* alpha.h: NULL_PTR -> NULL.
[official-gcc.git] / gcc / config / sparc / sparc.h
bloba8107561d2137bfee588aa3006f417c617689d4b
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
101 #define SPARC_DEFAULT_CMODEL CM_32
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
126 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
127 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
129 #define CPP_CPU32_DEFAULT_SPEC ""
130 #define ASM_CPU32_DEFAULT_SPEC ""
132 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
133 /* ??? What does Sun's CC pass? */
134 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
135 /* ??? It's not clear how other assemblers will handle this, so by default
136 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
137 is handled in sol2.h. */
138 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
139 #endif
140 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
141 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
142 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
143 #endif
145 #else
147 #define CPP_CPU64_DEFAULT_SPEC ""
148 #define ASM_CPU64_DEFAULT_SPEC ""
150 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
151 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
152 #define CPP_CPU32_DEFAULT_SPEC ""
153 #define ASM_CPU32_DEFAULT_SPEC ""
154 #endif
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
157 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
158 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
159 #endif
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
162 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
163 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
164 #endif
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
167 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
168 #define ASM_CPU32_DEFAULT_SPEC ""
169 #endif
171 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
172 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
173 #define ASM_CPU32_DEFAULT_SPEC ""
174 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
177 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
178 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
179 #endif
181 #endif
183 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
184 Unrecognized value in TARGET_CPU_DEFAULT.
185 #endif
187 #ifdef SPARC_BI_ARCH
189 #define CPP_CPU_DEFAULT_SPEC \
190 (DEFAULT_ARCH32_P ? "\
191 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
192 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
193 " : "\
194 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
195 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
197 #define ASM_CPU_DEFAULT_SPEC \
198 (DEFAULT_ARCH32_P ? "\
199 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
200 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
201 " : "\
202 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
203 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
206 #else /* !SPARC_BI_ARCH */
208 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
209 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
211 #endif /* !SPARC_BI_ARCH */
213 /* Names to predefine in the preprocessor for this target machine.
214 ??? It would be nice to not include any subtarget specific values here,
215 however there's no way to portably provide subtarget values to
216 CPP_PREFINES. Also, -D values in CPP_SUBTARGET_SPEC don't get turned into
217 foo, __foo and __foo__. */
219 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -Asystem=unix -Asystem=bsd"
221 /* Define macros to distinguish architectures. */
223 /* Common CPP definitions used by CPP_SPEC amongst the various targets
224 for handling -mcpu=xxx switches. */
225 #define CPP_CPU_SPEC "\
226 %{mcypress:} \
227 %{msparclite:-D__sparclite__} \
228 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
229 %{mv8:-D__sparc_v8__} \
230 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
231 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
232 %{mcpu=sparclite:-D__sparclite__} \
233 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
234 %{mcpu=v8:-D__sparc_v8__} \
235 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
236 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
237 %{mcpu=sparclite86x:-D__sparclite86x__} \
238 %{mcpu=v9:-D__sparc_v9__} \
239 %{mcpu=ultrasparc:-D__sparc_v9__} \
240 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
243 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
244 the right varags.h file when bootstrapping. */
245 /* ??? It's not clear what value we want to use for -Acpu/machine for
246 sparc64 in 32 bit environments, so for now we only use `sparc64' in
247 64 bit environments. */
249 #ifdef SPARC_BI_ARCH
251 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
252 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
253 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
254 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
256 #else
258 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
259 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
261 #endif
263 #define CPP_ARCH_DEFAULT_SPEC \
264 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
266 #define CPP_ARCH_SPEC "\
267 %{m32:%(cpp_arch32)} \
268 %{m64:%(cpp_arch64)} \
269 %{!m32:%{!m64:%(cpp_arch_default)}} \
272 /* Macros to distinguish endianness. */
273 #define CPP_ENDIAN_SPEC "\
274 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
275 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
277 /* Macros to distinguish the particular subtarget. */
278 #define CPP_SUBTARGET_SPEC ""
280 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
282 /* Prevent error on `-sun4' and `-target sun4' options. */
283 /* This used to translate -dalign to -malign, but that is no good
284 because it can't turn off the usual meaning of making debugging dumps. */
285 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
286 ??? Delete support for -m<cpu> for 2.9. */
288 #define CC1_SPEC "\
289 %{sun4:} %{target:} \
290 %{mcypress:-mcpu=cypress} \
291 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
292 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
295 /* Override in target specific files. */
296 #define ASM_CPU_SPEC "\
297 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
298 %{msparclite:-Asparclite} \
299 %{mf930:-Asparclite} %{mf934:-Asparclite} \
300 %{mcpu=sparclite:-Asparclite} \
301 %{mcpu=sparclite86x:-Asparclite} \
302 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
303 %{mv8plus:-Av8plus} \
304 %{mcpu=v9:-Av9} \
305 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
306 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
309 /* Word size selection, among other things.
310 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
312 #define ASM_ARCH32_SPEC "-32"
313 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
314 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
315 #else
316 #define ASM_ARCH64_SPEC "-64"
317 #endif
318 #define ASM_ARCH_DEFAULT_SPEC \
319 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
321 #define ASM_ARCH_SPEC "\
322 %{m32:%(asm_arch32)} \
323 %{m64:%(asm_arch64)} \
324 %{!m32:%{!m64:%(asm_arch_default)}} \
327 #ifdef HAVE_AS_RELAX_OPTION
328 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
329 #else
330 #define ASM_RELAX_SPEC ""
331 #endif
333 /* Special flags to the Sun-4 assembler when using pipe for input. */
335 #define ASM_SPEC "\
336 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
337 %(asm_cpu) %(asm_relax)"
339 #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
341 /* Provide required defaults for linker -e and -d switches. */
343 #define LINK_SPEC \
344 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
345 %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"
347 /* This macro defines names of additional specifications to put in the specs
348 that can be used in various specifications like CC1_SPEC. Its definition
349 is an initializer with a subgrouping for each command option.
351 Each subgrouping contains a string constant, that defines the
352 specification name, and a string constant that used by the GNU CC driver
353 program.
355 Do not define this macro if it does not need to do anything. */
357 #define EXTRA_SPECS \
358 { "cpp_cpu", CPP_CPU_SPEC }, \
359 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
360 { "cpp_arch32", CPP_ARCH32_SPEC }, \
361 { "cpp_arch64", CPP_ARCH64_SPEC }, \
362 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
363 { "cpp_arch", CPP_ARCH_SPEC }, \
364 { "cpp_endian", CPP_ENDIAN_SPEC }, \
365 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
366 { "asm_cpu", ASM_CPU_SPEC }, \
367 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
368 { "asm_arch32", ASM_ARCH32_SPEC }, \
369 { "asm_arch64", ASM_ARCH64_SPEC }, \
370 { "asm_relax", ASM_RELAX_SPEC }, \
371 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
372 { "asm_arch", ASM_ARCH_SPEC }, \
373 SUBTARGET_EXTRA_SPECS
375 #define SUBTARGET_EXTRA_SPECS
377 #ifdef SPARC_BI_ARCH
378 #define NO_BUILTIN_PTRDIFF_TYPE
379 #define NO_BUILTIN_SIZE_TYPE
380 #endif
381 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
382 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
384 /* ??? This should be 32 bits for v9 but what can we do? */
385 #define WCHAR_TYPE "short unsigned int"
386 #define WCHAR_TYPE_SIZE 16
387 #define MAX_WCHAR_TYPE_SIZE 16
389 /* Show we can debug even without a frame pointer. */
390 #define CAN_DEBUG_WITHOUT_FP
392 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
393 code into the rtl. Also, if we are profiling, we cannot eliminate
394 the frame pointer (because the return address will get smashed). */
396 #define OVERRIDE_OPTIONS \
397 do { \
398 if (profile_flag || profile_block_flag || profile_arc_flag) \
400 if (flag_pic) \
402 const char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
403 warning ("%s and profiling conflict: disabling %s", \
404 pic_string, pic_string); \
405 flag_pic = 0; \
407 flag_omit_frame_pointer = 0; \
409 sparc_override_options (); \
410 SUBTARGET_OVERRIDE_OPTIONS; \
411 } while (0)
413 /* This is meant to be redefined in the host dependent files. */
414 #define SUBTARGET_OVERRIDE_OPTIONS
416 /* These compiler options take an argument. We ignore -target for now. */
418 #define WORD_SWITCH_TAKES_ARG(STR) \
419 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
420 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
422 /* Print subsidiary information on the compiler version in use. */
424 #define TARGET_VERSION fprintf (stderr, " (sparc)");
426 /* Generate DBX debugging information. */
428 #define DBX_DEBUGGING_INFO
430 /* Run-time compilation parameters selecting different hardware subsets. */
432 extern int target_flags;
434 /* Nonzero if we should generate code to use the fpu. */
435 #define MASK_FPU 1
436 #define TARGET_FPU (target_flags & MASK_FPU)
438 /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
439 use fast return insns, but lose some generality. */
440 #define MASK_EPILOGUE 2
441 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
443 /* Nonzero if we should assume that double pointers might be unaligned.
444 This can happen when linking gcc compiled code with other compilers,
445 because the ABI only guarantees 4 byte alignment. */
446 #define MASK_UNALIGNED_DOUBLES 4
447 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
449 /* Nonzero means that we should generate code for a v8 sparc. */
450 #define MASK_V8 0x8
451 #define TARGET_V8 (target_flags & MASK_V8)
453 /* Nonzero means that we should generate code for a sparclite.
454 This enables the sparclite specific instructions, but does not affect
455 whether FPU instructions are emitted. */
456 #define MASK_SPARCLITE 0x10
457 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
459 /* Nonzero if we're compiling for the sparclet. */
460 #define MASK_SPARCLET 0x20
461 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
463 /* Nonzero if we're compiling for v9 sparc.
464 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
465 the word size is 64. */
466 #define MASK_V9 0x40
467 #define TARGET_V9 (target_flags & MASK_V9)
469 /* Non-zero to generate code that uses the instructions deprecated in
470 the v9 architecture. This option only applies to v9 systems. */
471 /* ??? This isn't user selectable yet. It's used to enable such insns
472 on 32 bit v9 systems and for the moment they're permanently disabled
473 on 64 bit v9 systems. */
474 #define MASK_DEPRECATED_V8_INSNS 0x80
475 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
477 /* Mask of all CPU selection flags. */
478 #define MASK_ISA \
479 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
481 /* Non-zero means don't pass `-assert pure-text' to the linker. */
482 #define MASK_IMPURE_TEXT 0x100
483 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
485 /* Nonzero means that we should generate code using a flat register window
486 model, i.e. no save/restore instructions are generated, which is
487 compatible with normal sparc code.
488 The frame pointer is %i7 instead of %fp. */
489 #define MASK_FLAT 0x200
490 #define TARGET_FLAT (target_flags & MASK_FLAT)
492 /* Nonzero means use the registers that the Sparc ABI reserves for
493 application software. This must be the default to coincide with the
494 setting in FIXED_REGISTERS. */
495 #define MASK_APP_REGS 0x400
496 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
498 /* Option to select how quad word floating point is implemented.
499 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
500 Otherwise, we use the SPARC ABI quad library functions. */
501 #define MASK_HARD_QUAD 0x800
502 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
504 /* Non-zero on little-endian machines. */
505 /* ??? Little endian support currently only exists for sparclet-aout and
506 sparc64-elf configurations. May eventually want to expand the support
507 to all targets, but for now it's kept local to only those two. */
508 #define MASK_LITTLE_ENDIAN 0x1000
509 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
511 /* 0x2000, 0x4000 are unused */
513 /* Nonzero if pointers are 64 bits. */
514 #define MASK_PTR64 0x8000
515 #define TARGET_PTR64 (target_flags & MASK_PTR64)
517 /* Nonzero if generating code to run in a 64 bit environment.
518 This is intended to only be used by TARGET_ARCH{32,64} as they are the
519 mechanism used to control compile time or run time selection. */
520 #define MASK_64BIT 0x10000
521 #define TARGET_64BIT (target_flags & MASK_64BIT)
523 /* 0x20000,0x40000 unused */
525 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
526 adding 2047 to %sp. This option is for v9 only and is the default. */
527 #define MASK_STACK_BIAS 0x80000
528 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
530 /* 0x100000,0x200000 unused */
532 /* Non-zero means -m{,no-}fpu was passed on the command line. */
533 #define MASK_FPU_SET 0x400000
534 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
536 /* Use the UltraSPARC Visual Instruction Set extensions. */
537 #define MASK_VIS 0x1000000
538 #define TARGET_VIS (target_flags & MASK_VIS)
540 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
541 the current out and global registers and Linux 2.2+ as well. */
542 #define MASK_V8PLUS 0x2000000
543 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
545 /* Force a the fastest alignment on structures to take advantage of
546 faster copies. */
547 #define MASK_FASTER_STRUCTS 0x4000000
548 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
550 /* Use IEEE quad long double. */
551 #define MASK_LONG_DOUBLE_128 0x8000000
552 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
554 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
555 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
556 to get high 32 bits. False in V8+ or V9 because multiply stores
557 a 64 bit result in a register. */
559 #define TARGET_HARD_MUL32 \
560 ((TARGET_V8 || TARGET_SPARCLITE \
561 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
562 && ! TARGET_V8PLUS && TARGET_ARCH32)
564 #define TARGET_HARD_MUL \
565 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
566 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
569 /* Macro to define tables used to set the flags.
570 This is a list in braces of pairs in braces,
571 each pair being { "NAME", VALUE }
572 where VALUE is the bits to set or minus the bits to clear.
573 An empty string NAME is used to identify the default VALUE. */
575 #define TARGET_SWITCHES \
576 { {"fpu", MASK_FPU | MASK_FPU_SET, \
577 N_("Use hardware fp") }, \
578 {"no-fpu", -MASK_FPU, \
579 N_("Do not use hardware fp") }, \
580 {"no-fpu", MASK_FPU_SET, NULL, }, \
581 {"hard-float", MASK_FPU | MASK_FPU_SET, \
582 N_("Use hardware fp") }, \
583 {"soft-float", -MASK_FPU, \
584 N_("Do not use hardware fp") }, \
585 {"soft-float", MASK_FPU_SET, NULL }, \
586 {"epilogue", MASK_EPILOGUE, \
587 N_("Use FUNCTION_EPILOGUE") }, \
588 {"no-epilogue", -MASK_EPILOGUE, \
589 N_("Do not use FUNCTION_EPILOGUE") }, \
590 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
591 N_("Assume possible double misalignment") }, \
592 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
593 N_("Assume all doubles are aligned") }, \
594 {"impure-text", MASK_IMPURE_TEXT, \
595 N_("Pass -assert pure-text to linker") }, \
596 {"no-impure-text", -MASK_IMPURE_TEXT, \
597 N_("Do not pass -assert pure-text to linker") }, \
598 {"flat", MASK_FLAT, \
599 N_("Use flat register window model") }, \
600 {"no-flat", -MASK_FLAT, \
601 N_("Do not use flat register window model") }, \
602 {"app-regs", MASK_APP_REGS, \
603 N_("Use ABI reserved registers") }, \
604 {"no-app-regs", -MASK_APP_REGS, \
605 N_("Do not use ABI reserved registers") }, \
606 {"hard-quad-float", MASK_HARD_QUAD, \
607 N_("Use hardware quad fp instructions") }, \
608 {"soft-quad-float", -MASK_HARD_QUAD, \
609 N_("Do not use hardware quad fp instructions") }, \
610 {"v8plus", MASK_V8PLUS, \
611 N_("Compile for v8plus ABI") }, \
612 {"no-v8plus", -MASK_V8PLUS, \
613 N_("Do not compile for v8plus ABI") }, \
614 {"vis", MASK_VIS, \
615 N_("Utilize Visual Instruction Set") }, \
616 {"no-vis", -MASK_VIS, \
617 N_("Do not utilize Visual Instruction Set") }, \
618 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
619 {"cypress", 0, \
620 N_("Optimize for Cypress processors") }, \
621 {"sparclite", 0, \
622 N_("Optimize for SparcLite processors") }, \
623 {"f930", 0, \
624 N_("Optimize for F930 processors") }, \
625 {"f934", 0, \
626 N_("Optimize for F934 processors") }, \
627 {"v8", 0, \
628 N_("Use V8 Sparc ISA") }, \
629 {"supersparc", 0, \
630 N_("Optimize for SuperSparc processors") }, \
631 /* End of deprecated options. */ \
632 {"ptr64", MASK_PTR64, \
633 N_("Pointers are 64-bit") }, \
634 {"ptr32", -MASK_PTR64, \
635 N_("Pointers are 32-bit") }, \
636 {"32", -MASK_64BIT, \
637 N_("Use 32-bit ABI") }, \
638 {"64", MASK_64BIT, \
639 N_("Use 64-bit ABI") }, \
640 {"stack-bias", MASK_STACK_BIAS, \
641 N_("Use stack bias") }, \
642 {"no-stack-bias", -MASK_STACK_BIAS, \
643 N_("Do not use stack bias") }, \
644 {"faster-structs", MASK_FASTER_STRUCTS, \
645 N_("Use structs on stronger alignment for double-word copies") }, \
646 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
647 N_("Do not use structs on stronger alignment for double-word copies") }, \
648 {"relax", 0, \
649 N_("Optimize tail call instructions in assembler and linker") }, \
650 {"no-relax", 0, \
651 N_("Do not optimize tail call instructions in assembler or linker") }, \
652 SUBTARGET_SWITCHES \
653 { "", TARGET_DEFAULT, ""}}
655 /* MASK_APP_REGS must always be the default because that's what
656 FIXED_REGISTERS is set to and -ffixed- is processed before
657 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
658 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
660 /* This is meant to be redefined in target specific files. */
661 #define SUBTARGET_SWITCHES
663 /* Processor type.
664 These must match the values for the cpu attribute in sparc.md. */
665 enum processor_type {
666 PROCESSOR_V7,
667 PROCESSOR_CYPRESS,
668 PROCESSOR_V8,
669 PROCESSOR_SUPERSPARC,
670 PROCESSOR_SPARCLITE,
671 PROCESSOR_F930,
672 PROCESSOR_F934,
673 PROCESSOR_HYPERSPARC,
674 PROCESSOR_SPARCLITE86X,
675 PROCESSOR_SPARCLET,
676 PROCESSOR_TSC701,
677 PROCESSOR_V9,
678 PROCESSOR_ULTRASPARC
681 /* This is set from -m{cpu,tune}=xxx. */
682 extern enum processor_type sparc_cpu;
684 /* Recast the cpu class to be the cpu attribute.
685 Every file includes us, but not every file includes insn-attr.h. */
686 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
688 /* This macro is similar to `TARGET_SWITCHES' but defines names of
689 command options that have values. Its definition is an
690 initializer with a subgrouping for each command option.
692 Each subgrouping contains a string constant, that defines the
693 fixed part of the option name, and the address of a variable.
694 The variable, type `char *', is set to the variable part of the
695 given option if the fixed part matches. The actual option name
696 is made by appending `-m' to the specified name.
698 Here is an example which defines `-mshort-data-NUMBER'. If the
699 given option is `-mshort-data-512', the variable `m88k_short_data'
700 will be set to the string `"512"'.
702 extern char *m88k_short_data;
703 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
705 #define TARGET_OPTIONS \
707 { "cpu=", &sparc_select[1].string, \
708 N_("Use features of and schedule code for given CPU") }, \
709 { "tune=", &sparc_select[2].string, \
710 N_("Schedule code for given CPU") }, \
711 { "cmodel=", &sparc_cmodel_string, \
712 N_("Use given Sparc code model") }, \
713 SUBTARGET_OPTIONS \
716 /* This is meant to be redefined in target specific files. */
717 #define SUBTARGET_OPTIONS
719 /* sparc_select[0] is reserved for the default cpu. */
720 struct sparc_cpu_select
722 const char *string;
723 const char *name;
724 int set_tune_p;
725 int set_arch_p;
728 extern struct sparc_cpu_select sparc_select[];
730 /* target machine storage layout */
732 /* Define for cross-compilation to a sparc target with no TFmode from a host
733 with a different float format (e.g. VAX). */
734 #define REAL_ARITHMETIC
736 /* Define this if most significant bit is lowest numbered
737 in instructions that operate on numbered bit-fields. */
738 #define BITS_BIG_ENDIAN 1
740 /* Define this if most significant byte of a word is the lowest numbered. */
741 #define BYTES_BIG_ENDIAN 1
743 /* Define this if most significant word of a multiword number is the lowest
744 numbered. */
745 #define WORDS_BIG_ENDIAN 1
747 /* Define this to set the endianness to use in libgcc2.c, which can
748 not depend on target_flags. */
749 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
750 #define LIBGCC2_WORDS_BIG_ENDIAN 0
751 #else
752 #define LIBGCC2_WORDS_BIG_ENDIAN 1
753 #endif
755 /* number of bits in an addressable storage unit */
756 #define BITS_PER_UNIT 8
758 /* Width in bits of a "word", which is the contents of a machine register.
759 Note that this is not necessarily the width of data type `int';
760 if using 16-bit ints on a 68000, this would still be 32.
761 But on a machine with 16-bit registers, this would be 16. */
762 #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
763 #define MAX_BITS_PER_WORD 64
765 /* Width of a word, in units (bytes). */
766 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
767 #define MIN_UNITS_PER_WORD 4
769 /* Now define the sizes of the C data types. */
771 #define SHORT_TYPE_SIZE 16
772 #define INT_TYPE_SIZE 32
773 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
774 #define LONG_LONG_TYPE_SIZE 64
775 #define FLOAT_TYPE_SIZE 32
776 #define DOUBLE_TYPE_SIZE 64
778 #ifdef SPARC_BI_ARCH
779 #define MAX_LONG_TYPE_SIZE 64
780 #endif
782 #if 0
783 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
784 Instead, it is enabled in sol2.h, because it does work under Solaris. */
785 /* Define for support of TFmode long double and REAL_ARITHMETIC.
786 Sparc ABI says that long double is 4 words. */
787 #define LONG_DOUBLE_TYPE_SIZE 128
788 #endif
790 /* Width in bits of a pointer.
791 See also the macro `Pmode' defined below. */
792 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
794 /* If we have to extend pointers (only when TARGET_ARCH64 and not
795 TARGET_PTR64), we want to do it unsigned. This macro does nothing
796 if ptr_mode and Pmode are the same. */
797 #define POINTERS_EXTEND_UNSIGNED 1
799 /* A macro to update MODE and UNSIGNEDP when an object whose type
800 is TYPE and which has the specified mode and signedness is to be
801 stored in a register. This macro is only called when TYPE is a
802 scalar type. */
803 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
804 if (TARGET_ARCH64 \
805 && GET_MODE_CLASS (MODE) == MODE_INT \
806 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
807 (MODE) = DImode;
809 /* Define this macro if the promotion described by PROMOTE_MODE
810 should also be done for outgoing function arguments. */
811 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
812 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
813 for this value. */
814 #define PROMOTE_FUNCTION_ARGS
816 /* Define this macro if the promotion described by PROMOTE_MODE
817 should also be done for the return value of functions.
818 If this macro is defined, FUNCTION_VALUE must perform the same
819 promotions done by PROMOTE_MODE. */
820 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
821 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
822 for this value. */
823 #define PROMOTE_FUNCTION_RETURN
825 /* Define this macro if the promotion described by PROMOTE_MODE
826 should _only_ be performed for outgoing function arguments or
827 function return values, as specified by PROMOTE_FUNCTION_ARGS
828 and PROMOTE_FUNCTION_RETURN, respectively. */
829 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
830 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
831 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
832 for arithmetic operations which do zero/sign extension at the same time,
833 so without this we end up with a srl/sra after every assignment to an
834 user variable, which means very very bad code. */
835 #define PROMOTE_FOR_CALL_ONLY
837 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
838 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
840 /* Boundary (in *bits*) on which stack pointer should be aligned. */
841 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
843 /* ALIGN FRAMES on double word boundaries */
845 #define SPARC_STACK_ALIGN(LOC) \
846 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
848 /* Allocation boundary (in *bits*) for the code of a function. */
849 #define FUNCTION_BOUNDARY 32
851 /* Alignment of field after `int : 0' in a structure. */
852 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
854 /* Every structure's size must be a multiple of this. */
855 #define STRUCTURE_SIZE_BOUNDARY 8
857 /* A bitfield declared as `int' forces `int' alignment for the struct. */
858 #define PCC_BITFIELD_TYPE_MATTERS 1
860 /* No data type wants to be aligned rounder than this. */
861 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
863 /* The best alignment to use in cases where we have a choice. */
864 #define FASTEST_ALIGNMENT 64
866 /* Define this macro as an expression for the alignment of a structure
867 (given by STRUCT as a tree node) if the alignment computed in the
868 usual way is COMPUTED and the alignment explicitly specified was
869 SPECIFIED.
871 The default is to use SPECIFIED if it is larger; otherwise, use
872 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
873 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
874 (TARGET_FASTER_STRUCTS ? \
875 ((TREE_CODE (STRUCT) == RECORD_TYPE \
876 || TREE_CODE (STRUCT) == UNION_TYPE \
877 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
878 && TYPE_FIELDS (STRUCT) != 0 \
879 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
880 : MAX ((COMPUTED), (SPECIFIED))) \
881 : MAX ((COMPUTED), (SPECIFIED)))
883 /* Make strings word-aligned so strcpy from constants will be faster. */
884 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
885 ((TREE_CODE (EXP) == STRING_CST \
886 && (ALIGN) < FASTEST_ALIGNMENT) \
887 ? FASTEST_ALIGNMENT : (ALIGN))
889 /* Make arrays of chars word-aligned for the same reasons. */
890 #define DATA_ALIGNMENT(TYPE, ALIGN) \
891 (TREE_CODE (TYPE) == ARRAY_TYPE \
892 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
893 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
895 /* Set this nonzero if move instructions will actually fail to work
896 when given unaligned data. */
897 #define STRICT_ALIGNMENT 1
899 /* Things that must be doubleword aligned cannot go in the text section,
900 because the linker fails to align the text section enough!
901 Put them in the data section. This macro is only used in this file. */
902 #define MAX_TEXT_ALIGN 32
904 /* This forces all variables and constants to the data section when PIC.
905 This is because the SunOS 4 shared library scheme thinks everything in
906 text is a function, and patches the address to point to a loader stub. */
907 /* This is defined to zero for every system which doesn't use the a.out object
908 file format. */
909 #ifndef SUNOS4_SHARED_LIBRARIES
910 #define SUNOS4_SHARED_LIBRARIES 0
911 #endif
913 /* This is defined differently for v9 in a cover file. */
914 #define SELECT_SECTION(T,RELOC) \
916 if (TREE_CODE (T) == VAR_DECL) \
918 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
919 && DECL_INITIAL (T) \
920 && (DECL_INITIAL (T) == error_mark_node \
921 || TREE_CONSTANT (DECL_INITIAL (T))) \
922 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
923 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
924 text_section (); \
925 else \
926 data_section (); \
928 else if (TREE_CODE (T) == CONSTRUCTOR) \
930 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
931 data_section (); \
933 else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \
935 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
936 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
937 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
938 data_section (); \
939 else \
940 text_section (); \
944 /* Use text section for a constant
945 unless we need more alignment than that offers. */
946 /* This is defined differently for v9 in a cover file. */
947 #define SELECT_RTX_SECTION(MODE, X) \
949 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
950 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
951 text_section (); \
952 else \
953 data_section (); \
956 /* Standard register usage. */
958 /* Number of actual hardware registers.
959 The hardware registers are assigned numbers for the compiler
960 from 0 to just below FIRST_PSEUDO_REGISTER.
961 All registers that the compiler knows about must be given numbers,
962 even those that are not normally considered general registers.
964 SPARC has 32 integer registers and 32 floating point registers.
965 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
966 accessible. We still account for them to simplify register computations
967 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
968 32+32+32+4 == 100.
969 Register 100 is used as the integer condition code register. */
971 #define FIRST_PSEUDO_REGISTER 101
973 #define SPARC_FIRST_FP_REG 32
974 /* Additional V9 fp regs. */
975 #define SPARC_FIRST_V9_FP_REG 64
976 #define SPARC_LAST_V9_FP_REG 95
977 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
978 #define SPARC_FIRST_V9_FCC_REG 96
979 #define SPARC_LAST_V9_FCC_REG 99
980 /* V8 fcc reg. */
981 #define SPARC_FCC_REG 96
982 /* Integer CC reg. We don't distinguish %icc from %xcc. */
983 #define SPARC_ICC_REG 100
985 /* Nonzero if REGNO is an fp reg. */
986 #define SPARC_FP_REG_P(REGNO) \
987 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
989 /* Argument passing regs. */
990 #define SPARC_OUTGOING_INT_ARG_FIRST 8
991 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
992 #define SPARC_FP_ARG_FIRST 32
994 /* 1 for registers that have pervasive standard uses
995 and are not available for the register allocator.
997 On non-v9 systems:
998 g1 is free to use as temporary.
999 g2-g4 are reserved for applications. Gcc normally uses them as
1000 temporaries, but this can be disabled via the -mno-app-regs option.
1001 g5 through g7 are reserved for the operating system.
1003 On v9 systems:
1004 g1,g5 are free to use as temporaries, and are free to use between calls
1005 if the call is to an external function via the PLT.
1006 g4 is free to use as a temporary in the non-embedded case.
1007 g4 is reserved in the embedded case.
1008 g2-g3 are reserved for applications. Gcc normally uses them as
1009 temporaries, but this can be disabled via the -mno-app-regs option.
1010 g6-g7 are reserved for the operating system (or application in
1011 embedded case).
1012 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
1013 currently be a fixed register until this pattern is rewritten.
1014 Register 1 is also used when restoring call-preserved registers in large
1015 stack frames.
1017 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
1018 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
1021 #define FIXED_REGISTERS \
1022 {1, 0, 2, 2, 2, 2, 1, 1, \
1023 0, 0, 0, 0, 0, 0, 1, 0, \
1024 0, 0, 0, 0, 0, 0, 0, 0, \
1025 0, 0, 0, 0, 0, 0, 1, 1, \
1027 0, 0, 0, 0, 0, 0, 0, 0, \
1028 0, 0, 0, 0, 0, 0, 0, 0, \
1029 0, 0, 0, 0, 0, 0, 0, 0, \
1030 0, 0, 0, 0, 0, 0, 0, 0, \
1032 0, 0, 0, 0, 0, 0, 0, 0, \
1033 0, 0, 0, 0, 0, 0, 0, 0, \
1034 0, 0, 0, 0, 0, 0, 0, 0, \
1035 0, 0, 0, 0, 0, 0, 0, 0, \
1037 0, 0, 0, 0, 0}
1039 /* 1 for registers not available across function calls.
1040 These must include the FIXED_REGISTERS and also any
1041 registers that can be used without being saved.
1042 The latter must include the registers where values are returned
1043 and the register where structure-value addresses are passed.
1044 Aside from that, you can include as many other registers as you like. */
1046 #define CALL_USED_REGISTERS \
1047 {1, 1, 1, 1, 1, 1, 1, 1, \
1048 1, 1, 1, 1, 1, 1, 1, 1, \
1049 0, 0, 0, 0, 0, 0, 0, 0, \
1050 0, 0, 0, 0, 0, 0, 1, 1, \
1052 1, 1, 1, 1, 1, 1, 1, 1, \
1053 1, 1, 1, 1, 1, 1, 1, 1, \
1054 1, 1, 1, 1, 1, 1, 1, 1, \
1055 1, 1, 1, 1, 1, 1, 1, 1, \
1057 1, 1, 1, 1, 1, 1, 1, 1, \
1058 1, 1, 1, 1, 1, 1, 1, 1, \
1059 1, 1, 1, 1, 1, 1, 1, 1, \
1060 1, 1, 1, 1, 1, 1, 1, 1, \
1062 1, 1, 1, 1, 1}
1064 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
1065 they won't be allocated. */
1067 #define CONDITIONAL_REGISTER_USAGE \
1068 do \
1070 if (flag_pic) \
1072 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1073 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1075 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
1076 /* then honour it. */ \
1077 if (TARGET_ARCH32 && fixed_regs[5]) \
1078 fixed_regs[5] = 1; \
1079 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1080 fixed_regs[5] = 0; \
1081 if (! TARGET_V9) \
1083 int regno; \
1084 for (regno = SPARC_FIRST_V9_FP_REG; \
1085 regno <= SPARC_LAST_V9_FP_REG; \
1086 regno++) \
1087 fixed_regs[regno] = 1; \
1088 /* %fcc0 is used by v8 and v9. */ \
1089 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1090 regno <= SPARC_LAST_V9_FCC_REG; \
1091 regno++) \
1092 fixed_regs[regno] = 1; \
1094 if (! TARGET_FPU) \
1096 int regno; \
1097 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1098 fixed_regs[regno] = 1; \
1100 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1101 /* then honour it. Likewise with g3 and g4. */ \
1102 if (fixed_regs[2] == 2) \
1103 fixed_regs[2] = ! TARGET_APP_REGS; \
1104 if (fixed_regs[3] == 2) \
1105 fixed_regs[3] = ! TARGET_APP_REGS; \
1106 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1107 fixed_regs[4] = ! TARGET_APP_REGS; \
1108 else if (TARGET_CM_EMBMEDANY) \
1109 fixed_regs[4] = 1; \
1110 else if (fixed_regs[4] == 2) \
1111 fixed_regs[4] = 0; \
1112 if (TARGET_FLAT) \
1114 /* Let the compiler believe the frame pointer is still \
1115 %fp, but output it as %i7. */ \
1116 fixed_regs[31] = 1; \
1117 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
1118 /* Disable leaf functions */ \
1119 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1121 if (profile_block_flag) \
1123 /* %g1 and %g2 (sparc32) resp. %g4 (sparc64) must be \
1124 fixed, because BLOCK_PROFILER uses them. */ \
1125 fixed_regs[1] = 1; \
1126 fixed_regs[TARGET_ARCH64 ? 4 : 2] = 1; \
1129 while (0)
1131 /* Return number of consecutive hard regs needed starting at reg REGNO
1132 to hold something of mode MODE.
1133 This is ordinarily the length in words of a value of mode MODE
1134 but can be less for certain modes in special long registers.
1136 On SPARC, ordinary registers hold 32 bits worth;
1137 this means both integer and floating point registers.
1138 On v9, integer regs hold 64 bits worth; floating point regs hold
1139 32 bits worth (this includes the new fp regs as even the odd ones are
1140 included in the hard register count). */
1142 #define HARD_REGNO_NREGS(REGNO, MODE) \
1143 (TARGET_ARCH64 \
1144 ? ((REGNO) < 32 \
1145 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1146 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1147 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1149 /* Due to the ARCH64 descrepancy above we must override these
1150 next two macros too. */
1151 #define REG_SIZE(R) \
1152 (TARGET_ARCH64 \
1153 && ((GET_CODE (R) == REG \
1154 && ((REGNO (R) >= FIRST_PSEUDO_REGISTER \
1155 && FLOAT_MODE_P (GET_MODE (R))) \
1156 || (REGNO (R) < FIRST_PSEUDO_REGISTER \
1157 && REGNO (R) >= 32))) \
1158 || (GET_CODE (R) == SUBREG \
1159 && ((REGNO (SUBREG_REG (R)) >= FIRST_PSEUDO_REGISTER \
1160 && FLOAT_MODE_P (GET_MODE (SUBREG_REG (R)))) \
1161 || (REGNO (SUBREG_REG (R)) < FIRST_PSEUDO_REGISTER \
1162 && REGNO (SUBREG_REG (R)) >= 32)))) \
1163 ? (GET_MODE_SIZE (GET_MODE (R)) + 3) / 4 \
1164 : (GET_MODE_SIZE (GET_MODE (R)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1166 #define REGMODE_NATURAL_SIZE(MODE) \
1167 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1169 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1170 See sparc.c for how we initialize this. */
1171 extern int *hard_regno_mode_classes;
1172 extern int sparc_mode_class[];
1174 /* ??? Because of the funny way we pass parameters we should allow certain
1175 ??? types of float/complex values to be in integer registers during
1176 ??? RTL generation. This only matters on arch32. */
1177 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1178 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1180 /* Value is 1 if it is a good idea to tie two pseudo registers
1181 when one has mode MODE1 and one has mode MODE2.
1182 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1183 for any hard reg, then this must be 0 for correct output.
1185 For V9: SFmode can't be combined with other float modes, because they can't
1186 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1187 registers, but SFmode will. */
1188 #define MODES_TIEABLE_P(MODE1, MODE2) \
1189 ((MODE1) == (MODE2) \
1190 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1191 && (! TARGET_V9 \
1192 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1193 || (MODE1 != SFmode && MODE2 != SFmode)))))
1195 /* Specify the registers used for certain standard purposes.
1196 The values of these macros are register numbers. */
1198 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1199 /* #define PC_REGNUM */
1201 /* Register to use for pushing function arguments. */
1202 #define STACK_POINTER_REGNUM 14
1204 /* Actual top-of-stack address is 92/176 greater than the contents of the
1205 stack pointer register for !v9/v9. That is:
1206 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1207 address, and 6*4 bytes for the 6 register parameters.
1208 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1209 parameter regs. */
1210 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
1212 /* The stack bias (amount by which the hardware register is offset by). */
1213 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1215 /* Is stack biased? */
1216 #define STACK_BIAS SPARC_STACK_BIAS
1218 /* Base register for access to local variables of the function. */
1219 #define FRAME_POINTER_REGNUM 30
1221 #if 0
1222 /* Register that is used for the return address for the flat model. */
1223 #define RETURN_ADDR_REGNUM 15
1224 #endif
1226 /* Value should be nonzero if functions must have frame pointers.
1227 Zero means the frame pointer need not be set up (and parms
1228 may be accessed via the stack pointer) in functions that seem suitable.
1229 This is computed in `reload', in reload1.c.
1230 Used in flow.c, global.c, and reload1.c.
1232 Being a non-leaf function does not mean a frame pointer is needed in the
1233 flat window model. However, the debugger won't be able to backtrace through
1234 us with out it. */
1235 #define FRAME_POINTER_REQUIRED \
1236 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
1237 || !leaf_function_p ()) \
1238 : ! (leaf_function_p () && only_leaf_regs_used ()))
1240 /* C statement to store the difference between the frame pointer
1241 and the stack pointer values immediately after the function prologue.
1243 Note, we always pretend that this is a leaf function because if
1244 it's not, there's no point in trying to eliminate the
1245 frame pointer. If it is a leaf function, we guessed right! */
1246 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1247 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
1248 : compute_frame_size (get_frame_size (), 1)))
1250 /* Base register for access to arguments of the function. */
1251 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1253 /* Register in which static-chain is passed to a function. This must
1254 not be a register used by the prologue. */
1255 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1257 /* Register which holds offset table for position-independent
1258 data references. */
1260 #define PIC_OFFSET_TABLE_REGNUM 23
1262 /* Pick a default value we can notice from override_options:
1263 !v9: Default is on.
1264 v9: Default is off. */
1266 #define DEFAULT_PCC_STRUCT_RETURN -1
1268 /* Sparc ABI says that quad-precision floats and all structures are returned
1269 in memory.
1270 For v9: unions <= 32 bytes in size are returned in int regs,
1271 structures up to 32 bytes are returned in int and fp regs. */
1273 #define RETURN_IN_MEMORY(TYPE) \
1274 (TARGET_ARCH32 \
1275 ? (TYPE_MODE (TYPE) == BLKmode \
1276 || TYPE_MODE (TYPE) == TFmode \
1277 || TYPE_MODE (TYPE) == TCmode) \
1278 : (TYPE_MODE (TYPE) == BLKmode \
1279 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1281 /* Functions which return large structures get the address
1282 to place the wanted value at offset 64 from the frame.
1283 Must reserve 64 bytes for the in and local registers.
1284 v9: Functions which return large structures get the address to place the
1285 wanted value from an invisible first argument. */
1286 /* Used only in other #defines in this file. */
1287 #define STRUCT_VALUE_OFFSET 64
1289 #define STRUCT_VALUE \
1290 (TARGET_ARCH64 \
1291 ? 0 \
1292 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1293 STRUCT_VALUE_OFFSET)))
1295 #define STRUCT_VALUE_INCOMING \
1296 (TARGET_ARCH64 \
1297 ? 0 \
1298 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1299 STRUCT_VALUE_OFFSET)))
1301 /* Define the classes of registers for register constraints in the
1302 machine description. Also define ranges of constants.
1304 One of the classes must always be named ALL_REGS and include all hard regs.
1305 If there is more than one class, another class must be named NO_REGS
1306 and contain no registers.
1308 The name GENERAL_REGS must be the name of a class (or an alias for
1309 another name such as ALL_REGS). This is the class of registers
1310 that is allowed by "g" or "r" in a register constraint.
1311 Also, registers outside this class are allocated only when
1312 instructions express preferences for them.
1314 The classes must be numbered in nondecreasing order; that is,
1315 a larger-numbered class must never be contained completely
1316 in a smaller-numbered class.
1318 For any two classes, it is very desirable that there be another
1319 class that represents their union. */
1321 /* The SPARC has various kinds of registers: general, floating point,
1322 and condition codes [well, it has others as well, but none that we
1323 care directly about].
1325 For v9 we must distinguish between the upper and lower floating point
1326 registers because the upper ones can't hold SFmode values.
1327 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1328 satisfying a group need for a class will also satisfy a single need for
1329 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1330 regs.
1332 It is important that one class contains all the general and all the standard
1333 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1334 because reg_class_record() will bias the selection in favor of fp regs,
1335 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1336 because FP_REGS > GENERAL_REGS.
1338 It is also important that one class contain all the general and all the
1339 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1340 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1341 allocate_reload_reg() to bypass it causing an abort because the compiler
1342 thinks it doesn't have a spill reg when in fact it does.
1344 v9 also has 4 floating point condition code registers. Since we don't
1345 have a class that is the union of FPCC_REGS with either of the others,
1346 it is important that it appear first. Otherwise the compiler will die
1347 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1348 constraints.
1350 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1351 may try to use it to hold an SImode value. See register_operand.
1352 ??? Should %fcc[0123] be handled similarly?
1355 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1356 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1357 ALL_REGS, LIM_REG_CLASSES };
1359 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1361 /* Give names of register classes as strings for dump file. */
1363 #define REG_CLASS_NAMES \
1364 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1365 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1366 "ALL_REGS" }
1368 /* Define which registers fit in which classes.
1369 This is an initializer for a vector of HARD_REG_SET
1370 of length N_REG_CLASSES. */
1372 #define REG_CLASS_CONTENTS \
1373 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
1374 {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
1375 {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
1377 /* The same information, inverted:
1378 Return the class number of the smallest class containing
1379 reg number REGNO. This could be a conditional expression
1380 or could index an array. */
1382 extern enum reg_class sparc_regno_reg_class[];
1384 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1386 /* This is the order in which to allocate registers normally.
1388 We put %f0/%f1 last among the float registers, so as to make it more
1389 likely that a pseudo-register which dies in the float return register
1390 will get allocated to the float return register, thus saving a move
1391 instruction at the end of the function. */
1393 #define REG_ALLOC_ORDER \
1394 { 8, 9, 10, 11, 12, 13, 2, 3, \
1395 15, 16, 17, 18, 19, 20, 21, 22, \
1396 23, 24, 25, 26, 27, 28, 29, 31, \
1397 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1398 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1399 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1400 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1401 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1402 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1403 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1404 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1405 32, 33, /* %f0,%f1 */ \
1406 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1407 1, 4, 5, 6, 7, 0, 14, 30}
1409 /* This is the order in which to allocate registers for
1410 leaf functions. If all registers can fit in the "gi" registers,
1411 then we have the possibility of having a leaf function. */
1413 #define REG_LEAF_ALLOC_ORDER \
1414 { 2, 3, 24, 25, 26, 27, 28, 29, \
1415 4, 5, 6, 7, 1, \
1416 15, 8, 9, 10, 11, 12, 13, \
1417 16, 17, 18, 19, 20, 21, 22, 23, \
1418 34, 35, 36, 37, 38, 39, \
1419 40, 41, 42, 43, 44, 45, 46, 47, \
1420 48, 49, 50, 51, 52, 53, 54, 55, \
1421 56, 57, 58, 59, 60, 61, 62, 63, \
1422 64, 65, 66, 67, 68, 69, 70, 71, \
1423 72, 73, 74, 75, 76, 77, 78, 79, \
1424 80, 81, 82, 83, 84, 85, 86, 87, \
1425 88, 89, 90, 91, 92, 93, 94, 95, \
1426 32, 33, \
1427 96, 97, 98, 99, 100, \
1428 0, 14, 30, 31}
1430 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1432 extern char sparc_leaf_regs[];
1433 #define LEAF_REGISTERS sparc_leaf_regs
1435 extern char leaf_reg_remap[];
1436 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1438 /* The class value for index registers, and the one for base regs. */
1439 #define INDEX_REG_CLASS GENERAL_REGS
1440 #define BASE_REG_CLASS GENERAL_REGS
1442 /* Local macro to handle the two v9 classes of FP regs. */
1443 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1445 /* Get reg_class from a letter such as appears in the machine description.
1446 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1447 .md file for v8 and v9.
1448 'd' and 'b' are used for single and double precision VIS operations,
1449 if TARGET_VIS.
1450 'h' is used for V8+ 64 bit global and out registers. */
1452 #define REG_CLASS_FROM_LETTER(C) \
1453 (TARGET_V9 \
1454 ? ((C) == 'f' ? FP_REGS \
1455 : (C) == 'e' ? EXTRA_FP_REGS \
1456 : (C) == 'c' ? FPCC_REGS \
1457 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1458 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1459 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1460 : NO_REGS) \
1461 : ((C) == 'f' ? FP_REGS \
1462 : (C) == 'e' ? FP_REGS \
1463 : (C) == 'c' ? FPCC_REGS \
1464 : NO_REGS))
1466 /* The letters I, J, K, L and M in a register constraint string
1467 can be used to stand for particular ranges of immediate operands.
1468 This macro defines what the ranges are.
1469 C is the letter, and VALUE is a constant value.
1470 Return 1 if VALUE is in the range specified by C.
1472 `I' is used for the range of constants an insn can actually contain.
1473 `J' is used for the range which is just zero (since that is R0).
1474 `K' is used for constants which can be loaded with a single sethi insn.
1475 `L' is used for the range of constants supported by the movcc insns.
1476 `M' is used for the range of constants supported by the movrcc insns. */
1478 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1479 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1480 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1481 /* 10 and 11 bit immediates are only used for a few specific insns.
1482 SMALL_INT is used throughout the port so we continue to use it. */
1483 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1484 /* 13 bit immediate, considering only the low 32 bits */
1485 #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
1486 #define SPARC_SETHI_P(X) \
1487 (((unsigned HOST_WIDE_INT) (X) & \
1488 (TARGET_ARCH64 ? ~(unsigned HOST_WIDE_INT) 0xfffffc00 : 0x3ff)) == 0)
1490 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1491 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1492 : (C) == 'J' ? (VALUE) == 0 \
1493 : (C) == 'K' ? SPARC_SETHI_P (VALUE) \
1494 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1495 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1496 : 0)
1498 /* Similar, but for floating constants, and defining letters G and H.
1499 Here VALUE is the CONST_DOUBLE rtx itself. */
1501 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1502 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1503 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1504 : 0)
1506 /* Given an rtx X being reloaded into a reg required to be
1507 in class CLASS, return the class of reg to actually use.
1508 In general this is just CLASS; but on some machines
1509 in some cases it is preferable to use a more restrictive class. */
1510 /* - We can't load constants into FP registers.
1511 - We can't load FP constants into integer registers when soft-float,
1512 because there is no soft-float pattern with a r/F constraint.
1513 - We can't load FP constants into integer registers for TFmode unless
1514 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1515 - Try and reload integer constants (symbolic or otherwise) back into
1516 registers directly, rather than having them dumped to memory. */
1518 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1519 (CONSTANT_P (X) \
1520 ? ((FP_REG_CLASS_P (CLASS) \
1521 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1522 && ! TARGET_FPU) \
1523 || (GET_MODE (X) == TFmode \
1524 && ! fp_zero_operand (X, TFmode))) \
1525 ? NO_REGS \
1526 : (!FP_REG_CLASS_P (CLASS) \
1527 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1528 ? GENERAL_REGS \
1529 : (CLASS)) \
1530 : (CLASS))
1532 /* Return the register class of a scratch register needed to load IN into
1533 a register of class CLASS in MODE.
1535 We need a temporary when loading/storing a HImode/QImode value
1536 between memory and the FPU registers. This can happen when combine puts
1537 a paradoxical subreg in a float/fix conversion insn. */
1539 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1540 ((FP_REG_CLASS_P (CLASS) \
1541 && ((MODE) == HImode || (MODE) == QImode) \
1542 && (GET_CODE (IN) == MEM \
1543 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1544 && true_regnum (IN) == -1))) \
1545 ? GENERAL_REGS \
1546 : (((TARGET_CM_MEDANY \
1547 && symbolic_operand ((IN), (MODE))) \
1548 || (TARGET_CM_EMBMEDANY \
1549 && text_segment_operand ((IN), (MODE)))) \
1550 && !flag_pic) \
1551 ? GENERAL_REGS \
1552 : NO_REGS)
1554 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1555 ((FP_REG_CLASS_P (CLASS) \
1556 && ((MODE) == HImode || (MODE) == QImode) \
1557 && (GET_CODE (IN) == MEM \
1558 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1559 && true_regnum (IN) == -1))) \
1560 ? GENERAL_REGS \
1561 : (((TARGET_CM_MEDANY \
1562 && symbolic_operand ((IN), (MODE))) \
1563 || (TARGET_CM_EMBMEDANY \
1564 && text_segment_operand ((IN), (MODE)))) \
1565 && !flag_pic) \
1566 ? GENERAL_REGS \
1567 : NO_REGS)
1569 /* On SPARC it is not possible to directly move data between
1570 GENERAL_REGS and FP_REGS. */
1571 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1572 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1574 /* Return the stack location to use for secondary memory needed reloads.
1575 We want to use the reserved location just below the frame pointer.
1576 However, we must ensure that there is a frame, so use assign_stack_local
1577 if the frame size is zero. */
1578 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1579 (get_frame_size () == 0 \
1580 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1581 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1582 STARTING_FRAME_OFFSET)))
1584 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1585 because the movsi and movsf patterns don't handle r/f moves.
1586 For v8 we copy the default definition. */
1587 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1588 (TARGET_ARCH64 \
1589 ? (GET_MODE_BITSIZE (MODE) < 32 \
1590 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1591 : MODE) \
1592 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1593 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1594 : MODE))
1596 /* Return the maximum number of consecutive registers
1597 needed to represent mode MODE in a register of class CLASS. */
1598 /* On SPARC, this is the size of MODE in words. */
1599 #define CLASS_MAX_NREGS(CLASS, MODE) \
1600 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1601 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1603 /* Stack layout; function entry, exit and calling. */
1605 /* Define the number of register that can hold parameters.
1606 This macro is only used in other macro definitions below and in sparc.c.
1607 MODE is the mode of the argument.
1608 !v9: All args are passed in %o0-%o5.
1609 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1610 See the description in sparc.c. */
1611 #define NPARM_REGS(MODE) \
1612 (TARGET_ARCH64 \
1613 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1614 : 6)
1616 /* Define this if pushing a word on the stack
1617 makes the stack pointer a smaller address. */
1618 #define STACK_GROWS_DOWNWARD
1620 /* Define this if the nominal address of the stack frame
1621 is at the high-address end of the local variables;
1622 that is, each additional local variable allocated
1623 goes at a more negative offset in the frame. */
1624 #define FRAME_GROWS_DOWNWARD
1626 /* Offset within stack frame to start allocating local variables at.
1627 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1628 first local allocated. Otherwise, it is the offset to the BEGINNING
1629 of the first local allocated. */
1630 /* This allows space for one TFmode floating point value. */
1631 #define STARTING_FRAME_OFFSET \
1632 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
1633 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1635 /* If we generate an insn to push BYTES bytes,
1636 this says how many the stack pointer really advances by.
1637 On SPARC, don't define this because there are no push insns. */
1638 /* #define PUSH_ROUNDING(BYTES) */
1640 /* Offset of first parameter from the argument pointer register value.
1641 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1642 even if this function isn't going to use it.
1643 v9: This is 128 for the ins and locals. */
1644 #define FIRST_PARM_OFFSET(FNDECL) \
1645 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
1646 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1648 /* Offset from the argument pointer register value to the CFA.
1649 This is different from FIRST_PARM_OFFSET because the register window
1650 comes between the CFA and the arguments. */
1652 #define ARG_POINTER_CFA_OFFSET(FNDECL) SPARC_STACK_BIAS
1654 /* When a parameter is passed in a register, stack space is still
1655 allocated for it.
1656 !v9: All 6 possible integer registers have backing store allocated.
1657 v9: Only space for the arguments passed is allocated. */
1658 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1659 meaning to the backend. Further, we need to be able to detect if a
1660 varargs/unprototyped function is called, as they may want to spill more
1661 registers than we've provided space. Ugly, ugly. So for now we retain
1662 all 6 slots even for v9. */
1663 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1665 /* Keep the stack pointer constant throughout the function.
1666 This is both an optimization and a necessity: longjmp
1667 doesn't behave itself when the stack pointer moves within
1668 the function! */
1669 #define ACCUMULATE_OUTGOING_ARGS 1
1671 /* Value is the number of bytes of arguments automatically
1672 popped when returning from a subroutine call.
1673 FUNDECL is the declaration node of the function (as a tree),
1674 FUNTYPE is the data type of the function (as a tree),
1675 or for a library call it is an identifier node for the subroutine name.
1676 SIZE is the number of bytes of arguments passed on the stack. */
1678 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1680 /* Some subroutine macros specific to this machine.
1681 When !TARGET_FPU, put float return values in the general registers,
1682 since we don't have any fp registers. */
1683 #define BASE_RETURN_VALUE_REG(MODE) \
1684 (TARGET_ARCH64 \
1685 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1686 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1688 #define BASE_OUTGOING_VALUE_REG(MODE) \
1689 (TARGET_ARCH64 \
1690 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1691 : TARGET_FLAT ? 8 : 24) \
1692 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1693 : (TARGET_FLAT ? 8 : 24)))
1695 #define BASE_PASSING_ARG_REG(MODE) \
1696 (TARGET_ARCH64 \
1697 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1698 : 8)
1700 /* ??? FIXME -- seems wrong for v9 structure passing... */
1701 #define BASE_INCOMING_ARG_REG(MODE) \
1702 (TARGET_ARCH64 \
1703 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1704 : TARGET_FLAT ? 8 : 24) \
1705 : (TARGET_FLAT ? 8 : 24))
1707 /* Define this macro if the target machine has "register windows". This
1708 C expression returns the register number as seen by the called function
1709 corresponding to register number OUT as seen by the calling function.
1710 Return OUT if register number OUT is not an outbound register. */
1712 #define INCOMING_REGNO(OUT) \
1713 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1715 /* Define this macro if the target machine has "register windows". This
1716 C expression returns the register number as seen by the calling function
1717 corresponding to register number IN as seen by the called function.
1718 Return IN if register number IN is not an inbound register. */
1720 #define OUTGOING_REGNO(IN) \
1721 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1723 /* Define this macro if the target machine has register windows. This
1724 C expression returns true if the register is call-saved but is in the
1725 register window. */
1727 #define LOCAL_REGNO(REGNO) \
1728 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1730 /* Define how to find the value returned by a function.
1731 VALTYPE is the data type of the value (as a tree).
1732 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1733 otherwise, FUNC is 0. */
1735 /* On SPARC the value is found in the first "output" register. */
1737 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1738 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1740 /* But the called function leaves it in the first "input" register. */
1742 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1743 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1745 /* Define how to find the value returned by a library function
1746 assuming the value has mode MODE. */
1748 #define LIBCALL_VALUE(MODE) \
1749 function_value (NULL_TREE, (MODE), 1)
1751 /* 1 if N is a possible register number for a function value
1752 as seen by the caller.
1753 On SPARC, the first "output" reg is used for integer values,
1754 and the first floating point register is used for floating point values. */
1756 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1758 /* Define the size of space to allocate for the return value of an
1759 untyped_call. */
1761 #define APPLY_RESULT_SIZE 16
1763 /* 1 if N is a possible register number for function argument passing.
1764 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1766 #define FUNCTION_ARG_REGNO_P(N) \
1767 (TARGET_ARCH64 \
1768 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1769 : ((N) >= 8 && (N) <= 13))
1771 /* Define a data type for recording info about an argument list
1772 during the scan of that argument list. This data type should
1773 hold all necessary information about the function itself
1774 and about the args processed so far, enough to enable macros
1775 such as FUNCTION_ARG to determine where the next arg should go.
1777 On SPARC (!v9), this is a single integer, which is a number of words
1778 of arguments scanned so far (including the invisible argument,
1779 if any, which holds the structure-value-address).
1780 Thus 7 or more means all following args should go on the stack.
1782 For v9, we also need to know whether a prototype is present. */
1784 struct sparc_args {
1785 int words; /* number of words passed so far */
1786 int prototype_p; /* non-zero if a prototype is present */
1787 int libcall_p; /* non-zero if a library call */
1789 #define CUMULATIVE_ARGS struct sparc_args
1791 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1792 for a call to a function whose data type is FNTYPE.
1793 For a library call, FNTYPE is 0. */
1795 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1796 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1798 /* Update the data in CUM to advance over an argument
1799 of mode MODE and data type TYPE.
1800 TYPE is null for libcalls where that information may not be available. */
1802 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1803 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1805 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1807 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1808 ((TYPE) != 0 \
1809 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1810 || TREE_ADDRESSABLE (TYPE)))
1812 /* Determine where to put an argument to a function.
1813 Value is zero to push the argument on the stack,
1814 or a hard register in which to store the argument.
1816 MODE is the argument's machine mode.
1817 TYPE is the data type of the argument (as a tree).
1818 This is null for libcalls where that information may
1819 not be available.
1820 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1821 the preceding args and about the function being called.
1822 NAMED is nonzero if this argument is a named parameter
1823 (otherwise it is an extra parameter matching an ellipsis). */
1825 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1826 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1828 /* Define where a function finds its arguments.
1829 This is different from FUNCTION_ARG because of register windows. */
1831 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1832 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1834 /* For an arg passed partly in registers and partly in memory,
1835 this is the number of registers used.
1836 For args passed entirely in registers or entirely in memory, zero. */
1838 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1839 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1841 /* A C expression that indicates when an argument must be passed by reference.
1842 If nonzero for an argument, a copy of that argument is made in memory and a
1843 pointer to the argument is passed instead of the argument itself.
1844 The pointer is passed in whatever way is appropriate for passing a pointer
1845 to that type. */
1847 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1848 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1850 /* If defined, a C expression which determines whether, and in which direction,
1851 to pad out an argument with extra space. The value should be of type
1852 `enum direction': either `upward' to pad above the argument,
1853 `downward' to pad below, or `none' to inhibit padding. */
1855 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1856 function_arg_padding ((MODE), (TYPE))
1858 /* If defined, a C expression that gives the alignment boundary, in bits,
1859 of an argument with the specified mode and type. If it is not defined,
1860 PARM_BOUNDARY is used for all arguments.
1861 For sparc64, objects requiring 16 byte alignment are passed that way. */
1863 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1864 ((TARGET_ARCH64 \
1865 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1866 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1867 ? 128 : PARM_BOUNDARY)
1869 /* Define the information needed to generate branch and scc insns. This is
1870 stored from the compare operation. Note that we can't use "rtx" here
1871 since it hasn't been defined! */
1873 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1876 /* Generate the special assembly code needed to tell the assembler whatever
1877 it might need to know about the return value of a function.
1879 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1880 information to the assembler relating to peephole optimization (done in
1881 the assembler). */
1883 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1884 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1886 /* Output the label for a function definition. */
1888 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1889 do { \
1890 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1891 ASM_OUTPUT_LABEL (FILE, NAME); \
1892 } while (0)
1894 /* Output the special assembly code needed to tell the assembler some
1895 register is used as global register variable.
1897 SPARC 64bit psABI declares registers %g2 and %g3 as application
1898 registers and %g6 and %g7 as OS registers. Any object using them
1899 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1900 and how they are used (scratch or some global variable).
1901 Linker will then refuse to link together objects which use those
1902 registers incompatibly.
1904 Unless the registers are used for scratch, two different global
1905 registers cannot be declared to the same name, so in the unlikely
1906 case of a global register variable occupying more than one register
1907 we prefix the second and following registers with .gnu.part1. etc. */
1909 extern char sparc_hard_reg_printed[8];
1911 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1912 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1913 do { \
1914 if (TARGET_ARCH64) \
1916 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1917 int reg; \
1918 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1919 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1921 if (reg == (REGNO)) \
1922 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1923 else \
1924 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1925 reg, reg - (REGNO), (NAME)); \
1926 sparc_hard_reg_printed[reg] = 1; \
1929 } while (0)
1930 #endif
1932 /* This macro generates the assembly code for function entry.
1933 FILE is a stdio stream to output the code to.
1934 SIZE is an int: how many units of temporary storage to allocate.
1935 Refer to the array `regs_ever_live' to determine which registers
1936 to save; `regs_ever_live[I]' is nonzero if register number I
1937 is ever used in the function. This macro is responsible for
1938 knowing which registers should not be saved even if used. */
1940 /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1941 of memory. If any fpu reg is used in the function, we allocate
1942 such a block here, at the bottom of the frame, just in case it's needed.
1944 If this function is a leaf procedure, then we may choose not
1945 to do a "save" insn. The decision about whether or not
1946 to do this is made in regclass.c. */
1948 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1949 (TARGET_FLAT ? sparc_flat_output_function_prologue (FILE, (int)SIZE) \
1950 : output_function_prologue (FILE, (int)SIZE, \
1951 current_function_uses_only_leaf_regs))
1953 /* Output assembler code to FILE to increment profiler label # LABELNO
1954 for profiling a function entry. */
1956 #define FUNCTION_PROFILER(FILE, LABELNO) \
1957 sparc_function_profiler(FILE, LABELNO)
1959 /* Set the name of the mcount function for the system. */
1961 #define MCOUNT_FUNCTION "*mcount"
1963 /* The following macro shall output assembler code to FILE
1964 to initialize basic-block profiling. */
1966 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1967 sparc_function_block_profiler(FILE, BLOCK_OR_LABEL)
1969 /* The following macro shall output assembler code to FILE
1970 to increment a counter associated with basic block number BLOCKNO. */
1972 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1973 sparc_block_profiler (FILE, BLOCKNO)
1975 /* The following macro shall output assembler code to FILE
1976 to indicate a return from function during basic-block profiling. */
1978 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1979 sparc_function_block_profiler_exit(FILE)
1981 #ifdef IN_LIBGCC2
1983 /* The function `__bb_trace_func' is called in every basic block
1984 and is not allowed to change the machine state. Saving (restoring)
1985 the state can either be done in the BLOCK_PROFILER macro,
1986 before calling function (rsp. after returning from function)
1987 `__bb_trace_func', or it can be done inside the function by
1988 defining the macros:
1990 MACHINE_STATE_SAVE(ID)
1991 MACHINE_STATE_RESTORE(ID)
1993 In the latter case care must be taken, that the prologue code
1994 of function `__bb_trace_func' does not already change the
1995 state prior to saving it with MACHINE_STATE_SAVE.
1997 The parameter `ID' is a string identifying a unique macro use.
1999 On sparc it is sufficient to save the psw register to memory.
2000 Unfortunately the psw register can be read in supervisor mode only,
2001 so we read only the condition codes by using branch instructions
2002 and hope that this is enough.
2004 On V9, life is much sweater: there is a user accessible %ccr
2005 register, but we use it for 64bit libraries only. */
2007 #if TARGET_ARCH32
2009 #define MACHINE_STATE_SAVE(ID) \
2010 int ms_flags, ms_saveret; \
2011 asm volatile( \
2012 "mov %%g2,%1\n\
2013 mov %%g0,%0\n\
2014 be,a LFLGNZ"ID"\n\
2015 or %0,4,%0\n\
2016 LFLGNZ"ID":\n\
2017 bcs,a LFLGNC"ID"\n\
2018 or %0,1,%0\n\
2019 LFLGNC"ID":\n\
2020 bvs,a LFLGNV"ID"\n\
2021 or %0,2,%0\n\
2022 LFLGNV"ID":\n\
2023 bneg,a LFLGNN"ID"\n\
2024 or %0,8,%0\n\
2025 LFLGNN"ID":" \
2026 : "=r"(ms_flags), "=r"(ms_saveret));
2028 #else
2030 #define MACHINE_STATE_SAVE(ID) \
2031 unsigned long ms_flags, ms_saveret; \
2032 asm volatile( \
2033 "mov %%g4,%1\n\
2034 rd %%ccr,%0" \
2035 : "=r"(ms_flags), "=r"(ms_saveret));
2037 #endif
2039 /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
2040 The psw register can be written in supervisor mode only,
2041 which is true even for simple condition codes.
2042 We use some combination of instructions to produce the
2043 proper condition codes, but some flag combinations can not
2044 be generated in this way. If this happens an unimplemented
2045 instruction will be executed to abort the program. */
2047 #if TARGET_ARCH32
2049 #define MACHINE_STATE_RESTORE(ID) \
2050 { extern char flgtab[] __asm__("LFLGTAB"ID); \
2051 int scratch; \
2052 asm volatile ( \
2053 "jmpl %2+%1,%%g0\n\
2054 ! Do part of VC in the delay slot here, as it needs 3 insns.\n\
2055 addcc 2,%3,%%g0\n\
2056 LFLGTAB" ID ":\n\
2057 ! 0\n\
2058 ba LFLGRET"ID"\n\
2059 orcc 1,%%g0,%%g0\n\
2060 ! C\n\
2061 ba LFLGRET"ID"\n\
2062 addcc 2,%3,%%g0\n\
2063 ! V\n\
2064 unimp\n\
2065 nop\n\
2066 ! VC\n\
2067 ba LFLGRET"ID"\n\
2068 addxcc %4,%4,%0\n\
2069 ! Z\n\
2070 ba LFLGRET"ID"\n\
2071 subcc %%g0,%%g0,%%g0\n\
2072 ! ZC\n\
2073 ba LFLGRET"ID"\n\
2074 addcc 1,%3,%0\n\
2075 ! ZVC\n\
2076 ba LFLGRET"ID"\n\
2077 addcc %4,%4,%0\n\
2078 ! N\n\
2079 ba LFLGRET"ID"\n\
2080 orcc %%g0,-1,%%g0\n\
2081 ! NC\n\
2082 ba LFLGRET"ID"\n\
2083 addcc %%g0,%3,%%g0\n\
2084 ! NV\n\
2085 unimp\n\
2086 nop\n\
2087 ! NVC\n\
2088 unimp\n\
2089 nop\n\
2090 ! NZ\n\
2091 unimp\n\
2092 nop\n\
2093 ! NZC\n\
2094 unimp\n\
2095 nop\n\
2096 ! NZV\n\
2097 unimp\n\
2098 nop\n\
2099 ! NZVC\n\
2100 unimp\n\
2101 nop\n\
2102 LFLGRET"ID":\n\
2103 mov %5,%%g2" \
2104 : "=r"(scratch) \
2105 : "r"(ms_flags*8), "r"(flgtab), "r"(-1), \
2106 "r"(0x80000000), "r"(ms_saveret) \
2107 : "cc", "g2"); }
2109 #else
2111 #define MACHINE_STATE_RESTORE(ID) \
2112 asm volatile ( \
2113 "wr %0,0,%%ccr\n\
2114 mov %1,%%g4" \
2115 : : "r"(ms_flags), "r"(ms_saveret) \
2116 : "cc", "g4");
2118 #endif
2120 #endif /* IN_LIBGCC2 */
2122 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2123 the stack pointer does not matter. The value is tested only in
2124 functions that have frame pointers.
2125 No definition is equivalent to always zero. */
2127 #define EXIT_IGNORE_STACK \
2128 (get_frame_size () != 0 \
2129 || current_function_calls_alloca || current_function_outgoing_args_size)
2131 /* This macro generates the assembly code for function exit,
2132 on machines that need it. If FUNCTION_EPILOGUE is not defined
2133 then individual return instructions are generated for each
2134 return statement. Args are same as for FUNCTION_PROLOGUE.
2136 The function epilogue should not depend on the current stack pointer!
2137 It should use the frame pointer only. This is mandatory because
2138 of alloca; we also take advantage of it to omit stack adjustments
2139 before returning. */
2141 #define FUNCTION_EPILOGUE(FILE, SIZE) \
2142 (TARGET_FLAT ? sparc_flat_output_function_epilogue (FILE, (int)SIZE) \
2143 : output_function_epilogue (FILE, (int)SIZE, \
2144 current_function_uses_only_leaf_regs))
2146 #define DELAY_SLOTS_FOR_EPILOGUE \
2147 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
2148 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
2149 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
2150 : eligible_for_epilogue_delay (trial, slots_filled))
2152 /* Define registers used by the epilogue and return instruction. */
2153 #define EPILOGUE_USES(REGNO) \
2154 (!TARGET_FLAT && REGNO == 31)
2156 /* Length in units of the trampoline for entering a nested function. */
2158 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
2160 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
2162 /* Emit RTL insns to initialize the variable parts of a trampoline.
2163 FNADDR is an RTX for the address of the function's pure code.
2164 CXT is an RTX for the static chain value for the function. */
2166 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2167 if (TARGET_ARCH64) \
2168 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
2169 else \
2170 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
2172 /* Generate necessary RTL for __builtin_saveregs(). */
2174 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
2176 /* Implement `va_start' for varargs and stdarg. */
2177 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2178 sparc_va_start (stdarg, valist, nextarg)
2180 /* Implement `va_arg'. */
2181 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2182 sparc_va_arg (valist, type)
2184 /* Define this macro if the location where a function argument is passed
2185 depends on whether or not it is a named argument.
2187 This macro controls how the NAMED argument to FUNCTION_ARG
2188 is set for varargs and stdarg functions. With this macro defined,
2189 the NAMED argument is always true for named arguments, and false for
2190 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
2191 is defined, then all arguments are treated as named. Otherwise, all named
2192 arguments except the last are treated as named.
2193 For the v9 we want NAMED to mean what it says it means. */
2195 #define STRICT_ARGUMENT_NAMING TARGET_V9
2197 /* We do not allow sibling calls if -mflat, nor
2198 we do not allow indirect calls to be optimized into sibling calls. */
2199 #define FUNCTION_OK_FOR_SIBCALL(DECL) (DECL && ! TARGET_FLAT)
2201 /* Generate RTL to flush the register windows so as to make arbitrary frames
2202 available. */
2203 #define SETUP_FRAME_ADDRESSES() \
2204 emit_insn (gen_flush_register_windows ())
2206 /* Given an rtx for the address of a frame,
2207 return an rtx for the address of the word in the frame
2208 that holds the dynamic chain--the previous frame's address.
2209 ??? -mflat support? */
2210 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
2212 /* The return address isn't on the stack, it is in a register, so we can't
2213 access it from the current frame pointer. We can access it from the
2214 previous frame pointer though by reading a value from the register window
2215 save area. */
2216 #define RETURN_ADDR_IN_PREVIOUS_FRAME
2218 /* This is the offset of the return address to the true next instruction to be
2219 executed for the current function. */
2220 #define RETURN_ADDR_OFFSET \
2221 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2223 /* The current return address is in %i7. The return address of anything
2224 farther back is in the register window save area at [%fp+60]. */
2225 /* ??? This ignores the fact that the actual return address is +8 for normal
2226 returns, and +12 for structure returns. */
2227 #define RETURN_ADDR_RTX(count, frame) \
2228 ((count == -1) \
2229 ? gen_rtx_REG (Pmode, 31) \
2230 : gen_rtx_MEM (Pmode, \
2231 memory_address (Pmode, plus_constant (frame, \
2232 15 * UNITS_PER_WORD))))
2234 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
2235 +12, but always using +8 is close enough for frame unwind purposes.
2236 Actually, just using %o7 is close enough for unwinding, but %o7+8
2237 is something you can return to. */
2238 #define INCOMING_RETURN_ADDR_RTX \
2239 plus_constant (gen_rtx_REG (word_mode, 15), 8)
2240 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
2242 /* The offset from the incoming value of %sp to the top of the stack frame
2243 for the current function. On sparc64, we have to account for the stack
2244 bias if present. */
2245 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2247 /* Describe how we implement __builtin_eh_return. */
2248 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2249 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
2250 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2252 /* Addressing modes, and classification of registers for them. */
2254 /* #define HAVE_POST_INCREMENT 0 */
2255 /* #define HAVE_POST_DECREMENT 0 */
2257 /* #define HAVE_PRE_DECREMENT 0 */
2258 /* #define HAVE_PRE_INCREMENT 0 */
2260 /* Macros to check register numbers against specific register classes. */
2262 /* These assume that REGNO is a hard or pseudo reg number.
2263 They give nonzero only if REGNO is a hard reg of the suitable class
2264 or a pseudo reg currently allocated to a suitable hard reg.
2265 Since they use reg_renumber, they are safe only once reg_renumber
2266 has been allocated, which happens in local-alloc.c. */
2268 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2269 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2270 #define REGNO_OK_FOR_BASE_P(REGNO) \
2271 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2272 #define REGNO_OK_FOR_FP_P(REGNO) \
2273 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2274 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2275 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2276 (TARGET_V9 \
2277 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2278 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2280 /* Now macros that check whether X is a register and also,
2281 strictly, whether it is in a specified class.
2283 These macros are specific to the SPARC, and may be used only
2284 in code for printing assembler insns and in conditions for
2285 define_optimization. */
2287 /* 1 if X is an fp register. */
2289 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2291 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2292 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2294 /* Maximum number of registers that can appear in a valid memory address. */
2296 #define MAX_REGS_PER_ADDRESS 2
2298 /* Recognize any constant value that is a valid address.
2299 When PIC, we do not accept an address that would require a scratch reg
2300 to load into a register. */
2302 #define CONSTANT_ADDRESS_P(X) \
2303 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2304 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2305 || (GET_CODE (X) == CONST \
2306 && ! (flag_pic && pic_address_needs_scratch (X))))
2308 /* Define this, so that when PIC, reload won't try to reload invalid
2309 addresses which require two reload registers. */
2311 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2313 /* Nonzero if the constant value X is a legitimate general operand.
2314 Anything can be made to work except floating point constants.
2315 If TARGET_VIS, 0.0 can be made to work as well. */
2317 #define LEGITIMATE_CONSTANT_P(X) \
2318 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2319 (TARGET_VIS && \
2320 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2321 GET_MODE (X) == TFmode) && \
2322 fp_zero_operand (X, GET_MODE (X))))
2324 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2325 and check its validity for a certain class.
2326 We have two alternate definitions for each of them.
2327 The usual definition accepts all pseudo regs; the other rejects
2328 them unless they have been allocated suitable hard regs.
2329 The symbol REG_OK_STRICT causes the latter definition to be used.
2331 Most source files want to accept pseudo regs in the hope that
2332 they will get allocated to the class that the insn wants them to be in.
2333 Source files for reload pass need to be strict.
2334 After reload, it makes no difference, since pseudo regs have
2335 been eliminated by then. */
2337 /* Optional extra constraints for this machine.
2339 'Q' handles floating point constants which can be moved into
2340 an integer register with a single sethi instruction.
2342 'R' handles floating point constants which can be moved into
2343 an integer register with a single mov instruction.
2345 'S' handles floating point constants which can be moved into
2346 an integer register using a high/lo_sum sequence.
2348 'T' handles memory addresses where the alignment is known to
2349 be at least 8 bytes.
2351 `U' handles all pseudo registers or a hard even numbered
2352 integer register, needed for ldd/std instructions. */
2354 #define EXTRA_CONSTRAINT_BASE(OP, C) \
2355 ((C) == 'Q' ? fp_sethi_p(OP) \
2356 : (C) == 'R' ? fp_mov_p(OP) \
2357 : (C) == 'S' ? fp_high_losum_p(OP) \
2358 : 0)
2360 #ifndef REG_OK_STRICT
2362 /* Nonzero if X is a hard reg that can be used as an index
2363 or if it is a pseudo reg. */
2364 #define REG_OK_FOR_INDEX_P(X) \
2365 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2366 /* Nonzero if X is a hard reg that can be used as a base reg
2367 or if it is a pseudo reg. */
2368 #define REG_OK_FOR_BASE_P(X) \
2369 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2371 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64. */
2373 #define EXTRA_CONSTRAINT(OP, C) \
2374 (EXTRA_CONSTRAINT_BASE(OP, C) \
2375 || ((! TARGET_ARCH64 && (C) == 'T') \
2376 ? (mem_min_alignment (OP, 8)) \
2377 : ((! TARGET_ARCH64 && (C) == 'U') \
2378 ? (register_ok_for_ldd (OP)) \
2379 : 0)))
2381 #else
2383 /* Nonzero if X is a hard reg that can be used as an index. */
2384 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2385 /* Nonzero if X is a hard reg that can be used as a base reg. */
2386 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2388 #define EXTRA_CONSTRAINT(OP, C) \
2389 (EXTRA_CONSTRAINT_BASE(OP, C) \
2390 || ((! TARGET_ARCH64 && (C) == 'T') \
2391 ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
2392 : ((! TARGET_ARCH64 && (C) == 'U') \
2393 ? (GET_CODE (OP) == REG \
2394 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2395 || reg_renumber[REGNO (OP)] >= 0) \
2396 && register_ok_for_ldd (OP)) \
2397 : 0)))
2399 #endif
2401 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2403 #ifdef HAVE_AS_OFFSETABLE_LO10
2404 #define USE_AS_OFFSETABLE_LO10 1
2405 #else
2406 #define USE_AS_OFFSETABLE_LO10 0
2407 #endif
2409 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2410 that is a valid memory address for an instruction.
2411 The MODE argument is the machine mode for the MEM expression
2412 that wants to use this address.
2414 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2415 ordinarily. This changes a bit when generating PIC.
2417 If you change this, execute "rm explow.o recog.o reload.o". */
2419 #define RTX_OK_FOR_BASE_P(X) \
2420 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2421 || (GET_CODE (X) == SUBREG \
2422 && GET_CODE (SUBREG_REG (X)) == REG \
2423 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2425 #define RTX_OK_FOR_INDEX_P(X) \
2426 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2427 || (GET_CODE (X) == SUBREG \
2428 && GET_CODE (SUBREG_REG (X)) == REG \
2429 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2431 #define RTX_OK_FOR_OFFSET_P(X) \
2432 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2434 #define RTX_OK_FOR_OLO10_P(X) \
2435 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2437 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2438 { if (RTX_OK_FOR_BASE_P (X)) \
2439 goto ADDR; \
2440 else if (GET_CODE (X) == PLUS) \
2442 register rtx op0 = XEXP (X, 0); \
2443 register rtx op1 = XEXP (X, 1); \
2444 if (flag_pic && op0 == pic_offset_table_rtx) \
2446 if (RTX_OK_FOR_BASE_P (op1)) \
2447 goto ADDR; \
2448 else if (flag_pic == 1 \
2449 && GET_CODE (op1) != REG \
2450 && GET_CODE (op1) != LO_SUM \
2451 && GET_CODE (op1) != MEM \
2452 && (GET_CODE (op1) != CONST_INT \
2453 || SMALL_INT (op1))) \
2454 goto ADDR; \
2456 else if (RTX_OK_FOR_BASE_P (op0)) \
2458 if ((RTX_OK_FOR_INDEX_P (op1) \
2459 /* We prohibit REG + REG for TFmode when \
2460 there are no instructions which accept \
2461 REG+REG instructions. We do this \
2462 because REG+REG is not an offsetable \
2463 address. If we get the situation \
2464 in reload where source and destination \
2465 of a movtf pattern are both MEMs with \
2466 REG+REG address, then only one of them \
2467 gets converted to an offsetable \
2468 address. */ \
2469 && (MODE != TFmode \
2470 || (TARGET_FPU && TARGET_ARCH64 \
2471 && TARGET_V9 \
2472 && TARGET_HARD_QUAD)) \
2473 /* We prohibit REG + REG on ARCH32 if \
2474 not optimizing for DFmode/DImode \
2475 because then mem_min_alignment is \
2476 likely to be zero after reload and the \
2477 forced split would lack a matching \
2478 splitter pattern. */ \
2479 && (TARGET_ARCH64 || optimize \
2480 || (MODE != DFmode \
2481 && MODE != DImode))) \
2482 || RTX_OK_FOR_OFFSET_P (op1)) \
2483 goto ADDR; \
2485 else if (RTX_OK_FOR_BASE_P (op1)) \
2487 if ((RTX_OK_FOR_INDEX_P (op0) \
2488 /* See the previous comment. */ \
2489 && (MODE != TFmode \
2490 || (TARGET_FPU && TARGET_ARCH64 \
2491 && TARGET_V9 \
2492 && TARGET_HARD_QUAD)) \
2493 && (TARGET_ARCH64 || optimize \
2494 || (MODE != DFmode \
2495 && MODE != DImode))) \
2496 || RTX_OK_FOR_OFFSET_P (op0)) \
2497 goto ADDR; \
2499 else if (USE_AS_OFFSETABLE_LO10 \
2500 && GET_CODE (op0) == LO_SUM \
2501 && TARGET_ARCH64 \
2502 && ! TARGET_CM_MEDMID \
2503 && RTX_OK_FOR_OLO10_P (op1)) \
2505 register rtx op00 = XEXP (op0, 0); \
2506 register rtx op01 = XEXP (op0, 1); \
2507 if (RTX_OK_FOR_BASE_P (op00) \
2508 && CONSTANT_P (op01)) \
2509 goto ADDR; \
2511 else if (USE_AS_OFFSETABLE_LO10 \
2512 && GET_CODE (op1) == LO_SUM \
2513 && TARGET_ARCH64 \
2514 && ! TARGET_CM_MEDMID \
2515 && RTX_OK_FOR_OLO10_P (op0)) \
2517 register rtx op10 = XEXP (op1, 0); \
2518 register rtx op11 = XEXP (op1, 1); \
2519 if (RTX_OK_FOR_BASE_P (op10) \
2520 && CONSTANT_P (op11)) \
2521 goto ADDR; \
2524 else if (GET_CODE (X) == LO_SUM) \
2526 register rtx op0 = XEXP (X, 0); \
2527 register rtx op1 = XEXP (X, 1); \
2528 if (RTX_OK_FOR_BASE_P (op0) \
2529 && CONSTANT_P (op1) \
2530 /* We can't allow TFmode, because an offset \
2531 greater than or equal to the alignment (8) \
2532 may cause the LO_SUM to overflow if !v9. */\
2533 && (MODE != TFmode || TARGET_V9)) \
2534 goto ADDR; \
2536 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2537 goto ADDR; \
2540 /* Try machine-dependent ways of modifying an illegitimate address
2541 to be legitimate. If we find one, return the new, valid address.
2542 This macro is used in only one place: `memory_address' in explow.c.
2544 OLDX is the address as it was before break_out_memory_refs was called.
2545 In some cases it is useful to look at this to decide what needs to be done.
2547 MODE and WIN are passed so that this macro can use
2548 GO_IF_LEGITIMATE_ADDRESS.
2550 It is always safe for this macro to do nothing. It exists to recognize
2551 opportunities to optimize the output. */
2553 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2554 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2555 { rtx sparc_x = (X); \
2556 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2557 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2558 force_operand (XEXP (X, 0), NULL_RTX)); \
2559 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2560 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2561 force_operand (XEXP (X, 1), NULL_RTX)); \
2562 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2563 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2564 XEXP (X, 1)); \
2565 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2566 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2567 force_operand (XEXP (X, 1), NULL_RTX)); \
2568 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2569 goto WIN; \
2570 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2571 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2572 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2573 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2574 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2575 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2576 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2577 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2578 || GET_CODE (X) == LABEL_REF) \
2579 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2580 if (memory_address_p (MODE, X)) \
2581 goto WIN; }
2583 /* Try a machine-dependent way of reloading an illegitimate address
2584 operand. If we find one, push the reload and jump to WIN. This
2585 macro is used in only one place: `find_reloads_address' in reload.c.
2587 For Sparc 32, we wish to handle addresses by splitting them into
2588 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2589 This cuts the number of extra insns by one.
2591 Do nothing when generating PIC code and the address is a
2592 symbolic operand or requires a scratch register. */
2594 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2595 do { \
2596 /* Decompose SImode constants into hi+lo_sum. We do have to \
2597 rerecognize what we produce, so be careful. */ \
2598 if (CONSTANT_P (X) \
2599 && (MODE != TFmode || TARGET_V9) \
2600 && GET_MODE (X) == SImode \
2601 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2602 && ! (flag_pic \
2603 && (symbolic_operand (X, Pmode) \
2604 || pic_address_needs_scratch (X)))) \
2606 X = gen_rtx_LO_SUM (GET_MODE (X), \
2607 gen_rtx_HIGH (GET_MODE (X), X), X); \
2608 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2609 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2610 OPNUM, TYPE); \
2611 goto WIN; \
2613 /* ??? 64-bit reloads. */ \
2614 } while (0)
2616 /* Go to LABEL if ADDR (a legitimate address expression)
2617 has an effect that depends on the machine mode it is used for.
2618 On the SPARC this is never true. */
2620 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2622 /* If we are referencing a function make the SYMBOL_REF special.
2623 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2624 so we must not add it to function addresses. */
2626 #define ENCODE_SECTION_INFO(DECL) \
2627 do { \
2628 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2629 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2630 } while (0)
2632 /* Specify the machine mode that this machine uses
2633 for the index in the tablejump instruction. */
2634 /* If we ever implement any of the full models (such as CM_FULLANY),
2635 this has to be DImode in that case */
2636 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2637 #define CASE_VECTOR_MODE \
2638 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2639 #else
2640 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2641 we have to sign extend which slows things down. */
2642 #define CASE_VECTOR_MODE \
2643 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2644 #endif
2646 /* Define as C expression which evaluates to nonzero if the tablejump
2647 instruction expects the table to contain offsets from the address of the
2648 table.
2649 Do not define this if the table should contain absolute addresses. */
2650 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2652 /* Specify the tree operation to be used to convert reals to integers. */
2653 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2655 /* This is the kind of divide that is easiest to do in the general case. */
2656 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2658 /* Define this as 1 if `char' should by default be signed; else as 0. */
2659 #define DEFAULT_SIGNED_CHAR 1
2661 /* Max number of bytes we can move from memory to memory
2662 in one reasonably fast instruction. */
2663 #define MOVE_MAX 8
2665 #if 0 /* Sun 4 has matherr, so this is no good. */
2666 /* This is the value of the error code EDOM for this machine,
2667 used by the sqrt instruction. */
2668 #define TARGET_EDOM 33
2670 /* This is how to refer to the variable errno. */
2671 #define GEN_ERRNO_RTX \
2672 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2673 #endif /* 0 */
2675 /* Define if operations between registers always perform the operation
2676 on the full register even if a narrower mode is specified. */
2677 #define WORD_REGISTER_OPERATIONS
2679 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2680 will either zero-extend or sign-extend. The value of this macro should
2681 be the code that says which one of the two operations is implicitly
2682 done, NIL if none. */
2683 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2685 /* Nonzero if access to memory by bytes is slow and undesirable.
2686 For RISC chips, it means that access to memory by bytes is no
2687 better than access by words when possible, so grab a whole word
2688 and maybe make use of that. */
2689 #define SLOW_BYTE_ACCESS 1
2691 /* We assume that the store-condition-codes instructions store 0 for false
2692 and some other value for true. This is the value stored for true. */
2694 #define STORE_FLAG_VALUE 1
2696 /* When a prototype says `char' or `short', really pass an `int'. */
2697 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2699 /* Define this to be nonzero if shift instructions ignore all but the low-order
2700 few bits. */
2701 #define SHIFT_COUNT_TRUNCATED 1
2703 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2704 is done just by pretending it is already truncated. */
2705 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2707 /* Specify the machine mode that pointers have.
2708 After generation of rtl, the compiler makes no further distinction
2709 between pointers and any other objects of this machine mode. */
2710 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2712 /* Generate calls to memcpy, memcmp and memset. */
2713 #define TARGET_MEM_FUNCTIONS
2715 /* Add any extra modes needed to represent the condition code.
2717 On the Sparc, we have a "no-overflow" mode which is used when an add or
2718 subtract insn is used to set the condition code. Different branches are
2719 used in this case for some operations.
2721 We also have two modes to indicate that the relevant condition code is
2722 in the floating-point condition code register. One for comparisons which
2723 will generate an exception if the result is unordered (CCFPEmode) and
2724 one for comparisons which will never trap (CCFPmode).
2726 CCXmode and CCX_NOOVmode are only used by v9. */
2728 #define EXTRA_CC_MODES \
2729 CC(CCXmode, "CCX") \
2730 CC(CC_NOOVmode, "CC_NOOV") \
2731 CC(CCX_NOOVmode, "CCX_NOOV") \
2732 CC(CCFPmode, "CCFP") \
2733 CC(CCFPEmode, "CCFPE")
2735 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2736 return the mode to be used for the comparison. For floating-point,
2737 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2738 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2739 processing is needed. */
2740 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2742 /* Return non-zero if MODE implies a floating point inequality can be
2743 reversed. For Sparc this is always true because we have a full
2744 compliment of ordered and unordered comparisons, but until generic
2745 code knows how to reverse it correctly we keep the old definition. */
2746 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2748 /* A function address in a call instruction for indexing purposes. */
2749 #define FUNCTION_MODE Pmode
2751 /* Define this if addresses of constant functions
2752 shouldn't be put through pseudo regs where they can be cse'd.
2753 Desirable on machines where ordinary constants are expensive
2754 but a CALL with constant address is cheap. */
2755 #define NO_FUNCTION_CSE
2757 /* alloca should avoid clobbering the old register save area. */
2758 #define SETJMP_VIA_SAVE_AREA
2760 /* Define subroutines to call to handle multiply and divide.
2761 Use the subroutines that Sun's library provides.
2762 The `*' prevents an underscore from being prepended by the compiler. */
2764 #define DIVSI3_LIBCALL "*.div"
2765 #define UDIVSI3_LIBCALL "*.udiv"
2766 #define MODSI3_LIBCALL "*.rem"
2767 #define UMODSI3_LIBCALL "*.urem"
2768 /* .umul is a little faster than .mul. */
2769 #define MULSI3_LIBCALL "*.umul"
2771 /* Define library calls for quad FP operations. These are all part of the
2772 SPARC 32bit ABI. */
2773 #define ADDTF3_LIBCALL "_Q_add"
2774 #define SUBTF3_LIBCALL "_Q_sub"
2775 #define NEGTF2_LIBCALL "_Q_neg"
2776 #define MULTF3_LIBCALL "_Q_mul"
2777 #define DIVTF3_LIBCALL "_Q_div"
2778 #define FLOATSITF2_LIBCALL "_Q_itoq"
2779 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2780 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2781 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2782 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2783 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2784 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2785 #define EQTF2_LIBCALL "_Q_feq"
2786 #define NETF2_LIBCALL "_Q_fne"
2787 #define GTTF2_LIBCALL "_Q_fgt"
2788 #define GETF2_LIBCALL "_Q_fge"
2789 #define LTTF2_LIBCALL "_Q_flt"
2790 #define LETF2_LIBCALL "_Q_fle"
2792 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2793 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2794 and the compiler will notice and try to use the TFmode sqrt instruction
2795 for calls to the builtin function sqrt, but this fails. */
2796 #define INIT_TARGET_OPTABS \
2797 do { \
2798 if (TARGET_ARCH32) \
2800 add_optab->handlers[(int) TFmode].libfunc \
2801 = init_one_libfunc (ADDTF3_LIBCALL); \
2802 sub_optab->handlers[(int) TFmode].libfunc \
2803 = init_one_libfunc (SUBTF3_LIBCALL); \
2804 neg_optab->handlers[(int) TFmode].libfunc \
2805 = init_one_libfunc (NEGTF2_LIBCALL); \
2806 smul_optab->handlers[(int) TFmode].libfunc \
2807 = init_one_libfunc (MULTF3_LIBCALL); \
2808 flodiv_optab->handlers[(int) TFmode].libfunc \
2809 = init_one_libfunc (DIVTF3_LIBCALL); \
2810 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2811 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2812 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2813 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2814 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2815 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2816 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2817 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2818 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2819 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2820 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2821 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2822 fixunstfsi_libfunc \
2823 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2824 if (TARGET_FPU) \
2825 sqrt_optab->handlers[(int) TFmode].libfunc \
2826 = init_one_libfunc ("_Q_sqrt"); \
2828 INIT_SUBTARGET_OPTABS; \
2829 } while (0)
2831 /* This is meant to be redefined in the host dependent files */
2832 #define INIT_SUBTARGET_OPTABS
2834 /* Nonzero if a floating point comparison library call for
2835 mode MODE that will return a boolean value. Zero if one
2836 of the libgcc2 functions is used. */
2837 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2839 /* Compute the cost of computing a constant rtl expression RTX
2840 whose rtx-code is CODE. The body of this macro is a portion
2841 of a switch statement. If the code is computed here,
2842 return it with a return statement. Otherwise, break from the switch. */
2844 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2845 case CONST_INT: \
2846 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2847 return 0; \
2848 case HIGH: \
2849 return 2; \
2850 case CONST: \
2851 case LABEL_REF: \
2852 case SYMBOL_REF: \
2853 return 4; \
2854 case CONST_DOUBLE: \
2855 if (GET_MODE (RTX) == DImode) \
2856 if ((XINT (RTX, 3) == 0 \
2857 && (unsigned) XINT (RTX, 2) < 0x1000) \
2858 || (XINT (RTX, 3) == -1 \
2859 && XINT (RTX, 2) < 0 \
2860 && XINT (RTX, 2) >= -0x1000)) \
2861 return 0; \
2862 return 8;
2864 #define ADDRESS_COST(RTX) 1
2866 /* Compute extra cost of moving data between one register class
2867 and another. */
2868 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2869 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2870 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2871 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2872 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2873 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2875 /* Provide the costs of a rtl expression. This is in the body of a
2876 switch on CODE. The purpose for the cost of MULT is to encourage
2877 `synth_mult' to find a synthetic multiply when reasonable.
2879 If we need more than 12 insns to do a multiply, then go out-of-line,
2880 since the call overhead will be < 10% of the cost of the multiply. */
2882 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2883 case MULT: \
2884 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2885 return (GET_MODE (X) == DImode ? \
2886 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2887 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2888 case DIV: \
2889 case UDIV: \
2890 case MOD: \
2891 case UMOD: \
2892 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2893 return (GET_MODE (X) == DImode ? \
2894 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2895 return COSTS_N_INSNS (25); \
2896 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2897 so that cse will favor the latter. */ \
2898 case FLOAT: \
2899 case FIX: \
2900 return 19;
2902 #define ISSUE_RATE sparc_issue_rate()
2904 /* Adjust the cost of dependencies. */
2905 #define ADJUST_COST(INSN,LINK,DEP,COST) \
2906 (COST) = sparc_adjust_cost(INSN, LINK, DEP, COST)
2908 #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE, MAX_READY) \
2909 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2910 ultrasparc_sched_init (DUMP, SCHED_VERBOSE)
2912 #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
2913 do { \
2914 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2915 ultrasparc_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY); \
2916 CIM = issue_rate; \
2917 } while (0)
2919 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2920 do { \
2921 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2922 (CAN_ISSUE_MORE) = ultrasparc_variable_issue (INSN); \
2923 else \
2924 (CAN_ISSUE_MORE)--; \
2925 } while (0)
2927 /* Conditional branches with empty delay slots have a length of two. */
2928 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2929 do { \
2930 if (GET_CODE (INSN) == CALL_INSN \
2931 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2932 LENGTH += 1; \
2933 } while (0)
2935 /* Control the assembler format that we output. */
2937 /* Output at beginning of assembler file. */
2939 #define ASM_FILE_START(file)
2941 /* A C string constant describing how to begin a comment in the target
2942 assembler language. The compiler assumes that the comment will end at
2943 the end of the line. */
2945 #define ASM_COMMENT_START "!"
2947 /* Output to assembler file text saying following lines
2948 may contain character constants, extra white space, comments, etc. */
2950 #define ASM_APP_ON ""
2952 /* Output to assembler file text saying following lines
2953 no longer contain unusual constructs. */
2955 #define ASM_APP_OFF ""
2957 /* ??? Try to make the style consistent here (_OP?). */
2959 #define ASM_LONGLONG ".xword"
2960 #define ASM_LONG ".word"
2961 #define ASM_SHORT ".half"
2962 #define ASM_BYTE_OP "\t.byte\t"
2963 #define ASM_FLOAT ".single"
2964 #define ASM_DOUBLE ".double"
2965 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2967 /* Output before read-only data. */
2969 #define TEXT_SECTION_ASM_OP "\t.text"
2971 /* Output before writable data. */
2973 #define DATA_SECTION_ASM_OP "\t.data"
2975 /* How to refer to registers in assembler output.
2976 This sequence is indexed by compiler's hard-register-number (see above). */
2978 #define REGISTER_NAMES \
2979 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2980 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2981 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2982 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2983 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2984 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2985 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2986 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2987 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2988 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2989 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2990 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2991 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
2993 /* Define additional names for use in asm clobbers and asm declarations. */
2995 #define ADDITIONAL_REGISTER_NAMES \
2996 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2998 /* How to renumber registers for dbx and gdb. In the flat model, the frame
2999 pointer is really %i7. */
3001 #define DBX_REGISTER_NUMBER(REGNO) \
3002 (TARGET_FLAT && REGNO == FRAME_POINTER_REGNUM ? 31 : REGNO)
3004 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
3005 can run past this up to a continuation point. Once we used 1500, but
3006 a single entry in C++ can run more than 500 bytes, due to the length of
3007 mangled symbol names. dbxout.c should really be fixed to do
3008 continuations when they are actually needed instead of trying to
3009 guess... */
3010 #define DBX_CONTIN_LENGTH 1000
3012 /* This is how to output a note to DBX telling it the line number
3013 to which the following sequence of instructions corresponds.
3015 This is needed for SunOS 4.0, and should not hurt for 3.2
3016 versions either. */
3017 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
3018 { static int sym_lineno = 1; \
3019 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
3020 line, sym_lineno, sym_lineno); \
3021 sym_lineno += 1; }
3023 /* This is how to output the definition of a user-level label named NAME,
3024 such as the label on a static function or variable NAME. */
3026 #define ASM_OUTPUT_LABEL(FILE,NAME) \
3027 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
3029 /* This is how to output a command to make the user-level label named NAME
3030 defined for reference from other files. */
3032 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
3033 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
3035 /* The prefix to add to user-visible assembler symbols. */
3037 #define USER_LABEL_PREFIX "_"
3039 /* This is how to output a definition of an internal numbered label where
3040 PREFIX is the class of label and NUM is the number within the class. */
3042 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
3043 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
3045 /* This is how to store into the string LABEL
3046 the symbol_ref name of an internal numbered label where
3047 PREFIX is the class of label and NUM is the number within the class.
3048 This is suitable for output with `assemble_name'. */
3050 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3051 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
3053 /* This is how to output an assembler line defining a `float' constant.
3054 We always have to use a .long pseudo-op to do this because the native
3055 SVR4 ELF assembler is buggy and it generates incorrect values when we
3056 try to use the .float pseudo-op instead. */
3058 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
3060 long t; \
3061 char str[30]; \
3062 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
3063 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3064 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t, \
3065 ASM_COMMENT_START, str); \
3068 /* This is how to output an assembler line defining a `double' constant.
3069 We always have to use a .long pseudo-op to do this because the native
3070 SVR4 ELF assembler is buggy and it generates incorrect values when we
3071 try to use the .float pseudo-op instead. */
3073 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
3075 long t[2]; \
3076 char str[30]; \
3077 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
3078 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3079 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
3080 ASM_COMMENT_START, str); \
3081 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
3084 /* This is how to output an assembler line defining a `long double'
3085 constant. */
3087 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
3089 long t[4]; \
3090 char str[30]; \
3091 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
3092 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3093 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
3094 ASM_COMMENT_START, str); \
3095 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
3096 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[2]); \
3097 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[3]); \
3100 /* This is how to output an assembler line defining an `int' constant. */
3102 #define ASM_OUTPUT_INT(FILE,VALUE) \
3103 ( fprintf (FILE, "\t%s\t", ASM_LONG), \
3104 output_addr_const (FILE, (VALUE)), \
3105 fprintf (FILE, "\n"))
3107 /* This is how to output an assembler line defining a DImode constant. */
3108 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3109 output_double_int (FILE, VALUE)
3111 /* Likewise for `char' and `short' constants. */
3113 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
3114 ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
3115 output_addr_const (FILE, (VALUE)), \
3116 fprintf (FILE, "\n"))
3118 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
3119 ( fprintf (FILE, "%s", ASM_BYTE_OP), \
3120 output_addr_const (FILE, (VALUE)), \
3121 fprintf (FILE, "\n"))
3123 /* This is how to output an assembler line for a numeric constant byte. */
3125 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
3126 fprintf (FILE, "%s0x%x\n", ASM_BYTE_OP, (VALUE))
3128 /* This is how we hook in and defer the case-vector until the end of
3129 the function. */
3130 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
3131 sparc_defer_case_vector ((LAB),(VEC), 0)
3133 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
3134 sparc_defer_case_vector ((LAB),(VEC), 1)
3136 /* This is how to output an element of a case-vector that is absolute. */
3138 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3139 do { \
3140 char label[30]; \
3141 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
3142 if (CASE_VECTOR_MODE == SImode) \
3143 fprintf (FILE, "\t.word\t"); \
3144 else \
3145 fprintf (FILE, "\t.xword\t"); \
3146 assemble_name (FILE, label); \
3147 fputc ('\n', FILE); \
3148 } while (0)
3150 /* This is how to output an element of a case-vector that is relative.
3151 (SPARC uses such vectors only when generating PIC.) */
3153 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3154 do { \
3155 char label[30]; \
3156 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
3157 if (CASE_VECTOR_MODE == SImode) \
3158 fprintf (FILE, "\t.word\t"); \
3159 else \
3160 fprintf (FILE, "\t.xword\t"); \
3161 assemble_name (FILE, label); \
3162 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
3163 fputc ('-', FILE); \
3164 assemble_name (FILE, label); \
3165 fputc ('\n', FILE); \
3166 } while (0)
3168 /* This is what to output before and after case-vector (both
3169 relative and absolute). If .subsection -1 works, we put case-vectors
3170 at the beginning of the current section. */
3172 #ifdef HAVE_GAS_SUBSECTION_ORDERING
3174 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
3175 fprintf(FILE, "\t.subsection\t-1\n")
3177 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
3178 fprintf(FILE, "\t.previous\n")
3180 #endif
3182 /* This is how to output an assembler line
3183 that says to advance the location counter
3184 to a multiple of 2**LOG bytes. */
3186 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3187 if ((LOG) != 0) \
3188 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
3190 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3191 fprintf (FILE, "\t.skip %u\n", (SIZE))
3193 /* This says how to output an assembler line
3194 to define a global common symbol. */
3196 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
3197 ( fputs ("\t.common ", (FILE)), \
3198 assemble_name ((FILE), (NAME)), \
3199 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
3201 /* This says how to output an assembler line to define a local common
3202 symbol. */
3204 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
3205 ( fputs ("\t.reserve ", (FILE)), \
3206 assemble_name ((FILE), (NAME)), \
3207 fprintf ((FILE), ",%u,\"bss\",%u\n", \
3208 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
3210 /* A C statement (sans semicolon) to output to the stdio stream
3211 FILE the assembler definition of uninitialized global DECL named
3212 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
3213 Try to use asm_output_aligned_bss to implement this macro. */
3215 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
3216 do { \
3217 fputs (".globl ", (FILE)); \
3218 assemble_name ((FILE), (NAME)); \
3219 fputs ("\n", (FILE)); \
3220 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
3221 } while (0)
3223 /* Store in OUTPUT a string (made with alloca) containing
3224 an assembler-name for a local static variable named NAME.
3225 LABELNO is an integer which is different for each call. */
3227 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3228 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3229 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3231 #define IDENT_ASM_OP "\t.ident\t"
3233 /* Output #ident as a .ident. */
3235 #define ASM_OUTPUT_IDENT(FILE, NAME) \
3236 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
3238 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
3239 Used for C++ multiple inheritance. */
3240 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
3241 do { \
3242 int reg = 0; \
3244 if (TARGET_ARCH64 \
3245 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
3246 reg = 1; \
3247 if ((DELTA) >= 4096 || (DELTA) < -4096) \
3248 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
3249 (int)(DELTA), reg, reg); \
3250 else \
3251 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
3252 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
3253 fprintf (FILE, "\tcall\t"); \
3254 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3255 fprintf (FILE, ", 0\n"); \
3256 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
3257 } while (0)
3259 /* Define the parentheses used to group arithmetic operations
3260 in assembler code. */
3262 #define ASM_OPEN_PAREN "("
3263 #define ASM_CLOSE_PAREN ")"
3265 /* Define results of standard character escape sequences. */
3266 #define TARGET_BELL 007
3267 #define TARGET_BS 010
3268 #define TARGET_TAB 011
3269 #define TARGET_NEWLINE 012
3270 #define TARGET_VT 013
3271 #define TARGET_FF 014
3272 #define TARGET_CR 015
3274 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3275 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
3277 /* Print operand X (an rtx) in assembler syntax to file FILE.
3278 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3279 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3281 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3283 /* Print a memory address as an operand to reference that memory location. */
3285 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3286 { register rtx base, index = 0; \
3287 int offset = 0; \
3288 register rtx addr = ADDR; \
3289 if (GET_CODE (addr) == REG) \
3290 fputs (reg_names[REGNO (addr)], FILE); \
3291 else if (GET_CODE (addr) == PLUS) \
3293 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
3294 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
3295 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
3296 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
3297 else \
3298 base = XEXP (addr, 0), index = XEXP (addr, 1); \
3299 if (GET_CODE (base) == LO_SUM) \
3301 if (! USE_AS_OFFSETABLE_LO10 \
3302 || TARGET_ARCH32 \
3303 || TARGET_CM_MEDMID) \
3304 abort (); \
3305 output_operand (XEXP (base, 0), 0); \
3306 fputs ("+%lo(", FILE); \
3307 output_address (XEXP (base, 1)); \
3308 fprintf (FILE, ")+%d", offset); \
3310 else \
3312 fputs (reg_names[REGNO (base)], FILE); \
3313 if (index == 0) \
3314 fprintf (FILE, "%+d", offset); \
3315 else if (GET_CODE (index) == REG) \
3316 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
3317 else if (GET_CODE (index) == SYMBOL_REF \
3318 || GET_CODE (index) == CONST) \
3319 fputc ('+', FILE), output_addr_const (FILE, index); \
3320 else abort (); \
3323 else if (GET_CODE (addr) == MINUS \
3324 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
3326 output_addr_const (FILE, XEXP (addr, 0)); \
3327 fputs ("-(", FILE); \
3328 output_addr_const (FILE, XEXP (addr, 1)); \
3329 fputs ("-.)", FILE); \
3331 else if (GET_CODE (addr) == LO_SUM) \
3333 output_operand (XEXP (addr, 0), 0); \
3334 if (TARGET_CM_MEDMID) \
3335 fputs ("+%l44(", FILE); \
3336 else \
3337 fputs ("+%lo(", FILE); \
3338 output_address (XEXP (addr, 1)); \
3339 fputc (')', FILE); \
3341 else if (flag_pic && GET_CODE (addr) == CONST \
3342 && GET_CODE (XEXP (addr, 0)) == MINUS \
3343 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3344 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3345 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3347 addr = XEXP (addr, 0); \
3348 output_addr_const (FILE, XEXP (addr, 0)); \
3349 /* Group the args of the second CONST in parenthesis. */ \
3350 fputs ("-(", FILE); \
3351 /* Skip past the second CONST--it does nothing for us. */\
3352 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3353 /* Close the parenthesis. */ \
3354 fputc (')', FILE); \
3356 else \
3358 output_addr_const (FILE, addr); \
3362 /* Define the codes that are matched by predicates in sparc.c. */
3364 #define PREDICATE_CODES \
3365 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3366 {"fp_zero_operand", {CONST_DOUBLE}}, \
3367 {"intreg_operand", {SUBREG, REG}}, \
3368 {"fcc_reg_operand", {REG}}, \
3369 {"icc_or_fcc_reg_operand", {REG}}, \
3370 {"restore_operand", {REG}}, \
3371 {"call_operand", {MEM}}, \
3372 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3373 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3374 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3375 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3376 {"label_ref_operand", {LABEL_REF}}, \
3377 {"sp64_medium_pic_operand", {CONST}}, \
3378 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3379 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3380 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3381 {"splittable_symbolic_memory_operand", {MEM}}, \
3382 {"splittable_immediate_memory_operand", {MEM}}, \
3383 {"eq_or_neq", {EQ, NE}}, \
3384 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3385 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3386 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3387 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3388 {"cc_arithop", {AND, IOR, XOR}}, \
3389 {"cc_arithopn", {AND, IOR}}, \
3390 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3391 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3392 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3393 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3394 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3395 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3396 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3397 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3398 {"small_int", {CONST_INT}}, \
3399 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3400 {"uns_small_int", {CONST_INT}}, \
3401 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3402 {"clobbered_register", {REG}}, \
3403 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3404 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3405 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3407 /* The number of Pmode words for the setjmp buffer. */
3408 #define JMP_BUF_SIZE 12
3410 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)