* configure.ac: (target_alias): Default to $host_alias, not
[official-gcc.git] / gcc / ra-rewrite.c
blob6ebef4903d8610d2f1f7b8cd86ebcd11f2cbf4f2
1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
15 details.
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "df.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "except.h"
35 #include "ra.h"
36 #include "insn-config.h"
37 #include "reload.h"
39 /* This file is part of the graph coloring register allocator, and
40 contains the functions to change the insn stream. I.e. it adds
41 spill code, rewrites insns to use the new registers after
42 coloring and deletes coalesced moves. */
44 struct rewrite_info;
45 struct rtx_list;
47 static void spill_coalescing (sbitmap, sbitmap);
48 static unsigned HOST_WIDE_INT spill_prop_savings (struct web *, sbitmap);
49 static void spill_prop_insert (struct web *, sbitmap, sbitmap);
50 static int spill_propagation (sbitmap, sbitmap, sbitmap);
51 static void spill_coalprop (void);
52 static void allocate_spill_web (struct web *);
53 static void choose_spill_colors (void);
54 static void rewrite_program (bitmap);
55 static void remember_slot (struct rtx_list **, rtx);
56 static int slots_overlap_p (rtx, rtx);
57 static void delete_overlapping_slots (struct rtx_list **, rtx);
58 static int slot_member_p (struct rtx_list *, rtx);
59 static void insert_stores (bitmap);
60 static int spill_same_color_p (struct web *, struct web *);
61 static bool is_partly_live_1 (sbitmap, struct web *);
62 static void update_spill_colors (HARD_REG_SET *, struct web *, int);
63 static int spill_is_free (HARD_REG_SET *, struct web *);
64 static void emit_loads (struct rewrite_info *, int, rtx);
65 static void reloads_to_loads (struct rewrite_info *, struct ref **,
66 unsigned int, struct web **);
67 static void rewrite_program2 (bitmap);
68 static void mark_refs_for_checking (struct web *, bitmap);
69 static void detect_web_parts_to_rebuild (void);
70 static void delete_useless_defs (void);
71 static void detect_non_changed_webs (void);
72 static void reset_changed_flag (void);
74 /* For tracking some statistics, we count the number (and cost)
75 of deleted move insns. */
76 static unsigned int deleted_move_insns;
77 static unsigned HOST_WIDE_INT deleted_move_cost;
79 /* This is the spill coalescing phase. In SPILLED the IDs of all
80 already spilled webs are noted. In COALESCED the IDs of webs still
81 to check for coalescing. This tries to coalesce two webs, which were
82 spilled, are connected by a move, and don't conflict. Greatly
83 reduces memory shuffling. */
85 static void
86 spill_coalescing (sbitmap coalesce, sbitmap spilled)
88 struct move_list *ml;
89 struct move *m;
90 for (ml = wl_moves; ml; ml = ml->next)
91 if ((m = ml->move) != NULL)
93 struct web *s = alias (m->source_web);
94 struct web *t = alias (m->target_web);
95 if ((TEST_BIT (spilled, s->id) && TEST_BIT (coalesce, t->id))
96 || (TEST_BIT (spilled, t->id) && TEST_BIT (coalesce, s->id)))
98 struct conflict_link *wl;
99 if (TEST_BIT (sup_igraph, s->id * num_webs + t->id)
100 || TEST_BIT (sup_igraph, t->id * num_webs + s->id)
101 || s->pattern || t->pattern)
102 continue;
104 deleted_move_insns++;
105 deleted_move_cost += BLOCK_FOR_INSN (m->insn)->frequency + 1;
106 PUT_CODE (m->insn, NOTE);
107 NOTE_LINE_NUMBER (m->insn) = NOTE_INSN_DELETED;
108 df_insn_modify (df, BLOCK_FOR_INSN (m->insn), m->insn);
110 m->target_web->target_of_spilled_move = 1;
111 if (s == t)
112 /* May be, already coalesced due to a former move. */
113 continue;
114 /* Merge the nodes S and T in the I-graph. Beware: the merging
115 of conflicts relies on the fact, that in the conflict list
116 of T all of it's conflicts are noted. This is currently not
117 the case if T would be the target of a coalesced web, because
118 then (in combine () above) only those conflicts were noted in
119 T from the web which was coalesced into T, which at the time
120 of combine() were not already on the SELECT stack or were
121 itself coalesced to something other. */
122 gcc_assert (t->type == SPILLED
123 && s->type == SPILLED);
124 remove_list (t->dlink, &WEBS(SPILLED));
125 put_web (t, COALESCED);
126 t->alias = s;
127 s->is_coalesced = 1;
128 t->is_coalesced = 1;
129 merge_moves (s, t);
130 for (wl = t->conflict_list; wl; wl = wl->next)
132 struct web *pweb = wl->t;
133 if (wl->sub == NULL)
134 record_conflict (s, pweb);
135 else
137 struct sub_conflict *sl;
138 for (sl = wl->sub; sl; sl = sl->next)
140 struct web *sweb = NULL;
141 if (SUBWEB_P (sl->s))
142 sweb = find_subweb (s, sl->s->orig_x);
143 if (!sweb)
144 sweb = s;
145 record_conflict (sweb, sl->t);
148 /* No decrement_degree here, because we already have colored
149 the graph, and don't want to insert pweb into any other
150 list. */
151 pweb->num_conflicts -= 1 + t->add_hardregs;
157 /* Returns the probable saving of coalescing WEB with webs from
158 SPILLED, in terms of removed move insn cost. */
160 static unsigned HOST_WIDE_INT
161 spill_prop_savings (struct web *web, sbitmap spilled)
163 unsigned HOST_WIDE_INT savings = 0;
164 struct move_list *ml;
165 struct move *m;
166 unsigned int cost;
167 if (web->pattern)
168 return 0;
169 cost = 1 + MEMORY_MOVE_COST (GET_MODE (web->orig_x), web->regclass, 1);
170 cost += 1 + MEMORY_MOVE_COST (GET_MODE (web->orig_x), web->regclass, 0);
171 for (ml = wl_moves; ml; ml = ml->next)
172 if ((m = ml->move) != NULL)
174 struct web *s = alias (m->source_web);
175 struct web *t = alias (m->target_web);
176 if (s != web)
178 struct web *h = s;
179 s = t;
180 t = h;
182 if (s != web || !TEST_BIT (spilled, t->id) || t->pattern
183 || TEST_BIT (sup_igraph, s->id * num_webs + t->id)
184 || TEST_BIT (sup_igraph, t->id * num_webs + s->id))
185 continue;
186 savings += BLOCK_FOR_INSN (m->insn)->frequency * cost;
188 return savings;
191 /* This add all IDs of colored webs, which are connected to WEB by a move
192 to LIST and PROCESSED. */
194 static void
195 spill_prop_insert (struct web *web, sbitmap list, sbitmap processed)
197 struct move_list *ml;
198 struct move *m;
199 for (ml = wl_moves; ml; ml = ml->next)
200 if ((m = ml->move) != NULL)
202 struct web *s = alias (m->source_web);
203 struct web *t = alias (m->target_web);
204 if (s != web)
206 struct web *h = s;
207 s = t;
208 t = h;
210 if (s != web || t->type != COLORED || TEST_BIT (processed, t->id))
211 continue;
212 SET_BIT (list, t->id);
213 SET_BIT (processed, t->id);
217 /* The spill propagation pass. If we have to spilled webs, the first
218 connected through a move to a colored one, and the second also connected
219 to that colored one, and this colored web is only used to connect both
220 spilled webs, it might be worthwhile to spill that colored one.
221 This is the case, if the cost of the removed copy insns (all three webs
222 could be placed into the same stack slot) is higher than the spill cost
223 of the web.
224 TO_PROP are the webs we try to propagate from (i.e. spilled ones),
225 SPILLED the set of all spilled webs so far and PROCESSED the set
226 of all webs processed so far, so we don't do work twice. */
228 static int
229 spill_propagation (sbitmap to_prop, sbitmap spilled, sbitmap processed)
231 int id;
232 int again = 0;
233 sbitmap list = sbitmap_alloc (num_webs);
234 sbitmap_zero (list);
236 /* First insert colored move neighbors into the candidate list. */
237 EXECUTE_IF_SET_IN_SBITMAP (to_prop, 0, id,
239 spill_prop_insert (ID2WEB (id), list, processed);
241 sbitmap_zero (to_prop);
243 /* For all candidates, see, if the savings are higher than it's
244 spill cost. */
245 while ((id = sbitmap_first_set_bit (list)) >= 0)
247 struct web *web = ID2WEB (id);
248 RESET_BIT (list, id);
249 if (spill_prop_savings (web, spilled) >= web->spill_cost)
251 /* If so, we found a new spilled web. Insert it's colored
252 move neighbors again, and mark, that we need to repeat the
253 whole mainloop of spillprog/coalescing again. */
254 remove_web_from_list (web);
255 web->color = -1;
256 put_web (web, SPILLED);
257 SET_BIT (spilled, id);
258 SET_BIT (to_prop, id);
259 spill_prop_insert (web, list, processed);
260 again = 1;
263 sbitmap_free (list);
264 return again;
267 /* The main phase to improve spill costs. This repeatedly runs
268 spill coalescing and spill propagation, until nothing changes. */
270 static void
271 spill_coalprop (void)
273 sbitmap spilled, processed, to_prop;
274 struct dlist *d;
275 int again;
276 spilled = sbitmap_alloc (num_webs);
277 processed = sbitmap_alloc (num_webs);
278 to_prop = sbitmap_alloc (num_webs);
279 sbitmap_zero (spilled);
280 for (d = WEBS(SPILLED); d; d = d->next)
281 SET_BIT (spilled, DLIST_WEB (d)->id);
282 sbitmap_copy (to_prop, spilled);
283 sbitmap_zero (processed);
286 spill_coalescing (to_prop, spilled);
287 /* XXX Currently (with optimistic coalescing) spill_propagation()
288 doesn't give better code, sometimes it gives worse (but not by much)
289 code. I believe this is because of slightly wrong cost
290 measurements. Anyway right now it isn't worth the time it takes,
291 so deactivate it for now. */
292 again = 0 && spill_propagation (to_prop, spilled, processed);
294 while (again);
295 sbitmap_free (to_prop);
296 sbitmap_free (processed);
297 sbitmap_free (spilled);
300 /* Allocate a spill slot for a WEB. Currently we spill to pseudo
301 registers, to be able to track also webs for "stack slots", and also
302 to possibly colorize them. These pseudos are sometimes handled
303 in a special way, where we know, that they also can represent
304 MEM references. */
306 static void
307 allocate_spill_web (struct web *web)
309 int regno = web->regno;
310 rtx slot;
311 if (web->stack_slot)
312 return;
313 slot = gen_reg_rtx (PSEUDO_REGNO_MODE (regno));
314 web->stack_slot = slot;
317 /* This chooses a color for all SPILLED webs for interference region
318 spilling. The heuristic isn't good in any way. */
320 static void
321 choose_spill_colors (void)
323 struct dlist *d;
324 unsigned HOST_WIDE_INT *costs = xmalloc (FIRST_PSEUDO_REGISTER * sizeof (costs[0]));
325 for (d = WEBS(SPILLED); d; d = d->next)
327 struct web *web = DLIST_WEB (d);
328 struct conflict_link *wl;
329 int bestc, c;
330 HARD_REG_SET avail;
331 memset (costs, 0, FIRST_PSEUDO_REGISTER * sizeof (costs[0]));
332 for (wl = web->conflict_list; wl; wl = wl->next)
334 struct web *pweb = wl->t;
335 if (pweb->type == COLORED || pweb->type == PRECOLORED)
336 costs[pweb->color] += pweb->spill_cost;
339 COPY_HARD_REG_SET (avail, web->usable_regs);
340 if (web->crosses_call)
342 /* Add an arbitrary constant cost to colors not usable by
343 call-crossing webs without saves/loads. */
344 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
345 if (TEST_HARD_REG_BIT (call_used_reg_set, c))
346 costs[c] += 1000;
348 bestc = -1;
349 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
350 if ((bestc < 0 || costs[bestc] > costs[c])
351 && TEST_HARD_REG_BIT (avail, c)
352 && HARD_REGNO_MODE_OK (c, PSEUDO_REGNO_MODE (web->regno)))
354 int i, size;
355 size = hard_regno_nregs[c][PSEUDO_REGNO_MODE (web->regno)];
356 for (i = 1; i < size
357 && TEST_HARD_REG_BIT (avail, c + i); i++);
358 if (i == size)
359 bestc = c;
361 web->color = bestc;
362 ra_debug_msg (DUMP_PROCESS, "choosing color %d for spilled web %d\n",
363 bestc, web->id);
366 free (costs);
369 /* For statistics sake we count the number and cost of all new loads,
370 stores and emitted rematerializations. */
371 static unsigned int emitted_spill_loads;
372 static unsigned int emitted_spill_stores;
373 static unsigned int emitted_remat;
374 static unsigned HOST_WIDE_INT spill_load_cost;
375 static unsigned HOST_WIDE_INT spill_store_cost;
376 static unsigned HOST_WIDE_INT spill_remat_cost;
378 /* In rewrite_program2() we detect if some def us useless, in the sense,
379 that the pseudo set is not live anymore at that point. The REF_IDs
380 of such defs are noted here. */
381 static bitmap useless_defs;
383 /* This is the simple and fast version of rewriting the program to
384 include spill code. It spills at every insn containing spilled
385 defs or uses. Loads are added only if flag_ra_spill_every_use is
386 nonzero, otherwise only stores will be added. This doesn't
387 support rematerialization.
388 NEW_DEATHS is filled with uids for insns, which probably contain
389 deaths. */
391 static void
392 rewrite_program (bitmap new_deaths)
394 unsigned int i;
395 struct dlist *d;
396 bitmap b = BITMAP_XMALLOC ();
398 /* We walk over all webs, over all uses/defs. For all webs, we need
399 to look at spilled webs, and webs coalesced to spilled ones, in case
400 their alias isn't broken up, or they got spill coalesced. */
401 for (i = 0; i < 2; i++)
402 for (d = (i == 0) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
404 struct web *web = DLIST_WEB (d);
405 struct web *aweb = alias (web);
406 unsigned int j;
407 rtx slot;
409 /* Is trivially true for spilled webs, but not for coalesced ones. */
410 if (aweb->type != SPILLED)
411 continue;
413 /* First add loads before every use, if we have to. */
414 if (flag_ra_spill_every_use)
416 bitmap_clear (b);
417 allocate_spill_web (aweb);
418 slot = aweb->stack_slot;
419 for (j = 0; j < web->num_uses; j++)
421 rtx insns, target, source;
422 rtx insn = DF_REF_INSN (web->uses[j]);
423 rtx prev = PREV_INSN (insn);
424 basic_block bb = BLOCK_FOR_INSN (insn);
425 /* Happens when spill_coalescing() deletes move insns. */
426 if (!INSN_P (insn))
427 continue;
429 /* Check that we didn't already added a load for this web
430 and insn. Happens, when the an insn uses the same web
431 multiple times. */
432 if (bitmap_bit_p (b, INSN_UID (insn)))
433 continue;
434 bitmap_set_bit (b, INSN_UID (insn));
435 target = DF_REF_REG (web->uses[j]);
436 source = slot;
437 start_sequence ();
438 if (GET_CODE (target) == SUBREG)
439 source = simplify_gen_subreg (GET_MODE (target), source,
440 GET_MODE (source),
441 SUBREG_BYTE (target));
442 ra_emit_move_insn (target, source);
443 insns = get_insns ();
444 end_sequence ();
445 emit_insn_before (insns, insn);
447 if (BB_HEAD (bb) == insn)
448 BB_HEAD (bb) = NEXT_INSN (prev);
449 for (insn = PREV_INSN (insn); insn != prev;
450 insn = PREV_INSN (insn))
452 set_block_for_insn (insn, bb);
453 df_insn_modify (df, bb, insn);
456 emitted_spill_loads++;
457 spill_load_cost += bb->frequency + 1;
461 /* Now emit the stores after each def.
462 If any uses were loaded from stackslots (compared to
463 rematerialized or not reloaded due to IR spilling),
464 aweb->stack_slot will be set. If not, we don't need to emit
465 any stack stores. */
466 slot = aweb->stack_slot;
467 bitmap_clear (b);
468 if (slot)
469 for (j = 0; j < web->num_defs; j++)
471 rtx insns, source, dest;
472 rtx insn = DF_REF_INSN (web->defs[j]);
473 rtx following = NEXT_INSN (insn);
474 basic_block bb = BLOCK_FOR_INSN (insn);
475 /* Happens when spill_coalescing() deletes move insns. */
476 if (!INSN_P (insn))
477 continue;
478 if (bitmap_bit_p (b, INSN_UID (insn)))
479 continue;
480 bitmap_set_bit (b, INSN_UID (insn));
481 start_sequence ();
482 source = DF_REF_REG (web->defs[j]);
483 dest = slot;
484 if (GET_CODE (source) == SUBREG)
485 dest = simplify_gen_subreg (GET_MODE (source), dest,
486 GET_MODE (dest),
487 SUBREG_BYTE (source));
488 ra_emit_move_insn (dest, source);
490 insns = get_insns ();
491 end_sequence ();
492 if (insns)
494 emit_insn_after (insns, insn);
495 if (BB_END (bb) == insn)
496 BB_END (bb) = PREV_INSN (following);
497 for (insn = insns; insn != following; insn = NEXT_INSN (insn))
499 set_block_for_insn (insn, bb);
500 df_insn_modify (df, bb, insn);
503 else
504 df_insn_modify (df, bb, insn);
505 emitted_spill_stores++;
506 spill_store_cost += bb->frequency + 1;
507 /* XXX we should set new_deaths for all inserted stores
508 whose pseudo dies here.
509 Note, that this isn't the case for _all_ stores. */
510 /* I.e. the next is wrong, and might cause some spilltemps
511 to be categorized as spilltemp2's (i.e. live over a death),
512 although they aren't. This might make them spill again,
513 which causes endlessness in the case, this insn is in fact
514 _no_ death. */
515 bitmap_set_bit (new_deaths, INSN_UID (PREV_INSN (following)));
519 BITMAP_XFREE (b);
522 /* A simple list of rtx's. */
523 struct rtx_list
525 struct rtx_list *next;
526 rtx x;
529 /* Adds X to *LIST. */
531 static void
532 remember_slot (struct rtx_list **list, rtx x)
534 struct rtx_list *l;
535 /* PRE: X is not already in LIST. */
536 l = ra_alloc (sizeof (*l));
537 l->next = *list;
538 l->x = x;
539 *list = l;
542 /* Given two rtx' S1 and S2, either being REGs or MEMs (or SUBREGs
543 thereof), return nonzero, if they overlap. REGs and MEMs don't
544 overlap, and if they are MEMs they must have an easy address
545 (plus (basereg) (const_inst x)), otherwise they overlap. */
547 static int
548 slots_overlap_p (rtx s1, rtx s2)
550 rtx base1, base2;
551 HOST_WIDE_INT ofs1 = 0, ofs2 = 0;
552 int size1 = GET_MODE_SIZE (GET_MODE (s1));
553 int size2 = GET_MODE_SIZE (GET_MODE (s2));
554 if (GET_CODE (s1) == SUBREG)
555 ofs1 = SUBREG_BYTE (s1), s1 = SUBREG_REG (s1);
556 if (GET_CODE (s2) == SUBREG)
557 ofs2 = SUBREG_BYTE (s2), s2 = SUBREG_REG (s2);
559 if (s1 == s2)
560 return 1;
562 if (GET_CODE (s1) != GET_CODE (s2))
563 return 0;
565 if (REG_P (s1) && REG_P (s2))
567 if (REGNO (s1) != REGNO (s2))
568 return 0;
569 if (ofs1 >= ofs2 + size2 || ofs2 >= ofs1 + size1)
570 return 0;
571 return 1;
573 gcc_assert (MEM_P (s1) && GET_CODE (s2) == MEM);
574 s1 = XEXP (s1, 0);
575 s2 = XEXP (s2, 0);
576 if (GET_CODE (s1) != PLUS || !REG_P (XEXP (s1, 0))
577 || GET_CODE (XEXP (s1, 1)) != CONST_INT)
578 return 1;
579 if (GET_CODE (s2) != PLUS || !REG_P (XEXP (s2, 0))
580 || GET_CODE (XEXP (s2, 1)) != CONST_INT)
581 return 1;
582 base1 = XEXP (s1, 0);
583 base2 = XEXP (s2, 0);
584 if (!rtx_equal_p (base1, base2))
585 return 1;
586 ofs1 += INTVAL (XEXP (s1, 1));
587 ofs2 += INTVAL (XEXP (s2, 1));
588 if (ofs1 >= ofs2 + size2 || ofs2 >= ofs1 + size1)
589 return 0;
590 return 1;
593 /* This deletes from *LIST all rtx's which overlap with X in the sense
594 of slots_overlap_p(). */
596 static void
597 delete_overlapping_slots (struct rtx_list **list, rtx x)
599 while (*list)
601 if (slots_overlap_p ((*list)->x, x))
602 *list = (*list)->next;
603 else
604 list = &((*list)->next);
608 /* Returns nonzero, of X is member of LIST. */
610 static int
611 slot_member_p (struct rtx_list *list, rtx x)
613 for (;list; list = list->next)
614 if (rtx_equal_p (list->x, x))
615 return 1;
616 return 0;
619 /* A more sophisticated (and slower) method of adding the stores, than
620 rewrite_program(). This goes backward the insn stream, adding
621 stores as it goes, but only if it hasn't just added a store to the
622 same location. NEW_DEATHS is a bitmap filled with uids of insns
623 containing deaths. */
625 static void
626 insert_stores (bitmap new_deaths)
628 rtx insn;
629 rtx last_slot = NULL_RTX;
630 struct rtx_list *slots = NULL;
632 /* We go simply backwards over basic block borders. */
633 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
635 int uid = INSN_UID (insn);
637 /* If we reach a basic block border, which has more than one
638 outgoing edge, we simply forget all already emitted stores. */
639 if (BARRIER_P (insn)
640 || JUMP_P (insn) || can_throw_internal (insn))
642 last_slot = NULL_RTX;
643 slots = NULL;
645 if (!INSN_P (insn))
646 continue;
648 /* If this insn was not just added in this pass. */
649 if (uid < insn_df_max_uid)
651 unsigned int n;
652 rtx following = NEXT_INSN (insn);
653 basic_block bb = BLOCK_FOR_INSN (insn);
654 struct ra_insn_info info;
656 info = insn_df[uid];
657 for (n = 0; n < info.num_defs; n++)
659 struct web *web = def2web[DF_REF_ID (info.defs[n])];
660 struct web *aweb = alias (find_web_for_subweb (web));
661 rtx slot, source;
662 if (aweb->type != SPILLED || !aweb->stack_slot)
663 continue;
664 slot = aweb->stack_slot;
665 source = DF_REF_REG (info.defs[n]);
666 /* adjust_address() might generate code. */
667 start_sequence ();
668 if (GET_CODE (source) == SUBREG)
669 slot = simplify_gen_subreg (GET_MODE (source), slot,
670 GET_MODE (slot),
671 SUBREG_BYTE (source));
672 /* If we have no info about emitted stores, or it didn't
673 contain the location we intend to use soon, then
674 add the store. */
675 if ((!last_slot || !rtx_equal_p (slot, last_slot))
676 && ! slot_member_p (slots, slot))
678 rtx insns, ni;
679 last_slot = slot;
680 remember_slot (&slots, slot);
681 ra_emit_move_insn (slot, source);
682 insns = get_insns ();
683 end_sequence ();
684 if (insns)
686 emit_insn_after (insns, insn);
687 if (BB_END (bb) == insn)
688 BB_END (bb) = PREV_INSN (following);
689 for (ni = insns; ni != following; ni = NEXT_INSN (ni))
691 set_block_for_insn (ni, bb);
692 df_insn_modify (df, bb, ni);
695 else
696 df_insn_modify (df, bb, insn);
697 emitted_spill_stores++;
698 spill_store_cost += bb->frequency + 1;
699 bitmap_set_bit (new_deaths, INSN_UID (PREV_INSN (following)));
701 else
703 /* Otherwise ignore insns from adjust_address() above. */
704 end_sequence ();
708 /* If we look at a load generated by the allocator, forget
709 the last emitted slot, and additionally clear all slots
710 overlapping it's source (after all, we need it again). */
711 /* XXX If we emit the stack-ref directly into the using insn the
712 following needs a change, because that is no new insn. Preferably
713 we would add some notes to the insn, what stackslots are needed
714 for it. */
715 if (uid >= last_max_uid)
717 rtx set = single_set (insn);
718 last_slot = NULL_RTX;
719 /* If this was no simple set, give up, and forget everything. */
720 if (!set)
721 slots = NULL;
722 else
724 if (1 || MEM_P (SET_SRC (set)))
725 delete_overlapping_slots (&slots, SET_SRC (set));
731 /* Returns 1 if both colored webs have some hardregs in common, even if
732 they are not the same width. */
734 static int
735 spill_same_color_p (struct web *web1, struct web *web2)
737 int c1, size1, c2, size2;
738 if ((c1 = alias (web1)->color) < 0 || c1 == an_unusable_color)
739 return 0;
740 if ((c2 = alias (web2)->color) < 0 || c2 == an_unusable_color)
741 return 0;
743 size1 = web1->type == PRECOLORED
744 ? 1 : hard_regno_nregs[c1][PSEUDO_REGNO_MODE (web1->regno)];
745 size2 = web2->type == PRECOLORED
746 ? 1 : hard_regno_nregs[c2][PSEUDO_REGNO_MODE (web2->regno)];
747 if (c1 >= c2 + size2 || c2 >= c1 + size1)
748 return 0;
749 return 1;
752 /* Given the set of live web IDs LIVE, returns nonzero, if any of WEBs
753 subwebs (or WEB itself) is live. */
755 static bool
756 is_partly_live_1 (sbitmap live, struct web *web)
759 if (TEST_BIT (live, web->id))
760 return 1;
761 while ((web = web->subreg_next));
762 return 0;
765 /* Fast version in case WEB has no subwebs. */
766 #define is_partly_live(live, web) ((!web->subreg_next) \
767 ? TEST_BIT (live, web->id) \
768 : is_partly_live_1 (live, web))
770 /* Change the set of currently IN_USE colors according to
771 WEB's color. Either add those colors to the hardreg set (if ADD
772 is nonzero), or remove them. */
774 static void
775 update_spill_colors (HARD_REG_SET *in_use, struct web *web, int add)
777 int c, size;
778 if ((c = alias (find_web_for_subweb (web))->color) < 0
779 || c == an_unusable_color)
780 return;
781 size = hard_regno_nregs[c][GET_MODE (web->orig_x)];
782 if (SUBWEB_P (web))
784 c += subreg_regno_offset (c, GET_MODE (SUBREG_REG (web->orig_x)),
785 SUBREG_BYTE (web->orig_x),
786 GET_MODE (web->orig_x));
788 else if (web->type == PRECOLORED)
789 size = 1;
790 if (add)
791 for (; size--;)
792 SET_HARD_REG_BIT (*in_use, c + size);
793 else
794 for (; size--;)
795 CLEAR_HARD_REG_BIT (*in_use, c + size);
798 /* Given a set of hardregs currently IN_USE and the color C of WEB,
799 return -1 if WEB has no color, 1 of it has the unusable color,
800 0 if one of it's used hardregs are in use, and 1 otherwise.
801 Generally, if WEB can't be left colorized return 1. */
803 static int
804 spill_is_free (HARD_REG_SET *in_use, struct web *web)
806 int c, size;
807 if ((c = alias (web)->color) < 0)
808 return -1;
809 if (c == an_unusable_color)
810 return 1;
811 size = web->type == PRECOLORED
812 ? 1 : hard_regno_nregs[c][PSEUDO_REGNO_MODE (web->regno)];
813 for (; size--;)
814 if (TEST_HARD_REG_BIT (*in_use, c + size))
815 return 0;
816 return 1;
820 /* Structure for passing between rewrite_program2() and emit_loads(). */
821 struct rewrite_info
823 /* The web IDs which currently would need a reload. These are
824 currently live spilled webs, whose color was still free. */
825 bitmap need_reload;
826 /* We need a scratch bitmap, but don't want to allocate one a zillion
827 times. */
828 bitmap scratch;
829 /* Web IDs of currently live webs. This are the precise IDs,
830 not just those of the superwebs. If only on part is live, only
831 that ID is placed here. */
832 sbitmap live;
833 /* An array of webs, which currently need a load added.
834 They will be emitted when seeing the first death. */
835 struct web **needed_loads;
836 /* The current number of entries in needed_loads. */
837 int nl_size;
838 /* The number of bits set in need_reload. */
839 int num_reloads;
840 /* The current set of hardregs not available. */
841 HARD_REG_SET colors_in_use;
842 /* Nonzero, if we just added some spill temps to need_reload or
843 needed_loads. In this case we don't wait for the next death
844 to emit their loads. */
845 int any_spilltemps_spilled;
846 /* Nonzero, if we currently need to emit the loads. E.g. when we
847 saw an insn containing deaths. */
848 int need_load;
851 /* The needed_loads list of RI contains some webs for which
852 we add the actual load insns here. They are added just before
853 their use last seen. NL_FIRST_RELOAD is the index of the first
854 load which is a converted reload, all other entries are normal
855 loads. LAST_BLOCK_INSN is the last insn of the current basic block. */
857 static void
858 emit_loads (struct rewrite_info *ri, int nl_first_reload, rtx last_block_insn)
860 int j;
861 for (j = ri->nl_size; j;)
863 struct web *web = ri->needed_loads[--j];
864 struct web *supweb;
865 struct web *aweb;
866 rtx ni, slot, reg;
867 rtx before = NULL_RTX, after = NULL_RTX;
868 basic_block bb;
869 /* When spilltemps were spilled for the last insns, their
870 loads already are emitted, which is noted by setting
871 needed_loads[] for it to 0. */
872 if (!web)
873 continue;
874 supweb = find_web_for_subweb (web);
875 gcc_assert (supweb->regno < max_normal_pseudo);
876 /* Check for web being a spilltemp, if we only want to
877 load spilltemps. Also remember, that we emitted that
878 load, which we don't need to do when we have a death,
879 because then all of needed_loads[] is emptied. */
880 if (!ri->need_load)
882 if (!supweb->spill_temp)
883 continue;
884 else
885 ri->needed_loads[j] = 0;
887 web->in_load = 0;
888 /* The adding of reloads doesn't depend on liveness. */
889 if (j < nl_first_reload && !TEST_BIT (ri->live, web->id))
890 continue;
891 aweb = alias (supweb);
892 aweb->changed = 1;
893 start_sequence ();
894 if (supweb->pattern)
896 /* XXX If we later allow non-constant sources for rematerialization
897 we must also disallow coalescing _to_ rematerialized webs
898 (at least then disallow spilling them, which we already ensure
899 when flag_ra_break_aliases), or not take the pattern but a
900 stackslot. */
901 gcc_assert (aweb == supweb);
902 slot = copy_rtx (supweb->pattern);
903 reg = copy_rtx (supweb->orig_x);
904 /* Sanity check. orig_x should be a REG rtx, which should be
905 shared over all RTL, so copy_rtx should have no effect. */
906 gcc_assert (reg == supweb->orig_x);
908 else
910 allocate_spill_web (aweb);
911 slot = aweb->stack_slot;
913 /* If we don't copy the RTL there might be some SUBREG
914 rtx shared in the next iteration although being in
915 different webs, which leads to wrong code. */
916 reg = copy_rtx (web->orig_x);
917 if (GET_CODE (reg) == SUBREG)
918 /*slot = adjust_address (slot, GET_MODE (reg), SUBREG_BYTE
919 (reg));*/
920 slot = simplify_gen_subreg (GET_MODE (reg), slot, GET_MODE (slot),
921 SUBREG_BYTE (reg));
923 ra_emit_move_insn (reg, slot);
924 ni = get_insns ();
925 end_sequence ();
926 before = web->last_use_insn;
927 web->last_use_insn = NULL_RTX;
928 if (!before)
930 if (JUMP_P (last_block_insn))
931 before = last_block_insn;
932 else
933 after = last_block_insn;
935 if (after)
937 rtx foll = NEXT_INSN (after);
938 bb = BLOCK_FOR_INSN (after);
939 emit_insn_after (ni, after);
940 if (BB_END (bb) == after)
941 BB_END (bb) = PREV_INSN (foll);
942 for (ni = NEXT_INSN (after); ni != foll; ni = NEXT_INSN (ni))
944 set_block_for_insn (ni, bb);
945 df_insn_modify (df, bb, ni);
948 else
950 rtx prev = PREV_INSN (before);
951 bb = BLOCK_FOR_INSN (before);
952 emit_insn_before (ni, before);
953 if (BB_HEAD (bb) == before)
954 BB_HEAD (bb) = NEXT_INSN (prev);
955 for (; ni != before; ni = NEXT_INSN (ni))
957 set_block_for_insn (ni, bb);
958 df_insn_modify (df, bb, ni);
961 if (supweb->pattern)
963 emitted_remat++;
964 spill_remat_cost += bb->frequency + 1;
966 else
968 emitted_spill_loads++;
969 spill_load_cost += bb->frequency + 1;
971 RESET_BIT (ri->live, web->id);
972 /* In the special case documented above only emit the reloads and
973 one load. */
974 if (ri->need_load == 2 && j < nl_first_reload)
975 break;
977 if (ri->need_load)
978 ri->nl_size = j;
981 /* Given a set of reloads in RI, an array of NUM_REFS references (either
982 uses or defs) in REFS, and REF2WEB to translate ref IDs to webs
983 (either use2web or def2web) convert some reloads to loads.
984 This looks at the webs referenced, and how they change the set of
985 available colors. Now put all still live webs, which needed reloads,
986 and whose colors isn't free anymore, on the needed_loads list. */
988 static void
989 reloads_to_loads (struct rewrite_info *ri, struct ref **refs,
990 unsigned int num_refs, struct web **ref2web)
992 unsigned int n;
993 int num_reloads = ri->num_reloads;
994 for (n = 0; n < num_refs && num_reloads; n++)
996 struct web *web = ref2web[DF_REF_ID (refs[n])];
997 struct web *supweb = find_web_for_subweb (web);
998 int is_death;
999 int j;
1000 /* Only emit reloads when entering their interference
1001 region. A use of a spilled web never opens an
1002 interference region, independent of it's color. */
1003 if (alias (supweb)->type == SPILLED)
1004 continue;
1005 if (supweb->type == PRECOLORED
1006 && TEST_HARD_REG_BIT (never_use_colors, supweb->color))
1007 continue;
1008 /* Note, that if web (and supweb) are DEFs, we already cleared
1009 the corresponding bits in live. I.e. is_death becomes true, which
1010 is what we want. */
1011 is_death = !TEST_BIT (ri->live, supweb->id);
1012 is_death &= !TEST_BIT (ri->live, web->id);
1013 if (is_death)
1015 int old_num_r = num_reloads;
1016 bitmap_iterator bi;
1018 bitmap_clear (ri->scratch);
1019 EXECUTE_IF_SET_IN_BITMAP (ri->need_reload, 0, j, bi)
1021 struct web *web2 = ID2WEB (j);
1022 struct web *aweb2 = alias (find_web_for_subweb (web2));
1023 gcc_assert (spill_is_free (&(ri->colors_in_use), aweb2) != 0);
1024 if (spill_same_color_p (supweb, aweb2)
1025 /* && interfere (web, web2) */)
1027 if (!web2->in_load)
1029 ri->needed_loads[ri->nl_size++] = web2;
1030 web2->in_load = 1;
1032 bitmap_set_bit (ri->scratch, j);
1033 num_reloads--;
1036 if (num_reloads != old_num_r)
1037 bitmap_and_compl_into (ri->need_reload, ri->scratch);
1040 ri->num_reloads = num_reloads;
1043 /* This adds loads for spilled webs to the program. It uses a kind of
1044 interference region spilling. If flag_ra_ir_spilling is zero it
1045 only uses improved chaitin spilling (adding loads only at insns
1046 containing deaths). */
1048 static void
1049 rewrite_program2 (bitmap new_deaths)
1051 basic_block bb = NULL;
1052 int nl_first_reload;
1053 struct rewrite_info ri;
1054 rtx insn;
1055 ri.needed_loads = xmalloc (num_webs * sizeof (struct web *));
1056 ri.need_reload = BITMAP_XMALLOC ();
1057 ri.scratch = BITMAP_XMALLOC ();
1058 ri.live = sbitmap_alloc (num_webs);
1059 ri.nl_size = 0;
1060 ri.num_reloads = 0;
1061 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1063 basic_block last_bb = NULL;
1064 rtx last_block_insn;
1065 int i, j;
1066 bitmap_iterator bi;
1068 if (!INSN_P (insn))
1069 insn = prev_real_insn (insn);
1070 while (insn && !(bb = BLOCK_FOR_INSN (insn)))
1071 insn = prev_real_insn (insn);
1072 if (!insn)
1073 break;
1074 i = bb->index + 2;
1075 last_block_insn = insn;
1077 sbitmap_zero (ri.live);
1078 CLEAR_HARD_REG_SET (ri.colors_in_use);
1079 EXECUTE_IF_SET_IN_BITMAP (live_at_end[i - 2], 0, j, bi)
1081 struct web *web = use2web[j];
1082 struct web *aweb = alias (find_web_for_subweb (web));
1083 /* A web is only live at end, if it isn't spilled. If we wouldn't
1084 check this, the last uses of spilled web per basic block
1085 wouldn't be detected as deaths, although they are in the final
1086 code. This would lead to cumulating many loads without need,
1087 only increasing register pressure. */
1088 /* XXX do add also spilled webs which got a color for IR spilling.
1089 Remember to not add to colors_in_use in that case. */
1090 if (aweb->type != SPILLED /*|| aweb->color >= 0*/)
1092 SET_BIT (ri.live, web->id);
1093 if (aweb->type != SPILLED)
1094 update_spill_colors (&(ri.colors_in_use), web, 1);
1098 bitmap_clear (ri.need_reload);
1099 ri.num_reloads = 0;
1100 ri.any_spilltemps_spilled = 0;
1101 if (flag_ra_ir_spilling)
1103 struct dlist *d;
1104 int pass;
1105 /* XXX If we don't add spilled nodes into live above, the following
1106 becomes an empty loop. */
1107 for (pass = 0; pass < 2; pass++)
1108 for (d = (pass) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
1110 struct web *web = DLIST_WEB (d);
1111 struct web *aweb = alias (web);
1112 if (aweb->type != SPILLED)
1113 continue;
1114 if (is_partly_live (ri.live, web)
1115 && spill_is_free (&(ri.colors_in_use), web) > 0)
1117 ri.num_reloads++;
1118 bitmap_set_bit (ri.need_reload, web->id);
1119 /* Last using insn is somewhere in another block. */
1120 web->last_use_insn = NULL_RTX;
1125 last_bb = bb;
1126 for (; insn; insn = PREV_INSN (insn))
1128 struct ra_insn_info info;
1129 unsigned int n;
1131 memset (&info, 0, sizeof info);
1133 if (INSN_P (insn) && BLOCK_FOR_INSN (insn) != last_bb)
1135 int index = BLOCK_FOR_INSN (insn)->index + 2;
1136 bitmap_iterator bi;
1138 EXECUTE_IF_SET_IN_BITMAP (live_at_end[index - 2], 0, j, bi)
1140 struct web *web = use2web[j];
1141 struct web *aweb = alias (find_web_for_subweb (web));
1142 if (aweb->type != SPILLED)
1144 SET_BIT (ri.live, web->id);
1145 update_spill_colors (&(ri.colors_in_use), web, 1);
1148 bitmap_clear (ri.scratch);
1149 EXECUTE_IF_SET_IN_BITMAP (ri.need_reload, 0, j, bi)
1151 struct web *web2 = ID2WEB (j);
1152 struct web *supweb2 = find_web_for_subweb (web2);
1153 struct web *aweb2 = alias (supweb2);
1154 if (spill_is_free (&(ri.colors_in_use), aweb2) <= 0)
1156 if (!web2->in_load)
1158 ri.needed_loads[ri.nl_size++] = web2;
1159 web2->in_load = 1;
1161 bitmap_set_bit (ri.scratch, j);
1162 ri.num_reloads--;
1165 bitmap_and_compl_into (ri.need_reload, ri.scratch);
1166 last_bb = BLOCK_FOR_INSN (insn);
1167 last_block_insn = insn;
1168 if (!INSN_P (last_block_insn))
1169 last_block_insn = prev_real_insn (last_block_insn);
1172 ri.need_load = 0;
1173 if (INSN_P (insn))
1174 info = insn_df[INSN_UID (insn)];
1176 if (INSN_P (insn))
1177 for (n = 0; n < info.num_defs; n++)
1179 struct ref *ref = info.defs[n];
1180 struct web *web = def2web[DF_REF_ID (ref)];
1181 struct web *supweb = find_web_for_subweb (web);
1182 int is_non_def = 0;
1183 unsigned int n2;
1185 supweb = find_web_for_subweb (web);
1186 /* Webs which are defined here, but also used in the same insn
1187 are rmw webs, or this use isn't a death because of looping
1188 constructs. In neither case makes this def available it's
1189 resources. Reloads for it are still needed, it's still
1190 live and it's colors don't become free. */
1191 for (n2 = 0; n2 < info.num_uses; n2++)
1193 struct web *web2 = use2web[DF_REF_ID (info.uses[n2])];
1194 if (supweb == find_web_for_subweb (web2))
1196 is_non_def = 1;
1197 break;
1200 if (is_non_def)
1201 continue;
1203 if (!is_partly_live (ri.live, supweb))
1204 bitmap_set_bit (useless_defs, DF_REF_ID (ref));
1206 RESET_BIT (ri.live, web->id);
1207 if (bitmap_bit_p (ri.need_reload, web->id))
1209 ri.num_reloads--;
1210 bitmap_clear_bit (ri.need_reload, web->id);
1212 if (web != supweb)
1214 /* XXX subwebs aren't precisely tracked here. We have
1215 everything we need (inverse webs), but the code isn't
1216 yet written. We need to make all completely
1217 overlapping web parts non-live here. */
1218 /* If by luck now the whole web isn't live anymore, no
1219 reloads for it are needed. */
1220 if (!is_partly_live (ri.live, supweb)
1221 && bitmap_bit_p (ri.need_reload, supweb->id))
1223 ri.num_reloads--;
1224 bitmap_clear_bit (ri.need_reload, supweb->id);
1227 else
1229 struct web *sweb;
1230 /* If the whole web is defined here, no parts of it are
1231 live anymore and no reloads are needed for them. */
1232 for (sweb = supweb->subreg_next; sweb;
1233 sweb = sweb->subreg_next)
1235 RESET_BIT (ri.live, sweb->id);
1236 if (bitmap_bit_p (ri.need_reload, sweb->id))
1238 ri.num_reloads--;
1239 bitmap_clear_bit (ri.need_reload, sweb->id);
1243 if (alias (supweb)->type != SPILLED)
1244 update_spill_colors (&(ri.colors_in_use), web, 0);
1247 nl_first_reload = ri.nl_size;
1249 /* CALL_INSNs are not really deaths, but still more registers
1250 are free after a call, than before.
1251 XXX Note, that sometimes reload barfs when we emit insns between
1252 a call and the insn which copies the return register into a
1253 pseudo. */
1254 if (CALL_P (insn))
1255 ri.need_load = 1;
1256 else if (INSN_P (insn))
1257 for (n = 0; n < info.num_uses; n++)
1259 struct web *web = use2web[DF_REF_ID (info.uses[n])];
1260 struct web *supweb = find_web_for_subweb (web);
1261 int is_death;
1262 if (supweb->type == PRECOLORED
1263 && TEST_HARD_REG_BIT (never_use_colors, supweb->color))
1264 continue;
1265 is_death = !TEST_BIT (ri.live, supweb->id);
1266 is_death &= !TEST_BIT (ri.live, web->id);
1267 if (is_death)
1269 ri.need_load = 1;
1270 bitmap_set_bit (new_deaths, INSN_UID (insn));
1271 break;
1275 if (INSN_P (insn) && ri.num_reloads)
1277 int old_num_reloads = ri.num_reloads;
1278 reloads_to_loads (&ri, info.uses, info.num_uses, use2web);
1280 /* If this insn sets a pseudo, which isn't used later
1281 (i.e. wasn't live before) it is a dead store. We need
1282 to emit all reloads which have the same color as this def.
1283 We don't need to check for non-liveness here to detect
1284 the deadness (it anyway is too late, as we already cleared
1285 the liveness in the first loop over the defs), because if it
1286 _would_ be live here, no reload could have that color, as
1287 they would already have been converted to a load. */
1288 if (ri.num_reloads)
1289 reloads_to_loads (&ri, info.defs, info.num_defs, def2web);
1290 if (ri.num_reloads != old_num_reloads && !ri.need_load)
1291 ri.need_load = 1;
1294 if (ri.nl_size && (ri.need_load || ri.any_spilltemps_spilled))
1295 emit_loads (&ri, nl_first_reload, last_block_insn);
1297 if (INSN_P (insn) && flag_ra_ir_spilling)
1298 for (n = 0; n < info.num_uses; n++)
1300 struct web *web = use2web[DF_REF_ID (info.uses[n])];
1301 struct web *aweb = alias (find_web_for_subweb (web));
1302 if (aweb->type != SPILLED)
1303 update_spill_colors (&(ri.colors_in_use), web, 1);
1306 ri.any_spilltemps_spilled = 0;
1307 if (INSN_P (insn))
1308 for (n = 0; n < info.num_uses; n++)
1310 struct web *web = use2web[DF_REF_ID (info.uses[n])];
1311 struct web *supweb = find_web_for_subweb (web);
1312 struct web *aweb = alias (supweb);
1313 SET_BIT (ri.live, web->id);
1314 if (aweb->type != SPILLED)
1315 continue;
1316 if (supweb->spill_temp)
1317 ri.any_spilltemps_spilled = 1;
1318 web->last_use_insn = insn;
1319 if (!web->in_load)
1321 if (spill_is_free (&(ri.colors_in_use), aweb) <= 0
1322 || !flag_ra_ir_spilling)
1324 ri.needed_loads[ri.nl_size++] = web;
1325 web->in_load = 1;
1326 web->one_load = 1;
1328 else if (!bitmap_bit_p (ri.need_reload, web->id))
1330 bitmap_set_bit (ri.need_reload, web->id);
1331 ri.num_reloads++;
1332 web->one_load = 1;
1334 else
1335 web->one_load = 0;
1337 else
1338 web->one_load = 0;
1341 if (LABEL_P (insn))
1342 break;
1345 nl_first_reload = ri.nl_size;
1346 if (ri.num_reloads)
1348 int in_ir = 0;
1349 edge e;
1350 int num = 0;
1351 edge_iterator ei;
1352 bitmap_iterator bi;
1354 HARD_REG_SET cum_colors, colors;
1355 CLEAR_HARD_REG_SET (cum_colors);
1356 FOR_EACH_EDGE (e, ei, bb->preds)
1358 int j;
1360 if (num >= 5)
1361 break;
1362 CLEAR_HARD_REG_SET (colors);
1363 EXECUTE_IF_SET_IN_BITMAP (live_at_end[e->src->index], 0, j, bi)
1365 struct web *web = use2web[j];
1366 struct web *aweb = alias (find_web_for_subweb (web));
1367 if (aweb->type != SPILLED)
1368 update_spill_colors (&colors, web, 1);
1370 IOR_HARD_REG_SET (cum_colors, colors);
1371 num++;
1373 if (num == 5)
1374 in_ir = 1;
1376 bitmap_clear (ri.scratch);
1377 EXECUTE_IF_SET_IN_BITMAP (ri.need_reload, 0, j, bi)
1379 struct web *web2 = ID2WEB (j);
1380 struct web *supweb2 = find_web_for_subweb (web2);
1381 struct web *aweb2 = alias (supweb2);
1382 /* block entry is IR boundary for aweb2?
1383 Currently more some tries for good conditions. */
1384 if (((ra_pass > 0 || supweb2->target_of_spilled_move)
1385 && (1 || in_ir || spill_is_free (&cum_colors, aweb2) <= 0))
1386 || (ra_pass == 1
1387 && (in_ir
1388 || spill_is_free (&cum_colors, aweb2) <= 0)))
1390 if (!web2->in_load)
1392 ri.needed_loads[ri.nl_size++] = web2;
1393 web2->in_load = 1;
1395 bitmap_set_bit (ri.scratch, j);
1396 ri.num_reloads--;
1399 bitmap_and_compl_into (ri.need_reload, ri.scratch);
1402 ri.need_load = 1;
1403 emit_loads (&ri, nl_first_reload, last_block_insn);
1404 gcc_assert (ri.nl_size == 0);
1405 if (!insn)
1406 break;
1408 free (ri.needed_loads);
1409 sbitmap_free (ri.live);
1410 BITMAP_XFREE (ri.scratch);
1411 BITMAP_XFREE (ri.need_reload);
1414 /* WEBS is a web conflicting with a spilled one. Prepare it
1415 to be able to rescan it in the next pass. Mark all it's uses
1416 for checking, and clear the some members of their web parts
1417 (of defs and uses). Notably don't clear the uplink. We don't
1418 change the layout of this web, just it's conflicts.
1419 Also remember all IDs of its uses in USES_AS_BITMAP. */
1421 static void
1422 mark_refs_for_checking (struct web *web, bitmap uses_as_bitmap)
1424 unsigned int i;
1425 for (i = 0; i < web->num_uses; i++)
1427 unsigned int id = DF_REF_ID (web->uses[i]);
1428 SET_BIT (last_check_uses, id);
1429 bitmap_set_bit (uses_as_bitmap, id);
1430 web_parts[df->def_id + id].spanned_deaths = 0;
1431 web_parts[df->def_id + id].crosses_call = 0;
1433 for (i = 0; i < web->num_defs; i++)
1435 unsigned int id = DF_REF_ID (web->defs[i]);
1436 web_parts[id].spanned_deaths = 0;
1437 web_parts[id].crosses_call = 0;
1441 /* The last step of the spill phase is to set up the structures for
1442 incrementally rebuilding the interference graph. We break up
1443 the web part structure of all spilled webs, mark their uses for
1444 rechecking, look at their neighbors, and clean up some global
1445 information, we will rebuild. */
1447 static void
1448 detect_web_parts_to_rebuild (void)
1450 bitmap uses_as_bitmap;
1451 unsigned int i, pass;
1452 struct dlist *d;
1453 sbitmap already_webs = sbitmap_alloc (num_webs);
1455 uses_as_bitmap = BITMAP_XMALLOC ();
1456 if (last_check_uses)
1457 sbitmap_free (last_check_uses);
1458 last_check_uses = sbitmap_alloc (df->use_id);
1459 sbitmap_zero (last_check_uses);
1460 sbitmap_zero (already_webs);
1461 /* We need to recheck all uses of all webs involved in spilling (and the
1462 uses added by spill insns, but those are not analyzed yet).
1463 Those are the spilled webs themselves, webs coalesced to spilled ones,
1464 and webs conflicting with any of them. */
1465 for (pass = 0; pass < 2; pass++)
1466 for (d = (pass == 0) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
1468 struct web *web = DLIST_WEB (d);
1469 struct conflict_link *wl;
1470 unsigned int j;
1471 bitmap_iterator bi;
1473 /* This check is only needed for coalesced nodes, but hey. */
1474 if (alias (web)->type != SPILLED)
1475 continue;
1477 /* For the spilled web itself we also need to clear it's
1478 uplink, to be able to rebuild smaller webs. After all
1479 spilling has split the web. */
1480 for (i = 0; i < web->num_uses; i++)
1482 unsigned int id = DF_REF_ID (web->uses[i]);
1483 SET_BIT (last_check_uses, id);
1484 bitmap_set_bit (uses_as_bitmap, id);
1485 web_parts[df->def_id + id].uplink = NULL;
1486 web_parts[df->def_id + id].spanned_deaths = 0;
1487 web_parts[df->def_id + id].crosses_call = 0;
1489 for (i = 0; i < web->num_defs; i++)
1491 unsigned int id = DF_REF_ID (web->defs[i]);
1492 web_parts[id].uplink = NULL;
1493 web_parts[id].spanned_deaths = 0;
1494 web_parts[id].crosses_call = 0;
1497 /* Now look at all neighbors of this spilled web. */
1498 if (web->have_orig_conflicts)
1499 wl = web->orig_conflict_list;
1500 else
1501 wl = web->conflict_list;
1502 for (; wl; wl = wl->next)
1504 if (TEST_BIT (already_webs, wl->t->id))
1505 continue;
1506 SET_BIT (already_webs, wl->t->id);
1507 mark_refs_for_checking (wl->t, uses_as_bitmap);
1509 EXECUTE_IF_SET_IN_BITMAP (web->useless_conflicts, 0, j, bi)
1511 struct web *web2 = ID2WEB (j);
1512 if (TEST_BIT (already_webs, web2->id))
1513 continue;
1514 SET_BIT (already_webs, web2->id);
1515 mark_refs_for_checking (web2, uses_as_bitmap);
1519 /* We also recheck unconditionally all uses of any hardregs. This means
1520 we _can_ delete all these uses from the live_at_end[] bitmaps.
1521 And because we sometimes delete insn referring to hardregs (when
1522 they became useless because they setup a rematerializable pseudo, which
1523 then was rematerialized), some of those uses will go away with the next
1524 df_analyze(). This means we even _must_ delete those uses from
1525 the live_at_end[] bitmaps. For simplicity we simply delete
1526 all of them. */
1527 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1528 if (!fixed_regs[i])
1530 struct df_link *link;
1531 for (link = df->regs[i].uses; link; link = link->next)
1532 if (link->ref)
1533 bitmap_set_bit (uses_as_bitmap, DF_REF_ID (link->ref));
1536 /* The information in live_at_end[] will be rebuild for all uses
1537 we recheck, so clear it here (the uses of spilled webs, might
1538 indeed not become member of it again). */
1539 live_at_end -= 2;
1540 for (i = 0; i < (unsigned int) last_basic_block + 2; i++)
1541 bitmap_and_compl_into (live_at_end[i], uses_as_bitmap);
1542 live_at_end += 2;
1544 if (dump_file && (debug_new_regalloc & DUMP_REBUILD) != 0)
1546 ra_debug_msg (DUMP_REBUILD, "need to check these uses:\n");
1547 dump_sbitmap_file (dump_file, last_check_uses);
1549 sbitmap_free (already_webs);
1550 BITMAP_XFREE (uses_as_bitmap);
1553 /* Statistics about deleted insns, which are useless now. */
1554 static unsigned int deleted_def_insns;
1555 static unsigned HOST_WIDE_INT deleted_def_cost;
1557 /* In rewrite_program2() we noticed, when a certain insn set a pseudo
1558 which wasn't live. Try to delete all those insns. */
1560 static void
1561 delete_useless_defs (void)
1563 unsigned int i;
1564 bitmap_iterator bi;
1566 /* If the insn only sets the def without any sideeffect (besides
1567 clobbers or uses), we can delete it. single_set() also tests
1568 for INSN_P(insn). */
1569 EXECUTE_IF_SET_IN_BITMAP (useless_defs, 0, i, bi)
1571 rtx insn = DF_REF_INSN (df->defs[i]);
1572 rtx set = single_set (insn);
1573 struct web *web = find_web_for_subweb (def2web[i]);
1574 if (set && web->type == SPILLED && web->stack_slot == NULL)
1576 deleted_def_insns++;
1577 deleted_def_cost += BLOCK_FOR_INSN (insn)->frequency + 1;
1578 PUT_CODE (insn, NOTE);
1579 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1580 df_insn_modify (df, BLOCK_FOR_INSN (insn), insn);
1585 /* Look for spilled webs, on whose behalf no insns were emitted.
1586 We inversify (sp?) the changed flag of the webs, so after this function
1587 a nonzero changed flag means, that this web was not spillable (at least
1588 in this pass). */
1590 static void
1591 detect_non_changed_webs (void)
1593 struct dlist *d, *d_next;
1594 for (d = WEBS(SPILLED); d; d = d_next)
1596 struct web *web = DLIST_WEB (d);
1597 d_next = d->next;
1598 if (!web->changed)
1600 ra_debug_msg (DUMP_PROCESS, "no insns emitted for spilled web %d\n",
1601 web->id);
1602 remove_web_from_list (web);
1603 put_web (web, COLORED);
1604 web->changed = 1;
1606 else
1607 web->changed = 0;
1608 /* From now on web->changed is used as the opposite flag.
1609 I.e. colored webs, which have changed set were formerly
1610 spilled webs for which no insns were emitted. */
1614 /* Before spilling we clear the changed flags for all spilled webs. */
1616 static void
1617 reset_changed_flag (void)
1619 struct dlist *d;
1620 for (d = WEBS(SPILLED); d; d = d->next)
1621 DLIST_WEB(d)->changed = 0;
1624 /* The toplevel function for this file. Given a colorized graph,
1625 and lists of spilled, coalesced and colored webs, we add some
1626 spill code. This also sets up the structures for incrementally
1627 building the interference graph in the next pass. */
1629 void
1630 actual_spill (void)
1632 int i;
1633 bitmap_iterator bi;
1634 bitmap new_deaths = BITMAP_XMALLOC ();
1636 reset_changed_flag ();
1637 spill_coalprop ();
1638 choose_spill_colors ();
1639 useless_defs = BITMAP_XMALLOC ();
1640 if (flag_ra_improved_spilling)
1641 rewrite_program2 (new_deaths);
1642 else
1643 rewrite_program (new_deaths);
1644 insert_stores (new_deaths);
1645 delete_useless_defs ();
1646 BITMAP_XFREE (useless_defs);
1647 sbitmap_free (insns_with_deaths);
1648 insns_with_deaths = sbitmap_alloc (get_max_uid ());
1649 death_insns_max_uid = get_max_uid ();
1650 sbitmap_zero (insns_with_deaths);
1651 EXECUTE_IF_SET_IN_BITMAP (new_deaths, 0, i, bi)
1653 SET_BIT (insns_with_deaths, i);
1655 detect_non_changed_webs ();
1656 detect_web_parts_to_rebuild ();
1657 BITMAP_XFREE (new_deaths);
1660 /* A bitmap of pseudo reg numbers which are coalesced directly
1661 to a hardreg. Set in emit_colors(), used and freed in
1662 remove_suspicious_death_notes(). */
1663 static bitmap regnos_coalesced_to_hardregs;
1665 /* Create new pseudos for each web we colored, change insns to
1666 use those pseudos and set up ra_reg_renumber. */
1668 void
1669 emit_colors (struct df *df)
1671 unsigned int i;
1672 int si;
1673 struct web *web;
1674 int old_max_regno = max_reg_num ();
1675 regset old_regs;
1676 basic_block bb;
1678 /* This bitmap is freed in remove_suspicious_death_notes(),
1679 which is also the user of it. */
1680 regnos_coalesced_to_hardregs = BITMAP_XMALLOC ();
1681 /* First create the (REG xx) rtx's for all webs, as we need to know
1682 the number, to make sure, flow has enough memory for them in the
1683 various tables. */
1684 for (i = 0; i < num_webs - num_subwebs; i++)
1686 web = ID2WEB (i);
1687 if (web->type != COLORED && web->type != COALESCED)
1688 continue;
1689 if (web->type == COALESCED && alias (web)->type == COLORED)
1690 continue;
1691 gcc_assert (!web->reg_rtx);
1692 gcc_assert (web->regno >= FIRST_PSEUDO_REGISTER);
1694 if (web->regno >= max_normal_pseudo)
1696 rtx place;
1697 if (web->color == an_unusable_color)
1699 unsigned int inherent_size = PSEUDO_REGNO_BYTES (web->regno);
1700 unsigned int total_size = MAX (inherent_size, 0);
1701 place = assign_stack_local (PSEUDO_REGNO_MODE (web->regno),
1702 total_size,
1703 inherent_size == total_size ? 0 : -1);
1704 set_mem_alias_set (place, new_alias_set ());
1706 else
1708 place = gen_reg_rtx (PSEUDO_REGNO_MODE (web->regno));
1710 web->reg_rtx = place;
1712 else
1714 /* Special case for i386 'fix_truncdi_nomemory' insn.
1715 We must choose mode from insns not from PSEUDO_REGNO_MODE.
1716 Actual only for clobbered register. */
1717 if (web->num_uses == 0 && web->num_defs == 1)
1718 web->reg_rtx = gen_reg_rtx (GET_MODE (DF_REF_REAL_REG (web->defs[0])));
1719 else
1720 web->reg_rtx = gen_reg_rtx (PSEUDO_REGNO_MODE (web->regno));
1721 /* Remember the different parts directly coalesced to a hardreg. */
1722 if (web->type == COALESCED)
1723 bitmap_set_bit (regnos_coalesced_to_hardregs, REGNO (web->reg_rtx));
1726 ra_max_regno = max_regno = max_reg_num ();
1727 allocate_reg_info (max_regno, FALSE, FALSE);
1728 ra_reg_renumber = xmalloc (max_regno * sizeof (short));
1729 for (si = 0; si < max_regno; si++)
1730 ra_reg_renumber[si] = -1;
1732 /* Then go through all references, and replace them by a new
1733 pseudoreg for each web. All uses. */
1734 /* XXX
1735 Beware: The order of replacements (first uses, then defs) matters only
1736 for read-mod-write insns, where the RTL expression for the REG is
1737 shared between def and use. For normal rmw insns we connected all such
1738 webs, i.e. both the use and the def (which are the same memory)
1739 there get the same new pseudo-reg, so order would not matter.
1740 _However_ we did not connect webs, were the read cycle was an
1741 uninitialized read. If we now would first replace the def reference
1742 and then the use ref, we would initialize it with a REG rtx, which
1743 gets never initialized, and yet more wrong, which would overwrite
1744 the definition of the other REG rtx. So we must replace the defs last.
1746 for (i = 0; i < df->use_id; i++)
1747 if (df->uses[i])
1749 regset rs = DF_REF_BB (df->uses[i])->global_live_at_start;
1750 rtx regrtx;
1751 web = use2web[i];
1752 web = find_web_for_subweb (web);
1753 if (web->type != COLORED && web->type != COALESCED)
1754 continue;
1755 regrtx = alias (web)->reg_rtx;
1756 if (!regrtx)
1757 regrtx = web->reg_rtx;
1758 *DF_REF_REAL_LOC (df->uses[i]) = regrtx;
1759 if (REGNO_REG_SET_P (rs, web->regno) && REG_P (regrtx))
1761 /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
1762 SET_REGNO_REG_SET (rs, REGNO (regrtx));
1766 /* And all defs. */
1767 for (i = 0; i < df->def_id; i++)
1769 regset rs;
1770 rtx regrtx;
1771 if (!df->defs[i])
1772 continue;
1773 rs = DF_REF_BB (df->defs[i])->global_live_at_start;
1774 web = def2web[i];
1775 web = find_web_for_subweb (web);
1776 if (web->type != COLORED && web->type != COALESCED)
1777 continue;
1778 regrtx = alias (web)->reg_rtx;
1779 if (!regrtx)
1780 regrtx = web->reg_rtx;
1781 *DF_REF_REAL_LOC (df->defs[i]) = regrtx;
1782 if (REGNO_REG_SET_P (rs, web->regno) && REG_P (regrtx))
1784 /* Don't simply clear the current regno, as it might be
1785 replaced by two webs. */
1786 /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
1787 SET_REGNO_REG_SET (rs, REGNO (regrtx));
1791 /* And now set up the ra_reg_renumber array for reload with all the new
1792 pseudo-regs. */
1793 for (i = 0; i < num_webs - num_subwebs; i++)
1795 web = ID2WEB (i);
1796 if (web->reg_rtx && REG_P (web->reg_rtx))
1798 int r = REGNO (web->reg_rtx);
1799 ra_reg_renumber[r] = web->color;
1800 ra_debug_msg (DUMP_COLORIZE, "Renumber pseudo %d (== web %d) to %d\n",
1801 r, web->id, ra_reg_renumber[r]);
1805 old_regs = BITMAP_XMALLOC ();
1806 for (si = FIRST_PSEUDO_REGISTER; si < old_max_regno; si++)
1807 SET_REGNO_REG_SET (old_regs, si);
1808 FOR_EACH_BB (bb)
1810 AND_COMPL_REG_SET (bb->global_live_at_start, old_regs);
1811 AND_COMPL_REG_SET (bb->global_live_at_end, old_regs);
1813 BITMAP_XFREE (old_regs);
1816 /* Delete some coalesced moves from the insn stream. */
1818 void
1819 delete_moves (void)
1821 struct move_list *ml;
1822 struct web *s, *t;
1823 /* XXX Beware: We normally would test here each copy insn, if
1824 source and target got the same color (either by coalescing or by pure
1825 luck), and then delete it.
1826 This will currently not work. One problem is, that we don't color
1827 the regs ourself, but instead defer to reload. So the colorization
1828 is only a kind of suggestion, which reload doesn't have to follow.
1829 For webs which are coalesced to a normal colored web, we only have one
1830 new pseudo, so in this case we indeed can delete copy insns involving
1831 those (because even if reload colors them different from our suggestion,
1832 it still has to color them the same, as only one pseudo exists). But for
1833 webs coalesced to precolored ones, we have not a single pseudo, but
1834 instead one for each coalesced web. This means, that we can't delete
1835 copy insns, where source and target are webs coalesced to precolored
1836 ones, because then the connection between both webs is destroyed. Note
1837 that this not only means copy insns, where one side is the precolored one
1838 itself, but also those between webs which are coalesced to one color.
1839 Also because reload we can't delete copy insns which involve any
1840 precolored web at all. These often have also special meaning (e.g.
1841 copying a return value of a call to a pseudo, or copying pseudo to the
1842 return register), and the deletion would confuse reload in thinking the
1843 pseudo isn't needed. One of those days reload will get away and we can
1844 do everything we want.
1845 In effect because of the later reload, we can't base our deletion on the
1846 colors itself, but instead need to base them on the newly created
1847 pseudos. */
1848 for (ml = wl_moves; ml; ml = ml->next)
1849 /* The real condition we would ideally use is: s->color == t->color.
1850 Additionally: s->type != PRECOLORED && t->type != PRECOLORED, in case
1851 we want to prevent deletion of "special" copies. */
1852 if (ml->move
1853 && (s = alias (ml->move->source_web))->reg_rtx
1854 == (t = alias (ml->move->target_web))->reg_rtx
1855 && s->type != PRECOLORED && t->type != PRECOLORED)
1857 basic_block bb = BLOCK_FOR_INSN (ml->move->insn);
1858 df_insn_delete (df, bb, ml->move->insn);
1859 deleted_move_insns++;
1860 deleted_move_cost += bb->frequency + 1;
1864 /* Due to reasons documented elsewhere we create different pseudos
1865 for all webs coalesced to hardregs. For these parts life_analysis()
1866 might have added REG_DEAD notes without considering, that only this part
1867 but not the whole coalesced web dies. The RTL is correct, there is no
1868 coalescing yet. But if later reload's alter_reg() substitutes the
1869 hardreg into the REG rtx it looks like that particular hardreg dies here,
1870 although (due to coalescing) it still is live. This might make different
1871 places of reload think, it can use that hardreg for reload regs,
1872 accidentally overwriting it. So we need to remove those REG_DEAD notes.
1873 (Or better teach life_analysis() and reload about our coalescing, but
1874 that comes later) Bah. */
1876 void
1877 remove_suspicious_death_notes (void)
1879 rtx insn;
1880 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
1881 if (INSN_P (insn))
1883 rtx *pnote = &REG_NOTES (insn);
1884 while (*pnote)
1886 rtx note = *pnote;
1887 if ((REG_NOTE_KIND (note) == REG_DEAD
1888 || REG_NOTE_KIND (note) == REG_UNUSED)
1889 && (REG_P (XEXP (note, 0))
1890 && bitmap_bit_p (regnos_coalesced_to_hardregs,
1891 REGNO (XEXP (note, 0)))))
1892 *pnote = XEXP (note, 1);
1893 else
1894 pnote = &XEXP (*pnote, 1);
1897 BITMAP_XFREE (regnos_coalesced_to_hardregs);
1898 regnos_coalesced_to_hardregs = NULL;
1901 /* Allocate space for max_reg_num() pseudo registers, and
1902 fill reg_renumber[] from ra_reg_renumber[]. If FREE_IT
1903 is nonzero, also free ra_reg_renumber and reset ra_max_regno. */
1905 void
1906 setup_renumber (int free_it)
1908 int i;
1909 max_regno = max_reg_num ();
1910 allocate_reg_info (max_regno, FALSE, TRUE);
1911 for (i = 0; i < max_regno; i++)
1913 reg_renumber[i] = (i < ra_max_regno) ? ra_reg_renumber[i] : -1;
1915 if (free_it)
1917 free (ra_reg_renumber);
1918 ra_reg_renumber = NULL;
1919 ra_max_regno = 0;
1923 /* Dump the costs and savings due to spilling, i.e. of added spill insns
1924 and removed moves or useless defs. */
1926 void
1927 dump_cost (unsigned int level)
1929 ra_debug_msg (level, "Instructions for spilling\n added:\n");
1930 ra_debug_msg (level, " loads =%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1931 emitted_spill_loads, spill_load_cost);
1932 ra_debug_msg (level, " stores=%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1933 emitted_spill_stores, spill_store_cost);
1934 ra_debug_msg (level, " remat =%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1935 emitted_remat, spill_remat_cost);
1936 ra_debug_msg (level, " removed:\n moves =%d cost="
1937 HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1938 deleted_move_insns, deleted_move_cost);
1939 ra_debug_msg (level, " others=%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1940 deleted_def_insns, deleted_def_cost);
1943 /* Initialization of the rewrite phase. */
1945 void
1946 ra_rewrite_init (void)
1948 emitted_spill_loads = 0;
1949 emitted_spill_stores = 0;
1950 emitted_remat = 0;
1951 spill_load_cost = 0;
1952 spill_store_cost = 0;
1953 spill_remat_cost = 0;
1954 deleted_move_insns = 0;
1955 deleted_move_cost = 0;
1956 deleted_def_insns = 0;
1957 deleted_def_cost = 0;
1961 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: