* expr.c (do_tablejump): Let CASE_VECTOR_PC_RELATIVE be an
[official-gcc.git] / gcc / config / pyr / pyr.h
blobcf292903b4f85123ec853f210a65cf7b7effedbe
1 /* Definitions of target machine parameters for GNU compiler,
2 for Pyramid 90x, 9000, and MIServer Series.
3 Copyright (C) 1989, 1995, 1996, 1997 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 * If you're going to change this, and you haven't already,
24 * you should get and read
25 * ``OSx Operating System Porting Guide'',
26 * publication number 4100-0066-A
27 * Revision A
28 * Pyramid Technology Corporation.
30 * or whatever the most recent version is. In any case, page and
31 * section number references given herein refer to this document.
33 * The instruction table for gdb lists the available insns and
34 * the valid addressing modes.
36 * Any other information on the Pyramid architecture is proprietary
37 * and hard to get. (Pyramid cc -S and adb are also useful.)
41 /*** Run-time compilation parameters selecting different hardware subsets. ***/
43 /* Names to predefine in the preprocessor for this target machine. */
45 #define CPP_PREDEFINES "-Dpyr -Dunix -Asystem(unix) -Acpu(pyr) -Amachine(pyr)"
47 /* Print subsidiary information on the compiler version in use. */
49 #define TARGET_VERSION fprintf (stderr, " (pyr)");
51 extern int target_flags;
53 /* Nonzero if compiling code that Unix assembler can assemble. */
54 #define TARGET_UNIX_ASM (target_flags & 1)
56 /* Implement stdarg in the same fashion used on all other machines. */
57 #define TARGET_GNU_STDARG (target_flags & 2)
59 /* Compile using RETD to pop off the args.
60 This will not work unless you use prototypes at least
61 for all functions that can take varying numbers of args.
62 This contravenes the Pyramid calling convention, so we don't
63 do it yet. */
65 #define TARGET_RETD (target_flags & 4)
67 /* Macros used in the machine description to test the flags. */
69 /* Macro to define tables used to set the flags.
70 This is a list in braces of pairs in braces,
71 each pair being { "NAME", VALUE }
72 where VALUE is the bits to set or minus the bits to clear.
73 An empty string NAME is used to identify the default VALUE.
75 -mgnu will be useful if we ever have GAS on a pyramid. */
77 #define TARGET_SWITCHES \
78 { {"unix", 1}, \
79 {"gnu", -1}, \
80 {"gnu-stdarg", 2}, \
81 {"nognu-stdarg", -2}, \
82 {"retd", 4}, \
83 {"no-retd", -4}, \
84 { "", TARGET_DEFAULT}}
86 /* Default target_flags if no switches specified.
88 (equivalent to "-munix -mindex -mgnu-stdarg") */
90 #ifndef TARGET_DEFAULT
91 #define TARGET_DEFAULT (1 + 2)
92 #endif
94 /* Make GCC agree with types.h. */
95 #ifdef SIZE_TYPE
96 #undef SIZE_TYPE
97 #endif
98 #define SIZE_TYPE "unsigned int"
100 /* Assembler does not permit $ in labels */
102 #define NO_DOLLAR_IN_LABEL
104 /* Maybe it doesn't permit dot either. */
105 #define NO_DOT_IN_LABEL
107 /* Never allow $ in identifiers */
109 #define DOLLARS_IN_IDENTIFIERS 0
111 /*** Target machine storage layout ***/
113 /* Define this to non-zero if most significant bit is lowest
114 numbered in instructions that operate on numbered bit-fields.
115 This is not true on the pyramid. */
116 #define BITS_BIG_ENDIAN 0
118 /* Define this to non-zero if most significant byte of a word is
119 the lowest numbered. */
120 #define BYTES_BIG_ENDIAN 1
122 /* Define this to non-zero if most significant word of a multiword
123 number is the lowest numbered. */
124 #define WORDS_BIG_ENDIAN 1
126 /* Number of bits in an addressable storage unit */
127 #define BITS_PER_UNIT 8
129 /* Width in bits of a "word", which is the contents of a machine register.
130 Note that this is not necessarily the width of data type `int';
131 if using 16-bit ints on a 68000, this would still be 32.
132 But on a machine with 16-bit registers, this would be 16. */
133 #define BITS_PER_WORD 32
135 /* Width of a word, in units (bytes). */
136 #define UNITS_PER_WORD 4
138 /* Width in bits of a pointer.
139 See also the macro `Pmode' defined below. */
140 #define POINTER_SIZE 32
142 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
143 #define PARM_BOUNDARY 32
145 /* Boundary (in *bits*) on which stack pointer should be aligned. */
146 #define STACK_BOUNDARY 32
148 /* Allocation boundary (in *bits*) for the code of a function. */
149 #define FUNCTION_BOUNDARY 32
151 /* Alignment of field after `int : 0' in a structure. */
152 #define EMPTY_FIELD_BOUNDARY 32
154 /* Every structure's size must be a multiple of this. */
155 #define STRUCTURE_SIZE_BOUNDARY 32
157 /* No data type wants to be aligned rounder than this. */
158 #define BIGGEST_ALIGNMENT 32
160 /* Specified types of bitfields affect alignment of those fields
161 and of the structure as a whole. */
162 #define PCC_BITFIELD_TYPE_MATTERS 1
164 /* Make strings word-aligned so strcpy from constants will be faster.
165 Pyramid documentation says the best alignment is to align
166 on the size of a cache line, which is 32 bytes.
167 Newer pyrs have single insns that do strcmp() and strcpy(), so this
168 may not actually win anything. */
169 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
170 (TREE_CODE (EXP) == STRING_CST \
171 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
173 /* Make arrays of chars word-aligned for the same reasons. */
174 #define DATA_ALIGNMENT(TYPE, ALIGN) \
175 (TREE_CODE (TYPE) == ARRAY_TYPE \
176 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
177 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
179 /* Set this nonzero if move instructions will actually fail to work
180 when given unaligned data. */
181 #define STRICT_ALIGNMENT 1
183 /*** Standard register usage. ***/
185 /* Number of actual hardware registers.
186 The hardware registers are assigned numbers for the compiler
187 from 0 to just below FIRST_PSEUDO_REGISTER.
188 All registers that the compiler knows about must be given numbers,
189 even those that are not normally considered general registers. */
191 /* Nota Bene:
192 Pyramids have 64 addressable 32-bit registers, arranged as four
193 groups of sixteen registers each. Pyramid names the groups
194 global, parameter, local, and temporary.
196 The sixteen global registers are fairly conventional; the last
197 four are overloaded with a PSW, frame pointer, stack pointer, and pc.
198 The non-dedicated global registers used to be reserved for Pyramid
199 operating systems, and still have cryptic and undocumented uses for
200 certain library calls. We do not use global registers gr0 through
201 gr11.
203 The parameter, local, and temporary registers provide register
204 windowing. Each procedure call has its own set of these 48
205 registers, which constitute its call frame. (These frames are
206 not allocated on the conventional stack, but contiguously
207 on a separate stack called the control stack.)
208 Register windowing is a facility whereby the temporary registers
209 of frame n become the parameter registers of frame n+1, viz.:
211 0 15 0 15 0 15
212 +------------+------------+------------+
213 frame n+1 | | | |
214 +------------+------------+------------+
215 Parameter Local Temporary
218 | These 16 regs are the same.
221 0 15 0 15 0 15
222 +------------+------------+------------+
223 frame n | | | |
224 +------------+------------+------------+
225 Parameter Local Temporary
227 New frames are automatically allocated on the control stack by the
228 call instruction and de-allocated by the return insns "ret" and
229 "retd". The control-stack grows contiguously upward from a
230 well-known address in memory; programs are free to allocate
231 a variable sized, conventional frame on the data stack, which
232 grows downwards in memory from just below the control stack.
234 Temporary registers are used for parameter passing, and are not
235 preserved across calls. TR0 through TR11 correspond to
236 gcc's ``input'' registers; PR0 through TR11 the ``output''
237 registers. The call insn stores the PC and PSW in PR14 and PR15 of
238 the frame it creates; the return insns restore these into the PC
239 and PSW. The same is true for interrupts; TR14 and TR15 of the
240 current frame are reserved and should never be used, since an
241 interrupt may occur at any time and clobber them.
243 An interesting quirk is the ability to take the address of a
244 variable in a windowed register. This done by adding the memory
245 address of the base of the current window frame, to the offset
246 within the frame of the desired register. The resulting address
247 can be treated just like any other pointer; if a quantity is stored
248 into that address, the appropriate register also changes.
249 GCC does not, and according to RMS will not, support this feature,
250 even though some programs rely on this (mis)feature.
253 #define PYR_GREG(n) (n)
254 #define PYR_PREG(n) (16+(n))
255 #define PYR_LREG(n) (32+(n))
256 #define PYR_TREG(n) (48+(n))
258 /* Define this macro if the target machine has "register windows". This
259 C expression returns the register number as seen by the called function
260 corresponding to register number OUT as seen by the calling function.
261 Return OUT if register number OUT is not an outbound register. */
263 #define INCOMING_REGNO(OUT) \
264 (((OUT) < 48 || (OUT) > 63) ? (OUT) : (OUT) - 32)
266 /* Define this macro if the target machine has "register windows". This
267 C expression returns the register number as seen by the calling function
268 corresponding to register number IN as seen by the called function.
269 Return IN if register number IN is not an inbound register. */
271 #define OUTGOING_REGNO(IN) \
272 (((IN) < 15 || (IN) > 31) ? (IN) : (IN) + 32)
274 #define FIRST_PSEUDO_REGISTER 64
276 /* 1 for registers that have pervasive standard uses
277 and are not available for the register allocator.
279 On the pyramid, these are LOGPSW, SP, and PC. */
281 #define FIXED_REGISTERS \
282 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
283 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
284 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
285 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
287 /* 1 for registers not available across function calls.
288 These must include the FIXED_REGISTERS and also any
289 registers that can be used without being saved.
290 The latter must include the registers where values are returned
291 and the register where structure-value addresses are passed.
292 Aside from that, you can include as many other registers as you like. */
293 #define CALL_USED_REGISTERS \
294 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
295 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
296 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
297 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
299 /* #define DEFAULT_CALLER_SAVES */
301 /* Return number of consecutive hard regs needed starting at reg REGNO
302 to hold something of mode MODE.
303 This is ordinarily the length in words of a value of mode MODE
304 but can be less for certain modes in special long registers.
305 On the pyramid, all registers are one word long. */
306 #define HARD_REGNO_NREGS(REGNO, MODE) \
307 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
309 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
310 On the pyramid, all registers can hold all modes. */
312 /* -->FIXME: this is not the case for 64-bit quantities in tr11/12 through
313 --> TR14/15. This should be fixed, but to do it correctly, we also
314 --> need to fix MODES_TIEABLE_P. Yuk. We ignore this, since GCC should
315 --> do the "right" thing due to FIXED_REGISTERS. */
316 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
318 /* Value is 1 if it is a good idea to tie two pseudo registers
319 when one has mode MODE1 and one has mode MODE2.
320 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
321 for any hard reg, then this must be 0 for correct output. */
322 #define MODES_TIEABLE_P(MODE1, MODE2) 1
324 /* Specify the registers used for certain standard purposes.
325 The values of these macros are register numbers. */
327 /* Pyramid pc is overloaded on global register 15. */
328 #define PC_REGNUM PYR_GREG(15)
330 /* Register to use for pushing function arguments.
331 --> on Pyramids, the data stack pointer. */
332 #define STACK_POINTER_REGNUM PYR_GREG(14)
334 /* Base register for access to local variables of the function.
335 Pyramid uses CFP (GR13) as both frame pointer and argument pointer. */
336 #define FRAME_POINTER_REGNUM 13 /* pyr cpp fails on PYR_GREG(13) */
338 /* Value should be nonzero if functions must have frame pointers.
339 Zero means the frame pointer need not be set up (and parms
340 may be accessed via the stack pointer) in functions that seem suitable.
341 This is computed in `reload', in reload1.c.
343 Setting this to 1 can't break anything. Since the Pyramid has
344 register windows, I don't know if defining this to be zero can
345 win anything. It could changed later, if it wins. */
346 #define FRAME_POINTER_REQUIRED 1
348 /* Base register for access to arguments of the function. */
349 #define ARG_POINTER_REGNUM 13 /* PYR_GREG(13) */
351 /* Register in which static-chain is passed to a function. */
352 /* If needed, Pyramid says to use temporary register 12. */
353 #define STATIC_CHAIN_REGNUM PYR_TREG(12)
355 /* If register windows are used, STATIC_CHAIN_INCOMING_REGNUM
356 is the register number as seen by the called function, while
357 STATIC_CHAIN_REGNUM is the register number as seen by the calling
358 function. */
359 #define STATIC_CHAIN_INCOMING_REGNUM PYR_PREG(12)
361 /* Register in which address to store a structure value
362 is passed to a function.
363 On a Pyramid, this is temporary register 0 (TR0). */
365 #define STRUCT_VALUE_REGNUM PYR_TREG(0)
366 #define STRUCT_VALUE_INCOMING_REGNUM PYR_PREG(0)
368 /* Define the classes of registers for register constraints in the
369 machine description. Also define ranges of constants.
371 One of the classes must always be named ALL_REGS and include all hard regs.
372 If there is more than one class, another class must be named NO_REGS
373 and contain no registers.
375 The name GENERAL_REGS must be the name of a class (or an alias for
376 another name such as ALL_REGS). This is the class of registers
377 that is allowed by "g" or "r" in a register constraint.
378 Also, registers outside this class are allocated only when
379 instructions express preferences for them.
381 The classes must be numbered in nondecreasing order; that is,
382 a larger-numbered class must never be contained completely
383 in a smaller-numbered class.
385 For any two classes, it is very desirable that there be another
386 class that represents their union. */
388 /* The pyramid has only one kind of registers, so NO_REGS and ALL_REGS
389 are the only classes. */
391 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
393 #define N_REG_CLASSES (int) LIM_REG_CLASSES
395 /* Since GENERAL_REGS is the same class as ALL_REGS,
396 don't give it a different class number; just make it an alias. */
398 #define GENERAL_REGS ALL_REGS
400 /* Give names of register classes as strings for dump file. */
402 #define REG_CLASS_NAMES \
403 {"NO_REGS", "ALL_REGS" }
405 /* Define which registers fit in which classes.
406 This is an initializer for a vector of HARD_REG_SET
407 of length N_REG_CLASSES. */
409 #define REG_CLASS_CONTENTS {{0,0}, {0xffffffff,0xffffffff}}
411 /* The same information, inverted:
412 Return the class number of the smallest class containing
413 reg number REGNO. This could be a conditional expression
414 or could index an array. */
416 #define REGNO_REG_CLASS(REGNO) ALL_REGS
418 /* The class value for index registers, and the one for base regs. */
420 #define BASE_REG_CLASS ALL_REGS
421 #define INDEX_REG_CLASS ALL_REGS
423 /* Get reg_class from a letter such as appears in the machine description. */
425 #define REG_CLASS_FROM_LETTER(C) NO_REGS
427 /* Given an rtx X being reloaded into a reg required to be
428 in class CLASS, return the class of reg to actually use.
429 In general this is just CLASS; but on some machines
430 in some cases it is preferable to use a more restrictive class. */
432 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
434 /* Return the maximum number of consecutive registers
435 needed to represent mode MODE in a register of class CLASS. */
436 /* On the pyramid, this is always the size of MODE in words,
437 since all registers are the same size. */
438 #define CLASS_MAX_NREGS(CLASS, MODE) \
439 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
441 /* The letters I, J, K, L and M in a register constraint string
442 can be used to stand for particular ranges of immediate operands.
443 This macro defines what the ranges are.
444 C is the letter, and VALUE is a constant value.
445 Return 1 if VALUE is in the range specified by C.
447 --> For the Pyramid, 'I' can be used for the 6-bit signed integers
448 --> (-32 to 31) allowed as immediate short operands in many
449 --> instructions. 'J' cane be used for any value that doesn't fit
450 --> in 6 bits. */
452 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
453 ((C) == 'I' ? (VALUE) >= -32 && (VALUE) < 32 : \
454 (C) == 'J' ? (VALUE) < -32 || (VALUE) >= 32 : \
455 (C) == 'K' ? (VALUE) == 0xff || (VALUE) == 0xffff : 0)
457 /* Similar, but for floating constants, and defining letters G and H.
458 Here VALUE is the CONST_DOUBLE rtx itself. */
460 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
463 /*** Stack layout; function entry, exit and calling. ***/
465 /* Define this if pushing a word on the stack
466 makes the stack pointer a smaller address. */
467 #define STACK_GROWS_DOWNWARD
469 /* Define this if the nominal address of the stack frame
470 is at the high-address end of the local variables;
471 that is, each additional local variable allocated
472 goes at a more negative offset in the frame. */
473 #define FRAME_GROWS_DOWNWARD
475 /* Offset within stack frame to start allocating local variables at.
476 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
477 first local allocated. Otherwise, it is the offset to the BEGINNING
478 of the first local allocated. */
479 /* FIXME: this used to work when defined as 0. But that makes gnu
480 stdargs clobber the first arg. What gives?? */
481 #define STARTING_FRAME_OFFSET 0
483 /* Offset of first parameter from the argument pointer register value. */
484 #define FIRST_PARM_OFFSET(FNDECL) 0
486 /* Value is the number of bytes of arguments automatically
487 popped when returning from a subroutine call.
488 FUNDECL is the declaration node of the function (as a tree),
489 FUNTYPE is the data type of the function (as a tree),
490 or for a library call it is an identifier node for the subroutine name.
491 SIZE is the number of bytes of arguments passed on the stack.
493 The Pyramid OSx Porting Guide says we are never to do this;
494 using RETD in this way violates the Pyramid calling convention.
495 We may nevertheless provide this as an option. */
497 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
498 ((TARGET_RETD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \
499 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
500 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
501 == void_type_node))) \
502 ? (SIZE) : 0)
504 /* Define how to find the value returned by a function.
505 VALTYPE is the data type of the value (as a tree).
506 If the precise function being called is known, FUNC is its FUNCTION_DECL;
507 otherwise, FUNC is 0. */
509 /* --> Pyramid has register windows.
510 --> The caller sees the return value is in TR0(/TR1) regardless of
511 --> its type. */
513 #define FUNCTION_VALUE(VALTYPE, FUNC) \
514 gen_rtx (REG, TYPE_MODE (VALTYPE), PYR_TREG(0))
516 /* --> but the callee has to leave it in PR0(/PR1) */
518 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
519 gen_rtx (REG, TYPE_MODE (VALTYPE), PYR_PREG(0))
521 /* Define how to find the value returned by a library function
522 assuming the value has mode MODE. */
524 /* --> On Pyramid the return value is in TR0/TR1 regardless. */
526 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, PYR_TREG(0))
528 /* Define this if PCC uses the nonreentrant convention for returning
529 structure and union values. */
531 #define PCC_STATIC_STRUCT_RETURN
533 /* 1 if N is a possible register number for a function value
534 as seen by the caller.
536 On the Pyramid, TR0 is the only register thus used. */
538 #define FUNCTION_VALUE_REGNO_P(N) ((N) == PYR_TREG(0))
540 /* 1 if N is a possible register number for function argument passing.
541 On the Pyramid, the first twelve temporary registers are available. */
543 /* FIXME FIXME FIXME
544 it's not clear whether this macro should be defined from the point
545 of view of the caller or the callee. Since it's never actually used
546 in GNU CC, the point is somewhat moot :-).
548 This definition is consistent with register usage in the md's for
549 other register-window architectures (sparc and spur).
551 #define FUNCTION_ARG_REGNO_P(N) ((PYR_TREG(0) <= (N)) && ((N) <= PYR_TREG(11)))
553 /*** Parameter passing: FUNCTION_ARG and FUNCTION_INCOMING_ARG ***/
555 /* Define a data type for recording info about an argument list
556 during the scan of that argument list. This data type should
557 hold all necessary information about the function itself
558 and about the args processed so far, enough to enable macros
559 such as FUNCTION_ARG to determine where the next arg should go.
561 On Pyramids, each parameter is passed either completely on the stack
562 or completely in registers. No parameter larger than a double may
563 be passed in a register. Also, no struct or union may be passed in
564 a register, even if it would fit.
566 So parameters are not necessarily passed "consecutively".
567 Thus we need a vector data type: one element to record how many
568 parameters have been passed in registers and on the stack,
569 respectively.
571 ((These constraints seem like a gross waste of registers. But if we
572 ignore the constraint about structs & unions, we won`t be able to
573 freely mix gcc-compiled code and pyr cc-compiled code. It looks
574 like better argument passing conventions, and a machine-dependent
575 flag to enable them, might be a win.)) */
578 #define CUMULATIVE_ARGS int
580 /* Define the number of registers that can hold parameters.
581 This macro is used only in other macro definitions below. */
582 #define NPARM_REGS 12
584 /* Decide whether or not a parameter can be put in a register.
585 (We may still have problems with libcalls. GCC doesn't seem
586 to know about anything more than the machine mode. I trust
587 structures are never passed to a libcall...
589 If compiling with -mgnu-stdarg, this definition should make
590 functions using the gcc-supplied stdarg, and calls to such
591 functions (declared with an arglist ending in"..."), work.
592 But such fns won't be able to call pyr cc-compiled
593 varargs fns (eg, printf(), _doprnt.)
595 If compiling with -mnognu-stdarg, this definition should make
596 calls to pyr cc-compiled functions work. Functions using
597 the gcc-supplied stdarg will be utterly broken.
598 There will be no better solution until RMS can be persuaded that
599 one is needed.
601 This macro is used only in other macro definitions below.
602 (well, it may be used in pyr.c, because the damn pyramid cc
603 can't handle the macro definition of PARAM_SAFE_FOR_REG_P ! */
606 #define INNER_PARAM_SAFE_HELPER(TYPE) \
607 ((TARGET_GNU_STDARG ? (! TREE_ADDRESSABLE ((tree)TYPE)): 1) \
608 && (TREE_CODE ((tree)TYPE) != RECORD_TYPE) \
609 && (TREE_CODE ((tree)TYPE) != UNION_TYPE))
611 #ifdef __GNUC__
612 #define PARAM_SAFE_HELPER(TYPE) \
613 INNER_PARAM_SAFE_HELPER((TYPE))
614 #else
615 extern int inner_param_safe_helper();
616 #define PARAM_SAFE_HELPER(TYPE) \
617 inner_param_safe_helper((tree)(TYPE))
618 #endif
620 /* Be careful with the expression (long) (TYPE) == 0.
621 Writing it in more obvious/correct forms makes the Pyr cc
622 dump core! */
623 #define PARAM_SAFE_FOR_REG_P(MODE, TYPE, NAMED) \
624 (((MODE) != BLKmode) \
625 && ((TARGET_GNU_STDARG) ? (NAMED) : 1) \
626 && ((((long)(TYPE))==0) || PARAM_SAFE_HELPER((TYPE))))
628 /* Initialize a variable CUM of type CUMULATIVE_ARGS
629 for a call to a function whose data type is FNTYPE.
630 For a library call, FNTYPE is 0. */
632 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
633 ((CUM) = (FNTYPE && !flag_pcc_struct_return \
634 && aggregate_value_p (TREE_TYPE (FNTYPE))))
636 /* Determine where to put an argument to a function.
637 Value is zero to push the argument on the stack,
638 or a hard register in which to store the argument.
640 MODE is the argument's machine mode.
641 TYPE is the data type of the argument (as a tree).
642 This is null for libcalls where that information may
643 not be available.
644 CUM is a variable of type CUMULATIVE_ARGS which gives info about
645 the preceding args and about the function being called.
646 NAMED is nonzero if this argument is a named parameter
647 (otherwise it is an extra parameter matching an ellipsis). */
649 #define FUNCTION_ARG_HELPER(CUM, MODE, TYPE, NAMED) \
650 (PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
651 ? (NPARM_REGS >= ((CUM) \
652 + ((MODE) == BLKmode \
653 ? (int_size_in_bytes (TYPE) + 3) / 4 \
654 : (GET_MODE_SIZE (MODE) + 3) / 4)) \
655 ? gen_rtx (REG, (MODE), PYR_TREG(CUM)) \
656 : 0) \
657 : 0)
658 #ifdef __GNUC__
659 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
660 FUNCTION_ARG_HELPER(CUM, MODE, TYPE, NAMED)
661 #else
662 /***************** Avoid bug in Pyramid OSx compiler... ******************/
663 #define FUNCTION_ARG (rtx) pyr_function_arg
664 extern void* pyr_function_arg ();
665 #endif
667 /* Define where a function finds its arguments.
668 This is different from FUNCTION_ARG because of register windows. */
670 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
671 (PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
672 ? (NPARM_REGS >= ((CUM) \
673 + ((MODE) == BLKmode \
674 ? (int_size_in_bytes (TYPE) + 3) / 4 \
675 : (GET_MODE_SIZE (MODE) + 3) / 4)) \
676 ? gen_rtx (REG, (MODE), PYR_PREG(CUM)) \
677 : 0) \
678 : 0)
680 /* Update the data in CUM to advance over an argument
681 of mode MODE and data type TYPE.
682 (TYPE is null for libcalls where that information may not be available.) */
684 #define FUNCTION_ARG_ADVANCE(CUM,MODE,TYPE,NAMED) \
685 ((CUM) += (PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
686 ? ((MODE) != BLKmode \
687 ? (GET_MODE_SIZE (MODE) + 3) / 4 \
688 : (int_size_in_bytes (TYPE) + 3) / 4) \
689 : 0))
691 /* This macro generates the assembly code for function entry.
692 FILE is a stdio stream to output the code to.
693 SIZE is an int: how many units of temporary storage to allocate.
694 Refer to the array `regs_ever_live' to determine which registers
695 to save; `regs_ever_live[I]' is nonzero if register number I
696 is ever used in the function. This macro is responsible for
697 knowing which registers should not be saved even if used. */
699 #if FRAME_POINTER_REQUIRED
701 /* We always have frame pointers */
703 /* Don't set up a frame pointer if it's not referenced. */
705 #define FUNCTION_PROLOGUE(FILE, SIZE) \
707 int _size = (SIZE) + current_function_pretend_args_size; \
708 if (_size + current_function_args_size != 0 \
709 || current_function_calls_alloca) \
711 fprintf (FILE, "\tadsf $%d\n", _size); \
712 if (current_function_pretend_args_size > 0) \
713 fprintf (FILE, "\tsubw $%d,cfp\n", \
714 current_function_pretend_args_size); \
718 #else /* !FRAME_POINTER_REQUIRED */
720 /* Don't set up a frame pointer if `frame_pointer_needed' tells us
721 there is no need. Also, don't set up a frame pointer if it's not
722 referenced. */
724 /* The definition used to be broken. Write a new one. */
726 #endif /* !FRAME_POINTER_REQUIRED */
728 /* the trampoline stuff was taken from convex.h - S.P. */
730 /* A C statement to output, on the stream FILE, assembler code for a
731 block of data that contains the constant parts of a trampoline. This
732 code should not include a label - the label is taken care of
733 automatically.
734 We use TR12/PR12 for the static chain.
735 movew $<STATIC>,pr12 # I2R
736 jump $<func> # S2R
738 #define TRAMPOLINE_TEMPLATE(FILE) \
739 { ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x2100001C)); \
740 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
741 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x40000000)); \
742 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); }
744 #define TRAMPOLINE_SIZE 16
745 #define TRAMPOLINE_ALIGNMENT 32
747 /* Emit RTL insns to initialize the variable parts of a trampoline.
748 FNADDR is an RTX for the address of the function's pure code.
749 CXT is an RTX for the static chain value for the function. */
751 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
752 { emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 4)), CXT); \
753 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 12)), FNADDR); \
754 emit_call_insn (gen_call (gen_rtx (MEM, QImode, \
755 gen_rtx (SYMBOL_REF, Pmode, \
756 "__enable_execute_stack")), \
757 const0_rtx)); \
760 /* Output assembler code to FILE to increment profiler label # LABELNO
761 for profiling a function entry. */
762 #define FUNCTION_PROFILER(FILE, LABELNO) \
763 fprintf (FILE, "\tmova LP%d,tr0\n\tcall mcount\n", (LABELNO));
765 /* Output assembler code to FILE to initialize this source file's
766 basic block profiling info, if that has not already been done.
767 Don't know if this works on Pyrs. */
769 #if 0 /* don't do basic_block profiling yet */
770 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
771 fprintf (FILE, \
772 "\tmtstw LPBX0,tr0\n\tbne LPI%d\n\tmova LP%d,TR0\n\tcall __bb_init_func\nLPI%d:\n", \
773 LABELNO, LABELNO);
775 /* Output assembler code to increment the count associated with
776 the basic block number BLOCKNO. Not sure how to do this on pyrs. */
777 #define BLOCK_PROFILER(FILE, BLOCKNO) \
778 fprintf (FILE, "\taddw", 4 * BLOCKNO)
779 #endif /* don't do basic_block profiling yet */
781 /* When returning from a function, the stack pointer does not matter
782 (as long as there is a frame pointer). */
784 /* This should return non-zero when we really set up a frame pointer.
785 Otherwise, GCC is directed to preserve sp by returning zero. */
786 extern int current_function_pretend_args_size;
787 extern int current_function_args_size;
788 extern int current_function_calls_alloca;
789 #define EXIT_IGNORE_STACK \
790 (get_frame_size () + current_function_pretend_args_size \
791 + current_function_args_size != 0 \
792 || current_function_calls_alloca) \
794 /* Store in the variable DEPTH the initial difference between the
795 frame pointer reg contents and the stack pointer reg contents,
796 as of the start of the function body. This depends on the layout
797 of the fixed parts of the stack frame and on how registers are saved.
799 On the Pyramid, FRAME_POINTER_REQUIRED is always 1, so the definition
800 of this macro doesn't matter. But it must be defined. */
802 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
804 /*** Addressing modes, and classification of registers for them. ***/
806 /* #define HAVE_POST_INCREMENT */ /* pyramid has none of these */
807 /* #define HAVE_POST_DECREMENT */
809 /* #define HAVE_PRE_DECREMENT */
810 /* #define HAVE_PRE_INCREMENT */
812 /* Macros to check register numbers against specific register classes. */
814 /* These assume that REGNO is a hard or pseudo reg number.
815 They give nonzero only if REGNO is a hard reg of the suitable class
816 or a pseudo reg currently allocated to a suitable hard reg.
817 Since they use reg_renumber, they are safe only once reg_renumber
818 has been allocated, which happens in local-alloc.c. */
820 /* All registers except gr0 OK as index or base registers. */
822 #define REGNO_OK_FOR_BASE_P(regno) \
823 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
825 #define REGNO_OK_FOR_INDEX_P(regno) \
826 ((unsigned) (regno) - 1 < FIRST_PSEUDO_REGISTER - 1 \
827 || reg_renumber[regno] > 0)
829 /* Maximum number of registers that can appear in a valid memory address. */
831 #define MAX_REGS_PER_ADDRESS 2 /* check MAX_REGS_PER_ADDRESS */
833 /* 1 if X is an rtx for a constant that is a valid address. */
835 #define CONSTANT_ADDRESS_P(X) \
836 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
837 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
838 || GET_CODE (X) == HIGH)
840 /* Nonzero if the constant value X is a legitimate general operand.
841 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
843 #define LEGITIMATE_CONSTANT_P(X) 1
845 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
846 and check its validity for a certain class.
847 We have two alternate definitions for each of them.
848 The usual definition accepts all pseudo regs; the other rejects
849 them unless they have been allocated suitable hard regs.
850 The symbol REG_OK_STRICT causes the latter definition to be used.
852 Most source files want to accept pseudo regs in the hope that
853 they will get allocated to the class that the insn wants them to be in.
854 Source files for reload pass need to be strict.
855 After reload, it makes no difference, since pseudo regs have
856 been eliminated by then. */
858 #ifndef REG_OK_STRICT
860 /* Nonzero if X is a hard reg that can be used as an index
861 or if it is a pseudo reg. */
862 #define REG_OK_FOR_INDEX_P(X) (REGNO (X) > 0)
863 /* Nonzero if X is a hard reg that can be used as a base reg
864 or if it is a pseudo reg. */
865 #define REG_OK_FOR_BASE_P(X) 1
867 #else
869 /* Nonzero if X is a hard reg that can be used as an index. */
870 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
871 /* Nonzero if X is a hard reg that can be used as a base reg. */
872 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
874 #endif
876 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
877 that is a valid memory address for an instruction.
878 The MODE argument is the machine mode for the MEM expression
879 that wants to use this address.
881 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
882 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
885 /* Go to ADDR if X is indexable -- i.e., neither indexed nor offset. */
886 #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
887 { register rtx xfoob = (X); \
888 if ((CONSTANT_ADDRESS_P (xfoob)) \
889 || (GET_CODE (xfoob) == REG && (REG_OK_FOR_BASE_P (xfoob)))) \
890 goto ADDR; \
894 /* Go to label ADDR if X is a valid address that doesn't use indexing.
895 This is so if X is either a simple address, or the contents of a register
896 plus an offset.
897 This macro also gets used in output-pyramid.h in the function that
898 recognizes non-indexed operands. */
900 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
902 if (GET_CODE (X) == REG) \
903 goto ADDR; \
904 GO_IF_INDEXABLE_ADDRESS (X, ADDR); \
905 if (GET_CODE (X) == PLUS) \
906 { /* Handle offset(reg) represented with offset on left */ \
907 if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
908 { if (GET_CODE (XEXP (X, 1)) == REG \
909 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
910 goto ADDR; \
912 /* Handle offset(reg) represented with offset on right */ \
913 if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
914 { if (GET_CODE (XEXP (X, 0)) == REG \
915 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
916 goto ADDR; \
921 /* 1 if PROD is either a reg or a reg times a valid offset multiplier
922 (ie, 2, 4, or 8).
923 This macro's expansion uses the temporary variables xfoo0 and xfoo1
924 that must be declared in the surrounding context. */
925 #define INDEX_TERM_P(PROD, MODE) \
926 ((GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
927 || (GET_CODE (PROD) == MULT \
928 && \
929 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
930 ((GET_CODE (xfoo0) == CONST_INT \
931 && (INTVAL (xfoo0) == 1 \
932 || INTVAL (xfoo0) == 2 \
933 || INTVAL (xfoo0) == 4 \
934 || INTVAL (xfoo0) == 8) \
935 && GET_CODE (xfoo1) == REG \
936 && REG_OK_FOR_INDEX_P (xfoo1)) \
937 || \
938 (GET_CODE (xfoo1) == CONST_INT \
939 && (INTVAL (xfoo1) == 1 \
940 || INTVAL (xfoo1) == 2 \
941 || INTVAL (xfoo1) == 4 \
942 || INTVAL (xfoo1) == 8) \
943 && GET_CODE (xfoo0) == REG \
944 && REG_OK_FOR_INDEX_P (xfoo0))))))
947 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
948 { register rtx xone, xtwo, xfoo0, xfoo1; \
949 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
950 if (GET_CODE (X) == PLUS) \
952 /* Handle <address>[index] represented with index-sum outermost */\
953 xone = XEXP (X, 0); \
954 xtwo = XEXP (X, 1); \
955 if (INDEX_TERM_P (xone, MODE)) \
956 { GO_IF_INDEXABLE_ADDRESS (xtwo, ADDR); } \
957 /* Handle <address>[index] represented with index-sum innermost */\
958 if (INDEX_TERM_P (xtwo, MODE)) \
959 { GO_IF_INDEXABLE_ADDRESS (xone, ADDR); } \
963 /* Try machine-dependent ways of modifying an illegitimate address
964 to be legitimate. If we find one, return the new, valid address.
965 This macro is used in only one place: `memory_address' in explow.c.
967 OLDX is the address as it was before break_out_memory_refs was called.
968 In some cases it is useful to look at this to decide what needs to be done.
970 MODE and WIN are passed so that this macro can use
971 GO_IF_LEGITIMATE_ADDRESS.
973 It is always safe for this macro to do nothing. It exists to recognize
974 opportunities to optimize the output.
976 --> FIXME: We haven't yet figured out what optimizations are useful
977 --> on Pyramids. */
979 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
981 /* Go to LABEL if ADDR (a legitimate address expression)
982 has an effect that depends on the machine mode it is used for.
983 There don't seem to be any such modes on pyramids. */
984 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
986 /*** Miscellaneous Parameters ***/
988 /* Specify the machine mode that this machine uses
989 for the index in the tablejump instruction. */
990 #define CASE_VECTOR_MODE SImode
992 /* Define as C expression which evaluates to nonzero if the tablejump
993 instruction expects the table to contain offsets from the address of the
994 table.
995 Do not define this if the table should contain absolute addresses. */
996 /*#define CASE_VECTOR_PC_RELATIVE 1 */
998 /* Specify the tree operation to be used to convert reals to integers. */
999 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1001 /* This is the kind of divide that is easiest to do in the general case.
1002 It's just a guess. I have no idea of insn cost on pyrs. */
1003 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1005 /* Define this as 1 if `char' should by default be signed; else as 0. */
1006 #define DEFAULT_SIGNED_CHAR 1
1008 /* This flag, if defined, says the same insns that convert to a signed fixnum
1009 also convert validly to an unsigned one. */
1010 /* This is untrue for pyramid. The cvtdw instruction generates a trap
1011 for input operands that are out-of-range for a signed int. */
1012 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1014 /* Define this macro if the preprocessor should silently ignore
1015 '#sccs' directives. */
1016 /* #define SCCS_DIRECTIVE */
1018 /* Define this macro if the preprocessor should silently ignore
1019 '#ident' directives. */
1020 /* #define IDENT_DIRECTIVE */
1022 /* Max number of bytes we can move from memory to memory
1023 in one reasonably fast instruction. */
1024 #define MOVE_MAX 8
1026 /* Define this if zero-extension is slow (more than one real instruction). */
1027 /* #define SLOW_ZERO_EXTEND */
1029 /* number of bits in an 'int' on target machine */
1030 #define INT_TYPE_SIZE 32
1032 /* 1 if byte access requires more than one instruction */
1033 #define SLOW_BYTE_ACCESS 0
1035 /* Define this to be nonzero if shift instructions ignore all but the low-order
1036 few bits. */
1037 #define SHIFT_COUNT_TRUNCATED 1
1039 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1040 is done just by pretending it is already truncated. */
1041 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1043 /* Define this macro if it is as good or better to call a constant
1044 function address than to call an address kept in a register. */
1045 /* #define NO_FUNCTION_CSE */
1047 /* When a prototype says `char' or `short', really pass an `int'. */
1048 #define PROMOTE_PROTOTYPES
1050 /* There are no flag store insns on a pyr. */
1051 /* #define STORE_FLAG_VALUE */
1053 /* Specify the machine mode that pointers have.
1054 After generation of rtl, the compiler makes no further distinction
1055 between pointers and any other objects of this machine mode. */
1056 #define Pmode SImode
1058 /* A function address in a call instruction
1059 is a byte address (for indexing purposes)
1060 so give the MEM rtx a byte's mode. */
1061 #define FUNCTION_MODE QImode
1063 /* Compute the cost of computing a constant rtl expression RTX
1064 whose rtx-code is CODE. The body of this macro is a portion
1065 of a switch statement. If the code is computed here,
1066 return it with a return statement. Otherwise, break from the switch. */
1068 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1069 case CONST_INT: \
1070 if (CONST_OK_FOR_LETTER_P (INTVAL (RTX),'I')) return 0; \
1071 case CONST: \
1072 case LABEL_REF: \
1073 case SYMBOL_REF: \
1074 return 4; \
1075 case CONST_DOUBLE: \
1076 return 6;
1078 /* A flag which says to swap the operands of certain insns
1079 when they are output. */
1080 extern int swap_operands;
1082 /*** Condition Code Information ***/
1084 /* Tell final.c how to eliminate redundant test instructions. */
1086 /* Here we define machine-dependent flags and fields in cc_status
1087 (see `conditions.h'). No extra ones are needed for the pyr. */
1089 /* Store in cc_status the expressions
1090 that the condition codes will describe
1091 after execution of an instruction whose pattern is EXP.
1092 Do not alter them if the instruction would not alter the cc's. */
1094 /* This is a very simple definition of NOTICE_UPDATE_CC.
1095 Many cases can be optimized, to improve condition code usage.
1096 Maybe we should handle this entirely in the md, since it complicated
1097 to describe the way pyr sets cc. */
1099 #define TRULY_UNSIGNED_COMPARE_P(X) \
1100 (X == GEU || X == GTU || X == LEU || X == LTU)
1101 #define CC_VALID_FOR_UNSIGNED 2
1103 #define CC_STATUS_MDEP_INIT cc_status.mdep = 0
1105 #define NOTICE_UPDATE_CC(EXP, INSN) \
1106 notice_update_cc(EXP, INSN)
1108 /*** Output of Assembler Code ***/
1110 /* Output at beginning of assembler file. */
1112 #define ASM_FILE_START(FILE) \
1113 fprintf (FILE, ((TARGET_UNIX_ASM)? "" : "#NO_APP\n"));
1115 /* Output to assembler file text saying following lines
1116 may contain character constants, extra white space, comments, etc. */
1118 #define ASM_APP_ON ((TARGET_UNIX_ASM) ? "" : "#APP\n")
1120 /* Output to assembler file text saying following lines
1121 no longer contain unusual constructs. */
1123 #define ASM_APP_OFF ((TARGET_UNIX_ASM) ? "" : "#NO_APP\n")
1125 /* Output before read-only data. */
1127 #define TEXT_SECTION_ASM_OP ".text"
1129 /* Output before writable data. */
1131 #define DATA_SECTION_ASM_OP ".data"
1133 /* How to refer to registers in assembler output.
1134 This sequence is indexed by compiler's hard-register-number (see above). */
1136 #define REGISTER_NAMES \
1137 {"gr0", "gr1", "gr2", "gr3", "gr4", "gr5", "gr6", "gr7", "gr8", \
1138 "gr9", "gr10", "gr11", "logpsw", "cfp", "sp", "pc", \
1139 "pr0", "pr1", "pr2", "pr3", "pr4", "pr5", "pr6", "pr7", \
1140 "pr8", "pr9", "pr10", "pr11", "pr12", "pr13", "pr14", "pr15", \
1141 "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", \
1142 "lr8", "lr9", "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", \
1143 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
1144 "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"}
1146 /* How to renumber registers for dbx and gdb. */
1148 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1150 /* Our preference is for dbx rather than sdb.
1151 Yours may be different. */
1152 #define DBX_DEBUGGING_INFO
1153 /* #define SDB_DEBUGGING_INFO */
1155 /* Don't use the `xsfoo;' construct in DBX output; this system
1156 doesn't support it. */
1158 #define DBX_NO_XREFS 1
1160 /* Do not break .stabs pseudos into continuations. */
1162 #define DBX_CONTIN_LENGTH 0
1164 /* This is the char to use for continuation (in case we need to turn
1165 continuation back on). */
1167 #define DBX_CONTIN_CHAR '?'
1169 /* This is how to output the definition of a user-level label named NAME,
1170 such as the label on a static function or variable NAME. */
1172 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1173 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1175 /* This is how to output a command to make the user-level label named NAME
1176 defined for reference from other files. */
1178 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1179 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1181 /* The prefix to add to user-visible assembler symbols. */
1183 #define USER_LABEL_PREFIX "_"
1185 /* This is how to output an internal numbered label where
1186 PREFIX is the class of label and NUM is the number within the class. */
1188 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1189 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1191 /* This is how to store into the string LABEL
1192 the symbol_ref name of an internal numbered label where
1193 PREFIX is the class of label and NUM is the number within the class.
1194 This is suitable for output with `assemble_name'. */
1196 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1197 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1199 /* This is how to output an assembler line defining a `double' constant. */
1201 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1202 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1204 /* This is how to output an assembler line defining a `float' constant. */
1206 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1207 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
1209 /* This is how to output an assembler line defining an `int' constant. */
1211 #define ASM_OUTPUT_INT(FILE,VALUE) \
1212 ( fprintf (FILE, "\t.word "), \
1213 output_addr_const (FILE, (VALUE)), \
1214 fprintf (FILE, "\n"))
1216 /* Likewise for `char' and `short' constants. */
1218 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1219 ( fprintf (FILE, "\t.half "), \
1220 output_addr_const (FILE, (VALUE)), \
1221 fprintf (FILE, "\n"))
1223 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1224 ( fprintf (FILE, "\t.byte "), \
1225 output_addr_const (FILE, (VALUE)), \
1226 fprintf (FILE, "\n"))
1228 /* This is how to output an assembler line for a numeric constant byte. */
1230 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1231 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1233 /* This is how to output an insn to push a register on the stack.
1234 It need not be very fast code. */
1236 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1237 fprintf (FILE, "\tsubw $4,sp\n\tmovw %s,(sp)\n", reg_names[REGNO])
1239 /* This is how to output an insn to pop a register from the stack.
1240 It need not be very fast code. */
1242 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1243 fprintf (FILE, "\tmovw (sp),%s\n\taddw $4,sp\n", reg_names[REGNO])
1245 /* Store in OUTPUT a string (made with alloca) containing
1246 an assembler-name for a local static variable named NAME.
1247 LABELNO is an integer which is different for each call. */
1249 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1250 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1251 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1253 /* This is how to output an element of a case-vector that is absolute. */
1255 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1256 fprintf (FILE, "\t.word L%d\n", VALUE)
1258 /* This is how to output an element of a case-vector that is relative. */
1261 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1262 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1264 /* This is how to output an assembler line
1265 that says to advance the location counter
1266 to a multiple of 2**LOG bytes.
1268 On Pyramids, the text segment must always be word aligned.
1269 On Pyramids, .align takes only args between 2 and 5.
1272 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1273 fprintf (FILE, "\t.align %d\n", (LOG) < 2 ? 2 : (LOG))
1275 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1276 fprintf (FILE, "\t.space %u\n", (SIZE))
1278 /* This says how to output an assembler line
1279 to define a global common symbol. */
1281 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1282 ( fputs (".comm ", (FILE)), \
1283 assemble_name ((FILE), (NAME)), \
1284 fprintf ((FILE), ",%u\n", (ROUNDED)))
1286 /* This says how to output an assembler line
1287 to define a local common symbol. */
1289 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1290 ( fputs (".lcomm ", (FILE)), \
1291 assemble_name ((FILE), (NAME)), \
1292 fprintf ((FILE), ",%u\n", (ROUNDED)))
1294 /* Define the parentheses used to group arithmetic operations
1295 in assembler code. */
1297 #define ASM_OPEN_PAREN "("
1298 #define ASM_CLOSE_PAREN ")"
1300 /* Define results of standard character escape sequences. */
1301 #define TARGET_BELL 007
1302 #define TARGET_BS 010
1303 #define TARGET_TAB 011
1304 #define TARGET_NEWLINE 012
1305 #define TARGET_VT 013
1306 #define TARGET_FF 014
1307 #define TARGET_CR 015
1309 /* Print operand X (an rtx) in assembler syntax to file FILE.
1310 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1311 For `%' followed by punctuation, CODE is the punctuation and X is null.
1312 On the Pyr, we support the conventional CODE characters:
1314 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1315 which are never used. */
1317 /* FIXME : should be more robust with CONST_DOUBLE. */
1319 #define PRINT_OPERAND(FILE, X, CODE) \
1320 { if (GET_CODE (X) == REG) \
1321 fprintf (FILE, "%s", reg_names [REGNO (X) + ((CODE) == 'R')]); \
1323 else if (GET_CODE (X) == MEM) \
1324 output_address (XEXP (X, 0)); \
1326 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1327 { union { double d; int i[2]; } u; \
1328 union { float f; int i; } u1; \
1329 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1330 u1.f = u.d; \
1331 if (CODE == 'f') \
1332 fprintf (FILE, "$0f%.0e", u1.f); \
1333 else \
1334 fprintf (FILE, "$0x%x", u1.i); } \
1336 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \
1337 { union { double d; int i[2]; } u; \
1338 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1339 fprintf (FILE, "$0d%.20e", u.d); } \
1341 else if (CODE == 'N') \
1342 switch (GET_CODE (X)) \
1344 case EQ: fputs ("eq", FILE); break; \
1345 case NE: fputs ("ne", FILE); break; \
1346 case GT: \
1347 case GTU: fputs ("gt", FILE); break; \
1348 case LT: \
1349 case LTU: fputs ("lt", FILE); break; \
1350 case GE: \
1351 case GEU: fputs ("ge", FILE); break; \
1352 case LE: \
1353 case LEU: fputs ("le", FILE); break; \
1356 else if (CODE == 'C') \
1357 switch (GET_CODE (X)) \
1359 case EQ: fputs ("ne", FILE); break; \
1360 case NE: fputs ("eq", FILE); break; \
1361 case GT: \
1362 case GTU: fputs ("le", FILE); break; \
1363 case LT: \
1364 case LTU: fputs ("ge", FILE); break; \
1365 case GE: \
1366 case GEU: fputs ("lt", FILE); break; \
1367 case LE: \
1368 case LEU: fputs ("gt", FILE); break; \
1371 else if (CODE == 'R') \
1372 switch (GET_CODE (X)) \
1374 case EQ: fputs ("eq", FILE); break; \
1375 case NE: fputs ("ne", FILE); break; \
1376 case GT: \
1377 case GTU: fputs ("lt", FILE); break; \
1378 case LT: \
1379 case LTU: fputs ("gt", FILE); break; \
1380 case GE: \
1381 case GEU: fputs ("le", FILE); break; \
1382 case LE: \
1383 case LEU: fputs ("ge", FILE); break; \
1386 else { putc ('$', FILE); output_addr_const (FILE, X); } \
1389 /* Print a memory operand whose address is ADDR, on file FILE. */
1390 /* This is horrendously complicated. */
1391 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1393 register rtx reg1, reg2, breg, ireg; \
1394 register rtx addr = ADDR; \
1395 rtx offset, scale; \
1396 retry: \
1397 switch (GET_CODE (addr)) \
1399 case MEM: \
1400 fprintf (stderr, "bad Mem "); debug_rtx (addr); \
1401 addr = XEXP (addr, 0); \
1402 abort (); \
1403 case REG: \
1404 fprintf (FILE, "(%s)", reg_names [REGNO (addr)]); \
1405 break; \
1406 case PLUS: \
1407 reg1 = 0; reg2 = 0; \
1408 ireg = 0; breg = 0; \
1409 offset = 0; \
1410 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) \
1411 || GET_CODE (XEXP (addr, 0)) == MEM) \
1413 offset = XEXP (addr, 0); \
1414 addr = XEXP (addr, 1); \
1416 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) \
1417 || GET_CODE (XEXP (addr, 1)) == MEM) \
1419 offset = XEXP (addr, 1); \
1420 addr = XEXP (addr, 0); \
1422 if (GET_CODE (addr) != PLUS) ; \
1423 else if (GET_CODE (XEXP (addr, 0)) == MULT) \
1425 reg1 = XEXP (addr, 0); \
1426 addr = XEXP (addr, 1); \
1428 else if (GET_CODE (XEXP (addr, 1)) == MULT) \
1430 reg1 = XEXP (addr, 1); \
1431 addr = XEXP (addr, 0); \
1433 else if (GET_CODE (XEXP (addr, 0)) == REG) \
1435 reg1 = XEXP (addr, 0); \
1436 addr = XEXP (addr, 1); \
1438 else if (GET_CODE (XEXP (addr, 1)) == REG) \
1440 reg1 = XEXP (addr, 1); \
1441 addr = XEXP (addr, 0); \
1443 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT) \
1445 if (reg1 == 0) \
1446 reg1 = addr; \
1447 else \
1448 reg2 = addr; \
1449 addr = 0; \
1451 if (offset != 0) \
1453 if (addr != 0) { \
1454 fprintf (stderr, "\nBad addr "); debug_rtx (addr); \
1455 abort ();} \
1456 addr = offset; \
1458 if (reg1 != 0 && GET_CODE (reg1) == MULT) \
1459 { breg = reg2; ireg = reg1; } \
1460 else if (reg2 != 0 && GET_CODE (reg2) == MULT) \
1461 { breg = reg1; ireg = reg2; } \
1462 else if (reg2 != 0 || GET_CODE (addr) == MEM) \
1463 { breg = reg2; ireg = reg1; } \
1464 else \
1465 { breg = reg1; ireg = reg2; } \
1466 if (addr != 0) \
1467 output_address (offset); \
1468 if (breg != 0) \
1469 { if (GET_CODE (breg) != REG) \
1471 fprintf (stderr, "bad Breg"); debug_rtx (addr); \
1472 abort (); \
1474 fprintf (FILE, "(%s)", reg_names[REGNO (breg)]); } \
1475 if (ireg != 0) \
1477 if (GET_CODE (ireg) == MULT) \
1479 scale = XEXP (ireg, 1); \
1480 ireg = XEXP (ireg, 0); \
1481 if (GET_CODE (ireg) != REG) \
1482 { register rtx tem; \
1483 tem = ireg; ireg = scale; scale = tem; \
1485 if (GET_CODE (ireg) != REG) { \
1486 fprintf (stderr, "bad idx "); debug_rtx (addr); \
1487 abort (); } \
1488 if ((GET_CODE (scale) == CONST_INT) && (INTVAL(scale) >= 1))\
1489 fprintf (FILE, "[%s*0x%x]", reg_names[REGNO (ireg)], \
1490 INTVAL(scale)); \
1491 else \
1492 fprintf (FILE, "[%s*1]", reg_names[REGNO (ireg)]); \
1494 else if (GET_CODE (ireg) == REG) \
1495 fprintf (FILE, "[%s*1]", reg_names[REGNO (ireg)]); \
1496 else \
1498 fprintf (stderr, "Not indexed at all!"); debug_rtx (addr);\
1499 abort (); \
1502 break; \
1503 default: \
1504 output_addr_const (FILE, addr); \