2007-01-03 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / loop-unroll.c
blob63eebed31830e3677637e3db700cc54b224c338c
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 /* Information about accumulators to expand. */
89 struct var_to_expand
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
103 /* Information about optimization applied in
104 the unrolled loop. */
106 struct opt_info
108 htab_t insns_to_split; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
110 to expand. */
111 unsigned first_new_block; /* The first basic block that was
112 duplicated. */
113 basic_block loop_exit; /* The loop exit basic block. */
114 basic_block loop_preheader; /* The loop preheader basic block. */
117 static void decide_unrolling_and_peeling (int);
118 static void peel_loops_completely (int);
119 static void decide_peel_simple (struct loop *, int);
120 static void decide_peel_once_rolling (struct loop *, int);
121 static void decide_peel_completely (struct loop *, int);
122 static void decide_unroll_stupid (struct loop *, int);
123 static void decide_unroll_constant_iterations (struct loop *, int);
124 static void decide_unroll_runtime_iterations (struct loop *, int);
125 static void peel_loop_simple (struct loop *);
126 static void peel_loop_completely (struct loop *);
127 static void unroll_loop_stupid (struct loop *);
128 static void unroll_loop_constant_iterations (struct loop *);
129 static void unroll_loop_runtime_iterations (struct loop *);
130 static struct opt_info *analyze_insns_in_loop (struct loop *);
131 static void opt_info_start_duplication (struct opt_info *);
132 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info *);
134 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
135 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
136 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
137 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx get_expansion (struct var_to_expand *);
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
144 void
145 unroll_and_peel_loops (int flags)
147 struct loop *loop;
148 bool check;
149 loop_iterator li;
151 /* First perform complete loop peeling (it is almost surely a win,
152 and affects parameters for further decision a lot). */
153 peel_loops_completely (flags);
155 /* Now decide rest of unrolling and peeling. */
156 decide_unrolling_and_peeling (flags);
158 /* Scan the loops, inner ones first. */
159 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
161 check = true;
162 /* And perform the appropriate transformations. */
163 switch (loop->lpt_decision.decision)
165 case LPT_PEEL_COMPLETELY:
166 /* Already done. */
167 gcc_unreachable ();
168 case LPT_PEEL_SIMPLE:
169 peel_loop_simple (loop);
170 break;
171 case LPT_UNROLL_CONSTANT:
172 unroll_loop_constant_iterations (loop);
173 break;
174 case LPT_UNROLL_RUNTIME:
175 unroll_loop_runtime_iterations (loop);
176 break;
177 case LPT_UNROLL_STUPID:
178 unroll_loop_stupid (loop);
179 break;
180 case LPT_NONE:
181 check = false;
182 break;
183 default:
184 gcc_unreachable ();
186 if (check)
188 #ifdef ENABLE_CHECKING
189 verify_dominators (CDI_DOMINATORS);
190 verify_loop_structure ();
191 #endif
195 iv_analysis_done ();
198 /* Check whether exit of the LOOP is at the end of loop body. */
200 static bool
201 loop_exit_at_end_p (struct loop *loop)
203 struct niter_desc *desc = get_simple_loop_desc (loop);
204 rtx insn;
206 if (desc->in_edge->dest != loop->latch)
207 return false;
209 /* Check that the latch is empty. */
210 FOR_BB_INSNS (loop->latch, insn)
212 if (INSN_P (insn))
213 return false;
216 return true;
219 /* Depending on FLAGS, check whether to peel loops completely and do so. */
220 static void
221 peel_loops_completely (int flags)
223 struct loop *loop;
224 loop_iterator li;
226 /* Scan the loops, the inner ones first. */
227 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
229 loop->lpt_decision.decision = LPT_NONE;
231 if (dump_file)
232 fprintf (dump_file,
233 "\n;; *** Considering loop %d for complete peeling ***\n",
234 loop->num);
236 loop->ninsns = num_loop_insns (loop);
238 decide_peel_once_rolling (loop, flags);
239 if (loop->lpt_decision.decision == LPT_NONE)
240 decide_peel_completely (loop, flags);
242 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
244 peel_loop_completely (loop);
245 #ifdef ENABLE_CHECKING
246 verify_dominators (CDI_DOMINATORS);
247 verify_loop_structure ();
248 #endif
253 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
254 static void
255 decide_unrolling_and_peeling (int flags)
257 struct loop *loop;
258 loop_iterator li;
260 /* Scan the loops, inner ones first. */
261 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
263 loop->lpt_decision.decision = LPT_NONE;
265 if (dump_file)
266 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
268 /* Do not peel cold areas. */
269 if (!maybe_hot_bb_p (loop->header))
271 if (dump_file)
272 fprintf (dump_file, ";; Not considering loop, cold area\n");
273 continue;
276 /* Can the loop be manipulated? */
277 if (!can_duplicate_loop_p (loop))
279 if (dump_file)
280 fprintf (dump_file,
281 ";; Not considering loop, cannot duplicate\n");
282 continue;
285 /* Skip non-innermost loops. */
286 if (loop->inner)
288 if (dump_file)
289 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
290 continue;
293 loop->ninsns = num_loop_insns (loop);
294 loop->av_ninsns = average_num_loop_insns (loop);
296 /* Try transformations one by one in decreasing order of
297 priority. */
299 decide_unroll_constant_iterations (loop, flags);
300 if (loop->lpt_decision.decision == LPT_NONE)
301 decide_unroll_runtime_iterations (loop, flags);
302 if (loop->lpt_decision.decision == LPT_NONE)
303 decide_unroll_stupid (loop, flags);
304 if (loop->lpt_decision.decision == LPT_NONE)
305 decide_peel_simple (loop, flags);
309 /* Decide whether the LOOP is once rolling and suitable for complete
310 peeling. */
311 static void
312 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
314 struct niter_desc *desc;
316 if (dump_file)
317 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
319 /* Is the loop small enough? */
320 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
322 if (dump_file)
323 fprintf (dump_file, ";; Not considering loop, is too big\n");
324 return;
327 /* Check for simple loops. */
328 desc = get_simple_loop_desc (loop);
330 /* Check number of iterations. */
331 if (!desc->simple_p
332 || desc->assumptions
333 || desc->infinite
334 || !desc->const_iter
335 || desc->niter != 0)
337 if (dump_file)
338 fprintf (dump_file,
339 ";; Unable to prove that the loop rolls exactly once\n");
340 return;
343 /* Success. */
344 if (dump_file)
345 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
346 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
349 /* Decide whether the LOOP is suitable for complete peeling. */
350 static void
351 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
353 unsigned npeel;
354 struct niter_desc *desc;
356 if (dump_file)
357 fprintf (dump_file, "\n;; Considering peeling completely\n");
359 /* Skip non-innermost loops. */
360 if (loop->inner)
362 if (dump_file)
363 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
364 return;
367 /* Do not peel cold areas. */
368 if (!maybe_hot_bb_p (loop->header))
370 if (dump_file)
371 fprintf (dump_file, ";; Not considering loop, cold area\n");
372 return;
375 /* Can the loop be manipulated? */
376 if (!can_duplicate_loop_p (loop))
378 if (dump_file)
379 fprintf (dump_file,
380 ";; Not considering loop, cannot duplicate\n");
381 return;
384 /* npeel = number of iterations to peel. */
385 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
386 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
387 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
389 /* Is the loop small enough? */
390 if (!npeel)
392 if (dump_file)
393 fprintf (dump_file, ";; Not considering loop, is too big\n");
394 return;
397 /* Check for simple loops. */
398 desc = get_simple_loop_desc (loop);
400 /* Check number of iterations. */
401 if (!desc->simple_p
402 || desc->assumptions
403 || !desc->const_iter
404 || desc->infinite)
406 if (dump_file)
407 fprintf (dump_file,
408 ";; Unable to prove that the loop iterates constant times\n");
409 return;
412 if (desc->niter > npeel - 1)
414 if (dump_file)
416 fprintf (dump_file,
417 ";; Not peeling loop completely, rolls too much (");
418 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
419 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
421 return;
424 /* Success. */
425 if (dump_file)
426 fprintf (dump_file, ";; Decided to peel loop completely\n");
427 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
430 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
431 completely. The transformation done:
433 for (i = 0; i < 4; i++)
434 body;
438 i = 0;
439 body; i++;
440 body; i++;
441 body; i++;
442 body; i++;
444 static void
445 peel_loop_completely (struct loop *loop)
447 sbitmap wont_exit;
448 unsigned HOST_WIDE_INT npeel;
449 unsigned i;
450 VEC (edge, heap) *remove_edges;
451 edge ein;
452 struct niter_desc *desc = get_simple_loop_desc (loop);
453 struct opt_info *opt_info = NULL;
455 npeel = desc->niter;
457 if (npeel)
459 bool ok;
461 wont_exit = sbitmap_alloc (npeel + 1);
462 sbitmap_ones (wont_exit);
463 RESET_BIT (wont_exit, 0);
464 if (desc->noloop_assumptions)
465 RESET_BIT (wont_exit, 1);
467 remove_edges = NULL;
469 if (flag_split_ivs_in_unroller)
470 opt_info = analyze_insns_in_loop (loop);
472 opt_info_start_duplication (opt_info);
473 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
474 npeel,
475 wont_exit, desc->out_edge,
476 &remove_edges,
477 DLTHE_FLAG_UPDATE_FREQ
478 | DLTHE_FLAG_COMPLETTE_PEEL
479 | (opt_info
480 ? DLTHE_RECORD_COPY_NUMBER : 0));
481 gcc_assert (ok);
483 free (wont_exit);
485 if (opt_info)
487 apply_opt_in_copies (opt_info, npeel, false, true);
488 free_opt_info (opt_info);
491 /* Remove the exit edges. */
492 for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
493 remove_path (ein);
494 VEC_free (edge, heap, remove_edges);
497 ein = desc->in_edge;
498 free_simple_loop_desc (loop);
500 /* Now remove the unreachable part of the last iteration and cancel
501 the loop. */
502 remove_path (ein);
504 if (dump_file)
505 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
508 /* Decide whether to unroll LOOP iterating constant number of times
509 and how much. */
511 static void
512 decide_unroll_constant_iterations (struct loop *loop, int flags)
514 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
515 struct niter_desc *desc;
517 if (!(flags & UAP_UNROLL))
519 /* We were not asked to, just return back silently. */
520 return;
523 if (dump_file)
524 fprintf (dump_file,
525 "\n;; Considering unrolling loop with constant "
526 "number of iterations\n");
528 /* nunroll = total number of copies of the original loop body in
529 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
530 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
531 nunroll_by_av
532 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
533 if (nunroll > nunroll_by_av)
534 nunroll = nunroll_by_av;
535 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
536 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
538 /* Skip big loops. */
539 if (nunroll <= 1)
541 if (dump_file)
542 fprintf (dump_file, ";; Not considering loop, is too big\n");
543 return;
546 /* Check for simple loops. */
547 desc = get_simple_loop_desc (loop);
549 /* Check number of iterations. */
550 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
552 if (dump_file)
553 fprintf (dump_file,
554 ";; Unable to prove that the loop iterates constant times\n");
555 return;
558 /* Check whether the loop rolls enough to consider. */
559 if (desc->niter < 2 * nunroll)
561 if (dump_file)
562 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
563 return;
566 /* Success; now compute number of iterations to unroll. We alter
567 nunroll so that as few as possible copies of loop body are
568 necessary, while still not decreasing the number of unrollings
569 too much (at most by 1). */
570 best_copies = 2 * nunroll + 10;
572 i = 2 * nunroll + 2;
573 if (i - 1 >= desc->niter)
574 i = desc->niter - 2;
576 for (; i >= nunroll - 1; i--)
578 unsigned exit_mod = desc->niter % (i + 1);
580 if (!loop_exit_at_end_p (loop))
581 n_copies = exit_mod + i + 1;
582 else if (exit_mod != (unsigned) i
583 || desc->noloop_assumptions != NULL_RTX)
584 n_copies = exit_mod + i + 2;
585 else
586 n_copies = i + 1;
588 if (n_copies < best_copies)
590 best_copies = n_copies;
591 best_unroll = i;
595 if (dump_file)
596 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
597 best_unroll + 1, best_copies, nunroll);
599 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
600 loop->lpt_decision.times = best_unroll;
602 if (dump_file)
603 fprintf (dump_file,
604 ";; Decided to unroll the constant times rolling loop, %d times.\n",
605 loop->lpt_decision.times);
608 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
609 times. The transformation does this:
611 for (i = 0; i < 102; i++)
612 body;
616 i = 0;
617 body; i++;
618 body; i++;
619 while (i < 102)
621 body; i++;
622 body; i++;
623 body; i++;
624 body; i++;
627 static void
628 unroll_loop_constant_iterations (struct loop *loop)
630 unsigned HOST_WIDE_INT niter;
631 unsigned exit_mod;
632 sbitmap wont_exit;
633 unsigned i;
634 VEC (edge, heap) *remove_edges;
635 edge e;
636 unsigned max_unroll = loop->lpt_decision.times;
637 struct niter_desc *desc = get_simple_loop_desc (loop);
638 bool exit_at_end = loop_exit_at_end_p (loop);
639 struct opt_info *opt_info = NULL;
640 bool ok;
642 niter = desc->niter;
644 /* Should not get here (such loop should be peeled instead). */
645 gcc_assert (niter > max_unroll + 1);
647 exit_mod = niter % (max_unroll + 1);
649 wont_exit = sbitmap_alloc (max_unroll + 1);
650 sbitmap_ones (wont_exit);
652 remove_edges = NULL;
653 if (flag_split_ivs_in_unroller
654 || flag_variable_expansion_in_unroller)
655 opt_info = analyze_insns_in_loop (loop);
657 if (!exit_at_end)
659 /* The exit is not at the end of the loop; leave exit test
660 in the first copy, so that the loops that start with test
661 of exit condition have continuous body after unrolling. */
663 if (dump_file)
664 fprintf (dump_file, ";; Condition on beginning of loop.\n");
666 /* Peel exit_mod iterations. */
667 RESET_BIT (wont_exit, 0);
668 if (desc->noloop_assumptions)
669 RESET_BIT (wont_exit, 1);
671 if (exit_mod)
673 opt_info_start_duplication (opt_info);
674 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
675 exit_mod,
676 wont_exit, desc->out_edge,
677 &remove_edges,
678 DLTHE_FLAG_UPDATE_FREQ
679 | (opt_info && exit_mod > 1
680 ? DLTHE_RECORD_COPY_NUMBER
681 : 0));
682 gcc_assert (ok);
684 if (opt_info && exit_mod > 1)
685 apply_opt_in_copies (opt_info, exit_mod, false, false);
687 desc->noloop_assumptions = NULL_RTX;
688 desc->niter -= exit_mod;
689 desc->niter_max -= exit_mod;
692 SET_BIT (wont_exit, 1);
694 else
696 /* Leave exit test in last copy, for the same reason as above if
697 the loop tests the condition at the end of loop body. */
699 if (dump_file)
700 fprintf (dump_file, ";; Condition on end of loop.\n");
702 /* We know that niter >= max_unroll + 2; so we do not need to care of
703 case when we would exit before reaching the loop. So just peel
704 exit_mod + 1 iterations. */
705 if (exit_mod != max_unroll
706 || desc->noloop_assumptions)
708 RESET_BIT (wont_exit, 0);
709 if (desc->noloop_assumptions)
710 RESET_BIT (wont_exit, 1);
712 opt_info_start_duplication (opt_info);
713 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
714 exit_mod + 1,
715 wont_exit, desc->out_edge,
716 &remove_edges,
717 DLTHE_FLAG_UPDATE_FREQ
718 | (opt_info && exit_mod > 0
719 ? DLTHE_RECORD_COPY_NUMBER
720 : 0));
721 gcc_assert (ok);
723 if (opt_info && exit_mod > 0)
724 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
726 desc->niter -= exit_mod + 1;
727 desc->niter_max -= exit_mod + 1;
728 desc->noloop_assumptions = NULL_RTX;
730 SET_BIT (wont_exit, 0);
731 SET_BIT (wont_exit, 1);
734 RESET_BIT (wont_exit, max_unroll);
737 /* Now unroll the loop. */
739 opt_info_start_duplication (opt_info);
740 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
741 max_unroll,
742 wont_exit, desc->out_edge,
743 &remove_edges,
744 DLTHE_FLAG_UPDATE_FREQ
745 | (opt_info
746 ? DLTHE_RECORD_COPY_NUMBER
747 : 0));
748 gcc_assert (ok);
750 if (opt_info)
752 apply_opt_in_copies (opt_info, max_unroll, true, true);
753 free_opt_info (opt_info);
756 free (wont_exit);
758 if (exit_at_end)
760 basic_block exit_block = get_bb_copy (desc->in_edge->src);
761 /* Find a new in and out edge; they are in the last copy we have made. */
763 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
765 desc->out_edge = EDGE_SUCC (exit_block, 0);
766 desc->in_edge = EDGE_SUCC (exit_block, 1);
768 else
770 desc->out_edge = EDGE_SUCC (exit_block, 1);
771 desc->in_edge = EDGE_SUCC (exit_block, 0);
775 desc->niter /= max_unroll + 1;
776 desc->niter_max /= max_unroll + 1;
777 desc->niter_expr = GEN_INT (desc->niter);
779 /* Remove the edges. */
780 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
781 remove_path (e);
782 VEC_free (edge, heap, remove_edges);
784 if (dump_file)
785 fprintf (dump_file,
786 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
787 max_unroll, num_loop_insns (loop));
790 /* Decide whether to unroll LOOP iterating runtime computable number of times
791 and how much. */
792 static void
793 decide_unroll_runtime_iterations (struct loop *loop, int flags)
795 unsigned nunroll, nunroll_by_av, i;
796 struct niter_desc *desc;
798 if (!(flags & UAP_UNROLL))
800 /* We were not asked to, just return back silently. */
801 return;
804 if (dump_file)
805 fprintf (dump_file,
806 "\n;; Considering unrolling loop with runtime "
807 "computable number of iterations\n");
809 /* nunroll = total number of copies of the original loop body in
810 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
811 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
812 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
813 if (nunroll > nunroll_by_av)
814 nunroll = nunroll_by_av;
815 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
816 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
818 /* Skip big loops. */
819 if (nunroll <= 1)
821 if (dump_file)
822 fprintf (dump_file, ";; Not considering loop, is too big\n");
823 return;
826 /* Check for simple loops. */
827 desc = get_simple_loop_desc (loop);
829 /* Check simpleness. */
830 if (!desc->simple_p || desc->assumptions)
832 if (dump_file)
833 fprintf (dump_file,
834 ";; Unable to prove that the number of iterations "
835 "can be counted in runtime\n");
836 return;
839 if (desc->const_iter)
841 if (dump_file)
842 fprintf (dump_file, ";; Loop iterates constant times\n");
843 return;
846 /* If we have profile feedback, check whether the loop rolls. */
847 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
849 if (dump_file)
850 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
851 return;
854 /* Success; now force nunroll to be power of 2, as we are unable to
855 cope with overflows in computation of number of iterations. */
856 for (i = 1; 2 * i <= nunroll; i *= 2)
857 continue;
859 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
860 loop->lpt_decision.times = i - 1;
862 if (dump_file)
863 fprintf (dump_file,
864 ";; Decided to unroll the runtime computable "
865 "times rolling loop, %d times.\n",
866 loop->lpt_decision.times);
869 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
870 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
871 and NULL is returned instead. */
873 basic_block
874 split_edge_and_insert (edge e, rtx insns)
876 basic_block bb;
878 if (!insns)
879 return NULL;
880 bb = split_edge (e);
881 emit_insn_after (insns, BB_END (bb));
882 bb->flags |= BB_SUPERBLOCK;
883 return bb;
886 /* Unroll LOOP for that we are able to count number of iterations in runtime
887 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
888 extra care for case n < 0):
890 for (i = 0; i < n; i++)
891 body;
895 i = 0;
896 mod = n % 4;
898 switch (mod)
900 case 3:
901 body; i++;
902 case 2:
903 body; i++;
904 case 1:
905 body; i++;
906 case 0: ;
909 while (i < n)
911 body; i++;
912 body; i++;
913 body; i++;
914 body; i++;
917 static void
918 unroll_loop_runtime_iterations (struct loop *loop)
920 rtx old_niter, niter, init_code, branch_code, tmp;
921 unsigned i, j, p;
922 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
923 unsigned n_dom_bbs;
924 sbitmap wont_exit;
925 int may_exit_copy;
926 unsigned n_peel;
927 VEC (edge, heap) *remove_edges;
928 edge e;
929 bool extra_zero_check, last_may_exit;
930 unsigned max_unroll = loop->lpt_decision.times;
931 struct niter_desc *desc = get_simple_loop_desc (loop);
932 bool exit_at_end = loop_exit_at_end_p (loop);
933 struct opt_info *opt_info = NULL;
934 bool ok;
936 if (flag_split_ivs_in_unroller
937 || flag_variable_expansion_in_unroller)
938 opt_info = analyze_insns_in_loop (loop);
940 /* Remember blocks whose dominators will have to be updated. */
941 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
942 n_dom_bbs = 0;
944 body = get_loop_body (loop);
945 for (i = 0; i < loop->num_nodes; i++)
947 unsigned nldom;
948 basic_block *ldom;
950 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
951 for (j = 0; j < nldom; j++)
952 if (!flow_bb_inside_loop_p (loop, ldom[j]))
953 dom_bbs[n_dom_bbs++] = ldom[j];
955 free (ldom);
957 free (body);
959 if (!exit_at_end)
961 /* Leave exit in first copy (for explanation why see comment in
962 unroll_loop_constant_iterations). */
963 may_exit_copy = 0;
964 n_peel = max_unroll - 1;
965 extra_zero_check = true;
966 last_may_exit = false;
968 else
970 /* Leave exit in last copy (for explanation why see comment in
971 unroll_loop_constant_iterations). */
972 may_exit_copy = max_unroll;
973 n_peel = max_unroll;
974 extra_zero_check = false;
975 last_may_exit = true;
978 /* Get expression for number of iterations. */
979 start_sequence ();
980 old_niter = niter = gen_reg_rtx (desc->mode);
981 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
982 if (tmp != niter)
983 emit_move_insn (niter, tmp);
985 /* Count modulo by ANDing it with max_unroll; we use the fact that
986 the number of unrollings is a power of two, and thus this is correct
987 even if there is overflow in the computation. */
988 niter = expand_simple_binop (desc->mode, AND,
989 niter,
990 GEN_INT (max_unroll),
991 NULL_RTX, 0, OPTAB_LIB_WIDEN);
993 init_code = get_insns ();
994 end_sequence ();
996 /* Precondition the loop. */
997 split_edge_and_insert (loop_preheader_edge (loop), init_code);
999 remove_edges = NULL;
1001 wont_exit = sbitmap_alloc (max_unroll + 2);
1003 /* Peel the first copy of loop body (almost always we must leave exit test
1004 here; the only exception is when we have extra zero check and the number
1005 of iterations is reliable. Also record the place of (possible) extra
1006 zero check. */
1007 sbitmap_zero (wont_exit);
1008 if (extra_zero_check
1009 && !desc->noloop_assumptions)
1010 SET_BIT (wont_exit, 1);
1011 ezc_swtch = loop_preheader_edge (loop)->src;
1012 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1013 1, wont_exit, desc->out_edge,
1014 &remove_edges,
1015 DLTHE_FLAG_UPDATE_FREQ);
1016 gcc_assert (ok);
1018 /* Record the place where switch will be built for preconditioning. */
1019 swtch = split_edge (loop_preheader_edge (loop));
1021 for (i = 0; i < n_peel; i++)
1023 /* Peel the copy. */
1024 sbitmap_zero (wont_exit);
1025 if (i != n_peel - 1 || !last_may_exit)
1026 SET_BIT (wont_exit, 1);
1027 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1028 1, wont_exit, desc->out_edge,
1029 &remove_edges,
1030 DLTHE_FLAG_UPDATE_FREQ);
1031 gcc_assert (ok);
1033 /* Create item for switch. */
1034 j = n_peel - i - (extra_zero_check ? 0 : 1);
1035 p = REG_BR_PROB_BASE / (i + 2);
1037 preheader = split_edge (loop_preheader_edge (loop));
1038 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1039 block_label (preheader), p,
1040 NULL_RTX);
1042 /* We rely on the fact that the compare and jump cannot be optimized out,
1043 and hence the cfg we create is correct. */
1044 gcc_assert (branch_code != NULL_RTX);
1046 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1047 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1048 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1049 e = make_edge (swtch, preheader,
1050 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1051 e->probability = p;
1054 if (extra_zero_check)
1056 /* Add branch for zero iterations. */
1057 p = REG_BR_PROB_BASE / (max_unroll + 1);
1058 swtch = ezc_swtch;
1059 preheader = split_edge (loop_preheader_edge (loop));
1060 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1061 block_label (preheader), p,
1062 NULL_RTX);
1063 gcc_assert (branch_code != NULL_RTX);
1065 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1066 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1067 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1068 e = make_edge (swtch, preheader,
1069 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1070 e->probability = p;
1073 /* Recount dominators for outer blocks. */
1074 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1076 /* And unroll loop. */
1078 sbitmap_ones (wont_exit);
1079 RESET_BIT (wont_exit, may_exit_copy);
1080 opt_info_start_duplication (opt_info);
1082 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1083 max_unroll,
1084 wont_exit, desc->out_edge,
1085 &remove_edges,
1086 DLTHE_FLAG_UPDATE_FREQ
1087 | (opt_info
1088 ? DLTHE_RECORD_COPY_NUMBER
1089 : 0));
1090 gcc_assert (ok);
1092 if (opt_info)
1094 apply_opt_in_copies (opt_info, max_unroll, true, true);
1095 free_opt_info (opt_info);
1098 free (wont_exit);
1100 if (exit_at_end)
1102 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1103 /* Find a new in and out edge; they are in the last copy we have
1104 made. */
1106 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1108 desc->out_edge = EDGE_SUCC (exit_block, 0);
1109 desc->in_edge = EDGE_SUCC (exit_block, 1);
1111 else
1113 desc->out_edge = EDGE_SUCC (exit_block, 1);
1114 desc->in_edge = EDGE_SUCC (exit_block, 0);
1118 /* Remove the edges. */
1119 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
1120 remove_path (e);
1121 VEC_free (edge, heap, remove_edges);
1123 /* We must be careful when updating the number of iterations due to
1124 preconditioning and the fact that the value must be valid at entry
1125 of the loop. After passing through the above code, we see that
1126 the correct new number of iterations is this: */
1127 gcc_assert (!desc->const_iter);
1128 desc->niter_expr =
1129 simplify_gen_binary (UDIV, desc->mode, old_niter,
1130 GEN_INT (max_unroll + 1));
1131 desc->niter_max /= max_unroll + 1;
1132 if (exit_at_end)
1134 desc->niter_expr =
1135 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1136 desc->noloop_assumptions = NULL_RTX;
1137 desc->niter_max--;
1140 if (dump_file)
1141 fprintf (dump_file,
1142 ";; Unrolled loop %d times, counting # of iterations "
1143 "in runtime, %i insns\n",
1144 max_unroll, num_loop_insns (loop));
1146 if (dom_bbs)
1147 free (dom_bbs);
1150 /* Decide whether to simply peel LOOP and how much. */
1151 static void
1152 decide_peel_simple (struct loop *loop, int flags)
1154 unsigned npeel;
1155 struct niter_desc *desc;
1157 if (!(flags & UAP_PEEL))
1159 /* We were not asked to, just return back silently. */
1160 return;
1163 if (dump_file)
1164 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1166 /* npeel = number of iterations to peel. */
1167 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1168 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1169 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1171 /* Skip big loops. */
1172 if (!npeel)
1174 if (dump_file)
1175 fprintf (dump_file, ";; Not considering loop, is too big\n");
1176 return;
1179 /* Check for simple loops. */
1180 desc = get_simple_loop_desc (loop);
1182 /* Check number of iterations. */
1183 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1185 if (dump_file)
1186 fprintf (dump_file, ";; Loop iterates constant times\n");
1187 return;
1190 /* Do not simply peel loops with branches inside -- it increases number
1191 of mispredicts. */
1192 if (num_loop_branches (loop) > 1)
1194 if (dump_file)
1195 fprintf (dump_file, ";; Not peeling, contains branches\n");
1196 return;
1199 if (loop->header->count)
1201 unsigned niter = expected_loop_iterations (loop);
1202 if (niter + 1 > npeel)
1204 if (dump_file)
1206 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1207 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1208 (HOST_WIDEST_INT) (niter + 1));
1209 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1210 npeel);
1212 return;
1214 npeel = niter + 1;
1216 else
1218 /* For now we have no good heuristics to decide whether loop peeling
1219 will be effective, so disable it. */
1220 if (dump_file)
1221 fprintf (dump_file,
1222 ";; Not peeling loop, no evidence it will be profitable\n");
1223 return;
1226 /* Success. */
1227 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1228 loop->lpt_decision.times = npeel;
1230 if (dump_file)
1231 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1232 loop->lpt_decision.times);
1235 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1236 while (cond)
1237 body;
1241 if (!cond) goto end;
1242 body;
1243 if (!cond) goto end;
1244 body;
1245 while (cond)
1246 body;
1247 end: ;
1249 static void
1250 peel_loop_simple (struct loop *loop)
1252 sbitmap wont_exit;
1253 unsigned npeel = loop->lpt_decision.times;
1254 struct niter_desc *desc = get_simple_loop_desc (loop);
1255 struct opt_info *opt_info = NULL;
1256 bool ok;
1258 if (flag_split_ivs_in_unroller && npeel > 1)
1259 opt_info = analyze_insns_in_loop (loop);
1261 wont_exit = sbitmap_alloc (npeel + 1);
1262 sbitmap_zero (wont_exit);
1264 opt_info_start_duplication (opt_info);
1266 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1267 npeel, wont_exit, NULL,
1268 NULL, DLTHE_FLAG_UPDATE_FREQ
1269 | (opt_info
1270 ? DLTHE_RECORD_COPY_NUMBER
1271 : 0));
1272 gcc_assert (ok);
1274 free (wont_exit);
1276 if (opt_info)
1278 apply_opt_in_copies (opt_info, npeel, false, false);
1279 free_opt_info (opt_info);
1282 if (desc->simple_p)
1284 if (desc->const_iter)
1286 desc->niter -= npeel;
1287 desc->niter_expr = GEN_INT (desc->niter);
1288 desc->noloop_assumptions = NULL_RTX;
1290 else
1292 /* We cannot just update niter_expr, as its value might be clobbered
1293 inside loop. We could handle this by counting the number into
1294 temporary just like we do in runtime unrolling, but it does not
1295 seem worthwhile. */
1296 free_simple_loop_desc (loop);
1299 if (dump_file)
1300 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1303 /* Decide whether to unroll LOOP stupidly and how much. */
1304 static void
1305 decide_unroll_stupid (struct loop *loop, int flags)
1307 unsigned nunroll, nunroll_by_av, i;
1308 struct niter_desc *desc;
1310 if (!(flags & UAP_UNROLL_ALL))
1312 /* We were not asked to, just return back silently. */
1313 return;
1316 if (dump_file)
1317 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1319 /* nunroll = total number of copies of the original loop body in
1320 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1321 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1322 nunroll_by_av
1323 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1324 if (nunroll > nunroll_by_av)
1325 nunroll = nunroll_by_av;
1326 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1327 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1329 /* Skip big loops. */
1330 if (nunroll <= 1)
1332 if (dump_file)
1333 fprintf (dump_file, ";; Not considering loop, is too big\n");
1334 return;
1337 /* Check for simple loops. */
1338 desc = get_simple_loop_desc (loop);
1340 /* Check simpleness. */
1341 if (desc->simple_p && !desc->assumptions)
1343 if (dump_file)
1344 fprintf (dump_file, ";; The loop is simple\n");
1345 return;
1348 /* Do not unroll loops with branches inside -- it increases number
1349 of mispredicts. */
1350 if (num_loop_branches (loop) > 1)
1352 if (dump_file)
1353 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1354 return;
1357 /* If we have profile feedback, check whether the loop rolls. */
1358 if (loop->header->count
1359 && expected_loop_iterations (loop) < 2 * nunroll)
1361 if (dump_file)
1362 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1363 return;
1366 /* Success. Now force nunroll to be power of 2, as it seems that this
1367 improves results (partially because of better alignments, partially
1368 because of some dark magic). */
1369 for (i = 1; 2 * i <= nunroll; i *= 2)
1370 continue;
1372 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1373 loop->lpt_decision.times = i - 1;
1375 if (dump_file)
1376 fprintf (dump_file,
1377 ";; Decided to unroll the loop stupidly, %d times.\n",
1378 loop->lpt_decision.times);
1381 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1382 while (cond)
1383 body;
1387 while (cond)
1389 body;
1390 if (!cond) break;
1391 body;
1392 if (!cond) break;
1393 body;
1394 if (!cond) break;
1395 body;
1398 static void
1399 unroll_loop_stupid (struct loop *loop)
1401 sbitmap wont_exit;
1402 unsigned nunroll = loop->lpt_decision.times;
1403 struct niter_desc *desc = get_simple_loop_desc (loop);
1404 struct opt_info *opt_info = NULL;
1405 bool ok;
1407 if (flag_split_ivs_in_unroller
1408 || flag_variable_expansion_in_unroller)
1409 opt_info = analyze_insns_in_loop (loop);
1412 wont_exit = sbitmap_alloc (nunroll + 1);
1413 sbitmap_zero (wont_exit);
1414 opt_info_start_duplication (opt_info);
1416 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1417 nunroll, wont_exit,
1418 NULL, NULL,
1419 DLTHE_FLAG_UPDATE_FREQ
1420 | (opt_info
1421 ? DLTHE_RECORD_COPY_NUMBER
1422 : 0));
1423 gcc_assert (ok);
1425 if (opt_info)
1427 apply_opt_in_copies (opt_info, nunroll, true, true);
1428 free_opt_info (opt_info);
1431 free (wont_exit);
1433 if (desc->simple_p)
1435 /* We indeed may get here provided that there are nontrivial assumptions
1436 for a loop to be really simple. We could update the counts, but the
1437 problem is that we are unable to decide which exit will be taken
1438 (not really true in case the number of iterations is constant,
1439 but noone will do anything with this information, so we do not
1440 worry about it). */
1441 desc->simple_p = false;
1444 if (dump_file)
1445 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1446 nunroll, num_loop_insns (loop));
1449 /* A hash function for information about insns to split. */
1451 static hashval_t
1452 si_info_hash (const void *ivts)
1454 return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
1457 /* An equality functions for information about insns to split. */
1459 static int
1460 si_info_eq (const void *ivts1, const void *ivts2)
1462 const struct iv_to_split *i1 = ivts1;
1463 const struct iv_to_split *i2 = ivts2;
1465 return i1->insn == i2->insn;
1468 /* Return a hash for VES, which is really a "var_to_expand *". */
1470 static hashval_t
1471 ve_info_hash (const void *ves)
1473 return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
1476 /* Return true if IVTS1 and IVTS2 (which are really both of type
1477 "var_to_expand *") refer to the same instruction. */
1479 static int
1480 ve_info_eq (const void *ivts1, const void *ivts2)
1482 const struct var_to_expand *i1 = ivts1;
1483 const struct var_to_expand *i2 = ivts2;
1485 return i1->insn == i2->insn;
1488 /* Returns true if REG is referenced in one insn in LOOP. */
1490 bool
1491 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1493 basic_block *body, bb;
1494 unsigned i;
1495 int count_ref = 0;
1496 rtx insn;
1498 body = get_loop_body (loop);
1499 for (i = 0; i < loop->num_nodes; i++)
1501 bb = body[i];
1503 FOR_BB_INSNS (bb, insn)
1505 if (rtx_referenced_p (reg, insn))
1506 count_ref++;
1509 return (count_ref == 1);
1512 /* Determine whether INSN contains an accumulator
1513 which can be expanded into separate copies,
1514 one for each copy of the LOOP body.
1516 for (i = 0 ; i < n; i++)
1517 sum += a[i];
1521 sum += a[i]
1522 ....
1523 i = i+1;
1524 sum1 += a[i]
1525 ....
1526 i = i+1
1527 sum2 += a[i];
1528 ....
1530 Return NULL if INSN contains no opportunity for expansion of accumulator.
1531 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1532 information and return a pointer to it.
1535 static struct var_to_expand *
1536 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1538 rtx set, dest, src, op1;
1539 struct var_to_expand *ves;
1540 enum machine_mode mode1, mode2;
1542 set = single_set (insn);
1543 if (!set)
1544 return NULL;
1546 dest = SET_DEST (set);
1547 src = SET_SRC (set);
1549 if (GET_CODE (src) != PLUS
1550 && GET_CODE (src) != MINUS
1551 && GET_CODE (src) != MULT)
1552 return NULL;
1554 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1555 in MD. But if there is no optab to generate the insn, we can not
1556 perform the variable expansion. This can happen if an MD provides
1557 an insn but not a named pattern to generate it, for example to avoid
1558 producing code that needs additional mode switches like for x87/mmx.
1560 So we check have_insn_for which looks for an optab for the operation
1561 in SRC. If it doesn't exist, we can't perform the expansion even
1562 though INSN is valid. */
1563 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1564 return NULL;
1566 if (!XEXP (src, 0))
1567 return NULL;
1569 op1 = XEXP (src, 0);
1571 if (!REG_P (dest)
1572 && !(GET_CODE (dest) == SUBREG
1573 && REG_P (SUBREG_REG (dest))))
1574 return NULL;
1576 if (!rtx_equal_p (dest, op1))
1577 return NULL;
1579 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1580 return NULL;
1582 if (rtx_referenced_p (dest, XEXP (src, 1)))
1583 return NULL;
1585 mode1 = GET_MODE (dest);
1586 mode2 = GET_MODE (XEXP (src, 1));
1587 if ((FLOAT_MODE_P (mode1)
1588 || FLOAT_MODE_P (mode2))
1589 && !flag_unsafe_math_optimizations)
1590 return NULL;
1592 /* Record the accumulator to expand. */
1593 ves = XNEW (struct var_to_expand);
1594 ves->insn = insn;
1595 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1596 ves->reg = copy_rtx (dest);
1597 ves->op = GET_CODE (src);
1598 ves->expansion_count = 0;
1599 ves->reuse_expansion = 0;
1600 return ves;
1603 /* Determine whether there is an induction variable in INSN that
1604 we would like to split during unrolling.
1606 I.e. replace
1608 i = i + 1;
1610 i = i + 1;
1612 i = i + 1;
1615 type chains by
1617 i0 = i + 1
1619 i = i0 + 1
1621 i = i0 + 2
1624 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1625 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1626 pointer to it. */
1628 static struct iv_to_split *
1629 analyze_iv_to_split_insn (rtx insn)
1631 rtx set, dest;
1632 struct rtx_iv iv;
1633 struct iv_to_split *ivts;
1634 bool ok;
1636 /* For now we just split the basic induction variables. Later this may be
1637 extended for example by selecting also addresses of memory references. */
1638 set = single_set (insn);
1639 if (!set)
1640 return NULL;
1642 dest = SET_DEST (set);
1643 if (!REG_P (dest))
1644 return NULL;
1646 if (!biv_p (insn, dest))
1647 return NULL;
1649 ok = iv_analyze_result (insn, dest, &iv);
1651 /* This used to be an assert under the assumption that if biv_p returns
1652 true that iv_analyze_result must also return true. However, that
1653 assumption is not strictly correct as evidenced by pr25569.
1655 Returning NULL when iv_analyze_result returns false is safe and
1656 avoids the problems in pr25569 until the iv_analyze_* routines
1657 can be fixed, which is apparently hard and time consuming
1658 according to their author. */
1659 if (! ok)
1660 return NULL;
1662 if (iv.step == const0_rtx
1663 || iv.mode != iv.extend_mode)
1664 return NULL;
1666 /* Record the insn to split. */
1667 ivts = XNEW (struct iv_to_split);
1668 ivts->insn = insn;
1669 ivts->base_var = NULL_RTX;
1670 ivts->step = iv.step;
1671 ivts->n_loc = 1;
1672 ivts->loc[0] = 1;
1674 return ivts;
1677 /* Determines which of insns in LOOP can be optimized.
1678 Return a OPT_INFO struct with the relevant hash tables filled
1679 with all insns to be optimized. The FIRST_NEW_BLOCK field
1680 is undefined for the return value. */
1682 static struct opt_info *
1683 analyze_insns_in_loop (struct loop *loop)
1685 basic_block *body, bb;
1686 unsigned i;
1687 struct opt_info *opt_info = XCNEW (struct opt_info);
1688 rtx insn;
1689 struct iv_to_split *ivts = NULL;
1690 struct var_to_expand *ves = NULL;
1691 PTR *slot1;
1692 PTR *slot2;
1693 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1694 edge exit;
1695 bool can_apply = false;
1697 iv_analysis_loop_init (loop);
1699 body = get_loop_body (loop);
1701 if (flag_split_ivs_in_unroller)
1702 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1703 si_info_hash, si_info_eq, free);
1705 /* Record the loop exit bb and loop preheader before the unrolling. */
1706 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1708 if (VEC_length (edge, edges) == 1)
1710 exit = VEC_index (edge, edges, 0);
1711 if (!(exit->flags & EDGE_COMPLEX))
1713 opt_info->loop_exit = split_edge (exit);
1714 can_apply = true;
1718 if (flag_variable_expansion_in_unroller
1719 && can_apply)
1720 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1721 ve_info_hash, ve_info_eq, free);
1723 for (i = 0; i < loop->num_nodes; i++)
1725 bb = body[i];
1726 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1727 continue;
1729 FOR_BB_INSNS (bb, insn)
1731 if (!INSN_P (insn))
1732 continue;
1734 if (opt_info->insns_to_split)
1735 ivts = analyze_iv_to_split_insn (insn);
1737 if (ivts)
1739 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1740 *slot1 = ivts;
1741 continue;
1744 if (opt_info->insns_with_var_to_expand)
1745 ves = analyze_insn_to_expand_var (loop, insn);
1747 if (ves)
1749 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1750 *slot2 = ves;
1755 VEC_free (edge, heap, edges);
1756 free (body);
1757 return opt_info;
1760 /* Called just before loop duplication. Records start of duplicated area
1761 to OPT_INFO. */
1763 static void
1764 opt_info_start_duplication (struct opt_info *opt_info)
1766 if (opt_info)
1767 opt_info->first_new_block = last_basic_block;
1770 /* Determine the number of iterations between initialization of the base
1771 variable and the current copy (N_COPY). N_COPIES is the total number
1772 of newly created copies. UNROLLING is true if we are unrolling
1773 (not peeling) the loop. */
1775 static unsigned
1776 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1778 if (unrolling)
1780 /* If we are unrolling, initialization is done in the original loop
1781 body (number 0). */
1782 return n_copy;
1784 else
1786 /* If we are peeling, the copy in that the initialization occurs has
1787 number 1. The original loop (number 0) is the last. */
1788 if (n_copy)
1789 return n_copy - 1;
1790 else
1791 return n_copies;
1795 /* Locate in EXPR the expression corresponding to the location recorded
1796 in IVTS, and return a pointer to the RTX for this location. */
1798 static rtx *
1799 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1801 unsigned i;
1802 rtx *ret = &expr;
1804 for (i = 0; i < ivts->n_loc; i++)
1805 ret = &XEXP (*ret, ivts->loc[i]);
1807 return ret;
1810 /* Allocate basic variable for the induction variable chain. Callback for
1811 htab_traverse. */
1813 static int
1814 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1816 struct iv_to_split *ivts = *slot;
1817 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1819 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1821 return 1;
1824 /* Insert initialization of basic variable of IVTS before INSN, taking
1825 the initial value from INSN. */
1827 static void
1828 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1830 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1831 rtx seq;
1833 start_sequence ();
1834 expr = force_operand (expr, ivts->base_var);
1835 if (expr != ivts->base_var)
1836 emit_move_insn (ivts->base_var, expr);
1837 seq = get_insns ();
1838 end_sequence ();
1840 emit_insn_before (seq, insn);
1843 /* Replace the use of induction variable described in IVTS in INSN
1844 by base variable + DELTA * step. */
1846 static void
1847 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1849 rtx expr, *loc, seq, incr, var;
1850 enum machine_mode mode = GET_MODE (ivts->base_var);
1851 rtx src, dest, set;
1853 /* Construct base + DELTA * step. */
1854 if (!delta)
1855 expr = ivts->base_var;
1856 else
1858 incr = simplify_gen_binary (MULT, mode,
1859 ivts->step, gen_int_mode (delta, mode));
1860 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1861 ivts->base_var, incr);
1864 /* Figure out where to do the replacement. */
1865 loc = get_ivts_expr (single_set (insn), ivts);
1867 /* If we can make the replacement right away, we're done. */
1868 if (validate_change (insn, loc, expr, 0))
1869 return;
1871 /* Otherwise, force EXPR into a register and try again. */
1872 start_sequence ();
1873 var = gen_reg_rtx (mode);
1874 expr = force_operand (expr, var);
1875 if (expr != var)
1876 emit_move_insn (var, expr);
1877 seq = get_insns ();
1878 end_sequence ();
1879 emit_insn_before (seq, insn);
1881 if (validate_change (insn, loc, var, 0))
1882 return;
1884 /* The last chance. Try recreating the assignment in insn
1885 completely from scratch. */
1886 set = single_set (insn);
1887 gcc_assert (set);
1889 start_sequence ();
1890 *loc = var;
1891 src = copy_rtx (SET_SRC (set));
1892 dest = copy_rtx (SET_DEST (set));
1893 src = force_operand (src, dest);
1894 if (src != dest)
1895 emit_move_insn (dest, src);
1896 seq = get_insns ();
1897 end_sequence ();
1899 emit_insn_before (seq, insn);
1900 delete_insn (insn);
1904 /* Return one expansion of the accumulator recorded in struct VE. */
1906 static rtx
1907 get_expansion (struct var_to_expand *ve)
1909 rtx reg;
1911 if (ve->reuse_expansion == 0)
1912 reg = ve->reg;
1913 else
1914 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1916 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1917 ve->reuse_expansion = 0;
1918 else
1919 ve->reuse_expansion++;
1921 return reg;
1925 /* Given INSN replace the uses of the accumulator recorded in VE
1926 with a new register. */
1928 static void
1929 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1931 rtx new_reg, set;
1932 bool really_new_expansion = false;
1934 set = single_set (insn);
1935 gcc_assert (set);
1937 /* Generate a new register only if the expansion limit has not been
1938 reached. Else reuse an already existing expansion. */
1939 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1941 really_new_expansion = true;
1942 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1944 else
1945 new_reg = get_expansion (ve);
1947 validate_change (insn, &SET_DEST (set), new_reg, 1);
1948 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1950 if (apply_change_group ())
1951 if (really_new_expansion)
1953 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1954 ve->expansion_count++;
1958 /* Initialize the variable expansions in loop preheader.
1959 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1960 basic block where the initialization of the expansions
1961 should take place. */
1963 static int
1964 insert_var_expansion_initialization (void **slot, void *place_p)
1966 struct var_to_expand *ve = *slot;
1967 basic_block place = (basic_block)place_p;
1968 rtx seq, var, zero_init, insn;
1969 unsigned i;
1971 if (VEC_length (rtx, ve->var_expansions) == 0)
1972 return 1;
1974 start_sequence ();
1975 if (ve->op == PLUS || ve->op == MINUS)
1976 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1978 zero_init = CONST0_RTX (GET_MODE (var));
1979 emit_move_insn (var, zero_init);
1981 else if (ve->op == MULT)
1982 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1984 zero_init = CONST1_RTX (GET_MODE (var));
1985 emit_move_insn (var, zero_init);
1988 seq = get_insns ();
1989 end_sequence ();
1991 insn = BB_HEAD (place);
1992 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1993 insn = NEXT_INSN (insn);
1995 emit_insn_after (seq, insn);
1996 /* Continue traversing the hash table. */
1997 return 1;
2000 /* Combine the variable expansions at the loop exit.
2001 Callbacks for htab_traverse. PLACE_P is the loop exit
2002 basic block where the summation of the expansions should
2003 take place. */
2005 static int
2006 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2008 struct var_to_expand *ve = *slot;
2009 basic_block place = (basic_block)place_p;
2010 rtx sum = ve->reg;
2011 rtx expr, seq, var, insn;
2012 unsigned i;
2014 if (VEC_length (rtx, ve->var_expansions) == 0)
2015 return 1;
2017 start_sequence ();
2018 if (ve->op == PLUS || ve->op == MINUS)
2019 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2021 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2022 var, sum);
2024 else if (ve->op == MULT)
2025 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2027 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2028 var, sum);
2031 expr = force_operand (sum, ve->reg);
2032 if (expr != ve->reg)
2033 emit_move_insn (ve->reg, expr);
2034 seq = get_insns ();
2035 end_sequence ();
2037 insn = BB_HEAD (place);
2038 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2039 insn = NEXT_INSN (insn);
2041 emit_insn_after (seq, insn);
2043 /* Continue traversing the hash table. */
2044 return 1;
2047 /* Apply loop optimizations in loop copies using the
2048 data which gathered during the unrolling. Structure
2049 OPT_INFO record that data.
2051 UNROLLING is true if we unrolled (not peeled) the loop.
2052 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2053 the loop (as it should happen in complete unrolling, but not in ordinary
2054 peeling of the loop). */
2056 static void
2057 apply_opt_in_copies (struct opt_info *opt_info,
2058 unsigned n_copies, bool unrolling,
2059 bool rewrite_original_loop)
2061 unsigned i, delta;
2062 basic_block bb, orig_bb;
2063 rtx insn, orig_insn, next;
2064 struct iv_to_split ivts_templ, *ivts;
2065 struct var_to_expand ve_templ, *ves;
2067 /* Sanity check -- we need to put initialization in the original loop
2068 body. */
2069 gcc_assert (!unrolling || rewrite_original_loop);
2071 /* Allocate the basic variables (i0). */
2072 if (opt_info->insns_to_split)
2073 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2075 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2077 bb = BASIC_BLOCK (i);
2078 orig_bb = get_bb_original (bb);
2080 /* bb->aux holds position in copy sequence initialized by
2081 duplicate_loop_to_header_edge. */
2082 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2083 unrolling);
2084 bb->aux = 0;
2085 orig_insn = BB_HEAD (orig_bb);
2086 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2088 next = NEXT_INSN (insn);
2089 if (!INSN_P (insn))
2090 continue;
2092 while (!INSN_P (orig_insn))
2093 orig_insn = NEXT_INSN (orig_insn);
2095 ivts_templ.insn = orig_insn;
2096 ve_templ.insn = orig_insn;
2098 /* Apply splitting iv optimization. */
2099 if (opt_info->insns_to_split)
2101 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2103 if (ivts)
2105 gcc_assert (GET_CODE (PATTERN (insn))
2106 == GET_CODE (PATTERN (orig_insn)));
2108 if (!delta)
2109 insert_base_initialization (ivts, insn);
2110 split_iv (ivts, insn, delta);
2113 /* Apply variable expansion optimization. */
2114 if (unrolling && opt_info->insns_with_var_to_expand)
2116 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2117 if (ves)
2119 gcc_assert (GET_CODE (PATTERN (insn))
2120 == GET_CODE (PATTERN (orig_insn)));
2121 expand_var_during_unrolling (ves, insn);
2124 orig_insn = NEXT_INSN (orig_insn);
2128 if (!rewrite_original_loop)
2129 return;
2131 /* Initialize the variable expansions in the loop preheader
2132 and take care of combining them at the loop exit. */
2133 if (opt_info->insns_with_var_to_expand)
2135 htab_traverse (opt_info->insns_with_var_to_expand,
2136 insert_var_expansion_initialization,
2137 opt_info->loop_preheader);
2138 htab_traverse (opt_info->insns_with_var_to_expand,
2139 combine_var_copies_in_loop_exit,
2140 opt_info->loop_exit);
2143 /* Rewrite also the original loop body. Find them as originals of the blocks
2144 in the last copied iteration, i.e. those that have
2145 get_bb_copy (get_bb_original (bb)) == bb. */
2146 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2148 bb = BASIC_BLOCK (i);
2149 orig_bb = get_bb_original (bb);
2150 if (get_bb_copy (orig_bb) != bb)
2151 continue;
2153 delta = determine_split_iv_delta (0, n_copies, unrolling);
2154 for (orig_insn = BB_HEAD (orig_bb);
2155 orig_insn != NEXT_INSN (BB_END (bb));
2156 orig_insn = next)
2158 next = NEXT_INSN (orig_insn);
2160 if (!INSN_P (orig_insn))
2161 continue;
2163 ivts_templ.insn = orig_insn;
2164 if (opt_info->insns_to_split)
2166 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2167 if (ivts)
2169 if (!delta)
2170 insert_base_initialization (ivts, orig_insn);
2171 split_iv (ivts, orig_insn, delta);
2172 continue;
2180 /* Release the data structures used for the variable expansion
2181 optimization. Callbacks for htab_traverse. */
2183 static int
2184 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2186 struct var_to_expand *ve = *slot;
2188 VEC_free (rtx, heap, ve->var_expansions);
2190 /* Continue traversing the hash table. */
2191 return 1;
2194 /* Release OPT_INFO. */
2196 static void
2197 free_opt_info (struct opt_info *opt_info)
2199 if (opt_info->insns_to_split)
2200 htab_delete (opt_info->insns_to_split);
2201 if (opt_info->insns_with_var_to_expand)
2203 htab_traverse (opt_info->insns_with_var_to_expand,
2204 release_var_copies, NULL);
2205 htab_delete (opt_info->insns_with_var_to_expand);
2207 free (opt_info);