 + 1)
11934 : 0))
11935 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11937 unsigned HOST_WIDE_INT low_bits
11938 = (nonzero_bits (XEXP (op0, 0), mode)
11939 & (((unsigned HOST_WIDE_INT) 1
11940 << INTVAL (XEXP (op0, 1))) - 1));
11941 if (low_bits == 0 || !equality_comparison_p)
11943 /* If the shift was logical, then we must make the condition
11944 unsigned. */
11945 if (GET_CODE (op0) == LSHIFTRT)
11946 code = unsigned_condition (code);
11948 const_op <<= INTVAL (XEXP (op0, 1));
11949 if (low_bits != 0
11950 && (code == GT || code == GTU
11951 || code == LE || code == LEU))
11952 const_op
11953 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11954 op1 = GEN_INT (const_op);
11955 op0 = XEXP (op0, 0);
11956 continue;
11960 /* If we are using this shift to extract just the sign bit, we
11961 can replace this with an LT or GE comparison. */
11962 if (const_op == 0
11963 && (equality_comparison_p || sign_bit_comparison_p)
11964 && CONST_INT_P (XEXP (op0, 1))
11965 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11967 op0 = XEXP (op0, 0);
11968 code = (code == NE || code == GT ? LT : GE);
11969 continue;
11971 break;
11973 default:
11974 break;
11977 break;
11980 /* Now make any compound operations involved in this comparison. Then,
11981 check for an outmost SUBREG on OP0 that is not doing anything or is
11982 paradoxical. The latter transformation must only be performed when
11983 it is known that the "extra" bits will be the same in op0 and op1 or
11984 that they don't matter. There are three cases to consider:
11986 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11987 care bits and we can assume they have any convenient value. So
11988 making the transformation is safe.
11990 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11991 In this case the upper bits of op0 are undefined. We should not make
11992 the simplification in that case as we do not know the contents of
11993 those bits.
11995 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11996 UNKNOWN. In that case we know those bits are zeros or ones. We must
11997 also be sure that they are the same as the upper bits of op1.
11999 We can never remove a SUBREG for a non-equality comparison because
12000 the sign bit is in a different place in the underlying object. */
12002 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12003 op1 = make_compound_operation (op1, SET);
12005 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12006 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12007 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12008 && (code == NE || code == EQ))
12010 if (GET_MODE_SIZE (GET_MODE (op0))
12011 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
12013 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12014 implemented. */
12015 if (REG_P (SUBREG_REG (op0)))
12017 op0 = SUBREG_REG (op0);
12018 op1 = gen_lowpart (GET_MODE (op0), op1);
12021 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
12022 <= HOST_BITS_PER_WIDE_INT)
12023 && (nonzero_bits (SUBREG_REG (op0),
12024 GET_MODE (SUBREG_REG (op0)))
12025 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12027 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12029 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12030 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12031 op0 = SUBREG_REG (op0), op1 = tem;
12035 /* We now do the opposite procedure: Some machines don't have compare
12036 insns in all modes. If OP0's mode is an integer mode smaller than a
12037 word and we can't do a compare in that mode, see if there is a larger
12038 mode for which we can do the compare. There are a number of cases in
12039 which we can use the wider mode. */
12041 mode = GET_MODE (op0);
12042 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12043 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12044 && ! have_insn_for (COMPARE, mode))
12045 for (tmode = GET_MODE_WIDER_MODE (mode);
12046 (tmode != VOIDmode
12047 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
12048 tmode = GET_MODE_WIDER_MODE (tmode))
12049 if (have_insn_for (COMPARE, tmode))
12051 int zero_extended;
12053 /* If this is a test for negative, we can make an explicit
12054 test of the sign bit. Test this first so we can use
12055 a paradoxical subreg to extend OP0. */
12057 if (op1 == const0_rtx && (code == LT || code == GE)
12058 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12060 op0 = simplify_gen_binary (AND, tmode,
12061 gen_lowpart (tmode, op0),
12062 GEN_INT ((unsigned HOST_WIDE_INT) 1
12063 << (GET_MODE_BITSIZE (mode)
12064 - 1)));
12065 code = (code == LT) ? NE : EQ;
12066 break;
12069 /* If the only nonzero bits in OP0 and OP1 are those in the
12070 narrower mode and this is an equality or unsigned comparison,
12071 we can use the wider mode. Similarly for sign-extended
12072 values, in which case it is true for all comparisons. */
12073 zero_extended = ((code == EQ || code == NE
12074 || code == GEU || code == GTU
12075 || code == LEU || code == LTU)
12076 && (nonzero_bits (op0, tmode)
12077 & ~GET_MODE_MASK (mode)) == 0
12078 && ((CONST_INT_P (op1)
12079 || (nonzero_bits (op1, tmode)
12080 & ~GET_MODE_MASK (mode)) == 0)));
12082 if (zero_extended
12083 || ((num_sign_bit_copies (op0, tmode)
12084 > (unsigned int) (GET_MODE_BITSIZE (tmode)
12085 - GET_MODE_BITSIZE (mode)))
12086 && (num_sign_bit_copies (op1, tmode)
12087 > (unsigned int) (GET_MODE_BITSIZE (tmode)
12088 - GET_MODE_BITSIZE (mode)))))
12090 /* If OP0 is an AND and we don't have an AND in MODE either,
12091 make a new AND in the proper mode. */
12092 if (GET_CODE (op0) == AND
12093 && !have_insn_for (AND, mode))
12094 op0 = simplify_gen_binary (AND, tmode,
12095 gen_lowpart (tmode,
12096 XEXP (op0, 0)),
12097 gen_lowpart (tmode,
12098 XEXP (op0, 1)));
12099 else
12101 if (zero_extended)
12103 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12104 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12106 else
12108 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12109 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12111 break;
12116 #ifdef CANONICALIZE_COMPARISON
12117 /* If this machine only supports a subset of valid comparisons, see if we
12118 can convert an unsupported one into a supported one. */
12119 CANONICALIZE_COMPARISON (code, op0, op1);
12120 #endif
12122 *pop0 = op0;
12123 *pop1 = op1;
12125 return code;
12128 /* Utility function for record_value_for_reg. Count number of
12129 rtxs in X. */
12130 static int
12131 count_rtxs (rtx x)
12133 enum rtx_code code = GET_CODE (x);
12134 const char *fmt;
12135 int i, j, ret = 1;
12137 if (GET_RTX_CLASS (code) == '2'
12138 || GET_RTX_CLASS (code) == 'c')
12140 rtx x0 = XEXP (x, 0);
12141 rtx x1 = XEXP (x, 1);
12143 if (x0 == x1)
12144 return 1 + 2 * count_rtxs (x0);
12146 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12147 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12148 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12149 return 2 + 2 * count_rtxs (x0)
12150 + count_rtxs (x == XEXP (x1, 0)
12151 ? XEXP (x1, 1) : XEXP (x1, 0));
12153 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12154 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12155 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12156 return 2 + 2 * count_rtxs (x1)
12157 + count_rtxs (x == XEXP (x0, 0)
12158 ? XEXP (x0, 1) : XEXP (x0, 0));
12161 fmt = GET_RTX_FORMAT (code);
12162 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12163 if (fmt[i] == 'e')
12164 ret += count_rtxs (XEXP (x, i));
12165 else if (fmt[i] == 'E')
12166 for (j = 0; j < XVECLEN (x, i); j++)
12167 ret += count_rtxs (XVECEXP (x, i, j));
12169 return ret;
12172 /* Utility function for following routine. Called when X is part of a value
12173 being stored into last_set_value. Sets last_set_table_tick
12174 for each register mentioned. Similar to mention_regs in cse.c */
12176 static void
12177 update_table_tick (rtx x)
12179 enum rtx_code code = GET_CODE (x);
12180 const char *fmt = GET_RTX_FORMAT (code);
12181 int i, j;
12183 if (code == REG)
12185 unsigned int regno = REGNO (x);
12186 unsigned int endregno = END_REGNO (x);
12187 unsigned int r;
12189 for (r = regno; r < endregno; r++)
12191 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12192 rsp->last_set_table_tick = label_tick;
12195 return;
12198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12199 if (fmt[i] == 'e')
12201 /* Check for identical subexpressions. If x contains
12202 identical subexpression we only have to traverse one of
12203 them. */
12204 if (i == 0 && ARITHMETIC_P (x))
12206 /* Note that at this point x1 has already been
12207 processed. */
12208 rtx x0 = XEXP (x, 0);
12209 rtx x1 = XEXP (x, 1);
12211 /* If x0 and x1 are identical then there is no need to
12212 process x0. */
12213 if (x0 == x1)
12214 break;
12216 /* If x0 is identical to a subexpression of x1 then while
12217 processing x1, x0 has already been processed. Thus we
12218 are done with x. */
12219 if (ARITHMETIC_P (x1)
12220 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12221 break;
12223 /* If x1 is identical to a subexpression of x0 then we
12224 still have to process the rest of x0. */
12225 if (ARITHMETIC_P (x0)
12226 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12228 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12229 break;
12233 update_table_tick (XEXP (x, i));
12235 else if (fmt[i] == 'E')
12236 for (j = 0; j < XVECLEN (x, i); j++)
12237 update_table_tick (XVECEXP (x, i, j));
12240 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12241 are saying that the register is clobbered and we no longer know its
12242 value. If INSN is zero, don't update reg_stat[].last_set; this is
12243 only permitted with VALUE also zero and is used to invalidate the
12244 register. */
12246 static void
12247 record_value_for_reg (rtx reg, rtx insn, rtx value)
12249 unsigned int regno = REGNO (reg);
12250 unsigned int endregno = END_REGNO (reg);
12251 unsigned int i;
12252 reg_stat_type *rsp;
12254 /* If VALUE contains REG and we have a previous value for REG, substitute
12255 the previous value. */
12256 if (value && insn && reg_overlap_mentioned_p (reg, value))
12258 rtx tem;
12260 /* Set things up so get_last_value is allowed to see anything set up to
12261 our insn. */
12262 subst_low_luid = DF_INSN_LUID (insn);
12263 tem = get_last_value (reg);
12265 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12266 it isn't going to be useful and will take a lot of time to process,
12267 so just use the CLOBBER. */
12269 if (tem)
12271 if (ARITHMETIC_P (tem)
12272 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12273 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12274 tem = XEXP (tem, 0);
12275 else if (count_occurrences (value, reg, 1) >= 2)
12277 /* If there are two or more occurrences of REG in VALUE,
12278 prevent the value from growing too much. */
12279 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12280 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12283 value = replace_rtx (copy_rtx (value), reg, tem);
12287 /* For each register modified, show we don't know its value, that
12288 we don't know about its bitwise content, that its value has been
12289 updated, and that we don't know the location of the death of the
12290 register. */
12291 for (i = regno; i < endregno; i++)
12293 rsp = VEC_index (reg_stat_type, reg_stat, i);
12295 if (insn)
12296 rsp->last_set = insn;
12298 rsp->last_set_value = 0;
12299 rsp->last_set_mode = VOIDmode;
12300 rsp->last_set_nonzero_bits = 0;
12301 rsp->last_set_sign_bit_copies = 0;
12302 rsp->last_death = 0;
12303 rsp->truncated_to_mode = VOIDmode;
12306 /* Mark registers that are being referenced in this value. */
12307 if (value)
12308 update_table_tick (value);
12310 /* Now update the status of each register being set.
12311 If someone is using this register in this block, set this register
12312 to invalid since we will get confused between the two lives in this
12313 basic block. This makes using this register always invalid. In cse, we
12314 scan the table to invalidate all entries using this register, but this
12315 is too much work for us. */
12317 for (i = regno; i < endregno; i++)
12319 rsp = VEC_index (reg_stat_type, reg_stat, i);
12320 rsp->last_set_label = label_tick;
12321 if (!insn
12322 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12323 rsp->last_set_invalid = 1;
12324 else
12325 rsp->last_set_invalid = 0;
12328 /* The value being assigned might refer to X (like in "x++;"). In that
12329 case, we must replace it with (clobber (const_int 0)) to prevent
12330 infinite loops. */
12331 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12332 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12334 value = copy_rtx (value);
12335 if (!get_last_value_validate (&value, insn, label_tick, 1))
12336 value = 0;
12339 /* For the main register being modified, update the value, the mode, the
12340 nonzero bits, and the number of sign bit copies. */
12342 rsp->last_set_value = value;
12344 if (value)
12346 enum machine_mode mode = GET_MODE (reg);
12347 subst_low_luid = DF_INSN_LUID (insn);
12348 rsp->last_set_mode = mode;
12349 if (GET_MODE_CLASS (mode) == MODE_INT
12350 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12351 mode = nonzero_bits_mode;
12352 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12353 rsp->last_set_sign_bit_copies
12354 = num_sign_bit_copies (value, GET_MODE (reg));
12358 /* Called via note_stores from record_dead_and_set_regs to handle one
12359 SET or CLOBBER in an insn. DATA is the instruction in which the
12360 set is occurring. */
12362 static void
12363 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12365 rtx record_dead_insn = (rtx) data;
12367 if (GET_CODE (dest) == SUBREG)
12368 dest = SUBREG_REG (dest);
12370 if (!record_dead_insn)
12372 if (REG_P (dest))
12373 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12374 return;
12377 if (REG_P (dest))
12379 /* If we are setting the whole register, we know its value. Otherwise
12380 show that we don't know the value. We can handle SUBREG in
12381 some cases. */
12382 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12383 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12384 else if (GET_CODE (setter) == SET
12385 && GET_CODE (SET_DEST (setter)) == SUBREG
12386 && SUBREG_REG (SET_DEST (setter)) == dest
12387 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12388 && subreg_lowpart_p (SET_DEST (setter)))
12389 record_value_for_reg (dest, record_dead_insn,
12390 gen_lowpart (GET_MODE (dest),
12391 SET_SRC (setter)));
12392 else
12393 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12395 else if (MEM_P (dest)
12396 /* Ignore pushes, they clobber nothing. */
12397 && ! push_operand (dest, GET_MODE (dest)))
12398 mem_last_set = DF_INSN_LUID (record_dead_insn);
12401 /* Update the records of when each REG was most recently set or killed
12402 for the things done by INSN. This is the last thing done in processing
12403 INSN in the combiner loop.
12405 We update reg_stat[], in particular fields last_set, last_set_value,
12406 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12407 last_death, and also the similar information mem_last_set (which insn
12408 most recently modified memory) and last_call_luid (which insn was the
12409 most recent subroutine call). */
12411 static void
12412 record_dead_and_set_regs (rtx insn)
12414 rtx link;
12415 unsigned int i;
12417 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12419 if (REG_NOTE_KIND (link) == REG_DEAD
12420 && REG_P (XEXP (link, 0)))
12422 unsigned int regno = REGNO (XEXP (link, 0));
12423 unsigned int endregno = END_REGNO (XEXP (link, 0));
12425 for (i = regno; i < endregno; i++)
12427 reg_stat_type *rsp;
12429 rsp = VEC_index (reg_stat_type, reg_stat, i);
12430 rsp->last_death = insn;
12433 else if (REG_NOTE_KIND (link) == REG_INC)
12434 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12437 if (CALL_P (insn))
12439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12440 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12442 reg_stat_type *rsp;
12444 rsp = VEC_index (reg_stat_type, reg_stat, i);
12445 rsp->last_set_invalid = 1;
12446 rsp->last_set = insn;
12447 rsp->last_set_value = 0;
12448 rsp->last_set_mode = VOIDmode;
12449 rsp->last_set_nonzero_bits = 0;
12450 rsp->last_set_sign_bit_copies = 0;
12451 rsp->last_death = 0;
12452 rsp->truncated_to_mode = VOIDmode;
12455 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12457 /* We can't combine into a call pattern. Remember, though, that
12458 the return value register is set at this LUID. We could
12459 still replace a register with the return value from the
12460 wrong subroutine call! */
12461 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12463 else
12464 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12467 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12468 register present in the SUBREG, so for each such SUBREG go back and
12469 adjust nonzero and sign bit information of the registers that are
12470 known to have some zero/sign bits set.
12472 This is needed because when combine blows the SUBREGs away, the
12473 information on zero/sign bits is lost and further combines can be
12474 missed because of that. */
12476 static void
12477 record_promoted_value (rtx insn, rtx subreg)
12479 struct insn_link *links;
12480 rtx set;
12481 unsigned int regno = REGNO (SUBREG_REG (subreg));
12482 enum machine_mode mode = GET_MODE (subreg);
12484 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12485 return;
12487 for (links = LOG_LINKS (insn); links;)
12489 reg_stat_type *rsp;
12491 insn = links->insn;
12492 set = single_set (insn);
12494 if (! set || !REG_P (SET_DEST (set))
12495 || REGNO (SET_DEST (set)) != regno
12496 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12498 links = links->next;
12499 continue;
12502 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12503 if (rsp->last_set == insn)
12505 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12506 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12509 if (REG_P (SET_SRC (set)))
12511 regno = REGNO (SET_SRC (set));
12512 links = LOG_LINKS (insn);
12514 else
12515 break;
12519 /* Check if X, a register, is known to contain a value already
12520 truncated to MODE. In this case we can use a subreg to refer to
12521 the truncated value even though in the generic case we would need
12522 an explicit truncation. */
12524 static bool
12525 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12527 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12528 enum machine_mode truncated = rsp->truncated_to_mode;
12530 if (truncated == 0
12531 || rsp->truncation_label < label_tick_ebb_start)
12532 return false;
12533 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12534 return true;
12535 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12536 GET_MODE_BITSIZE (truncated)))
12537 return true;
12538 return false;
12541 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12542 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12543 might be able to turn a truncate into a subreg using this information.
12544 Return -1 if traversing *P is complete or 0 otherwise. */
12546 static int
12547 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12549 rtx x = *p;
12550 enum machine_mode truncated_mode;
12551 reg_stat_type *rsp;
12553 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12555 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12556 truncated_mode = GET_MODE (x);
12558 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12559 return -1;
12561 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12562 GET_MODE_BITSIZE (original_mode)))
12563 return -1;
12565 x = SUBREG_REG (x);
12567 /* ??? For hard-regs we now record everything. We might be able to
12568 optimize this using last_set_mode. */
12569 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12570 truncated_mode = GET_MODE (x);
12571 else
12572 return 0;
12574 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12575 if (rsp->truncated_to_mode == 0
12576 || rsp->truncation_label < label_tick_ebb_start
12577 || (GET_MODE_SIZE (truncated_mode)
12578 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12580 rsp->truncated_to_mode = truncated_mode;
12581 rsp->truncation_label = label_tick;
12584 return -1;
12587 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12588 the modes they are used in. This can help truning TRUNCATEs into
12589 SUBREGs. */
12591 static void
12592 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12594 for_each_rtx (x, record_truncated_value, NULL);
12597 /* Scan X for promoted SUBREGs. For each one found,
12598 note what it implies to the registers used in it. */
12600 static void
12601 check_promoted_subreg (rtx insn, rtx x)
12603 if (GET_CODE (x) == SUBREG
12604 && SUBREG_PROMOTED_VAR_P (x)
12605 && REG_P (SUBREG_REG (x)))
12606 record_promoted_value (insn, x);
12607 else
12609 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12610 int i, j;
12612 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12613 switch (format[i])
12615 case 'e':
12616 check_promoted_subreg (insn, XEXP (x, i));
12617 break;
12618 case 'V':
12619 case 'E':
12620 if (XVEC (x, i) != 0)
12621 for (j = 0; j < XVECLEN (x, i); j++)
12622 check_promoted_subreg (insn, XVECEXP (x, i, j));
12623 break;
12628 /* Verify that all the registers and memory references mentioned in *LOC are
12629 still valid. *LOC was part of a value set in INSN when label_tick was
12630 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12631 the invalid references with (clobber (const_int 0)) and return 1. This
12632 replacement is useful because we often can get useful information about
12633 the form of a value (e.g., if it was produced by a shift that always
12634 produces -1 or 0) even though we don't know exactly what registers it
12635 was produced from. */
12637 static int
12638 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12640 rtx x = *loc;
12641 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12642 int len = GET_RTX_LENGTH (GET_CODE (x));
12643 int i, j;
12645 if (REG_P (x))
12647 unsigned int regno = REGNO (x);
12648 unsigned int endregno = END_REGNO (x);
12649 unsigned int j;
12651 for (j = regno; j < endregno; j++)
12653 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12654 if (rsp->last_set_invalid
12655 /* If this is a pseudo-register that was only set once and not
12656 live at the beginning of the function, it is always valid. */
12657 || (! (regno >= FIRST_PSEUDO_REGISTER
12658 && REG_N_SETS (regno) == 1
12659 && (!REGNO_REG_SET_P
12660 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12661 && rsp->last_set_label > tick))
12663 if (replace)
12664 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12665 return replace;
12669 return 1;
12671 /* If this is a memory reference, make sure that there were no stores after
12672 it that might have clobbered the value. We don't have alias info, so we
12673 assume any store invalidates it. Moreover, we only have local UIDs, so
12674 we also assume that there were stores in the intervening basic blocks. */
12675 else if (MEM_P (x) && !MEM_READONLY_P (x)
12676 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12678 if (replace)
12679 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12680 return replace;
12683 for (i = 0; i < len; i++)
12685 if (fmt[i] == 'e')
12687 /* Check for identical subexpressions. If x contains
12688 identical subexpression we only have to traverse one of
12689 them. */
12690 if (i == 1 && ARITHMETIC_P (x))
12692 /* Note that at this point x0 has already been checked
12693 and found valid. */
12694 rtx x0 = XEXP (x, 0);
12695 rtx x1 = XEXP (x, 1);
12697 /* If x0 and x1 are identical then x is also valid. */
12698 if (x0 == x1)
12699 return 1;
12701 /* If x1 is identical to a subexpression of x0 then
12702 while checking x0, x1 has already been checked. Thus
12703 it is valid and so as x. */
12704 if (ARITHMETIC_P (x0)
12705 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12706 return 1;
12708 /* If x0 is identical to a subexpression of x1 then x is
12709 valid iff the rest of x1 is valid. */
12710 if (ARITHMETIC_P (x1)
12711 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12712 return
12713 get_last_value_validate (&XEXP (x1,
12714 x0 == XEXP (x1, 0) ? 1 : 0),
12715 insn, tick, replace);
12718 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12719 replace) == 0)
12720 return 0;
12722 else if (fmt[i] == 'E')
12723 for (j = 0; j < XVECLEN (x, i); j++)
12724 if (get_last_value_validate (&XVECEXP (x, i, j),
12725 insn, tick, replace) == 0)
12726 return 0;
12729 /* If we haven't found a reason for it to be invalid, it is valid. */
12730 return 1;
12733 /* Get the last value assigned to X, if known. Some registers
12734 in the value may be replaced with (clobber (const_int 0)) if their value
12735 is known longer known reliably. */
12737 static rtx
12738 get_last_value (const_rtx x)
12740 unsigned int regno;
12741 rtx value;
12742 reg_stat_type *rsp;
12744 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12745 then convert it to the desired mode. If this is a paradoxical SUBREG,
12746 we cannot predict what values the "extra" bits might have. */
12747 if (GET_CODE (x) == SUBREG
12748 && subreg_lowpart_p (x)
12749 && (GET_MODE_SIZE (GET_MODE (x))
12750 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12751 && (value = get_last_value (SUBREG_REG (x))) != 0)
12752 return gen_lowpart (GET_MODE (x), value);
12754 if (!REG_P (x))
12755 return 0;
12757 regno = REGNO (x);
12758 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12759 value = rsp->last_set_value;
12761 /* If we don't have a value, or if it isn't for this basic block and
12762 it's either a hard register, set more than once, or it's a live
12763 at the beginning of the function, return 0.
12765 Because if it's not live at the beginning of the function then the reg
12766 is always set before being used (is never used without being set).
12767 And, if it's set only once, and it's always set before use, then all
12768 uses must have the same last value, even if it's not from this basic
12769 block. */
12771 if (value == 0
12772 || (rsp->last_set_label < label_tick_ebb_start
12773 && (regno < FIRST_PSEUDO_REGISTER
12774 || REG_N_SETS (regno) != 1
12775 || REGNO_REG_SET_P
12776 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12777 return 0;
12779 /* If the value was set in a later insn than the ones we are processing,
12780 we can't use it even if the register was only set once. */
12781 if (rsp->last_set_label == label_tick
12782 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12783 return 0;
12785 /* If the value has all its registers valid, return it. */
12786 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12787 return value;
12789 /* Otherwise, make a copy and replace any invalid register with
12790 (clobber (const_int 0)). If that fails for some reason, return 0. */
12792 value = copy_rtx (value);
12793 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12794 return value;
12796 return 0;
12799 /* Return nonzero if expression X refers to a REG or to memory
12800 that is set in an instruction more recent than FROM_LUID. */
12802 static int
12803 use_crosses_set_p (const_rtx x, int from_luid)
12805 const char *fmt;
12806 int i;
12807 enum rtx_code code = GET_CODE (x);
12809 if (code == REG)
12811 unsigned int regno = REGNO (x);
12812 unsigned endreg = END_REGNO (x);
12814 #ifdef PUSH_ROUNDING
12815 /* Don't allow uses of the stack pointer to be moved,
12816 because we don't know whether the move crosses a push insn. */
12817 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12818 return 1;
12819 #endif
12820 for (; regno < endreg; regno++)
12822 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12823 if (rsp->last_set
12824 && rsp->last_set_label == label_tick
12825 && DF_INSN_LUID (rsp->last_set) > from_luid)
12826 return 1;
12828 return 0;
12831 if (code == MEM && mem_last_set > from_luid)
12832 return 1;
12834 fmt = GET_RTX_FORMAT (code);
12836 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12838 if (fmt[i] == 'E')
12840 int j;
12841 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12842 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12843 return 1;
12845 else if (fmt[i] == 'e'
12846 && use_crosses_set_p (XEXP (x, i), from_luid))
12847 return 1;
12849 return 0;
12852 /* Define three variables used for communication between the following
12853 routines. */
12855 static unsigned int reg_dead_regno, reg_dead_endregno;
12856 static int reg_dead_flag;
12858 /* Function called via note_stores from reg_dead_at_p.
12860 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12861 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12863 static void
12864 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12866 unsigned int regno, endregno;
12868 if (!REG_P (dest))
12869 return;
12871 regno = REGNO (dest);
12872 endregno = END_REGNO (dest);
12873 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12874 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12877 /* Return nonzero if REG is known to be dead at INSN.
12879 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12880 referencing REG, it is dead. If we hit a SET referencing REG, it is
12881 live. Otherwise, see if it is live or dead at the start of the basic
12882 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12883 must be assumed to be always live. */
12885 static int
12886 reg_dead_at_p (rtx reg, rtx insn)
12888 basic_block block;
12889 unsigned int i;
12891 /* Set variables for reg_dead_at_p_1. */
12892 reg_dead_regno = REGNO (reg);
12893 reg_dead_endregno = END_REGNO (reg);
12895 reg_dead_flag = 0;
12897 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12898 we allow the machine description to decide whether use-and-clobber
12899 patterns are OK. */
12900 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12902 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12903 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12904 return 0;
12907 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12908 beginning of basic block. */
12909 block = BLOCK_FOR_INSN (insn);
12910 for (;;)
12912 if (INSN_P (insn))
12914 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12915 if (reg_dead_flag)
12916 return reg_dead_flag == 1 ? 1 : 0;
12918 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12919 return 1;
12922 if (insn == BB_HEAD (block))
12923 break;
12925 insn = PREV_INSN (insn);
12928 /* Look at live-in sets for the basic block that we were in. */
12929 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12930 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12931 return 0;
12933 return 1;
12936 /* Note hard registers in X that are used. */
12938 static void
12939 mark_used_regs_combine (rtx x)
12941 RTX_CODE code = GET_CODE (x);
12942 unsigned int regno;
12943 int i;
12945 switch (code)
12947 case LABEL_REF:
12948 case SYMBOL_REF:
12949 case CONST_INT:
12950 case CONST:
12951 case CONST_DOUBLE:
12952 case CONST_VECTOR:
12953 case PC:
12954 case ADDR_VEC:
12955 case ADDR_DIFF_VEC:
12956 case ASM_INPUT:
12957 #ifdef HAVE_cc0
12958 /* CC0 must die in the insn after it is set, so we don't need to take
12959 special note of it here. */
12960 case CC0:
12961 #endif
12962 return;
12964 case CLOBBER:
12965 /* If we are clobbering a MEM, mark any hard registers inside the
12966 address as used. */
12967 if (MEM_P (XEXP (x, 0)))
12968 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12969 return;
12971 case REG:
12972 regno = REGNO (x);
12973 /* A hard reg in a wide mode may really be multiple registers.
12974 If so, mark all of them just like the first. */
12975 if (regno < FIRST_PSEUDO_REGISTER)
12977 /* None of this applies to the stack, frame or arg pointers. */
12978 if (regno == STACK_POINTER_REGNUM
12979 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12980 || regno == HARD_FRAME_POINTER_REGNUM
12981 #endif
12982 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12983 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12984 #endif
12985 || regno == FRAME_POINTER_REGNUM)
12986 return;
12988 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12990 return;
12992 case SET:
12994 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12995 the address. */
12996 rtx testreg = SET_DEST (x);
12998 while (GET_CODE (testreg) == SUBREG
12999 || GET_CODE (testreg) == ZERO_EXTRACT
13000 || GET_CODE (testreg) == STRICT_LOW_PART)
13001 testreg = XEXP (testreg, 0);
13003 if (MEM_P (testreg))
13004 mark_used_regs_combine (XEXP (testreg, 0));
13006 mark_used_regs_combine (SET_SRC (x));
13008 return;
13010 default:
13011 break;
13014 /* Recursively scan the operands of this expression. */
13017 const char *fmt = GET_RTX_FORMAT (code);
13019 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13021 if (fmt[i] == 'e')
13022 mark_used_regs_combine (XEXP (x, i));
13023 else if (fmt[i] == 'E')
13025 int j;
13027 for (j = 0; j < XVECLEN (x, i); j++)
13028 mark_used_regs_combine (XVECEXP (x, i, j));
13034 /* Remove register number REGNO from the dead registers list of INSN.
13036 Return the note used to record the death, if there was one. */
13039 remove_death (unsigned int regno, rtx insn)
13041 rtx note = find_regno_note (insn, REG_DEAD, regno);
13043 if (note)
13044 remove_note (insn, note);
13046 return note;
13049 /* For each register (hardware or pseudo) used within expression X, if its
13050 death is in an instruction with luid between FROM_LUID (inclusive) and
13051 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13052 list headed by PNOTES.
13054 That said, don't move registers killed by maybe_kill_insn.
13056 This is done when X is being merged by combination into TO_INSN. These
13057 notes will then be distributed as needed. */
13059 static void
13060 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13061 rtx *pnotes)
13063 const char *fmt;
13064 int len, i;
13065 enum rtx_code code = GET_CODE (x);
13067 if (code == REG)
13069 unsigned int regno = REGNO (x);
13070 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13072 /* Don't move the register if it gets killed in between from and to. */
13073 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13074 && ! reg_referenced_p (x, maybe_kill_insn))
13075 return;
13077 if (where_dead
13078 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13079 && DF_INSN_LUID (where_dead) >= from_luid
13080 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13082 rtx note = remove_death (regno, where_dead);
13084 /* It is possible for the call above to return 0. This can occur
13085 when last_death points to I2 or I1 that we combined with.
13086 In that case make a new note.
13088 We must also check for the case where X is a hard register
13089 and NOTE is a death note for a range of hard registers
13090 including X. In that case, we must put REG_DEAD notes for
13091 the remaining registers in place of NOTE. */
13093 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13094 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13095 > GET_MODE_SIZE (GET_MODE (x))))
13097 unsigned int deadregno = REGNO (XEXP (note, 0));
13098 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13099 unsigned int ourend = END_HARD_REGNO (x);
13100 unsigned int i;
13102 for (i = deadregno; i < deadend; i++)
13103 if (i < regno || i >= ourend)
13104 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13107 /* If we didn't find any note, or if we found a REG_DEAD note that
13108 covers only part of the given reg, and we have a multi-reg hard
13109 register, then to be safe we must check for REG_DEAD notes
13110 for each register other than the first. They could have
13111 their own REG_DEAD notes lying around. */
13112 else if ((note == 0
13113 || (note != 0
13114 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13115 < GET_MODE_SIZE (GET_MODE (x)))))
13116 && regno < FIRST_PSEUDO_REGISTER
13117 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13119 unsigned int ourend = END_HARD_REGNO (x);
13120 unsigned int i, offset;
13121 rtx oldnotes = 0;
13123 if (note)
13124 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13125 else
13126 offset = 1;
13128 for (i = regno + offset; i < ourend; i++)
13129 move_deaths (regno_reg_rtx[i],
13130 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13133 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13135 XEXP (note, 1) = *pnotes;
13136 *pnotes = note;
13138 else
13139 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13142 return;
13145 else if (GET_CODE (x) == SET)
13147 rtx dest = SET_DEST (x);
13149 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13151 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13152 that accesses one word of a multi-word item, some
13153 piece of everything register in the expression is used by
13154 this insn, so remove any old death. */
13155 /* ??? So why do we test for equality of the sizes? */
13157 if (GET_CODE (dest) == ZERO_EXTRACT
13158 || GET_CODE (dest) == STRICT_LOW_PART
13159 || (GET_CODE (dest) == SUBREG
13160 && (((GET_MODE_SIZE (GET_MODE (dest))
13161 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13162 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13163 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13165 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13166 return;
13169 /* If this is some other SUBREG, we know it replaces the entire
13170 value, so use that as the destination. */
13171 if (GET_CODE (dest) == SUBREG)
13172 dest = SUBREG_REG (dest);
13174 /* If this is a MEM, adjust deaths of anything used in the address.
13175 For a REG (the only other possibility), the entire value is
13176 being replaced so the old value is not used in this insn. */
13178 if (MEM_P (dest))
13179 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13180 to_insn, pnotes);
13181 return;
13184 else if (GET_CODE (x) == CLOBBER)
13185 return;
13187 len = GET_RTX_LENGTH (code);
13188 fmt = GET_RTX_FORMAT (code);
13190 for (i = 0; i < len; i++)
13192 if (fmt[i] == 'E')
13194 int j;
13195 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13196 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13197 to_insn, pnotes);
13199 else if (fmt[i] == 'e')
13200 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13204 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13205 pattern of an insn. X must be a REG. */
13207 static int
13208 reg_bitfield_target_p (rtx x, rtx body)
13210 int i;
13212 if (GET_CODE (body) == SET)
13214 rtx dest = SET_DEST (body);
13215 rtx target;
13216 unsigned int regno, tregno, endregno, endtregno;
13218 if (GET_CODE (dest) == ZERO_EXTRACT)
13219 target = XEXP (dest, 0);
13220 else if (GET_CODE (dest) == STRICT_LOW_PART)
13221 target = SUBREG_REG (XEXP (dest, 0));
13222 else
13223 return 0;
13225 if (GET_CODE (target) == SUBREG)
13226 target = SUBREG_REG (target);
13228 if (!REG_P (target))
13229 return 0;
13231 tregno = REGNO (target), regno = REGNO (x);
13232 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13233 return target == x;
13235 endtregno = end_hard_regno (GET_MODE (target), tregno);
13236 endregno = end_hard_regno (GET_MODE (x), regno);
13238 return endregno > tregno && regno < endtregno;
13241 else if (GET_CODE (body) == PARALLEL)
13242 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13243 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13244 return 1;
13246 return 0;
13249 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13250 as appropriate. I3 and I2 are the insns resulting from the combination
13251 insns including FROM (I2 may be zero).
13253 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13254 not need REG_DEAD notes because they are being substituted for. This
13255 saves searching in the most common cases.
13257 Each note in the list is either ignored or placed on some insns, depending
13258 on the type of note. */
13260 static void
13261 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13262 rtx elim_i1, rtx elim_i0)
13264 rtx note, next_note;
13265 rtx tem;
13267 for (note = notes; note; note = next_note)
13269 rtx place = 0, place2 = 0;
13271 next_note = XEXP (note, 1);
13272 switch (REG_NOTE_KIND (note))
13274 case REG_BR_PROB:
13275 case REG_BR_PRED:
13276 /* Doesn't matter much where we put this, as long as it's somewhere.
13277 It is preferable to keep these notes on branches, which is most
13278 likely to be i3. */
13279 place = i3;
13280 break;
13282 case REG_NON_LOCAL_GOTO:
13283 if (JUMP_P (i3))
13284 place = i3;
13285 else
13287 gcc_assert (i2 && JUMP_P (i2));
13288 place = i2;
13290 break;
13292 case REG_EH_REGION:
13293 /* These notes must remain with the call or trapping instruction. */
13294 if (CALL_P (i3))
13295 place = i3;
13296 else if (i2 && CALL_P (i2))
13297 place = i2;
13298 else
13300 gcc_assert (cfun->can_throw_non_call_exceptions);
13301 if (may_trap_p (i3))
13302 place = i3;
13303 else if (i2 && may_trap_p (i2))
13304 place = i2;
13305 /* ??? Otherwise assume we've combined things such that we
13306 can now prove that the instructions can't trap. Drop the
13307 note in this case. */
13309 break;
13311 case REG_NORETURN:
13312 case REG_SETJMP:
13313 /* These notes must remain with the call. It should not be
13314 possible for both I2 and I3 to be a call. */
13315 if (CALL_P (i3))
13316 place = i3;
13317 else
13319 gcc_assert (i2 && CALL_P (i2));
13320 place = i2;
13322 break;
13324 case REG_UNUSED:
13325 /* Any clobbers for i3 may still exist, and so we must process
13326 REG_UNUSED notes from that insn.
13328 Any clobbers from i2 or i1 can only exist if they were added by
13329 recog_for_combine. In that case, recog_for_combine created the
13330 necessary REG_UNUSED notes. Trying to keep any original
13331 REG_UNUSED notes from these insns can cause incorrect output
13332 if it is for the same register as the original i3 dest.
13333 In that case, we will notice that the register is set in i3,
13334 and then add a REG_UNUSED note for the destination of i3, which
13335 is wrong. However, it is possible to have REG_UNUSED notes from
13336 i2 or i1 for register which were both used and clobbered, so
13337 we keep notes from i2 or i1 if they will turn into REG_DEAD
13338 notes. */
13340 /* If this register is set or clobbered in I3, put the note there
13341 unless there is one already. */
13342 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13344 if (from_insn != i3)
13345 break;
13347 if (! (REG_P (XEXP (note, 0))
13348 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13349 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13350 place = i3;
13352 /* Otherwise, if this register is used by I3, then this register
13353 now dies here, so we must put a REG_DEAD note here unless there
13354 is one already. */
13355 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13356 && ! (REG_P (XEXP (note, 0))
13357 ? find_regno_note (i3, REG_DEAD,
13358 REGNO (XEXP (note, 0)))
13359 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13361 PUT_REG_NOTE_KIND (note, REG_DEAD);
13362 place = i3;
13364 break;
13366 case REG_EQUAL:
13367 case REG_EQUIV:
13368 case REG_NOALIAS:
13369 /* These notes say something about results of an insn. We can
13370 only support them if they used to be on I3 in which case they
13371 remain on I3. Otherwise they are ignored.
13373 If the note refers to an expression that is not a constant, we
13374 must also ignore the note since we cannot tell whether the
13375 equivalence is still true. It might be possible to do
13376 slightly better than this (we only have a problem if I2DEST
13377 or I1DEST is present in the expression), but it doesn't
13378 seem worth the trouble. */
13380 if (from_insn == i3
13381 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13382 place = i3;
13383 break;
13385 case REG_INC:
13386 /* These notes say something about how a register is used. They must
13387 be present on any use of the register in I2 or I3. */
13388 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13389 place = i3;
13391 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13393 if (place)
13394 place2 = i2;
13395 else
13396 place = i2;
13398 break;
13400 case REG_LABEL_TARGET:
13401 case REG_LABEL_OPERAND:
13402 /* This can show up in several ways -- either directly in the
13403 pattern, or hidden off in the constant pool with (or without?)
13404 a REG_EQUAL note. */
13405 /* ??? Ignore the without-reg_equal-note problem for now. */
13406 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13407 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13408 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13409 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13410 place = i3;
13412 if (i2
13413 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13414 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13415 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13416 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13418 if (place)
13419 place2 = i2;
13420 else
13421 place = i2;
13424 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13425 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13426 there. */
13427 if (place && JUMP_P (place)
13428 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13429 && (JUMP_LABEL (place) == NULL
13430 || JUMP_LABEL (place) == XEXP (note, 0)))
13432 rtx label = JUMP_LABEL (place);
13434 if (!label)
13435 JUMP_LABEL (place) = XEXP (note, 0);
13436 else if (LABEL_P (label))
13437 LABEL_NUSES (label)--;
13440 if (place2 && JUMP_P (place2)
13441 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13442 && (JUMP_LABEL (place2) == NULL
13443 || JUMP_LABEL (place2) == XEXP (note, 0)))
13445 rtx label = JUMP_LABEL (place2);
13447 if (!label)
13448 JUMP_LABEL (place2) = XEXP (note, 0);
13449 else if (LABEL_P (label))
13450 LABEL_NUSES (label)--;
13451 place2 = 0;
13453 break;
13455 case REG_NONNEG:
13456 /* This note says something about the value of a register prior
13457 to the execution of an insn. It is too much trouble to see
13458 if the note is still correct in all situations. It is better
13459 to simply delete it. */
13460 break;
13462 case REG_DEAD:
13463 /* If we replaced the right hand side of FROM_INSN with a
13464 REG_EQUAL note, the original use of the dying register
13465 will not have been combined into I3 and I2. In such cases,
13466 FROM_INSN is guaranteed to be the first of the combined
13467 instructions, so we simply need to search back before
13468 FROM_INSN for the previous use or set of this register,
13469 then alter the notes there appropriately.
13471 If the register is used as an input in I3, it dies there.
13472 Similarly for I2, if it is nonzero and adjacent to I3.
13474 If the register is not used as an input in either I3 or I2
13475 and it is not one of the registers we were supposed to eliminate,
13476 there are two possibilities. We might have a non-adjacent I2
13477 or we might have somehow eliminated an additional register
13478 from a computation. For example, we might have had A & B where
13479 we discover that B will always be zero. In this case we will
13480 eliminate the reference to A.
13482 In both cases, we must search to see if we can find a previous
13483 use of A and put the death note there. */
13485 if (from_insn
13486 && from_insn == i2mod
13487 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13488 tem = from_insn;
13489 else
13491 if (from_insn
13492 && CALL_P (from_insn)
13493 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13494 place = from_insn;
13495 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13496 place = i3;
13497 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13498 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13499 place = i2;
13500 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13501 && !(i2mod
13502 && reg_overlap_mentioned_p (XEXP (note, 0),
13503 i2mod_old_rhs)))
13504 || rtx_equal_p (XEXP (note, 0), elim_i1)
13505 || rtx_equal_p (XEXP (note, 0), elim_i0))
13506 break;
13507 tem = i3;
13510 if (place == 0)
13512 basic_block bb = this_basic_block;
13514 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13516 if (!NONDEBUG_INSN_P (tem))
13518 if (tem == BB_HEAD (bb))
13519 break;
13520 continue;
13523 /* If the register is being set at TEM, see if that is all
13524 TEM is doing. If so, delete TEM. Otherwise, make this
13525 into a REG_UNUSED note instead. Don't delete sets to
13526 global register vars. */
13527 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13528 || !global_regs[REGNO (XEXP (note, 0))])
13529 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13531 rtx set = single_set (tem);
13532 rtx inner_dest = 0;
13533 #ifdef HAVE_cc0
13534 rtx cc0_setter = NULL_RTX;
13535 #endif
13537 if (set != 0)
13538 for (inner_dest = SET_DEST (set);
13539 (GET_CODE (inner_dest) == STRICT_LOW_PART
13540 || GET_CODE (inner_dest) == SUBREG
13541 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13542 inner_dest = XEXP (inner_dest, 0))
13545 /* Verify that it was the set, and not a clobber that
13546 modified the register.
13548 CC0 targets must be careful to maintain setter/user
13549 pairs. If we cannot delete the setter due to side
13550 effects, mark the user with an UNUSED note instead
13551 of deleting it. */
13553 if (set != 0 && ! side_effects_p (SET_SRC (set))
13554 && rtx_equal_p (XEXP (note, 0), inner_dest)
13555 #ifdef HAVE_cc0
13556 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13557 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13558 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13559 #endif
13562 /* Move the notes and links of TEM elsewhere.
13563 This might delete other dead insns recursively.
13564 First set the pattern to something that won't use
13565 any register. */
13566 rtx old_notes = REG_NOTES (tem);
13568 PATTERN (tem) = pc_rtx;
13569 REG_NOTES (tem) = NULL;
13571 distribute_notes (old_notes, tem, tem, NULL_RTX,
13572 NULL_RTX, NULL_RTX, NULL_RTX);
13573 distribute_links (LOG_LINKS (tem));
13575 SET_INSN_DELETED (tem);
13576 if (tem == i2)
13577 i2 = NULL_RTX;
13579 #ifdef HAVE_cc0
13580 /* Delete the setter too. */
13581 if (cc0_setter)
13583 PATTERN (cc0_setter) = pc_rtx;
13584 old_notes = REG_NOTES (cc0_setter);
13585 REG_NOTES (cc0_setter) = NULL;
13587 distribute_notes (old_notes, cc0_setter,
13588 cc0_setter, NULL_RTX,
13589 NULL_RTX, NULL_RTX, NULL_RTX);
13590 distribute_links (LOG_LINKS (cc0_setter));
13592 SET_INSN_DELETED (cc0_setter);
13593 if (cc0_setter == i2)
13594 i2 = NULL_RTX;
13596 #endif
13598 else
13600 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13602 /* If there isn't already a REG_UNUSED note, put one
13603 here. Do not place a REG_DEAD note, even if
13604 the register is also used here; that would not
13605 match the algorithm used in lifetime analysis
13606 and can cause the consistency check in the
13607 scheduler to fail. */
13608 if (! find_regno_note (tem, REG_UNUSED,
13609 REGNO (XEXP (note, 0))))
13610 place = tem;
13611 break;
13614 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13615 || (CALL_P (tem)
13616 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13618 place = tem;
13620 /* If we are doing a 3->2 combination, and we have a
13621 register which formerly died in i3 and was not used
13622 by i2, which now no longer dies in i3 and is used in
13623 i2 but does not die in i2, and place is between i2
13624 and i3, then we may need to move a link from place to
13625 i2. */
13626 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13627 && from_insn
13628 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13629 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13631 struct insn_link *links = LOG_LINKS (place);
13632 LOG_LINKS (place) = NULL;
13633 distribute_links (links);
13635 break;
13638 if (tem == BB_HEAD (bb))
13639 break;
13644 /* If the register is set or already dead at PLACE, we needn't do
13645 anything with this note if it is still a REG_DEAD note.
13646 We check here if it is set at all, not if is it totally replaced,
13647 which is what `dead_or_set_p' checks, so also check for it being
13648 set partially. */
13650 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13652 unsigned int regno = REGNO (XEXP (note, 0));
13653 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13655 if (dead_or_set_p (place, XEXP (note, 0))
13656 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13658 /* Unless the register previously died in PLACE, clear
13659 last_death. [I no longer understand why this is
13660 being done.] */
13661 if (rsp->last_death != place)
13662 rsp->last_death = 0;
13663 place = 0;
13665 else
13666 rsp->last_death = place;
13668 /* If this is a death note for a hard reg that is occupying
13669 multiple registers, ensure that we are still using all
13670 parts of the object. If we find a piece of the object
13671 that is unused, we must arrange for an appropriate REG_DEAD
13672 note to be added for it. However, we can't just emit a USE
13673 and tag the note to it, since the register might actually
13674 be dead; so we recourse, and the recursive call then finds
13675 the previous insn that used this register. */
13677 if (place && regno < FIRST_PSEUDO_REGISTER
13678 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13680 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13681 int all_used = 1;
13682 unsigned int i;
13684 for (i = regno; i < endregno; i++)
13685 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13686 && ! find_regno_fusage (place, USE, i))
13687 || dead_or_set_regno_p (place, i))
13688 all_used = 0;
13690 if (! all_used)
13692 /* Put only REG_DEAD notes for pieces that are
13693 not already dead or set. */
13695 for (i = regno; i < endregno;
13696 i += hard_regno_nregs[i][reg_raw_mode[i]])
13698 rtx piece = regno_reg_rtx[i];
13699 basic_block bb = this_basic_block;
13701 if (! dead_or_set_p (place, piece)
13702 && ! reg_bitfield_target_p (piece,
13703 PATTERN (place)))
13705 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13706 NULL_RTX);
13708 distribute_notes (new_note, place, place,
13709 NULL_RTX, NULL_RTX, NULL_RTX,
13710 NULL_RTX);
13712 else if (! refers_to_regno_p (i, i + 1,
13713 PATTERN (place), 0)
13714 && ! find_regno_fusage (place, USE, i))
13715 for (tem = PREV_INSN (place); ;
13716 tem = PREV_INSN (tem))
13718 if (!NONDEBUG_INSN_P (tem))
13720 if (tem == BB_HEAD (bb))
13721 break;
13722 continue;
13724 if (dead_or_set_p (tem, piece)
13725 || reg_bitfield_target_p (piece,
13726 PATTERN (tem)))
13728 add_reg_note (tem, REG_UNUSED, piece);
13729 break;
13735 place = 0;
13739 break;
13741 default:
13742 /* Any other notes should not be present at this point in the
13743 compilation. */
13744 gcc_unreachable ();
13747 if (place)
13749 XEXP (note, 1) = REG_NOTES (place);
13750 REG_NOTES (place) = note;
13753 if (place2)
13754 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13758 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13759 I3, I2, and I1 to new locations. This is also called to add a link
13760 pointing at I3 when I3's destination is changed. */
13762 static void
13763 distribute_links (struct insn_link *links)
13765 struct insn_link *link, *next_link;
13767 for (link = links; link; link = next_link)
13769 rtx place = 0;
13770 rtx insn;
13771 rtx set, reg;
13773 next_link = link->next;
13775 /* If the insn that this link points to is a NOTE or isn't a single
13776 set, ignore it. In the latter case, it isn't clear what we
13777 can do other than ignore the link, since we can't tell which
13778 register it was for. Such links wouldn't be used by combine
13779 anyway.
13781 It is not possible for the destination of the target of the link to
13782 have been changed by combine. The only potential of this is if we
13783 replace I3, I2, and I1 by I3 and I2. But in that case the
13784 destination of I2 also remains unchanged. */
13786 if (NOTE_P (link->insn)
13787 || (set = single_set (link->insn)) == 0)
13788 continue;
13790 reg = SET_DEST (set);
13791 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13792 || GET_CODE (reg) == STRICT_LOW_PART)
13793 reg = XEXP (reg, 0);
13795 /* A LOG_LINK is defined as being placed on the first insn that uses
13796 a register and points to the insn that sets the register. Start
13797 searching at the next insn after the target of the link and stop
13798 when we reach a set of the register or the end of the basic block.
13800 Note that this correctly handles the link that used to point from
13801 I3 to I2. Also note that not much searching is typically done here
13802 since most links don't point very far away. */
13804 for (insn = NEXT_INSN (link->insn);
13805 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13806 || BB_HEAD (this_basic_block->next_bb) != insn));
13807 insn = NEXT_INSN (insn))
13808 if (DEBUG_INSN_P (insn))
13809 continue;
13810 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13812 if (reg_referenced_p (reg, PATTERN (insn)))
13813 place = insn;
13814 break;
13816 else if (CALL_P (insn)
13817 && find_reg_fusage (insn, USE, reg))
13819 place = insn;
13820 break;
13822 else if (INSN_P (insn) && reg_set_p (reg, insn))
13823 break;
13825 /* If we found a place to put the link, place it there unless there
13826 is already a link to the same insn as LINK at that point. */
13828 if (place)
13830 struct insn_link *link2;
13832 FOR_EACH_LOG_LINK (link2, place)
13833 if (link2->insn == link->insn)
13834 break;
13836 if (link2 == NULL)
13838 link->next = LOG_LINKS (place);
13839 LOG_LINKS (place) = link;
13841 /* Set added_links_insn to the earliest insn we added a
13842 link to. */
13843 if (added_links_insn == 0
13844 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13845 added_links_insn = place;
13851 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13852 Check whether the expression pointer to by LOC is a register or
13853 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13854 Otherwise return zero. */
13856 static int
13857 unmentioned_reg_p_1 (rtx *loc, void *expr)
13859 rtx x = *loc;
13861 if (x != NULL_RTX
13862 && (REG_P (x) || MEM_P (x))
13863 && ! reg_mentioned_p (x, (rtx) expr))
13864 return 1;
13865 return 0;
13868 /* Check for any register or memory mentioned in EQUIV that is not
13869 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13870 of EXPR where some registers may have been replaced by constants. */
13872 static bool
13873 unmentioned_reg_p (rtx equiv, rtx expr)
13875 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13878 void
13879 dump_combine_stats (FILE *file)
13881 fprintf
13882 (file,
13883 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13884 combine_attempts, combine_merges, combine_extras, combine_successes);
13887 void
13888 dump_combine_total_stats (FILE *file)
13890 fprintf
13891 (file,
13892 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13893 total_attempts, total_merges, total_extras, total_successes);
13896 static bool
13897 gate_handle_combine (void)
13899 return (optimize > 0);
13902 /* Try combining insns through substitution. */
13903 static unsigned int
13904 rest_of_handle_combine (void)
13906 int rebuild_jump_labels_after_combine;
13908 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13909 df_note_add_problem ();
13910 df_analyze ();
13912 regstat_init_n_sets_and_refs ();
13914 rebuild_jump_labels_after_combine
13915 = combine_instructions (get_insns (), max_reg_num ());
13917 /* Combining insns may have turned an indirect jump into a
13918 direct jump. Rebuild the JUMP_LABEL fields of jumping
13919 instructions. */
13920 if (rebuild_jump_labels_after_combine)
13922 timevar_push (TV_JUMP);
13923 rebuild_jump_labels (get_insns ());
13924 cleanup_cfg (0);
13925 timevar_pop (TV_JUMP);
13928 regstat_free_n_sets_and_refs ();
13929 return 0;
13932 struct rtl_opt_pass pass_combine =
13935 RTL_PASS,
13936 "combine", /* name */
13937 gate_handle_combine, /* gate */
13938 rest_of_handle_combine, /* execute */
13939 NULL, /* sub */
13940 NULL, /* next */
13941 0, /* static_pass_number */
13942 TV_COMBINE, /* tv_id */
13943 PROP_cfglayout, /* properties_required */
13944 0, /* properties_provided */
13945 0, /* properties_destroyed */
13946 0, /* todo_flags_start */
13947 TODO_dump_func |
13948 TODO_df_finish | TODO_verify_rtl_sharing |
13949 TODO_ggc_collect, /* todo_flags_finish */