* gcc-interface/trans.c (Subprogram_Body_to_gnu): Initialize locus.
[official-gcc.git] / libsanitizer / tsan / tsan_rtl_report.cc
bloba961139b61d91905dfc844c866c6c170d880df17
1 //===-- tsan_rtl_report.cc ------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_libc.h"
13 #include "sanitizer_common/sanitizer_placement_new.h"
14 #include "sanitizer_common/sanitizer_stackdepot.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_stacktrace.h"
17 #include "tsan_platform.h"
18 #include "tsan_rtl.h"
19 #include "tsan_suppressions.h"
20 #include "tsan_symbolize.h"
21 #include "tsan_report.h"
22 #include "tsan_sync.h"
23 #include "tsan_mman.h"
24 #include "tsan_flags.h"
25 #include "tsan_fd.h"
27 namespace __tsan {
29 using namespace __sanitizer; // NOLINT
31 static ReportStack *SymbolizeStack(StackTrace trace);
33 void TsanCheckFailed(const char *file, int line, const char *cond,
34 u64 v1, u64 v2) {
35 // There is high probability that interceptors will check-fail as well,
36 // on the other hand there is no sense in processing interceptors
37 // since we are going to die soon.
38 ScopedIgnoreInterceptors ignore;
39 #if !SANITIZER_GO
40 cur_thread()->ignore_sync++;
41 cur_thread()->ignore_reads_and_writes++;
42 #endif
43 Printf("FATAL: ThreadSanitizer CHECK failed: "
44 "%s:%d \"%s\" (0x%zx, 0x%zx)\n",
45 file, line, cond, (uptr)v1, (uptr)v2);
46 PrintCurrentStackSlow(StackTrace::GetCurrentPc());
47 Die();
50 // Can be overriden by an application/test to intercept reports.
51 #ifdef TSAN_EXTERNAL_HOOKS
52 bool OnReport(const ReportDesc *rep, bool suppressed);
53 #else
54 SANITIZER_WEAK_CXX_DEFAULT_IMPL
55 bool OnReport(const ReportDesc *rep, bool suppressed) {
56 (void)rep;
57 return suppressed;
59 #endif
61 SANITIZER_WEAK_DEFAULT_IMPL
62 void __tsan_on_report(const ReportDesc *rep) {
63 (void)rep;
66 static void StackStripMain(SymbolizedStack *frames) {
67 SymbolizedStack *last_frame = nullptr;
68 SymbolizedStack *last_frame2 = nullptr;
69 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
70 last_frame2 = last_frame;
71 last_frame = cur;
74 if (last_frame2 == 0)
75 return;
76 #if !SANITIZER_GO
77 const char *last = last_frame->info.function;
78 const char *last2 = last_frame2->info.function;
79 // Strip frame above 'main'
80 if (last2 && 0 == internal_strcmp(last2, "main")) {
81 last_frame->ClearAll();
82 last_frame2->next = nullptr;
83 // Strip our internal thread start routine.
84 } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) {
85 last_frame->ClearAll();
86 last_frame2->next = nullptr;
87 // Strip global ctors init.
88 } else if (last && 0 == internal_strcmp(last, "__do_global_ctors_aux")) {
89 last_frame->ClearAll();
90 last_frame2->next = nullptr;
91 // If both are 0, then we probably just failed to symbolize.
92 } else if (last || last2) {
93 // Ensure that we recovered stack completely. Trimmed stack
94 // can actually happen if we do not instrument some code,
95 // so it's only a debug print. However we must try hard to not miss it
96 // due to our fault.
97 DPrintf("Bottom stack frame is missed\n");
99 #else
100 // The last frame always point into runtime (gosched0, goexit0, runtime.main).
101 last_frame->ClearAll();
102 last_frame2->next = nullptr;
103 #endif
106 ReportStack *SymbolizeStackId(u32 stack_id) {
107 if (stack_id == 0)
108 return 0;
109 StackTrace stack = StackDepotGet(stack_id);
110 if (stack.trace == nullptr)
111 return nullptr;
112 return SymbolizeStack(stack);
115 static ReportStack *SymbolizeStack(StackTrace trace) {
116 if (trace.size == 0)
117 return 0;
118 SymbolizedStack *top = nullptr;
119 for (uptr si = 0; si < trace.size; si++) {
120 const uptr pc = trace.trace[si];
121 uptr pc1 = pc;
122 // We obtain the return address, but we're interested in the previous
123 // instruction.
124 if ((pc & kExternalPCBit) == 0)
125 pc1 = StackTrace::GetPreviousInstructionPc(pc);
126 SymbolizedStack *ent = SymbolizeCode(pc1);
127 CHECK_NE(ent, 0);
128 SymbolizedStack *last = ent;
129 while (last->next) {
130 last->info.address = pc; // restore original pc for report
131 last = last->next;
133 last->info.address = pc; // restore original pc for report
134 last->next = top;
135 top = ent;
137 StackStripMain(top);
139 ReportStack *stack = ReportStack::New();
140 stack->frames = top;
141 return stack;
144 ScopedReport::ScopedReport(ReportType typ, uptr tag) {
145 ctx->thread_registry->CheckLocked();
146 void *mem = internal_alloc(MBlockReport, sizeof(ReportDesc));
147 rep_ = new(mem) ReportDesc;
148 rep_->typ = typ;
149 rep_->tag = tag;
150 ctx->report_mtx.Lock();
151 CommonSanitizerReportMutex.Lock();
154 ScopedReport::~ScopedReport() {
155 CommonSanitizerReportMutex.Unlock();
156 ctx->report_mtx.Unlock();
157 DestroyAndFree(rep_);
160 void ScopedReport::AddStack(StackTrace stack, bool suppressable) {
161 ReportStack **rs = rep_->stacks.PushBack();
162 *rs = SymbolizeStack(stack);
163 (*rs)->suppressable = suppressable;
166 void ScopedReport::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s,
167 StackTrace stack, const MutexSet *mset) {
168 void *mem = internal_alloc(MBlockReportMop, sizeof(ReportMop));
169 ReportMop *mop = new(mem) ReportMop;
170 rep_->mops.PushBack(mop);
171 mop->tid = s.tid();
172 mop->addr = addr + s.addr0();
173 mop->size = s.size();
174 mop->write = s.IsWrite();
175 mop->atomic = s.IsAtomic();
176 mop->stack = SymbolizeStack(stack);
177 mop->external_tag = external_tag;
178 if (mop->stack)
179 mop->stack->suppressable = true;
180 for (uptr i = 0; i < mset->Size(); i++) {
181 MutexSet::Desc d = mset->Get(i);
182 u64 mid = this->AddMutex(d.id);
183 ReportMopMutex mtx = {mid, d.write};
184 mop->mset.PushBack(mtx);
188 void ScopedReport::AddUniqueTid(int unique_tid) {
189 rep_->unique_tids.PushBack(unique_tid);
192 void ScopedReport::AddThread(const ThreadContext *tctx, bool suppressable) {
193 for (uptr i = 0; i < rep_->threads.Size(); i++) {
194 if ((u32)rep_->threads[i]->id == tctx->tid)
195 return;
197 void *mem = internal_alloc(MBlockReportThread, sizeof(ReportThread));
198 ReportThread *rt = new(mem) ReportThread;
199 rep_->threads.PushBack(rt);
200 rt->id = tctx->tid;
201 rt->os_id = tctx->os_id;
202 rt->running = (tctx->status == ThreadStatusRunning);
203 rt->name = internal_strdup(tctx->name);
204 rt->parent_tid = tctx->parent_tid;
205 rt->workerthread = tctx->workerthread;
206 rt->stack = 0;
207 rt->stack = SymbolizeStackId(tctx->creation_stack_id);
208 if (rt->stack)
209 rt->stack->suppressable = suppressable;
212 #if !SANITIZER_GO
213 static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) {
214 int unique_id = *(int *)arg;
215 return tctx->unique_id == (u32)unique_id;
218 static ThreadContext *FindThreadByUidLocked(int unique_id) {
219 ctx->thread_registry->CheckLocked();
220 return static_cast<ThreadContext *>(
221 ctx->thread_registry->FindThreadContextLocked(
222 FindThreadByUidLockedCallback, &unique_id));
225 static ThreadContext *FindThreadByTidLocked(int tid) {
226 ctx->thread_registry->CheckLocked();
227 return static_cast<ThreadContext*>(
228 ctx->thread_registry->GetThreadLocked(tid));
231 static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) {
232 uptr addr = (uptr)arg;
233 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
234 if (tctx->status != ThreadStatusRunning)
235 return false;
236 ThreadState *thr = tctx->thr;
237 CHECK(thr);
238 return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) ||
239 (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size));
242 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) {
243 ctx->thread_registry->CheckLocked();
244 ThreadContext *tctx = static_cast<ThreadContext*>(
245 ctx->thread_registry->FindThreadContextLocked(IsInStackOrTls,
246 (void*)addr));
247 if (!tctx)
248 return 0;
249 ThreadState *thr = tctx->thr;
250 CHECK(thr);
251 *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size);
252 return tctx;
254 #endif
256 void ScopedReport::AddThread(int unique_tid, bool suppressable) {
257 #if !SANITIZER_GO
258 if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid))
259 AddThread(tctx, suppressable);
260 #endif
263 void ScopedReport::AddMutex(const SyncVar *s) {
264 for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
265 if (rep_->mutexes[i]->id == s->uid)
266 return;
268 void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
269 ReportMutex *rm = new(mem) ReportMutex;
270 rep_->mutexes.PushBack(rm);
271 rm->id = s->uid;
272 rm->addr = s->addr;
273 rm->destroyed = false;
274 rm->stack = SymbolizeStackId(s->creation_stack_id);
277 u64 ScopedReport::AddMutex(u64 id) {
278 u64 uid = 0;
279 u64 mid = id;
280 uptr addr = SyncVar::SplitId(id, &uid);
281 SyncVar *s = ctx->metamap.GetIfExistsAndLock(addr, true);
282 // Check that the mutex is still alive.
283 // Another mutex can be created at the same address,
284 // so check uid as well.
285 if (s && s->CheckId(uid)) {
286 mid = s->uid;
287 AddMutex(s);
288 } else {
289 AddDeadMutex(id);
291 if (s)
292 s->mtx.Unlock();
293 return mid;
296 void ScopedReport::AddDeadMutex(u64 id) {
297 for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
298 if (rep_->mutexes[i]->id == id)
299 return;
301 void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
302 ReportMutex *rm = new(mem) ReportMutex;
303 rep_->mutexes.PushBack(rm);
304 rm->id = id;
305 rm->addr = 0;
306 rm->destroyed = true;
307 rm->stack = 0;
310 void ScopedReport::AddLocation(uptr addr, uptr size) {
311 if (addr == 0)
312 return;
313 #if !SANITIZER_GO
314 int fd = -1;
315 int creat_tid = kInvalidTid;
316 u32 creat_stack = 0;
317 if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) {
318 ReportLocation *loc = ReportLocation::New(ReportLocationFD);
319 loc->fd = fd;
320 loc->tid = creat_tid;
321 loc->stack = SymbolizeStackId(creat_stack);
322 rep_->locs.PushBack(loc);
323 ThreadContext *tctx = FindThreadByUidLocked(creat_tid);
324 if (tctx)
325 AddThread(tctx);
326 return;
328 MBlock *b = 0;
329 Allocator *a = allocator();
330 if (a->PointerIsMine((void*)addr)) {
331 void *block_begin = a->GetBlockBegin((void*)addr);
332 if (block_begin)
333 b = ctx->metamap.GetBlock((uptr)block_begin);
335 if (b != 0) {
336 ThreadContext *tctx = FindThreadByTidLocked(b->tid);
337 ReportLocation *loc = ReportLocation::New(ReportLocationHeap);
338 loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr);
339 loc->heap_chunk_size = b->siz;
340 loc->external_tag = b->tag;
341 loc->tid = tctx ? tctx->tid : b->tid;
342 loc->stack = SymbolizeStackId(b->stk);
343 rep_->locs.PushBack(loc);
344 if (tctx)
345 AddThread(tctx);
346 return;
348 bool is_stack = false;
349 if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) {
350 ReportLocation *loc =
351 ReportLocation::New(is_stack ? ReportLocationStack : ReportLocationTLS);
352 loc->tid = tctx->tid;
353 rep_->locs.PushBack(loc);
354 AddThread(tctx);
356 #endif
357 if (ReportLocation *loc = SymbolizeData(addr)) {
358 loc->suppressable = true;
359 rep_->locs.PushBack(loc);
360 return;
364 #if !SANITIZER_GO
365 void ScopedReport::AddSleep(u32 stack_id) {
366 rep_->sleep = SymbolizeStackId(stack_id);
368 #endif
370 void ScopedReport::SetCount(int count) {
371 rep_->count = count;
374 const ReportDesc *ScopedReport::GetReport() const {
375 return rep_;
378 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
379 MutexSet *mset, uptr *tag) {
380 // This function restores stack trace and mutex set for the thread/epoch.
381 // It does so by getting stack trace and mutex set at the beginning of
382 // trace part, and then replaying the trace till the given epoch.
383 Trace* trace = ThreadTrace(tid);
384 ReadLock l(&trace->mtx);
385 const int partidx = (epoch / kTracePartSize) % TraceParts();
386 TraceHeader* hdr = &trace->headers[partidx];
387 if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize)
388 return;
389 CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0);
390 const u64 epoch0 = RoundDown(epoch, TraceSize());
391 const u64 eend = epoch % TraceSize();
392 const u64 ebegin = RoundDown(eend, kTracePartSize);
393 DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n",
394 tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx);
395 Vector<uptr> stack(MBlockReportStack);
396 stack.Resize(hdr->stack0.size + 64);
397 for (uptr i = 0; i < hdr->stack0.size; i++) {
398 stack[i] = hdr->stack0.trace[i];
399 DPrintf2(" #%02zu: pc=%zx\n", i, stack[i]);
401 if (mset)
402 *mset = hdr->mset0;
403 uptr pos = hdr->stack0.size;
404 Event *events = (Event*)GetThreadTrace(tid);
405 for (uptr i = ebegin; i <= eend; i++) {
406 Event ev = events[i];
407 EventType typ = (EventType)(ev >> kEventPCBits);
408 uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1));
409 DPrintf2(" %zu typ=%d pc=%zx\n", i, typ, pc);
410 if (typ == EventTypeMop) {
411 stack[pos] = pc;
412 } else if (typ == EventTypeFuncEnter) {
413 if (stack.Size() < pos + 2)
414 stack.Resize(pos + 2);
415 stack[pos++] = pc;
416 } else if (typ == EventTypeFuncExit) {
417 if (pos > 0)
418 pos--;
420 if (mset) {
421 if (typ == EventTypeLock) {
422 mset->Add(pc, true, epoch0 + i);
423 } else if (typ == EventTypeUnlock) {
424 mset->Del(pc, true);
425 } else if (typ == EventTypeRLock) {
426 mset->Add(pc, false, epoch0 + i);
427 } else if (typ == EventTypeRUnlock) {
428 mset->Del(pc, false);
431 for (uptr j = 0; j <= pos; j++)
432 DPrintf2(" #%zu: %zx\n", j, stack[j]);
434 if (pos == 0 && stack[0] == 0)
435 return;
436 pos++;
437 stk->Init(&stack[0], pos);
438 ExtractTagFromStack(stk, tag);
441 static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2],
442 uptr addr_min, uptr addr_max) {
443 bool equal_stack = false;
444 RacyStacks hash;
445 bool equal_address = false;
446 RacyAddress ra0 = {addr_min, addr_max};
448 ReadLock lock(&ctx->racy_mtx);
449 if (flags()->suppress_equal_stacks) {
450 hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr));
451 hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr));
452 for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) {
453 if (hash == ctx->racy_stacks[i]) {
454 VPrintf(2,
455 "ThreadSanitizer: suppressing report as doubled (stack)\n");
456 equal_stack = true;
457 break;
461 if (flags()->suppress_equal_addresses) {
462 for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) {
463 RacyAddress ra2 = ctx->racy_addresses[i];
464 uptr maxbeg = max(ra0.addr_min, ra2.addr_min);
465 uptr minend = min(ra0.addr_max, ra2.addr_max);
466 if (maxbeg < minend) {
467 VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n");
468 equal_address = true;
469 break;
474 if (!equal_stack && !equal_address)
475 return false;
476 if (!equal_stack) {
477 Lock lock(&ctx->racy_mtx);
478 ctx->racy_stacks.PushBack(hash);
480 if (!equal_address) {
481 Lock lock(&ctx->racy_mtx);
482 ctx->racy_addresses.PushBack(ra0);
484 return true;
487 static void AddRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2],
488 uptr addr_min, uptr addr_max) {
489 Lock lock(&ctx->racy_mtx);
490 if (flags()->suppress_equal_stacks) {
491 RacyStacks hash;
492 hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr));
493 hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr));
494 ctx->racy_stacks.PushBack(hash);
496 if (flags()->suppress_equal_addresses) {
497 RacyAddress ra0 = {addr_min, addr_max};
498 ctx->racy_addresses.PushBack(ra0);
502 bool OutputReport(ThreadState *thr, const ScopedReport &srep) {
503 if (!flags()->report_bugs || thr->suppress_reports)
504 return false;
505 atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime());
506 const ReportDesc *rep = srep.GetReport();
507 CHECK_EQ(thr->current_report, nullptr);
508 thr->current_report = rep;
509 Suppression *supp = 0;
510 uptr pc_or_addr = 0;
511 for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++)
512 pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp);
513 for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++)
514 pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp);
515 for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++)
516 pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp);
517 for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++)
518 pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp);
519 if (pc_or_addr != 0) {
520 Lock lock(&ctx->fired_suppressions_mtx);
521 FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp};
522 ctx->fired_suppressions.push_back(s);
525 bool old_is_freeing = thr->is_freeing;
526 thr->is_freeing = false;
527 bool suppressed = OnReport(rep, pc_or_addr != 0);
528 thr->is_freeing = old_is_freeing;
529 if (suppressed) {
530 thr->current_report = nullptr;
531 return false;
534 PrintReport(rep);
535 __tsan_on_report(rep);
536 ctx->nreported++;
537 if (flags()->halt_on_error)
538 Die();
539 thr->current_report = nullptr;
540 return true;
543 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) {
544 ReadLock lock(&ctx->fired_suppressions_mtx);
545 for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
546 if (ctx->fired_suppressions[k].type != type)
547 continue;
548 for (uptr j = 0; j < trace.size; j++) {
549 FiredSuppression *s = &ctx->fired_suppressions[k];
550 if (trace.trace[j] == s->pc_or_addr) {
551 if (s->supp)
552 atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
553 return true;
557 return false;
560 static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) {
561 ReadLock lock(&ctx->fired_suppressions_mtx);
562 for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
563 if (ctx->fired_suppressions[k].type != type)
564 continue;
565 FiredSuppression *s = &ctx->fired_suppressions[k];
566 if (addr == s->pc_or_addr) {
567 if (s->supp)
568 atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
569 return true;
572 return false;
575 static bool RaceBetweenAtomicAndFree(ThreadState *thr) {
576 Shadow s0(thr->racy_state[0]);
577 Shadow s1(thr->racy_state[1]);
578 CHECK(!(s0.IsAtomic() && s1.IsAtomic()));
579 if (!s0.IsAtomic() && !s1.IsAtomic())
580 return true;
581 if (s0.IsAtomic() && s1.IsFreed())
582 return true;
583 if (s1.IsAtomic() && thr->is_freeing)
584 return true;
585 return false;
588 void ReportRace(ThreadState *thr) {
589 CheckNoLocks(thr);
591 // Symbolizer makes lots of intercepted calls. If we try to process them,
592 // at best it will cause deadlocks on internal mutexes.
593 ScopedIgnoreInterceptors ignore;
595 if (!flags()->report_bugs)
596 return;
597 if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr))
598 return;
600 bool freed = false;
602 Shadow s(thr->racy_state[1]);
603 freed = s.GetFreedAndReset();
604 thr->racy_state[1] = s.raw();
607 uptr addr = ShadowToMem((uptr)thr->racy_shadow_addr);
608 uptr addr_min = 0;
609 uptr addr_max = 0;
611 uptr a0 = addr + Shadow(thr->racy_state[0]).addr0();
612 uptr a1 = addr + Shadow(thr->racy_state[1]).addr0();
613 uptr e0 = a0 + Shadow(thr->racy_state[0]).size();
614 uptr e1 = a1 + Shadow(thr->racy_state[1]).size();
615 addr_min = min(a0, a1);
616 addr_max = max(e0, e1);
617 if (IsExpectedReport(addr_min, addr_max - addr_min))
618 return;
621 ReportType typ = ReportTypeRace;
622 if (thr->is_vptr_access && freed)
623 typ = ReportTypeVptrUseAfterFree;
624 else if (thr->is_vptr_access)
625 typ = ReportTypeVptrRace;
626 else if (freed)
627 typ = ReportTypeUseAfterFree;
629 if (IsFiredSuppression(ctx, typ, addr))
630 return;
632 const uptr kMop = 2;
633 VarSizeStackTrace traces[kMop];
634 uptr tags[kMop] = {kExternalTagNone};
635 uptr toppc = TraceTopPC(thr);
636 if (toppc >> kEventPCBits) {
637 // This is a work-around for a known issue.
638 // The scenario where this happens is rather elaborate and requires
639 // an instrumented __sanitizer_report_error_summary callback and
640 // a __tsan_symbolize_external callback and a race during a range memory
641 // access larger than 8 bytes. MemoryAccessRange adds the current PC to
642 // the trace and starts processing memory accesses. A first memory access
643 // triggers a race, we report it and call the instrumented
644 // __sanitizer_report_error_summary, which adds more stuff to the trace
645 // since it is intrumented. Then a second memory access in MemoryAccessRange
646 // also triggers a race and we get here and call TraceTopPC to get the
647 // current PC, however now it contains some unrelated events from the
648 // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit
649 // event. Later we subtract -1 from it (in GetPreviousInstructionPc)
650 // and the resulting PC has kExternalPCBit set, so we pass it to
651 // __tsan_symbolize_external. __tsan_symbolize_external is within its rights
652 // to crash since the PC is completely bogus.
653 // test/tsan/double_race.cc contains a test case for this.
654 toppc = 0;
656 ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]);
657 if (IsFiredSuppression(ctx, typ, traces[0]))
658 return;
660 // MutexSet is too large to live on stack.
661 Vector<u64> mset_buffer(MBlockScopedBuf);
662 mset_buffer.Resize(sizeof(MutexSet) / sizeof(u64) + 1);
663 MutexSet *mset2 = new(&mset_buffer[0]) MutexSet();
665 Shadow s2(thr->racy_state[1]);
666 RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]);
667 if (IsFiredSuppression(ctx, typ, traces[1]))
668 return;
670 if (HandleRacyStacks(thr, traces, addr_min, addr_max))
671 return;
673 // If any of the accesses has a tag, treat this as an "external" race.
674 uptr tag = kExternalTagNone;
675 for (uptr i = 0; i < kMop; i++) {
676 if (tags[i] != kExternalTagNone) {
677 typ = ReportTypeExternalRace;
678 tag = tags[i];
679 break;
683 ThreadRegistryLock l0(ctx->thread_registry);
684 ScopedReport rep(typ, tag);
685 for (uptr i = 0; i < kMop; i++) {
686 Shadow s(thr->racy_state[i]);
687 rep.AddMemoryAccess(addr, tags[i], s, traces[i],
688 i == 0 ? &thr->mset : mset2);
691 for (uptr i = 0; i < kMop; i++) {
692 FastState s(thr->racy_state[i]);
693 ThreadContext *tctx = static_cast<ThreadContext*>(
694 ctx->thread_registry->GetThreadLocked(s.tid()));
695 if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1)
696 continue;
697 rep.AddThread(tctx);
700 rep.AddLocation(addr_min, addr_max - addr_min);
702 #if !SANITIZER_GO
703 { // NOLINT
704 Shadow s(thr->racy_state[1]);
705 if (s.epoch() <= thr->last_sleep_clock.get(s.tid()))
706 rep.AddSleep(thr->last_sleep_stack_id);
708 #endif
710 if (!OutputReport(thr, rep))
711 return;
713 AddRacyStacks(thr, traces, addr_min, addr_max);
716 void PrintCurrentStack(ThreadState *thr, uptr pc) {
717 VarSizeStackTrace trace;
718 ObtainCurrentStack(thr, pc, &trace);
719 PrintStack(SymbolizeStack(trace));
722 // Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes
723 // __sanitizer_print_stack_trace exists in the actual unwinded stack, but
724 // tail-call to PrintCurrentStackSlow breaks this assumption because
725 // __sanitizer_print_stack_trace disappears after tail-call.
726 // However, this solution is not reliable enough, please see dvyukov's comment
727 // http://reviews.llvm.org/D19148#406208
728 // Also see PR27280 comment 2 and 3 for breaking examples and analysis.
729 ALWAYS_INLINE
730 void PrintCurrentStackSlow(uptr pc) {
731 #if !SANITIZER_GO
732 BufferedStackTrace *ptrace =
733 new(internal_alloc(MBlockStackTrace, sizeof(BufferedStackTrace)))
734 BufferedStackTrace();
735 ptrace->Unwind(kStackTraceMax, pc, 0, 0, 0, 0, false);
736 for (uptr i = 0; i < ptrace->size / 2; i++) {
737 uptr tmp = ptrace->trace_buffer[i];
738 ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1];
739 ptrace->trace_buffer[ptrace->size - i - 1] = tmp;
741 PrintStack(SymbolizeStack(*ptrace));
742 #endif
745 } // namespace __tsan
747 using namespace __tsan;
749 extern "C" {
750 SANITIZER_INTERFACE_ATTRIBUTE
751 void __sanitizer_print_stack_trace() {
752 PrintCurrentStackSlow(StackTrace::GetCurrentPc());
754 } // extern "C"