2007-01-03 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-dce.c
blobd8b32ef78b5cd9a12ac1d8fbd328b3f0029b85d3
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
70 static struct stmt_stats
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
78 static VEC(tree,heap) *worklist;
80 /* Vector indicating an SSA name has already been processed and marked
81 as necessary. */
82 static sbitmap processed;
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary;
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
108 /* Execute code that follows the macro for each edge (given number
109 EDGE_NUMBER within the CODE) for which the block with index N is
110 control dependent. */
111 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
112 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
113 (EDGE_NUMBER), (BI))
116 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
117 static inline void
118 set_control_dependence_map_bit (basic_block bb, int edge_index)
120 if (bb == ENTRY_BLOCK_PTR)
121 return;
122 gcc_assert (bb != EXIT_BLOCK_PTR);
123 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
126 /* Clear all control dependences for block BB. */
127 static inline void
128 clear_control_dependence_bitmap (basic_block bb)
130 bitmap_clear (control_dependence_map[bb->index]);
134 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
135 This function is necessary because some blocks have negative numbers. */
137 static inline basic_block
138 find_pdom (basic_block block)
140 gcc_assert (block != ENTRY_BLOCK_PTR);
142 if (block == EXIT_BLOCK_PTR)
143 return EXIT_BLOCK_PTR;
144 else
146 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
147 if (! bb)
148 return EXIT_BLOCK_PTR;
149 return bb;
154 /* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
157 static void
158 find_control_dependence (struct edge_list *el, int edge_index)
160 basic_block current_block;
161 basic_block ending_block;
163 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
165 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
166 ending_block = single_succ (ENTRY_BLOCK_PTR);
167 else
168 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
170 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
171 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
172 current_block = find_pdom (current_block))
174 edge e = INDEX_EDGE (el, edge_index);
176 /* For abnormal edges, we don't make current_block control
177 dependent because instructions that throw are always necessary
178 anyway. */
179 if (e->flags & EDGE_ABNORMAL)
180 continue;
182 set_control_dependence_map_bit (current_block, edge_index);
187 /* Record all blocks' control dependences on all edges in the edge
188 list EL, ala Morgan, Section 3.6. */
190 static void
191 find_all_control_dependences (struct edge_list *el)
193 int i;
195 for (i = 0; i < NUM_EDGES (el); ++i)
196 find_control_dependence (el, i);
200 #define NECESSARY(stmt) stmt->base.asm_written_flag
202 /* If STMT is not already marked necessary, mark it, and add it to the
203 worklist if ADD_TO_WORKLIST is true. */
204 static inline void
205 mark_stmt_necessary (tree stmt, bool add_to_worklist)
207 gcc_assert (stmt);
208 gcc_assert (!DECL_P (stmt));
210 if (NECESSARY (stmt))
211 return;
213 if (dump_file && (dump_flags & TDF_DETAILS))
215 fprintf (dump_file, "Marking useful stmt: ");
216 print_generic_stmt (dump_file, stmt, TDF_SLIM);
217 fprintf (dump_file, "\n");
220 NECESSARY (stmt) = 1;
221 if (add_to_worklist)
222 VEC_safe_push (tree, heap, worklist, stmt);
226 /* Mark the statement defining operand OP as necessary. */
228 static inline void
229 mark_operand_necessary (tree op)
231 tree stmt;
232 int ver;
234 gcc_assert (op);
236 ver = SSA_NAME_VERSION (op);
237 if (TEST_BIT (processed, ver))
238 return;
239 SET_BIT (processed, ver);
241 stmt = SSA_NAME_DEF_STMT (op);
242 gcc_assert (stmt);
244 if (NECESSARY (stmt) || IS_EMPTY_STMT (stmt))
245 return;
247 NECESSARY (stmt) = 1;
248 VEC_safe_push (tree, heap, worklist, stmt);
252 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
253 it can make other statements necessary.
255 If AGGRESSIVE is false, control statements are conservatively marked as
256 necessary. */
258 static void
259 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
261 stmt_ann_t ann;
262 tree op;
264 /* With non-call exceptions, we have to assume that all statements could
265 throw. If a statement may throw, it is inherently necessary. */
266 if (flag_non_call_exceptions
267 && tree_could_throw_p (stmt))
269 mark_stmt_necessary (stmt, true);
270 return;
273 /* Statements that are implicitly live. Most function calls, asm and return
274 statements are required. Labels and BIND_EXPR nodes are kept because
275 they are control flow, and we have no way of knowing whether they can be
276 removed. DCE can eliminate all the other statements in a block, and CFG
277 can then remove the block and labels. */
278 switch (TREE_CODE (stmt))
280 case BIND_EXPR:
281 case LABEL_EXPR:
282 case CASE_LABEL_EXPR:
283 mark_stmt_necessary (stmt, false);
284 return;
286 case ASM_EXPR:
287 case RESX_EXPR:
288 case RETURN_EXPR:
289 mark_stmt_necessary (stmt, true);
290 return;
292 case CALL_EXPR:
293 /* Most, but not all function calls are required. Function calls that
294 produce no result and have no side effects (i.e. const pure
295 functions) are unnecessary. */
296 if (TREE_SIDE_EFFECTS (stmt))
297 mark_stmt_necessary (stmt, true);
298 return;
300 case GIMPLE_MODIFY_STMT:
301 op = get_call_expr_in (stmt);
302 if (op && TREE_SIDE_EFFECTS (op))
304 mark_stmt_necessary (stmt, true);
305 return;
308 /* These values are mildly magic bits of the EH runtime. We can't
309 see the entire lifetime of these values until landing pads are
310 generated. */
311 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == EXC_PTR_EXPR
312 || TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == FILTER_EXPR)
314 mark_stmt_necessary (stmt, true);
315 return;
317 break;
319 case GOTO_EXPR:
320 gcc_assert (!simple_goto_p (stmt));
321 mark_stmt_necessary (stmt, true);
322 return;
324 case COND_EXPR:
325 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
326 /* Fall through. */
328 case SWITCH_EXPR:
329 if (! aggressive)
330 mark_stmt_necessary (stmt, true);
331 break;
333 default:
334 break;
337 ann = stmt_ann (stmt);
339 /* If the statement has volatile operands, it needs to be preserved.
340 Same for statements that can alter control flow in unpredictable
341 ways. */
342 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
344 mark_stmt_necessary (stmt, true);
345 return;
348 if (is_hidden_global_store (stmt))
350 mark_stmt_necessary (stmt, true);
351 return;
354 return;
358 /* Make corresponding control dependent edges necessary. We only
359 have to do this once for each basic block, so we clear the bitmap
360 after we're done. */
361 static void
362 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
364 bitmap_iterator bi;
365 unsigned edge_number;
367 gcc_assert (bb != EXIT_BLOCK_PTR);
369 if (bb == ENTRY_BLOCK_PTR)
370 return;
372 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
374 tree t;
375 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
377 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
378 continue;
379 SET_BIT (last_stmt_necessary, cd_bb->index);
381 t = last_stmt (cd_bb);
382 if (t && is_ctrl_stmt (t))
383 mark_stmt_necessary (t, true);
388 /* Find obviously necessary statements. These are things like most function
389 calls, and stores to file level variables.
391 If EL is NULL, control statements are conservatively marked as
392 necessary. Otherwise it contains the list of edges used by control
393 dependence analysis. */
395 static void
396 find_obviously_necessary_stmts (struct edge_list *el)
398 basic_block bb;
399 block_stmt_iterator i;
400 edge e;
402 FOR_EACH_BB (bb)
404 tree phi;
406 /* PHI nodes are never inherently necessary. */
407 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
408 NECESSARY (phi) = 0;
410 /* Check all statements in the block. */
411 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
413 tree stmt = bsi_stmt (i);
414 NECESSARY (stmt) = 0;
415 mark_stmt_if_obviously_necessary (stmt, el != NULL);
419 if (el)
421 /* Prevent the loops from being removed. We must keep the infinite loops,
422 and we currently do not have a means to recognize the finite ones. */
423 FOR_EACH_BB (bb)
425 edge_iterator ei;
426 FOR_EACH_EDGE (e, ei, bb->succs)
427 if (e->flags & EDGE_DFS_BACK)
428 mark_control_dependent_edges_necessary (e->dest, el);
434 /* Propagate necessity using the operands of necessary statements.
435 Process the uses on each statement in the worklist, and add all
436 feeding statements which contribute to the calculation of this
437 value to the worklist.
439 In conservative mode, EL is NULL. */
441 static void
442 propagate_necessity (struct edge_list *el)
444 tree stmt;
445 bool aggressive = (el ? true : false);
447 if (dump_file && (dump_flags & TDF_DETAILS))
448 fprintf (dump_file, "\nProcessing worklist:\n");
450 while (VEC_length (tree, worklist) > 0)
452 /* Take STMT from worklist. */
453 stmt = VEC_pop (tree, worklist);
455 if (dump_file && (dump_flags & TDF_DETAILS))
457 fprintf (dump_file, "processing: ");
458 print_generic_stmt (dump_file, stmt, TDF_SLIM);
459 fprintf (dump_file, "\n");
462 if (aggressive)
464 /* Mark the last statements of the basic blocks that the block
465 containing STMT is control dependent on, but only if we haven't
466 already done so. */
467 basic_block bb = bb_for_stmt (stmt);
468 if (bb != ENTRY_BLOCK_PTR
469 && ! TEST_BIT (visited_control_parents, bb->index))
471 SET_BIT (visited_control_parents, bb->index);
472 mark_control_dependent_edges_necessary (bb, el);
476 if (TREE_CODE (stmt) == PHI_NODE)
478 /* PHI nodes are somewhat special in that each PHI alternative has
479 data and control dependencies. All the statements feeding the
480 PHI node's arguments are always necessary. In aggressive mode,
481 we also consider the control dependent edges leading to the
482 predecessor block associated with each PHI alternative as
483 necessary. */
484 int k;
486 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
488 tree arg = PHI_ARG_DEF (stmt, k);
489 if (TREE_CODE (arg) == SSA_NAME)
490 mark_operand_necessary (arg);
493 if (aggressive)
495 for (k = 0; k < PHI_NUM_ARGS (stmt); k++)
497 basic_block arg_bb = PHI_ARG_EDGE (stmt, k)->src;
498 if (arg_bb != ENTRY_BLOCK_PTR
499 && ! TEST_BIT (visited_control_parents, arg_bb->index))
501 SET_BIT (visited_control_parents, arg_bb->index);
502 mark_control_dependent_edges_necessary (arg_bb, el);
507 else
509 /* Propagate through the operands. Examine all the USE, VUSE and
510 VDEF operands in this statement. Mark all the statements
511 which feed this statement's uses as necessary. The
512 operands of VDEF expressions are also needed as they
513 represent potential definitions that may reach this
514 statement (VDEF operands allow us to follow def-def
515 links). */
516 ssa_op_iter iter;
517 tree use;
519 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_USES)
520 mark_operand_necessary (use);
526 /* Remove dead PHI nodes from block BB. */
528 static void
529 remove_dead_phis (basic_block bb)
531 tree prev, phi;
533 prev = NULL_TREE;
534 phi = phi_nodes (bb);
535 while (phi)
537 stats.total_phis++;
539 if (! NECESSARY (phi))
541 tree next = PHI_CHAIN (phi);
543 if (dump_file && (dump_flags & TDF_DETAILS))
545 fprintf (dump_file, "Deleting : ");
546 print_generic_stmt (dump_file, phi, TDF_SLIM);
547 fprintf (dump_file, "\n");
550 remove_phi_node (phi, prev, true);
551 stats.removed_phis++;
552 phi = next;
554 else
556 prev = phi;
557 phi = PHI_CHAIN (phi);
563 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
564 containing I so that we don't have to look it up. */
566 static void
567 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
569 tree t = bsi_stmt (*i);
571 if (dump_file && (dump_flags & TDF_DETAILS))
573 fprintf (dump_file, "Deleting : ");
574 print_generic_stmt (dump_file, t, TDF_SLIM);
575 fprintf (dump_file, "\n");
578 stats.removed++;
580 /* If we have determined that a conditional branch statement contributes
581 nothing to the program, then we not only remove it, but we also change
582 the flow graph so that the current block will simply fall-thru to its
583 immediate post-dominator. The blocks we are circumventing will be
584 removed by cleanup_tree_cfg if this change in the flow graph makes them
585 unreachable. */
586 if (is_ctrl_stmt (t))
588 basic_block post_dom_bb;
590 /* The post dominance info has to be up-to-date. */
591 gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
592 /* Get the immediate post dominator of bb. */
593 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
595 /* There are three particularly problematical cases.
597 1. Blocks that do not have an immediate post dominator. This
598 can happen with infinite loops.
600 2. Blocks that are only post dominated by the exit block. These
601 can also happen for infinite loops as we create fake edges
602 in the dominator tree.
604 3. If the post dominator has PHI nodes we may be able to compute
605 the right PHI args for them.
608 In each of these cases we must remove the control statement
609 as it may reference SSA_NAMEs which are going to be removed and
610 we remove all but one outgoing edge from the block. */
611 if (! post_dom_bb
612 || post_dom_bb == EXIT_BLOCK_PTR
613 || phi_nodes (post_dom_bb))
615 else
617 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
618 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
619 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
621 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
622 EDGE_SUCC (bb, 0)->count = bb->count;
624 /* The edge is no longer associated with a conditional, so it does
625 not have TRUE/FALSE flags. */
626 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
628 /* The lone outgoing edge from BB will be a fallthru edge. */
629 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
631 /* Remove the remaining the outgoing edges. */
632 while (!single_succ_p (bb))
634 /* FIXME. When we remove the edge, we modify the CFG, which
635 in turn modifies the dominator and post-dominator tree.
636 Is it safe to postpone recomputing the dominator and
637 post-dominator tree until the end of this pass given that
638 the post-dominators are used above? */
639 cfg_altered = true;
640 remove_edge (EDGE_SUCC (bb, 1));
644 bsi_remove (i, true);
645 release_defs (t);
649 /* Eliminate unnecessary statements. Any instruction not marked as necessary
650 contributes nothing to the program, and can be deleted. */
652 static void
653 eliminate_unnecessary_stmts (void)
655 basic_block bb;
656 block_stmt_iterator i;
658 if (dump_file && (dump_flags & TDF_DETAILS))
659 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
661 clear_special_calls ();
662 FOR_EACH_BB (bb)
664 /* Remove dead PHI nodes. */
665 remove_dead_phis (bb);
668 FOR_EACH_BB (bb)
670 /* Remove dead statements. */
671 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
673 tree t = bsi_stmt (i);
675 stats.total++;
677 /* If `i' is not necessary then remove it. */
678 if (! NECESSARY (t))
679 remove_dead_stmt (&i, bb);
680 else
682 tree call = get_call_expr_in (t);
683 if (call)
684 notice_special_calls (call);
685 bsi_next (&i);
692 /* Print out removed statement statistics. */
694 static void
695 print_stats (void)
697 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
699 float percg;
701 percg = ((float) stats.removed / (float) stats.total) * 100;
702 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
703 stats.removed, stats.total, (int) percg);
705 if (stats.total_phis == 0)
706 percg = 0;
707 else
708 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
710 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
711 stats.removed_phis, stats.total_phis, (int) percg);
715 /* Initialization for this pass. Set up the used data structures. */
717 static void
718 tree_dce_init (bool aggressive)
720 memset ((void *) &stats, 0, sizeof (stats));
722 if (aggressive)
724 int i;
726 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
727 for (i = 0; i < last_basic_block; ++i)
728 control_dependence_map[i] = BITMAP_ALLOC (NULL);
730 last_stmt_necessary = sbitmap_alloc (last_basic_block);
731 sbitmap_zero (last_stmt_necessary);
734 processed = sbitmap_alloc (num_ssa_names + 1);
735 sbitmap_zero (processed);
737 worklist = VEC_alloc (tree, heap, 64);
738 cfg_altered = false;
741 /* Cleanup after this pass. */
743 static void
744 tree_dce_done (bool aggressive)
746 if (aggressive)
748 int i;
750 for (i = 0; i < last_basic_block; ++i)
751 BITMAP_FREE (control_dependence_map[i]);
752 free (control_dependence_map);
754 sbitmap_free (visited_control_parents);
755 sbitmap_free (last_stmt_necessary);
758 sbitmap_free (processed);
760 VEC_free (tree, heap, worklist);
763 /* Main routine to eliminate dead code.
765 AGGRESSIVE controls the aggressiveness of the algorithm.
766 In conservative mode, we ignore control dependence and simply declare
767 all but the most trivially dead branches necessary. This mode is fast.
768 In aggressive mode, control dependences are taken into account, which
769 results in more dead code elimination, but at the cost of some time.
771 FIXME: Aggressive mode before PRE doesn't work currently because
772 the dominance info is not invalidated after DCE1. This is
773 not an issue right now because we only run aggressive DCE
774 as the last tree SSA pass, but keep this in mind when you
775 start experimenting with pass ordering. */
777 static void
778 perform_tree_ssa_dce (bool aggressive)
780 struct edge_list *el = NULL;
782 tree_dce_init (aggressive);
784 if (aggressive)
786 /* Compute control dependence. */
787 timevar_push (TV_CONTROL_DEPENDENCES);
788 calculate_dominance_info (CDI_POST_DOMINATORS);
789 el = create_edge_list ();
790 find_all_control_dependences (el);
791 timevar_pop (TV_CONTROL_DEPENDENCES);
793 visited_control_parents = sbitmap_alloc (last_basic_block);
794 sbitmap_zero (visited_control_parents);
796 mark_dfs_back_edges ();
799 find_obviously_necessary_stmts (el);
801 propagate_necessity (el);
803 eliminate_unnecessary_stmts ();
805 if (aggressive)
806 free_dominance_info (CDI_POST_DOMINATORS);
808 /* If we removed paths in the CFG, then we need to update
809 dominators as well. I haven't investigated the possibility
810 of incrementally updating dominators. */
811 if (cfg_altered)
812 free_dominance_info (CDI_DOMINATORS);
814 /* Debugging dumps. */
815 if (dump_file)
816 print_stats ();
818 tree_dce_done (aggressive);
820 free_edge_list (el);
823 /* Pass entry points. */
824 static unsigned int
825 tree_ssa_dce (void)
827 perform_tree_ssa_dce (/*aggressive=*/false);
828 return 0;
831 static unsigned int
832 tree_ssa_dce_loop (void)
834 perform_tree_ssa_dce (/*aggressive=*/false);
835 free_numbers_of_iterations_estimates ();
836 scev_reset ();
837 return 0;
840 static unsigned int
841 tree_ssa_cd_dce (void)
843 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
844 return 0;
847 static bool
848 gate_dce (void)
850 return flag_tree_dce != 0;
853 struct tree_opt_pass pass_dce =
855 "dce", /* name */
856 gate_dce, /* gate */
857 tree_ssa_dce, /* execute */
858 NULL, /* sub */
859 NULL, /* next */
860 0, /* static_pass_number */
861 TV_TREE_DCE, /* tv_id */
862 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 TODO_dump_func
867 | TODO_update_ssa
868 | TODO_cleanup_cfg
869 | TODO_ggc_collect
870 | TODO_verify_ssa
871 | TODO_remove_unused_locals, /* todo_flags_finish */
872 0 /* letter */
875 struct tree_opt_pass pass_dce_loop =
877 "dceloop", /* name */
878 gate_dce, /* gate */
879 tree_ssa_dce_loop, /* execute */
880 NULL, /* sub */
881 NULL, /* next */
882 0, /* static_pass_number */
883 TV_TREE_DCE, /* tv_id */
884 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
885 0, /* properties_provided */
886 0, /* properties_destroyed */
887 0, /* todo_flags_start */
888 TODO_dump_func
889 | TODO_update_ssa
890 | TODO_cleanup_cfg
891 | TODO_verify_ssa, /* todo_flags_finish */
892 0 /* letter */
895 struct tree_opt_pass pass_cd_dce =
897 "cddce", /* name */
898 gate_dce, /* gate */
899 tree_ssa_cd_dce, /* execute */
900 NULL, /* sub */
901 NULL, /* next */
902 0, /* static_pass_number */
903 TV_TREE_CD_DCE, /* tv_id */
904 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
905 0, /* properties_provided */
906 0, /* properties_destroyed */
907 0, /* todo_flags_start */
908 TODO_dump_func
909 | TODO_update_ssa
910 | TODO_cleanup_cfg
911 | TODO_ggc_collect
912 | TODO_verify_ssa
913 | TODO_verify_flow, /* todo_flags_finish */
914 0 /* letter */