2007-01-03 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / dwarf2out.c
blob6cd34355394930527f01cd852335987d2760d6a3
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_pubtypes_section;
160 static GTY(()) section *debug_str_section;
161 static GTY(()) section *debug_ranges_section;
162 static GTY(()) section *debug_frame_section;
164 /* How to start an assembler comment. */
165 #ifndef ASM_COMMENT_START
166 #define ASM_COMMENT_START ";#"
167 #endif
169 typedef struct dw_cfi_struct *dw_cfi_ref;
170 typedef struct dw_fde_struct *dw_fde_ref;
171 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173 /* Call frames are described using a sequence of Call Frame
174 Information instructions. The register number, offset
175 and address fields are provided as possible operands;
176 their use is selected by the opcode field. */
178 enum dw_cfi_oprnd_type {
179 dw_cfi_oprnd_unused,
180 dw_cfi_oprnd_reg_num,
181 dw_cfi_oprnd_offset,
182 dw_cfi_oprnd_addr,
183 dw_cfi_oprnd_loc
186 typedef union dw_cfi_oprnd_struct GTY(())
188 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 dw_cfi_oprnd;
195 typedef struct dw_cfi_struct GTY(())
197 dw_cfi_ref dw_cfi_next;
198 enum dwarf_call_frame_info dw_cfi_opc;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd1;
201 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd2;
204 dw_cfi_node;
206 /* This is how we define the location of the CFA. We use to handle it
207 as REG + OFFSET all the time, but now it can be more complex.
208 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209 Instead of passing around REG and OFFSET, we pass a copy
210 of this structure. */
211 typedef struct cfa_loc GTY(())
213 HOST_WIDE_INT offset;
214 HOST_WIDE_INT base_offset;
215 unsigned int reg;
216 int indirect; /* 1 if CFA is accessed via a dereference. */
217 } dw_cfa_location;
219 /* All call frame descriptions (FDE's) in the GCC generated DWARF
220 refer to a single Common Information Entry (CIE), defined at
221 the beginning of the .debug_frame section. This use of a single
222 CIE obviates the need to keep track of multiple CIE's
223 in the DWARF generation routines below. */
225 typedef struct dw_fde_struct GTY(())
227 tree decl;
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 const char *dw_fde_hot_section_label;
232 const char *dw_fde_hot_section_end_label;
233 const char *dw_fde_unlikely_section_label;
234 const char *dw_fde_unlikely_section_end_label;
235 bool dw_fde_switched_sections;
236 dw_cfi_ref dw_fde_cfi;
237 unsigned funcdef_number;
238 unsigned all_throwers_are_sibcalls : 1;
239 unsigned nothrow : 1;
240 unsigned uses_eh_lsda : 1;
242 dw_fde_node;
244 /* Maximum size (in bytes) of an artificially generated label. */
245 #define MAX_ARTIFICIAL_LABEL_BYTES 30
247 /* The size of addresses as they appear in the Dwarf 2 data.
248 Some architectures use word addresses to refer to code locations,
249 but Dwarf 2 info always uses byte addresses. On such machines,
250 Dwarf 2 addresses need to be larger than the architecture's
251 pointers. */
252 #ifndef DWARF2_ADDR_SIZE
253 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254 #endif
256 /* The size in bytes of a DWARF field indicating an offset or length
257 relative to a debug info section, specified to be 4 bytes in the
258 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
259 as PTR_SIZE. */
261 #ifndef DWARF_OFFSET_SIZE
262 #define DWARF_OFFSET_SIZE 4
263 #endif
265 /* According to the (draft) DWARF 3 specification, the initial length
266 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
267 bytes are 0xffffffff, followed by the length stored in the next 8
268 bytes.
270 However, the SGI/MIPS ABI uses an initial length which is equal to
271 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
273 #ifndef DWARF_INITIAL_LENGTH_SIZE
274 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275 #endif
277 #define DWARF_VERSION 2
279 /* Round SIZE up to the nearest BOUNDARY. */
280 #define DWARF_ROUND(SIZE,BOUNDARY) \
281 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
283 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
284 #ifndef DWARF_CIE_DATA_ALIGNMENT
285 #ifdef STACK_GROWS_DOWNWARD
286 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #else
288 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289 #endif
290 #endif
292 /* CIE identifier. */
293 #if HOST_BITS_PER_WIDE_INT >= 64
294 #define DWARF_CIE_ID \
295 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #else
297 #define DWARF_CIE_ID DW_CIE_ID
298 #endif
300 /* A pointer to the base of a table that contains frame description
301 information for each routine. */
302 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
304 /* Number of elements currently allocated for fde_table. */
305 static GTY(()) unsigned fde_table_allocated;
307 /* Number of elements in fde_table currently in use. */
308 static GTY(()) unsigned fde_table_in_use;
310 /* Size (in elements) of increments by which we may expand the
311 fde_table. */
312 #define FDE_TABLE_INCREMENT 256
314 /* A list of call frame insns for the CIE. */
315 static GTY(()) dw_cfi_ref cie_cfi_head;
317 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319 attribute that accelerates the lookup of the FDE associated
320 with the subprogram. This variable holds the table index of the FDE
321 associated with the current function (body) definition. */
322 static unsigned current_funcdef_fde;
323 #endif
325 struct indirect_string_node GTY(())
327 const char *str;
328 unsigned int refcount;
329 unsigned int form;
330 char *label;
333 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
335 static GTY(()) int dw2_string_counter;
336 static GTY(()) unsigned long dwarf2out_cfi_label_num;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
340 /* Forward declarations for functions defined in this file. */
342 static char *stripattributes (const char *);
343 static const char *dwarf_cfi_name (unsigned);
344 static dw_cfi_ref new_cfi (void);
345 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346 static void add_fde_cfi (const char *, dw_cfi_ref);
347 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348 static void lookup_cfa (dw_cfa_location *);
349 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350 static void initial_return_save (rtx);
351 static HOST_WIDE_INT stack_adjust_offset (rtx);
352 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353 static void output_call_frame_info (int);
354 static void dwarf2out_stack_adjust (rtx, bool);
355 static void flush_queued_reg_saves (void);
356 static bool clobbers_queued_reg_save (rtx);
357 static void dwarf2out_frame_debug_expr (rtx, const char *);
359 /* Support for complex CFA locations. */
360 static void output_cfa_loc (dw_cfi_ref);
361 static void get_cfa_from_loc_descr (dw_cfa_location *,
362 struct dw_loc_descr_struct *);
363 static struct dw_loc_descr_struct *build_cfa_loc
364 (dw_cfa_location *, HOST_WIDE_INT);
365 static void def_cfa_1 (const char *, dw_cfa_location *);
367 /* How to start an assembler comment. */
368 #ifndef ASM_COMMENT_START
369 #define ASM_COMMENT_START ";#"
370 #endif
372 /* Data and reference forms for relocatable data. */
373 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
376 #ifndef DEBUG_FRAME_SECTION
377 #define DEBUG_FRAME_SECTION ".debug_frame"
378 #endif
380 #ifndef FUNC_BEGIN_LABEL
381 #define FUNC_BEGIN_LABEL "LFB"
382 #endif
384 #ifndef FUNC_END_LABEL
385 #define FUNC_END_LABEL "LFE"
386 #endif
388 #ifndef FRAME_BEGIN_LABEL
389 #define FRAME_BEGIN_LABEL "Lframe"
390 #endif
391 #define CIE_AFTER_SIZE_LABEL "LSCIE"
392 #define CIE_END_LABEL "LECIE"
393 #define FDE_LABEL "LSFDE"
394 #define FDE_AFTER_SIZE_LABEL "LASFDE"
395 #define FDE_END_LABEL "LEFDE"
396 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
397 #define LINE_NUMBER_END_LABEL "LELT"
398 #define LN_PROLOG_AS_LABEL "LASLTP"
399 #define LN_PROLOG_END_LABEL "LELTP"
400 #define DIE_LABEL_PREFIX "DW"
402 /* The DWARF 2 CFA column which tracks the return address. Normally this
403 is the column for PC, or the first column after all of the hard
404 registers. */
405 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #ifdef PC_REGNUM
407 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #else
409 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
410 #endif
411 #endif
413 /* The mapping from gcc register number to DWARF 2 CFA column number. By
414 default, we just provide columns for all registers. */
415 #ifndef DWARF_FRAME_REGNUM
416 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417 #endif
419 /* Hook used by __throw. */
422 expand_builtin_dwarf_sp_column (void)
424 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
428 /* Return a pointer to a copy of the section string name S with all
429 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 static inline char *
432 stripattributes (const char *s)
434 char *stripped = XNEWVEC (char, strlen (s) + 2);
435 char *p = stripped;
437 *p++ = '*';
439 while (*s && *s != ',')
440 *p++ = *s++;
442 *p = '\0';
443 return stripped;
446 /* Generate code to initialize the register size table. */
448 void
449 expand_builtin_init_dwarf_reg_sizes (tree address)
451 unsigned int i;
452 enum machine_mode mode = TYPE_MODE (char_type_node);
453 rtx addr = expand_normal (address);
454 rtx mem = gen_rtx_MEM (BLKmode, addr);
455 bool wrote_return_column = false;
457 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
459 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
461 if (rnum < DWARF_FRAME_REGISTERS)
463 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
464 enum machine_mode save_mode = reg_raw_mode[i];
465 HOST_WIDE_INT size;
467 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
468 save_mode = choose_hard_reg_mode (i, 1, true);
469 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
471 if (save_mode == VOIDmode)
472 continue;
473 wrote_return_column = true;
475 size = GET_MODE_SIZE (save_mode);
476 if (offset < 0)
477 continue;
479 emit_move_insn (adjust_address (mem, mode, offset),
480 gen_int_mode (size, mode));
484 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
485 gcc_assert (wrote_return_column);
486 i = DWARF_ALT_FRAME_RETURN_COLUMN;
487 wrote_return_column = false;
488 #else
489 i = DWARF_FRAME_RETURN_COLUMN;
490 #endif
492 if (! wrote_return_column)
494 enum machine_mode save_mode = Pmode;
495 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
496 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
497 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 /* Convert a DWARF call frame info. operation to its string name */
503 static const char *
504 dwarf_cfi_name (unsigned int cfi_opc)
506 switch (cfi_opc)
508 case DW_CFA_advance_loc:
509 return "DW_CFA_advance_loc";
510 case DW_CFA_offset:
511 return "DW_CFA_offset";
512 case DW_CFA_restore:
513 return "DW_CFA_restore";
514 case DW_CFA_nop:
515 return "DW_CFA_nop";
516 case DW_CFA_set_loc:
517 return "DW_CFA_set_loc";
518 case DW_CFA_advance_loc1:
519 return "DW_CFA_advance_loc1";
520 case DW_CFA_advance_loc2:
521 return "DW_CFA_advance_loc2";
522 case DW_CFA_advance_loc4:
523 return "DW_CFA_advance_loc4";
524 case DW_CFA_offset_extended:
525 return "DW_CFA_offset_extended";
526 case DW_CFA_restore_extended:
527 return "DW_CFA_restore_extended";
528 case DW_CFA_undefined:
529 return "DW_CFA_undefined";
530 case DW_CFA_same_value:
531 return "DW_CFA_same_value";
532 case DW_CFA_register:
533 return "DW_CFA_register";
534 case DW_CFA_remember_state:
535 return "DW_CFA_remember_state";
536 case DW_CFA_restore_state:
537 return "DW_CFA_restore_state";
538 case DW_CFA_def_cfa:
539 return "DW_CFA_def_cfa";
540 case DW_CFA_def_cfa_register:
541 return "DW_CFA_def_cfa_register";
542 case DW_CFA_def_cfa_offset:
543 return "DW_CFA_def_cfa_offset";
545 /* DWARF 3 */
546 case DW_CFA_def_cfa_expression:
547 return "DW_CFA_def_cfa_expression";
548 case DW_CFA_expression:
549 return "DW_CFA_expression";
550 case DW_CFA_offset_extended_sf:
551 return "DW_CFA_offset_extended_sf";
552 case DW_CFA_def_cfa_sf:
553 return "DW_CFA_def_cfa_sf";
554 case DW_CFA_def_cfa_offset_sf:
555 return "DW_CFA_def_cfa_offset_sf";
557 /* SGI/MIPS specific */
558 case DW_CFA_MIPS_advance_loc8:
559 return "DW_CFA_MIPS_advance_loc8";
561 /* GNU extensions */
562 case DW_CFA_GNU_window_save:
563 return "DW_CFA_GNU_window_save";
564 case DW_CFA_GNU_args_size:
565 return "DW_CFA_GNU_args_size";
566 case DW_CFA_GNU_negative_offset_extended:
567 return "DW_CFA_GNU_negative_offset_extended";
569 default:
570 return "DW_CFA_<unknown>";
574 /* Return a pointer to a newly allocated Call Frame Instruction. */
576 static inline dw_cfi_ref
577 new_cfi (void)
579 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
581 cfi->dw_cfi_next = NULL;
582 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
583 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
585 return cfi;
588 /* Add a Call Frame Instruction to list of instructions. */
590 static inline void
591 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
593 dw_cfi_ref *p;
595 /* Find the end of the chain. */
596 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
599 *p = cfi;
602 /* Generate a new label for the CFI info to refer to. */
604 char *
605 dwarf2out_cfi_label (void)
607 static char label[20];
609 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
610 ASM_OUTPUT_LABEL (asm_out_file, label);
611 return label;
614 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
615 or to the CIE if LABEL is NULL. */
617 static void
618 add_fde_cfi (const char *label, dw_cfi_ref cfi)
620 if (label)
622 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
624 if (*label == 0)
625 label = dwarf2out_cfi_label ();
627 if (fde->dw_fde_current_label == NULL
628 || strcmp (label, fde->dw_fde_current_label) != 0)
630 dw_cfi_ref xcfi;
632 label = xstrdup (label);
634 /* Set the location counter to the new label. */
635 xcfi = new_cfi ();
636 /* If we have a current label, advance from there, otherwise
637 set the location directly using set_loc. */
638 xcfi->dw_cfi_opc = fde->dw_fde_current_label
639 ? DW_CFA_advance_loc4
640 : DW_CFA_set_loc;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
644 fde->dw_fde_current_label = label;
647 add_cfi (&fde->dw_fde_cfi, cfi);
650 else
651 add_cfi (&cie_cfi_head, cfi);
654 /* Subroutine of lookup_cfa. */
656 static void
657 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
659 switch (cfi->dw_cfi_opc)
661 case DW_CFA_def_cfa_offset:
662 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
663 break;
664 case DW_CFA_def_cfa_offset_sf:
665 loc->offset
666 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
667 break;
668 case DW_CFA_def_cfa_register:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 break;
671 case DW_CFA_def_cfa:
672 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
673 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_sf:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 loc->offset
678 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
679 break;
680 case DW_CFA_def_cfa_expression:
681 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
682 break;
683 default:
684 break;
688 /* Find the previous value for the CFA. */
690 static void
691 lookup_cfa (dw_cfa_location *loc)
693 dw_cfi_ref cfi;
695 loc->reg = INVALID_REGNUM;
696 loc->offset = 0;
697 loc->indirect = 0;
698 loc->base_offset = 0;
700 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
701 lookup_cfa_1 (cfi, loc);
703 if (fde_table_in_use)
705 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
706 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
707 lookup_cfa_1 (cfi, loc);
711 /* The current rule for calculating the DWARF2 canonical frame address. */
712 static dw_cfa_location cfa;
714 /* The register used for saving registers to the stack, and its offset
715 from the CFA. */
716 static dw_cfa_location cfa_store;
718 /* The running total of the size of arguments pushed onto the stack. */
719 static HOST_WIDE_INT args_size;
721 /* The last args_size we actually output. */
722 static HOST_WIDE_INT old_args_size;
724 /* Entry point to update the canonical frame address (CFA).
725 LABEL is passed to add_fde_cfi. The value of CFA is now to be
726 calculated from REG+OFFSET. */
728 void
729 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
731 dw_cfa_location loc;
732 loc.indirect = 0;
733 loc.base_offset = 0;
734 loc.reg = reg;
735 loc.offset = offset;
736 def_cfa_1 (label, &loc);
739 /* Determine if two dw_cfa_location structures define the same data. */
741 static bool
742 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
744 return (loc1->reg == loc2->reg
745 && loc1->offset == loc2->offset
746 && loc1->indirect == loc2->indirect
747 && (loc1->indirect == 0
748 || loc1->base_offset == loc2->base_offset));
751 /* This routine does the actual work. The CFA is now calculated from
752 the dw_cfa_location structure. */
754 static void
755 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
757 dw_cfi_ref cfi;
758 dw_cfa_location old_cfa, loc;
760 cfa = *loc_p;
761 loc = *loc_p;
763 if (cfa_store.reg == loc.reg && loc.indirect == 0)
764 cfa_store.offset = loc.offset;
766 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
767 lookup_cfa (&old_cfa);
769 /* If nothing changed, no need to issue any call frame instructions. */
770 if (cfa_equal_p (&loc, &old_cfa))
771 return;
773 cfi = new_cfi ();
775 if (loc.reg == old_cfa.reg && !loc.indirect)
777 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
778 the CFA register did not change but the offset did. */
779 if (loc.offset < 0)
781 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
782 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
784 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
785 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
787 else
789 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
790 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
794 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
795 else if (loc.offset == old_cfa.offset
796 && old_cfa.reg != INVALID_REGNUM
797 && !loc.indirect)
799 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
800 indicating the CFA register has changed to <register> but the
801 offset has not changed. */
802 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 #endif
807 else if (loc.indirect == 0)
809 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
810 indicating the CFA register has changed to <register> with
811 the specified offset. */
812 if (loc.offset < 0)
814 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
815 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
817 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
818 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
819 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
821 else
823 cfi->dw_cfi_opc = DW_CFA_def_cfa;
824 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
825 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
828 else
830 /* Construct a DW_CFA_def_cfa_expression instruction to
831 calculate the CFA using a full location expression since no
832 register-offset pair is available. */
833 struct dw_loc_descr_struct *loc_list;
835 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
836 loc_list = build_cfa_loc (&loc, 0);
837 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
840 add_fde_cfi (label, cfi);
843 /* Add the CFI for saving a register. REG is the CFA column number.
844 LABEL is passed to add_fde_cfi.
845 If SREG is -1, the register is saved at OFFSET from the CFA;
846 otherwise it is saved in SREG. */
848 static void
849 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
851 dw_cfi_ref cfi = new_cfi ();
853 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
855 if (sreg == INVALID_REGNUM)
857 if (reg & ~0x3f)
858 /* The register number won't fit in 6 bits, so we have to use
859 the long form. */
860 cfi->dw_cfi_opc = DW_CFA_offset_extended;
861 else
862 cfi->dw_cfi_opc = DW_CFA_offset;
864 #ifdef ENABLE_CHECKING
866 /* If we get an offset that is not a multiple of
867 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
868 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
869 description. */
870 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
872 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
874 #endif
875 offset /= DWARF_CIE_DATA_ALIGNMENT;
876 if (offset < 0)
877 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
879 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
881 else if (sreg == reg)
882 cfi->dw_cfi_opc = DW_CFA_same_value;
883 else
885 cfi->dw_cfi_opc = DW_CFA_register;
886 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
889 add_fde_cfi (label, cfi);
892 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
893 This CFI tells the unwinder that it needs to restore the window registers
894 from the previous frame's window save area.
896 ??? Perhaps we should note in the CIE where windows are saved (instead of
897 assuming 0(cfa)) and what registers are in the window. */
899 void
900 dwarf2out_window_save (const char *label)
902 dw_cfi_ref cfi = new_cfi ();
904 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
905 add_fde_cfi (label, cfi);
908 /* Add a CFI to update the running total of the size of arguments
909 pushed onto the stack. */
911 void
912 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
914 dw_cfi_ref cfi;
916 if (size == old_args_size)
917 return;
919 old_args_size = size;
921 cfi = new_cfi ();
922 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
923 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
924 add_fde_cfi (label, cfi);
927 /* Entry point for saving a register to the stack. REG is the GCC register
928 number. LABEL and OFFSET are passed to reg_save. */
930 void
931 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
933 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
936 /* Entry point for saving the return address in the stack.
937 LABEL and OFFSET are passed to reg_save. */
939 void
940 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
942 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
945 /* Entry point for saving the return address in a register.
946 LABEL and SREG are passed to reg_save. */
948 void
949 dwarf2out_return_reg (const char *label, unsigned int sreg)
951 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
954 /* Record the initial position of the return address. RTL is
955 INCOMING_RETURN_ADDR_RTX. */
957 static void
958 initial_return_save (rtx rtl)
960 unsigned int reg = INVALID_REGNUM;
961 HOST_WIDE_INT offset = 0;
963 switch (GET_CODE (rtl))
965 case REG:
966 /* RA is in a register. */
967 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
968 break;
970 case MEM:
971 /* RA is on the stack. */
972 rtl = XEXP (rtl, 0);
973 switch (GET_CODE (rtl))
975 case REG:
976 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
977 offset = 0;
978 break;
980 case PLUS:
981 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
982 offset = INTVAL (XEXP (rtl, 1));
983 break;
985 case MINUS:
986 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
987 offset = -INTVAL (XEXP (rtl, 1));
988 break;
990 default:
991 gcc_unreachable ();
994 break;
996 case PLUS:
997 /* The return address is at some offset from any value we can
998 actually load. For instance, on the SPARC it is in %i7+8. Just
999 ignore the offset for now; it doesn't matter for unwinding frames. */
1000 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1001 initial_return_save (XEXP (rtl, 0));
1002 return;
1004 default:
1005 gcc_unreachable ();
1008 if (reg != DWARF_FRAME_RETURN_COLUMN)
1009 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1012 /* Given a SET, calculate the amount of stack adjustment it
1013 contains. */
1015 static HOST_WIDE_INT
1016 stack_adjust_offset (rtx pattern)
1018 rtx src = SET_SRC (pattern);
1019 rtx dest = SET_DEST (pattern);
1020 HOST_WIDE_INT offset = 0;
1021 enum rtx_code code;
1023 if (dest == stack_pointer_rtx)
1025 /* (set (reg sp) (plus (reg sp) (const_int))) */
1026 code = GET_CODE (src);
1027 if (! (code == PLUS || code == MINUS)
1028 || XEXP (src, 0) != stack_pointer_rtx
1029 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1030 return 0;
1032 offset = INTVAL (XEXP (src, 1));
1033 if (code == PLUS)
1034 offset = -offset;
1036 else if (MEM_P (dest))
1038 /* (set (mem (pre_dec (reg sp))) (foo)) */
1039 src = XEXP (dest, 0);
1040 code = GET_CODE (src);
1042 switch (code)
1044 case PRE_MODIFY:
1045 case POST_MODIFY:
1046 if (XEXP (src, 0) == stack_pointer_rtx)
1048 rtx val = XEXP (XEXP (src, 1), 1);
1049 /* We handle only adjustments by constant amount. */
1050 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1051 && GET_CODE (val) == CONST_INT);
1052 offset = -INTVAL (val);
1053 break;
1055 return 0;
1057 case PRE_DEC:
1058 case POST_DEC:
1059 if (XEXP (src, 0) == stack_pointer_rtx)
1061 offset = GET_MODE_SIZE (GET_MODE (dest));
1062 break;
1064 return 0;
1066 case PRE_INC:
1067 case POST_INC:
1068 if (XEXP (src, 0) == stack_pointer_rtx)
1070 offset = -GET_MODE_SIZE (GET_MODE (dest));
1071 break;
1073 return 0;
1075 default:
1076 return 0;
1079 else
1080 return 0;
1082 return offset;
1085 /* Check INSN to see if it looks like a push or a stack adjustment, and
1086 make a note of it if it does. EH uses this information to find out how
1087 much extra space it needs to pop off the stack. */
1089 static void
1090 dwarf2out_stack_adjust (rtx insn, bool after_p)
1092 HOST_WIDE_INT offset;
1093 const char *label;
1094 int i;
1096 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1097 with this function. Proper support would require all frame-related
1098 insns to be marked, and to be able to handle saving state around
1099 epilogues textually in the middle of the function. */
1100 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1101 return;
1103 /* If only calls can throw, and we have a frame pointer,
1104 save up adjustments until we see the CALL_INSN. */
1105 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1107 if (CALL_P (insn) && !after_p)
1109 /* Extract the size of the args from the CALL rtx itself. */
1110 insn = PATTERN (insn);
1111 if (GET_CODE (insn) == PARALLEL)
1112 insn = XVECEXP (insn, 0, 0);
1113 if (GET_CODE (insn) == SET)
1114 insn = SET_SRC (insn);
1115 gcc_assert (GET_CODE (insn) == CALL);
1116 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1118 return;
1121 if (CALL_P (insn) && !after_p)
1123 if (!flag_asynchronous_unwind_tables)
1124 dwarf2out_args_size ("", args_size);
1125 return;
1127 else if (BARRIER_P (insn))
1129 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1130 the compiler will have already emitted a stack adjustment, but
1131 doesn't bother for calls to noreturn functions. */
1132 #ifdef STACK_GROWS_DOWNWARD
1133 offset = -args_size;
1134 #else
1135 offset = args_size;
1136 #endif
1138 else if (GET_CODE (PATTERN (insn)) == SET)
1139 offset = stack_adjust_offset (PATTERN (insn));
1140 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1141 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1143 /* There may be stack adjustments inside compound insns. Search
1144 for them. */
1145 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1146 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1147 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1149 else
1150 return;
1152 if (offset == 0)
1153 return;
1155 if (cfa.reg == STACK_POINTER_REGNUM)
1156 cfa.offset += offset;
1158 #ifndef STACK_GROWS_DOWNWARD
1159 offset = -offset;
1160 #endif
1162 args_size += offset;
1163 if (args_size < 0)
1164 args_size = 0;
1166 label = dwarf2out_cfi_label ();
1167 def_cfa_1 (label, &cfa);
1168 if (flag_asynchronous_unwind_tables)
1169 dwarf2out_args_size (label, args_size);
1172 #endif
1174 /* We delay emitting a register save until either (a) we reach the end
1175 of the prologue or (b) the register is clobbered. This clusters
1176 register saves so that there are fewer pc advances. */
1178 struct queued_reg_save GTY(())
1180 struct queued_reg_save *next;
1181 rtx reg;
1182 HOST_WIDE_INT cfa_offset;
1183 rtx saved_reg;
1186 static GTY(()) struct queued_reg_save *queued_reg_saves;
1188 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1189 struct reg_saved_in_data GTY(()) {
1190 rtx orig_reg;
1191 rtx saved_in_reg;
1194 /* A list of registers saved in other registers.
1195 The list intentionally has a small maximum capacity of 4; if your
1196 port needs more than that, you might consider implementing a
1197 more efficient data structure. */
1198 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1199 static GTY(()) size_t num_regs_saved_in_regs;
1201 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1202 static const char *last_reg_save_label;
1204 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1205 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1207 static void
1208 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1210 struct queued_reg_save *q;
1212 /* Duplicates waste space, but it's also necessary to remove them
1213 for correctness, since the queue gets output in reverse
1214 order. */
1215 for (q = queued_reg_saves; q != NULL; q = q->next)
1216 if (REGNO (q->reg) == REGNO (reg))
1217 break;
1219 if (q == NULL)
1221 q = ggc_alloc (sizeof (*q));
1222 q->next = queued_reg_saves;
1223 queued_reg_saves = q;
1226 q->reg = reg;
1227 q->cfa_offset = offset;
1228 q->saved_reg = sreg;
1230 last_reg_save_label = label;
1233 /* Output all the entries in QUEUED_REG_SAVES. */
1235 static void
1236 flush_queued_reg_saves (void)
1238 struct queued_reg_save *q;
1240 for (q = queued_reg_saves; q; q = q->next)
1242 size_t i;
1243 unsigned int reg, sreg;
1245 for (i = 0; i < num_regs_saved_in_regs; i++)
1246 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1247 break;
1248 if (q->saved_reg && i == num_regs_saved_in_regs)
1250 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1251 num_regs_saved_in_regs++;
1253 if (i != num_regs_saved_in_regs)
1255 regs_saved_in_regs[i].orig_reg = q->reg;
1256 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1259 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1260 if (q->saved_reg)
1261 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1262 else
1263 sreg = INVALID_REGNUM;
1264 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1267 queued_reg_saves = NULL;
1268 last_reg_save_label = NULL;
1271 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1272 location for? Or, does it clobber a register which we've previously
1273 said that some other register is saved in, and for which we now
1274 have a new location for? */
1276 static bool
1277 clobbers_queued_reg_save (rtx insn)
1279 struct queued_reg_save *q;
1281 for (q = queued_reg_saves; q; q = q->next)
1283 size_t i;
1284 if (modified_in_p (q->reg, insn))
1285 return true;
1286 for (i = 0; i < num_regs_saved_in_regs; i++)
1287 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1288 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1289 return true;
1292 return false;
1295 /* Entry point for saving the first register into the second. */
1297 void
1298 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1300 size_t i;
1301 unsigned int regno, sregno;
1303 for (i = 0; i < num_regs_saved_in_regs; i++)
1304 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1305 break;
1306 if (i == num_regs_saved_in_regs)
1308 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1309 num_regs_saved_in_regs++;
1311 regs_saved_in_regs[i].orig_reg = reg;
1312 regs_saved_in_regs[i].saved_in_reg = sreg;
1314 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1315 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1316 reg_save (label, regno, sregno, 0);
1319 /* What register, if any, is currently saved in REG? */
1321 static rtx
1322 reg_saved_in (rtx reg)
1324 unsigned int regn = REGNO (reg);
1325 size_t i;
1326 struct queued_reg_save *q;
1328 for (q = queued_reg_saves; q; q = q->next)
1329 if (q->saved_reg && regn == REGNO (q->saved_reg))
1330 return q->reg;
1332 for (i = 0; i < num_regs_saved_in_regs; i++)
1333 if (regs_saved_in_regs[i].saved_in_reg
1334 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1335 return regs_saved_in_regs[i].orig_reg;
1337 return NULL_RTX;
1341 /* A temporary register holding an integral value used in adjusting SP
1342 or setting up the store_reg. The "offset" field holds the integer
1343 value, not an offset. */
1344 static dw_cfa_location cfa_temp;
1346 /* Record call frame debugging information for an expression EXPR,
1347 which either sets SP or FP (adjusting how we calculate the frame
1348 address) or saves a register to the stack or another register.
1349 LABEL indicates the address of EXPR.
1351 This function encodes a state machine mapping rtxes to actions on
1352 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1353 users need not read the source code.
1355 The High-Level Picture
1357 Changes in the register we use to calculate the CFA: Currently we
1358 assume that if you copy the CFA register into another register, we
1359 should take the other one as the new CFA register; this seems to
1360 work pretty well. If it's wrong for some target, it's simple
1361 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1363 Changes in the register we use for saving registers to the stack:
1364 This is usually SP, but not always. Again, we deduce that if you
1365 copy SP into another register (and SP is not the CFA register),
1366 then the new register is the one we will be using for register
1367 saves. This also seems to work.
1369 Register saves: There's not much guesswork about this one; if
1370 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1371 register save, and the register used to calculate the destination
1372 had better be the one we think we're using for this purpose.
1373 It's also assumed that a copy from a call-saved register to another
1374 register is saving that register if RTX_FRAME_RELATED_P is set on
1375 that instruction. If the copy is from a call-saved register to
1376 the *same* register, that means that the register is now the same
1377 value as in the caller.
1379 Except: If the register being saved is the CFA register, and the
1380 offset is nonzero, we are saving the CFA, so we assume we have to
1381 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1382 the intent is to save the value of SP from the previous frame.
1384 In addition, if a register has previously been saved to a different
1385 register,
1387 Invariants / Summaries of Rules
1389 cfa current rule for calculating the CFA. It usually
1390 consists of a register and an offset.
1391 cfa_store register used by prologue code to save things to the stack
1392 cfa_store.offset is the offset from the value of
1393 cfa_store.reg to the actual CFA
1394 cfa_temp register holding an integral value. cfa_temp.offset
1395 stores the value, which will be used to adjust the
1396 stack pointer. cfa_temp is also used like cfa_store,
1397 to track stores to the stack via fp or a temp reg.
1399 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1400 with cfa.reg as the first operand changes the cfa.reg and its
1401 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1402 cfa_temp.offset.
1404 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1405 expression yielding a constant. This sets cfa_temp.reg
1406 and cfa_temp.offset.
1408 Rule 5: Create a new register cfa_store used to save items to the
1409 stack.
1411 Rules 10-14: Save a register to the stack. Define offset as the
1412 difference of the original location and cfa_store's
1413 location (or cfa_temp's location if cfa_temp is used).
1415 The Rules
1417 "{a,b}" indicates a choice of a xor b.
1418 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1420 Rule 1:
1421 (set <reg1> <reg2>:cfa.reg)
1422 effects: cfa.reg = <reg1>
1423 cfa.offset unchanged
1424 cfa_temp.reg = <reg1>
1425 cfa_temp.offset = cfa.offset
1427 Rule 2:
1428 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1429 {<const_int>,<reg>:cfa_temp.reg}))
1430 effects: cfa.reg = sp if fp used
1431 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1432 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1433 if cfa_store.reg==sp
1435 Rule 3:
1436 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1437 effects: cfa.reg = fp
1438 cfa_offset += +/- <const_int>
1440 Rule 4:
1441 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1442 constraints: <reg1> != fp
1443 <reg1> != sp
1444 effects: cfa.reg = <reg1>
1445 cfa_temp.reg = <reg1>
1446 cfa_temp.offset = cfa.offset
1448 Rule 5:
1449 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1450 constraints: <reg1> != fp
1451 <reg1> != sp
1452 effects: cfa_store.reg = <reg1>
1453 cfa_store.offset = cfa.offset - cfa_temp.offset
1455 Rule 6:
1456 (set <reg> <const_int>)
1457 effects: cfa_temp.reg = <reg>
1458 cfa_temp.offset = <const_int>
1460 Rule 7:
1461 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1462 effects: cfa_temp.reg = <reg1>
1463 cfa_temp.offset |= <const_int>
1465 Rule 8:
1466 (set <reg> (high <exp>))
1467 effects: none
1469 Rule 9:
1470 (set <reg> (lo_sum <exp> <const_int>))
1471 effects: cfa_temp.reg = <reg>
1472 cfa_temp.offset = <const_int>
1474 Rule 10:
1475 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1476 effects: cfa_store.offset -= <const_int>
1477 cfa.offset = cfa_store.offset if cfa.reg == sp
1478 cfa.reg = sp
1479 cfa.base_offset = -cfa_store.offset
1481 Rule 11:
1482 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1483 effects: cfa_store.offset += -/+ mode_size(mem)
1484 cfa.offset = cfa_store.offset if cfa.reg == sp
1485 cfa.reg = sp
1486 cfa.base_offset = -cfa_store.offset
1488 Rule 12:
1489 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1491 <reg2>)
1492 effects: cfa.reg = <reg1>
1493 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1495 Rule 13:
1496 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1497 effects: cfa.reg = <reg1>
1498 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1500 Rule 14:
1501 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1502 effects: cfa.reg = <reg1>
1503 cfa.base_offset = -cfa_temp.offset
1504 cfa_temp.offset -= mode_size(mem)
1506 Rule 15:
1507 (set <reg> {unspec, unspec_volatile})
1508 effects: target-dependent */
1510 static void
1511 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1513 rtx src, dest;
1514 HOST_WIDE_INT offset;
1516 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1517 the PARALLEL independently. The first element is always processed if
1518 it is a SET. This is for backward compatibility. Other elements
1519 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1520 flag is set in them. */
1521 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1523 int par_index;
1524 int limit = XVECLEN (expr, 0);
1526 for (par_index = 0; par_index < limit; par_index++)
1527 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1528 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1529 || par_index == 0))
1530 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1532 return;
1535 gcc_assert (GET_CODE (expr) == SET);
1537 src = SET_SRC (expr);
1538 dest = SET_DEST (expr);
1540 if (REG_P (src))
1542 rtx rsi = reg_saved_in (src);
1543 if (rsi)
1544 src = rsi;
1547 switch (GET_CODE (dest))
1549 case REG:
1550 switch (GET_CODE (src))
1552 /* Setting FP from SP. */
1553 case REG:
1554 if (cfa.reg == (unsigned) REGNO (src))
1556 /* Rule 1 */
1557 /* Update the CFA rule wrt SP or FP. Make sure src is
1558 relative to the current CFA register.
1560 We used to require that dest be either SP or FP, but the
1561 ARM copies SP to a temporary register, and from there to
1562 FP. So we just rely on the backends to only set
1563 RTX_FRAME_RELATED_P on appropriate insns. */
1564 cfa.reg = REGNO (dest);
1565 cfa_temp.reg = cfa.reg;
1566 cfa_temp.offset = cfa.offset;
1568 else
1570 /* Saving a register in a register. */
1571 gcc_assert (!fixed_regs [REGNO (dest)]
1572 /* For the SPARC and its register window. */
1573 || (DWARF_FRAME_REGNUM (REGNO (src))
1574 == DWARF_FRAME_RETURN_COLUMN));
1575 queue_reg_save (label, src, dest, 0);
1577 break;
1579 case PLUS:
1580 case MINUS:
1581 case LO_SUM:
1582 if (dest == stack_pointer_rtx)
1584 /* Rule 2 */
1585 /* Adjusting SP. */
1586 switch (GET_CODE (XEXP (src, 1)))
1588 case CONST_INT:
1589 offset = INTVAL (XEXP (src, 1));
1590 break;
1591 case REG:
1592 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1593 == cfa_temp.reg);
1594 offset = cfa_temp.offset;
1595 break;
1596 default:
1597 gcc_unreachable ();
1600 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1602 /* Restoring SP from FP in the epilogue. */
1603 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1604 cfa.reg = STACK_POINTER_REGNUM;
1606 else if (GET_CODE (src) == LO_SUM)
1607 /* Assume we've set the source reg of the LO_SUM from sp. */
1609 else
1610 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1612 if (GET_CODE (src) != MINUS)
1613 offset = -offset;
1614 if (cfa.reg == STACK_POINTER_REGNUM)
1615 cfa.offset += offset;
1616 if (cfa_store.reg == STACK_POINTER_REGNUM)
1617 cfa_store.offset += offset;
1619 else if (dest == hard_frame_pointer_rtx)
1621 /* Rule 3 */
1622 /* Either setting the FP from an offset of the SP,
1623 or adjusting the FP */
1624 gcc_assert (frame_pointer_needed);
1626 gcc_assert (REG_P (XEXP (src, 0))
1627 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1628 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1629 offset = INTVAL (XEXP (src, 1));
1630 if (GET_CODE (src) != MINUS)
1631 offset = -offset;
1632 cfa.offset += offset;
1633 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1635 else
1637 gcc_assert (GET_CODE (src) != MINUS);
1639 /* Rule 4 */
1640 if (REG_P (XEXP (src, 0))
1641 && REGNO (XEXP (src, 0)) == cfa.reg
1642 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1644 /* Setting a temporary CFA register that will be copied
1645 into the FP later on. */
1646 offset = - INTVAL (XEXP (src, 1));
1647 cfa.offset += offset;
1648 cfa.reg = REGNO (dest);
1649 /* Or used to save regs to the stack. */
1650 cfa_temp.reg = cfa.reg;
1651 cfa_temp.offset = cfa.offset;
1654 /* Rule 5 */
1655 else if (REG_P (XEXP (src, 0))
1656 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1657 && XEXP (src, 1) == stack_pointer_rtx)
1659 /* Setting a scratch register that we will use instead
1660 of SP for saving registers to the stack. */
1661 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1662 cfa_store.reg = REGNO (dest);
1663 cfa_store.offset = cfa.offset - cfa_temp.offset;
1666 /* Rule 9 */
1667 else if (GET_CODE (src) == LO_SUM
1668 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1670 cfa_temp.reg = REGNO (dest);
1671 cfa_temp.offset = INTVAL (XEXP (src, 1));
1673 else
1674 gcc_unreachable ();
1676 break;
1678 /* Rule 6 */
1679 case CONST_INT:
1680 cfa_temp.reg = REGNO (dest);
1681 cfa_temp.offset = INTVAL (src);
1682 break;
1684 /* Rule 7 */
1685 case IOR:
1686 gcc_assert (REG_P (XEXP (src, 0))
1687 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1688 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1690 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1691 cfa_temp.reg = REGNO (dest);
1692 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1693 break;
1695 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1696 which will fill in all of the bits. */
1697 /* Rule 8 */
1698 case HIGH:
1699 break;
1701 /* Rule 15 */
1702 case UNSPEC:
1703 case UNSPEC_VOLATILE:
1704 gcc_assert (targetm.dwarf_handle_frame_unspec);
1705 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1706 return;
1708 default:
1709 gcc_unreachable ();
1712 def_cfa_1 (label, &cfa);
1713 break;
1715 case MEM:
1716 gcc_assert (REG_P (src));
1718 /* Saving a register to the stack. Make sure dest is relative to the
1719 CFA register. */
1720 switch (GET_CODE (XEXP (dest, 0)))
1722 /* Rule 10 */
1723 /* With a push. */
1724 case PRE_MODIFY:
1725 /* We can't handle variable size modifications. */
1726 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1727 == CONST_INT);
1728 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1730 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1731 && cfa_store.reg == STACK_POINTER_REGNUM);
1733 cfa_store.offset += offset;
1734 if (cfa.reg == STACK_POINTER_REGNUM)
1735 cfa.offset = cfa_store.offset;
1737 offset = -cfa_store.offset;
1738 break;
1740 /* Rule 11 */
1741 case PRE_INC:
1742 case PRE_DEC:
1743 offset = GET_MODE_SIZE (GET_MODE (dest));
1744 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1745 offset = -offset;
1747 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1748 && cfa_store.reg == STACK_POINTER_REGNUM);
1750 cfa_store.offset += offset;
1751 if (cfa.reg == STACK_POINTER_REGNUM)
1752 cfa.offset = cfa_store.offset;
1754 offset = -cfa_store.offset;
1755 break;
1757 /* Rule 12 */
1758 /* With an offset. */
1759 case PLUS:
1760 case MINUS:
1761 case LO_SUM:
1763 int regno;
1765 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1766 && REG_P (XEXP (XEXP (dest, 0), 0)));
1767 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1768 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1769 offset = -offset;
1771 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1773 if (cfa_store.reg == (unsigned) regno)
1774 offset -= cfa_store.offset;
1775 else
1777 gcc_assert (cfa_temp.reg == (unsigned) regno);
1778 offset -= cfa_temp.offset;
1781 break;
1783 /* Rule 13 */
1784 /* Without an offset. */
1785 case REG:
1787 int regno = REGNO (XEXP (dest, 0));
1789 if (cfa_store.reg == (unsigned) regno)
1790 offset = -cfa_store.offset;
1791 else
1793 gcc_assert (cfa_temp.reg == (unsigned) regno);
1794 offset = -cfa_temp.offset;
1797 break;
1799 /* Rule 14 */
1800 case POST_INC:
1801 gcc_assert (cfa_temp.reg
1802 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1803 offset = -cfa_temp.offset;
1804 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1805 break;
1807 default:
1808 gcc_unreachable ();
1811 if (REGNO (src) != STACK_POINTER_REGNUM
1812 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1813 && (unsigned) REGNO (src) == cfa.reg)
1815 /* We're storing the current CFA reg into the stack. */
1817 if (cfa.offset == 0)
1819 /* If the source register is exactly the CFA, assume
1820 we're saving SP like any other register; this happens
1821 on the ARM. */
1822 def_cfa_1 (label, &cfa);
1823 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1824 break;
1826 else
1828 /* Otherwise, we'll need to look in the stack to
1829 calculate the CFA. */
1830 rtx x = XEXP (dest, 0);
1832 if (!REG_P (x))
1833 x = XEXP (x, 0);
1834 gcc_assert (REG_P (x));
1836 cfa.reg = REGNO (x);
1837 cfa.base_offset = offset;
1838 cfa.indirect = 1;
1839 def_cfa_1 (label, &cfa);
1840 break;
1844 def_cfa_1 (label, &cfa);
1845 queue_reg_save (label, src, NULL_RTX, offset);
1846 break;
1848 default:
1849 gcc_unreachable ();
1853 /* Record call frame debugging information for INSN, which either
1854 sets SP or FP (adjusting how we calculate the frame address) or saves a
1855 register to the stack. If INSN is NULL_RTX, initialize our state.
1857 If AFTER_P is false, we're being called before the insn is emitted,
1858 otherwise after. Call instructions get invoked twice. */
1860 void
1861 dwarf2out_frame_debug (rtx insn, bool after_p)
1863 const char *label;
1864 rtx src;
1866 if (insn == NULL_RTX)
1868 size_t i;
1870 /* Flush any queued register saves. */
1871 flush_queued_reg_saves ();
1873 /* Set up state for generating call frame debug info. */
1874 lookup_cfa (&cfa);
1875 gcc_assert (cfa.reg
1876 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1878 cfa.reg = STACK_POINTER_REGNUM;
1879 cfa_store = cfa;
1880 cfa_temp.reg = -1;
1881 cfa_temp.offset = 0;
1883 for (i = 0; i < num_regs_saved_in_regs; i++)
1885 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1886 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1888 num_regs_saved_in_regs = 0;
1889 return;
1892 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1893 flush_queued_reg_saves ();
1895 if (! RTX_FRAME_RELATED_P (insn))
1897 if (!ACCUMULATE_OUTGOING_ARGS)
1898 dwarf2out_stack_adjust (insn, after_p);
1899 return;
1902 label = dwarf2out_cfi_label ();
1903 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1904 if (src)
1905 insn = XEXP (src, 0);
1906 else
1907 insn = PATTERN (insn);
1909 dwarf2out_frame_debug_expr (insn, label);
1912 #endif
1914 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1915 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1916 (enum dwarf_call_frame_info cfi);
1918 static enum dw_cfi_oprnd_type
1919 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1921 switch (cfi)
1923 case DW_CFA_nop:
1924 case DW_CFA_GNU_window_save:
1925 return dw_cfi_oprnd_unused;
1927 case DW_CFA_set_loc:
1928 case DW_CFA_advance_loc1:
1929 case DW_CFA_advance_loc2:
1930 case DW_CFA_advance_loc4:
1931 case DW_CFA_MIPS_advance_loc8:
1932 return dw_cfi_oprnd_addr;
1934 case DW_CFA_offset:
1935 case DW_CFA_offset_extended:
1936 case DW_CFA_def_cfa:
1937 case DW_CFA_offset_extended_sf:
1938 case DW_CFA_def_cfa_sf:
1939 case DW_CFA_restore_extended:
1940 case DW_CFA_undefined:
1941 case DW_CFA_same_value:
1942 case DW_CFA_def_cfa_register:
1943 case DW_CFA_register:
1944 return dw_cfi_oprnd_reg_num;
1946 case DW_CFA_def_cfa_offset:
1947 case DW_CFA_GNU_args_size:
1948 case DW_CFA_def_cfa_offset_sf:
1949 return dw_cfi_oprnd_offset;
1951 case DW_CFA_def_cfa_expression:
1952 case DW_CFA_expression:
1953 return dw_cfi_oprnd_loc;
1955 default:
1956 gcc_unreachable ();
1960 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1961 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1962 (enum dwarf_call_frame_info cfi);
1964 static enum dw_cfi_oprnd_type
1965 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1967 switch (cfi)
1969 case DW_CFA_def_cfa:
1970 case DW_CFA_def_cfa_sf:
1971 case DW_CFA_offset:
1972 case DW_CFA_offset_extended_sf:
1973 case DW_CFA_offset_extended:
1974 return dw_cfi_oprnd_offset;
1976 case DW_CFA_register:
1977 return dw_cfi_oprnd_reg_num;
1979 default:
1980 return dw_cfi_oprnd_unused;
1984 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1986 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1987 switch to the data section instead, and write out a synthetic label
1988 for collect2. */
1990 static void
1991 switch_to_eh_frame_section (void)
1993 tree label;
1995 #ifdef EH_FRAME_SECTION_NAME
1996 if (eh_frame_section == 0)
1998 int flags;
2000 if (EH_TABLES_CAN_BE_READ_ONLY)
2002 int fde_encoding;
2003 int per_encoding;
2004 int lsda_encoding;
2006 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2007 /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2009 /*global=*/1);
2010 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2011 /*global=*/0);
2012 flags = ((! flag_pic
2013 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2014 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2015 && (per_encoding & 0x70) != DW_EH_PE_absptr
2016 && (per_encoding & 0x70) != DW_EH_PE_aligned
2017 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2018 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2019 ? 0 : SECTION_WRITE);
2021 else
2022 flags = SECTION_WRITE;
2023 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2025 #endif
2027 if (eh_frame_section)
2028 switch_to_section (eh_frame_section);
2029 else
2031 /* We have no special eh_frame section. Put the information in
2032 the data section and emit special labels to guide collect2. */
2033 switch_to_section (data_section);
2034 label = get_file_function_name ("F");
2035 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2036 targetm.asm_out.globalize_label (asm_out_file,
2037 IDENTIFIER_POINTER (label));
2038 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2042 /* Output a Call Frame Information opcode and its operand(s). */
2044 static void
2045 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2047 unsigned long r;
2048 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2049 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2050 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2051 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2052 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2053 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2055 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2056 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2057 "DW_CFA_offset, column 0x%lx", r);
2058 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2060 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2062 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2063 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2064 "DW_CFA_restore, column 0x%lx", r);
2066 else
2068 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2069 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2071 switch (cfi->dw_cfi_opc)
2073 case DW_CFA_set_loc:
2074 if (for_eh)
2075 dw2_asm_output_encoded_addr_rtx (
2076 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2077 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2078 false, NULL);
2079 else
2080 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2081 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2082 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2083 break;
2085 case DW_CFA_advance_loc1:
2086 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2087 fde->dw_fde_current_label, NULL);
2088 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2089 break;
2091 case DW_CFA_advance_loc2:
2092 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2093 fde->dw_fde_current_label, NULL);
2094 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2095 break;
2097 case DW_CFA_advance_loc4:
2098 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2099 fde->dw_fde_current_label, NULL);
2100 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2101 break;
2103 case DW_CFA_MIPS_advance_loc8:
2104 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2105 fde->dw_fde_current_label, NULL);
2106 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2107 break;
2109 case DW_CFA_offset_extended:
2110 case DW_CFA_def_cfa:
2111 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2112 dw2_asm_output_data_uleb128 (r, NULL);
2113 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2114 break;
2116 case DW_CFA_offset_extended_sf:
2117 case DW_CFA_def_cfa_sf:
2118 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2119 dw2_asm_output_data_uleb128 (r, NULL);
2120 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2121 break;
2123 case DW_CFA_restore_extended:
2124 case DW_CFA_undefined:
2125 case DW_CFA_same_value:
2126 case DW_CFA_def_cfa_register:
2127 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2128 dw2_asm_output_data_uleb128 (r, NULL);
2129 break;
2131 case DW_CFA_register:
2132 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2133 dw2_asm_output_data_uleb128 (r, NULL);
2134 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2135 dw2_asm_output_data_uleb128 (r, NULL);
2136 break;
2138 case DW_CFA_def_cfa_offset:
2139 case DW_CFA_GNU_args_size:
2140 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2141 break;
2143 case DW_CFA_def_cfa_offset_sf:
2144 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2145 break;
2147 case DW_CFA_GNU_window_save:
2148 break;
2150 case DW_CFA_def_cfa_expression:
2151 case DW_CFA_expression:
2152 output_cfa_loc (cfi);
2153 break;
2155 case DW_CFA_GNU_negative_offset_extended:
2156 /* Obsoleted by DW_CFA_offset_extended_sf. */
2157 gcc_unreachable ();
2159 default:
2160 break;
2165 /* Output the call frame information used to record information
2166 that relates to calculating the frame pointer, and records the
2167 location of saved registers. */
2169 static void
2170 output_call_frame_info (int for_eh)
2172 unsigned int i;
2173 dw_fde_ref fde;
2174 dw_cfi_ref cfi;
2175 char l1[20], l2[20], section_start_label[20];
2176 bool any_lsda_needed = false;
2177 char augmentation[6];
2178 int augmentation_size;
2179 int fde_encoding = DW_EH_PE_absptr;
2180 int per_encoding = DW_EH_PE_absptr;
2181 int lsda_encoding = DW_EH_PE_absptr;
2182 int return_reg;
2184 /* Don't emit a CIE if there won't be any FDEs. */
2185 if (fde_table_in_use == 0)
2186 return;
2188 /* If we make FDEs linkonce, we may have to emit an empty label for
2189 an FDE that wouldn't otherwise be emitted. We want to avoid
2190 having an FDE kept around when the function it refers to is
2191 discarded. Example where this matters: a primary function
2192 template in C++ requires EH information, but an explicit
2193 specialization doesn't. */
2194 if (TARGET_USES_WEAK_UNWIND_INFO
2195 && ! flag_asynchronous_unwind_tables
2196 && for_eh)
2197 for (i = 0; i < fde_table_in_use; i++)
2198 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2199 && !fde_table[i].uses_eh_lsda
2200 && ! DECL_WEAK (fde_table[i].decl))
2201 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2202 for_eh, /* empty */ 1);
2204 /* If we don't have any functions we'll want to unwind out of, don't
2205 emit any EH unwind information. Note that if exceptions aren't
2206 enabled, we won't have collected nothrow information, and if we
2207 asked for asynchronous tables, we always want this info. */
2208 if (for_eh)
2210 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2212 for (i = 0; i < fde_table_in_use; i++)
2213 if (fde_table[i].uses_eh_lsda)
2214 any_eh_needed = any_lsda_needed = true;
2215 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2216 any_eh_needed = true;
2217 else if (! fde_table[i].nothrow
2218 && ! fde_table[i].all_throwers_are_sibcalls)
2219 any_eh_needed = true;
2221 if (! any_eh_needed)
2222 return;
2225 /* We're going to be generating comments, so turn on app. */
2226 if (flag_debug_asm)
2227 app_enable ();
2229 if (for_eh)
2230 switch_to_eh_frame_section ();
2231 else
2233 if (!debug_frame_section)
2234 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2235 SECTION_DEBUG, NULL);
2236 switch_to_section (debug_frame_section);
2239 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2240 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2242 /* Output the CIE. */
2243 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2244 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2245 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2246 dw2_asm_output_data (4, 0xffffffff,
2247 "Initial length escape value indicating 64-bit DWARF extension");
2248 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2249 "Length of Common Information Entry");
2250 ASM_OUTPUT_LABEL (asm_out_file, l1);
2252 /* Now that the CIE pointer is PC-relative for EH,
2253 use 0 to identify the CIE. */
2254 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2255 (for_eh ? 0 : DWARF_CIE_ID),
2256 "CIE Identifier Tag");
2258 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2260 augmentation[0] = 0;
2261 augmentation_size = 0;
2262 if (for_eh)
2264 char *p;
2266 /* Augmentation:
2267 z Indicates that a uleb128 is present to size the
2268 augmentation section.
2269 L Indicates the encoding (and thus presence) of
2270 an LSDA pointer in the FDE augmentation.
2271 R Indicates a non-default pointer encoding for
2272 FDE code pointers.
2273 P Indicates the presence of an encoding + language
2274 personality routine in the CIE augmentation. */
2276 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2277 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2278 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2280 p = augmentation + 1;
2281 if (eh_personality_libfunc)
2283 *p++ = 'P';
2284 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2286 if (any_lsda_needed)
2288 *p++ = 'L';
2289 augmentation_size += 1;
2291 if (fde_encoding != DW_EH_PE_absptr)
2293 *p++ = 'R';
2294 augmentation_size += 1;
2296 if (p > augmentation + 1)
2298 augmentation[0] = 'z';
2299 *p = '\0';
2302 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2303 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2305 int offset = ( 4 /* Length */
2306 + 4 /* CIE Id */
2307 + 1 /* CIE version */
2308 + strlen (augmentation) + 1 /* Augmentation */
2309 + size_of_uleb128 (1) /* Code alignment */
2310 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2311 + 1 /* RA column */
2312 + 1 /* Augmentation size */
2313 + 1 /* Personality encoding */ );
2314 int pad = -offset & (PTR_SIZE - 1);
2316 augmentation_size += pad;
2318 /* Augmentations should be small, so there's scarce need to
2319 iterate for a solution. Die if we exceed one uleb128 byte. */
2320 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2324 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2325 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2326 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2327 "CIE Data Alignment Factor");
2329 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2330 if (DW_CIE_VERSION == 1)
2331 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2332 else
2333 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2335 if (augmentation[0])
2337 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2338 if (eh_personality_libfunc)
2340 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2341 eh_data_format_name (per_encoding));
2342 dw2_asm_output_encoded_addr_rtx (per_encoding,
2343 eh_personality_libfunc,
2344 true, NULL);
2347 if (any_lsda_needed)
2348 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2349 eh_data_format_name (lsda_encoding));
2351 if (fde_encoding != DW_EH_PE_absptr)
2352 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2353 eh_data_format_name (fde_encoding));
2356 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2357 output_cfi (cfi, NULL, for_eh);
2359 /* Pad the CIE out to an address sized boundary. */
2360 ASM_OUTPUT_ALIGN (asm_out_file,
2361 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2362 ASM_OUTPUT_LABEL (asm_out_file, l2);
2364 /* Loop through all of the FDE's. */
2365 for (i = 0; i < fde_table_in_use; i++)
2367 fde = &fde_table[i];
2369 /* Don't emit EH unwind info for leaf functions that don't need it. */
2370 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2371 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2372 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2373 && !fde->uses_eh_lsda)
2374 continue;
2376 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2377 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2379 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2380 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2381 dw2_asm_output_data (4, 0xffffffff,
2382 "Initial length escape value indicating 64-bit DWARF extension");
2383 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2384 "FDE Length");
2385 ASM_OUTPUT_LABEL (asm_out_file, l1);
2387 if (for_eh)
2388 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2389 else
2390 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2391 debug_frame_section, "FDE CIE offset");
2393 if (for_eh)
2395 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2396 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2397 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2398 sym_ref,
2399 false,
2400 "FDE initial location");
2401 if (fde->dw_fde_switched_sections)
2403 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2404 fde->dw_fde_unlikely_section_label);
2405 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2406 fde->dw_fde_hot_section_label);
2407 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2408 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2409 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2410 "FDE initial location");
2411 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2412 fde->dw_fde_hot_section_end_label,
2413 fde->dw_fde_hot_section_label,
2414 "FDE address range");
2415 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2416 "FDE initial location");
2417 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2418 fde->dw_fde_unlikely_section_end_label,
2419 fde->dw_fde_unlikely_section_label,
2420 "FDE address range");
2422 else
2423 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2424 fde->dw_fde_end, fde->dw_fde_begin,
2425 "FDE address range");
2427 else
2429 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2430 "FDE initial location");
2431 if (fde->dw_fde_switched_sections)
2433 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2434 fde->dw_fde_hot_section_label,
2435 "FDE initial location");
2436 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2437 fde->dw_fde_hot_section_end_label,
2438 fde->dw_fde_hot_section_label,
2439 "FDE address range");
2440 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2441 fde->dw_fde_unlikely_section_label,
2442 "FDE initial location");
2443 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2444 fde->dw_fde_unlikely_section_end_label,
2445 fde->dw_fde_unlikely_section_label,
2446 "FDE address range");
2448 else
2449 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2450 fde->dw_fde_end, fde->dw_fde_begin,
2451 "FDE address range");
2454 if (augmentation[0])
2456 if (any_lsda_needed)
2458 int size = size_of_encoded_value (lsda_encoding);
2460 if (lsda_encoding == DW_EH_PE_aligned)
2462 int offset = ( 4 /* Length */
2463 + 4 /* CIE offset */
2464 + 2 * size_of_encoded_value (fde_encoding)
2465 + 1 /* Augmentation size */ );
2466 int pad = -offset & (PTR_SIZE - 1);
2468 size += pad;
2469 gcc_assert (size_of_uleb128 (size) == 1);
2472 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2474 if (fde->uses_eh_lsda)
2476 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2477 fde->funcdef_number);
2478 dw2_asm_output_encoded_addr_rtx (
2479 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2480 false, "Language Specific Data Area");
2482 else
2484 if (lsda_encoding == DW_EH_PE_aligned)
2485 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2486 dw2_asm_output_data
2487 (size_of_encoded_value (lsda_encoding), 0,
2488 "Language Specific Data Area (none)");
2491 else
2492 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2495 /* Loop through the Call Frame Instructions associated with
2496 this FDE. */
2497 fde->dw_fde_current_label = fde->dw_fde_begin;
2498 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2499 output_cfi (cfi, fde, for_eh);
2501 /* Pad the FDE out to an address sized boundary. */
2502 ASM_OUTPUT_ALIGN (asm_out_file,
2503 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2504 ASM_OUTPUT_LABEL (asm_out_file, l2);
2507 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2508 dw2_asm_output_data (4, 0, "End of Table");
2509 #ifdef MIPS_DEBUGGING_INFO
2510 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2511 get a value of 0. Putting .align 0 after the label fixes it. */
2512 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2513 #endif
2515 /* Turn off app to make assembly quicker. */
2516 if (flag_debug_asm)
2517 app_disable ();
2520 /* Output a marker (i.e. a label) for the beginning of a function, before
2521 the prologue. */
2523 void
2524 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2525 const char *file ATTRIBUTE_UNUSED)
2527 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2528 char * dup_label;
2529 dw_fde_ref fde;
2531 current_function_func_begin_label = NULL;
2533 #ifdef TARGET_UNWIND_INFO
2534 /* ??? current_function_func_begin_label is also used by except.c
2535 for call-site information. We must emit this label if it might
2536 be used. */
2537 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2538 && ! dwarf2out_do_frame ())
2539 return;
2540 #else
2541 if (! dwarf2out_do_frame ())
2542 return;
2543 #endif
2545 switch_to_section (function_section (current_function_decl));
2546 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2547 current_function_funcdef_no);
2548 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2549 current_function_funcdef_no);
2550 dup_label = xstrdup (label);
2551 current_function_func_begin_label = dup_label;
2553 #ifdef TARGET_UNWIND_INFO
2554 /* We can elide the fde allocation if we're not emitting debug info. */
2555 if (! dwarf2out_do_frame ())
2556 return;
2557 #endif
2559 /* Expand the fde table if necessary. */
2560 if (fde_table_in_use == fde_table_allocated)
2562 fde_table_allocated += FDE_TABLE_INCREMENT;
2563 fde_table = ggc_realloc (fde_table,
2564 fde_table_allocated * sizeof (dw_fde_node));
2565 memset (fde_table + fde_table_in_use, 0,
2566 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2569 /* Record the FDE associated with this function. */
2570 current_funcdef_fde = fde_table_in_use;
2572 /* Add the new FDE at the end of the fde_table. */
2573 fde = &fde_table[fde_table_in_use++];
2574 fde->decl = current_function_decl;
2575 fde->dw_fde_begin = dup_label;
2576 fde->dw_fde_current_label = dup_label;
2577 fde->dw_fde_hot_section_label = NULL;
2578 fde->dw_fde_hot_section_end_label = NULL;
2579 fde->dw_fde_unlikely_section_label = NULL;
2580 fde->dw_fde_unlikely_section_end_label = NULL;
2581 fde->dw_fde_switched_sections = false;
2582 fde->dw_fde_end = NULL;
2583 fde->dw_fde_cfi = NULL;
2584 fde->funcdef_number = current_function_funcdef_no;
2585 fde->nothrow = TREE_NOTHROW (current_function_decl);
2586 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2587 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2589 args_size = old_args_size = 0;
2591 /* We only want to output line number information for the genuine dwarf2
2592 prologue case, not the eh frame case. */
2593 #ifdef DWARF2_DEBUGGING_INFO
2594 if (file)
2595 dwarf2out_source_line (line, file);
2596 #endif
2599 /* Output a marker (i.e. a label) for the absolute end of the generated code
2600 for a function definition. This gets called *after* the epilogue code has
2601 been generated. */
2603 void
2604 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2605 const char *file ATTRIBUTE_UNUSED)
2607 dw_fde_ref fde;
2608 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2610 /* Output a label to mark the endpoint of the code generated for this
2611 function. */
2612 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2613 current_function_funcdef_no);
2614 ASM_OUTPUT_LABEL (asm_out_file, label);
2615 fde = &fde_table[fde_table_in_use - 1];
2616 fde->dw_fde_end = xstrdup (label);
2619 void
2620 dwarf2out_frame_init (void)
2622 /* Allocate the initial hunk of the fde_table. */
2623 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2624 fde_table_allocated = FDE_TABLE_INCREMENT;
2625 fde_table_in_use = 0;
2627 /* Generate the CFA instructions common to all FDE's. Do it now for the
2628 sake of lookup_cfa. */
2630 /* On entry, the Canonical Frame Address is at SP. */
2631 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2633 #ifdef DWARF2_UNWIND_INFO
2634 if (DWARF2_UNWIND_INFO)
2635 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2636 #endif
2639 void
2640 dwarf2out_frame_finish (void)
2642 /* Output call frame information. */
2643 if (DWARF2_FRAME_INFO)
2644 output_call_frame_info (0);
2646 #ifndef TARGET_UNWIND_INFO
2647 /* Output another copy for the unwinder. */
2648 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2649 output_call_frame_info (1);
2650 #endif
2652 #endif
2654 /* And now, the subset of the debugging information support code necessary
2655 for emitting location expressions. */
2657 /* Data about a single source file. */
2658 struct dwarf_file_data GTY(())
2660 const char * filename;
2661 int emitted_number;
2664 /* We need some way to distinguish DW_OP_addr with a direct symbol
2665 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2666 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2669 typedef struct dw_val_struct *dw_val_ref;
2670 typedef struct die_struct *dw_die_ref;
2671 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2672 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2674 /* Each DIE may have a series of attribute/value pairs. Values
2675 can take on several forms. The forms that are used in this
2676 implementation are listed below. */
2678 enum dw_val_class
2680 dw_val_class_addr,
2681 dw_val_class_offset,
2682 dw_val_class_loc,
2683 dw_val_class_loc_list,
2684 dw_val_class_range_list,
2685 dw_val_class_const,
2686 dw_val_class_unsigned_const,
2687 dw_val_class_long_long,
2688 dw_val_class_vec,
2689 dw_val_class_flag,
2690 dw_val_class_die_ref,
2691 dw_val_class_fde_ref,
2692 dw_val_class_lbl_id,
2693 dw_val_class_lineptr,
2694 dw_val_class_str,
2695 dw_val_class_macptr,
2696 dw_val_class_file
2699 /* Describe a double word constant value. */
2700 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2702 typedef struct dw_long_long_struct GTY(())
2704 unsigned long hi;
2705 unsigned long low;
2707 dw_long_long_const;
2709 /* Describe a floating point constant value, or a vector constant value. */
2711 typedef struct dw_vec_struct GTY(())
2713 unsigned char * GTY((length ("%h.length"))) array;
2714 unsigned length;
2715 unsigned elt_size;
2717 dw_vec_const;
2719 /* The dw_val_node describes an attribute's value, as it is
2720 represented internally. */
2722 typedef struct dw_val_struct GTY(())
2724 enum dw_val_class val_class;
2725 union dw_val_struct_union
2727 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2728 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2729 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2730 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2731 HOST_WIDE_INT GTY ((default)) val_int;
2732 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2733 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2734 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2735 struct dw_val_die_union
2737 dw_die_ref die;
2738 int external;
2739 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2740 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2741 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2742 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2743 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2744 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2746 GTY ((desc ("%1.val_class"))) v;
2748 dw_val_node;
2750 /* Locations in memory are described using a sequence of stack machine
2751 operations. */
2753 typedef struct dw_loc_descr_struct GTY(())
2755 dw_loc_descr_ref dw_loc_next;
2756 enum dwarf_location_atom dw_loc_opc;
2757 dw_val_node dw_loc_oprnd1;
2758 dw_val_node dw_loc_oprnd2;
2759 int dw_loc_addr;
2761 dw_loc_descr_node;
2763 /* Location lists are ranges + location descriptions for that range,
2764 so you can track variables that are in different places over
2765 their entire life. */
2766 typedef struct dw_loc_list_struct GTY(())
2768 dw_loc_list_ref dw_loc_next;
2769 const char *begin; /* Label for begin address of range */
2770 const char *end; /* Label for end address of range */
2771 char *ll_symbol; /* Label for beginning of location list.
2772 Only on head of list */
2773 const char *section; /* Section this loclist is relative to */
2774 dw_loc_descr_ref expr;
2775 } dw_loc_list_node;
2777 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2779 static const char *dwarf_stack_op_name (unsigned);
2780 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2781 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2782 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2783 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2784 static unsigned long size_of_locs (dw_loc_descr_ref);
2785 static void output_loc_operands (dw_loc_descr_ref);
2786 static void output_loc_sequence (dw_loc_descr_ref);
2788 /* Convert a DWARF stack opcode into its string name. */
2790 static const char *
2791 dwarf_stack_op_name (unsigned int op)
2793 switch (op)
2795 case DW_OP_addr:
2796 case INTERNAL_DW_OP_tls_addr:
2797 return "DW_OP_addr";
2798 case DW_OP_deref:
2799 return "DW_OP_deref";
2800 case DW_OP_const1u:
2801 return "DW_OP_const1u";
2802 case DW_OP_const1s:
2803 return "DW_OP_const1s";
2804 case DW_OP_const2u:
2805 return "DW_OP_const2u";
2806 case DW_OP_const2s:
2807 return "DW_OP_const2s";
2808 case DW_OP_const4u:
2809 return "DW_OP_const4u";
2810 case DW_OP_const4s:
2811 return "DW_OP_const4s";
2812 case DW_OP_const8u:
2813 return "DW_OP_const8u";
2814 case DW_OP_const8s:
2815 return "DW_OP_const8s";
2816 case DW_OP_constu:
2817 return "DW_OP_constu";
2818 case DW_OP_consts:
2819 return "DW_OP_consts";
2820 case DW_OP_dup:
2821 return "DW_OP_dup";
2822 case DW_OP_drop:
2823 return "DW_OP_drop";
2824 case DW_OP_over:
2825 return "DW_OP_over";
2826 case DW_OP_pick:
2827 return "DW_OP_pick";
2828 case DW_OP_swap:
2829 return "DW_OP_swap";
2830 case DW_OP_rot:
2831 return "DW_OP_rot";
2832 case DW_OP_xderef:
2833 return "DW_OP_xderef";
2834 case DW_OP_abs:
2835 return "DW_OP_abs";
2836 case DW_OP_and:
2837 return "DW_OP_and";
2838 case DW_OP_div:
2839 return "DW_OP_div";
2840 case DW_OP_minus:
2841 return "DW_OP_minus";
2842 case DW_OP_mod:
2843 return "DW_OP_mod";
2844 case DW_OP_mul:
2845 return "DW_OP_mul";
2846 case DW_OP_neg:
2847 return "DW_OP_neg";
2848 case DW_OP_not:
2849 return "DW_OP_not";
2850 case DW_OP_or:
2851 return "DW_OP_or";
2852 case DW_OP_plus:
2853 return "DW_OP_plus";
2854 case DW_OP_plus_uconst:
2855 return "DW_OP_plus_uconst";
2856 case DW_OP_shl:
2857 return "DW_OP_shl";
2858 case DW_OP_shr:
2859 return "DW_OP_shr";
2860 case DW_OP_shra:
2861 return "DW_OP_shra";
2862 case DW_OP_xor:
2863 return "DW_OP_xor";
2864 case DW_OP_bra:
2865 return "DW_OP_bra";
2866 case DW_OP_eq:
2867 return "DW_OP_eq";
2868 case DW_OP_ge:
2869 return "DW_OP_ge";
2870 case DW_OP_gt:
2871 return "DW_OP_gt";
2872 case DW_OP_le:
2873 return "DW_OP_le";
2874 case DW_OP_lt:
2875 return "DW_OP_lt";
2876 case DW_OP_ne:
2877 return "DW_OP_ne";
2878 case DW_OP_skip:
2879 return "DW_OP_skip";
2880 case DW_OP_lit0:
2881 return "DW_OP_lit0";
2882 case DW_OP_lit1:
2883 return "DW_OP_lit1";
2884 case DW_OP_lit2:
2885 return "DW_OP_lit2";
2886 case DW_OP_lit3:
2887 return "DW_OP_lit3";
2888 case DW_OP_lit4:
2889 return "DW_OP_lit4";
2890 case DW_OP_lit5:
2891 return "DW_OP_lit5";
2892 case DW_OP_lit6:
2893 return "DW_OP_lit6";
2894 case DW_OP_lit7:
2895 return "DW_OP_lit7";
2896 case DW_OP_lit8:
2897 return "DW_OP_lit8";
2898 case DW_OP_lit9:
2899 return "DW_OP_lit9";
2900 case DW_OP_lit10:
2901 return "DW_OP_lit10";
2902 case DW_OP_lit11:
2903 return "DW_OP_lit11";
2904 case DW_OP_lit12:
2905 return "DW_OP_lit12";
2906 case DW_OP_lit13:
2907 return "DW_OP_lit13";
2908 case DW_OP_lit14:
2909 return "DW_OP_lit14";
2910 case DW_OP_lit15:
2911 return "DW_OP_lit15";
2912 case DW_OP_lit16:
2913 return "DW_OP_lit16";
2914 case DW_OP_lit17:
2915 return "DW_OP_lit17";
2916 case DW_OP_lit18:
2917 return "DW_OP_lit18";
2918 case DW_OP_lit19:
2919 return "DW_OP_lit19";
2920 case DW_OP_lit20:
2921 return "DW_OP_lit20";
2922 case DW_OP_lit21:
2923 return "DW_OP_lit21";
2924 case DW_OP_lit22:
2925 return "DW_OP_lit22";
2926 case DW_OP_lit23:
2927 return "DW_OP_lit23";
2928 case DW_OP_lit24:
2929 return "DW_OP_lit24";
2930 case DW_OP_lit25:
2931 return "DW_OP_lit25";
2932 case DW_OP_lit26:
2933 return "DW_OP_lit26";
2934 case DW_OP_lit27:
2935 return "DW_OP_lit27";
2936 case DW_OP_lit28:
2937 return "DW_OP_lit28";
2938 case DW_OP_lit29:
2939 return "DW_OP_lit29";
2940 case DW_OP_lit30:
2941 return "DW_OP_lit30";
2942 case DW_OP_lit31:
2943 return "DW_OP_lit31";
2944 case DW_OP_reg0:
2945 return "DW_OP_reg0";
2946 case DW_OP_reg1:
2947 return "DW_OP_reg1";
2948 case DW_OP_reg2:
2949 return "DW_OP_reg2";
2950 case DW_OP_reg3:
2951 return "DW_OP_reg3";
2952 case DW_OP_reg4:
2953 return "DW_OP_reg4";
2954 case DW_OP_reg5:
2955 return "DW_OP_reg5";
2956 case DW_OP_reg6:
2957 return "DW_OP_reg6";
2958 case DW_OP_reg7:
2959 return "DW_OP_reg7";
2960 case DW_OP_reg8:
2961 return "DW_OP_reg8";
2962 case DW_OP_reg9:
2963 return "DW_OP_reg9";
2964 case DW_OP_reg10:
2965 return "DW_OP_reg10";
2966 case DW_OP_reg11:
2967 return "DW_OP_reg11";
2968 case DW_OP_reg12:
2969 return "DW_OP_reg12";
2970 case DW_OP_reg13:
2971 return "DW_OP_reg13";
2972 case DW_OP_reg14:
2973 return "DW_OP_reg14";
2974 case DW_OP_reg15:
2975 return "DW_OP_reg15";
2976 case DW_OP_reg16:
2977 return "DW_OP_reg16";
2978 case DW_OP_reg17:
2979 return "DW_OP_reg17";
2980 case DW_OP_reg18:
2981 return "DW_OP_reg18";
2982 case DW_OP_reg19:
2983 return "DW_OP_reg19";
2984 case DW_OP_reg20:
2985 return "DW_OP_reg20";
2986 case DW_OP_reg21:
2987 return "DW_OP_reg21";
2988 case DW_OP_reg22:
2989 return "DW_OP_reg22";
2990 case DW_OP_reg23:
2991 return "DW_OP_reg23";
2992 case DW_OP_reg24:
2993 return "DW_OP_reg24";
2994 case DW_OP_reg25:
2995 return "DW_OP_reg25";
2996 case DW_OP_reg26:
2997 return "DW_OP_reg26";
2998 case DW_OP_reg27:
2999 return "DW_OP_reg27";
3000 case DW_OP_reg28:
3001 return "DW_OP_reg28";
3002 case DW_OP_reg29:
3003 return "DW_OP_reg29";
3004 case DW_OP_reg30:
3005 return "DW_OP_reg30";
3006 case DW_OP_reg31:
3007 return "DW_OP_reg31";
3008 case DW_OP_breg0:
3009 return "DW_OP_breg0";
3010 case DW_OP_breg1:
3011 return "DW_OP_breg1";
3012 case DW_OP_breg2:
3013 return "DW_OP_breg2";
3014 case DW_OP_breg3:
3015 return "DW_OP_breg3";
3016 case DW_OP_breg4:
3017 return "DW_OP_breg4";
3018 case DW_OP_breg5:
3019 return "DW_OP_breg5";
3020 case DW_OP_breg6:
3021 return "DW_OP_breg6";
3022 case DW_OP_breg7:
3023 return "DW_OP_breg7";
3024 case DW_OP_breg8:
3025 return "DW_OP_breg8";
3026 case DW_OP_breg9:
3027 return "DW_OP_breg9";
3028 case DW_OP_breg10:
3029 return "DW_OP_breg10";
3030 case DW_OP_breg11:
3031 return "DW_OP_breg11";
3032 case DW_OP_breg12:
3033 return "DW_OP_breg12";
3034 case DW_OP_breg13:
3035 return "DW_OP_breg13";
3036 case DW_OP_breg14:
3037 return "DW_OP_breg14";
3038 case DW_OP_breg15:
3039 return "DW_OP_breg15";
3040 case DW_OP_breg16:
3041 return "DW_OP_breg16";
3042 case DW_OP_breg17:
3043 return "DW_OP_breg17";
3044 case DW_OP_breg18:
3045 return "DW_OP_breg18";
3046 case DW_OP_breg19:
3047 return "DW_OP_breg19";
3048 case DW_OP_breg20:
3049 return "DW_OP_breg20";
3050 case DW_OP_breg21:
3051 return "DW_OP_breg21";
3052 case DW_OP_breg22:
3053 return "DW_OP_breg22";
3054 case DW_OP_breg23:
3055 return "DW_OP_breg23";
3056 case DW_OP_breg24:
3057 return "DW_OP_breg24";
3058 case DW_OP_breg25:
3059 return "DW_OP_breg25";
3060 case DW_OP_breg26:
3061 return "DW_OP_breg26";
3062 case DW_OP_breg27:
3063 return "DW_OP_breg27";
3064 case DW_OP_breg28:
3065 return "DW_OP_breg28";
3066 case DW_OP_breg29:
3067 return "DW_OP_breg29";
3068 case DW_OP_breg30:
3069 return "DW_OP_breg30";
3070 case DW_OP_breg31:
3071 return "DW_OP_breg31";
3072 case DW_OP_regx:
3073 return "DW_OP_regx";
3074 case DW_OP_fbreg:
3075 return "DW_OP_fbreg";
3076 case DW_OP_bregx:
3077 return "DW_OP_bregx";
3078 case DW_OP_piece:
3079 return "DW_OP_piece";
3080 case DW_OP_deref_size:
3081 return "DW_OP_deref_size";
3082 case DW_OP_xderef_size:
3083 return "DW_OP_xderef_size";
3084 case DW_OP_nop:
3085 return "DW_OP_nop";
3086 case DW_OP_push_object_address:
3087 return "DW_OP_push_object_address";
3088 case DW_OP_call2:
3089 return "DW_OP_call2";
3090 case DW_OP_call4:
3091 return "DW_OP_call4";
3092 case DW_OP_call_ref:
3093 return "DW_OP_call_ref";
3094 case DW_OP_GNU_push_tls_address:
3095 return "DW_OP_GNU_push_tls_address";
3096 default:
3097 return "OP_<unknown>";
3101 /* Return a pointer to a newly allocated location description. Location
3102 descriptions are simple expression terms that can be strung
3103 together to form more complicated location (address) descriptions. */
3105 static inline dw_loc_descr_ref
3106 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3107 unsigned HOST_WIDE_INT oprnd2)
3109 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3111 descr->dw_loc_opc = op;
3112 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3113 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3114 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3115 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3117 return descr;
3120 /* Add a location description term to a location description expression. */
3122 static inline void
3123 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3125 dw_loc_descr_ref *d;
3127 /* Find the end of the chain. */
3128 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3131 *d = descr;
3134 /* Return the size of a location descriptor. */
3136 static unsigned long
3137 size_of_loc_descr (dw_loc_descr_ref loc)
3139 unsigned long size = 1;
3141 switch (loc->dw_loc_opc)
3143 case DW_OP_addr:
3144 case INTERNAL_DW_OP_tls_addr:
3145 size += DWARF2_ADDR_SIZE;
3146 break;
3147 case DW_OP_const1u:
3148 case DW_OP_const1s:
3149 size += 1;
3150 break;
3151 case DW_OP_const2u:
3152 case DW_OP_const2s:
3153 size += 2;
3154 break;
3155 case DW_OP_const4u:
3156 case DW_OP_const4s:
3157 size += 4;
3158 break;
3159 case DW_OP_const8u:
3160 case DW_OP_const8s:
3161 size += 8;
3162 break;
3163 case DW_OP_constu:
3164 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3165 break;
3166 case DW_OP_consts:
3167 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3168 break;
3169 case DW_OP_pick:
3170 size += 1;
3171 break;
3172 case DW_OP_plus_uconst:
3173 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3174 break;
3175 case DW_OP_skip:
3176 case DW_OP_bra:
3177 size += 2;
3178 break;
3179 case DW_OP_breg0:
3180 case DW_OP_breg1:
3181 case DW_OP_breg2:
3182 case DW_OP_breg3:
3183 case DW_OP_breg4:
3184 case DW_OP_breg5:
3185 case DW_OP_breg6:
3186 case DW_OP_breg7:
3187 case DW_OP_breg8:
3188 case DW_OP_breg9:
3189 case DW_OP_breg10:
3190 case DW_OP_breg11:
3191 case DW_OP_breg12:
3192 case DW_OP_breg13:
3193 case DW_OP_breg14:
3194 case DW_OP_breg15:
3195 case DW_OP_breg16:
3196 case DW_OP_breg17:
3197 case DW_OP_breg18:
3198 case DW_OP_breg19:
3199 case DW_OP_breg20:
3200 case DW_OP_breg21:
3201 case DW_OP_breg22:
3202 case DW_OP_breg23:
3203 case DW_OP_breg24:
3204 case DW_OP_breg25:
3205 case DW_OP_breg26:
3206 case DW_OP_breg27:
3207 case DW_OP_breg28:
3208 case DW_OP_breg29:
3209 case DW_OP_breg30:
3210 case DW_OP_breg31:
3211 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3212 break;
3213 case DW_OP_regx:
3214 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3215 break;
3216 case DW_OP_fbreg:
3217 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3218 break;
3219 case DW_OP_bregx:
3220 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3221 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3222 break;
3223 case DW_OP_piece:
3224 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3225 break;
3226 case DW_OP_deref_size:
3227 case DW_OP_xderef_size:
3228 size += 1;
3229 break;
3230 case DW_OP_call2:
3231 size += 2;
3232 break;
3233 case DW_OP_call4:
3234 size += 4;
3235 break;
3236 case DW_OP_call_ref:
3237 size += DWARF2_ADDR_SIZE;
3238 break;
3239 default:
3240 break;
3243 return size;
3246 /* Return the size of a series of location descriptors. */
3248 static unsigned long
3249 size_of_locs (dw_loc_descr_ref loc)
3251 dw_loc_descr_ref l;
3252 unsigned long size;
3254 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3255 field, to avoid writing to a PCH file. */
3256 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3258 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3259 break;
3260 size += size_of_loc_descr (l);
3262 if (! l)
3263 return size;
3265 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3267 l->dw_loc_addr = size;
3268 size += size_of_loc_descr (l);
3271 return size;
3274 /* Output location description stack opcode's operands (if any). */
3276 static void
3277 output_loc_operands (dw_loc_descr_ref loc)
3279 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3280 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3282 switch (loc->dw_loc_opc)
3284 #ifdef DWARF2_DEBUGGING_INFO
3285 case DW_OP_addr:
3286 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3287 break;
3288 case DW_OP_const2u:
3289 case DW_OP_const2s:
3290 dw2_asm_output_data (2, val1->v.val_int, NULL);
3291 break;
3292 case DW_OP_const4u:
3293 case DW_OP_const4s:
3294 dw2_asm_output_data (4, val1->v.val_int, NULL);
3295 break;
3296 case DW_OP_const8u:
3297 case DW_OP_const8s:
3298 gcc_assert (HOST_BITS_PER_LONG >= 64);
3299 dw2_asm_output_data (8, val1->v.val_int, NULL);
3300 break;
3301 case DW_OP_skip:
3302 case DW_OP_bra:
3304 int offset;
3306 gcc_assert (val1->val_class == dw_val_class_loc);
3307 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3309 dw2_asm_output_data (2, offset, NULL);
3311 break;
3312 #else
3313 case DW_OP_addr:
3314 case DW_OP_const2u:
3315 case DW_OP_const2s:
3316 case DW_OP_const4u:
3317 case DW_OP_const4s:
3318 case DW_OP_const8u:
3319 case DW_OP_const8s:
3320 case DW_OP_skip:
3321 case DW_OP_bra:
3322 /* We currently don't make any attempt to make sure these are
3323 aligned properly like we do for the main unwind info, so
3324 don't support emitting things larger than a byte if we're
3325 only doing unwinding. */
3326 gcc_unreachable ();
3327 #endif
3328 case DW_OP_const1u:
3329 case DW_OP_const1s:
3330 dw2_asm_output_data (1, val1->v.val_int, NULL);
3331 break;
3332 case DW_OP_constu:
3333 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3334 break;
3335 case DW_OP_consts:
3336 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3337 break;
3338 case DW_OP_pick:
3339 dw2_asm_output_data (1, val1->v.val_int, NULL);
3340 break;
3341 case DW_OP_plus_uconst:
3342 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3343 break;
3344 case DW_OP_breg0:
3345 case DW_OP_breg1:
3346 case DW_OP_breg2:
3347 case DW_OP_breg3:
3348 case DW_OP_breg4:
3349 case DW_OP_breg5:
3350 case DW_OP_breg6:
3351 case DW_OP_breg7:
3352 case DW_OP_breg8:
3353 case DW_OP_breg9:
3354 case DW_OP_breg10:
3355 case DW_OP_breg11:
3356 case DW_OP_breg12:
3357 case DW_OP_breg13:
3358 case DW_OP_breg14:
3359 case DW_OP_breg15:
3360 case DW_OP_breg16:
3361 case DW_OP_breg17:
3362 case DW_OP_breg18:
3363 case DW_OP_breg19:
3364 case DW_OP_breg20:
3365 case DW_OP_breg21:
3366 case DW_OP_breg22:
3367 case DW_OP_breg23:
3368 case DW_OP_breg24:
3369 case DW_OP_breg25:
3370 case DW_OP_breg26:
3371 case DW_OP_breg27:
3372 case DW_OP_breg28:
3373 case DW_OP_breg29:
3374 case DW_OP_breg30:
3375 case DW_OP_breg31:
3376 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3377 break;
3378 case DW_OP_regx:
3379 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3380 break;
3381 case DW_OP_fbreg:
3382 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3383 break;
3384 case DW_OP_bregx:
3385 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3386 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3387 break;
3388 case DW_OP_piece:
3389 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3390 break;
3391 case DW_OP_deref_size:
3392 case DW_OP_xderef_size:
3393 dw2_asm_output_data (1, val1->v.val_int, NULL);
3394 break;
3396 case INTERNAL_DW_OP_tls_addr:
3397 if (targetm.asm_out.output_dwarf_dtprel)
3399 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3400 DWARF2_ADDR_SIZE,
3401 val1->v.val_addr);
3402 fputc ('\n', asm_out_file);
3404 else
3405 gcc_unreachable ();
3406 break;
3408 default:
3409 /* Other codes have no operands. */
3410 break;
3414 /* Output a sequence of location operations. */
3416 static void
3417 output_loc_sequence (dw_loc_descr_ref loc)
3419 for (; loc != NULL; loc = loc->dw_loc_next)
3421 /* Output the opcode. */
3422 dw2_asm_output_data (1, loc->dw_loc_opc,
3423 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3425 /* Output the operand(s) (if any). */
3426 output_loc_operands (loc);
3430 /* This routine will generate the correct assembly data for a location
3431 description based on a cfi entry with a complex address. */
3433 static void
3434 output_cfa_loc (dw_cfi_ref cfi)
3436 dw_loc_descr_ref loc;
3437 unsigned long size;
3439 /* Output the size of the block. */
3440 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3441 size = size_of_locs (loc);
3442 dw2_asm_output_data_uleb128 (size, NULL);
3444 /* Now output the operations themselves. */
3445 output_loc_sequence (loc);
3448 /* This function builds a dwarf location descriptor sequence from a
3449 dw_cfa_location, adding the given OFFSET to the result of the
3450 expression. */
3452 static struct dw_loc_descr_struct *
3453 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3455 struct dw_loc_descr_struct *head, *tmp;
3457 offset += cfa->offset;
3459 if (cfa->indirect)
3461 if (cfa->base_offset)
3463 if (cfa->reg <= 31)
3464 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3465 else
3466 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3468 else if (cfa->reg <= 31)
3469 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3470 else
3471 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3473 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3474 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3475 add_loc_descr (&head, tmp);
3476 if (offset != 0)
3478 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3479 add_loc_descr (&head, tmp);
3482 else
3484 if (offset == 0)
3485 if (cfa->reg <= 31)
3486 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3487 else
3488 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3489 else if (cfa->reg <= 31)
3490 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3491 else
3492 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3495 return head;
3498 /* This function fills in aa dw_cfa_location structure from a dwarf location
3499 descriptor sequence. */
3501 static void
3502 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3504 struct dw_loc_descr_struct *ptr;
3505 cfa->offset = 0;
3506 cfa->base_offset = 0;
3507 cfa->indirect = 0;
3508 cfa->reg = -1;
3510 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3512 enum dwarf_location_atom op = ptr->dw_loc_opc;
3514 switch (op)
3516 case DW_OP_reg0:
3517 case DW_OP_reg1:
3518 case DW_OP_reg2:
3519 case DW_OP_reg3:
3520 case DW_OP_reg4:
3521 case DW_OP_reg5:
3522 case DW_OP_reg6:
3523 case DW_OP_reg7:
3524 case DW_OP_reg8:
3525 case DW_OP_reg9:
3526 case DW_OP_reg10:
3527 case DW_OP_reg11:
3528 case DW_OP_reg12:
3529 case DW_OP_reg13:
3530 case DW_OP_reg14:
3531 case DW_OP_reg15:
3532 case DW_OP_reg16:
3533 case DW_OP_reg17:
3534 case DW_OP_reg18:
3535 case DW_OP_reg19:
3536 case DW_OP_reg20:
3537 case DW_OP_reg21:
3538 case DW_OP_reg22:
3539 case DW_OP_reg23:
3540 case DW_OP_reg24:
3541 case DW_OP_reg25:
3542 case DW_OP_reg26:
3543 case DW_OP_reg27:
3544 case DW_OP_reg28:
3545 case DW_OP_reg29:
3546 case DW_OP_reg30:
3547 case DW_OP_reg31:
3548 cfa->reg = op - DW_OP_reg0;
3549 break;
3550 case DW_OP_regx:
3551 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3552 break;
3553 case DW_OP_breg0:
3554 case DW_OP_breg1:
3555 case DW_OP_breg2:
3556 case DW_OP_breg3:
3557 case DW_OP_breg4:
3558 case DW_OP_breg5:
3559 case DW_OP_breg6:
3560 case DW_OP_breg7:
3561 case DW_OP_breg8:
3562 case DW_OP_breg9:
3563 case DW_OP_breg10:
3564 case DW_OP_breg11:
3565 case DW_OP_breg12:
3566 case DW_OP_breg13:
3567 case DW_OP_breg14:
3568 case DW_OP_breg15:
3569 case DW_OP_breg16:
3570 case DW_OP_breg17:
3571 case DW_OP_breg18:
3572 case DW_OP_breg19:
3573 case DW_OP_breg20:
3574 case DW_OP_breg21:
3575 case DW_OP_breg22:
3576 case DW_OP_breg23:
3577 case DW_OP_breg24:
3578 case DW_OP_breg25:
3579 case DW_OP_breg26:
3580 case DW_OP_breg27:
3581 case DW_OP_breg28:
3582 case DW_OP_breg29:
3583 case DW_OP_breg30:
3584 case DW_OP_breg31:
3585 cfa->reg = op - DW_OP_breg0;
3586 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3587 break;
3588 case DW_OP_bregx:
3589 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3590 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3591 break;
3592 case DW_OP_deref:
3593 cfa->indirect = 1;
3594 break;
3595 case DW_OP_plus_uconst:
3596 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3597 break;
3598 default:
3599 internal_error ("DW_LOC_OP %s not implemented",
3600 dwarf_stack_op_name (ptr->dw_loc_opc));
3604 #endif /* .debug_frame support */
3606 /* And now, the support for symbolic debugging information. */
3607 #ifdef DWARF2_DEBUGGING_INFO
3609 /* .debug_str support. */
3610 static int output_indirect_string (void **, void *);
3612 static void dwarf2out_init (const char *);
3613 static void dwarf2out_finish (const char *);
3614 static void dwarf2out_define (unsigned int, const char *);
3615 static void dwarf2out_undef (unsigned int, const char *);
3616 static void dwarf2out_start_source_file (unsigned, const char *);
3617 static void dwarf2out_end_source_file (unsigned);
3618 static void dwarf2out_begin_block (unsigned, unsigned);
3619 static void dwarf2out_end_block (unsigned, unsigned);
3620 static bool dwarf2out_ignore_block (tree);
3621 static void dwarf2out_global_decl (tree);
3622 static void dwarf2out_type_decl (tree, int);
3623 static void dwarf2out_imported_module_or_decl (tree, tree);
3624 static void dwarf2out_abstract_function (tree);
3625 static void dwarf2out_var_location (rtx);
3626 static void dwarf2out_begin_function (tree);
3627 static void dwarf2out_switch_text_section (void);
3629 /* The debug hooks structure. */
3631 const struct gcc_debug_hooks dwarf2_debug_hooks =
3633 dwarf2out_init,
3634 dwarf2out_finish,
3635 dwarf2out_define,
3636 dwarf2out_undef,
3637 dwarf2out_start_source_file,
3638 dwarf2out_end_source_file,
3639 dwarf2out_begin_block,
3640 dwarf2out_end_block,
3641 dwarf2out_ignore_block,
3642 dwarf2out_source_line,
3643 dwarf2out_begin_prologue,
3644 debug_nothing_int_charstar, /* end_prologue */
3645 dwarf2out_end_epilogue,
3646 dwarf2out_begin_function,
3647 debug_nothing_int, /* end_function */
3648 dwarf2out_decl, /* function_decl */
3649 dwarf2out_global_decl,
3650 dwarf2out_type_decl, /* type_decl */
3651 dwarf2out_imported_module_or_decl,
3652 debug_nothing_tree, /* deferred_inline_function */
3653 /* The DWARF 2 backend tries to reduce debugging bloat by not
3654 emitting the abstract description of inline functions until
3655 something tries to reference them. */
3656 dwarf2out_abstract_function, /* outlining_inline_function */
3657 debug_nothing_rtx, /* label */
3658 debug_nothing_int, /* handle_pch */
3659 dwarf2out_var_location,
3660 dwarf2out_switch_text_section,
3661 1 /* start_end_main_source_file */
3663 #endif
3665 /* NOTE: In the comments in this file, many references are made to
3666 "Debugging Information Entries". This term is abbreviated as `DIE'
3667 throughout the remainder of this file. */
3669 /* An internal representation of the DWARF output is built, and then
3670 walked to generate the DWARF debugging info. The walk of the internal
3671 representation is done after the entire program has been compiled.
3672 The types below are used to describe the internal representation. */
3674 /* Various DIE's use offsets relative to the beginning of the
3675 .debug_info section to refer to each other. */
3677 typedef long int dw_offset;
3679 /* Define typedefs here to avoid circular dependencies. */
3681 typedef struct dw_attr_struct *dw_attr_ref;
3682 typedef struct dw_line_info_struct *dw_line_info_ref;
3683 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3684 typedef struct pubname_struct *pubname_ref;
3685 typedef struct dw_ranges_struct *dw_ranges_ref;
3687 /* Each entry in the line_info_table maintains the file and
3688 line number associated with the label generated for that
3689 entry. The label gives the PC value associated with
3690 the line number entry. */
3692 typedef struct dw_line_info_struct GTY(())
3694 unsigned long dw_file_num;
3695 unsigned long dw_line_num;
3697 dw_line_info_entry;
3699 /* Line information for functions in separate sections; each one gets its
3700 own sequence. */
3701 typedef struct dw_separate_line_info_struct GTY(())
3703 unsigned long dw_file_num;
3704 unsigned long dw_line_num;
3705 unsigned long function;
3707 dw_separate_line_info_entry;
3709 /* Each DIE attribute has a field specifying the attribute kind,
3710 a link to the next attribute in the chain, and an attribute value.
3711 Attributes are typically linked below the DIE they modify. */
3713 typedef struct dw_attr_struct GTY(())
3715 enum dwarf_attribute dw_attr;
3716 dw_val_node dw_attr_val;
3718 dw_attr_node;
3720 DEF_VEC_O(dw_attr_node);
3721 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3723 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3724 The children of each node form a circular list linked by
3725 die_sib. die_child points to the node *before* the "first" child node. */
3727 typedef struct die_struct GTY(())
3729 enum dwarf_tag die_tag;
3730 char *die_symbol;
3731 VEC(dw_attr_node,gc) * die_attr;
3732 dw_die_ref die_parent;
3733 dw_die_ref die_child;
3734 dw_die_ref die_sib;
3735 dw_die_ref die_definition; /* ref from a specification to its definition */
3736 dw_offset die_offset;
3737 unsigned long die_abbrev;
3738 int die_mark;
3739 /* Die is used and must not be pruned as unused. */
3740 int die_perennial_p;
3741 unsigned int decl_id;
3743 die_node;
3745 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3746 #define FOR_EACH_CHILD(die, c, expr) do { \
3747 c = die->die_child; \
3748 if (c) do { \
3749 c = c->die_sib; \
3750 expr; \
3751 } while (c != die->die_child); \
3752 } while (0)
3754 /* The pubname structure */
3756 typedef struct pubname_struct GTY(())
3758 dw_die_ref die;
3759 const char *name;
3761 pubname_entry;
3763 DEF_VEC_O(pubname_entry);
3764 DEF_VEC_ALLOC_O(pubname_entry, gc);
3766 struct dw_ranges_struct GTY(())
3768 int block_num;
3771 /* The limbo die list structure. */
3772 typedef struct limbo_die_struct GTY(())
3774 dw_die_ref die;
3775 tree created_for;
3776 struct limbo_die_struct *next;
3778 limbo_die_node;
3780 /* How to start an assembler comment. */
3781 #ifndef ASM_COMMENT_START
3782 #define ASM_COMMENT_START ";#"
3783 #endif
3785 /* Define a macro which returns nonzero for a TYPE_DECL which was
3786 implicitly generated for a tagged type.
3788 Note that unlike the gcc front end (which generates a NULL named
3789 TYPE_DECL node for each complete tagged type, each array type, and
3790 each function type node created) the g++ front end generates a
3791 _named_ TYPE_DECL node for each tagged type node created.
3792 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3793 generate a DW_TAG_typedef DIE for them. */
3795 #define TYPE_DECL_IS_STUB(decl) \
3796 (DECL_NAME (decl) == NULL_TREE \
3797 || (DECL_ARTIFICIAL (decl) \
3798 && is_tagged_type (TREE_TYPE (decl)) \
3799 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3800 /* This is necessary for stub decls that \
3801 appear in nested inline functions. */ \
3802 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3803 && (decl_ultimate_origin (decl) \
3804 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3806 /* Information concerning the compilation unit's programming
3807 language, and compiler version. */
3809 /* Fixed size portion of the DWARF compilation unit header. */
3810 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3811 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3813 /* Fixed size portion of public names info. */
3814 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3816 /* Fixed size portion of the address range info. */
3817 #define DWARF_ARANGES_HEADER_SIZE \
3818 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3819 DWARF2_ADDR_SIZE * 2) \
3820 - DWARF_INITIAL_LENGTH_SIZE)
3822 /* Size of padding portion in the address range info. It must be
3823 aligned to twice the pointer size. */
3824 #define DWARF_ARANGES_PAD_SIZE \
3825 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3826 DWARF2_ADDR_SIZE * 2) \
3827 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3829 /* Use assembler line directives if available. */
3830 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3831 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3832 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3833 #else
3834 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3835 #endif
3836 #endif
3838 /* Minimum line offset in a special line info. opcode.
3839 This value was chosen to give a reasonable range of values. */
3840 #define DWARF_LINE_BASE -10
3842 /* First special line opcode - leave room for the standard opcodes. */
3843 #define DWARF_LINE_OPCODE_BASE 10
3845 /* Range of line offsets in a special line info. opcode. */
3846 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3848 /* Flag that indicates the initial value of the is_stmt_start flag.
3849 In the present implementation, we do not mark any lines as
3850 the beginning of a source statement, because that information
3851 is not made available by the GCC front-end. */
3852 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3854 #ifdef DWARF2_DEBUGGING_INFO
3855 /* This location is used by calc_die_sizes() to keep track
3856 the offset of each DIE within the .debug_info section. */
3857 static unsigned long next_die_offset;
3858 #endif
3860 /* Record the root of the DIE's built for the current compilation unit. */
3861 static GTY(()) dw_die_ref comp_unit_die;
3863 /* A list of DIEs with a NULL parent waiting to be relocated. */
3864 static GTY(()) limbo_die_node *limbo_die_list;
3866 /* Filenames referenced by this compilation unit. */
3867 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3869 /* A hash table of references to DIE's that describe declarations.
3870 The key is a DECL_UID() which is a unique number identifying each decl. */
3871 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3873 /* Node of the variable location list. */
3874 struct var_loc_node GTY ((chain_next ("%h.next")))
3876 rtx GTY (()) var_loc_note;
3877 const char * GTY (()) label;
3878 const char * GTY (()) section_label;
3879 struct var_loc_node * GTY (()) next;
3882 /* Variable location list. */
3883 struct var_loc_list_def GTY (())
3885 struct var_loc_node * GTY (()) first;
3887 /* Do not mark the last element of the chained list because
3888 it is marked through the chain. */
3889 struct var_loc_node * GTY ((skip ("%h"))) last;
3891 /* DECL_UID of the variable decl. */
3892 unsigned int decl_id;
3894 typedef struct var_loc_list_def var_loc_list;
3897 /* Table of decl location linked lists. */
3898 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3900 /* A pointer to the base of a list of references to DIE's that
3901 are uniquely identified by their tag, presence/absence of
3902 children DIE's, and list of attribute/value pairs. */
3903 static GTY((length ("abbrev_die_table_allocated")))
3904 dw_die_ref *abbrev_die_table;
3906 /* Number of elements currently allocated for abbrev_die_table. */
3907 static GTY(()) unsigned abbrev_die_table_allocated;
3909 /* Number of elements in type_die_table currently in use. */
3910 static GTY(()) unsigned abbrev_die_table_in_use;
3912 /* Size (in elements) of increments by which we may expand the
3913 abbrev_die_table. */
3914 #define ABBREV_DIE_TABLE_INCREMENT 256
3916 /* A pointer to the base of a table that contains line information
3917 for each source code line in .text in the compilation unit. */
3918 static GTY((length ("line_info_table_allocated")))
3919 dw_line_info_ref line_info_table;
3921 /* Number of elements currently allocated for line_info_table. */
3922 static GTY(()) unsigned line_info_table_allocated;
3924 /* Number of elements in line_info_table currently in use. */
3925 static GTY(()) unsigned line_info_table_in_use;
3927 /* True if the compilation unit places functions in more than one section. */
3928 static GTY(()) bool have_multiple_function_sections = false;
3930 /* A pointer to the base of a table that contains line information
3931 for each source code line outside of .text in the compilation unit. */
3932 static GTY ((length ("separate_line_info_table_allocated")))
3933 dw_separate_line_info_ref separate_line_info_table;
3935 /* Number of elements currently allocated for separate_line_info_table. */
3936 static GTY(()) unsigned separate_line_info_table_allocated;
3938 /* Number of elements in separate_line_info_table currently in use. */
3939 static GTY(()) unsigned separate_line_info_table_in_use;
3941 /* Size (in elements) of increments by which we may expand the
3942 line_info_table. */
3943 #define LINE_INFO_TABLE_INCREMENT 1024
3945 /* A pointer to the base of a table that contains a list of publicly
3946 accessible names. */
3947 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3949 /* A pointer to the base of a table that contains a list of publicly
3950 accessible types. */
3951 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3953 /* Array of dies for which we should generate .debug_arange info. */
3954 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3956 /* Number of elements currently allocated for arange_table. */
3957 static GTY(()) unsigned arange_table_allocated;
3959 /* Number of elements in arange_table currently in use. */
3960 static GTY(()) unsigned arange_table_in_use;
3962 /* Size (in elements) of increments by which we may expand the
3963 arange_table. */
3964 #define ARANGE_TABLE_INCREMENT 64
3966 /* Array of dies for which we should generate .debug_ranges info. */
3967 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3969 /* Number of elements currently allocated for ranges_table. */
3970 static GTY(()) unsigned ranges_table_allocated;
3972 /* Number of elements in ranges_table currently in use. */
3973 static GTY(()) unsigned ranges_table_in_use;
3975 /* Size (in elements) of increments by which we may expand the
3976 ranges_table. */
3977 #define RANGES_TABLE_INCREMENT 64
3979 /* Whether we have location lists that need outputting */
3980 static GTY(()) bool have_location_lists;
3982 /* Unique label counter. */
3983 static GTY(()) unsigned int loclabel_num;
3985 #ifdef DWARF2_DEBUGGING_INFO
3986 /* Record whether the function being analyzed contains inlined functions. */
3987 static int current_function_has_inlines;
3988 #endif
3989 #if 0 && defined (MIPS_DEBUGGING_INFO)
3990 static int comp_unit_has_inlines;
3991 #endif
3993 /* The last file entry emitted by maybe_emit_file(). */
3994 static GTY(()) struct dwarf_file_data * last_emitted_file;
3996 /* Number of internal labels generated by gen_internal_sym(). */
3997 static GTY(()) int label_num;
3999 /* Cached result of previous call to lookup_filename. */
4000 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4002 #ifdef DWARF2_DEBUGGING_INFO
4004 /* Offset from the "steady-state frame pointer" to the frame base,
4005 within the current function. */
4006 static HOST_WIDE_INT frame_pointer_fb_offset;
4008 /* Forward declarations for functions defined in this file. */
4010 static int is_pseudo_reg (rtx);
4011 static tree type_main_variant (tree);
4012 static int is_tagged_type (tree);
4013 static const char *dwarf_tag_name (unsigned);
4014 static const char *dwarf_attr_name (unsigned);
4015 static const char *dwarf_form_name (unsigned);
4016 static tree decl_ultimate_origin (tree);
4017 static tree block_ultimate_origin (tree);
4018 static tree decl_class_context (tree);
4019 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4020 static inline enum dw_val_class AT_class (dw_attr_ref);
4021 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4022 static inline unsigned AT_flag (dw_attr_ref);
4023 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4024 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4025 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4026 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4027 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4028 unsigned long);
4029 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4030 unsigned int, unsigned char *);
4031 static hashval_t debug_str_do_hash (const void *);
4032 static int debug_str_eq (const void *, const void *);
4033 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4034 static inline const char *AT_string (dw_attr_ref);
4035 static int AT_string_form (dw_attr_ref);
4036 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4037 static void add_AT_specification (dw_die_ref, dw_die_ref);
4038 static inline dw_die_ref AT_ref (dw_attr_ref);
4039 static inline int AT_ref_external (dw_attr_ref);
4040 static inline void set_AT_ref_external (dw_attr_ref, int);
4041 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4042 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4043 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4044 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4045 dw_loc_list_ref);
4046 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4047 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4048 static inline rtx AT_addr (dw_attr_ref);
4049 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4050 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4051 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4053 unsigned HOST_WIDE_INT);
4054 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4055 unsigned long);
4056 static inline const char *AT_lbl (dw_attr_ref);
4057 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4058 static const char *get_AT_low_pc (dw_die_ref);
4059 static const char *get_AT_hi_pc (dw_die_ref);
4060 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4061 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4062 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4063 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4064 static bool is_c_family (void);
4065 static bool is_cxx (void);
4066 static bool is_java (void);
4067 static bool is_fortran (void);
4068 static bool is_ada (void);
4069 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4070 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4071 static void add_child_die (dw_die_ref, dw_die_ref);
4072 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4073 static dw_die_ref lookup_type_die (tree);
4074 static void equate_type_number_to_die (tree, dw_die_ref);
4075 static hashval_t decl_die_table_hash (const void *);
4076 static int decl_die_table_eq (const void *, const void *);
4077 static dw_die_ref lookup_decl_die (tree);
4078 static hashval_t decl_loc_table_hash (const void *);
4079 static int decl_loc_table_eq (const void *, const void *);
4080 static var_loc_list *lookup_decl_loc (tree);
4081 static void equate_decl_number_to_die (tree, dw_die_ref);
4082 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4083 static void print_spaces (FILE *);
4084 static void print_die (dw_die_ref, FILE *);
4085 static void print_dwarf_line_table (FILE *);
4086 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4087 static dw_die_ref pop_compile_unit (dw_die_ref);
4088 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4089 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4090 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4091 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4092 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4093 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4094 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4095 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4096 static void compute_section_prefix (dw_die_ref);
4097 static int is_type_die (dw_die_ref);
4098 static int is_comdat_die (dw_die_ref);
4099 static int is_symbol_die (dw_die_ref);
4100 static void assign_symbol_names (dw_die_ref);
4101 static void break_out_includes (dw_die_ref);
4102 static hashval_t htab_cu_hash (const void *);
4103 static int htab_cu_eq (const void *, const void *);
4104 static void htab_cu_del (void *);
4105 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4106 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4107 static void add_sibling_attributes (dw_die_ref);
4108 static void build_abbrev_table (dw_die_ref);
4109 static void output_location_lists (dw_die_ref);
4110 static int constant_size (long unsigned);
4111 static unsigned long size_of_die (dw_die_ref);
4112 static void calc_die_sizes (dw_die_ref);
4113 static void mark_dies (dw_die_ref);
4114 static void unmark_dies (dw_die_ref);
4115 static void unmark_all_dies (dw_die_ref);
4116 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4117 static unsigned long size_of_aranges (void);
4118 static enum dwarf_form value_format (dw_attr_ref);
4119 static void output_value_format (dw_attr_ref);
4120 static void output_abbrev_section (void);
4121 static void output_die_symbol (dw_die_ref);
4122 static void output_die (dw_die_ref);
4123 static void output_compilation_unit_header (void);
4124 static void output_comp_unit (dw_die_ref, int);
4125 static const char *dwarf2_name (tree, int);
4126 static void add_pubname (tree, dw_die_ref);
4127 static void add_pubtype (tree, dw_die_ref);
4128 static void output_pubnames (VEC (pubname_entry,gc) *);
4129 static void add_arange (tree, dw_die_ref);
4130 static void output_aranges (void);
4131 static unsigned int add_ranges (tree);
4132 static void output_ranges (void);
4133 static void output_line_info (void);
4134 static void output_file_names (void);
4135 static dw_die_ref base_type_die (tree);
4136 static tree root_type (tree);
4137 static int is_base_type (tree);
4138 static bool is_subrange_type (tree);
4139 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4140 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4141 static int type_is_enum (tree);
4142 static unsigned int dbx_reg_number (rtx);
4143 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4144 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4145 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4146 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4147 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4148 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4149 static int is_based_loc (rtx);
4150 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4151 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4152 static dw_loc_descr_ref loc_descriptor (rtx);
4153 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4154 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4155 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4156 static tree field_type (tree);
4157 static unsigned int simple_type_align_in_bits (tree);
4158 static unsigned int simple_decl_align_in_bits (tree);
4159 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4160 static HOST_WIDE_INT field_byte_offset (tree);
4161 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4162 dw_loc_descr_ref);
4163 static void add_data_member_location_attribute (dw_die_ref, tree);
4164 static void add_const_value_attribute (dw_die_ref, rtx);
4165 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4166 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4167 static void insert_float (rtx, unsigned char *);
4168 static rtx rtl_for_decl_location (tree);
4169 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4170 enum dwarf_attribute);
4171 static void tree_add_const_value_attribute (dw_die_ref, tree);
4172 static void add_name_attribute (dw_die_ref, const char *);
4173 static void add_comp_dir_attribute (dw_die_ref);
4174 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4175 static void add_subscript_info (dw_die_ref, tree);
4176 static void add_byte_size_attribute (dw_die_ref, tree);
4177 static void add_bit_offset_attribute (dw_die_ref, tree);
4178 static void add_bit_size_attribute (dw_die_ref, tree);
4179 static void add_prototyped_attribute (dw_die_ref, tree);
4180 static void add_abstract_origin_attribute (dw_die_ref, tree);
4181 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4182 static void add_src_coords_attributes (dw_die_ref, tree);
4183 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4184 static void push_decl_scope (tree);
4185 static void pop_decl_scope (void);
4186 static dw_die_ref scope_die_for (tree, dw_die_ref);
4187 static inline int local_scope_p (dw_die_ref);
4188 static inline int class_or_namespace_scope_p (dw_die_ref);
4189 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4190 static void add_calling_convention_attribute (dw_die_ref, tree);
4191 static const char *type_tag (tree);
4192 static tree member_declared_type (tree);
4193 #if 0
4194 static const char *decl_start_label (tree);
4195 #endif
4196 static void gen_array_type_die (tree, dw_die_ref);
4197 #if 0
4198 static void gen_entry_point_die (tree, dw_die_ref);
4199 #endif
4200 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4201 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4202 static void gen_inlined_union_type_die (tree, dw_die_ref);
4203 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4205 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4206 static void gen_formal_types_die (tree, dw_die_ref);
4207 static void gen_subprogram_die (tree, dw_die_ref);
4208 static void gen_variable_die (tree, dw_die_ref);
4209 static void gen_label_die (tree, dw_die_ref);
4210 static void gen_lexical_block_die (tree, dw_die_ref, int);
4211 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4212 static void gen_field_die (tree, dw_die_ref);
4213 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4214 static dw_die_ref gen_compile_unit_die (const char *);
4215 static void gen_inheritance_die (tree, tree, dw_die_ref);
4216 static void gen_member_die (tree, dw_die_ref);
4217 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4218 static void gen_subroutine_type_die (tree, dw_die_ref);
4219 static void gen_typedef_die (tree, dw_die_ref);
4220 static void gen_type_die (tree, dw_die_ref);
4221 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4222 static void gen_block_die (tree, dw_die_ref, int);
4223 static void decls_for_scope (tree, dw_die_ref, int);
4224 static int is_redundant_typedef (tree);
4225 static void gen_namespace_die (tree);
4226 static void gen_decl_die (tree, dw_die_ref);
4227 static dw_die_ref force_decl_die (tree);
4228 static dw_die_ref force_type_die (tree);
4229 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4230 static void declare_in_namespace (tree, dw_die_ref);
4231 static struct dwarf_file_data * lookup_filename (const char *);
4232 static void retry_incomplete_types (void);
4233 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4234 static void splice_child_die (dw_die_ref, dw_die_ref);
4235 static int file_info_cmp (const void *, const void *);
4236 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4237 const char *, const char *, unsigned);
4238 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4239 const char *, const char *,
4240 const char *);
4241 static void output_loc_list (dw_loc_list_ref);
4242 static char *gen_internal_sym (const char *);
4244 static void prune_unmark_dies (dw_die_ref);
4245 static void prune_unused_types_mark (dw_die_ref, int);
4246 static void prune_unused_types_walk (dw_die_ref);
4247 static void prune_unused_types_walk_attribs (dw_die_ref);
4248 static void prune_unused_types_prune (dw_die_ref);
4249 static void prune_unused_types (void);
4250 static int maybe_emit_file (struct dwarf_file_data *fd);
4252 /* Section names used to hold DWARF debugging information. */
4253 #ifndef DEBUG_INFO_SECTION
4254 #define DEBUG_INFO_SECTION ".debug_info"
4255 #endif
4256 #ifndef DEBUG_ABBREV_SECTION
4257 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4258 #endif
4259 #ifndef DEBUG_ARANGES_SECTION
4260 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4261 #endif
4262 #ifndef DEBUG_MACINFO_SECTION
4263 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4264 #endif
4265 #ifndef DEBUG_LINE_SECTION
4266 #define DEBUG_LINE_SECTION ".debug_line"
4267 #endif
4268 #ifndef DEBUG_LOC_SECTION
4269 #define DEBUG_LOC_SECTION ".debug_loc"
4270 #endif
4271 #ifndef DEBUG_PUBNAMES_SECTION
4272 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4273 #endif
4274 #ifndef DEBUG_STR_SECTION
4275 #define DEBUG_STR_SECTION ".debug_str"
4276 #endif
4277 #ifndef DEBUG_RANGES_SECTION
4278 #define DEBUG_RANGES_SECTION ".debug_ranges"
4279 #endif
4281 /* Standard ELF section names for compiled code and data. */
4282 #ifndef TEXT_SECTION_NAME
4283 #define TEXT_SECTION_NAME ".text"
4284 #endif
4286 /* Section flags for .debug_str section. */
4287 #define DEBUG_STR_SECTION_FLAGS \
4288 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4289 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4290 : SECTION_DEBUG)
4292 /* Labels we insert at beginning sections we can reference instead of
4293 the section names themselves. */
4295 #ifndef TEXT_SECTION_LABEL
4296 #define TEXT_SECTION_LABEL "Ltext"
4297 #endif
4298 #ifndef COLD_TEXT_SECTION_LABEL
4299 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4300 #endif
4301 #ifndef DEBUG_LINE_SECTION_LABEL
4302 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4303 #endif
4304 #ifndef DEBUG_INFO_SECTION_LABEL
4305 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4306 #endif
4307 #ifndef DEBUG_ABBREV_SECTION_LABEL
4308 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4309 #endif
4310 #ifndef DEBUG_LOC_SECTION_LABEL
4311 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4312 #endif
4313 #ifndef DEBUG_RANGES_SECTION_LABEL
4314 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4315 #endif
4316 #ifndef DEBUG_MACINFO_SECTION_LABEL
4317 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4318 #endif
4320 /* Definitions of defaults for formats and names of various special
4321 (artificial) labels which may be generated within this file (when the -g
4322 options is used and DWARF2_DEBUGGING_INFO is in effect.
4323 If necessary, these may be overridden from within the tm.h file, but
4324 typically, overriding these defaults is unnecessary. */
4326 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4327 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337 #ifndef TEXT_END_LABEL
4338 #define TEXT_END_LABEL "Letext"
4339 #endif
4340 #ifndef COLD_END_LABEL
4341 #define COLD_END_LABEL "Letext_cold"
4342 #endif
4343 #ifndef BLOCK_BEGIN_LABEL
4344 #define BLOCK_BEGIN_LABEL "LBB"
4345 #endif
4346 #ifndef BLOCK_END_LABEL
4347 #define BLOCK_END_LABEL "LBE"
4348 #endif
4349 #ifndef LINE_CODE_LABEL
4350 #define LINE_CODE_LABEL "LM"
4351 #endif
4352 #ifndef SEPARATE_LINE_CODE_LABEL
4353 #define SEPARATE_LINE_CODE_LABEL "LSM"
4354 #endif
4356 /* We allow a language front-end to designate a function that is to be
4357 called to "demangle" any name before it is put into a DIE. */
4359 static const char *(*demangle_name_func) (const char *);
4361 void
4362 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 demangle_name_func = func;
4367 /* Test if rtl node points to a pseudo register. */
4369 static inline int
4370 is_pseudo_reg (rtx rtl)
4372 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4373 || (GET_CODE (rtl) == SUBREG
4374 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4377 /* Return a reference to a type, with its const and volatile qualifiers
4378 removed. */
4380 static inline tree
4381 type_main_variant (tree type)
4383 type = TYPE_MAIN_VARIANT (type);
4385 /* ??? There really should be only one main variant among any group of
4386 variants of a given type (and all of the MAIN_VARIANT values for all
4387 members of the group should point to that one type) but sometimes the C
4388 front-end messes this up for array types, so we work around that bug
4389 here. */
4390 if (TREE_CODE (type) == ARRAY_TYPE)
4391 while (type != TYPE_MAIN_VARIANT (type))
4392 type = TYPE_MAIN_VARIANT (type);
4394 return type;
4397 /* Return nonzero if the given type node represents a tagged type. */
4399 static inline int
4400 is_tagged_type (tree type)
4402 enum tree_code code = TREE_CODE (type);
4404 return (code == RECORD_TYPE || code == UNION_TYPE
4405 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4408 /* Convert a DIE tag into its string name. */
4410 static const char *
4411 dwarf_tag_name (unsigned int tag)
4413 switch (tag)
4415 case DW_TAG_padding:
4416 return "DW_TAG_padding";
4417 case DW_TAG_array_type:
4418 return "DW_TAG_array_type";
4419 case DW_TAG_class_type:
4420 return "DW_TAG_class_type";
4421 case DW_TAG_entry_point:
4422 return "DW_TAG_entry_point";
4423 case DW_TAG_enumeration_type:
4424 return "DW_TAG_enumeration_type";
4425 case DW_TAG_formal_parameter:
4426 return "DW_TAG_formal_parameter";
4427 case DW_TAG_imported_declaration:
4428 return "DW_TAG_imported_declaration";
4429 case DW_TAG_label:
4430 return "DW_TAG_label";
4431 case DW_TAG_lexical_block:
4432 return "DW_TAG_lexical_block";
4433 case DW_TAG_member:
4434 return "DW_TAG_member";
4435 case DW_TAG_pointer_type:
4436 return "DW_TAG_pointer_type";
4437 case DW_TAG_reference_type:
4438 return "DW_TAG_reference_type";
4439 case DW_TAG_compile_unit:
4440 return "DW_TAG_compile_unit";
4441 case DW_TAG_string_type:
4442 return "DW_TAG_string_type";
4443 case DW_TAG_structure_type:
4444 return "DW_TAG_structure_type";
4445 case DW_TAG_subroutine_type:
4446 return "DW_TAG_subroutine_type";
4447 case DW_TAG_typedef:
4448 return "DW_TAG_typedef";
4449 case DW_TAG_union_type:
4450 return "DW_TAG_union_type";
4451 case DW_TAG_unspecified_parameters:
4452 return "DW_TAG_unspecified_parameters";
4453 case DW_TAG_variant:
4454 return "DW_TAG_variant";
4455 case DW_TAG_common_block:
4456 return "DW_TAG_common_block";
4457 case DW_TAG_common_inclusion:
4458 return "DW_TAG_common_inclusion";
4459 case DW_TAG_inheritance:
4460 return "DW_TAG_inheritance";
4461 case DW_TAG_inlined_subroutine:
4462 return "DW_TAG_inlined_subroutine";
4463 case DW_TAG_module:
4464 return "DW_TAG_module";
4465 case DW_TAG_ptr_to_member_type:
4466 return "DW_TAG_ptr_to_member_type";
4467 case DW_TAG_set_type:
4468 return "DW_TAG_set_type";
4469 case DW_TAG_subrange_type:
4470 return "DW_TAG_subrange_type";
4471 case DW_TAG_with_stmt:
4472 return "DW_TAG_with_stmt";
4473 case DW_TAG_access_declaration:
4474 return "DW_TAG_access_declaration";
4475 case DW_TAG_base_type:
4476 return "DW_TAG_base_type";
4477 case DW_TAG_catch_block:
4478 return "DW_TAG_catch_block";
4479 case DW_TAG_const_type:
4480 return "DW_TAG_const_type";
4481 case DW_TAG_constant:
4482 return "DW_TAG_constant";
4483 case DW_TAG_enumerator:
4484 return "DW_TAG_enumerator";
4485 case DW_TAG_file_type:
4486 return "DW_TAG_file_type";
4487 case DW_TAG_friend:
4488 return "DW_TAG_friend";
4489 case DW_TAG_namelist:
4490 return "DW_TAG_namelist";
4491 case DW_TAG_namelist_item:
4492 return "DW_TAG_namelist_item";
4493 case DW_TAG_namespace:
4494 return "DW_TAG_namespace";
4495 case DW_TAG_packed_type:
4496 return "DW_TAG_packed_type";
4497 case DW_TAG_subprogram:
4498 return "DW_TAG_subprogram";
4499 case DW_TAG_template_type_param:
4500 return "DW_TAG_template_type_param";
4501 case DW_TAG_template_value_param:
4502 return "DW_TAG_template_value_param";
4503 case DW_TAG_thrown_type:
4504 return "DW_TAG_thrown_type";
4505 case DW_TAG_try_block:
4506 return "DW_TAG_try_block";
4507 case DW_TAG_variant_part:
4508 return "DW_TAG_variant_part";
4509 case DW_TAG_variable:
4510 return "DW_TAG_variable";
4511 case DW_TAG_volatile_type:
4512 return "DW_TAG_volatile_type";
4513 case DW_TAG_imported_module:
4514 return "DW_TAG_imported_module";
4515 case DW_TAG_MIPS_loop:
4516 return "DW_TAG_MIPS_loop";
4517 case DW_TAG_format_label:
4518 return "DW_TAG_format_label";
4519 case DW_TAG_function_template:
4520 return "DW_TAG_function_template";
4521 case DW_TAG_class_template:
4522 return "DW_TAG_class_template";
4523 case DW_TAG_GNU_BINCL:
4524 return "DW_TAG_GNU_BINCL";
4525 case DW_TAG_GNU_EINCL:
4526 return "DW_TAG_GNU_EINCL";
4527 default:
4528 return "DW_TAG_<unknown>";
4532 /* Convert a DWARF attribute code into its string name. */
4534 static const char *
4535 dwarf_attr_name (unsigned int attr)
4537 switch (attr)
4539 case DW_AT_sibling:
4540 return "DW_AT_sibling";
4541 case DW_AT_location:
4542 return "DW_AT_location";
4543 case DW_AT_name:
4544 return "DW_AT_name";
4545 case DW_AT_ordering:
4546 return "DW_AT_ordering";
4547 case DW_AT_subscr_data:
4548 return "DW_AT_subscr_data";
4549 case DW_AT_byte_size:
4550 return "DW_AT_byte_size";
4551 case DW_AT_bit_offset:
4552 return "DW_AT_bit_offset";
4553 case DW_AT_bit_size:
4554 return "DW_AT_bit_size";
4555 case DW_AT_element_list:
4556 return "DW_AT_element_list";
4557 case DW_AT_stmt_list:
4558 return "DW_AT_stmt_list";
4559 case DW_AT_low_pc:
4560 return "DW_AT_low_pc";
4561 case DW_AT_high_pc:
4562 return "DW_AT_high_pc";
4563 case DW_AT_language:
4564 return "DW_AT_language";
4565 case DW_AT_member:
4566 return "DW_AT_member";
4567 case DW_AT_discr:
4568 return "DW_AT_discr";
4569 case DW_AT_discr_value:
4570 return "DW_AT_discr_value";
4571 case DW_AT_visibility:
4572 return "DW_AT_visibility";
4573 case DW_AT_import:
4574 return "DW_AT_import";
4575 case DW_AT_string_length:
4576 return "DW_AT_string_length";
4577 case DW_AT_common_reference:
4578 return "DW_AT_common_reference";
4579 case DW_AT_comp_dir:
4580 return "DW_AT_comp_dir";
4581 case DW_AT_const_value:
4582 return "DW_AT_const_value";
4583 case DW_AT_containing_type:
4584 return "DW_AT_containing_type";
4585 case DW_AT_default_value:
4586 return "DW_AT_default_value";
4587 case DW_AT_inline:
4588 return "DW_AT_inline";
4589 case DW_AT_is_optional:
4590 return "DW_AT_is_optional";
4591 case DW_AT_lower_bound:
4592 return "DW_AT_lower_bound";
4593 case DW_AT_producer:
4594 return "DW_AT_producer";
4595 case DW_AT_prototyped:
4596 return "DW_AT_prototyped";
4597 case DW_AT_return_addr:
4598 return "DW_AT_return_addr";
4599 case DW_AT_start_scope:
4600 return "DW_AT_start_scope";
4601 case DW_AT_stride_size:
4602 return "DW_AT_stride_size";
4603 case DW_AT_upper_bound:
4604 return "DW_AT_upper_bound";
4605 case DW_AT_abstract_origin:
4606 return "DW_AT_abstract_origin";
4607 case DW_AT_accessibility:
4608 return "DW_AT_accessibility";
4609 case DW_AT_address_class:
4610 return "DW_AT_address_class";
4611 case DW_AT_artificial:
4612 return "DW_AT_artificial";
4613 case DW_AT_base_types:
4614 return "DW_AT_base_types";
4615 case DW_AT_calling_convention:
4616 return "DW_AT_calling_convention";
4617 case DW_AT_count:
4618 return "DW_AT_count";
4619 case DW_AT_data_member_location:
4620 return "DW_AT_data_member_location";
4621 case DW_AT_decl_column:
4622 return "DW_AT_decl_column";
4623 case DW_AT_decl_file:
4624 return "DW_AT_decl_file";
4625 case DW_AT_decl_line:
4626 return "DW_AT_decl_line";
4627 case DW_AT_declaration:
4628 return "DW_AT_declaration";
4629 case DW_AT_discr_list:
4630 return "DW_AT_discr_list";
4631 case DW_AT_encoding:
4632 return "DW_AT_encoding";
4633 case DW_AT_external:
4634 return "DW_AT_external";
4635 case DW_AT_frame_base:
4636 return "DW_AT_frame_base";
4637 case DW_AT_friend:
4638 return "DW_AT_friend";
4639 case DW_AT_identifier_case:
4640 return "DW_AT_identifier_case";
4641 case DW_AT_macro_info:
4642 return "DW_AT_macro_info";
4643 case DW_AT_namelist_items:
4644 return "DW_AT_namelist_items";
4645 case DW_AT_priority:
4646 return "DW_AT_priority";
4647 case DW_AT_segment:
4648 return "DW_AT_segment";
4649 case DW_AT_specification:
4650 return "DW_AT_specification";
4651 case DW_AT_static_link:
4652 return "DW_AT_static_link";
4653 case DW_AT_type:
4654 return "DW_AT_type";
4655 case DW_AT_use_location:
4656 return "DW_AT_use_location";
4657 case DW_AT_variable_parameter:
4658 return "DW_AT_variable_parameter";
4659 case DW_AT_virtuality:
4660 return "DW_AT_virtuality";
4661 case DW_AT_vtable_elem_location:
4662 return "DW_AT_vtable_elem_location";
4664 case DW_AT_allocated:
4665 return "DW_AT_allocated";
4666 case DW_AT_associated:
4667 return "DW_AT_associated";
4668 case DW_AT_data_location:
4669 return "DW_AT_data_location";
4670 case DW_AT_stride:
4671 return "DW_AT_stride";
4672 case DW_AT_entry_pc:
4673 return "DW_AT_entry_pc";
4674 case DW_AT_use_UTF8:
4675 return "DW_AT_use_UTF8";
4676 case DW_AT_extension:
4677 return "DW_AT_extension";
4678 case DW_AT_ranges:
4679 return "DW_AT_ranges";
4680 case DW_AT_trampoline:
4681 return "DW_AT_trampoline";
4682 case DW_AT_call_column:
4683 return "DW_AT_call_column";
4684 case DW_AT_call_file:
4685 return "DW_AT_call_file";
4686 case DW_AT_call_line:
4687 return "DW_AT_call_line";
4689 case DW_AT_MIPS_fde:
4690 return "DW_AT_MIPS_fde";
4691 case DW_AT_MIPS_loop_begin:
4692 return "DW_AT_MIPS_loop_begin";
4693 case DW_AT_MIPS_tail_loop_begin:
4694 return "DW_AT_MIPS_tail_loop_begin";
4695 case DW_AT_MIPS_epilog_begin:
4696 return "DW_AT_MIPS_epilog_begin";
4697 case DW_AT_MIPS_loop_unroll_factor:
4698 return "DW_AT_MIPS_loop_unroll_factor";
4699 case DW_AT_MIPS_software_pipeline_depth:
4700 return "DW_AT_MIPS_software_pipeline_depth";
4701 case DW_AT_MIPS_linkage_name:
4702 return "DW_AT_MIPS_linkage_name";
4703 case DW_AT_MIPS_stride:
4704 return "DW_AT_MIPS_stride";
4705 case DW_AT_MIPS_abstract_name:
4706 return "DW_AT_MIPS_abstract_name";
4707 case DW_AT_MIPS_clone_origin:
4708 return "DW_AT_MIPS_clone_origin";
4709 case DW_AT_MIPS_has_inlines:
4710 return "DW_AT_MIPS_has_inlines";
4712 case DW_AT_sf_names:
4713 return "DW_AT_sf_names";
4714 case DW_AT_src_info:
4715 return "DW_AT_src_info";
4716 case DW_AT_mac_info:
4717 return "DW_AT_mac_info";
4718 case DW_AT_src_coords:
4719 return "DW_AT_src_coords";
4720 case DW_AT_body_begin:
4721 return "DW_AT_body_begin";
4722 case DW_AT_body_end:
4723 return "DW_AT_body_end";
4724 case DW_AT_GNU_vector:
4725 return "DW_AT_GNU_vector";
4727 case DW_AT_VMS_rtnbeg_pd_address:
4728 return "DW_AT_VMS_rtnbeg_pd_address";
4730 default:
4731 return "DW_AT_<unknown>";
4735 /* Convert a DWARF value form code into its string name. */
4737 static const char *
4738 dwarf_form_name (unsigned int form)
4740 switch (form)
4742 case DW_FORM_addr:
4743 return "DW_FORM_addr";
4744 case DW_FORM_block2:
4745 return "DW_FORM_block2";
4746 case DW_FORM_block4:
4747 return "DW_FORM_block4";
4748 case DW_FORM_data2:
4749 return "DW_FORM_data2";
4750 case DW_FORM_data4:
4751 return "DW_FORM_data4";
4752 case DW_FORM_data8:
4753 return "DW_FORM_data8";
4754 case DW_FORM_string:
4755 return "DW_FORM_string";
4756 case DW_FORM_block:
4757 return "DW_FORM_block";
4758 case DW_FORM_block1:
4759 return "DW_FORM_block1";
4760 case DW_FORM_data1:
4761 return "DW_FORM_data1";
4762 case DW_FORM_flag:
4763 return "DW_FORM_flag";
4764 case DW_FORM_sdata:
4765 return "DW_FORM_sdata";
4766 case DW_FORM_strp:
4767 return "DW_FORM_strp";
4768 case DW_FORM_udata:
4769 return "DW_FORM_udata";
4770 case DW_FORM_ref_addr:
4771 return "DW_FORM_ref_addr";
4772 case DW_FORM_ref1:
4773 return "DW_FORM_ref1";
4774 case DW_FORM_ref2:
4775 return "DW_FORM_ref2";
4776 case DW_FORM_ref4:
4777 return "DW_FORM_ref4";
4778 case DW_FORM_ref8:
4779 return "DW_FORM_ref8";
4780 case DW_FORM_ref_udata:
4781 return "DW_FORM_ref_udata";
4782 case DW_FORM_indirect:
4783 return "DW_FORM_indirect";
4784 default:
4785 return "DW_FORM_<unknown>";
4789 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4790 instance of an inlined instance of a decl which is local to an inline
4791 function, so we have to trace all of the way back through the origin chain
4792 to find out what sort of node actually served as the original seed for the
4793 given block. */
4795 static tree
4796 decl_ultimate_origin (tree decl)
4798 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4799 return NULL_TREE;
4801 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4802 nodes in the function to point to themselves; ignore that if
4803 we're trying to output the abstract instance of this function. */
4804 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4805 return NULL_TREE;
4807 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4808 most distant ancestor, this should never happen. */
4809 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811 return DECL_ABSTRACT_ORIGIN (decl);
4814 /* Determine the "ultimate origin" of a block. The block may be an inlined
4815 instance of an inlined instance of a block which is local to an inline
4816 function, so we have to trace all of the way back through the origin chain
4817 to find out what sort of node actually served as the original seed for the
4818 given block. */
4820 static tree
4821 block_ultimate_origin (tree block)
4823 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4826 nodes in the function to point to themselves; ignore that if
4827 we're trying to output the abstract instance of this function. */
4828 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4829 return NULL_TREE;
4831 if (immediate_origin == NULL_TREE)
4832 return NULL_TREE;
4833 else
4835 tree ret_val;
4836 tree lookahead = immediate_origin;
4840 ret_val = lookahead;
4841 lookahead = (TREE_CODE (ret_val) == BLOCK
4842 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 while (lookahead != NULL && lookahead != ret_val);
4846 /* The block's abstract origin chain may not be the *ultimate* origin of
4847 the block. It could lead to a DECL that has an abstract origin set.
4848 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4849 will give us if it has one). Note that DECL's abstract origins are
4850 supposed to be the most distant ancestor (or so decl_ultimate_origin
4851 claims), so we don't need to loop following the DECL origins. */
4852 if (DECL_P (ret_val))
4853 return DECL_ORIGIN (ret_val);
4855 return ret_val;
4859 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4860 of a virtual function may refer to a base class, so we check the 'this'
4861 parameter. */
4863 static tree
4864 decl_class_context (tree decl)
4866 tree context = NULL_TREE;
4868 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4869 context = DECL_CONTEXT (decl);
4870 else
4871 context = TYPE_MAIN_VARIANT
4872 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874 if (context && !TYPE_P (context))
4875 context = NULL_TREE;
4877 return context;
4880 /* Add an attribute/value pair to a DIE. */
4882 static inline void
4883 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 /* Maybe this should be an assert? */
4886 if (die == NULL)
4887 return;
4889 if (die->die_attr == NULL)
4890 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4891 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4894 static inline enum dw_val_class
4895 AT_class (dw_attr_ref a)
4897 return a->dw_attr_val.val_class;
4900 /* Add a flag value attribute to a DIE. */
4902 static inline void
4903 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 dw_attr_node attr;
4907 attr.dw_attr = attr_kind;
4908 attr.dw_attr_val.val_class = dw_val_class_flag;
4909 attr.dw_attr_val.v.val_flag = flag;
4910 add_dwarf_attr (die, &attr);
4913 static inline unsigned
4914 AT_flag (dw_attr_ref a)
4916 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4917 return a->dw_attr_val.v.val_flag;
4920 /* Add a signed integer attribute value to a DIE. */
4922 static inline void
4923 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 dw_attr_node attr;
4927 attr.dw_attr = attr_kind;
4928 attr.dw_attr_val.val_class = dw_val_class_const;
4929 attr.dw_attr_val.v.val_int = int_val;
4930 add_dwarf_attr (die, &attr);
4933 static inline HOST_WIDE_INT
4934 AT_int (dw_attr_ref a)
4936 gcc_assert (a && AT_class (a) == dw_val_class_const);
4937 return a->dw_attr_val.v.val_int;
4940 /* Add an unsigned integer attribute value to a DIE. */
4942 static inline void
4943 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4944 unsigned HOST_WIDE_INT unsigned_val)
4946 dw_attr_node attr;
4948 attr.dw_attr = attr_kind;
4949 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4950 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4951 add_dwarf_attr (die, &attr);
4954 static inline unsigned HOST_WIDE_INT
4955 AT_unsigned (dw_attr_ref a)
4957 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4958 return a->dw_attr_val.v.val_unsigned;
4961 /* Add an unsigned double integer attribute value to a DIE. */
4963 static inline void
4964 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4965 long unsigned int val_hi, long unsigned int val_low)
4967 dw_attr_node attr;
4969 attr.dw_attr = attr_kind;
4970 attr.dw_attr_val.val_class = dw_val_class_long_long;
4971 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4972 attr.dw_attr_val.v.val_long_long.low = val_low;
4973 add_dwarf_attr (die, &attr);
4976 /* Add a floating point attribute value to a DIE and return it. */
4978 static inline void
4979 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4980 unsigned int length, unsigned int elt_size, unsigned char *array)
4982 dw_attr_node attr;
4984 attr.dw_attr = attr_kind;
4985 attr.dw_attr_val.val_class = dw_val_class_vec;
4986 attr.dw_attr_val.v.val_vec.length = length;
4987 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4988 attr.dw_attr_val.v.val_vec.array = array;
4989 add_dwarf_attr (die, &attr);
4992 /* Hash and equality functions for debug_str_hash. */
4994 static hashval_t
4995 debug_str_do_hash (const void *x)
4997 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5000 static int
5001 debug_str_eq (const void *x1, const void *x2)
5003 return strcmp ((((const struct indirect_string_node *)x1)->str),
5004 (const char *)x2) == 0;
5007 /* Add a string attribute value to a DIE. */
5009 static inline void
5010 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 dw_attr_node attr;
5013 struct indirect_string_node *node;
5014 void **slot;
5016 if (! debug_str_hash)
5017 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5018 debug_str_eq, NULL);
5020 slot = htab_find_slot_with_hash (debug_str_hash, str,
5021 htab_hash_string (str), INSERT);
5022 if (*slot == NULL)
5023 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5024 node = (struct indirect_string_node *) *slot;
5025 node->str = ggc_strdup (str);
5026 node->refcount++;
5028 attr.dw_attr = attr_kind;
5029 attr.dw_attr_val.val_class = dw_val_class_str;
5030 attr.dw_attr_val.v.val_str = node;
5031 add_dwarf_attr (die, &attr);
5034 static inline const char *
5035 AT_string (dw_attr_ref a)
5037 gcc_assert (a && AT_class (a) == dw_val_class_str);
5038 return a->dw_attr_val.v.val_str->str;
5041 /* Find out whether a string should be output inline in DIE
5042 or out-of-line in .debug_str section. */
5044 static int
5045 AT_string_form (dw_attr_ref a)
5047 struct indirect_string_node *node;
5048 unsigned int len;
5049 char label[32];
5051 gcc_assert (a && AT_class (a) == dw_val_class_str);
5053 node = a->dw_attr_val.v.val_str;
5054 if (node->form)
5055 return node->form;
5057 len = strlen (node->str) + 1;
5059 /* If the string is shorter or equal to the size of the reference, it is
5060 always better to put it inline. */
5061 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5062 return node->form = DW_FORM_string;
5064 /* If we cannot expect the linker to merge strings in .debug_str
5065 section, only put it into .debug_str if it is worth even in this
5066 single module. */
5067 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5068 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5069 return node->form = DW_FORM_string;
5071 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5072 ++dw2_string_counter;
5073 node->label = xstrdup (label);
5075 return node->form = DW_FORM_strp;
5078 /* Add a DIE reference attribute value to a DIE. */
5080 static inline void
5081 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 dw_attr_node attr;
5085 attr.dw_attr = attr_kind;
5086 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5087 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5088 attr.dw_attr_val.v.val_die_ref.external = 0;
5089 add_dwarf_attr (die, &attr);
5092 /* Add an AT_specification attribute to a DIE, and also make the back
5093 pointer from the specification to the definition. */
5095 static inline void
5096 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 add_AT_die_ref (die, DW_AT_specification, targ_die);
5099 gcc_assert (!targ_die->die_definition);
5100 targ_die->die_definition = die;
5103 static inline dw_die_ref
5104 AT_ref (dw_attr_ref a)
5106 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5107 return a->dw_attr_val.v.val_die_ref.die;
5110 static inline int
5111 AT_ref_external (dw_attr_ref a)
5113 if (a && AT_class (a) == dw_val_class_die_ref)
5114 return a->dw_attr_val.v.val_die_ref.external;
5116 return 0;
5119 static inline void
5120 set_AT_ref_external (dw_attr_ref a, int i)
5122 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5123 a->dw_attr_val.v.val_die_ref.external = i;
5126 /* Add an FDE reference attribute value to a DIE. */
5128 static inline void
5129 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 dw_attr_node attr;
5133 attr.dw_attr = attr_kind;
5134 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5135 attr.dw_attr_val.v.val_fde_index = targ_fde;
5136 add_dwarf_attr (die, &attr);
5139 /* Add a location description attribute value to a DIE. */
5141 static inline void
5142 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 dw_attr_node attr;
5146 attr.dw_attr = attr_kind;
5147 attr.dw_attr_val.val_class = dw_val_class_loc;
5148 attr.dw_attr_val.v.val_loc = loc;
5149 add_dwarf_attr (die, &attr);
5152 static inline dw_loc_descr_ref
5153 AT_loc (dw_attr_ref a)
5155 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5156 return a->dw_attr_val.v.val_loc;
5159 static inline void
5160 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 dw_attr_node attr;
5164 attr.dw_attr = attr_kind;
5165 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5166 attr.dw_attr_val.v.val_loc_list = loc_list;
5167 add_dwarf_attr (die, &attr);
5168 have_location_lists = true;
5171 static inline dw_loc_list_ref
5172 AT_loc_list (dw_attr_ref a)
5174 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5175 return a->dw_attr_val.v.val_loc_list;
5178 /* Add an address constant attribute value to a DIE. */
5180 static inline void
5181 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 dw_attr_node attr;
5185 attr.dw_attr = attr_kind;
5186 attr.dw_attr_val.val_class = dw_val_class_addr;
5187 attr.dw_attr_val.v.val_addr = addr;
5188 add_dwarf_attr (die, &attr);
5191 /* Get the RTX from to an address DIE attribute. */
5193 static inline rtx
5194 AT_addr (dw_attr_ref a)
5196 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5197 return a->dw_attr_val.v.val_addr;
5200 /* Add a file attribute value to a DIE. */
5202 static inline void
5203 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5204 struct dwarf_file_data *fd)
5206 dw_attr_node attr;
5208 attr.dw_attr = attr_kind;
5209 attr.dw_attr_val.val_class = dw_val_class_file;
5210 attr.dw_attr_val.v.val_file = fd;
5211 add_dwarf_attr (die, &attr);
5214 /* Get the dwarf_file_data from a file DIE attribute. */
5216 static inline struct dwarf_file_data *
5217 AT_file (dw_attr_ref a)
5219 gcc_assert (a && AT_class (a) == dw_val_class_file);
5220 return a->dw_attr_val.v.val_file;
5223 /* Add a label identifier attribute value to a DIE. */
5225 static inline void
5226 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 dw_attr_node attr;
5230 attr.dw_attr = attr_kind;
5231 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5232 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5233 add_dwarf_attr (die, &attr);
5236 /* Add a section offset attribute value to a DIE, an offset into the
5237 debug_line section. */
5239 static inline void
5240 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5241 const char *label)
5243 dw_attr_node attr;
5245 attr.dw_attr = attr_kind;
5246 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5247 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5248 add_dwarf_attr (die, &attr);
5251 /* Add a section offset attribute value to a DIE, an offset into the
5252 debug_macinfo section. */
5254 static inline void
5255 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5256 const char *label)
5258 dw_attr_node attr;
5260 attr.dw_attr = attr_kind;
5261 attr.dw_attr_val.val_class = dw_val_class_macptr;
5262 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5263 add_dwarf_attr (die, &attr);
5266 /* Add an offset attribute value to a DIE. */
5268 static inline void
5269 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5270 unsigned HOST_WIDE_INT offset)
5272 dw_attr_node attr;
5274 attr.dw_attr = attr_kind;
5275 attr.dw_attr_val.val_class = dw_val_class_offset;
5276 attr.dw_attr_val.v.val_offset = offset;
5277 add_dwarf_attr (die, &attr);
5280 /* Add an range_list attribute value to a DIE. */
5282 static void
5283 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5284 long unsigned int offset)
5286 dw_attr_node attr;
5288 attr.dw_attr = attr_kind;
5289 attr.dw_attr_val.val_class = dw_val_class_range_list;
5290 attr.dw_attr_val.v.val_offset = offset;
5291 add_dwarf_attr (die, &attr);
5294 static inline const char *
5295 AT_lbl (dw_attr_ref a)
5297 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5298 || AT_class (a) == dw_val_class_lineptr
5299 || AT_class (a) == dw_val_class_macptr));
5300 return a->dw_attr_val.v.val_lbl_id;
5303 /* Get the attribute of type attr_kind. */
5305 static dw_attr_ref
5306 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 dw_attr_ref a;
5309 unsigned ix;
5310 dw_die_ref spec = NULL;
5312 if (! die)
5313 return NULL;
5315 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5316 if (a->dw_attr == attr_kind)
5317 return a;
5318 else if (a->dw_attr == DW_AT_specification
5319 || a->dw_attr == DW_AT_abstract_origin)
5320 spec = AT_ref (a);
5322 if (spec)
5323 return get_AT (spec, attr_kind);
5325 return NULL;
5328 /* Return the "low pc" attribute value, typically associated with a subprogram
5329 DIE. Return null if the "low pc" attribute is either not present, or if it
5330 cannot be represented as an assembler label identifier. */
5332 static inline const char *
5333 get_AT_low_pc (dw_die_ref die)
5335 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337 return a ? AT_lbl (a) : NULL;
5340 /* Return the "high pc" attribute value, typically associated with a subprogram
5341 DIE. Return null if the "high pc" attribute is either not present, or if it
5342 cannot be represented as an assembler label identifier. */
5344 static inline const char *
5345 get_AT_hi_pc (dw_die_ref die)
5347 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349 return a ? AT_lbl (a) : NULL;
5352 /* Return the value of the string attribute designated by ATTR_KIND, or
5353 NULL if it is not present. */
5355 static inline const char *
5356 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 dw_attr_ref a = get_AT (die, attr_kind);
5360 return a ? AT_string (a) : NULL;
5363 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5364 if it is not present. */
5366 static inline int
5367 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 dw_attr_ref a = get_AT (die, attr_kind);
5371 return a ? AT_flag (a) : 0;
5374 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5375 if it is not present. */
5377 static inline unsigned
5378 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 dw_attr_ref a = get_AT (die, attr_kind);
5382 return a ? AT_unsigned (a) : 0;
5385 static inline dw_die_ref
5386 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 dw_attr_ref a = get_AT (die, attr_kind);
5390 return a ? AT_ref (a) : NULL;
5393 static inline struct dwarf_file_data *
5394 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 dw_attr_ref a = get_AT (die, attr_kind);
5398 return a ? AT_file (a) : NULL;
5401 /* Return TRUE if the language is C or C++. */
5403 static inline bool
5404 is_c_family (void)
5406 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5409 || lang == DW_LANG_C99
5410 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5413 /* Return TRUE if the language is C++. */
5415 static inline bool
5416 is_cxx (void)
5418 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5423 /* Return TRUE if the language is Fortran. */
5425 static inline bool
5426 is_fortran (void)
5428 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430 return (lang == DW_LANG_Fortran77
5431 || lang == DW_LANG_Fortran90
5432 || lang == DW_LANG_Fortran95);
5435 /* Return TRUE if the language is Java. */
5437 static inline bool
5438 is_java (void)
5440 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442 return lang == DW_LANG_Java;
5445 /* Return TRUE if the language is Ada. */
5447 static inline bool
5448 is_ada (void)
5450 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5455 /* Remove the specified attribute if present. */
5457 static void
5458 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 dw_attr_ref a;
5461 unsigned ix;
5463 if (! die)
5464 return;
5466 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5467 if (a->dw_attr == attr_kind)
5469 if (AT_class (a) == dw_val_class_str)
5470 if (a->dw_attr_val.v.val_str->refcount)
5471 a->dw_attr_val.v.val_str->refcount--;
5473 /* VEC_ordered_remove should help reduce the number of abbrevs
5474 that are needed. */
5475 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5476 return;
5480 /* Remove CHILD from its parent. PREV must have the property that
5481 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5483 static void
5484 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 gcc_assert (child->die_parent == prev->die_parent);
5487 gcc_assert (prev->die_sib == child);
5488 if (prev == child)
5490 gcc_assert (child->die_parent->die_child == child);
5491 prev = NULL;
5493 else
5494 prev->die_sib = child->die_sib;
5495 if (child->die_parent->die_child == child)
5496 child->die_parent->die_child = prev;
5499 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5500 matches TAG. */
5502 static void
5503 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 dw_die_ref c;
5507 c = die->die_child;
5508 if (c) do {
5509 dw_die_ref prev = c;
5510 c = c->die_sib;
5511 while (c->die_tag == tag)
5513 remove_child_with_prev (c, prev);
5514 /* Might have removed every child. */
5515 if (c == c->die_sib)
5516 return;
5517 c = c->die_sib;
5519 } while (c != die->die_child);
5522 /* Add a CHILD_DIE as the last child of DIE. */
5524 static void
5525 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 /* FIXME this should probably be an assert. */
5528 if (! die || ! child_die)
5529 return;
5530 gcc_assert (die != child_die);
5532 child_die->die_parent = die;
5533 if (die->die_child)
5535 child_die->die_sib = die->die_child->die_sib;
5536 die->die_child->die_sib = child_die;
5538 else
5539 child_die->die_sib = child_die;
5540 die->die_child = child_die;
5543 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5544 is the specification, to the end of PARENT's list of children.
5545 This is done by removing and re-adding it. */
5547 static void
5548 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 dw_die_ref p;
5552 /* We want the declaration DIE from inside the class, not the
5553 specification DIE at toplevel. */
5554 if (child->die_parent != parent)
5556 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558 if (tmp)
5559 child = tmp;
5562 gcc_assert (child->die_parent == parent
5563 || (child->die_parent
5564 == get_AT_ref (parent, DW_AT_specification)));
5566 for (p = child->die_parent->die_child; ; p = p->die_sib)
5567 if (p->die_sib == child)
5569 remove_child_with_prev (child, p);
5570 break;
5573 add_child_die (parent, child);
5576 /* Return a pointer to a newly created DIE node. */
5578 static inline dw_die_ref
5579 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583 die->die_tag = tag_value;
5585 if (parent_die != NULL)
5586 add_child_die (parent_die, die);
5587 else
5589 limbo_die_node *limbo_node;
5591 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5592 limbo_node->die = die;
5593 limbo_node->created_for = t;
5594 limbo_node->next = limbo_die_list;
5595 limbo_die_list = limbo_node;
5598 return die;
5601 /* Return the DIE associated with the given type specifier. */
5603 static inline dw_die_ref
5604 lookup_type_die (tree type)
5606 return TYPE_SYMTAB_DIE (type);
5609 /* Equate a DIE to a given type specifier. */
5611 static inline void
5612 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 TYPE_SYMTAB_DIE (type) = type_die;
5617 /* Returns a hash value for X (which really is a die_struct). */
5619 static hashval_t
5620 decl_die_table_hash (const void *x)
5622 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5625 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627 static int
5628 decl_die_table_eq (const void *x, const void *y)
5630 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5633 /* Return the DIE associated with a given declaration. */
5635 static inline dw_die_ref
5636 lookup_decl_die (tree decl)
5638 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5641 /* Returns a hash value for X (which really is a var_loc_list). */
5643 static hashval_t
5644 decl_loc_table_hash (const void *x)
5646 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5649 /* Return nonzero if decl_id of var_loc_list X is the same as
5650 UID of decl *Y. */
5652 static int
5653 decl_loc_table_eq (const void *x, const void *y)
5655 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5658 /* Return the var_loc list associated with a given declaration. */
5660 static inline var_loc_list *
5661 lookup_decl_loc (tree decl)
5663 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5666 /* Equate a DIE to a particular declaration. */
5668 static void
5669 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 unsigned int decl_id = DECL_UID (decl);
5672 void **slot;
5674 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5675 *slot = decl_die;
5676 decl_die->decl_id = decl_id;
5679 /* Add a variable location node to the linked list for DECL. */
5681 static void
5682 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 unsigned int decl_id = DECL_UID (decl);
5685 var_loc_list *temp;
5686 void **slot;
5688 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5689 if (*slot == NULL)
5691 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5692 temp->decl_id = decl_id;
5693 *slot = temp;
5695 else
5696 temp = *slot;
5698 if (temp->last)
5700 /* If the current location is the same as the end of the list,
5701 we have nothing to do. */
5702 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5703 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 /* Add LOC to the end of list and update LAST. */
5706 temp->last->next = loc;
5707 temp->last = loc;
5710 /* Do not add empty location to the beginning of the list. */
5711 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 temp->first = loc;
5714 temp->last = loc;
5718 /* Keep track of the number of spaces used to indent the
5719 output of the debugging routines that print the structure of
5720 the DIE internal representation. */
5721 static int print_indent;
5723 /* Indent the line the number of spaces given by print_indent. */
5725 static inline void
5726 print_spaces (FILE *outfile)
5728 fprintf (outfile, "%*s", print_indent, "");
5731 /* Print the information associated with a given DIE, and its children.
5732 This routine is a debugging aid only. */
5734 static void
5735 print_die (dw_die_ref die, FILE *outfile)
5737 dw_attr_ref a;
5738 dw_die_ref c;
5739 unsigned ix;
5741 print_spaces (outfile);
5742 fprintf (outfile, "DIE %4lu: %s\n",
5743 die->die_offset, dwarf_tag_name (die->die_tag));
5744 print_spaces (outfile);
5745 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5746 fprintf (outfile, " offset: %lu\n", die->die_offset);
5748 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750 print_spaces (outfile);
5751 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753 switch (AT_class (a))
5755 case dw_val_class_addr:
5756 fprintf (outfile, "address");
5757 break;
5758 case dw_val_class_offset:
5759 fprintf (outfile, "offset");
5760 break;
5761 case dw_val_class_loc:
5762 fprintf (outfile, "location descriptor");
5763 break;
5764 case dw_val_class_loc_list:
5765 fprintf (outfile, "location list -> label:%s",
5766 AT_loc_list (a)->ll_symbol);
5767 break;
5768 case dw_val_class_range_list:
5769 fprintf (outfile, "range list");
5770 break;
5771 case dw_val_class_const:
5772 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5773 break;
5774 case dw_val_class_unsigned_const:
5775 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5776 break;
5777 case dw_val_class_long_long:
5778 fprintf (outfile, "constant (%lu,%lu)",
5779 a->dw_attr_val.v.val_long_long.hi,
5780 a->dw_attr_val.v.val_long_long.low);
5781 break;
5782 case dw_val_class_vec:
5783 fprintf (outfile, "floating-point or vector constant");
5784 break;
5785 case dw_val_class_flag:
5786 fprintf (outfile, "%u", AT_flag (a));
5787 break;
5788 case dw_val_class_die_ref:
5789 if (AT_ref (a) != NULL)
5791 if (AT_ref (a)->die_symbol)
5792 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5793 else
5794 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 else
5797 fprintf (outfile, "die -> <null>");
5798 break;
5799 case dw_val_class_lbl_id:
5800 case dw_val_class_lineptr:
5801 case dw_val_class_macptr:
5802 fprintf (outfile, "label: %s", AT_lbl (a));
5803 break;
5804 case dw_val_class_str:
5805 if (AT_string (a) != NULL)
5806 fprintf (outfile, "\"%s\"", AT_string (a));
5807 else
5808 fprintf (outfile, "<null>");
5809 break;
5810 case dw_val_class_file:
5811 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5812 AT_file (a)->emitted_number);
5813 break;
5814 default:
5815 break;
5818 fprintf (outfile, "\n");
5821 if (die->die_child != NULL)
5823 print_indent += 4;
5824 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5825 print_indent -= 4;
5827 if (print_indent == 0)
5828 fprintf (outfile, "\n");
5831 /* Print the contents of the source code line number correspondence table.
5832 This routine is a debugging aid only. */
5834 static void
5835 print_dwarf_line_table (FILE *outfile)
5837 unsigned i;
5838 dw_line_info_ref line_info;
5840 fprintf (outfile, "\n\nDWARF source line information\n");
5841 for (i = 1; i < line_info_table_in_use; i++)
5843 line_info = &line_info_table[i];
5844 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5845 line_info->dw_file_num,
5846 line_info->dw_line_num);
5849 fprintf (outfile, "\n\n");
5852 /* Print the information collected for a given DIE. */
5854 void
5855 debug_dwarf_die (dw_die_ref die)
5857 print_die (die, stderr);
5860 /* Print all DWARF information collected for the compilation unit.
5861 This routine is a debugging aid only. */
5863 void
5864 debug_dwarf (void)
5866 print_indent = 0;
5867 print_die (comp_unit_die, stderr);
5868 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5869 print_dwarf_line_table (stderr);
5872 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5873 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5874 DIE that marks the start of the DIEs for this include file. */
5876 static dw_die_ref
5877 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5880 dw_die_ref new_unit = gen_compile_unit_die (filename);
5882 new_unit->die_sib = old_unit;
5883 return new_unit;
5886 /* Close an include-file CU and reopen the enclosing one. */
5888 static dw_die_ref
5889 pop_compile_unit (dw_die_ref old_unit)
5891 dw_die_ref new_unit = old_unit->die_sib;
5893 old_unit->die_sib = NULL;
5894 return new_unit;
5897 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5898 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900 /* Calculate the checksum of a location expression. */
5902 static inline void
5903 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 CHECKSUM (loc->dw_loc_opc);
5906 CHECKSUM (loc->dw_loc_oprnd1);
5907 CHECKSUM (loc->dw_loc_oprnd2);
5910 /* Calculate the checksum of an attribute. */
5912 static void
5913 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 dw_loc_descr_ref loc;
5916 rtx r;
5918 CHECKSUM (at->dw_attr);
5920 /* We don't care that this was compiled with a different compiler
5921 snapshot; if the output is the same, that's what matters. */
5922 if (at->dw_attr == DW_AT_producer)
5923 return;
5925 switch (AT_class (at))
5927 case dw_val_class_const:
5928 CHECKSUM (at->dw_attr_val.v.val_int);
5929 break;
5930 case dw_val_class_unsigned_const:
5931 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5932 break;
5933 case dw_val_class_long_long:
5934 CHECKSUM (at->dw_attr_val.v.val_long_long);
5935 break;
5936 case dw_val_class_vec:
5937 CHECKSUM (at->dw_attr_val.v.val_vec);
5938 break;
5939 case dw_val_class_flag:
5940 CHECKSUM (at->dw_attr_val.v.val_flag);
5941 break;
5942 case dw_val_class_str:
5943 CHECKSUM_STRING (AT_string (at));
5944 break;
5946 case dw_val_class_addr:
5947 r = AT_addr (at);
5948 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5949 CHECKSUM_STRING (XSTR (r, 0));
5950 break;
5952 case dw_val_class_offset:
5953 CHECKSUM (at->dw_attr_val.v.val_offset);
5954 break;
5956 case dw_val_class_loc:
5957 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5958 loc_checksum (loc, ctx);
5959 break;
5961 case dw_val_class_die_ref:
5962 die_checksum (AT_ref (at), ctx, mark);
5963 break;
5965 case dw_val_class_fde_ref:
5966 case dw_val_class_lbl_id:
5967 case dw_val_class_lineptr:
5968 case dw_val_class_macptr:
5969 break;
5971 case dw_val_class_file:
5972 CHECKSUM_STRING (AT_file (at)->filename);
5973 break;
5975 default:
5976 break;
5980 /* Calculate the checksum of a DIE. */
5982 static void
5983 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 dw_die_ref c;
5986 dw_attr_ref a;
5987 unsigned ix;
5989 /* To avoid infinite recursion. */
5990 if (die->die_mark)
5992 CHECKSUM (die->die_mark);
5993 return;
5995 die->die_mark = ++(*mark);
5997 CHECKSUM (die->die_tag);
5999 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6000 attr_checksum (a, ctx, mark);
6002 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6005 #undef CHECKSUM
6006 #undef CHECKSUM_STRING
6008 /* Do the location expressions look same? */
6009 static inline int
6010 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 return loc1->dw_loc_opc == loc2->dw_loc_opc
6013 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6014 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6017 /* Do the values look the same? */
6018 static int
6019 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 dw_loc_descr_ref loc1, loc2;
6022 rtx r1, r2;
6024 if (v1->val_class != v2->val_class)
6025 return 0;
6027 switch (v1->val_class)
6029 case dw_val_class_const:
6030 return v1->v.val_int == v2->v.val_int;
6031 case dw_val_class_unsigned_const:
6032 return v1->v.val_unsigned == v2->v.val_unsigned;
6033 case dw_val_class_long_long:
6034 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6035 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6036 case dw_val_class_vec:
6037 if (v1->v.val_vec.length != v2->v.val_vec.length
6038 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6039 return 0;
6040 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6041 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6042 return 0;
6043 return 1;
6044 case dw_val_class_flag:
6045 return v1->v.val_flag == v2->v.val_flag;
6046 case dw_val_class_str:
6047 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049 case dw_val_class_addr:
6050 r1 = v1->v.val_addr;
6051 r2 = v2->v.val_addr;
6052 if (GET_CODE (r1) != GET_CODE (r2))
6053 return 0;
6054 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6055 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057 case dw_val_class_offset:
6058 return v1->v.val_offset == v2->v.val_offset;
6060 case dw_val_class_loc:
6061 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6062 loc1 && loc2;
6063 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6064 if (!same_loc_p (loc1, loc2, mark))
6065 return 0;
6066 return !loc1 && !loc2;
6068 case dw_val_class_die_ref:
6069 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071 case dw_val_class_fde_ref:
6072 case dw_val_class_lbl_id:
6073 case dw_val_class_lineptr:
6074 case dw_val_class_macptr:
6075 return 1;
6077 case dw_val_class_file:
6078 return v1->v.val_file == v2->v.val_file;
6080 default:
6081 return 1;
6085 /* Do the attributes look the same? */
6087 static int
6088 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 if (at1->dw_attr != at2->dw_attr)
6091 return 0;
6093 /* We don't care that this was compiled with a different compiler
6094 snapshot; if the output is the same, that's what matters. */
6095 if (at1->dw_attr == DW_AT_producer)
6096 return 1;
6098 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6101 /* Do the dies look the same? */
6103 static int
6104 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 dw_die_ref c1, c2;
6107 dw_attr_ref a1;
6108 unsigned ix;
6110 /* To avoid infinite recursion. */
6111 if (die1->die_mark)
6112 return die1->die_mark == die2->die_mark;
6113 die1->die_mark = die2->die_mark = ++(*mark);
6115 if (die1->die_tag != die2->die_tag)
6116 return 0;
6118 if (VEC_length (dw_attr_node, die1->die_attr)
6119 != VEC_length (dw_attr_node, die2->die_attr))
6120 return 0;
6122 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6123 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6124 return 0;
6126 c1 = die1->die_child;
6127 c2 = die2->die_child;
6128 if (! c1)
6130 if (c2)
6131 return 0;
6133 else
6134 for (;;)
6136 if (!same_die_p (c1, c2, mark))
6137 return 0;
6138 c1 = c1->die_sib;
6139 c2 = c2->die_sib;
6140 if (c1 == die1->die_child)
6142 if (c2 == die2->die_child)
6143 break;
6144 else
6145 return 0;
6149 return 1;
6152 /* Do the dies look the same? Wrapper around same_die_p. */
6154 static int
6155 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 int mark = 0;
6158 int ret = same_die_p (die1, die2, &mark);
6160 unmark_all_dies (die1);
6161 unmark_all_dies (die2);
6163 return ret;
6166 /* The prefix to attach to symbols on DIEs in the current comdat debug
6167 info section. */
6168 static char *comdat_symbol_id;
6170 /* The index of the current symbol within the current comdat CU. */
6171 static unsigned int comdat_symbol_number;
6173 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6174 children, and set comdat_symbol_id accordingly. */
6176 static void
6177 compute_section_prefix (dw_die_ref unit_die)
6179 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6180 const char *base = die_name ? lbasename (die_name) : "anonymous";
6181 char *name = alloca (strlen (base) + 64);
6182 char *p;
6183 int i, mark;
6184 unsigned char checksum[16];
6185 struct md5_ctx ctx;
6187 /* Compute the checksum of the DIE, then append part of it as hex digits to
6188 the name filename of the unit. */
6190 md5_init_ctx (&ctx);
6191 mark = 0;
6192 die_checksum (unit_die, &ctx, &mark);
6193 unmark_all_dies (unit_die);
6194 md5_finish_ctx (&ctx, checksum);
6196 sprintf (name, "%s.", base);
6197 clean_symbol_name (name);
6199 p = name + strlen (name);
6200 for (i = 0; i < 4; i++)
6202 sprintf (p, "%.2x", checksum[i]);
6203 p += 2;
6206 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6207 comdat_symbol_number = 0;
6210 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6212 static int
6213 is_type_die (dw_die_ref die)
6215 switch (die->die_tag)
6217 case DW_TAG_array_type:
6218 case DW_TAG_class_type:
6219 case DW_TAG_enumeration_type:
6220 case DW_TAG_pointer_type:
6221 case DW_TAG_reference_type:
6222 case DW_TAG_string_type:
6223 case DW_TAG_structure_type:
6224 case DW_TAG_subroutine_type:
6225 case DW_TAG_union_type:
6226 case DW_TAG_ptr_to_member_type:
6227 case DW_TAG_set_type:
6228 case DW_TAG_subrange_type:
6229 case DW_TAG_base_type:
6230 case DW_TAG_const_type:
6231 case DW_TAG_file_type:
6232 case DW_TAG_packed_type:
6233 case DW_TAG_volatile_type:
6234 case DW_TAG_typedef:
6235 return 1;
6236 default:
6237 return 0;
6241 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6242 Basically, we want to choose the bits that are likely to be shared between
6243 compilations (types) and leave out the bits that are specific to individual
6244 compilations (functions). */
6246 static int
6247 is_comdat_die (dw_die_ref c)
6249 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6250 we do for stabs. The advantage is a greater likelihood of sharing between
6251 objects that don't include headers in the same order (and therefore would
6252 put the base types in a different comdat). jason 8/28/00 */
6254 if (c->die_tag == DW_TAG_base_type)
6255 return 0;
6257 if (c->die_tag == DW_TAG_pointer_type
6258 || c->die_tag == DW_TAG_reference_type
6259 || c->die_tag == DW_TAG_const_type
6260 || c->die_tag == DW_TAG_volatile_type)
6262 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264 return t ? is_comdat_die (t) : 0;
6267 return is_type_die (c);
6270 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6271 compilation unit. */
6273 static int
6274 is_symbol_die (dw_die_ref c)
6276 return (is_type_die (c)
6277 || (get_AT (c, DW_AT_declaration)
6278 && !get_AT (c, DW_AT_specification))
6279 || c->die_tag == DW_TAG_namespace);
6282 static char *
6283 gen_internal_sym (const char *prefix)
6285 char buf[256];
6287 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6288 return xstrdup (buf);
6291 /* Assign symbols to all worthy DIEs under DIE. */
6293 static void
6294 assign_symbol_names (dw_die_ref die)
6296 dw_die_ref c;
6298 if (is_symbol_die (die))
6300 if (comdat_symbol_id)
6302 char *p = alloca (strlen (comdat_symbol_id) + 64);
6304 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6305 comdat_symbol_id, comdat_symbol_number++);
6306 die->die_symbol = xstrdup (p);
6308 else
6309 die->die_symbol = gen_internal_sym ("LDIE");
6312 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6315 struct cu_hash_table_entry
6317 dw_die_ref cu;
6318 unsigned min_comdat_num, max_comdat_num;
6319 struct cu_hash_table_entry *next;
6322 /* Routines to manipulate hash table of CUs. */
6323 static hashval_t
6324 htab_cu_hash (const void *of)
6326 const struct cu_hash_table_entry *entry = of;
6328 return htab_hash_string (entry->cu->die_symbol);
6331 static int
6332 htab_cu_eq (const void *of1, const void *of2)
6334 const struct cu_hash_table_entry *entry1 = of1;
6335 const struct die_struct *entry2 = of2;
6337 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6340 static void
6341 htab_cu_del (void *what)
6343 struct cu_hash_table_entry *next, *entry = what;
6345 while (entry)
6347 next = entry->next;
6348 free (entry);
6349 entry = next;
6353 /* Check whether we have already seen this CU and set up SYM_NUM
6354 accordingly. */
6355 static int
6356 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 struct cu_hash_table_entry dummy;
6359 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361 dummy.max_comdat_num = 0;
6363 slot = (struct cu_hash_table_entry **)
6364 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6365 INSERT);
6366 entry = *slot;
6368 for (; entry; last = entry, entry = entry->next)
6370 if (same_die_p_wrap (cu, entry->cu))
6371 break;
6374 if (entry)
6376 *sym_num = entry->min_comdat_num;
6377 return 1;
6380 entry = XCNEW (struct cu_hash_table_entry);
6381 entry->cu = cu;
6382 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6383 entry->next = *slot;
6384 *slot = entry;
6386 return 0;
6389 /* Record SYM_NUM to record of CU in HTABLE. */
6390 static void
6391 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 struct cu_hash_table_entry **slot, *entry;
6395 slot = (struct cu_hash_table_entry **)
6396 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6397 NO_INSERT);
6398 entry = *slot;
6400 entry->max_comdat_num = sym_num;
6403 /* Traverse the DIE (which is always comp_unit_die), and set up
6404 additional compilation units for each of the include files we see
6405 bracketed by BINCL/EINCL. */
6407 static void
6408 break_out_includes (dw_die_ref die)
6410 dw_die_ref c;
6411 dw_die_ref unit = NULL;
6412 limbo_die_node *node, **pnode;
6413 htab_t cu_hash_table;
6415 c = die->die_child;
6416 if (c) do {
6417 dw_die_ref prev = c;
6418 c = c->die_sib;
6419 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6420 || (unit && is_comdat_die (c)))
6422 dw_die_ref next = c->die_sib;
6424 /* This DIE is for a secondary CU; remove it from the main one. */
6425 remove_child_with_prev (c, prev);
6427 if (c->die_tag == DW_TAG_GNU_BINCL)
6428 unit = push_new_compile_unit (unit, c);
6429 else if (c->die_tag == DW_TAG_GNU_EINCL)
6430 unit = pop_compile_unit (unit);
6431 else
6432 add_child_die (unit, c);
6433 c = next;
6434 if (c == die->die_child)
6435 break;
6437 } while (c != die->die_child);
6439 #if 0
6440 /* We can only use this in debugging, since the frontend doesn't check
6441 to make sure that we leave every include file we enter. */
6442 gcc_assert (!unit);
6443 #endif
6445 assign_symbol_names (die);
6446 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6447 for (node = limbo_die_list, pnode = &limbo_die_list;
6448 node;
6449 node = node->next)
6451 int is_dupl;
6453 compute_section_prefix (node->die);
6454 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6455 &comdat_symbol_number);
6456 assign_symbol_names (node->die);
6457 if (is_dupl)
6458 *pnode = node->next;
6459 else
6461 pnode = &node->next;
6462 record_comdat_symbol_number (node->die, cu_hash_table,
6463 comdat_symbol_number);
6466 htab_delete (cu_hash_table);
6469 /* Traverse the DIE and add a sibling attribute if it may have the
6470 effect of speeding up access to siblings. To save some space,
6471 avoid generating sibling attributes for DIE's without children. */
6473 static void
6474 add_sibling_attributes (dw_die_ref die)
6476 dw_die_ref c;
6478 if (! die->die_child)
6479 return;
6481 if (die->die_parent && die != die->die_parent->die_child)
6482 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6487 /* Output all location lists for the DIE and its children. */
6489 static void
6490 output_location_lists (dw_die_ref die)
6492 dw_die_ref c;
6493 dw_attr_ref a;
6494 unsigned ix;
6496 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6497 if (AT_class (a) == dw_val_class_loc_list)
6498 output_loc_list (AT_loc_list (a));
6500 FOR_EACH_CHILD (die, c, output_location_lists (c));
6503 /* The format of each DIE (and its attribute value pairs) is encoded in an
6504 abbreviation table. This routine builds the abbreviation table and assigns
6505 a unique abbreviation id for each abbreviation entry. The children of each
6506 die are visited recursively. */
6508 static void
6509 build_abbrev_table (dw_die_ref die)
6511 unsigned long abbrev_id;
6512 unsigned int n_alloc;
6513 dw_die_ref c;
6514 dw_attr_ref a;
6515 unsigned ix;
6517 /* Scan the DIE references, and mark as external any that refer to
6518 DIEs from other CUs (i.e. those which are not marked). */
6519 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6520 if (AT_class (a) == dw_val_class_die_ref
6521 && AT_ref (a)->die_mark == 0)
6523 gcc_assert (AT_ref (a)->die_symbol);
6525 set_AT_ref_external (a, 1);
6528 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6531 dw_attr_ref die_a, abbrev_a;
6532 unsigned ix;
6533 bool ok = true;
6535 if (abbrev->die_tag != die->die_tag)
6536 continue;
6537 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6538 continue;
6540 if (VEC_length (dw_attr_node, abbrev->die_attr)
6541 != VEC_length (dw_attr_node, die->die_attr))
6542 continue;
6544 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6547 if ((abbrev_a->dw_attr != die_a->dw_attr)
6548 || (value_format (abbrev_a) != value_format (die_a)))
6550 ok = false;
6551 break;
6554 if (ok)
6555 break;
6558 if (abbrev_id >= abbrev_die_table_in_use)
6560 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6563 abbrev_die_table = ggc_realloc (abbrev_die_table,
6564 sizeof (dw_die_ref) * n_alloc);
6566 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6567 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6568 abbrev_die_table_allocated = n_alloc;
6571 ++abbrev_die_table_in_use;
6572 abbrev_die_table[abbrev_id] = die;
6575 die->die_abbrev = abbrev_id;
6576 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6579 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6581 static int
6582 constant_size (long unsigned int value)
6584 int log;
6586 if (value == 0)
6587 log = 0;
6588 else
6589 log = floor_log2 (value);
6591 log = log / 8;
6592 log = 1 << (floor_log2 (log) + 1);
6594 return log;
6597 /* Return the size of a DIE as it is represented in the
6598 .debug_info section. */
6600 static unsigned long
6601 size_of_die (dw_die_ref die)
6603 unsigned long size = 0;
6604 dw_attr_ref a;
6605 unsigned ix;
6607 size += size_of_uleb128 (die->die_abbrev);
6608 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610 switch (AT_class (a))
6612 case dw_val_class_addr:
6613 size += DWARF2_ADDR_SIZE;
6614 break;
6615 case dw_val_class_offset:
6616 size += DWARF_OFFSET_SIZE;
6617 break;
6618 case dw_val_class_loc:
6620 unsigned long lsize = size_of_locs (AT_loc (a));
6622 /* Block length. */
6623 size += constant_size (lsize);
6624 size += lsize;
6626 break;
6627 case dw_val_class_loc_list:
6628 size += DWARF_OFFSET_SIZE;
6629 break;
6630 case dw_val_class_range_list:
6631 size += DWARF_OFFSET_SIZE;
6632 break;
6633 case dw_val_class_const:
6634 size += size_of_sleb128 (AT_int (a));
6635 break;
6636 case dw_val_class_unsigned_const:
6637 size += constant_size (AT_unsigned (a));
6638 break;
6639 case dw_val_class_long_long:
6640 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6641 break;
6642 case dw_val_class_vec:
6643 size += 1 + (a->dw_attr_val.v.val_vec.length
6644 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6645 break;
6646 case dw_val_class_flag:
6647 size += 1;
6648 break;
6649 case dw_val_class_die_ref:
6650 if (AT_ref_external (a))
6651 size += DWARF2_ADDR_SIZE;
6652 else
6653 size += DWARF_OFFSET_SIZE;
6654 break;
6655 case dw_val_class_fde_ref:
6656 size += DWARF_OFFSET_SIZE;
6657 break;
6658 case dw_val_class_lbl_id:
6659 size += DWARF2_ADDR_SIZE;
6660 break;
6661 case dw_val_class_lineptr:
6662 case dw_val_class_macptr:
6663 size += DWARF_OFFSET_SIZE;
6664 break;
6665 case dw_val_class_str:
6666 if (AT_string_form (a) == DW_FORM_strp)
6667 size += DWARF_OFFSET_SIZE;
6668 else
6669 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6670 break;
6671 case dw_val_class_file:
6672 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6673 break;
6674 default:
6675 gcc_unreachable ();
6679 return size;
6682 /* Size the debugging information associated with a given DIE. Visits the
6683 DIE's children recursively. Updates the global variable next_die_offset, on
6684 each time through. Uses the current value of next_die_offset to update the
6685 die_offset field in each DIE. */
6687 static void
6688 calc_die_sizes (dw_die_ref die)
6690 dw_die_ref c;
6692 die->die_offset = next_die_offset;
6693 next_die_offset += size_of_die (die);
6695 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697 if (die->die_child != NULL)
6698 /* Count the null byte used to terminate sibling lists. */
6699 next_die_offset += 1;
6702 /* Set the marks for a die and its children. We do this so
6703 that we know whether or not a reference needs to use FORM_ref_addr; only
6704 DIEs in the same CU will be marked. We used to clear out the offset
6705 and use that as the flag, but ran into ordering problems. */
6707 static void
6708 mark_dies (dw_die_ref die)
6710 dw_die_ref c;
6712 gcc_assert (!die->die_mark);
6714 die->die_mark = 1;
6715 FOR_EACH_CHILD (die, c, mark_dies (c));
6718 /* Clear the marks for a die and its children. */
6720 static void
6721 unmark_dies (dw_die_ref die)
6723 dw_die_ref c;
6725 gcc_assert (die->die_mark);
6727 die->die_mark = 0;
6728 FOR_EACH_CHILD (die, c, unmark_dies (c));
6731 /* Clear the marks for a die, its children and referred dies. */
6733 static void
6734 unmark_all_dies (dw_die_ref die)
6736 dw_die_ref c;
6737 dw_attr_ref a;
6738 unsigned ix;
6740 if (!die->die_mark)
6741 return;
6742 die->die_mark = 0;
6744 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6747 if (AT_class (a) == dw_val_class_die_ref)
6748 unmark_all_dies (AT_ref (a));
6751 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6752 generated for the compilation unit. */
6754 static unsigned long
6755 size_of_pubnames (VEC (pubname_entry, gc) * names)
6757 unsigned long size;
6758 unsigned i;
6759 pubname_ref p;
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6763 if (names != pubtype_table
6764 || p->die->die_offset != 0
6765 || !flag_eliminate_unused_debug_types)
6766 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6772 /* Return the size of the information in the .debug_aranges section. */
6774 static unsigned long
6775 size_of_aranges (void)
6777 unsigned long size;
6779 size = DWARF_ARANGES_HEADER_SIZE;
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6790 /* Select the encoding of an attribute value. */
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6795 switch (a->dw_attr_val.val_class)
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6870 default:
6871 gcc_unreachable ();
6875 /* Output the encoding of an attribute value. */
6877 static void
6878 output_value_format (dw_attr_ref a)
6880 enum dwarf_form form = value_format (a);
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6888 static void
6889 output_abbrev_section (void)
6891 unsigned long abbrev_id;
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6929 char *sym = die->die_symbol;
6931 if (sym == 0)
6932 return;
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6960 return retlist;
6963 /* Add a location description expression to a location list. */
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6970 dw_loc_list_ref *d;
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6980 static void
6981 dwarf2out_switch_text_section (void)
6983 dw_fde_ref fde;
6985 gcc_assert (cfun);
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
7000 /* Output the location list given to us. */
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7005 dw_loc_list_ref curr = list_head;
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7022 else
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7031 size = size_of_locs (curr->expr);
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7037 output_loc_sequence (curr->expr);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7051 static void
7052 output_die (dw_die_ref die)
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7069 const char *name = dwarf_attr_name (a->dw_attr);
7071 switch (AT_class (a))
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7082 case dw_val_class_range_list:
7084 char *p = strchr (ranges_section_label, '\0');
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7092 break;
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7100 output_loc_sequence (AT_loc (a));
7101 break;
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7115 case dw_val_class_long_long:
7117 unsigned HOST_WIDE_INT first, second;
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7123 if (WORDS_BIG_ENDIAN)
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7128 else
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7139 break;
7141 case dw_val_class_vec:
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7151 elt_size /= 2;
7152 len *= 2;
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7166 case dw_val_class_loc_list:
7168 char *sym = AT_loc_list (a)->ll_symbol;
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7174 break;
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7179 char *sym = AT_ref (a)->die_symbol;
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7185 else
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7191 break;
7193 case dw_val_class_fde_ref:
7195 char l1[20];
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7202 break;
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7228 case dw_val_class_file:
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7237 default:
7238 gcc_unreachable ();
7242 FOR_EACH_CHILD (die, c, output_die (c));
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7253 static void
7254 output_compilation_unit_header (void)
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7269 /* Output the compilation unit DIE and its children. */
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7274 const char *secname;
7275 char *oldsym, *tmp;
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7288 build_abbrev_table (die);
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7297 tmp = alloca (strlen (oldsym) + 24);
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7304 else
7305 switch_to_section (debug_info_section);
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7333 pubname_entry e;
7335 if (! TREE_PUBLIC (decl))
7336 return;
7338 e.die = die;
7339 e.name = xstrdup (dwarf2_name (decl, 1));
7340 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7343 /* Add a new entry to .debug_pubtypes if appropriate. */
7345 static void
7346 add_pubtype (tree decl, dw_die_ref die)
7348 pubname_entry e;
7350 e.name = NULL;
7351 if ((TREE_PUBLIC (decl)
7352 || die->die_parent == comp_unit_die)
7353 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7355 e.die = die;
7356 if (TYPE_P (decl))
7358 if (TYPE_NAME (decl))
7360 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7361 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7362 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7363 && DECL_NAME (TYPE_NAME (decl)))
7364 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7365 else
7366 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7369 else
7370 e.name = xstrdup (dwarf2_name (decl, 1));
7372 /* If we don't have a name for the type, there's no point in adding
7373 it to the table. */
7374 if (e.name && e.name[0] != '\0')
7375 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7379 /* Output the public names table used to speed up access to externally
7380 visible names; or the public types table used to find type definitions. */
7382 static void
7383 output_pubnames (VEC (pubname_entry, gc) * names)
7385 unsigned i;
7386 unsigned long pubnames_length = size_of_pubnames (names);
7387 pubname_ref pub;
7389 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7390 dw2_asm_output_data (4, 0xffffffff,
7391 "Initial length escape value indicating 64-bit DWARF extension");
7392 if (names == pubname_table)
7393 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7394 "Length of Public Names Info");
7395 else
7396 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7397 "Length of Public Type Names Info");
7398 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7399 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7400 debug_info_section,
7401 "Offset of Compilation Unit Info");
7402 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7403 "Compilation Unit Length");
7405 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7407 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7408 if (names == pubname_table)
7409 gcc_assert (pub->die->die_mark);
7411 if (names != pubtype_table
7412 || pub->die->die_offset != 0
7413 || !flag_eliminate_unused_debug_types)
7415 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7416 "DIE offset");
7418 dw2_asm_output_nstring (pub->name, -1, "external name");
7422 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7425 /* Add a new entry to .debug_aranges if appropriate. */
7427 static void
7428 add_arange (tree decl, dw_die_ref die)
7430 if (! DECL_SECTION_NAME (decl))
7431 return;
7433 if (arange_table_in_use == arange_table_allocated)
7435 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7436 arange_table = ggc_realloc (arange_table,
7437 (arange_table_allocated
7438 * sizeof (dw_die_ref)));
7439 memset (arange_table + arange_table_in_use, 0,
7440 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7443 arange_table[arange_table_in_use++] = die;
7446 /* Output the information that goes into the .debug_aranges table.
7447 Namely, define the beginning and ending address range of the
7448 text section generated for this compilation unit. */
7450 static void
7451 output_aranges (void)
7453 unsigned i;
7454 unsigned long aranges_length = size_of_aranges ();
7456 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7457 dw2_asm_output_data (4, 0xffffffff,
7458 "Initial length escape value indicating 64-bit DWARF extension");
7459 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7460 "Length of Address Ranges Info");
7461 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7462 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7463 debug_info_section,
7464 "Offset of Compilation Unit Info");
7465 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7466 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7468 /* We need to align to twice the pointer size here. */
7469 if (DWARF_ARANGES_PAD_SIZE)
7471 /* Pad using a 2 byte words so that padding is correct for any
7472 pointer size. */
7473 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7474 2 * DWARF2_ADDR_SIZE);
7475 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7476 dw2_asm_output_data (2, 0, NULL);
7479 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7480 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7481 text_section_label, "Length");
7482 if (flag_reorder_blocks_and_partition)
7484 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7485 "Address");
7486 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7487 cold_text_section_label, "Length");
7490 for (i = 0; i < arange_table_in_use; i++)
7492 dw_die_ref die = arange_table[i];
7494 /* We shouldn't see aranges for DIEs outside of the main CU. */
7495 gcc_assert (die->die_mark);
7497 if (die->die_tag == DW_TAG_subprogram)
7499 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7500 "Address");
7501 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7502 get_AT_low_pc (die), "Length");
7504 else
7506 /* A static variable; extract the symbol from DW_AT_location.
7507 Note that this code isn't currently hit, as we only emit
7508 aranges for functions (jason 9/23/99). */
7509 dw_attr_ref a = get_AT (die, DW_AT_location);
7510 dw_loc_descr_ref loc;
7512 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7514 loc = AT_loc (a);
7515 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7517 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7518 loc->dw_loc_oprnd1.v.val_addr, "Address");
7519 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7520 get_AT_unsigned (die, DW_AT_byte_size),
7521 "Length");
7525 /* Output the terminator words. */
7526 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7527 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7530 /* Add a new entry to .debug_ranges. Return the offset at which it
7531 was placed. */
7533 static unsigned int
7534 add_ranges (tree block)
7536 unsigned int in_use = ranges_table_in_use;
7538 if (in_use == ranges_table_allocated)
7540 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7541 ranges_table
7542 = ggc_realloc (ranges_table, (ranges_table_allocated
7543 * sizeof (struct dw_ranges_struct)));
7544 memset (ranges_table + ranges_table_in_use, 0,
7545 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7548 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7549 ranges_table_in_use = in_use + 1;
7551 return in_use * 2 * DWARF2_ADDR_SIZE;
7554 static void
7555 output_ranges (void)
7557 unsigned i;
7558 static const char *const start_fmt = "Offset 0x%x";
7559 const char *fmt = start_fmt;
7561 for (i = 0; i < ranges_table_in_use; i++)
7563 int block_num = ranges_table[i].block_num;
7565 if (block_num)
7567 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7568 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7570 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7571 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7573 /* If all code is in the text section, then the compilation
7574 unit base address defaults to DW_AT_low_pc, which is the
7575 base of the text section. */
7576 if (!have_multiple_function_sections)
7578 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7579 text_section_label,
7580 fmt, i * 2 * DWARF2_ADDR_SIZE);
7581 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7582 text_section_label, NULL);
7585 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7586 compilation unit base address to zero, which allows us to
7587 use absolute addresses, and not worry about whether the
7588 target supports cross-section arithmetic. */
7589 else
7591 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7592 fmt, i * 2 * DWARF2_ADDR_SIZE);
7593 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7596 fmt = NULL;
7598 else
7600 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7601 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7602 fmt = start_fmt;
7607 /* Data structure containing information about input files. */
7608 struct file_info
7610 const char *path; /* Complete file name. */
7611 const char *fname; /* File name part. */
7612 int length; /* Length of entire string. */
7613 struct dwarf_file_data * file_idx; /* Index in input file table. */
7614 int dir_idx; /* Index in directory table. */
7617 /* Data structure containing information about directories with source
7618 files. */
7619 struct dir_info
7621 const char *path; /* Path including directory name. */
7622 int length; /* Path length. */
7623 int prefix; /* Index of directory entry which is a prefix. */
7624 int count; /* Number of files in this directory. */
7625 int dir_idx; /* Index of directory used as base. */
7628 /* Callback function for file_info comparison. We sort by looking at
7629 the directories in the path. */
7631 static int
7632 file_info_cmp (const void *p1, const void *p2)
7634 const struct file_info *s1 = p1;
7635 const struct file_info *s2 = p2;
7636 unsigned char *cp1;
7637 unsigned char *cp2;
7639 /* Take care of file names without directories. We need to make sure that
7640 we return consistent values to qsort since some will get confused if
7641 we return the same value when identical operands are passed in opposite
7642 orders. So if neither has a directory, return 0 and otherwise return
7643 1 or -1 depending on which one has the directory. */
7644 if ((s1->path == s1->fname || s2->path == s2->fname))
7645 return (s2->path == s2->fname) - (s1->path == s1->fname);
7647 cp1 = (unsigned char *) s1->path;
7648 cp2 = (unsigned char *) s2->path;
7650 while (1)
7652 ++cp1;
7653 ++cp2;
7654 /* Reached the end of the first path? If so, handle like above. */
7655 if ((cp1 == (unsigned char *) s1->fname)
7656 || (cp2 == (unsigned char *) s2->fname))
7657 return ((cp2 == (unsigned char *) s2->fname)
7658 - (cp1 == (unsigned char *) s1->fname));
7660 /* Character of current path component the same? */
7661 else if (*cp1 != *cp2)
7662 return *cp1 - *cp2;
7666 struct file_name_acquire_data
7668 struct file_info *files;
7669 int used_files;
7670 int max_files;
7673 /* Traversal function for the hash table. */
7675 static int
7676 file_name_acquire (void ** slot, void *data)
7678 struct file_name_acquire_data *fnad = data;
7679 struct dwarf_file_data *d = *slot;
7680 struct file_info *fi;
7681 const char *f;
7683 gcc_assert (fnad->max_files >= d->emitted_number);
7685 if (! d->emitted_number)
7686 return 1;
7688 gcc_assert (fnad->max_files != fnad->used_files);
7690 fi = fnad->files + fnad->used_files++;
7692 /* Skip all leading "./". */
7693 f = d->filename;
7694 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7695 f += 2;
7697 /* Create a new array entry. */
7698 fi->path = f;
7699 fi->length = strlen (f);
7700 fi->file_idx = d;
7702 /* Search for the file name part. */
7703 f = strrchr (f, DIR_SEPARATOR);
7704 #if defined (DIR_SEPARATOR_2)
7706 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7708 if (g != NULL)
7710 if (f == NULL || f < g)
7711 f = g;
7714 #endif
7716 fi->fname = f == NULL ? fi->path : f + 1;
7717 return 1;
7720 /* Output the directory table and the file name table. We try to minimize
7721 the total amount of memory needed. A heuristic is used to avoid large
7722 slowdowns with many input files. */
7724 static void
7725 output_file_names (void)
7727 struct file_name_acquire_data fnad;
7728 int numfiles;
7729 struct file_info *files;
7730 struct dir_info *dirs;
7731 int *saved;
7732 int *savehere;
7733 int *backmap;
7734 int ndirs;
7735 int idx_offset;
7736 int i;
7737 int idx;
7739 if (!last_emitted_file)
7741 dw2_asm_output_data (1, 0, "End directory table");
7742 dw2_asm_output_data (1, 0, "End file name table");
7743 return;
7746 numfiles = last_emitted_file->emitted_number;
7748 /* Allocate the various arrays we need. */
7749 files = alloca (numfiles * sizeof (struct file_info));
7750 dirs = alloca (numfiles * sizeof (struct dir_info));
7752 fnad.files = files;
7753 fnad.used_files = 0;
7754 fnad.max_files = numfiles;
7755 htab_traverse (file_table, file_name_acquire, &fnad);
7756 gcc_assert (fnad.used_files == fnad.max_files);
7758 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7760 /* Find all the different directories used. */
7761 dirs[0].path = files[0].path;
7762 dirs[0].length = files[0].fname - files[0].path;
7763 dirs[0].prefix = -1;
7764 dirs[0].count = 1;
7765 dirs[0].dir_idx = 0;
7766 files[0].dir_idx = 0;
7767 ndirs = 1;
7769 for (i = 1; i < numfiles; i++)
7770 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7771 && memcmp (dirs[ndirs - 1].path, files[i].path,
7772 dirs[ndirs - 1].length) == 0)
7774 /* Same directory as last entry. */
7775 files[i].dir_idx = ndirs - 1;
7776 ++dirs[ndirs - 1].count;
7778 else
7780 int j;
7782 /* This is a new directory. */
7783 dirs[ndirs].path = files[i].path;
7784 dirs[ndirs].length = files[i].fname - files[i].path;
7785 dirs[ndirs].count = 1;
7786 dirs[ndirs].dir_idx = ndirs;
7787 files[i].dir_idx = ndirs;
7789 /* Search for a prefix. */
7790 dirs[ndirs].prefix = -1;
7791 for (j = 0; j < ndirs; j++)
7792 if (dirs[j].length < dirs[ndirs].length
7793 && dirs[j].length > 1
7794 && (dirs[ndirs].prefix == -1
7795 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7796 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7797 dirs[ndirs].prefix = j;
7799 ++ndirs;
7802 /* Now to the actual work. We have to find a subset of the directories which
7803 allow expressing the file name using references to the directory table
7804 with the least amount of characters. We do not do an exhaustive search
7805 where we would have to check out every combination of every single
7806 possible prefix. Instead we use a heuristic which provides nearly optimal
7807 results in most cases and never is much off. */
7808 saved = alloca (ndirs * sizeof (int));
7809 savehere = alloca (ndirs * sizeof (int));
7811 memset (saved, '\0', ndirs * sizeof (saved[0]));
7812 for (i = 0; i < ndirs; i++)
7814 int j;
7815 int total;
7817 /* We can always save some space for the current directory. But this
7818 does not mean it will be enough to justify adding the directory. */
7819 savehere[i] = dirs[i].length;
7820 total = (savehere[i] - saved[i]) * dirs[i].count;
7822 for (j = i + 1; j < ndirs; j++)
7824 savehere[j] = 0;
7825 if (saved[j] < dirs[i].length)
7827 /* Determine whether the dirs[i] path is a prefix of the
7828 dirs[j] path. */
7829 int k;
7831 k = dirs[j].prefix;
7832 while (k != -1 && k != (int) i)
7833 k = dirs[k].prefix;
7835 if (k == (int) i)
7837 /* Yes it is. We can possibly save some memory by
7838 writing the filenames in dirs[j] relative to
7839 dirs[i]. */
7840 savehere[j] = dirs[i].length;
7841 total += (savehere[j] - saved[j]) * dirs[j].count;
7846 /* Check whether we can save enough to justify adding the dirs[i]
7847 directory. */
7848 if (total > dirs[i].length + 1)
7850 /* It's worthwhile adding. */
7851 for (j = i; j < ndirs; j++)
7852 if (savehere[j] > 0)
7854 /* Remember how much we saved for this directory so far. */
7855 saved[j] = savehere[j];
7857 /* Remember the prefix directory. */
7858 dirs[j].dir_idx = i;
7863 /* Emit the directory name table. */
7864 idx = 1;
7865 idx_offset = dirs[0].length > 0 ? 1 : 0;
7866 for (i = 1 - idx_offset; i < ndirs; i++)
7867 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7868 "Directory Entry: 0x%x", i + idx_offset);
7870 dw2_asm_output_data (1, 0, "End directory table");
7872 /* We have to emit them in the order of emitted_number since that's
7873 used in the debug info generation. To do this efficiently we
7874 generate a back-mapping of the indices first. */
7875 backmap = alloca (numfiles * sizeof (int));
7876 for (i = 0; i < numfiles; i++)
7877 backmap[files[i].file_idx->emitted_number - 1] = i;
7879 /* Now write all the file names. */
7880 for (i = 0; i < numfiles; i++)
7882 int file_idx = backmap[i];
7883 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7885 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7886 "File Entry: 0x%x", (unsigned) i + 1);
7888 /* Include directory index. */
7889 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7891 /* Modification time. */
7892 dw2_asm_output_data_uleb128 (0, NULL);
7894 /* File length in bytes. */
7895 dw2_asm_output_data_uleb128 (0, NULL);
7898 dw2_asm_output_data (1, 0, "End file name table");
7902 /* Output the source line number correspondence information. This
7903 information goes into the .debug_line section. */
7905 static void
7906 output_line_info (void)
7908 char l1[20], l2[20], p1[20], p2[20];
7909 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7910 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7911 unsigned opc;
7912 unsigned n_op_args;
7913 unsigned long lt_index;
7914 unsigned long current_line;
7915 long line_offset;
7916 long line_delta;
7917 unsigned long current_file;
7918 unsigned long function;
7920 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7921 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7922 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7923 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7925 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7926 dw2_asm_output_data (4, 0xffffffff,
7927 "Initial length escape value indicating 64-bit DWARF extension");
7928 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7929 "Length of Source Line Info");
7930 ASM_OUTPUT_LABEL (asm_out_file, l1);
7932 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7933 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7934 ASM_OUTPUT_LABEL (asm_out_file, p1);
7936 /* Define the architecture-dependent minimum instruction length (in
7937 bytes). In this implementation of DWARF, this field is used for
7938 information purposes only. Since GCC generates assembly language,
7939 we have no a priori knowledge of how many instruction bytes are
7940 generated for each source line, and therefore can use only the
7941 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7942 commands. Accordingly, we fix this as `1', which is "correct
7943 enough" for all architectures, and don't let the target override. */
7944 dw2_asm_output_data (1, 1,
7945 "Minimum Instruction Length");
7947 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7948 "Default is_stmt_start flag");
7949 dw2_asm_output_data (1, DWARF_LINE_BASE,
7950 "Line Base Value (Special Opcodes)");
7951 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7952 "Line Range Value (Special Opcodes)");
7953 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7954 "Special Opcode Base");
7956 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7958 switch (opc)
7960 case DW_LNS_advance_pc:
7961 case DW_LNS_advance_line:
7962 case DW_LNS_set_file:
7963 case DW_LNS_set_column:
7964 case DW_LNS_fixed_advance_pc:
7965 n_op_args = 1;
7966 break;
7967 default:
7968 n_op_args = 0;
7969 break;
7972 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7973 opc, n_op_args);
7976 /* Write out the information about the files we use. */
7977 output_file_names ();
7978 ASM_OUTPUT_LABEL (asm_out_file, p2);
7980 /* We used to set the address register to the first location in the text
7981 section here, but that didn't accomplish anything since we already
7982 have a line note for the opening brace of the first function. */
7984 /* Generate the line number to PC correspondence table, encoded as
7985 a series of state machine operations. */
7986 current_file = 1;
7987 current_line = 1;
7989 if (cfun && in_cold_section_p)
7990 strcpy (prev_line_label, cfun->cold_section_label);
7991 else
7992 strcpy (prev_line_label, text_section_label);
7993 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7995 dw_line_info_ref line_info = &line_info_table[lt_index];
7997 #if 0
7998 /* Disable this optimization for now; GDB wants to see two line notes
7999 at the beginning of a function so it can find the end of the
8000 prologue. */
8002 /* Don't emit anything for redundant notes. Just updating the
8003 address doesn't accomplish anything, because we already assume
8004 that anything after the last address is this line. */
8005 if (line_info->dw_line_num == current_line
8006 && line_info->dw_file_num == current_file)
8007 continue;
8008 #endif
8010 /* Emit debug info for the address of the current line.
8012 Unfortunately, we have little choice here currently, and must always
8013 use the most general form. GCC does not know the address delta
8014 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8015 attributes which will give an upper bound on the address range. We
8016 could perhaps use length attributes to determine when it is safe to
8017 use DW_LNS_fixed_advance_pc. */
8019 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8020 if (0)
8022 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8023 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8024 "DW_LNS_fixed_advance_pc");
8025 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8027 else
8029 /* This can handle any delta. This takes
8030 4+DWARF2_ADDR_SIZE bytes. */
8031 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8032 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8033 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8034 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8037 strcpy (prev_line_label, line_label);
8039 /* Emit debug info for the source file of the current line, if
8040 different from the previous line. */
8041 if (line_info->dw_file_num != current_file)
8043 current_file = line_info->dw_file_num;
8044 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8045 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8048 /* Emit debug info for the current line number, choosing the encoding
8049 that uses the least amount of space. */
8050 if (line_info->dw_line_num != current_line)
8052 line_offset = line_info->dw_line_num - current_line;
8053 line_delta = line_offset - DWARF_LINE_BASE;
8054 current_line = line_info->dw_line_num;
8055 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8056 /* This can handle deltas from -10 to 234, using the current
8057 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8058 takes 1 byte. */
8059 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8060 "line %lu", current_line);
8061 else
8063 /* This can handle any delta. This takes at least 4 bytes,
8064 depending on the value being encoded. */
8065 dw2_asm_output_data (1, DW_LNS_advance_line,
8066 "advance to line %lu", current_line);
8067 dw2_asm_output_data_sleb128 (line_offset, NULL);
8068 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8071 else
8072 /* We still need to start a new row, so output a copy insn. */
8073 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8076 /* Emit debug info for the address of the end of the function. */
8077 if (0)
8079 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8080 "DW_LNS_fixed_advance_pc");
8081 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8083 else
8085 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8086 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8087 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8088 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8091 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8092 dw2_asm_output_data_uleb128 (1, NULL);
8093 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8095 function = 0;
8096 current_file = 1;
8097 current_line = 1;
8098 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8100 dw_separate_line_info_ref line_info
8101 = &separate_line_info_table[lt_index];
8103 #if 0
8104 /* Don't emit anything for redundant notes. */
8105 if (line_info->dw_line_num == current_line
8106 && line_info->dw_file_num == current_file
8107 && line_info->function == function)
8108 goto cont;
8109 #endif
8111 /* Emit debug info for the address of the current line. If this is
8112 a new function, or the first line of a function, then we need
8113 to handle it differently. */
8114 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8115 lt_index);
8116 if (function != line_info->function)
8118 function = line_info->function;
8120 /* Set the address register to the first line in the function. */
8121 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8122 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8123 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8124 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8126 else
8128 /* ??? See the DW_LNS_advance_pc comment above. */
8129 if (0)
8131 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8132 "DW_LNS_fixed_advance_pc");
8133 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8135 else
8137 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8138 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8139 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8140 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8144 strcpy (prev_line_label, line_label);
8146 /* Emit debug info for the source file of the current line, if
8147 different from the previous line. */
8148 if (line_info->dw_file_num != current_file)
8150 current_file = line_info->dw_file_num;
8151 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8152 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8155 /* Emit debug info for the current line number, choosing the encoding
8156 that uses the least amount of space. */
8157 if (line_info->dw_line_num != current_line)
8159 line_offset = line_info->dw_line_num - current_line;
8160 line_delta = line_offset - DWARF_LINE_BASE;
8161 current_line = line_info->dw_line_num;
8162 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8163 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8164 "line %lu", current_line);
8165 else
8167 dw2_asm_output_data (1, DW_LNS_advance_line,
8168 "advance to line %lu", current_line);
8169 dw2_asm_output_data_sleb128 (line_offset, NULL);
8170 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8173 else
8174 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8176 #if 0
8177 cont:
8178 #endif
8180 lt_index++;
8182 /* If we're done with a function, end its sequence. */
8183 if (lt_index == separate_line_info_table_in_use
8184 || separate_line_info_table[lt_index].function != function)
8186 current_file = 1;
8187 current_line = 1;
8189 /* Emit debug info for the address of the end of the function. */
8190 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8191 if (0)
8193 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8194 "DW_LNS_fixed_advance_pc");
8195 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8197 else
8199 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8200 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8201 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8202 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8205 /* Output the marker for the end of this sequence. */
8206 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8207 dw2_asm_output_data_uleb128 (1, NULL);
8208 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8212 /* Output the marker for the end of the line number info. */
8213 ASM_OUTPUT_LABEL (asm_out_file, l2);
8216 /* Given a pointer to a tree node for some base type, return a pointer to
8217 a DIE that describes the given type.
8219 This routine must only be called for GCC type nodes that correspond to
8220 Dwarf base (fundamental) types. */
8222 static dw_die_ref
8223 base_type_die (tree type)
8225 dw_die_ref base_type_result;
8226 enum dwarf_type encoding;
8228 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8229 return 0;
8231 switch (TREE_CODE (type))
8233 case INTEGER_TYPE:
8234 if (TYPE_STRING_FLAG (type))
8236 if (TYPE_UNSIGNED (type))
8237 encoding = DW_ATE_unsigned_char;
8238 else
8239 encoding = DW_ATE_signed_char;
8241 else if (TYPE_UNSIGNED (type))
8242 encoding = DW_ATE_unsigned;
8243 else
8244 encoding = DW_ATE_signed;
8245 break;
8247 case REAL_TYPE:
8248 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8249 encoding = DW_ATE_decimal_float;
8250 else
8251 encoding = DW_ATE_float;
8252 break;
8254 /* Dwarf2 doesn't know anything about complex ints, so use
8255 a user defined type for it. */
8256 case COMPLEX_TYPE:
8257 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8258 encoding = DW_ATE_complex_float;
8259 else
8260 encoding = DW_ATE_lo_user;
8261 break;
8263 case BOOLEAN_TYPE:
8264 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8265 encoding = DW_ATE_boolean;
8266 break;
8268 default:
8269 /* No other TREE_CODEs are Dwarf fundamental types. */
8270 gcc_unreachable ();
8273 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8275 /* This probably indicates a bug. */
8276 if (! TYPE_NAME (type))
8277 add_name_attribute (base_type_result, "__unknown__");
8279 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8280 int_size_in_bytes (type));
8281 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8283 return base_type_result;
8286 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8287 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8288 a given type is generally the same as the given type, except that if the
8289 given type is a pointer or reference type, then the root type of the given
8290 type is the root type of the "basis" type for the pointer or reference
8291 type. (This definition of the "root" type is recursive.) Also, the root
8292 type of a `const' qualified type or a `volatile' qualified type is the
8293 root type of the given type without the qualifiers. */
8295 static tree
8296 root_type (tree type)
8298 if (TREE_CODE (type) == ERROR_MARK)
8299 return error_mark_node;
8301 switch (TREE_CODE (type))
8303 case ERROR_MARK:
8304 return error_mark_node;
8306 case POINTER_TYPE:
8307 case REFERENCE_TYPE:
8308 return type_main_variant (root_type (TREE_TYPE (type)));
8310 default:
8311 return type_main_variant (type);
8315 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8316 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8318 static inline int
8319 is_base_type (tree type)
8321 switch (TREE_CODE (type))
8323 case ERROR_MARK:
8324 case VOID_TYPE:
8325 case INTEGER_TYPE:
8326 case REAL_TYPE:
8327 case COMPLEX_TYPE:
8328 case BOOLEAN_TYPE:
8329 return 1;
8331 case ARRAY_TYPE:
8332 case RECORD_TYPE:
8333 case UNION_TYPE:
8334 case QUAL_UNION_TYPE:
8335 case ENUMERAL_TYPE:
8336 case FUNCTION_TYPE:
8337 case METHOD_TYPE:
8338 case POINTER_TYPE:
8339 case REFERENCE_TYPE:
8340 case OFFSET_TYPE:
8341 case LANG_TYPE:
8342 case VECTOR_TYPE:
8343 return 0;
8345 default:
8346 gcc_unreachable ();
8349 return 0;
8352 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8353 node, return the size in bits for the type if it is a constant, or else
8354 return the alignment for the type if the type's size is not constant, or
8355 else return BITS_PER_WORD if the type actually turns out to be an
8356 ERROR_MARK node. */
8358 static inline unsigned HOST_WIDE_INT
8359 simple_type_size_in_bits (tree type)
8361 if (TREE_CODE (type) == ERROR_MARK)
8362 return BITS_PER_WORD;
8363 else if (TYPE_SIZE (type) == NULL_TREE)
8364 return 0;
8365 else if (host_integerp (TYPE_SIZE (type), 1))
8366 return tree_low_cst (TYPE_SIZE (type), 1);
8367 else
8368 return TYPE_ALIGN (type);
8371 /* Return true if the debug information for the given type should be
8372 emitted as a subrange type. */
8374 static inline bool
8375 is_subrange_type (tree type)
8377 tree subtype = TREE_TYPE (type);
8379 /* Subrange types are identified by the fact that they are integer
8380 types, and that they have a subtype which is either an integer type
8381 or an enumeral type. */
8383 if (TREE_CODE (type) != INTEGER_TYPE
8384 || subtype == NULL_TREE)
8385 return false;
8387 if (TREE_CODE (subtype) != INTEGER_TYPE
8388 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8389 return false;
8391 if (TREE_CODE (type) == TREE_CODE (subtype)
8392 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8393 && TYPE_MIN_VALUE (type) != NULL
8394 && TYPE_MIN_VALUE (subtype) != NULL
8395 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8396 && TYPE_MAX_VALUE (type) != NULL
8397 && TYPE_MAX_VALUE (subtype) != NULL
8398 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8400 /* The type and its subtype have the same representation. If in
8401 addition the two types also have the same name, then the given
8402 type is not a subrange type, but rather a plain base type. */
8403 /* FIXME: brobecker/2004-03-22:
8404 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8405 therefore be sufficient to check the TYPE_SIZE node pointers
8406 rather than checking the actual size. Unfortunately, we have
8407 found some cases, such as in the Ada "integer" type, where
8408 this is not the case. Until this problem is solved, we need to
8409 keep checking the actual size. */
8410 tree type_name = TYPE_NAME (type);
8411 tree subtype_name = TYPE_NAME (subtype);
8413 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8414 type_name = DECL_NAME (type_name);
8416 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8417 subtype_name = DECL_NAME (subtype_name);
8419 if (type_name == subtype_name)
8420 return false;
8423 return true;
8426 /* Given a pointer to a tree node for a subrange type, return a pointer
8427 to a DIE that describes the given type. */
8429 static dw_die_ref
8430 subrange_type_die (tree type, dw_die_ref context_die)
8432 dw_die_ref subrange_die;
8433 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8435 if (context_die == NULL)
8436 context_die = comp_unit_die;
8438 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8440 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8442 /* The size of the subrange type and its base type do not match,
8443 so we need to generate a size attribute for the subrange type. */
8444 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8447 if (TYPE_MIN_VALUE (type) != NULL)
8448 add_bound_info (subrange_die, DW_AT_lower_bound,
8449 TYPE_MIN_VALUE (type));
8450 if (TYPE_MAX_VALUE (type) != NULL)
8451 add_bound_info (subrange_die, DW_AT_upper_bound,
8452 TYPE_MAX_VALUE (type));
8454 return subrange_die;
8457 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8458 entry that chains various modifiers in front of the given type. */
8460 static dw_die_ref
8461 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8462 dw_die_ref context_die)
8464 enum tree_code code = TREE_CODE (type);
8465 dw_die_ref mod_type_die;
8466 dw_die_ref sub_die = NULL;
8467 tree item_type = NULL;
8468 tree qualified_type;
8469 tree name;
8471 if (code == ERROR_MARK)
8472 return NULL;
8474 /* See if we already have the appropriately qualified variant of
8475 this type. */
8476 qualified_type
8477 = get_qualified_type (type,
8478 ((is_const_type ? TYPE_QUAL_CONST : 0)
8479 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8481 /* If we do, then we can just use its DIE, if it exists. */
8482 if (qualified_type)
8484 mod_type_die = lookup_type_die (qualified_type);
8485 if (mod_type_die)
8486 return mod_type_die;
8489 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8491 /* Handle C typedef types. */
8492 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8494 tree dtype = TREE_TYPE (name);
8496 if (qualified_type == dtype)
8498 /* For a named type, use the typedef. */
8499 gen_type_die (qualified_type, context_die);
8500 return lookup_type_die (qualified_type);
8502 else if (DECL_ORIGINAL_TYPE (name)
8503 && (is_const_type < TYPE_READONLY (dtype)
8504 || is_volatile_type < TYPE_VOLATILE (dtype)))
8505 /* cv-unqualified version of named type. Just use the unnamed
8506 type to which it refers. */
8507 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8508 is_const_type, is_volatile_type,
8509 context_die);
8510 /* Else cv-qualified version of named type; fall through. */
8513 if (is_const_type)
8515 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8516 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8518 else if (is_volatile_type)
8520 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8521 sub_die = modified_type_die (type, 0, 0, context_die);
8523 else if (code == POINTER_TYPE)
8525 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8526 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8527 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8528 item_type = TREE_TYPE (type);
8530 else if (code == REFERENCE_TYPE)
8532 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8533 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8534 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8535 item_type = TREE_TYPE (type);
8537 else if (is_subrange_type (type))
8539 mod_type_die = subrange_type_die (type, context_die);
8540 item_type = TREE_TYPE (type);
8542 else if (is_base_type (type))
8543 mod_type_die = base_type_die (type);
8544 else
8546 gen_type_die (type, context_die);
8548 /* We have to get the type_main_variant here (and pass that to the
8549 `lookup_type_die' routine) because the ..._TYPE node we have
8550 might simply be a *copy* of some original type node (where the
8551 copy was created to help us keep track of typedef names) and
8552 that copy might have a different TYPE_UID from the original
8553 ..._TYPE node. */
8554 if (TREE_CODE (type) != VECTOR_TYPE)
8555 return lookup_type_die (type_main_variant (type));
8556 else
8557 /* Vectors have the debugging information in the type,
8558 not the main variant. */
8559 return lookup_type_die (type);
8562 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8563 don't output a DW_TAG_typedef, since there isn't one in the
8564 user's program; just attach a DW_AT_name to the type. */
8565 if (name
8566 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8568 if (TREE_CODE (name) == TYPE_DECL)
8569 /* Could just call add_name_and_src_coords_attributes here,
8570 but since this is a builtin type it doesn't have any
8571 useful source coordinates anyway. */
8572 name = DECL_NAME (name);
8573 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8576 if (qualified_type)
8577 equate_type_number_to_die (qualified_type, mod_type_die);
8579 if (item_type)
8580 /* We must do this after the equate_type_number_to_die call, in case
8581 this is a recursive type. This ensures that the modified_type_die
8582 recursion will terminate even if the type is recursive. Recursive
8583 types are possible in Ada. */
8584 sub_die = modified_type_die (item_type,
8585 TYPE_READONLY (item_type),
8586 TYPE_VOLATILE (item_type),
8587 context_die);
8589 if (sub_die != NULL)
8590 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8592 return mod_type_die;
8595 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8596 an enumerated type. */
8598 static inline int
8599 type_is_enum (tree type)
8601 return TREE_CODE (type) == ENUMERAL_TYPE;
8604 /* Return the DBX register number described by a given RTL node. */
8606 static unsigned int
8607 dbx_reg_number (rtx rtl)
8609 unsigned regno = REGNO (rtl);
8611 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8613 #ifdef LEAF_REG_REMAP
8614 if (current_function_uses_only_leaf_regs)
8616 int leaf_reg = LEAF_REG_REMAP (regno);
8617 if (leaf_reg != -1)
8618 regno = (unsigned) leaf_reg;
8620 #endif
8622 return DBX_REGISTER_NUMBER (regno);
8625 /* Optionally add a DW_OP_piece term to a location description expression.
8626 DW_OP_piece is only added if the location description expression already
8627 doesn't end with DW_OP_piece. */
8629 static void
8630 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8632 dw_loc_descr_ref loc;
8634 if (*list_head != NULL)
8636 /* Find the end of the chain. */
8637 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8640 if (loc->dw_loc_opc != DW_OP_piece)
8641 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8645 /* Return a location descriptor that designates a machine register or
8646 zero if there is none. */
8648 static dw_loc_descr_ref
8649 reg_loc_descriptor (rtx rtl)
8651 rtx regs;
8653 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8654 return 0;
8656 regs = targetm.dwarf_register_span (rtl);
8658 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8659 return multiple_reg_loc_descriptor (rtl, regs);
8660 else
8661 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8664 /* Return a location descriptor that designates a machine register for
8665 a given hard register number. */
8667 static dw_loc_descr_ref
8668 one_reg_loc_descriptor (unsigned int regno)
8670 if (regno <= 31)
8671 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8672 else
8673 return new_loc_descr (DW_OP_regx, regno, 0);
8676 /* Given an RTL of a register, return a location descriptor that
8677 designates a value that spans more than one register. */
8679 static dw_loc_descr_ref
8680 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8682 int nregs, size, i;
8683 unsigned reg;
8684 dw_loc_descr_ref loc_result = NULL;
8686 reg = REGNO (rtl);
8687 #ifdef LEAF_REG_REMAP
8688 if (current_function_uses_only_leaf_regs)
8690 int leaf_reg = LEAF_REG_REMAP (reg);
8691 if (leaf_reg != -1)
8692 reg = (unsigned) leaf_reg;
8694 #endif
8695 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8696 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8698 /* Simple, contiguous registers. */
8699 if (regs == NULL_RTX)
8701 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8703 loc_result = NULL;
8704 while (nregs--)
8706 dw_loc_descr_ref t;
8708 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8709 add_loc_descr (&loc_result, t);
8710 add_loc_descr_op_piece (&loc_result, size);
8711 ++reg;
8713 return loc_result;
8716 /* Now onto stupid register sets in non contiguous locations. */
8718 gcc_assert (GET_CODE (regs) == PARALLEL);
8720 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8721 loc_result = NULL;
8723 for (i = 0; i < XVECLEN (regs, 0); ++i)
8725 dw_loc_descr_ref t;
8727 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8728 add_loc_descr (&loc_result, t);
8729 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8730 add_loc_descr_op_piece (&loc_result, size);
8732 return loc_result;
8735 /* Return a location descriptor that designates a constant. */
8737 static dw_loc_descr_ref
8738 int_loc_descriptor (HOST_WIDE_INT i)
8740 enum dwarf_location_atom op;
8742 /* Pick the smallest representation of a constant, rather than just
8743 defaulting to the LEB encoding. */
8744 if (i >= 0)
8746 if (i <= 31)
8747 op = DW_OP_lit0 + i;
8748 else if (i <= 0xff)
8749 op = DW_OP_const1u;
8750 else if (i <= 0xffff)
8751 op = DW_OP_const2u;
8752 else if (HOST_BITS_PER_WIDE_INT == 32
8753 || i <= 0xffffffff)
8754 op = DW_OP_const4u;
8755 else
8756 op = DW_OP_constu;
8758 else
8760 if (i >= -0x80)
8761 op = DW_OP_const1s;
8762 else if (i >= -0x8000)
8763 op = DW_OP_const2s;
8764 else if (HOST_BITS_PER_WIDE_INT == 32
8765 || i >= -0x80000000)
8766 op = DW_OP_const4s;
8767 else
8768 op = DW_OP_consts;
8771 return new_loc_descr (op, i, 0);
8774 /* Return a location descriptor that designates a base+offset location. */
8776 static dw_loc_descr_ref
8777 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8779 unsigned int regno;
8781 /* We only use "frame base" when we're sure we're talking about the
8782 post-prologue local stack frame. We do this by *not* running
8783 register elimination until this point, and recognizing the special
8784 argument pointer and soft frame pointer rtx's. */
8785 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8787 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8789 if (elim != reg)
8791 if (GET_CODE (elim) == PLUS)
8793 offset += INTVAL (XEXP (elim, 1));
8794 elim = XEXP (elim, 0);
8796 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8797 : stack_pointer_rtx));
8798 offset += frame_pointer_fb_offset;
8800 return new_loc_descr (DW_OP_fbreg, offset, 0);
8804 regno = dbx_reg_number (reg);
8805 if (regno <= 31)
8806 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8807 else
8808 return new_loc_descr (DW_OP_bregx, regno, offset);
8811 /* Return true if this RTL expression describes a base+offset calculation. */
8813 static inline int
8814 is_based_loc (rtx rtl)
8816 return (GET_CODE (rtl) == PLUS
8817 && ((REG_P (XEXP (rtl, 0))
8818 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8819 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8822 /* The following routine converts the RTL for a variable or parameter
8823 (resident in memory) into an equivalent Dwarf representation of a
8824 mechanism for getting the address of that same variable onto the top of a
8825 hypothetical "address evaluation" stack.
8827 When creating memory location descriptors, we are effectively transforming
8828 the RTL for a memory-resident object into its Dwarf postfix expression
8829 equivalent. This routine recursively descends an RTL tree, turning
8830 it into Dwarf postfix code as it goes.
8832 MODE is the mode of the memory reference, needed to handle some
8833 autoincrement addressing modes.
8835 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8836 location list for RTL.
8838 Return 0 if we can't represent the location. */
8840 static dw_loc_descr_ref
8841 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8843 dw_loc_descr_ref mem_loc_result = NULL;
8844 enum dwarf_location_atom op;
8846 /* Note that for a dynamically sized array, the location we will generate a
8847 description of here will be the lowest numbered location which is
8848 actually within the array. That's *not* necessarily the same as the
8849 zeroth element of the array. */
8851 rtl = targetm.delegitimize_address (rtl);
8853 switch (GET_CODE (rtl))
8855 case POST_INC:
8856 case POST_DEC:
8857 case POST_MODIFY:
8858 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8859 just fall into the SUBREG code. */
8861 /* ... fall through ... */
8863 case SUBREG:
8864 /* The case of a subreg may arise when we have a local (register)
8865 variable or a formal (register) parameter which doesn't quite fill
8866 up an entire register. For now, just assume that it is
8867 legitimate to make the Dwarf info refer to the whole register which
8868 contains the given subreg. */
8869 rtl = XEXP (rtl, 0);
8871 /* ... fall through ... */
8873 case REG:
8874 /* Whenever a register number forms a part of the description of the
8875 method for calculating the (dynamic) address of a memory resident
8876 object, DWARF rules require the register number be referred to as
8877 a "base register". This distinction is not based in any way upon
8878 what category of register the hardware believes the given register
8879 belongs to. This is strictly DWARF terminology we're dealing with
8880 here. Note that in cases where the location of a memory-resident
8881 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8882 OP_CONST (0)) the actual DWARF location descriptor that we generate
8883 may just be OP_BASEREG (basereg). This may look deceptively like
8884 the object in question was allocated to a register (rather than in
8885 memory) so DWARF consumers need to be aware of the subtle
8886 distinction between OP_REG and OP_BASEREG. */
8887 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8888 mem_loc_result = based_loc_descr (rtl, 0);
8889 break;
8891 case MEM:
8892 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8893 if (mem_loc_result != 0)
8894 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8895 break;
8897 case LO_SUM:
8898 rtl = XEXP (rtl, 1);
8900 /* ... fall through ... */
8902 case LABEL_REF:
8903 /* Some ports can transform a symbol ref into a label ref, because
8904 the symbol ref is too far away and has to be dumped into a constant
8905 pool. */
8906 case CONST:
8907 case SYMBOL_REF:
8908 /* Alternatively, the symbol in the constant pool might be referenced
8909 by a different symbol. */
8910 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8912 bool marked;
8913 rtx tmp = get_pool_constant_mark (rtl, &marked);
8915 if (GET_CODE (tmp) == SYMBOL_REF)
8917 rtl = tmp;
8918 if (CONSTANT_POOL_ADDRESS_P (tmp))
8919 get_pool_constant_mark (tmp, &marked);
8920 else
8921 marked = true;
8924 /* If all references to this pool constant were optimized away,
8925 it was not output and thus we can't represent it.
8926 FIXME: might try to use DW_OP_const_value here, though
8927 DW_OP_piece complicates it. */
8928 if (!marked)
8929 return 0;
8932 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8933 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8934 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8935 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8936 break;
8938 case PRE_MODIFY:
8939 /* Extract the PLUS expression nested inside and fall into
8940 PLUS code below. */
8941 rtl = XEXP (rtl, 1);
8942 goto plus;
8944 case PRE_INC:
8945 case PRE_DEC:
8946 /* Turn these into a PLUS expression and fall into the PLUS code
8947 below. */
8948 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8949 GEN_INT (GET_CODE (rtl) == PRE_INC
8950 ? GET_MODE_UNIT_SIZE (mode)
8951 : -GET_MODE_UNIT_SIZE (mode)));
8953 /* ... fall through ... */
8955 case PLUS:
8956 plus:
8957 if (is_based_loc (rtl))
8958 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8959 INTVAL (XEXP (rtl, 1)));
8960 else
8962 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8963 if (mem_loc_result == 0)
8964 break;
8966 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8967 && INTVAL (XEXP (rtl, 1)) >= 0)
8968 add_loc_descr (&mem_loc_result,
8969 new_loc_descr (DW_OP_plus_uconst,
8970 INTVAL (XEXP (rtl, 1)), 0));
8971 else
8973 add_loc_descr (&mem_loc_result,
8974 mem_loc_descriptor (XEXP (rtl, 1), mode));
8975 add_loc_descr (&mem_loc_result,
8976 new_loc_descr (DW_OP_plus, 0, 0));
8979 break;
8981 /* If a pseudo-reg is optimized away, it is possible for it to
8982 be replaced with a MEM containing a multiply or shift. */
8983 case MULT:
8984 op = DW_OP_mul;
8985 goto do_binop;
8987 case ASHIFT:
8988 op = DW_OP_shl;
8989 goto do_binop;
8991 case ASHIFTRT:
8992 op = DW_OP_shra;
8993 goto do_binop;
8995 case LSHIFTRT:
8996 op = DW_OP_shr;
8997 goto do_binop;
8999 do_binop:
9001 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
9002 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
9004 if (op0 == 0 || op1 == 0)
9005 break;
9007 mem_loc_result = op0;
9008 add_loc_descr (&mem_loc_result, op1);
9009 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9010 break;
9013 case CONST_INT:
9014 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9015 break;
9017 default:
9018 gcc_unreachable ();
9021 return mem_loc_result;
9024 /* Return a descriptor that describes the concatenation of two locations.
9025 This is typically a complex variable. */
9027 static dw_loc_descr_ref
9028 concat_loc_descriptor (rtx x0, rtx x1)
9030 dw_loc_descr_ref cc_loc_result = NULL;
9031 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9032 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9034 if (x0_ref == 0 || x1_ref == 0)
9035 return 0;
9037 cc_loc_result = x0_ref;
9038 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9040 add_loc_descr (&cc_loc_result, x1_ref);
9041 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9043 return cc_loc_result;
9046 /* Output a proper Dwarf location descriptor for a variable or parameter
9047 which is either allocated in a register or in a memory location. For a
9048 register, we just generate an OP_REG and the register number. For a
9049 memory location we provide a Dwarf postfix expression describing how to
9050 generate the (dynamic) address of the object onto the address stack.
9052 If we don't know how to describe it, return 0. */
9054 static dw_loc_descr_ref
9055 loc_descriptor (rtx rtl)
9057 dw_loc_descr_ref loc_result = NULL;
9059 switch (GET_CODE (rtl))
9061 case SUBREG:
9062 /* The case of a subreg may arise when we have a local (register)
9063 variable or a formal (register) parameter which doesn't quite fill
9064 up an entire register. For now, just assume that it is
9065 legitimate to make the Dwarf info refer to the whole register which
9066 contains the given subreg. */
9067 rtl = SUBREG_REG (rtl);
9069 /* ... fall through ... */
9071 case REG:
9072 loc_result = reg_loc_descriptor (rtl);
9073 break;
9075 case MEM:
9076 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9077 break;
9079 case CONCAT:
9080 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9081 break;
9083 case VAR_LOCATION:
9084 /* Single part. */
9085 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9087 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9088 break;
9091 rtl = XEXP (rtl, 1);
9092 /* FALLTHRU */
9094 case PARALLEL:
9096 rtvec par_elems = XVEC (rtl, 0);
9097 int num_elem = GET_NUM_ELEM (par_elems);
9098 enum machine_mode mode;
9099 int i;
9101 /* Create the first one, so we have something to add to. */
9102 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9103 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9104 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9105 for (i = 1; i < num_elem; i++)
9107 dw_loc_descr_ref temp;
9109 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9110 add_loc_descr (&loc_result, temp);
9111 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9112 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9115 break;
9117 default:
9118 gcc_unreachable ();
9121 return loc_result;
9124 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9125 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9126 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9127 top-level invocation, and we require the address of LOC; is 0 if we require
9128 the value of LOC. */
9130 static dw_loc_descr_ref
9131 loc_descriptor_from_tree_1 (tree loc, int want_address)
9133 dw_loc_descr_ref ret, ret1;
9134 int have_address = 0;
9135 enum dwarf_location_atom op;
9137 /* ??? Most of the time we do not take proper care for sign/zero
9138 extending the values properly. Hopefully this won't be a real
9139 problem... */
9141 switch (TREE_CODE (loc))
9143 case ERROR_MARK:
9144 return 0;
9146 case PLACEHOLDER_EXPR:
9147 /* This case involves extracting fields from an object to determine the
9148 position of other fields. We don't try to encode this here. The
9149 only user of this is Ada, which encodes the needed information using
9150 the names of types. */
9151 return 0;
9153 case CALL_EXPR:
9154 return 0;
9156 case PREINCREMENT_EXPR:
9157 case PREDECREMENT_EXPR:
9158 case POSTINCREMENT_EXPR:
9159 case POSTDECREMENT_EXPR:
9160 /* There are no opcodes for these operations. */
9161 return 0;
9163 case ADDR_EXPR:
9164 /* If we already want an address, there's nothing we can do. */
9165 if (want_address)
9166 return 0;
9168 /* Otherwise, process the argument and look for the address. */
9169 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9171 case VAR_DECL:
9172 if (DECL_THREAD_LOCAL_P (loc))
9174 rtx rtl;
9176 /* If this is not defined, we have no way to emit the data. */
9177 if (!targetm.asm_out.output_dwarf_dtprel)
9178 return 0;
9180 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9181 look up addresses of objects in the current module. */
9182 if (DECL_EXTERNAL (loc))
9183 return 0;
9185 rtl = rtl_for_decl_location (loc);
9186 if (rtl == NULL_RTX)
9187 return 0;
9189 if (!MEM_P (rtl))
9190 return 0;
9191 rtl = XEXP (rtl, 0);
9192 if (! CONSTANT_P (rtl))
9193 return 0;
9195 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9196 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9197 ret->dw_loc_oprnd1.v.val_addr = rtl;
9199 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9200 add_loc_descr (&ret, ret1);
9202 have_address = 1;
9203 break;
9205 /* FALLTHRU */
9207 case PARM_DECL:
9208 if (DECL_HAS_VALUE_EXPR_P (loc))
9209 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9210 want_address);
9211 /* FALLTHRU */
9213 case RESULT_DECL:
9214 case FUNCTION_DECL:
9216 rtx rtl = rtl_for_decl_location (loc);
9218 if (rtl == NULL_RTX)
9219 return 0;
9220 else if (GET_CODE (rtl) == CONST_INT)
9222 HOST_WIDE_INT val = INTVAL (rtl);
9223 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9224 val &= GET_MODE_MASK (DECL_MODE (loc));
9225 ret = int_loc_descriptor (val);
9227 else if (GET_CODE (rtl) == CONST_STRING)
9228 return 0;
9229 else if (CONSTANT_P (rtl))
9231 ret = new_loc_descr (DW_OP_addr, 0, 0);
9232 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9233 ret->dw_loc_oprnd1.v.val_addr = rtl;
9235 else
9237 enum machine_mode mode;
9239 /* Certain constructs can only be represented at top-level. */
9240 if (want_address == 2)
9241 return loc_descriptor (rtl);
9243 mode = GET_MODE (rtl);
9244 if (MEM_P (rtl))
9246 rtl = XEXP (rtl, 0);
9247 have_address = 1;
9249 ret = mem_loc_descriptor (rtl, mode);
9252 break;
9254 case INDIRECT_REF:
9255 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9256 have_address = 1;
9257 break;
9259 case COMPOUND_EXPR:
9260 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9262 case NOP_EXPR:
9263 case CONVERT_EXPR:
9264 case NON_LVALUE_EXPR:
9265 case VIEW_CONVERT_EXPR:
9266 case SAVE_EXPR:
9267 case GIMPLE_MODIFY_STMT:
9268 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9269 want_address);
9271 case COMPONENT_REF:
9272 case BIT_FIELD_REF:
9273 case ARRAY_REF:
9274 case ARRAY_RANGE_REF:
9276 tree obj, offset;
9277 HOST_WIDE_INT bitsize, bitpos, bytepos;
9278 enum machine_mode mode;
9279 int volatilep;
9280 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9282 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9283 &unsignedp, &volatilep, false);
9285 if (obj == loc)
9286 return 0;
9288 ret = loc_descriptor_from_tree_1 (obj, 1);
9289 if (ret == 0
9290 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9291 return 0;
9293 if (offset != NULL_TREE)
9295 /* Variable offset. */
9296 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9297 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9300 bytepos = bitpos / BITS_PER_UNIT;
9301 if (bytepos > 0)
9302 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9303 else if (bytepos < 0)
9305 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9306 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9309 have_address = 1;
9310 break;
9313 case INTEGER_CST:
9314 if (host_integerp (loc, 0))
9315 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9316 else
9317 return 0;
9318 break;
9320 case CONSTRUCTOR:
9322 /* Get an RTL for this, if something has been emitted. */
9323 rtx rtl = lookup_constant_def (loc);
9324 enum machine_mode mode;
9326 if (!rtl || !MEM_P (rtl))
9327 return 0;
9328 mode = GET_MODE (rtl);
9329 rtl = XEXP (rtl, 0);
9330 ret = mem_loc_descriptor (rtl, mode);
9331 have_address = 1;
9332 break;
9335 case TRUTH_AND_EXPR:
9336 case TRUTH_ANDIF_EXPR:
9337 case BIT_AND_EXPR:
9338 op = DW_OP_and;
9339 goto do_binop;
9341 case TRUTH_XOR_EXPR:
9342 case BIT_XOR_EXPR:
9343 op = DW_OP_xor;
9344 goto do_binop;
9346 case TRUTH_OR_EXPR:
9347 case TRUTH_ORIF_EXPR:
9348 case BIT_IOR_EXPR:
9349 op = DW_OP_or;
9350 goto do_binop;
9352 case FLOOR_DIV_EXPR:
9353 case CEIL_DIV_EXPR:
9354 case ROUND_DIV_EXPR:
9355 case TRUNC_DIV_EXPR:
9356 op = DW_OP_div;
9357 goto do_binop;
9359 case MINUS_EXPR:
9360 op = DW_OP_minus;
9361 goto do_binop;
9363 case FLOOR_MOD_EXPR:
9364 case CEIL_MOD_EXPR:
9365 case ROUND_MOD_EXPR:
9366 case TRUNC_MOD_EXPR:
9367 op = DW_OP_mod;
9368 goto do_binop;
9370 case MULT_EXPR:
9371 op = DW_OP_mul;
9372 goto do_binop;
9374 case LSHIFT_EXPR:
9375 op = DW_OP_shl;
9376 goto do_binop;
9378 case RSHIFT_EXPR:
9379 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9380 goto do_binop;
9382 case PLUS_EXPR:
9383 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9384 && host_integerp (TREE_OPERAND (loc, 1), 0))
9386 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9387 if (ret == 0)
9388 return 0;
9390 add_loc_descr (&ret,
9391 new_loc_descr (DW_OP_plus_uconst,
9392 tree_low_cst (TREE_OPERAND (loc, 1),
9394 0));
9395 break;
9398 op = DW_OP_plus;
9399 goto do_binop;
9401 case LE_EXPR:
9402 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9403 return 0;
9405 op = DW_OP_le;
9406 goto do_binop;
9408 case GE_EXPR:
9409 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9410 return 0;
9412 op = DW_OP_ge;
9413 goto do_binop;
9415 case LT_EXPR:
9416 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9417 return 0;
9419 op = DW_OP_lt;
9420 goto do_binop;
9422 case GT_EXPR:
9423 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9424 return 0;
9426 op = DW_OP_gt;
9427 goto do_binop;
9429 case EQ_EXPR:
9430 op = DW_OP_eq;
9431 goto do_binop;
9433 case NE_EXPR:
9434 op = DW_OP_ne;
9435 goto do_binop;
9437 do_binop:
9438 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9439 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9440 if (ret == 0 || ret1 == 0)
9441 return 0;
9443 add_loc_descr (&ret, ret1);
9444 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9445 break;
9447 case TRUTH_NOT_EXPR:
9448 case BIT_NOT_EXPR:
9449 op = DW_OP_not;
9450 goto do_unop;
9452 case ABS_EXPR:
9453 op = DW_OP_abs;
9454 goto do_unop;
9456 case NEGATE_EXPR:
9457 op = DW_OP_neg;
9458 goto do_unop;
9460 do_unop:
9461 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9462 if (ret == 0)
9463 return 0;
9465 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9466 break;
9468 case MIN_EXPR:
9469 case MAX_EXPR:
9471 const enum tree_code code =
9472 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9474 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9475 build2 (code, integer_type_node,
9476 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9477 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9480 /* ... fall through ... */
9482 case COND_EXPR:
9484 dw_loc_descr_ref lhs
9485 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9486 dw_loc_descr_ref rhs
9487 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9488 dw_loc_descr_ref bra_node, jump_node, tmp;
9490 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9491 if (ret == 0 || lhs == 0 || rhs == 0)
9492 return 0;
9494 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9495 add_loc_descr (&ret, bra_node);
9497 add_loc_descr (&ret, rhs);
9498 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9499 add_loc_descr (&ret, jump_node);
9501 add_loc_descr (&ret, lhs);
9502 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9503 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9505 /* ??? Need a node to point the skip at. Use a nop. */
9506 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9507 add_loc_descr (&ret, tmp);
9508 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9509 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9511 break;
9513 case FIX_TRUNC_EXPR:
9514 return 0;
9516 default:
9517 /* Leave front-end specific codes as simply unknown. This comes
9518 up, for instance, with the C STMT_EXPR. */
9519 if ((unsigned int) TREE_CODE (loc)
9520 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9521 return 0;
9523 #ifdef ENABLE_CHECKING
9524 /* Otherwise this is a generic code; we should just lists all of
9525 these explicitly. We forgot one. */
9526 gcc_unreachable ();
9527 #else
9528 /* In a release build, we want to degrade gracefully: better to
9529 generate incomplete debugging information than to crash. */
9530 return NULL;
9531 #endif
9534 /* Show if we can't fill the request for an address. */
9535 if (want_address && !have_address)
9536 return 0;
9538 /* If we've got an address and don't want one, dereference. */
9539 if (!want_address && have_address && ret)
9541 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9543 if (size > DWARF2_ADDR_SIZE || size == -1)
9544 return 0;
9545 else if (size == DWARF2_ADDR_SIZE)
9546 op = DW_OP_deref;
9547 else
9548 op = DW_OP_deref_size;
9550 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9553 return ret;
9556 static inline dw_loc_descr_ref
9557 loc_descriptor_from_tree (tree loc)
9559 return loc_descriptor_from_tree_1 (loc, 2);
9562 /* Given a value, round it up to the lowest multiple of `boundary'
9563 which is not less than the value itself. */
9565 static inline HOST_WIDE_INT
9566 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9568 return (((value + boundary - 1) / boundary) * boundary);
9571 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9572 pointer to the declared type for the relevant field variable, or return
9573 `integer_type_node' if the given node turns out to be an
9574 ERROR_MARK node. */
9576 static inline tree
9577 field_type (tree decl)
9579 tree type;
9581 if (TREE_CODE (decl) == ERROR_MARK)
9582 return integer_type_node;
9584 type = DECL_BIT_FIELD_TYPE (decl);
9585 if (type == NULL_TREE)
9586 type = TREE_TYPE (decl);
9588 return type;
9591 /* Given a pointer to a tree node, return the alignment in bits for
9592 it, or else return BITS_PER_WORD if the node actually turns out to
9593 be an ERROR_MARK node. */
9595 static inline unsigned
9596 simple_type_align_in_bits (tree type)
9598 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9601 static inline unsigned
9602 simple_decl_align_in_bits (tree decl)
9604 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9607 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9608 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9609 or return 0 if we are unable to determine what that offset is, either
9610 because the argument turns out to be a pointer to an ERROR_MARK node, or
9611 because the offset is actually variable. (We can't handle the latter case
9612 just yet). */
9614 static HOST_WIDE_INT
9615 field_byte_offset (tree decl)
9617 unsigned int type_align_in_bits;
9618 unsigned int decl_align_in_bits;
9619 unsigned HOST_WIDE_INT type_size_in_bits;
9620 HOST_WIDE_INT object_offset_in_bits;
9621 tree type;
9622 tree field_size_tree;
9623 HOST_WIDE_INT bitpos_int;
9624 HOST_WIDE_INT deepest_bitpos;
9625 unsigned HOST_WIDE_INT field_size_in_bits;
9627 if (TREE_CODE (decl) == ERROR_MARK)
9628 return 0;
9630 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9632 type = field_type (decl);
9633 field_size_tree = DECL_SIZE (decl);
9635 /* The size could be unspecified if there was an error, or for
9636 a flexible array member. */
9637 if (! field_size_tree)
9638 field_size_tree = bitsize_zero_node;
9640 /* We cannot yet cope with fields whose positions are variable, so
9641 for now, when we see such things, we simply return 0. Someday, we may
9642 be able to handle such cases, but it will be damn difficult. */
9643 if (! host_integerp (bit_position (decl), 0))
9644 return 0;
9646 bitpos_int = int_bit_position (decl);
9648 /* If we don't know the size of the field, pretend it's a full word. */
9649 if (host_integerp (field_size_tree, 1))
9650 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9651 else
9652 field_size_in_bits = BITS_PER_WORD;
9654 type_size_in_bits = simple_type_size_in_bits (type);
9655 type_align_in_bits = simple_type_align_in_bits (type);
9656 decl_align_in_bits = simple_decl_align_in_bits (decl);
9658 /* The GCC front-end doesn't make any attempt to keep track of the starting
9659 bit offset (relative to the start of the containing structure type) of the
9660 hypothetical "containing object" for a bit-field. Thus, when computing
9661 the byte offset value for the start of the "containing object" of a
9662 bit-field, we must deduce this information on our own. This can be rather
9663 tricky to do in some cases. For example, handling the following structure
9664 type definition when compiling for an i386/i486 target (which only aligns
9665 long long's to 32-bit boundaries) can be very tricky:
9667 struct S { int field1; long long field2:31; };
9669 Fortunately, there is a simple rule-of-thumb which can be used in such
9670 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9671 structure shown above. It decides to do this based upon one simple rule
9672 for bit-field allocation. GCC allocates each "containing object" for each
9673 bit-field at the first (i.e. lowest addressed) legitimate alignment
9674 boundary (based upon the required minimum alignment for the declared type
9675 of the field) which it can possibly use, subject to the condition that
9676 there is still enough available space remaining in the containing object
9677 (when allocated at the selected point) to fully accommodate all of the
9678 bits of the bit-field itself.
9680 This simple rule makes it obvious why GCC allocates 8 bytes for each
9681 object of the structure type shown above. When looking for a place to
9682 allocate the "containing object" for `field2', the compiler simply tries
9683 to allocate a 64-bit "containing object" at each successive 32-bit
9684 boundary (starting at zero) until it finds a place to allocate that 64-
9685 bit field such that at least 31 contiguous (and previously unallocated)
9686 bits remain within that selected 64 bit field. (As it turns out, for the
9687 example above, the compiler finds it is OK to allocate the "containing
9688 object" 64-bit field at bit-offset zero within the structure type.)
9690 Here we attempt to work backwards from the limited set of facts we're
9691 given, and we try to deduce from those facts, where GCC must have believed
9692 that the containing object started (within the structure type). The value
9693 we deduce is then used (by the callers of this routine) to generate
9694 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9695 and, in the case of DW_AT_location, regular fields as well). */
9697 /* Figure out the bit-distance from the start of the structure to the
9698 "deepest" bit of the bit-field. */
9699 deepest_bitpos = bitpos_int + field_size_in_bits;
9701 /* This is the tricky part. Use some fancy footwork to deduce where the
9702 lowest addressed bit of the containing object must be. */
9703 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9705 /* Round up to type_align by default. This works best for bitfields. */
9706 object_offset_in_bits += type_align_in_bits - 1;
9707 object_offset_in_bits /= type_align_in_bits;
9708 object_offset_in_bits *= type_align_in_bits;
9710 if (object_offset_in_bits > bitpos_int)
9712 /* Sigh, the decl must be packed. */
9713 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9715 /* Round up to decl_align instead. */
9716 object_offset_in_bits += decl_align_in_bits - 1;
9717 object_offset_in_bits /= decl_align_in_bits;
9718 object_offset_in_bits *= decl_align_in_bits;
9721 return object_offset_in_bits / BITS_PER_UNIT;
9724 /* The following routines define various Dwarf attributes and any data
9725 associated with them. */
9727 /* Add a location description attribute value to a DIE.
9729 This emits location attributes suitable for whole variables and
9730 whole parameters. Note that the location attributes for struct fields are
9731 generated by the routine `data_member_location_attribute' below. */
9733 static inline void
9734 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9735 dw_loc_descr_ref descr)
9737 if (descr != 0)
9738 add_AT_loc (die, attr_kind, descr);
9741 /* Attach the specialized form of location attribute used for data members of
9742 struct and union types. In the special case of a FIELD_DECL node which
9743 represents a bit-field, the "offset" part of this special location
9744 descriptor must indicate the distance in bytes from the lowest-addressed
9745 byte of the containing struct or union type to the lowest-addressed byte of
9746 the "containing object" for the bit-field. (See the `field_byte_offset'
9747 function above).
9749 For any given bit-field, the "containing object" is a hypothetical object
9750 (of some integral or enum type) within which the given bit-field lives. The
9751 type of this hypothetical "containing object" is always the same as the
9752 declared type of the individual bit-field itself (for GCC anyway... the
9753 DWARF spec doesn't actually mandate this). Note that it is the size (in
9754 bytes) of the hypothetical "containing object" which will be given in the
9755 DW_AT_byte_size attribute for this bit-field. (See the
9756 `byte_size_attribute' function below.) It is also used when calculating the
9757 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9758 function below.) */
9760 static void
9761 add_data_member_location_attribute (dw_die_ref die, tree decl)
9763 HOST_WIDE_INT offset;
9764 dw_loc_descr_ref loc_descr = 0;
9766 if (TREE_CODE (decl) == TREE_BINFO)
9768 /* We're working on the TAG_inheritance for a base class. */
9769 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9771 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9772 aren't at a fixed offset from all (sub)objects of the same
9773 type. We need to extract the appropriate offset from our
9774 vtable. The following dwarf expression means
9776 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9778 This is specific to the V3 ABI, of course. */
9780 dw_loc_descr_ref tmp;
9782 /* Make a copy of the object address. */
9783 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9784 add_loc_descr (&loc_descr, tmp);
9786 /* Extract the vtable address. */
9787 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9788 add_loc_descr (&loc_descr, tmp);
9790 /* Calculate the address of the offset. */
9791 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9792 gcc_assert (offset < 0);
9794 tmp = int_loc_descriptor (-offset);
9795 add_loc_descr (&loc_descr, tmp);
9796 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9797 add_loc_descr (&loc_descr, tmp);
9799 /* Extract the offset. */
9800 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9801 add_loc_descr (&loc_descr, tmp);
9803 /* Add it to the object address. */
9804 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9805 add_loc_descr (&loc_descr, tmp);
9807 else
9808 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9810 else
9811 offset = field_byte_offset (decl);
9813 if (! loc_descr)
9815 enum dwarf_location_atom op;
9817 /* The DWARF2 standard says that we should assume that the structure
9818 address is already on the stack, so we can specify a structure field
9819 address by using DW_OP_plus_uconst. */
9821 #ifdef MIPS_DEBUGGING_INFO
9822 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9823 operator correctly. It works only if we leave the offset on the
9824 stack. */
9825 op = DW_OP_constu;
9826 #else
9827 op = DW_OP_plus_uconst;
9828 #endif
9830 loc_descr = new_loc_descr (op, offset, 0);
9833 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9836 /* Writes integer values to dw_vec_const array. */
9838 static void
9839 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9841 while (size != 0)
9843 *dest++ = val & 0xff;
9844 val >>= 8;
9845 --size;
9849 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9851 static HOST_WIDE_INT
9852 extract_int (const unsigned char *src, unsigned int size)
9854 HOST_WIDE_INT val = 0;
9856 src += size;
9857 while (size != 0)
9859 val <<= 8;
9860 val |= *--src & 0xff;
9861 --size;
9863 return val;
9866 /* Writes floating point values to dw_vec_const array. */
9868 static void
9869 insert_float (rtx rtl, unsigned char *array)
9871 REAL_VALUE_TYPE rv;
9872 long val[4];
9873 int i;
9875 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9876 real_to_target (val, &rv, GET_MODE (rtl));
9878 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9879 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9881 insert_int (val[i], 4, array);
9882 array += 4;
9886 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9887 does not have a "location" either in memory or in a register. These
9888 things can arise in GNU C when a constant is passed as an actual parameter
9889 to an inlined function. They can also arise in C++ where declared
9890 constants do not necessarily get memory "homes". */
9892 static void
9893 add_const_value_attribute (dw_die_ref die, rtx rtl)
9895 switch (GET_CODE (rtl))
9897 case CONST_INT:
9899 HOST_WIDE_INT val = INTVAL (rtl);
9901 if (val < 0)
9902 add_AT_int (die, DW_AT_const_value, val);
9903 else
9904 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9906 break;
9908 case CONST_DOUBLE:
9909 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9910 floating-point constant. A CONST_DOUBLE is used whenever the
9911 constant requires more than one word in order to be adequately
9912 represented. We output CONST_DOUBLEs as blocks. */
9914 enum machine_mode mode = GET_MODE (rtl);
9916 if (SCALAR_FLOAT_MODE_P (mode))
9918 unsigned int length = GET_MODE_SIZE (mode);
9919 unsigned char *array = ggc_alloc (length);
9921 insert_float (rtl, array);
9922 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9924 else
9926 /* ??? We really should be using HOST_WIDE_INT throughout. */
9927 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9929 add_AT_long_long (die, DW_AT_const_value,
9930 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9933 break;
9935 case CONST_VECTOR:
9937 enum machine_mode mode = GET_MODE (rtl);
9938 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9939 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9940 unsigned char *array = ggc_alloc (length * elt_size);
9941 unsigned int i;
9942 unsigned char *p;
9944 switch (GET_MODE_CLASS (mode))
9946 case MODE_VECTOR_INT:
9947 for (i = 0, p = array; i < length; i++, p += elt_size)
9949 rtx elt = CONST_VECTOR_ELT (rtl, i);
9950 HOST_WIDE_INT lo, hi;
9952 switch (GET_CODE (elt))
9954 case CONST_INT:
9955 lo = INTVAL (elt);
9956 hi = -(lo < 0);
9957 break;
9959 case CONST_DOUBLE:
9960 lo = CONST_DOUBLE_LOW (elt);
9961 hi = CONST_DOUBLE_HIGH (elt);
9962 break;
9964 default:
9965 gcc_unreachable ();
9968 if (elt_size <= sizeof (HOST_WIDE_INT))
9969 insert_int (lo, elt_size, p);
9970 else
9972 unsigned char *p0 = p;
9973 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9975 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9976 if (WORDS_BIG_ENDIAN)
9978 p0 = p1;
9979 p1 = p;
9981 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9982 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9985 break;
9987 case MODE_VECTOR_FLOAT:
9988 for (i = 0, p = array; i < length; i++, p += elt_size)
9990 rtx elt = CONST_VECTOR_ELT (rtl, i);
9991 insert_float (elt, p);
9993 break;
9995 default:
9996 gcc_unreachable ();
9999 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10001 break;
10003 case CONST_STRING:
10004 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10005 break;
10007 case SYMBOL_REF:
10008 case LABEL_REF:
10009 case CONST:
10010 add_AT_addr (die, DW_AT_const_value, rtl);
10011 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10012 break;
10014 case PLUS:
10015 /* In cases where an inlined instance of an inline function is passed
10016 the address of an `auto' variable (which is local to the caller) we
10017 can get a situation where the DECL_RTL of the artificial local
10018 variable (for the inlining) which acts as a stand-in for the
10019 corresponding formal parameter (of the inline function) will look
10020 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10021 exactly a compile-time constant expression, but it isn't the address
10022 of the (artificial) local variable either. Rather, it represents the
10023 *value* which the artificial local variable always has during its
10024 lifetime. We currently have no way to represent such quasi-constant
10025 values in Dwarf, so for now we just punt and generate nothing. */
10026 break;
10028 default:
10029 /* No other kinds of rtx should be possible here. */
10030 gcc_unreachable ();
10035 /* Determine whether the evaluation of EXPR references any variables
10036 or functions which aren't otherwise used (and therefore may not be
10037 output). */
10038 static tree
10039 reference_to_unused (tree * tp, int * walk_subtrees,
10040 void * data ATTRIBUTE_UNUSED)
10042 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10043 *walk_subtrees = 0;
10045 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10046 && ! TREE_ASM_WRITTEN (*tp))
10047 return *tp;
10048 else
10049 return NULL_TREE;
10052 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10053 for use in a later add_const_value_attribute call. */
10055 static rtx
10056 rtl_for_decl_init (tree init, tree type)
10058 rtx rtl = NULL_RTX;
10060 /* If a variable is initialized with a string constant without embedded
10061 zeros, build CONST_STRING. */
10062 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10064 tree enttype = TREE_TYPE (type);
10065 tree domain = TYPE_DOMAIN (type);
10066 enum machine_mode mode = TYPE_MODE (enttype);
10068 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10069 && domain
10070 && integer_zerop (TYPE_MIN_VALUE (domain))
10071 && compare_tree_int (TYPE_MAX_VALUE (domain),
10072 TREE_STRING_LENGTH (init) - 1) == 0
10073 && ((size_t) TREE_STRING_LENGTH (init)
10074 == strlen (TREE_STRING_POINTER (init)) + 1))
10075 rtl = gen_rtx_CONST_STRING (VOIDmode,
10076 ggc_strdup (TREE_STRING_POINTER (init)));
10078 /* Other aggregates, and complex values, could be represented using
10079 CONCAT: FIXME! */
10080 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10082 /* Vectors only work if their mode is supported by the target.
10083 FIXME: generic vectors ought to work too. */
10084 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10086 /* If the initializer is something that we know will expand into an
10087 immediate RTL constant, expand it now. We must be careful not to
10088 reference variables which won't be output. */
10089 else if (initializer_constant_valid_p (init, type)
10090 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10092 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10094 /* If expand_expr returns a MEM, it wasn't immediate. */
10095 gcc_assert (!rtl || !MEM_P (rtl));
10098 return rtl;
10101 /* Generate RTL for the variable DECL to represent its location. */
10103 static rtx
10104 rtl_for_decl_location (tree decl)
10106 rtx rtl;
10108 /* Here we have to decide where we are going to say the parameter "lives"
10109 (as far as the debugger is concerned). We only have a couple of
10110 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10112 DECL_RTL normally indicates where the parameter lives during most of the
10113 activation of the function. If optimization is enabled however, this
10114 could be either NULL or else a pseudo-reg. Both of those cases indicate
10115 that the parameter doesn't really live anywhere (as far as the code
10116 generation parts of GCC are concerned) during most of the function's
10117 activation. That will happen (for example) if the parameter is never
10118 referenced within the function.
10120 We could just generate a location descriptor here for all non-NULL
10121 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10122 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10123 where DECL_RTL is NULL or is a pseudo-reg.
10125 Note however that we can only get away with using DECL_INCOMING_RTL as
10126 a backup substitute for DECL_RTL in certain limited cases. In cases
10127 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10128 we can be sure that the parameter was passed using the same type as it is
10129 declared to have within the function, and that its DECL_INCOMING_RTL
10130 points us to a place where a value of that type is passed.
10132 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10133 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10134 because in these cases DECL_INCOMING_RTL points us to a value of some
10135 type which is *different* from the type of the parameter itself. Thus,
10136 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10137 such cases, the debugger would end up (for example) trying to fetch a
10138 `float' from a place which actually contains the first part of a
10139 `double'. That would lead to really incorrect and confusing
10140 output at debug-time.
10142 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10143 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10144 are a couple of exceptions however. On little-endian machines we can
10145 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10146 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10147 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10148 when (on a little-endian machine) a non-prototyped function has a
10149 parameter declared to be of type `short' or `char'. In such cases,
10150 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10151 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10152 passed `int' value. If the debugger then uses that address to fetch
10153 a `short' or a `char' (on a little-endian machine) the result will be
10154 the correct data, so we allow for such exceptional cases below.
10156 Note that our goal here is to describe the place where the given formal
10157 parameter lives during most of the function's activation (i.e. between the
10158 end of the prologue and the start of the epilogue). We'll do that as best
10159 as we can. Note however that if the given formal parameter is modified
10160 sometime during the execution of the function, then a stack backtrace (at
10161 debug-time) will show the function as having been called with the *new*
10162 value rather than the value which was originally passed in. This happens
10163 rarely enough that it is not a major problem, but it *is* a problem, and
10164 I'd like to fix it.
10166 A future version of dwarf2out.c may generate two additional attributes for
10167 any given DW_TAG_formal_parameter DIE which will describe the "passed
10168 type" and the "passed location" for the given formal parameter in addition
10169 to the attributes we now generate to indicate the "declared type" and the
10170 "active location" for each parameter. This additional set of attributes
10171 could be used by debuggers for stack backtraces. Separately, note that
10172 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10173 This happens (for example) for inlined-instances of inline function formal
10174 parameters which are never referenced. This really shouldn't be
10175 happening. All PARM_DECL nodes should get valid non-NULL
10176 DECL_INCOMING_RTL values. FIXME. */
10178 /* Use DECL_RTL as the "location" unless we find something better. */
10179 rtl = DECL_RTL_IF_SET (decl);
10181 /* When generating abstract instances, ignore everything except
10182 constants, symbols living in memory, and symbols living in
10183 fixed registers. */
10184 if (! reload_completed)
10186 if (rtl
10187 && (CONSTANT_P (rtl)
10188 || (MEM_P (rtl)
10189 && CONSTANT_P (XEXP (rtl, 0)))
10190 || (REG_P (rtl)
10191 && TREE_CODE (decl) == VAR_DECL
10192 && TREE_STATIC (decl))))
10194 rtl = targetm.delegitimize_address (rtl);
10195 return rtl;
10197 rtl = NULL_RTX;
10199 else if (TREE_CODE (decl) == PARM_DECL)
10201 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10203 tree declared_type = TREE_TYPE (decl);
10204 tree passed_type = DECL_ARG_TYPE (decl);
10205 enum machine_mode dmode = TYPE_MODE (declared_type);
10206 enum machine_mode pmode = TYPE_MODE (passed_type);
10208 /* This decl represents a formal parameter which was optimized out.
10209 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10210 all cases where (rtl == NULL_RTX) just below. */
10211 if (dmode == pmode)
10212 rtl = DECL_INCOMING_RTL (decl);
10213 else if (SCALAR_INT_MODE_P (dmode)
10214 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10215 && DECL_INCOMING_RTL (decl))
10217 rtx inc = DECL_INCOMING_RTL (decl);
10218 if (REG_P (inc))
10219 rtl = inc;
10220 else if (MEM_P (inc))
10222 if (BYTES_BIG_ENDIAN)
10223 rtl = adjust_address_nv (inc, dmode,
10224 GET_MODE_SIZE (pmode)
10225 - GET_MODE_SIZE (dmode));
10226 else
10227 rtl = inc;
10232 /* If the parm was passed in registers, but lives on the stack, then
10233 make a big endian correction if the mode of the type of the
10234 parameter is not the same as the mode of the rtl. */
10235 /* ??? This is the same series of checks that are made in dbxout.c before
10236 we reach the big endian correction code there. It isn't clear if all
10237 of these checks are necessary here, but keeping them all is the safe
10238 thing to do. */
10239 else if (MEM_P (rtl)
10240 && XEXP (rtl, 0) != const0_rtx
10241 && ! CONSTANT_P (XEXP (rtl, 0))
10242 /* Not passed in memory. */
10243 && !MEM_P (DECL_INCOMING_RTL (decl))
10244 /* Not passed by invisible reference. */
10245 && (!REG_P (XEXP (rtl, 0))
10246 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10247 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10248 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10249 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10250 #endif
10252 /* Big endian correction check. */
10253 && BYTES_BIG_ENDIAN
10254 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10255 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10256 < UNITS_PER_WORD))
10258 int offset = (UNITS_PER_WORD
10259 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10261 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10262 plus_constant (XEXP (rtl, 0), offset));
10265 else if (TREE_CODE (decl) == VAR_DECL
10266 && rtl
10267 && MEM_P (rtl)
10268 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10269 && BYTES_BIG_ENDIAN)
10271 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10272 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10274 /* If a variable is declared "register" yet is smaller than
10275 a register, then if we store the variable to memory, it
10276 looks like we're storing a register-sized value, when in
10277 fact we are not. We need to adjust the offset of the
10278 storage location to reflect the actual value's bytes,
10279 else gdb will not be able to display it. */
10280 if (rsize > dsize)
10281 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10282 plus_constant (XEXP (rtl, 0), rsize-dsize));
10285 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10286 and will have been substituted directly into all expressions that use it.
10287 C does not have such a concept, but C++ and other languages do. */
10288 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10289 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10291 if (rtl)
10292 rtl = targetm.delegitimize_address (rtl);
10294 /* If we don't look past the constant pool, we risk emitting a
10295 reference to a constant pool entry that isn't referenced from
10296 code, and thus is not emitted. */
10297 if (rtl)
10298 rtl = avoid_constant_pool_reference (rtl);
10300 return rtl;
10303 /* We need to figure out what section we should use as the base for the
10304 address ranges where a given location is valid.
10305 1. If this particular DECL has a section associated with it, use that.
10306 2. If this function has a section associated with it, use that.
10307 3. Otherwise, use the text section.
10308 XXX: If you split a variable across multiple sections, we won't notice. */
10310 static const char *
10311 secname_for_decl (tree decl)
10313 const char *secname;
10315 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10317 tree sectree = DECL_SECTION_NAME (decl);
10318 secname = TREE_STRING_POINTER (sectree);
10320 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10322 tree sectree = DECL_SECTION_NAME (current_function_decl);
10323 secname = TREE_STRING_POINTER (sectree);
10325 else if (cfun && in_cold_section_p)
10326 secname = cfun->cold_section_label;
10327 else
10328 secname = text_section_label;
10330 return secname;
10333 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10334 data attribute for a variable or a parameter. We generate the
10335 DW_AT_const_value attribute only in those cases where the given variable
10336 or parameter does not have a true "location" either in memory or in a
10337 register. This can happen (for example) when a constant is passed as an
10338 actual argument in a call to an inline function. (It's possible that
10339 these things can crop up in other ways also.) Note that one type of
10340 constant value which can be passed into an inlined function is a constant
10341 pointer. This can happen for example if an actual argument in an inlined
10342 function call evaluates to a compile-time constant address. */
10344 static void
10345 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10346 enum dwarf_attribute attr)
10348 rtx rtl;
10349 dw_loc_descr_ref descr;
10350 var_loc_list *loc_list;
10351 struct var_loc_node *node;
10352 if (TREE_CODE (decl) == ERROR_MARK)
10353 return;
10355 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10356 || TREE_CODE (decl) == RESULT_DECL);
10358 /* See if we possibly have multiple locations for this variable. */
10359 loc_list = lookup_decl_loc (decl);
10361 /* If it truly has multiple locations, the first and last node will
10362 differ. */
10363 if (loc_list && loc_list->first != loc_list->last)
10365 const char *endname, *secname;
10366 dw_loc_list_ref list;
10367 rtx varloc;
10369 /* Now that we know what section we are using for a base,
10370 actually construct the list of locations.
10371 The first location information is what is passed to the
10372 function that creates the location list, and the remaining
10373 locations just get added on to that list.
10374 Note that we only know the start address for a location
10375 (IE location changes), so to build the range, we use
10376 the range [current location start, next location start].
10377 This means we have to special case the last node, and generate
10378 a range of [last location start, end of function label]. */
10380 node = loc_list->first;
10381 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10382 secname = secname_for_decl (decl);
10384 list = new_loc_list (loc_descriptor (varloc),
10385 node->label, node->next->label, secname, 1);
10386 node = node->next;
10388 for (; node->next; node = node->next)
10389 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10391 /* The variable has a location between NODE->LABEL and
10392 NODE->NEXT->LABEL. */
10393 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10394 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10395 node->label, node->next->label, secname);
10398 /* If the variable has a location at the last label
10399 it keeps its location until the end of function. */
10400 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10402 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10404 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10405 if (!current_function_decl)
10406 endname = text_end_label;
10407 else
10409 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10410 current_function_funcdef_no);
10411 endname = ggc_strdup (label_id);
10413 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10414 node->label, endname, secname);
10417 /* Finally, add the location list to the DIE, and we are done. */
10418 add_AT_loc_list (die, attr, list);
10419 return;
10422 /* Try to get some constant RTL for this decl, and use that as the value of
10423 the location. */
10425 rtl = rtl_for_decl_location (decl);
10426 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10428 add_const_value_attribute (die, rtl);
10429 return;
10432 /* If we have tried to generate the location otherwise, and it
10433 didn't work out (we wouldn't be here if we did), and we have a one entry
10434 location list, try generating a location from that. */
10435 if (loc_list && loc_list->first)
10437 node = loc_list->first;
10438 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10439 if (descr)
10441 add_AT_location_description (die, attr, descr);
10442 return;
10446 /* We couldn't get any rtl, so try directly generating the location
10447 description from the tree. */
10448 descr = loc_descriptor_from_tree (decl);
10449 if (descr)
10451 add_AT_location_description (die, attr, descr);
10452 return;
10454 /* None of that worked, so it must not really have a location;
10455 try adding a constant value attribute from the DECL_INITIAL. */
10456 tree_add_const_value_attribute (die, decl);
10459 /* If we don't have a copy of this variable in memory for some reason (such
10460 as a C++ member constant that doesn't have an out-of-line definition),
10461 we should tell the debugger about the constant value. */
10463 static void
10464 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10466 tree init = DECL_INITIAL (decl);
10467 tree type = TREE_TYPE (decl);
10468 rtx rtl;
10470 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10471 /* OK */;
10472 else
10473 return;
10475 rtl = rtl_for_decl_init (init, type);
10476 if (rtl)
10477 add_const_value_attribute (var_die, rtl);
10480 /* Convert the CFI instructions for the current function into a
10481 location list. This is used for DW_AT_frame_base when we targeting
10482 a dwarf2 consumer that does not support the dwarf3
10483 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10484 expressions. */
10486 static dw_loc_list_ref
10487 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10489 dw_fde_ref fde;
10490 dw_loc_list_ref list, *list_tail;
10491 dw_cfi_ref cfi;
10492 dw_cfa_location last_cfa, next_cfa;
10493 const char *start_label, *last_label, *section;
10495 fde = &fde_table[fde_table_in_use - 1];
10497 section = secname_for_decl (current_function_decl);
10498 list_tail = &list;
10499 list = NULL;
10501 next_cfa.reg = INVALID_REGNUM;
10502 next_cfa.offset = 0;
10503 next_cfa.indirect = 0;
10504 next_cfa.base_offset = 0;
10506 start_label = fde->dw_fde_begin;
10508 /* ??? Bald assumption that the CIE opcode list does not contain
10509 advance opcodes. */
10510 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10511 lookup_cfa_1 (cfi, &next_cfa);
10513 last_cfa = next_cfa;
10514 last_label = start_label;
10516 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10517 switch (cfi->dw_cfi_opc)
10519 case DW_CFA_set_loc:
10520 case DW_CFA_advance_loc1:
10521 case DW_CFA_advance_loc2:
10522 case DW_CFA_advance_loc4:
10523 if (!cfa_equal_p (&last_cfa, &next_cfa))
10525 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10526 start_label, last_label, section,
10527 list == NULL);
10529 list_tail = &(*list_tail)->dw_loc_next;
10530 last_cfa = next_cfa;
10531 start_label = last_label;
10533 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10534 break;
10536 case DW_CFA_advance_loc:
10537 /* The encoding is complex enough that we should never emit this. */
10538 case DW_CFA_remember_state:
10539 case DW_CFA_restore_state:
10540 /* We don't handle these two in this function. It would be possible
10541 if it were to be required. */
10542 gcc_unreachable ();
10544 default:
10545 lookup_cfa_1 (cfi, &next_cfa);
10546 break;
10549 if (!cfa_equal_p (&last_cfa, &next_cfa))
10551 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10552 start_label, last_label, section,
10553 list == NULL);
10554 list_tail = &(*list_tail)->dw_loc_next;
10555 start_label = last_label;
10557 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10558 start_label, fde->dw_fde_end, section,
10559 list == NULL);
10561 return list;
10564 /* Compute a displacement from the "steady-state frame pointer" to the
10565 frame base (often the same as the CFA), and store it in
10566 frame_pointer_fb_offset. OFFSET is added to the displacement
10567 before the latter is negated. */
10569 static void
10570 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10572 rtx reg, elim;
10574 #ifdef FRAME_POINTER_CFA_OFFSET
10575 reg = frame_pointer_rtx;
10576 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10577 #else
10578 reg = arg_pointer_rtx;
10579 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10580 #endif
10582 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10583 if (GET_CODE (elim) == PLUS)
10585 offset += INTVAL (XEXP (elim, 1));
10586 elim = XEXP (elim, 0);
10588 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10589 : stack_pointer_rtx));
10591 frame_pointer_fb_offset = -offset;
10594 /* Generate a DW_AT_name attribute given some string value to be included as
10595 the value of the attribute. */
10597 static void
10598 add_name_attribute (dw_die_ref die, const char *name_string)
10600 if (name_string != NULL && *name_string != 0)
10602 if (demangle_name_func)
10603 name_string = (*demangle_name_func) (name_string);
10605 add_AT_string (die, DW_AT_name, name_string);
10609 /* Generate a DW_AT_comp_dir attribute for DIE. */
10611 static void
10612 add_comp_dir_attribute (dw_die_ref die)
10614 const char *wd = get_src_pwd ();
10615 if (wd != NULL)
10616 add_AT_string (die, DW_AT_comp_dir, wd);
10619 /* Given a tree node describing an array bound (either lower or upper) output
10620 a representation for that bound. */
10622 static void
10623 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10625 switch (TREE_CODE (bound))
10627 case ERROR_MARK:
10628 return;
10630 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10631 case INTEGER_CST:
10632 if (! host_integerp (bound, 0)
10633 || (bound_attr == DW_AT_lower_bound
10634 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10635 || (is_fortran () && integer_onep (bound)))))
10636 /* Use the default. */
10638 else
10639 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10640 break;
10642 case CONVERT_EXPR:
10643 case NOP_EXPR:
10644 case NON_LVALUE_EXPR:
10645 case VIEW_CONVERT_EXPR:
10646 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10647 break;
10649 case SAVE_EXPR:
10650 break;
10652 case VAR_DECL:
10653 case PARM_DECL:
10654 case RESULT_DECL:
10656 dw_die_ref decl_die = lookup_decl_die (bound);
10658 /* ??? Can this happen, or should the variable have been bound
10659 first? Probably it can, since I imagine that we try to create
10660 the types of parameters in the order in which they exist in
10661 the list, and won't have created a forward reference to a
10662 later parameter. */
10663 if (decl_die != NULL)
10664 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10665 break;
10668 default:
10670 /* Otherwise try to create a stack operation procedure to
10671 evaluate the value of the array bound. */
10673 dw_die_ref ctx, decl_die;
10674 dw_loc_descr_ref loc;
10676 loc = loc_descriptor_from_tree (bound);
10677 if (loc == NULL)
10678 break;
10680 if (current_function_decl == 0)
10681 ctx = comp_unit_die;
10682 else
10683 ctx = lookup_decl_die (current_function_decl);
10685 decl_die = new_die (DW_TAG_variable, ctx, bound);
10686 add_AT_flag (decl_die, DW_AT_artificial, 1);
10687 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10688 add_AT_loc (decl_die, DW_AT_location, loc);
10690 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10691 break;
10696 /* Note that the block of subscript information for an array type also
10697 includes information about the element type of type given array type. */
10699 static void
10700 add_subscript_info (dw_die_ref type_die, tree type)
10702 #ifndef MIPS_DEBUGGING_INFO
10703 unsigned dimension_number;
10704 #endif
10705 tree lower, upper;
10706 dw_die_ref subrange_die;
10708 /* The GNU compilers represent multidimensional array types as sequences of
10709 one dimensional array types whose element types are themselves array
10710 types. Here we squish that down, so that each multidimensional array
10711 type gets only one array_type DIE in the Dwarf debugging info. The draft
10712 Dwarf specification say that we are allowed to do this kind of
10713 compression in C (because there is no difference between an array or
10714 arrays and a multidimensional array in C) but for other source languages
10715 (e.g. Ada) we probably shouldn't do this. */
10717 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10718 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10719 We work around this by disabling this feature. See also
10720 gen_array_type_die. */
10721 #ifndef MIPS_DEBUGGING_INFO
10722 for (dimension_number = 0;
10723 TREE_CODE (type) == ARRAY_TYPE;
10724 type = TREE_TYPE (type), dimension_number++)
10725 #endif
10727 tree domain = TYPE_DOMAIN (type);
10729 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10730 and (in GNU C only) variable bounds. Handle all three forms
10731 here. */
10732 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10733 if (domain)
10735 /* We have an array type with specified bounds. */
10736 lower = TYPE_MIN_VALUE (domain);
10737 upper = TYPE_MAX_VALUE (domain);
10739 /* Define the index type. */
10740 if (TREE_TYPE (domain))
10742 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10743 TREE_TYPE field. We can't emit debug info for this
10744 because it is an unnamed integral type. */
10745 if (TREE_CODE (domain) == INTEGER_TYPE
10746 && TYPE_NAME (domain) == NULL_TREE
10747 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10748 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10750 else
10751 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10752 type_die);
10755 /* ??? If upper is NULL, the array has unspecified length,
10756 but it does have a lower bound. This happens with Fortran
10757 dimension arr(N:*)
10758 Since the debugger is definitely going to need to know N
10759 to produce useful results, go ahead and output the lower
10760 bound solo, and hope the debugger can cope. */
10762 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10763 if (upper)
10764 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10767 /* Otherwise we have an array type with an unspecified length. The
10768 DWARF-2 spec does not say how to handle this; let's just leave out the
10769 bounds. */
10773 static void
10774 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10776 unsigned size;
10778 switch (TREE_CODE (tree_node))
10780 case ERROR_MARK:
10781 size = 0;
10782 break;
10783 case ENUMERAL_TYPE:
10784 case RECORD_TYPE:
10785 case UNION_TYPE:
10786 case QUAL_UNION_TYPE:
10787 size = int_size_in_bytes (tree_node);
10788 break;
10789 case FIELD_DECL:
10790 /* For a data member of a struct or union, the DW_AT_byte_size is
10791 generally given as the number of bytes normally allocated for an
10792 object of the *declared* type of the member itself. This is true
10793 even for bit-fields. */
10794 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10795 break;
10796 default:
10797 gcc_unreachable ();
10800 /* Note that `size' might be -1 when we get to this point. If it is, that
10801 indicates that the byte size of the entity in question is variable. We
10802 have no good way of expressing this fact in Dwarf at the present time,
10803 so just let the -1 pass on through. */
10804 add_AT_unsigned (die, DW_AT_byte_size, size);
10807 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10808 which specifies the distance in bits from the highest order bit of the
10809 "containing object" for the bit-field to the highest order bit of the
10810 bit-field itself.
10812 For any given bit-field, the "containing object" is a hypothetical object
10813 (of some integral or enum type) within which the given bit-field lives. The
10814 type of this hypothetical "containing object" is always the same as the
10815 declared type of the individual bit-field itself. The determination of the
10816 exact location of the "containing object" for a bit-field is rather
10817 complicated. It's handled by the `field_byte_offset' function (above).
10819 Note that it is the size (in bytes) of the hypothetical "containing object"
10820 which will be given in the DW_AT_byte_size attribute for this bit-field.
10821 (See `byte_size_attribute' above). */
10823 static inline void
10824 add_bit_offset_attribute (dw_die_ref die, tree decl)
10826 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10827 tree type = DECL_BIT_FIELD_TYPE (decl);
10828 HOST_WIDE_INT bitpos_int;
10829 HOST_WIDE_INT highest_order_object_bit_offset;
10830 HOST_WIDE_INT highest_order_field_bit_offset;
10831 HOST_WIDE_INT unsigned bit_offset;
10833 /* Must be a field and a bit field. */
10834 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10836 /* We can't yet handle bit-fields whose offsets are variable, so if we
10837 encounter such things, just return without generating any attribute
10838 whatsoever. Likewise for variable or too large size. */
10839 if (! host_integerp (bit_position (decl), 0)
10840 || ! host_integerp (DECL_SIZE (decl), 1))
10841 return;
10843 bitpos_int = int_bit_position (decl);
10845 /* Note that the bit offset is always the distance (in bits) from the
10846 highest-order bit of the "containing object" to the highest-order bit of
10847 the bit-field itself. Since the "high-order end" of any object or field
10848 is different on big-endian and little-endian machines, the computation
10849 below must take account of these differences. */
10850 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10851 highest_order_field_bit_offset = bitpos_int;
10853 if (! BYTES_BIG_ENDIAN)
10855 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10856 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10859 bit_offset
10860 = (! BYTES_BIG_ENDIAN
10861 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10862 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10864 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10867 /* For a FIELD_DECL node which represents a bit field, output an attribute
10868 which specifies the length in bits of the given field. */
10870 static inline void
10871 add_bit_size_attribute (dw_die_ref die, tree decl)
10873 /* Must be a field and a bit field. */
10874 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10875 && DECL_BIT_FIELD_TYPE (decl));
10877 if (host_integerp (DECL_SIZE (decl), 1))
10878 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10881 /* If the compiled language is ANSI C, then add a 'prototyped'
10882 attribute, if arg types are given for the parameters of a function. */
10884 static inline void
10885 add_prototyped_attribute (dw_die_ref die, tree func_type)
10887 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10888 && TYPE_ARG_TYPES (func_type) != NULL)
10889 add_AT_flag (die, DW_AT_prototyped, 1);
10892 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10893 by looking in either the type declaration or object declaration
10894 equate table. */
10896 static inline void
10897 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10899 dw_die_ref origin_die = NULL;
10901 if (TREE_CODE (origin) != FUNCTION_DECL)
10903 /* We may have gotten separated from the block for the inlined
10904 function, if we're in an exception handler or some such; make
10905 sure that the abstract function has been written out.
10907 Doing this for nested functions is wrong, however; functions are
10908 distinct units, and our context might not even be inline. */
10909 tree fn = origin;
10911 if (TYPE_P (fn))
10912 fn = TYPE_STUB_DECL (fn);
10914 fn = decl_function_context (fn);
10915 if (fn)
10916 dwarf2out_abstract_function (fn);
10919 if (DECL_P (origin))
10920 origin_die = lookup_decl_die (origin);
10921 else if (TYPE_P (origin))
10922 origin_die = lookup_type_die (origin);
10924 /* XXX: Functions that are never lowered don't always have correct block
10925 trees (in the case of java, they simply have no block tree, in some other
10926 languages). For these functions, there is nothing we can really do to
10927 output correct debug info for inlined functions in all cases. Rather
10928 than die, we'll just produce deficient debug info now, in that we will
10929 have variables without a proper abstract origin. In the future, when all
10930 functions are lowered, we should re-add a gcc_assert (origin_die)
10931 here. */
10933 if (origin_die)
10934 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10937 /* We do not currently support the pure_virtual attribute. */
10939 static inline void
10940 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10942 if (DECL_VINDEX (func_decl))
10944 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10946 if (host_integerp (DECL_VINDEX (func_decl), 0))
10947 add_AT_loc (die, DW_AT_vtable_elem_location,
10948 new_loc_descr (DW_OP_constu,
10949 tree_low_cst (DECL_VINDEX (func_decl), 0),
10950 0));
10952 /* GNU extension: Record what type this method came from originally. */
10953 if (debug_info_level > DINFO_LEVEL_TERSE)
10954 add_AT_die_ref (die, DW_AT_containing_type,
10955 lookup_type_die (DECL_CONTEXT (func_decl)));
10959 /* Add source coordinate attributes for the given decl. */
10961 static void
10962 add_src_coords_attributes (dw_die_ref die, tree decl)
10964 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10966 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10967 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10970 /* Add a DW_AT_name attribute and source coordinate attribute for the
10971 given decl, but only if it actually has a name. */
10973 static void
10974 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10976 tree decl_name;
10978 decl_name = DECL_NAME (decl);
10979 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10981 add_name_attribute (die, dwarf2_name (decl, 0));
10982 if (! DECL_ARTIFICIAL (decl))
10983 add_src_coords_attributes (die, decl);
10985 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10986 && TREE_PUBLIC (decl)
10987 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10988 && !DECL_ABSTRACT (decl)
10989 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10990 add_AT_string (die, DW_AT_MIPS_linkage_name,
10991 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10994 #ifdef VMS_DEBUGGING_INFO
10995 /* Get the function's name, as described by its RTL. This may be different
10996 from the DECL_NAME name used in the source file. */
10997 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10999 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11000 XEXP (DECL_RTL (decl), 0));
11001 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11003 #endif
11006 /* Push a new declaration scope. */
11008 static void
11009 push_decl_scope (tree scope)
11011 VEC_safe_push (tree, gc, decl_scope_table, scope);
11014 /* Pop a declaration scope. */
11016 static inline void
11017 pop_decl_scope (void)
11019 VEC_pop (tree, decl_scope_table);
11022 /* Return the DIE for the scope that immediately contains this type.
11023 Non-named types get global scope. Named types nested in other
11024 types get their containing scope if it's open, or global scope
11025 otherwise. All other types (i.e. function-local named types) get
11026 the current active scope. */
11028 static dw_die_ref
11029 scope_die_for (tree t, dw_die_ref context_die)
11031 dw_die_ref scope_die = NULL;
11032 tree containing_scope;
11033 int i;
11035 /* Non-types always go in the current scope. */
11036 gcc_assert (TYPE_P (t));
11038 containing_scope = TYPE_CONTEXT (t);
11040 /* Use the containing namespace if it was passed in (for a declaration). */
11041 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11043 if (context_die == lookup_decl_die (containing_scope))
11044 /* OK */;
11045 else
11046 containing_scope = NULL_TREE;
11049 /* Ignore function type "scopes" from the C frontend. They mean that
11050 a tagged type is local to a parmlist of a function declarator, but
11051 that isn't useful to DWARF. */
11052 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11053 containing_scope = NULL_TREE;
11055 if (containing_scope == NULL_TREE)
11056 scope_die = comp_unit_die;
11057 else if (TYPE_P (containing_scope))
11059 /* For types, we can just look up the appropriate DIE. But
11060 first we check to see if we're in the middle of emitting it
11061 so we know where the new DIE should go. */
11062 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11063 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11064 break;
11066 if (i < 0)
11068 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11069 || TREE_ASM_WRITTEN (containing_scope));
11071 /* If none of the current dies are suitable, we get file scope. */
11072 scope_die = comp_unit_die;
11074 else
11075 scope_die = lookup_type_die (containing_scope);
11077 else
11078 scope_die = context_die;
11080 return scope_die;
11083 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11085 static inline int
11086 local_scope_p (dw_die_ref context_die)
11088 for (; context_die; context_die = context_die->die_parent)
11089 if (context_die->die_tag == DW_TAG_inlined_subroutine
11090 || context_die->die_tag == DW_TAG_subprogram)
11091 return 1;
11093 return 0;
11096 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11097 whether or not to treat a DIE in this context as a declaration. */
11099 static inline int
11100 class_or_namespace_scope_p (dw_die_ref context_die)
11102 return (context_die
11103 && (context_die->die_tag == DW_TAG_structure_type
11104 || context_die->die_tag == DW_TAG_union_type
11105 || context_die->die_tag == DW_TAG_namespace));
11108 /* Many forms of DIEs require a "type description" attribute. This
11109 routine locates the proper "type descriptor" die for the type given
11110 by 'type', and adds a DW_AT_type attribute below the given die. */
11112 static void
11113 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11114 int decl_volatile, dw_die_ref context_die)
11116 enum tree_code code = TREE_CODE (type);
11117 dw_die_ref type_die = NULL;
11119 /* ??? If this type is an unnamed subrange type of an integral or
11120 floating-point type, use the inner type. This is because we have no
11121 support for unnamed types in base_type_die. This can happen if this is
11122 an Ada subrange type. Correct solution is emit a subrange type die. */
11123 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11124 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11125 type = TREE_TYPE (type), code = TREE_CODE (type);
11127 if (code == ERROR_MARK
11128 /* Handle a special case. For functions whose return type is void, we
11129 generate *no* type attribute. (Note that no object may have type
11130 `void', so this only applies to function return types). */
11131 || code == VOID_TYPE)
11132 return;
11134 type_die = modified_type_die (type,
11135 decl_const || TYPE_READONLY (type),
11136 decl_volatile || TYPE_VOLATILE (type),
11137 context_die);
11139 if (type_die != NULL)
11140 add_AT_die_ref (object_die, DW_AT_type, type_die);
11143 /* Given an object die, add the calling convention attribute for the
11144 function call type. */
11145 static void
11146 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11148 enum dwarf_calling_convention value = DW_CC_normal;
11150 value = targetm.dwarf_calling_convention (type);
11152 /* Only add the attribute if the backend requests it, and
11153 is not DW_CC_normal. */
11154 if (value && (value != DW_CC_normal))
11155 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11158 /* Given a tree pointer to a struct, class, union, or enum type node, return
11159 a pointer to the (string) tag name for the given type, or zero if the type
11160 was declared without a tag. */
11162 static const char *
11163 type_tag (tree type)
11165 const char *name = 0;
11167 if (TYPE_NAME (type) != 0)
11169 tree t = 0;
11171 /* Find the IDENTIFIER_NODE for the type name. */
11172 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11173 t = TYPE_NAME (type);
11175 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11176 a TYPE_DECL node, regardless of whether or not a `typedef' was
11177 involved. */
11178 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11179 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11180 t = DECL_NAME (TYPE_NAME (type));
11182 /* Now get the name as a string, or invent one. */
11183 if (t != 0)
11184 name = IDENTIFIER_POINTER (t);
11187 return (name == 0 || *name == '\0') ? 0 : name;
11190 /* Return the type associated with a data member, make a special check
11191 for bit field types. */
11193 static inline tree
11194 member_declared_type (tree member)
11196 return (DECL_BIT_FIELD_TYPE (member)
11197 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11200 /* Get the decl's label, as described by its RTL. This may be different
11201 from the DECL_NAME name used in the source file. */
11203 #if 0
11204 static const char *
11205 decl_start_label (tree decl)
11207 rtx x;
11208 const char *fnname;
11210 x = DECL_RTL (decl);
11211 gcc_assert (MEM_P (x));
11213 x = XEXP (x, 0);
11214 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11216 fnname = XSTR (x, 0);
11217 return fnname;
11219 #endif
11221 /* These routines generate the internal representation of the DIE's for
11222 the compilation unit. Debugging information is collected by walking
11223 the declaration trees passed in from dwarf2out_decl(). */
11225 static void
11226 gen_array_type_die (tree type, dw_die_ref context_die)
11228 dw_die_ref scope_die = scope_die_for (type, context_die);
11229 dw_die_ref array_die;
11230 tree element_type;
11232 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11233 the inner array type comes before the outer array type. Thus we must
11234 call gen_type_die before we call new_die. See below also. */
11235 #ifdef MIPS_DEBUGGING_INFO
11236 gen_type_die (TREE_TYPE (type), context_die);
11237 #endif
11239 array_die = new_die (DW_TAG_array_type, scope_die, type);
11240 add_name_attribute (array_die, type_tag (type));
11241 equate_type_number_to_die (type, array_die);
11243 if (TREE_CODE (type) == VECTOR_TYPE)
11245 /* The frontend feeds us a representation for the vector as a struct
11246 containing an array. Pull out the array type. */
11247 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11248 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11251 #if 0
11252 /* We default the array ordering. SDB will probably do
11253 the right things even if DW_AT_ordering is not present. It's not even
11254 an issue until we start to get into multidimensional arrays anyway. If
11255 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11256 then we'll have to put the DW_AT_ordering attribute back in. (But if
11257 and when we find out that we need to put these in, we will only do so
11258 for multidimensional arrays. */
11259 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11260 #endif
11262 #ifdef MIPS_DEBUGGING_INFO
11263 /* The SGI compilers handle arrays of unknown bound by setting
11264 AT_declaration and not emitting any subrange DIEs. */
11265 if (! TYPE_DOMAIN (type))
11266 add_AT_flag (array_die, DW_AT_declaration, 1);
11267 else
11268 #endif
11269 add_subscript_info (array_die, type);
11271 /* Add representation of the type of the elements of this array type. */
11272 element_type = TREE_TYPE (type);
11274 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11275 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11276 We work around this by disabling this feature. See also
11277 add_subscript_info. */
11278 #ifndef MIPS_DEBUGGING_INFO
11279 while (TREE_CODE (element_type) == ARRAY_TYPE)
11280 element_type = TREE_TYPE (element_type);
11282 gen_type_die (element_type, context_die);
11283 #endif
11285 add_type_attribute (array_die, element_type, 0, 0, context_die);
11287 if (get_AT (array_die, DW_AT_name))
11288 add_pubtype (type, array_die);
11291 #if 0
11292 static void
11293 gen_entry_point_die (tree decl, dw_die_ref context_die)
11295 tree origin = decl_ultimate_origin (decl);
11296 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11298 if (origin != NULL)
11299 add_abstract_origin_attribute (decl_die, origin);
11300 else
11302 add_name_and_src_coords_attributes (decl_die, decl);
11303 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11304 0, 0, context_die);
11307 if (DECL_ABSTRACT (decl))
11308 equate_decl_number_to_die (decl, decl_die);
11309 else
11310 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11312 #endif
11314 /* Walk through the list of incomplete types again, trying once more to
11315 emit full debugging info for them. */
11317 static void
11318 retry_incomplete_types (void)
11320 int i;
11322 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11323 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11326 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11328 static void
11329 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11331 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11333 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11334 be incomplete and such types are not marked. */
11335 add_abstract_origin_attribute (type_die, type);
11338 /* Generate a DIE to represent an inlined instance of a structure type. */
11340 static void
11341 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11343 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11345 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11346 be incomplete and such types are not marked. */
11347 add_abstract_origin_attribute (type_die, type);
11350 /* Generate a DIE to represent an inlined instance of a union type. */
11352 static void
11353 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11355 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11357 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11358 be incomplete and such types are not marked. */
11359 add_abstract_origin_attribute (type_die, type);
11362 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11363 include all of the information about the enumeration values also. Each
11364 enumerated type name/value is listed as a child of the enumerated type
11365 DIE. */
11367 static dw_die_ref
11368 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11370 dw_die_ref type_die = lookup_type_die (type);
11372 if (type_die == NULL)
11374 type_die = new_die (DW_TAG_enumeration_type,
11375 scope_die_for (type, context_die), type);
11376 equate_type_number_to_die (type, type_die);
11377 add_name_attribute (type_die, type_tag (type));
11379 else if (! TYPE_SIZE (type))
11380 return type_die;
11381 else
11382 remove_AT (type_die, DW_AT_declaration);
11384 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11385 given enum type is incomplete, do not generate the DW_AT_byte_size
11386 attribute or the DW_AT_element_list attribute. */
11387 if (TYPE_SIZE (type))
11389 tree link;
11391 TREE_ASM_WRITTEN (type) = 1;
11392 add_byte_size_attribute (type_die, type);
11393 if (TYPE_STUB_DECL (type) != NULL_TREE)
11394 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11396 /* If the first reference to this type was as the return type of an
11397 inline function, then it may not have a parent. Fix this now. */
11398 if (type_die->die_parent == NULL)
11399 add_child_die (scope_die_for (type, context_die), type_die);
11401 for (link = TYPE_VALUES (type);
11402 link != NULL; link = TREE_CHAIN (link))
11404 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11405 tree value = TREE_VALUE (link);
11407 add_name_attribute (enum_die,
11408 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11410 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11411 /* DWARF2 does not provide a way of indicating whether or
11412 not enumeration constants are signed or unsigned. GDB
11413 always assumes the values are signed, so we output all
11414 values as if they were signed. That means that
11415 enumeration constants with very large unsigned values
11416 will appear to have negative values in the debugger. */
11417 add_AT_int (enum_die, DW_AT_const_value,
11418 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11421 else
11422 add_AT_flag (type_die, DW_AT_declaration, 1);
11424 if (get_AT (type_die, DW_AT_name))
11425 add_pubtype (type, type_die);
11427 return type_die;
11430 /* Generate a DIE to represent either a real live formal parameter decl or to
11431 represent just the type of some formal parameter position in some function
11432 type.
11434 Note that this routine is a bit unusual because its argument may be a
11435 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11436 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11437 node. If it's the former then this function is being called to output a
11438 DIE to represent a formal parameter object (or some inlining thereof). If
11439 it's the latter, then this function is only being called to output a
11440 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11441 argument type of some subprogram type. */
11443 static dw_die_ref
11444 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11446 dw_die_ref parm_die
11447 = new_die (DW_TAG_formal_parameter, context_die, node);
11448 tree origin;
11450 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11452 case tcc_declaration:
11453 origin = decl_ultimate_origin (node);
11454 if (origin != NULL)
11455 add_abstract_origin_attribute (parm_die, origin);
11456 else
11458 add_name_and_src_coords_attributes (parm_die, node);
11459 add_type_attribute (parm_die, TREE_TYPE (node),
11460 TREE_READONLY (node),
11461 TREE_THIS_VOLATILE (node),
11462 context_die);
11463 if (DECL_ARTIFICIAL (node))
11464 add_AT_flag (parm_die, DW_AT_artificial, 1);
11467 equate_decl_number_to_die (node, parm_die);
11468 if (! DECL_ABSTRACT (node))
11469 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11471 break;
11473 case tcc_type:
11474 /* We were called with some kind of a ..._TYPE node. */
11475 add_type_attribute (parm_die, node, 0, 0, context_die);
11476 break;
11478 default:
11479 gcc_unreachable ();
11482 return parm_die;
11485 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11486 at the end of an (ANSI prototyped) formal parameters list. */
11488 static void
11489 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11491 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11494 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11495 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11496 parameters as specified in some function type specification (except for
11497 those which appear as part of a function *definition*). */
11499 static void
11500 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11502 tree link;
11503 tree formal_type = NULL;
11504 tree first_parm_type;
11505 tree arg;
11507 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11509 arg = DECL_ARGUMENTS (function_or_method_type);
11510 function_or_method_type = TREE_TYPE (function_or_method_type);
11512 else
11513 arg = NULL_TREE;
11515 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11517 /* Make our first pass over the list of formal parameter types and output a
11518 DW_TAG_formal_parameter DIE for each one. */
11519 for (link = first_parm_type; link; )
11521 dw_die_ref parm_die;
11523 formal_type = TREE_VALUE (link);
11524 if (formal_type == void_type_node)
11525 break;
11527 /* Output a (nameless) DIE to represent the formal parameter itself. */
11528 parm_die = gen_formal_parameter_die (formal_type, context_die);
11529 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11530 && link == first_parm_type)
11531 || (arg && DECL_ARTIFICIAL (arg)))
11532 add_AT_flag (parm_die, DW_AT_artificial, 1);
11534 link = TREE_CHAIN (link);
11535 if (arg)
11536 arg = TREE_CHAIN (arg);
11539 /* If this function type has an ellipsis, add a
11540 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11541 if (formal_type != void_type_node)
11542 gen_unspecified_parameters_die (function_or_method_type, context_die);
11544 /* Make our second (and final) pass over the list of formal parameter types
11545 and output DIEs to represent those types (as necessary). */
11546 for (link = TYPE_ARG_TYPES (function_or_method_type);
11547 link && TREE_VALUE (link);
11548 link = TREE_CHAIN (link))
11549 gen_type_die (TREE_VALUE (link), context_die);
11552 /* We want to generate the DIE for TYPE so that we can generate the
11553 die for MEMBER, which has been defined; we will need to refer back
11554 to the member declaration nested within TYPE. If we're trying to
11555 generate minimal debug info for TYPE, processing TYPE won't do the
11556 trick; we need to attach the member declaration by hand. */
11558 static void
11559 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11561 gen_type_die (type, context_die);
11563 /* If we're trying to avoid duplicate debug info, we may not have
11564 emitted the member decl for this function. Emit it now. */
11565 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11566 && ! lookup_decl_die (member))
11568 dw_die_ref type_die;
11569 gcc_assert (!decl_ultimate_origin (member));
11571 push_decl_scope (type);
11572 type_die = lookup_type_die (type);
11573 if (TREE_CODE (member) == FUNCTION_DECL)
11574 gen_subprogram_die (member, type_die);
11575 else if (TREE_CODE (member) == FIELD_DECL)
11577 /* Ignore the nameless fields that are used to skip bits but handle
11578 C++ anonymous unions and structs. */
11579 if (DECL_NAME (member) != NULL_TREE
11580 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11581 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11583 gen_type_die (member_declared_type (member), type_die);
11584 gen_field_die (member, type_die);
11587 else
11588 gen_variable_die (member, type_die);
11590 pop_decl_scope ();
11594 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11595 may later generate inlined and/or out-of-line instances of. */
11597 static void
11598 dwarf2out_abstract_function (tree decl)
11600 dw_die_ref old_die;
11601 tree save_fn;
11602 struct function *save_cfun;
11603 tree context;
11604 int was_abstract = DECL_ABSTRACT (decl);
11606 /* Make sure we have the actual abstract inline, not a clone. */
11607 decl = DECL_ORIGIN (decl);
11609 old_die = lookup_decl_die (decl);
11610 if (old_die && get_AT (old_die, DW_AT_inline))
11611 /* We've already generated the abstract instance. */
11612 return;
11614 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11615 we don't get confused by DECL_ABSTRACT. */
11616 if (debug_info_level > DINFO_LEVEL_TERSE)
11618 context = decl_class_context (decl);
11619 if (context)
11620 gen_type_die_for_member
11621 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11624 /* Pretend we've just finished compiling this function. */
11625 save_fn = current_function_decl;
11626 save_cfun = cfun;
11627 current_function_decl = decl;
11628 cfun = DECL_STRUCT_FUNCTION (decl);
11630 set_decl_abstract_flags (decl, 1);
11631 dwarf2out_decl (decl);
11632 if (! was_abstract)
11633 set_decl_abstract_flags (decl, 0);
11635 current_function_decl = save_fn;
11636 cfun = save_cfun;
11639 /* Helper function of premark_used_types() which gets called through
11640 htab_traverse_resize().
11642 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11643 marked as unused by prune_unused_types. */
11644 static int
11645 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11647 tree type;
11648 dw_die_ref die;
11650 type = *slot;
11651 die = lookup_type_die (type);
11652 if (die != NULL)
11653 die->die_perennial_p = 1;
11654 return 1;
11657 /* Mark all members of used_types_hash as perennial. */
11658 static void
11659 premark_used_types (void)
11661 if (cfun && cfun->used_types_hash)
11662 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11665 /* Generate a DIE to represent a declared function (either file-scope or
11666 block-local). */
11668 static void
11669 gen_subprogram_die (tree decl, dw_die_ref context_die)
11671 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11672 tree origin = decl_ultimate_origin (decl);
11673 dw_die_ref subr_die;
11674 tree fn_arg_types;
11675 tree outer_scope;
11676 dw_die_ref old_die = lookup_decl_die (decl);
11677 int declaration = (current_function_decl != decl
11678 || class_or_namespace_scope_p (context_die));
11680 premark_used_types ();
11682 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11683 started to generate the abstract instance of an inline, decided to output
11684 its containing class, and proceeded to emit the declaration of the inline
11685 from the member list for the class. If so, DECLARATION takes priority;
11686 we'll get back to the abstract instance when done with the class. */
11688 /* The class-scope declaration DIE must be the primary DIE. */
11689 if (origin && declaration && class_or_namespace_scope_p (context_die))
11691 origin = NULL;
11692 gcc_assert (!old_die);
11695 /* Now that the C++ front end lazily declares artificial member fns, we
11696 might need to retrofit the declaration into its class. */
11697 if (!declaration && !origin && !old_die
11698 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11699 && !class_or_namespace_scope_p (context_die)
11700 && debug_info_level > DINFO_LEVEL_TERSE)
11701 old_die = force_decl_die (decl);
11703 if (origin != NULL)
11705 gcc_assert (!declaration || local_scope_p (context_die));
11707 /* Fixup die_parent for the abstract instance of a nested
11708 inline function. */
11709 if (old_die && old_die->die_parent == NULL)
11710 add_child_die (context_die, old_die);
11712 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11713 add_abstract_origin_attribute (subr_die, origin);
11715 else if (old_die)
11717 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11718 struct dwarf_file_data * file_index = lookup_filename (s.file);
11720 if (!get_AT_flag (old_die, DW_AT_declaration)
11721 /* We can have a normal definition following an inline one in the
11722 case of redefinition of GNU C extern inlines.
11723 It seems reasonable to use AT_specification in this case. */
11724 && !get_AT (old_die, DW_AT_inline))
11726 /* Detect and ignore this case, where we are trying to output
11727 something we have already output. */
11728 return;
11731 /* If the definition comes from the same place as the declaration,
11732 maybe use the old DIE. We always want the DIE for this function
11733 that has the *_pc attributes to be under comp_unit_die so the
11734 debugger can find it. We also need to do this for abstract
11735 instances of inlines, since the spec requires the out-of-line copy
11736 to have the same parent. For local class methods, this doesn't
11737 apply; we just use the old DIE. */
11738 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11739 && (DECL_ARTIFICIAL (decl)
11740 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11741 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11742 == (unsigned) s.line))))
11744 subr_die = old_die;
11746 /* Clear out the declaration attribute and the formal parameters.
11747 Do not remove all children, because it is possible that this
11748 declaration die was forced using force_decl_die(). In such
11749 cases die that forced declaration die (e.g. TAG_imported_module)
11750 is one of the children that we do not want to remove. */
11751 remove_AT (subr_die, DW_AT_declaration);
11752 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11754 else
11756 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11757 add_AT_specification (subr_die, old_die);
11758 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11759 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11760 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11761 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11764 else
11766 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11768 if (TREE_PUBLIC (decl))
11769 add_AT_flag (subr_die, DW_AT_external, 1);
11771 add_name_and_src_coords_attributes (subr_die, decl);
11772 if (debug_info_level > DINFO_LEVEL_TERSE)
11774 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11775 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11776 0, 0, context_die);
11779 add_pure_or_virtual_attribute (subr_die, decl);
11780 if (DECL_ARTIFICIAL (decl))
11781 add_AT_flag (subr_die, DW_AT_artificial, 1);
11783 if (TREE_PROTECTED (decl))
11784 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11785 else if (TREE_PRIVATE (decl))
11786 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11789 if (declaration)
11791 if (!old_die || !get_AT (old_die, DW_AT_inline))
11793 add_AT_flag (subr_die, DW_AT_declaration, 1);
11795 /* The first time we see a member function, it is in the context of
11796 the class to which it belongs. We make sure of this by emitting
11797 the class first. The next time is the definition, which is
11798 handled above. The two may come from the same source text.
11800 Note that force_decl_die() forces function declaration die. It is
11801 later reused to represent definition. */
11802 equate_decl_number_to_die (decl, subr_die);
11805 else if (DECL_ABSTRACT (decl))
11807 if (DECL_DECLARED_INLINE_P (decl))
11809 if (cgraph_function_possibly_inlined_p (decl))
11810 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11811 else
11812 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11814 else
11816 if (cgraph_function_possibly_inlined_p (decl))
11817 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11818 else
11819 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11822 equate_decl_number_to_die (decl, subr_die);
11824 else if (!DECL_EXTERNAL (decl))
11826 HOST_WIDE_INT cfa_fb_offset;
11828 if (!old_die || !get_AT (old_die, DW_AT_inline))
11829 equate_decl_number_to_die (decl, subr_die);
11831 if (!flag_reorder_blocks_and_partition)
11833 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11834 current_function_funcdef_no);
11835 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11836 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11837 current_function_funcdef_no);
11838 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11840 add_pubname (decl, subr_die);
11841 add_arange (decl, subr_die);
11843 else
11844 { /* Do nothing for now; maybe need to duplicate die, one for
11845 hot section and ond for cold section, then use the hot/cold
11846 section begin/end labels to generate the aranges... */
11848 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11849 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11850 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11851 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11853 add_pubname (decl, subr_die);
11854 add_arange (decl, subr_die);
11855 add_arange (decl, subr_die);
11859 #ifdef MIPS_DEBUGGING_INFO
11860 /* Add a reference to the FDE for this routine. */
11861 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11862 #endif
11864 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11866 /* We define the "frame base" as the function's CFA. This is more
11867 convenient for several reasons: (1) It's stable across the prologue
11868 and epilogue, which makes it better than just a frame pointer,
11869 (2) With dwarf3, there exists a one-byte encoding that allows us
11870 to reference the .debug_frame data by proxy, but failing that,
11871 (3) We can at least reuse the code inspection and interpretation
11872 code that determines the CFA position at various points in the
11873 function. */
11874 /* ??? Use some command-line or configury switch to enable the use
11875 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11876 consumers that understand it; fall back to "pure" dwarf2 and
11877 convert the CFA data into a location list. */
11879 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11880 if (list->dw_loc_next)
11881 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11882 else
11883 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11886 /* Compute a displacement from the "steady-state frame pointer" to
11887 the CFA. The former is what all stack slots and argument slots
11888 will reference in the rtl; the later is what we've told the
11889 debugger about. We'll need to adjust all frame_base references
11890 by this displacement. */
11891 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11893 if (cfun->static_chain_decl)
11894 add_AT_location_description (subr_die, DW_AT_static_link,
11895 loc_descriptor_from_tree (cfun->static_chain_decl));
11898 /* Now output descriptions of the arguments for this function. This gets
11899 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11900 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11901 `...' at the end of the formal parameter list. In order to find out if
11902 there was a trailing ellipsis or not, we must instead look at the type
11903 associated with the FUNCTION_DECL. This will be a node of type
11904 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11905 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11906 an ellipsis at the end. */
11908 /* In the case where we are describing a mere function declaration, all we
11909 need to do here (and all we *can* do here) is to describe the *types* of
11910 its formal parameters. */
11911 if (debug_info_level <= DINFO_LEVEL_TERSE)
11913 else if (declaration)
11914 gen_formal_types_die (decl, subr_die);
11915 else
11917 /* Generate DIEs to represent all known formal parameters. */
11918 tree arg_decls = DECL_ARGUMENTS (decl);
11919 tree parm;
11921 /* When generating DIEs, generate the unspecified_parameters DIE
11922 instead if we come across the arg "__builtin_va_alist" */
11923 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11924 if (TREE_CODE (parm) == PARM_DECL)
11926 if (DECL_NAME (parm)
11927 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11928 "__builtin_va_alist"))
11929 gen_unspecified_parameters_die (parm, subr_die);
11930 else
11931 gen_decl_die (parm, subr_die);
11934 /* Decide whether we need an unspecified_parameters DIE at the end.
11935 There are 2 more cases to do this for: 1) the ansi ... declaration -
11936 this is detectable when the end of the arg list is not a
11937 void_type_node 2) an unprototyped function declaration (not a
11938 definition). This just means that we have no info about the
11939 parameters at all. */
11940 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11941 if (fn_arg_types != NULL)
11943 /* This is the prototyped case, check for.... */
11944 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11945 gen_unspecified_parameters_die (decl, subr_die);
11947 else if (DECL_INITIAL (decl) == NULL_TREE)
11948 gen_unspecified_parameters_die (decl, subr_die);
11951 /* Output Dwarf info for all of the stuff within the body of the function
11952 (if it has one - it may be just a declaration). */
11953 outer_scope = DECL_INITIAL (decl);
11955 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11956 a function. This BLOCK actually represents the outermost binding contour
11957 for the function, i.e. the contour in which the function's formal
11958 parameters and labels get declared. Curiously, it appears that the front
11959 end doesn't actually put the PARM_DECL nodes for the current function onto
11960 the BLOCK_VARS list for this outer scope, but are strung off of the
11961 DECL_ARGUMENTS list for the function instead.
11963 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11964 the LABEL_DECL nodes for the function however, and we output DWARF info
11965 for those in decls_for_scope. Just within the `outer_scope' there will be
11966 a BLOCK node representing the function's outermost pair of curly braces,
11967 and any blocks used for the base and member initializers of a C++
11968 constructor function. */
11969 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11971 /* Emit a DW_TAG_variable DIE for a named return value. */
11972 if (DECL_NAME (DECL_RESULT (decl)))
11973 gen_decl_die (DECL_RESULT (decl), subr_die);
11975 current_function_has_inlines = 0;
11976 decls_for_scope (outer_scope, subr_die, 0);
11978 #if 0 && defined (MIPS_DEBUGGING_INFO)
11979 if (current_function_has_inlines)
11981 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11982 if (! comp_unit_has_inlines)
11984 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11985 comp_unit_has_inlines = 1;
11988 #endif
11990 /* Add the calling convention attribute if requested. */
11991 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11995 /* Generate a DIE to represent a declared data object. */
11997 static void
11998 gen_variable_die (tree decl, dw_die_ref context_die)
12000 tree origin = decl_ultimate_origin (decl);
12001 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12003 dw_die_ref old_die = lookup_decl_die (decl);
12004 int declaration = (DECL_EXTERNAL (decl)
12005 /* If DECL is COMDAT and has not actually been
12006 emitted, we cannot take its address; there
12007 might end up being no definition anywhere in
12008 the program. For example, consider the C++
12009 test case:
12011 template <class T>
12012 struct S { static const int i = 7; };
12014 template <class T>
12015 const int S<T>::i;
12017 int f() { return S<int>::i; }
12019 Here, S<int>::i is not DECL_EXTERNAL, but no
12020 definition is required, so the compiler will
12021 not emit a definition. */
12022 || (TREE_CODE (decl) == VAR_DECL
12023 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12024 || class_or_namespace_scope_p (context_die));
12026 if (origin != NULL)
12027 add_abstract_origin_attribute (var_die, origin);
12029 /* Loop unrolling can create multiple blocks that refer to the same
12030 static variable, so we must test for the DW_AT_declaration flag.
12032 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12033 copy decls and set the DECL_ABSTRACT flag on them instead of
12034 sharing them.
12036 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12038 ??? The declare_in_namespace support causes us to get two DIEs for one
12039 variable, both of which are declarations. We want to avoid considering
12040 one to be a specification, so we must test that this DIE is not a
12041 declaration. */
12042 else if (old_die && TREE_STATIC (decl) && ! declaration
12043 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12045 /* This is a definition of a C++ class level static. */
12046 add_AT_specification (var_die, old_die);
12047 if (DECL_NAME (decl))
12049 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12050 struct dwarf_file_data * file_index = lookup_filename (s.file);
12052 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12053 add_AT_file (var_die, DW_AT_decl_file, file_index);
12055 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12056 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12059 else
12061 add_name_and_src_coords_attributes (var_die, decl);
12062 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12063 TREE_THIS_VOLATILE (decl), context_die);
12065 if (TREE_PUBLIC (decl))
12066 add_AT_flag (var_die, DW_AT_external, 1);
12068 if (DECL_ARTIFICIAL (decl))
12069 add_AT_flag (var_die, DW_AT_artificial, 1);
12071 if (TREE_PROTECTED (decl))
12072 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12073 else if (TREE_PRIVATE (decl))
12074 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12077 if (declaration)
12078 add_AT_flag (var_die, DW_AT_declaration, 1);
12080 if (DECL_ABSTRACT (decl) || declaration)
12081 equate_decl_number_to_die (decl, var_die);
12083 if (! declaration && ! DECL_ABSTRACT (decl))
12085 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12086 add_pubname (decl, var_die);
12088 else
12089 tree_add_const_value_attribute (var_die, decl);
12092 /* Generate a DIE to represent a label identifier. */
12094 static void
12095 gen_label_die (tree decl, dw_die_ref context_die)
12097 tree origin = decl_ultimate_origin (decl);
12098 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12099 rtx insn;
12100 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12102 if (origin != NULL)
12103 add_abstract_origin_attribute (lbl_die, origin);
12104 else
12105 add_name_and_src_coords_attributes (lbl_die, decl);
12107 if (DECL_ABSTRACT (decl))
12108 equate_decl_number_to_die (decl, lbl_die);
12109 else
12111 insn = DECL_RTL_IF_SET (decl);
12113 /* Deleted labels are programmer specified labels which have been
12114 eliminated because of various optimizations. We still emit them
12115 here so that it is possible to put breakpoints on them. */
12116 if (insn
12117 && (LABEL_P (insn)
12118 || ((NOTE_P (insn)
12119 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12121 /* When optimization is enabled (via -O) some parts of the compiler
12122 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12123 represent source-level labels which were explicitly declared by
12124 the user. This really shouldn't be happening though, so catch
12125 it if it ever does happen. */
12126 gcc_assert (!INSN_DELETED_P (insn));
12128 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12129 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12134 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12135 attributes to the DIE for a block STMT, to describe where the inlined
12136 function was called from. This is similar to add_src_coords_attributes. */
12138 static inline void
12139 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12141 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12143 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12144 add_AT_unsigned (die, DW_AT_call_line, s.line);
12147 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12148 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12150 static inline void
12151 add_high_low_attributes (tree stmt, dw_die_ref die)
12153 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12155 if (BLOCK_FRAGMENT_CHAIN (stmt))
12157 tree chain;
12159 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12161 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12164 add_ranges (chain);
12165 chain = BLOCK_FRAGMENT_CHAIN (chain);
12167 while (chain);
12168 add_ranges (NULL);
12170 else
12172 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12173 BLOCK_NUMBER (stmt));
12174 add_AT_lbl_id (die, DW_AT_low_pc, label);
12175 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12176 BLOCK_NUMBER (stmt));
12177 add_AT_lbl_id (die, DW_AT_high_pc, label);
12181 /* Generate a DIE for a lexical block. */
12183 static void
12184 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12186 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12188 if (! BLOCK_ABSTRACT (stmt))
12189 add_high_low_attributes (stmt, stmt_die);
12191 decls_for_scope (stmt, stmt_die, depth);
12194 /* Generate a DIE for an inlined subprogram. */
12196 static void
12197 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12199 tree decl = block_ultimate_origin (stmt);
12201 /* Emit info for the abstract instance first, if we haven't yet. We
12202 must emit this even if the block is abstract, otherwise when we
12203 emit the block below (or elsewhere), we may end up trying to emit
12204 a die whose origin die hasn't been emitted, and crashing. */
12205 dwarf2out_abstract_function (decl);
12207 if (! BLOCK_ABSTRACT (stmt))
12209 dw_die_ref subr_die
12210 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12212 add_abstract_origin_attribute (subr_die, decl);
12213 add_high_low_attributes (stmt, subr_die);
12214 add_call_src_coords_attributes (stmt, subr_die);
12216 decls_for_scope (stmt, subr_die, depth);
12217 current_function_has_inlines = 1;
12219 else
12220 /* We may get here if we're the outer block of function A that was
12221 inlined into function B that was inlined into function C. When
12222 generating debugging info for C, dwarf2out_abstract_function(B)
12223 would mark all inlined blocks as abstract, including this one.
12224 So, we wouldn't (and shouldn't) expect labels to be generated
12225 for this one. Instead, just emit debugging info for
12226 declarations within the block. This is particularly important
12227 in the case of initializers of arguments passed from B to us:
12228 if they're statement expressions containing declarations, we
12229 wouldn't generate dies for their abstract variables, and then,
12230 when generating dies for the real variables, we'd die (pun
12231 intended :-) */
12232 gen_lexical_block_die (stmt, context_die, depth);
12235 /* Generate a DIE for a field in a record, or structure. */
12237 static void
12238 gen_field_die (tree decl, dw_die_ref context_die)
12240 dw_die_ref decl_die;
12242 if (TREE_TYPE (decl) == error_mark_node)
12243 return;
12245 decl_die = new_die (DW_TAG_member, context_die, decl);
12246 add_name_and_src_coords_attributes (decl_die, decl);
12247 add_type_attribute (decl_die, member_declared_type (decl),
12248 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12249 context_die);
12251 if (DECL_BIT_FIELD_TYPE (decl))
12253 add_byte_size_attribute (decl_die, decl);
12254 add_bit_size_attribute (decl_die, decl);
12255 add_bit_offset_attribute (decl_die, decl);
12258 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12259 add_data_member_location_attribute (decl_die, decl);
12261 if (DECL_ARTIFICIAL (decl))
12262 add_AT_flag (decl_die, DW_AT_artificial, 1);
12264 if (TREE_PROTECTED (decl))
12265 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12266 else if (TREE_PRIVATE (decl))
12267 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12269 /* Equate decl number to die, so that we can look up this decl later on. */
12270 equate_decl_number_to_die (decl, decl_die);
12273 #if 0
12274 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12275 Use modified_type_die instead.
12276 We keep this code here just in case these types of DIEs may be needed to
12277 represent certain things in other languages (e.g. Pascal) someday. */
12279 static void
12280 gen_pointer_type_die (tree type, dw_die_ref context_die)
12282 dw_die_ref ptr_die
12283 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12285 equate_type_number_to_die (type, ptr_die);
12286 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12287 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12290 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12291 Use modified_type_die instead.
12292 We keep this code here just in case these types of DIEs may be needed to
12293 represent certain things in other languages (e.g. Pascal) someday. */
12295 static void
12296 gen_reference_type_die (tree type, dw_die_ref context_die)
12298 dw_die_ref ref_die
12299 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12301 equate_type_number_to_die (type, ref_die);
12302 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12303 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12305 #endif
12307 /* Generate a DIE for a pointer to a member type. */
12309 static void
12310 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12312 dw_die_ref ptr_die
12313 = new_die (DW_TAG_ptr_to_member_type,
12314 scope_die_for (type, context_die), type);
12316 equate_type_number_to_die (type, ptr_die);
12317 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12318 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12319 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12322 /* Generate the DIE for the compilation unit. */
12324 static dw_die_ref
12325 gen_compile_unit_die (const char *filename)
12327 dw_die_ref die;
12328 char producer[250];
12329 const char *language_string = lang_hooks.name;
12330 int language;
12332 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12334 if (filename)
12336 add_name_attribute (die, filename);
12337 /* Don't add cwd for <built-in>. */
12338 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12339 add_comp_dir_attribute (die);
12342 sprintf (producer, "%s %s", language_string, version_string);
12344 #ifdef MIPS_DEBUGGING_INFO
12345 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12346 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12347 not appear in the producer string, the debugger reaches the conclusion
12348 that the object file is stripped and has no debugging information.
12349 To get the MIPS/SGI debugger to believe that there is debugging
12350 information in the object file, we add a -g to the producer string. */
12351 if (debug_info_level > DINFO_LEVEL_TERSE)
12352 strcat (producer, " -g");
12353 #endif
12355 add_AT_string (die, DW_AT_producer, producer);
12357 if (strcmp (language_string, "GNU C++") == 0)
12358 language = DW_LANG_C_plus_plus;
12359 else if (strcmp (language_string, "GNU Ada") == 0)
12360 language = DW_LANG_Ada95;
12361 else if (strcmp (language_string, "GNU F77") == 0)
12362 language = DW_LANG_Fortran77;
12363 else if (strcmp (language_string, "GNU F95") == 0)
12364 language = DW_LANG_Fortran95;
12365 else if (strcmp (language_string, "GNU Pascal") == 0)
12366 language = DW_LANG_Pascal83;
12367 else if (strcmp (language_string, "GNU Java") == 0)
12368 language = DW_LANG_Java;
12369 else if (strcmp (language_string, "GNU Objective-C") == 0)
12370 language = DW_LANG_ObjC;
12371 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12372 language = DW_LANG_ObjC_plus_plus;
12373 else
12374 language = DW_LANG_C89;
12376 add_AT_unsigned (die, DW_AT_language, language);
12377 return die;
12380 /* Generate the DIE for a base class. */
12382 static void
12383 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12385 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12387 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12388 add_data_member_location_attribute (die, binfo);
12390 if (BINFO_VIRTUAL_P (binfo))
12391 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12393 if (access == access_public_node)
12394 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12395 else if (access == access_protected_node)
12396 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12399 /* Generate a DIE for a class member. */
12401 static void
12402 gen_member_die (tree type, dw_die_ref context_die)
12404 tree member;
12405 tree binfo = TYPE_BINFO (type);
12406 dw_die_ref child;
12408 /* If this is not an incomplete type, output descriptions of each of its
12409 members. Note that as we output the DIEs necessary to represent the
12410 members of this record or union type, we will also be trying to output
12411 DIEs to represent the *types* of those members. However the `type'
12412 function (above) will specifically avoid generating type DIEs for member
12413 types *within* the list of member DIEs for this (containing) type except
12414 for those types (of members) which are explicitly marked as also being
12415 members of this (containing) type themselves. The g++ front- end can
12416 force any given type to be treated as a member of some other (containing)
12417 type by setting the TYPE_CONTEXT of the given (member) type to point to
12418 the TREE node representing the appropriate (containing) type. */
12420 /* First output info about the base classes. */
12421 if (binfo)
12423 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12424 int i;
12425 tree base;
12427 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12428 gen_inheritance_die (base,
12429 (accesses ? VEC_index (tree, accesses, i)
12430 : access_public_node), context_die);
12433 /* Now output info about the data members and type members. */
12434 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12436 /* If we thought we were generating minimal debug info for TYPE
12437 and then changed our minds, some of the member declarations
12438 may have already been defined. Don't define them again, but
12439 do put them in the right order. */
12441 child = lookup_decl_die (member);
12442 if (child)
12443 splice_child_die (context_die, child);
12444 else
12445 gen_decl_die (member, context_die);
12448 /* Now output info about the function members (if any). */
12449 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12451 /* Don't include clones in the member list. */
12452 if (DECL_ABSTRACT_ORIGIN (member))
12453 continue;
12455 child = lookup_decl_die (member);
12456 if (child)
12457 splice_child_die (context_die, child);
12458 else
12459 gen_decl_die (member, context_die);
12463 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12464 is set, we pretend that the type was never defined, so we only get the
12465 member DIEs needed by later specification DIEs. */
12467 static void
12468 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12470 dw_die_ref type_die = lookup_type_die (type);
12471 dw_die_ref scope_die = 0;
12472 int nested = 0;
12473 int complete = (TYPE_SIZE (type)
12474 && (! TYPE_STUB_DECL (type)
12475 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12476 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12478 if (type_die && ! complete)
12479 return;
12481 if (TYPE_CONTEXT (type) != NULL_TREE
12482 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12483 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12484 nested = 1;
12486 scope_die = scope_die_for (type, context_die);
12488 if (! type_die || (nested && scope_die == comp_unit_die))
12489 /* First occurrence of type or toplevel definition of nested class. */
12491 dw_die_ref old_die = type_die;
12493 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12494 ? DW_TAG_structure_type : DW_TAG_union_type,
12495 scope_die, type);
12496 equate_type_number_to_die (type, type_die);
12497 if (old_die)
12498 add_AT_specification (type_die, old_die);
12499 else
12500 add_name_attribute (type_die, type_tag (type));
12502 else
12503 remove_AT (type_die, DW_AT_declaration);
12505 /* If this type has been completed, then give it a byte_size attribute and
12506 then give a list of members. */
12507 if (complete && !ns_decl)
12509 /* Prevent infinite recursion in cases where the type of some member of
12510 this type is expressed in terms of this type itself. */
12511 TREE_ASM_WRITTEN (type) = 1;
12512 add_byte_size_attribute (type_die, type);
12513 if (TYPE_STUB_DECL (type) != NULL_TREE)
12514 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12516 /* If the first reference to this type was as the return type of an
12517 inline function, then it may not have a parent. Fix this now. */
12518 if (type_die->die_parent == NULL)
12519 add_child_die (scope_die, type_die);
12521 push_decl_scope (type);
12522 gen_member_die (type, type_die);
12523 pop_decl_scope ();
12525 /* GNU extension: Record what type our vtable lives in. */
12526 if (TYPE_VFIELD (type))
12528 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12530 gen_type_die (vtype, context_die);
12531 add_AT_die_ref (type_die, DW_AT_containing_type,
12532 lookup_type_die (vtype));
12535 else
12537 add_AT_flag (type_die, DW_AT_declaration, 1);
12539 /* We don't need to do this for function-local types. */
12540 if (TYPE_STUB_DECL (type)
12541 && ! decl_function_context (TYPE_STUB_DECL (type)))
12542 VEC_safe_push (tree, gc, incomplete_types, type);
12545 if (get_AT (type_die, DW_AT_name))
12546 add_pubtype (type, type_die);
12549 /* Generate a DIE for a subroutine _type_. */
12551 static void
12552 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12554 tree return_type = TREE_TYPE (type);
12555 dw_die_ref subr_die
12556 = new_die (DW_TAG_subroutine_type,
12557 scope_die_for (type, context_die), type);
12559 equate_type_number_to_die (type, subr_die);
12560 add_prototyped_attribute (subr_die, type);
12561 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12562 gen_formal_types_die (type, subr_die);
12564 if (get_AT (subr_die, DW_AT_name))
12565 add_pubtype (type, subr_die);
12568 /* Generate a DIE for a type definition. */
12570 static void
12571 gen_typedef_die (tree decl, dw_die_ref context_die)
12573 dw_die_ref type_die;
12574 tree origin;
12576 if (TREE_ASM_WRITTEN (decl))
12577 return;
12579 TREE_ASM_WRITTEN (decl) = 1;
12580 type_die = new_die (DW_TAG_typedef, context_die, decl);
12581 origin = decl_ultimate_origin (decl);
12582 if (origin != NULL)
12583 add_abstract_origin_attribute (type_die, origin);
12584 else
12586 tree type;
12588 add_name_and_src_coords_attributes (type_die, decl);
12589 if (DECL_ORIGINAL_TYPE (decl))
12591 type = DECL_ORIGINAL_TYPE (decl);
12593 gcc_assert (type != TREE_TYPE (decl));
12594 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12596 else
12597 type = TREE_TYPE (decl);
12599 add_type_attribute (type_die, type, TREE_READONLY (decl),
12600 TREE_THIS_VOLATILE (decl), context_die);
12603 if (DECL_ABSTRACT (decl))
12604 equate_decl_number_to_die (decl, type_die);
12606 if (get_AT (type_die, DW_AT_name))
12607 add_pubtype (decl, type_die);
12610 /* Generate a type description DIE. */
12612 static void
12613 gen_type_die (tree type, dw_die_ref context_die)
12615 int need_pop;
12617 if (type == NULL_TREE || type == error_mark_node)
12618 return;
12620 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12621 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12623 if (TREE_ASM_WRITTEN (type))
12624 return;
12626 /* Prevent broken recursion; we can't hand off to the same type. */
12627 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12629 TREE_ASM_WRITTEN (type) = 1;
12630 gen_decl_die (TYPE_NAME (type), context_die);
12631 return;
12634 /* We are going to output a DIE to represent the unqualified version
12635 of this type (i.e. without any const or volatile qualifiers) so
12636 get the main variant (i.e. the unqualified version) of this type
12637 now. (Vectors are special because the debugging info is in the
12638 cloned type itself). */
12639 if (TREE_CODE (type) != VECTOR_TYPE)
12640 type = type_main_variant (type);
12642 if (TREE_ASM_WRITTEN (type))
12643 return;
12645 switch (TREE_CODE (type))
12647 case ERROR_MARK:
12648 break;
12650 case POINTER_TYPE:
12651 case REFERENCE_TYPE:
12652 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12653 ensures that the gen_type_die recursion will terminate even if the
12654 type is recursive. Recursive types are possible in Ada. */
12655 /* ??? We could perhaps do this for all types before the switch
12656 statement. */
12657 TREE_ASM_WRITTEN (type) = 1;
12659 /* For these types, all that is required is that we output a DIE (or a
12660 set of DIEs) to represent the "basis" type. */
12661 gen_type_die (TREE_TYPE (type), context_die);
12662 break;
12664 case OFFSET_TYPE:
12665 /* This code is used for C++ pointer-to-data-member types.
12666 Output a description of the relevant class type. */
12667 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12669 /* Output a description of the type of the object pointed to. */
12670 gen_type_die (TREE_TYPE (type), context_die);
12672 /* Now output a DIE to represent this pointer-to-data-member type
12673 itself. */
12674 gen_ptr_to_mbr_type_die (type, context_die);
12675 break;
12677 case FUNCTION_TYPE:
12678 /* Force out return type (in case it wasn't forced out already). */
12679 gen_type_die (TREE_TYPE (type), context_die);
12680 gen_subroutine_type_die (type, context_die);
12681 break;
12683 case METHOD_TYPE:
12684 /* Force out return type (in case it wasn't forced out already). */
12685 gen_type_die (TREE_TYPE (type), context_die);
12686 gen_subroutine_type_die (type, context_die);
12687 break;
12689 case ARRAY_TYPE:
12690 gen_array_type_die (type, context_die);
12691 break;
12693 case VECTOR_TYPE:
12694 gen_array_type_die (type, context_die);
12695 break;
12697 case ENUMERAL_TYPE:
12698 case RECORD_TYPE:
12699 case UNION_TYPE:
12700 case QUAL_UNION_TYPE:
12701 /* If this is a nested type whose containing class hasn't been written
12702 out yet, writing it out will cover this one, too. This does not apply
12703 to instantiations of member class templates; they need to be added to
12704 the containing class as they are generated. FIXME: This hurts the
12705 idea of combining type decls from multiple TUs, since we can't predict
12706 what set of template instantiations we'll get. */
12707 if (TYPE_CONTEXT (type)
12708 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12709 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12711 gen_type_die (TYPE_CONTEXT (type), context_die);
12713 if (TREE_ASM_WRITTEN (type))
12714 return;
12716 /* If that failed, attach ourselves to the stub. */
12717 push_decl_scope (TYPE_CONTEXT (type));
12718 context_die = lookup_type_die (TYPE_CONTEXT (type));
12719 need_pop = 1;
12721 else
12723 declare_in_namespace (type, context_die);
12724 need_pop = 0;
12727 if (TREE_CODE (type) == ENUMERAL_TYPE)
12729 /* This might have been written out by the call to
12730 declare_in_namespace. */
12731 if (!TREE_ASM_WRITTEN (type))
12732 gen_enumeration_type_die (type, context_die);
12734 else
12735 gen_struct_or_union_type_die (type, context_die);
12737 if (need_pop)
12738 pop_decl_scope ();
12740 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12741 it up if it is ever completed. gen_*_type_die will set it for us
12742 when appropriate. */
12743 return;
12745 case VOID_TYPE:
12746 case INTEGER_TYPE:
12747 case REAL_TYPE:
12748 case COMPLEX_TYPE:
12749 case BOOLEAN_TYPE:
12750 /* No DIEs needed for fundamental types. */
12751 break;
12753 case LANG_TYPE:
12754 /* No Dwarf representation currently defined. */
12755 break;
12757 default:
12758 gcc_unreachable ();
12761 TREE_ASM_WRITTEN (type) = 1;
12764 /* Generate a DIE for a tagged type instantiation. */
12766 static void
12767 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12769 if (type == NULL_TREE || type == error_mark_node)
12770 return;
12772 /* We are going to output a DIE to represent the unqualified version of
12773 this type (i.e. without any const or volatile qualifiers) so make sure
12774 that we have the main variant (i.e. the unqualified version) of this
12775 type now. */
12776 gcc_assert (type == type_main_variant (type));
12778 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12779 an instance of an unresolved type. */
12781 switch (TREE_CODE (type))
12783 case ERROR_MARK:
12784 break;
12786 case ENUMERAL_TYPE:
12787 gen_inlined_enumeration_type_die (type, context_die);
12788 break;
12790 case RECORD_TYPE:
12791 gen_inlined_structure_type_die (type, context_die);
12792 break;
12794 case UNION_TYPE:
12795 case QUAL_UNION_TYPE:
12796 gen_inlined_union_type_die (type, context_die);
12797 break;
12799 default:
12800 gcc_unreachable ();
12804 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12805 things which are local to the given block. */
12807 static void
12808 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12810 int must_output_die = 0;
12811 tree origin;
12812 tree decl;
12813 enum tree_code origin_code;
12815 /* Ignore blocks that are NULL. */
12816 if (stmt == NULL_TREE)
12817 return;
12819 /* If the block is one fragment of a non-contiguous block, do not
12820 process the variables, since they will have been done by the
12821 origin block. Do process subblocks. */
12822 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12824 tree sub;
12826 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12827 gen_block_die (sub, context_die, depth + 1);
12829 return;
12832 /* Determine the "ultimate origin" of this block. This block may be an
12833 inlined instance of an inlined instance of inline function, so we have
12834 to trace all of the way back through the origin chain to find out what
12835 sort of node actually served as the original seed for the creation of
12836 the current block. */
12837 origin = block_ultimate_origin (stmt);
12838 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12840 /* Determine if we need to output any Dwarf DIEs at all to represent this
12841 block. */
12842 if (origin_code == FUNCTION_DECL)
12843 /* The outer scopes for inlinings *must* always be represented. We
12844 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12845 must_output_die = 1;
12846 else
12848 /* In the case where the current block represents an inlining of the
12849 "body block" of an inline function, we must *NOT* output any DIE for
12850 this block because we have already output a DIE to represent the whole
12851 inlined function scope and the "body block" of any function doesn't
12852 really represent a different scope according to ANSI C rules. So we
12853 check here to make sure that this block does not represent a "body
12854 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12855 if (! is_body_block (origin ? origin : stmt))
12857 /* Determine if this block directly contains any "significant"
12858 local declarations which we will need to output DIEs for. */
12859 if (debug_info_level > DINFO_LEVEL_TERSE)
12860 /* We are not in terse mode so *any* local declaration counts
12861 as being a "significant" one. */
12862 must_output_die = (BLOCK_VARS (stmt) != NULL
12863 && (TREE_USED (stmt)
12864 || TREE_ASM_WRITTEN (stmt)
12865 || BLOCK_ABSTRACT (stmt)));
12866 else
12867 /* We are in terse mode, so only local (nested) function
12868 definitions count as "significant" local declarations. */
12869 for (decl = BLOCK_VARS (stmt);
12870 decl != NULL; decl = TREE_CHAIN (decl))
12871 if (TREE_CODE (decl) == FUNCTION_DECL
12872 && DECL_INITIAL (decl))
12874 must_output_die = 1;
12875 break;
12880 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12881 DIE for any block which contains no significant local declarations at
12882 all. Rather, in such cases we just call `decls_for_scope' so that any
12883 needed Dwarf info for any sub-blocks will get properly generated. Note
12884 that in terse mode, our definition of what constitutes a "significant"
12885 local declaration gets restricted to include only inlined function
12886 instances and local (nested) function definitions. */
12887 if (must_output_die)
12889 if (origin_code == FUNCTION_DECL)
12890 gen_inlined_subroutine_die (stmt, context_die, depth);
12891 else
12892 gen_lexical_block_die (stmt, context_die, depth);
12894 else
12895 decls_for_scope (stmt, context_die, depth);
12898 /* Generate all of the decls declared within a given scope and (recursively)
12899 all of its sub-blocks. */
12901 static void
12902 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12904 tree decl;
12905 tree subblocks;
12907 /* Ignore NULL blocks. */
12908 if (stmt == NULL_TREE)
12909 return;
12911 if (TREE_USED (stmt))
12913 /* Output the DIEs to represent all of the data objects and typedefs
12914 declared directly within this block but not within any nested
12915 sub-blocks. Also, nested function and tag DIEs have been
12916 generated with a parent of NULL; fix that up now. */
12917 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12919 dw_die_ref die;
12921 if (TREE_CODE (decl) == FUNCTION_DECL)
12922 die = lookup_decl_die (decl);
12923 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12924 die = lookup_type_die (TREE_TYPE (decl));
12925 else
12926 die = NULL;
12928 if (die != NULL && die->die_parent == NULL)
12929 add_child_die (context_die, die);
12930 /* Do not produce debug information for static variables since
12931 these might be optimized out. We are called for these later
12932 in varpool_analyze_pending_decls. */
12933 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12935 else
12936 gen_decl_die (decl, context_die);
12940 /* If we're at -g1, we're not interested in subblocks. */
12941 if (debug_info_level <= DINFO_LEVEL_TERSE)
12942 return;
12944 /* Output the DIEs to represent all sub-blocks (and the items declared
12945 therein) of this block. */
12946 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12947 subblocks != NULL;
12948 subblocks = BLOCK_CHAIN (subblocks))
12949 gen_block_die (subblocks, context_die, depth + 1);
12952 /* Is this a typedef we can avoid emitting? */
12954 static inline int
12955 is_redundant_typedef (tree decl)
12957 if (TYPE_DECL_IS_STUB (decl))
12958 return 1;
12960 if (DECL_ARTIFICIAL (decl)
12961 && DECL_CONTEXT (decl)
12962 && is_tagged_type (DECL_CONTEXT (decl))
12963 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12964 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12965 /* Also ignore the artificial member typedef for the class name. */
12966 return 1;
12968 return 0;
12971 /* Returns the DIE for decl. A DIE will always be returned. */
12973 static dw_die_ref
12974 force_decl_die (tree decl)
12976 dw_die_ref decl_die;
12977 unsigned saved_external_flag;
12978 tree save_fn = NULL_TREE;
12979 decl_die = lookup_decl_die (decl);
12980 if (!decl_die)
12982 dw_die_ref context_die;
12983 tree decl_context = DECL_CONTEXT (decl);
12984 if (decl_context)
12986 /* Find die that represents this context. */
12987 if (TYPE_P (decl_context))
12988 context_die = force_type_die (decl_context);
12989 else
12990 context_die = force_decl_die (decl_context);
12992 else
12993 context_die = comp_unit_die;
12995 decl_die = lookup_decl_die (decl);
12996 if (decl_die)
12997 return decl_die;
12999 switch (TREE_CODE (decl))
13001 case FUNCTION_DECL:
13002 /* Clear current_function_decl, so that gen_subprogram_die thinks
13003 that this is a declaration. At this point, we just want to force
13004 declaration die. */
13005 save_fn = current_function_decl;
13006 current_function_decl = NULL_TREE;
13007 gen_subprogram_die (decl, context_die);
13008 current_function_decl = save_fn;
13009 break;
13011 case VAR_DECL:
13012 /* Set external flag to force declaration die. Restore it after
13013 gen_decl_die() call. */
13014 saved_external_flag = DECL_EXTERNAL (decl);
13015 DECL_EXTERNAL (decl) = 1;
13016 gen_decl_die (decl, context_die);
13017 DECL_EXTERNAL (decl) = saved_external_flag;
13018 break;
13020 case NAMESPACE_DECL:
13021 dwarf2out_decl (decl);
13022 break;
13024 default:
13025 gcc_unreachable ();
13028 /* We should be able to find the DIE now. */
13029 if (!decl_die)
13030 decl_die = lookup_decl_die (decl);
13031 gcc_assert (decl_die);
13034 return decl_die;
13037 /* Returns the DIE for TYPE. A DIE is always returned. */
13039 static dw_die_ref
13040 force_type_die (tree type)
13042 dw_die_ref type_die;
13044 type_die = lookup_type_die (type);
13045 if (!type_die)
13047 dw_die_ref context_die;
13048 if (TYPE_CONTEXT (type))
13050 if (TYPE_P (TYPE_CONTEXT (type)))
13051 context_die = force_type_die (TYPE_CONTEXT (type));
13052 else
13053 context_die = force_decl_die (TYPE_CONTEXT (type));
13055 else
13056 context_die = comp_unit_die;
13058 type_die = lookup_type_die (type);
13059 if (type_die)
13060 return type_die;
13061 gen_type_die (type, context_die);
13062 type_die = lookup_type_die (type);
13063 gcc_assert (type_die);
13065 return type_die;
13068 /* Force out any required namespaces to be able to output DECL,
13069 and return the new context_die for it, if it's changed. */
13071 static dw_die_ref
13072 setup_namespace_context (tree thing, dw_die_ref context_die)
13074 tree context = (DECL_P (thing)
13075 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13076 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13077 /* Force out the namespace. */
13078 context_die = force_decl_die (context);
13080 return context_die;
13083 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13084 type) within its namespace, if appropriate.
13086 For compatibility with older debuggers, namespace DIEs only contain
13087 declarations; all definitions are emitted at CU scope. */
13089 static void
13090 declare_in_namespace (tree thing, dw_die_ref context_die)
13092 dw_die_ref ns_context;
13094 if (debug_info_level <= DINFO_LEVEL_TERSE)
13095 return;
13097 /* If this decl is from an inlined function, then don't try to emit it in its
13098 namespace, as we will get confused. It would have already been emitted
13099 when the abstract instance of the inline function was emitted anyways. */
13100 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13101 return;
13103 ns_context = setup_namespace_context (thing, context_die);
13105 if (ns_context != context_die)
13107 if (DECL_P (thing))
13108 gen_decl_die (thing, ns_context);
13109 else
13110 gen_type_die (thing, ns_context);
13114 /* Generate a DIE for a namespace or namespace alias. */
13116 static void
13117 gen_namespace_die (tree decl)
13119 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13121 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13122 they are an alias of. */
13123 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13125 /* Output a real namespace. */
13126 dw_die_ref namespace_die
13127 = new_die (DW_TAG_namespace, context_die, decl);
13128 add_name_and_src_coords_attributes (namespace_die, decl);
13129 equate_decl_number_to_die (decl, namespace_die);
13131 else
13133 /* Output a namespace alias. */
13135 /* Force out the namespace we are an alias of, if necessary. */
13136 dw_die_ref origin_die
13137 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13139 /* Now create the namespace alias DIE. */
13140 dw_die_ref namespace_die
13141 = new_die (DW_TAG_imported_declaration, context_die, decl);
13142 add_name_and_src_coords_attributes (namespace_die, decl);
13143 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13144 equate_decl_number_to_die (decl, namespace_die);
13148 /* Generate Dwarf debug information for a decl described by DECL. */
13150 static void
13151 gen_decl_die (tree decl, dw_die_ref context_die)
13153 tree origin;
13155 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13156 return;
13158 switch (TREE_CODE (decl))
13160 case ERROR_MARK:
13161 break;
13163 case CONST_DECL:
13164 /* The individual enumerators of an enum type get output when we output
13165 the Dwarf representation of the relevant enum type itself. */
13166 break;
13168 case FUNCTION_DECL:
13169 /* Don't output any DIEs to represent mere function declarations,
13170 unless they are class members or explicit block externs. */
13171 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13172 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13173 break;
13175 #if 0
13176 /* FIXME */
13177 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13178 on local redeclarations of global functions. That seems broken. */
13179 if (current_function_decl != decl)
13180 /* This is only a declaration. */;
13181 #endif
13183 /* If we're emitting a clone, emit info for the abstract instance. */
13184 if (DECL_ORIGIN (decl) != decl)
13185 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13187 /* If we're emitting an out-of-line copy of an inline function,
13188 emit info for the abstract instance and set up to refer to it. */
13189 else if (cgraph_function_possibly_inlined_p (decl)
13190 && ! DECL_ABSTRACT (decl)
13191 && ! class_or_namespace_scope_p (context_die)
13192 /* dwarf2out_abstract_function won't emit a die if this is just
13193 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13194 that case, because that works only if we have a die. */
13195 && DECL_INITIAL (decl) != NULL_TREE)
13197 dwarf2out_abstract_function (decl);
13198 set_decl_origin_self (decl);
13201 /* Otherwise we're emitting the primary DIE for this decl. */
13202 else if (debug_info_level > DINFO_LEVEL_TERSE)
13204 /* Before we describe the FUNCTION_DECL itself, make sure that we
13205 have described its return type. */
13206 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13208 /* And its virtual context. */
13209 if (DECL_VINDEX (decl) != NULL_TREE)
13210 gen_type_die (DECL_CONTEXT (decl), context_die);
13212 /* And its containing type. */
13213 origin = decl_class_context (decl);
13214 if (origin != NULL_TREE)
13215 gen_type_die_for_member (origin, decl, context_die);
13217 /* And its containing namespace. */
13218 declare_in_namespace (decl, context_die);
13221 /* Now output a DIE to represent the function itself. */
13222 gen_subprogram_die (decl, context_die);
13223 break;
13225 case TYPE_DECL:
13226 /* If we are in terse mode, don't generate any DIEs to represent any
13227 actual typedefs. */
13228 if (debug_info_level <= DINFO_LEVEL_TERSE)
13229 break;
13231 /* In the special case of a TYPE_DECL node representing the declaration
13232 of some type tag, if the given TYPE_DECL is marked as having been
13233 instantiated from some other (original) TYPE_DECL node (e.g. one which
13234 was generated within the original definition of an inline function) we
13235 have to generate a special (abbreviated) DW_TAG_structure_type,
13236 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13237 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13239 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13240 break;
13243 if (is_redundant_typedef (decl))
13244 gen_type_die (TREE_TYPE (decl), context_die);
13245 else
13246 /* Output a DIE to represent the typedef itself. */
13247 gen_typedef_die (decl, context_die);
13248 break;
13250 case LABEL_DECL:
13251 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13252 gen_label_die (decl, context_die);
13253 break;
13255 case VAR_DECL:
13256 case RESULT_DECL:
13257 /* If we are in terse mode, don't generate any DIEs to represent any
13258 variable declarations or definitions. */
13259 if (debug_info_level <= DINFO_LEVEL_TERSE)
13260 break;
13262 /* Output any DIEs that are needed to specify the type of this data
13263 object. */
13264 gen_type_die (TREE_TYPE (decl), context_die);
13266 /* And its containing type. */
13267 origin = decl_class_context (decl);
13268 if (origin != NULL_TREE)
13269 gen_type_die_for_member (origin, decl, context_die);
13271 /* And its containing namespace. */
13272 declare_in_namespace (decl, context_die);
13274 /* Now output the DIE to represent the data object itself. This gets
13275 complicated because of the possibility that the VAR_DECL really
13276 represents an inlined instance of a formal parameter for an inline
13277 function. */
13278 origin = decl_ultimate_origin (decl);
13279 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13280 gen_formal_parameter_die (decl, context_die);
13281 else
13282 gen_variable_die (decl, context_die);
13283 break;
13285 case FIELD_DECL:
13286 /* Ignore the nameless fields that are used to skip bits but handle C++
13287 anonymous unions and structs. */
13288 if (DECL_NAME (decl) != NULL_TREE
13289 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13290 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13292 gen_type_die (member_declared_type (decl), context_die);
13293 gen_field_die (decl, context_die);
13295 break;
13297 case PARM_DECL:
13298 gen_type_die (TREE_TYPE (decl), context_die);
13299 gen_formal_parameter_die (decl, context_die);
13300 break;
13302 case NAMESPACE_DECL:
13303 gen_namespace_die (decl);
13304 break;
13306 default:
13307 /* Probably some frontend-internal decl. Assume we don't care. */
13308 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13309 break;
13313 /* Output debug information for global decl DECL. Called from toplev.c after
13314 compilation proper has finished. */
13316 static void
13317 dwarf2out_global_decl (tree decl)
13319 /* Output DWARF2 information for file-scope tentative data object
13320 declarations, file-scope (extern) function declarations (which had no
13321 corresponding body) and file-scope tagged type declarations and
13322 definitions which have not yet been forced out. */
13323 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13324 dwarf2out_decl (decl);
13327 /* Output debug information for type decl DECL. Called from toplev.c
13328 and from language front ends (to record built-in types). */
13329 static void
13330 dwarf2out_type_decl (tree decl, int local)
13332 if (!local)
13333 dwarf2out_decl (decl);
13336 /* Output debug information for imported module or decl. */
13338 static void
13339 dwarf2out_imported_module_or_decl (tree decl, tree context)
13341 dw_die_ref imported_die, at_import_die;
13342 dw_die_ref scope_die;
13343 expanded_location xloc;
13345 if (debug_info_level <= DINFO_LEVEL_TERSE)
13346 return;
13348 gcc_assert (decl);
13350 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13351 We need decl DIE for reference and scope die. First, get DIE for the decl
13352 itself. */
13354 /* Get the scope die for decl context. Use comp_unit_die for global module
13355 or decl. If die is not found for non globals, force new die. */
13356 if (!context)
13357 scope_die = comp_unit_die;
13358 else if (TYPE_P (context))
13359 scope_die = force_type_die (context);
13360 else
13361 scope_die = force_decl_die (context);
13363 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13364 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13365 at_import_die = force_type_die (TREE_TYPE (decl));
13366 else
13368 at_import_die = lookup_decl_die (decl);
13369 if (!at_import_die)
13371 /* If we're trying to avoid duplicate debug info, we may not have
13372 emitted the member decl for this field. Emit it now. */
13373 if (TREE_CODE (decl) == FIELD_DECL)
13375 tree type = DECL_CONTEXT (decl);
13376 dw_die_ref type_context_die;
13378 if (TYPE_CONTEXT (type))
13379 if (TYPE_P (TYPE_CONTEXT (type)))
13380 type_context_die = force_type_die (TYPE_CONTEXT (type));
13381 else
13382 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13383 else
13384 type_context_die = comp_unit_die;
13385 gen_type_die_for_member (type, decl, type_context_die);
13387 at_import_die = force_decl_die (decl);
13391 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13392 if (TREE_CODE (decl) == NAMESPACE_DECL)
13393 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13394 else
13395 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13397 xloc = expand_location (input_location);
13398 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13399 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13400 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13403 /* Write the debugging output for DECL. */
13405 void
13406 dwarf2out_decl (tree decl)
13408 dw_die_ref context_die = comp_unit_die;
13410 switch (TREE_CODE (decl))
13412 case ERROR_MARK:
13413 return;
13415 case FUNCTION_DECL:
13416 /* What we would really like to do here is to filter out all mere
13417 file-scope declarations of file-scope functions which are never
13418 referenced later within this translation unit (and keep all of ones
13419 that *are* referenced later on) but we aren't clairvoyant, so we have
13420 no idea which functions will be referenced in the future (i.e. later
13421 on within the current translation unit). So here we just ignore all
13422 file-scope function declarations which are not also definitions. If
13423 and when the debugger needs to know something about these functions,
13424 it will have to hunt around and find the DWARF information associated
13425 with the definition of the function.
13427 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13428 nodes represent definitions and which ones represent mere
13429 declarations. We have to check DECL_INITIAL instead. That's because
13430 the C front-end supports some weird semantics for "extern inline"
13431 function definitions. These can get inlined within the current
13432 translation unit (and thus, we need to generate Dwarf info for their
13433 abstract instances so that the Dwarf info for the concrete inlined
13434 instances can have something to refer to) but the compiler never
13435 generates any out-of-lines instances of such things (despite the fact
13436 that they *are* definitions).
13438 The important point is that the C front-end marks these "extern
13439 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13440 them anyway. Note that the C++ front-end also plays some similar games
13441 for inline function definitions appearing within include files which
13442 also contain `#pragma interface' pragmas. */
13443 if (DECL_INITIAL (decl) == NULL_TREE)
13444 return;
13446 /* If we're a nested function, initially use a parent of NULL; if we're
13447 a plain function, this will be fixed up in decls_for_scope. If
13448 we're a method, it will be ignored, since we already have a DIE. */
13449 if (decl_function_context (decl)
13450 /* But if we're in terse mode, we don't care about scope. */
13451 && debug_info_level > DINFO_LEVEL_TERSE)
13452 context_die = NULL;
13453 break;
13455 case VAR_DECL:
13456 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13457 declaration and if the declaration was never even referenced from
13458 within this entire compilation unit. We suppress these DIEs in
13459 order to save space in the .debug section (by eliminating entries
13460 which are probably useless). Note that we must not suppress
13461 block-local extern declarations (whether used or not) because that
13462 would screw-up the debugger's name lookup mechanism and cause it to
13463 miss things which really ought to be in scope at a given point. */
13464 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13465 return;
13467 /* For local statics lookup proper context die. */
13468 if (TREE_STATIC (decl) && decl_function_context (decl))
13469 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13471 /* If we are in terse mode, don't generate any DIEs to represent any
13472 variable declarations or definitions. */
13473 if (debug_info_level <= DINFO_LEVEL_TERSE)
13474 return;
13475 break;
13477 case NAMESPACE_DECL:
13478 if (debug_info_level <= DINFO_LEVEL_TERSE)
13479 return;
13480 if (lookup_decl_die (decl) != NULL)
13481 return;
13482 break;
13484 case TYPE_DECL:
13485 /* Don't emit stubs for types unless they are needed by other DIEs. */
13486 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13487 return;
13489 /* Don't bother trying to generate any DIEs to represent any of the
13490 normal built-in types for the language we are compiling. */
13491 if (DECL_IS_BUILTIN (decl))
13493 /* OK, we need to generate one for `bool' so GDB knows what type
13494 comparisons have. */
13495 if (is_cxx ()
13496 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13497 && ! DECL_IGNORED_P (decl))
13498 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13500 return;
13503 /* If we are in terse mode, don't generate any DIEs for types. */
13504 if (debug_info_level <= DINFO_LEVEL_TERSE)
13505 return;
13507 /* If we're a function-scope tag, initially use a parent of NULL;
13508 this will be fixed up in decls_for_scope. */
13509 if (decl_function_context (decl))
13510 context_die = NULL;
13512 break;
13514 default:
13515 return;
13518 gen_decl_die (decl, context_die);
13521 /* Output a marker (i.e. a label) for the beginning of the generated code for
13522 a lexical block. */
13524 static void
13525 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13526 unsigned int blocknum)
13528 switch_to_section (current_function_section ());
13529 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13532 /* Output a marker (i.e. a label) for the end of the generated code for a
13533 lexical block. */
13535 static void
13536 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13538 switch_to_section (current_function_section ());
13539 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13542 /* Returns nonzero if it is appropriate not to emit any debugging
13543 information for BLOCK, because it doesn't contain any instructions.
13545 Don't allow this for blocks with nested functions or local classes
13546 as we would end up with orphans, and in the presence of scheduling
13547 we may end up calling them anyway. */
13549 static bool
13550 dwarf2out_ignore_block (tree block)
13552 tree decl;
13554 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13555 if (TREE_CODE (decl) == FUNCTION_DECL
13556 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13557 return 0;
13559 return 1;
13562 /* Hash table routines for file_hash. */
13564 static int
13565 file_table_eq (const void *p1_p, const void *p2_p)
13567 const struct dwarf_file_data * p1 = p1_p;
13568 const char * p2 = p2_p;
13569 return strcmp (p1->filename, p2) == 0;
13572 static hashval_t
13573 file_table_hash (const void *p_p)
13575 const struct dwarf_file_data * p = p_p;
13576 return htab_hash_string (p->filename);
13579 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13580 dwarf2out.c) and return its "index". The index of each (known) filename is
13581 just a unique number which is associated with only that one filename. We
13582 need such numbers for the sake of generating labels (in the .debug_sfnames
13583 section) and references to those files numbers (in the .debug_srcinfo
13584 and.debug_macinfo sections). If the filename given as an argument is not
13585 found in our current list, add it to the list and assign it the next
13586 available unique index number. In order to speed up searches, we remember
13587 the index of the filename was looked up last. This handles the majority of
13588 all searches. */
13590 static struct dwarf_file_data *
13591 lookup_filename (const char *file_name)
13593 void ** slot;
13594 struct dwarf_file_data * created;
13596 /* Check to see if the file name that was searched on the previous
13597 call matches this file name. If so, return the index. */
13598 if (file_table_last_lookup
13599 && (file_name == file_table_last_lookup->filename
13600 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13601 return file_table_last_lookup;
13603 /* Didn't match the previous lookup, search the table. */
13604 slot = htab_find_slot_with_hash (file_table, file_name,
13605 htab_hash_string (file_name), INSERT);
13606 if (*slot)
13607 return *slot;
13609 created = ggc_alloc (sizeof (struct dwarf_file_data));
13610 created->filename = file_name;
13611 created->emitted_number = 0;
13612 *slot = created;
13613 return created;
13616 /* If the assembler will construct the file table, then translate the compiler
13617 internal file table number into the assembler file table number, and emit
13618 a .file directive if we haven't already emitted one yet. The file table
13619 numbers are different because we prune debug info for unused variables and
13620 types, which may include filenames. */
13622 static int
13623 maybe_emit_file (struct dwarf_file_data * fd)
13625 if (! fd->emitted_number)
13627 if (last_emitted_file)
13628 fd->emitted_number = last_emitted_file->emitted_number + 1;
13629 else
13630 fd->emitted_number = 1;
13631 last_emitted_file = fd;
13633 if (DWARF2_ASM_LINE_DEBUG_INFO)
13635 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13636 output_quoted_string (asm_out_file, fd->filename);
13637 fputc ('\n', asm_out_file);
13641 return fd->emitted_number;
13644 /* Called by the final INSN scan whenever we see a var location. We
13645 use it to drop labels in the right places, and throw the location in
13646 our lookup table. */
13648 static void
13649 dwarf2out_var_location (rtx loc_note)
13651 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13652 struct var_loc_node *newloc;
13653 rtx prev_insn;
13654 static rtx last_insn;
13655 static const char *last_label;
13656 tree decl;
13658 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13659 return;
13660 prev_insn = PREV_INSN (loc_note);
13662 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13663 /* If the insn we processed last time is the previous insn
13664 and it is also a var location note, use the label we emitted
13665 last time. */
13666 if (last_insn != NULL_RTX
13667 && last_insn == prev_insn
13668 && NOTE_P (prev_insn)
13669 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13671 newloc->label = last_label;
13673 else
13675 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13676 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13677 loclabel_num++;
13678 newloc->label = ggc_strdup (loclabel);
13680 newloc->var_loc_note = loc_note;
13681 newloc->next = NULL;
13683 if (cfun && in_cold_section_p)
13684 newloc->section_label = cfun->cold_section_label;
13685 else
13686 newloc->section_label = text_section_label;
13688 last_insn = loc_note;
13689 last_label = newloc->label;
13690 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13691 add_var_loc_to_decl (decl, newloc);
13694 /* We need to reset the locations at the beginning of each
13695 function. We can't do this in the end_function hook, because the
13696 declarations that use the locations won't have been output when
13697 that hook is called. Also compute have_multiple_function_sections here. */
13699 static void
13700 dwarf2out_begin_function (tree fun)
13702 htab_empty (decl_loc_table);
13704 if (function_section (fun) != text_section)
13705 have_multiple_function_sections = true;
13708 /* Output a label to mark the beginning of a source code line entry
13709 and record information relating to this source line, in
13710 'line_info_table' for later output of the .debug_line section. */
13712 static void
13713 dwarf2out_source_line (unsigned int line, const char *filename)
13715 if (debug_info_level >= DINFO_LEVEL_NORMAL
13716 && line != 0)
13718 int file_num = maybe_emit_file (lookup_filename (filename));
13720 switch_to_section (current_function_section ());
13722 /* If requested, emit something human-readable. */
13723 if (flag_debug_asm)
13724 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13725 filename, line);
13727 if (DWARF2_ASM_LINE_DEBUG_INFO)
13729 /* Emit the .loc directive understood by GNU as. */
13730 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13732 /* Indicate that line number info exists. */
13733 line_info_table_in_use++;
13735 else if (function_section (current_function_decl) != text_section)
13737 dw_separate_line_info_ref line_info;
13738 targetm.asm_out.internal_label (asm_out_file,
13739 SEPARATE_LINE_CODE_LABEL,
13740 separate_line_info_table_in_use);
13742 /* Expand the line info table if necessary. */
13743 if (separate_line_info_table_in_use
13744 == separate_line_info_table_allocated)
13746 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13747 separate_line_info_table
13748 = ggc_realloc (separate_line_info_table,
13749 separate_line_info_table_allocated
13750 * sizeof (dw_separate_line_info_entry));
13751 memset (separate_line_info_table
13752 + separate_line_info_table_in_use,
13754 (LINE_INFO_TABLE_INCREMENT
13755 * sizeof (dw_separate_line_info_entry)));
13758 /* Add the new entry at the end of the line_info_table. */
13759 line_info
13760 = &separate_line_info_table[separate_line_info_table_in_use++];
13761 line_info->dw_file_num = file_num;
13762 line_info->dw_line_num = line;
13763 line_info->function = current_function_funcdef_no;
13765 else
13767 dw_line_info_ref line_info;
13769 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13770 line_info_table_in_use);
13772 /* Expand the line info table if necessary. */
13773 if (line_info_table_in_use == line_info_table_allocated)
13775 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13776 line_info_table
13777 = ggc_realloc (line_info_table,
13778 (line_info_table_allocated
13779 * sizeof (dw_line_info_entry)));
13780 memset (line_info_table + line_info_table_in_use, 0,
13781 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13784 /* Add the new entry at the end of the line_info_table. */
13785 line_info = &line_info_table[line_info_table_in_use++];
13786 line_info->dw_file_num = file_num;
13787 line_info->dw_line_num = line;
13792 /* Record the beginning of a new source file. */
13794 static void
13795 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13797 if (flag_eliminate_dwarf2_dups)
13799 /* Record the beginning of the file for break_out_includes. */
13800 dw_die_ref bincl_die;
13802 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13803 add_AT_string (bincl_die, DW_AT_name, filename);
13806 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13808 int file_num = maybe_emit_file (lookup_filename (filename));
13810 switch_to_section (debug_macinfo_section);
13811 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13812 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13813 lineno);
13815 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13819 /* Record the end of a source file. */
13821 static void
13822 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13824 if (flag_eliminate_dwarf2_dups)
13825 /* Record the end of the file for break_out_includes. */
13826 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13828 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13830 switch_to_section (debug_macinfo_section);
13831 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13835 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13836 the tail part of the directive line, i.e. the part which is past the
13837 initial whitespace, #, whitespace, directive-name, whitespace part. */
13839 static void
13840 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13841 const char *buffer ATTRIBUTE_UNUSED)
13843 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13845 switch_to_section (debug_macinfo_section);
13846 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13847 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13848 dw2_asm_output_nstring (buffer, -1, "The macro");
13852 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13853 the tail part of the directive line, i.e. the part which is past the
13854 initial whitespace, #, whitespace, directive-name, whitespace part. */
13856 static void
13857 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13858 const char *buffer ATTRIBUTE_UNUSED)
13860 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13862 switch_to_section (debug_macinfo_section);
13863 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13864 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13865 dw2_asm_output_nstring (buffer, -1, "The macro");
13869 /* Set up for Dwarf output at the start of compilation. */
13871 static void
13872 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13874 /* Allocate the file_table. */
13875 file_table = htab_create_ggc (50, file_table_hash,
13876 file_table_eq, NULL);
13878 /* Allocate the decl_die_table. */
13879 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13880 decl_die_table_eq, NULL);
13882 /* Allocate the decl_loc_table. */
13883 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13884 decl_loc_table_eq, NULL);
13886 /* Allocate the initial hunk of the decl_scope_table. */
13887 decl_scope_table = VEC_alloc (tree, gc, 256);
13889 /* Allocate the initial hunk of the abbrev_die_table. */
13890 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13891 * sizeof (dw_die_ref));
13892 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13893 /* Zero-th entry is allocated, but unused. */
13894 abbrev_die_table_in_use = 1;
13896 /* Allocate the initial hunk of the line_info_table. */
13897 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13898 * sizeof (dw_line_info_entry));
13899 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13901 /* Zero-th entry is allocated, but unused. */
13902 line_info_table_in_use = 1;
13904 /* Allocate the pubtypes and pubnames vectors. */
13905 pubname_table = VEC_alloc (pubname_entry, gc, 32);
13906 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13908 /* Generate the initial DIE for the .debug section. Note that the (string)
13909 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13910 will (typically) be a relative pathname and that this pathname should be
13911 taken as being relative to the directory from which the compiler was
13912 invoked when the given (base) source file was compiled. We will fill
13913 in this value in dwarf2out_finish. */
13914 comp_unit_die = gen_compile_unit_die (NULL);
13916 incomplete_types = VEC_alloc (tree, gc, 64);
13918 used_rtx_array = VEC_alloc (rtx, gc, 32);
13920 debug_info_section = get_section (DEBUG_INFO_SECTION,
13921 SECTION_DEBUG, NULL);
13922 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13923 SECTION_DEBUG, NULL);
13924 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13925 SECTION_DEBUG, NULL);
13926 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13927 SECTION_DEBUG, NULL);
13928 debug_line_section = get_section (DEBUG_LINE_SECTION,
13929 SECTION_DEBUG, NULL);
13930 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13931 SECTION_DEBUG, NULL);
13932 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13933 SECTION_DEBUG, NULL);
13934 #ifdef DEBUG_PUBTYPES_SECTION
13935 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
13936 SECTION_DEBUG, NULL);
13937 #endif
13938 debug_str_section = get_section (DEBUG_STR_SECTION,
13939 DEBUG_STR_SECTION_FLAGS, NULL);
13940 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13941 SECTION_DEBUG, NULL);
13942 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13943 SECTION_DEBUG, NULL);
13945 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13946 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13947 DEBUG_ABBREV_SECTION_LABEL, 0);
13948 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13949 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13950 COLD_TEXT_SECTION_LABEL, 0);
13951 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13953 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13954 DEBUG_INFO_SECTION_LABEL, 0);
13955 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13956 DEBUG_LINE_SECTION_LABEL, 0);
13957 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13958 DEBUG_RANGES_SECTION_LABEL, 0);
13959 switch_to_section (debug_abbrev_section);
13960 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13961 switch_to_section (debug_info_section);
13962 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13963 switch_to_section (debug_line_section);
13964 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13966 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13968 switch_to_section (debug_macinfo_section);
13969 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13970 DEBUG_MACINFO_SECTION_LABEL, 0);
13971 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13974 switch_to_section (text_section);
13975 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13976 if (flag_reorder_blocks_and_partition)
13978 switch_to_section (unlikely_text_section ());
13979 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13983 /* A helper function for dwarf2out_finish called through
13984 ht_forall. Emit one queued .debug_str string. */
13986 static int
13987 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13989 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13991 if (node->form == DW_FORM_strp)
13993 switch_to_section (debug_str_section);
13994 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13995 assemble_string (node->str, strlen (node->str) + 1);
13998 return 1;
14001 #if ENABLE_ASSERT_CHECKING
14002 /* Verify that all marks are clear. */
14004 static void
14005 verify_marks_clear (dw_die_ref die)
14007 dw_die_ref c;
14009 gcc_assert (! die->die_mark);
14010 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14012 #endif /* ENABLE_ASSERT_CHECKING */
14014 /* Clear the marks for a die and its children.
14015 Be cool if the mark isn't set. */
14017 static void
14018 prune_unmark_dies (dw_die_ref die)
14020 dw_die_ref c;
14022 if (die->die_mark)
14023 die->die_mark = 0;
14024 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14027 /* Given DIE that we're marking as used, find any other dies
14028 it references as attributes and mark them as used. */
14030 static void
14031 prune_unused_types_walk_attribs (dw_die_ref die)
14033 dw_attr_ref a;
14034 unsigned ix;
14036 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14038 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14040 /* A reference to another DIE.
14041 Make sure that it will get emitted. */
14042 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14044 /* Set the string's refcount to 0 so that prune_unused_types_mark
14045 accounts properly for it. */
14046 if (AT_class (a) == dw_val_class_str)
14047 a->dw_attr_val.v.val_str->refcount = 0;
14052 /* Mark DIE as being used. If DOKIDS is true, then walk down
14053 to DIE's children. */
14055 static void
14056 prune_unused_types_mark (dw_die_ref die, int dokids)
14058 dw_die_ref c;
14060 if (die->die_mark == 0)
14062 /* We haven't done this node yet. Mark it as used. */
14063 die->die_mark = 1;
14065 /* We also have to mark its parents as used.
14066 (But we don't want to mark our parents' kids due to this.) */
14067 if (die->die_parent)
14068 prune_unused_types_mark (die->die_parent, 0);
14070 /* Mark any referenced nodes. */
14071 prune_unused_types_walk_attribs (die);
14073 /* If this node is a specification,
14074 also mark the definition, if it exists. */
14075 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14076 prune_unused_types_mark (die->die_definition, 1);
14079 if (dokids && die->die_mark != 2)
14081 /* We need to walk the children, but haven't done so yet.
14082 Remember that we've walked the kids. */
14083 die->die_mark = 2;
14085 /* If this is an array type, we need to make sure our
14086 kids get marked, even if they're types. */
14087 if (die->die_tag == DW_TAG_array_type)
14088 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14089 else
14090 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14095 /* Walk the tree DIE and mark types that we actually use. */
14097 static void
14098 prune_unused_types_walk (dw_die_ref die)
14100 dw_die_ref c;
14102 /* Don't do anything if this node is already marked. */
14103 if (die->die_mark)
14104 return;
14106 switch (die->die_tag)
14108 case DW_TAG_const_type:
14109 case DW_TAG_packed_type:
14110 case DW_TAG_pointer_type:
14111 case DW_TAG_reference_type:
14112 case DW_TAG_volatile_type:
14113 case DW_TAG_typedef:
14114 case DW_TAG_array_type:
14115 case DW_TAG_structure_type:
14116 case DW_TAG_union_type:
14117 case DW_TAG_class_type:
14118 case DW_TAG_friend:
14119 case DW_TAG_variant_part:
14120 case DW_TAG_enumeration_type:
14121 case DW_TAG_subroutine_type:
14122 case DW_TAG_string_type:
14123 case DW_TAG_set_type:
14124 case DW_TAG_subrange_type:
14125 case DW_TAG_ptr_to_member_type:
14126 case DW_TAG_file_type:
14127 if (die->die_perennial_p)
14128 break;
14130 /* It's a type node --- don't mark it. */
14131 return;
14133 default:
14134 /* Mark everything else. */
14135 break;
14138 die->die_mark = 1;
14140 /* Now, mark any dies referenced from here. */
14141 prune_unused_types_walk_attribs (die);
14143 /* Mark children. */
14144 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14147 /* Increment the string counts on strings referred to from DIE's
14148 attributes. */
14150 static void
14151 prune_unused_types_update_strings (dw_die_ref die)
14153 dw_attr_ref a;
14154 unsigned ix;
14156 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14157 if (AT_class (a) == dw_val_class_str)
14159 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14160 s->refcount++;
14161 /* Avoid unnecessarily putting strings that are used less than
14162 twice in the hash table. */
14163 if (s->refcount
14164 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14166 void ** slot;
14167 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14168 htab_hash_string (s->str),
14169 INSERT);
14170 gcc_assert (*slot == NULL);
14171 *slot = s;
14176 /* Remove from the tree DIE any dies that aren't marked. */
14178 static void
14179 prune_unused_types_prune (dw_die_ref die)
14181 dw_die_ref c;
14183 gcc_assert (die->die_mark);
14184 prune_unused_types_update_strings (die);
14186 if (! die->die_child)
14187 return;
14189 c = die->die_child;
14190 do {
14191 dw_die_ref prev = c;
14192 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14193 if (c == die->die_child)
14195 /* No marked children between 'prev' and the end of the list. */
14196 if (prev == c)
14197 /* No marked children at all. */
14198 die->die_child = NULL;
14199 else
14201 prev->die_sib = c->die_sib;
14202 die->die_child = prev;
14204 return;
14207 if (c != prev->die_sib)
14208 prev->die_sib = c;
14209 prune_unused_types_prune (c);
14210 } while (c != die->die_child);
14214 /* Remove dies representing declarations that we never use. */
14216 static void
14217 prune_unused_types (void)
14219 unsigned int i;
14220 limbo_die_node *node;
14221 pubname_ref pub;
14223 #if ENABLE_ASSERT_CHECKING
14224 /* All the marks should already be clear. */
14225 verify_marks_clear (comp_unit_die);
14226 for (node = limbo_die_list; node; node = node->next)
14227 verify_marks_clear (node->die);
14228 #endif /* ENABLE_ASSERT_CHECKING */
14230 /* Set the mark on nodes that are actually used. */
14231 prune_unused_types_walk (comp_unit_die);
14232 for (node = limbo_die_list; node; node = node->next)
14233 prune_unused_types_walk (node->die);
14235 /* Also set the mark on nodes referenced from the
14236 pubname_table or arange_table. */
14237 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14238 prune_unused_types_mark (pub->die, 1);
14239 for (i = 0; i < arange_table_in_use; i++)
14240 prune_unused_types_mark (arange_table[i], 1);
14242 /* Get rid of nodes that aren't marked; and update the string counts. */
14243 if (debug_str_hash)
14244 htab_empty (debug_str_hash);
14245 prune_unused_types_prune (comp_unit_die);
14246 for (node = limbo_die_list; node; node = node->next)
14247 prune_unused_types_prune (node->die);
14249 /* Leave the marks clear. */
14250 prune_unmark_dies (comp_unit_die);
14251 for (node = limbo_die_list; node; node = node->next)
14252 prune_unmark_dies (node->die);
14255 /* Set the parameter to true if there are any relative pathnames in
14256 the file table. */
14257 static int
14258 file_table_relative_p (void ** slot, void *param)
14260 bool *p = param;
14261 struct dwarf_file_data *d = *slot;
14262 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14264 *p = true;
14265 return 0;
14267 return 1;
14270 /* Output stuff that dwarf requires at the end of every file,
14271 and generate the DWARF-2 debugging info. */
14273 static void
14274 dwarf2out_finish (const char *filename)
14276 limbo_die_node *node, *next_node;
14277 dw_die_ref die = 0;
14279 /* Add the name for the main input file now. We delayed this from
14280 dwarf2out_init to avoid complications with PCH. */
14281 add_name_attribute (comp_unit_die, filename);
14282 if (!IS_ABSOLUTE_PATH (filename))
14283 add_comp_dir_attribute (comp_unit_die);
14284 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14286 bool p = false;
14287 htab_traverse (file_table, file_table_relative_p, &p);
14288 if (p)
14289 add_comp_dir_attribute (comp_unit_die);
14292 /* Traverse the limbo die list, and add parent/child links. The only
14293 dies without parents that should be here are concrete instances of
14294 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14295 For concrete instances, we can get the parent die from the abstract
14296 instance. */
14297 for (node = limbo_die_list; node; node = next_node)
14299 next_node = node->next;
14300 die = node->die;
14302 if (die->die_parent == NULL)
14304 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14306 if (origin)
14307 add_child_die (origin->die_parent, die);
14308 else if (die == comp_unit_die)
14310 else if (errorcount > 0 || sorrycount > 0)
14311 /* It's OK to be confused by errors in the input. */
14312 add_child_die (comp_unit_die, die);
14313 else
14315 /* In certain situations, the lexical block containing a
14316 nested function can be optimized away, which results
14317 in the nested function die being orphaned. Likewise
14318 with the return type of that nested function. Force
14319 this to be a child of the containing function.
14321 It may happen that even the containing function got fully
14322 inlined and optimized out. In that case we are lost and
14323 assign the empty child. This should not be big issue as
14324 the function is likely unreachable too. */
14325 tree context = NULL_TREE;
14327 gcc_assert (node->created_for);
14329 if (DECL_P (node->created_for))
14330 context = DECL_CONTEXT (node->created_for);
14331 else if (TYPE_P (node->created_for))
14332 context = TYPE_CONTEXT (node->created_for);
14334 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14336 origin = lookup_decl_die (context);
14337 if (origin)
14338 add_child_die (origin, die);
14339 else
14340 add_child_die (comp_unit_die, die);
14345 limbo_die_list = NULL;
14347 /* Walk through the list of incomplete types again, trying once more to
14348 emit full debugging info for them. */
14349 retry_incomplete_types ();
14351 if (flag_eliminate_unused_debug_types)
14352 prune_unused_types ();
14354 /* Generate separate CUs for each of the include files we've seen.
14355 They will go into limbo_die_list. */
14356 if (flag_eliminate_dwarf2_dups)
14357 break_out_includes (comp_unit_die);
14359 /* Traverse the DIE's and add add sibling attributes to those DIE's
14360 that have children. */
14361 add_sibling_attributes (comp_unit_die);
14362 for (node = limbo_die_list; node; node = node->next)
14363 add_sibling_attributes (node->die);
14365 /* Output a terminator label for the .text section. */
14366 switch_to_section (text_section);
14367 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14368 if (flag_reorder_blocks_and_partition)
14370 switch_to_section (unlikely_text_section ());
14371 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14374 /* We can only use the low/high_pc attributes if all of the code was
14375 in .text. */
14376 if (!have_multiple_function_sections)
14378 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14379 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14382 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14383 "base address". Use zero so that these addresses become absolute. */
14384 else if (have_location_lists || ranges_table_in_use)
14385 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14387 /* Output location list section if necessary. */
14388 if (have_location_lists)
14390 /* Output the location lists info. */
14391 switch_to_section (debug_loc_section);
14392 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14393 DEBUG_LOC_SECTION_LABEL, 0);
14394 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14395 output_location_lists (die);
14398 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14399 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14400 debug_line_section_label);
14402 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14403 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14405 /* Output all of the compilation units. We put the main one last so that
14406 the offsets are available to output_pubnames. */
14407 for (node = limbo_die_list; node; node = node->next)
14408 output_comp_unit (node->die, 0);
14410 output_comp_unit (comp_unit_die, 0);
14412 /* Output the abbreviation table. */
14413 switch_to_section (debug_abbrev_section);
14414 output_abbrev_section ();
14416 /* Output public names table if necessary. */
14417 if (!VEC_empty (pubname_entry, pubname_table))
14419 switch_to_section (debug_pubnames_section);
14420 output_pubnames (pubname_table);
14423 #ifdef DEBUG_PUBTYPES_SECTION
14424 /* Output public types table if necessary. */
14425 if (!VEC_empty (pubname_entry, pubtype_table))
14427 switch_to_section (debug_pubtypes_section);
14428 output_pubnames (pubtype_table);
14430 #endif
14432 /* Output the address range information. We only put functions in the arange
14433 table, so don't write it out if we don't have any. */
14434 if (fde_table_in_use)
14436 switch_to_section (debug_aranges_section);
14437 output_aranges ();
14440 /* Output ranges section if necessary. */
14441 if (ranges_table_in_use)
14443 switch_to_section (debug_ranges_section);
14444 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14445 output_ranges ();
14448 /* Output the source line correspondence table. We must do this
14449 even if there is no line information. Otherwise, on an empty
14450 translation unit, we will generate a present, but empty,
14451 .debug_info section. IRIX 6.5 `nm' will then complain when
14452 examining the file. This is done late so that any filenames
14453 used by the debug_info section are marked as 'used'. */
14454 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14456 switch_to_section (debug_line_section);
14457 output_line_info ();
14460 /* Have to end the macro section. */
14461 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14463 switch_to_section (debug_macinfo_section);
14464 dw2_asm_output_data (1, 0, "End compilation unit");
14467 /* If we emitted any DW_FORM_strp form attribute, output the string
14468 table too. */
14469 if (debug_str_hash)
14470 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14472 #else
14474 /* This should never be used, but its address is needed for comparisons. */
14475 const struct gcc_debug_hooks dwarf2_debug_hooks;
14477 #endif /* DWARF2_DEBUGGING_INFO */
14479 #include "gt-dwarf2out.h"