Reset branch to trunk.
[official-gcc.git] / trunk / libstdc++-v3 / doc / html / ext / pb_ds / trie_based_containers.html
blob72bdd069779bc020ccf859ce7602e6e5c24bb94b
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
5 <head>
6 <meta name="generator" content=
7 "HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org" />
9 <title>Trie-Based Containers</title>
10 <meta http-equiv="Content-Type" content=
11 "text/html; charset=us-ascii" />
12 </head>
14 <body>
15 <div id="page">
16 <h1>Trie Design</h1>
18 <h2><a name="overview" id="overview">Overview</a></h2>
20 <p>The trie-based container has the following declaration:</p>
21 <pre>
22 <b>template</b>&lt;
23 <b>typename</b> Key,
24 <b>typename</b> Mapped,
25 <b>typename</b> Cmp_Fn = std::less&lt;Key&gt;,
26 <b>typename</b> Tag = <a href="pat_trie_tag.html">pat_trie_tag</a>,
27 <b>template</b>&lt;
28 <b>typename</b> Const_Node_Iterator,
29 <b>typename</b> Node_Iterator,
30 <b>typename</b> E_Access_Traits_,
31 <b>typename</b> Allocator_&gt;
32 <b>class</b> Node_Update = <a href=
33 "null_trie_node_update.html">null_trie_node_update</a>,
34 <b>typename</b> Allocator = std::allocator&lt;<b>char</b>&gt; &gt;
35 <b>class</b> <a href=
36 "trie.html">trie</a>;
37 </pre>
39 <p>The parameters have the following meaning:</p>
41 <ol>
42 <li><tt>Key</tt> is the key type.</li>
44 <li><tt>Mapped</tt> is the mapped-policy, and is explained in
45 <a href="tutorial.html#assoc_ms">Tutorial::Associative
46 Containers::Associative Containers Others than Maps</a>.</li>
48 <li><tt>E_Access_Traits</tt> is described in <a href=
49 "#e_access_traits">Element-Access Traits</a>.</li>
51 <li><tt>Tag</tt> specifies which underlying data structure
52 to use, and is described shortly.</li>
54 <li><tt>Node_Update</tt> is a policy for updating node
55 invariants. This is described in <a href="#invariants">Node
56 Invariants</a>.</li>
58 <li><tt>Allocator</tt> is an allocator
59 type.</li>
60 </ol>
62 <p>The <tt>Tag</tt> parameter specifies which underlying
63 data structure to use. Instantiating it by <a href=
64 "pat_trie_tag.html">pat_trie_tag</a>, specifies an
65 underlying PATRICIA trie (explained shortly); any other tag is
66 currently illegal.</p>
67 <hr />
69 <p>Following is a description of a (PATRICIA) trie
70 (<tt>pb_ds</tt> follows specifically [<a href=
71 "references.html#okasaki98mereable">okasaki98mereable</a>] and
72 [<a href=
73 "references.html#filliatre2000ptset">filliatre2000ptset</a>]).</p>
75 <p>A (PATRICIA) trie is similar to a tree, but with the
76 following differences:</p>
78 <ol>
79 <li>It explicitly views keys as a sequence of elements.
80 <i>E.g.</i>, a trie can view a string as a sequence of
81 characters; a trie can view a number as a sequence of
82 bits.</li>
84 <li>It is not (necessarily) binary. Each node has fan-out <i>n
85 + 1</i>, where <i>n</i> is the number of distinct
86 elements.</li>
88 <li>It stores values only at leaf nodes.</li>
90 <li>Internal nodes have the properties that A) each has at
91 least two children, and B) each shares the same prefix with
92 any of its descendant.</li>
93 </ol>
95 <p><a href="#e_access_traits">Element-Access Traits</a> shows
96 an example of such a trie.</p>
98 <p>A (PATRICIA) trie has some useful properties:</p>
100 <ol>
101 <li>It can be configured to use large node fan-out, giving it
102 very efficient find performance (albeit at insertion
103 complexity and size).</li>
105 <li>It works well for common-prefix keys.</li>
107 <li>It can support efficiently queries such as which keys
108 match a certain prefix. This is sometimes useful in
109 file systems and routers.</li>
110 </ol>
112 <p>(We would like to thank Matt Austern for the suggestion to
113 include tries.)</p>
115 <h2><a name="e_access_traits" id=
116 "e_access_traits">Element-Access Traits</a></h2>
118 <p>A trie inherently views its keys as sequences of elements.
119 For example, a trie can view a string as a sequence of
120 characters. A trie needs to map each of <i>n</i> elements to a
121 number in <i>{0, n - 1}</i>. For example, a trie can map a
122 character <tt>c</tt> to
123 <tt>static_cast&lt;size_t&gt;(c)</tt>.</p>
125 <p>Seemingly, then, a trie can assume that its keys support
126 (const) iterators, and that the <tt>value_type</tt> of this
127 iterator can be cast to a <tt>size_t</tt>. There are several
128 reasons, though, to decouple the mechanism by which the trie
129 accesses its keys' elements from the trie:</p>
131 <ol>
132 <li>In some cases, the numerical value of an element is
133 inappropriate. Consider a trie storing DNA strings. It is
134 logical to use a trie with a fan-out of <i>5 = 1 + |{'A', 'C',
135 'G', 'T'}|</i>. This requires mapping 'T' to 3, though.</li>
137 <li>In some cases the keys' iterators are different than what
138 is needed. For example, a trie can be used to search for
139 common <u>suffixes</u>, by using strings'
140 <tt>reverse_iterator</tt>. As another example, a trie mapping
141 UNICODE strings would have a huge fan-out if each node would
142 branch on a UNICODE character; instead, one can define an
143 iterator iterating over 8-bit (or less) groups.</li>
144 </ol>
146 <p><a href=
147 "trie.html">trie</a> is,
148 consequently, parametrized by <tt>E_Access_Traits</tt> -
149 traits which instruct how to access sequences' elements.
150 <a href=
151 "string_trie_e_access_traits.html"><tt>string_trie_e_access_traits</tt></a>
152 is a traits class for strings. Each such traits define some
153 types, <i>e.g.</i>,</p>
154 <pre>
155 <b>typename</b> E_Access_Traits::const_iterator
156 </pre>
158 <p>is a const iterator iterating over a key's elements. The
159 traits class must also define methods for obtaining an iterator
160 to the first and last element of a key.</p>
162 <p>Figure <a href="#pat_trie">A PATRICIA trie</a> shows a
163 (PATRICIA) trie resulting from inserting the words: "I wish
164 that I could ever see a poem lovely as a trie" (which,
165 unfortunately, does not rhyme).</p>
167 <p>The leaf nodes contain values; each internal node contains
168 two <tt><b>typename</b> E_Access_Traits::const_iterator</tt>
169 objects, indicating the maximal common prefix of all keys in
170 the sub-tree. For example, the shaded internal node roots a
171 sub-tree with leafs "a" and "as". The maximal common prefix is
172 "a". The internal node contains, consequently, to const
173 iterators, one pointing to <tt>'a'</tt>, and the other to
174 <tt>'s'</tt>.</p>
176 <h6 class="c1"><a name="pat_trie" id="pat_trie"><img src=
177 "pat_trie.png" alt="no image" /></a></h6>
179 <h6 class="c1">A PATRICIA trie.</h6>
181 <h2><a name="invariants" id="invariants">Node
182 Invariants</a></h2>
184 <p>Trie-based containers support node invariants, as do
185 tree-based containers (see <a href=
186 "tree_based_containers.html#invariants">Tree-Based
187 Containers::Node Invariants</a>). There are two minor
188 differences, though, which, unfortunately, thwart sharing them
189 sharing the same node-updating policies:</p>
191 <ol>
192 <li>A trie's <tt>Node_Update</tt> template-template
193 parameter is parametrized by <tt>E_Access_Traits</tt>, while
194 a tree's <tt>Node_Update</tt> template-template parameter is
195 parametrized by <tt>Cmp_Fn</tt>.</li>
197 <li>Tree-based containers store values in all nodes, while
198 trie-based containers (at least in this implementation) store
199 values in leafs.</li>
200 </ol>
202 <p>Figure <a href="#trie_node_update_cd">A trie and its update
203 policy</a> shows the scheme, as well as some predefined
204 policies (which are explained below).</p>
206 <h6 class="c1"><a name="trie_node_update_cd" id=
207 "trie_node_update_cd"><img src=
208 "trie_node_update_policy_cd.png" alt="no image" /></a></h6>
210 <h6 class="c1">A trie and its update policy.</h6>
212 <p><tt>pb_ds</tt> offers the following pre-defined trie node
213 updating policies:</p>
215 <ol>
216 <li><a href=
217 "trie_order_statistics_node_update.html"><tt>trie_order_statistics_node_update</tt></a>
218 supports order statistics.</li>
220 <li><a href=
221 "trie_prefix_search_node_update.html"><tt>trie_prefix_search_node_update</tt></a>
222 supports searching for ranges that match a given prefix. See
223 <a href=
224 "http://gcc.gnu.org/viewcvs/*checkout*/trunk/libstdc%2B%2B-v3/testsuite/ext/pb_ds/example/trie_prefix_search.cc"><tt>trie_prefix_search.cc</tt></a>.</li>
226 <li><a href=
227 "null_trie_node_update.html"><tt>null_trie_node_update</tt></a>
228 is the null node updater.</li>
229 </ol>
231 <h2><a name="add_methods" id="add_methods">Additional
232 Methods</a></h2>
234 <p>Trie-based containers support split and join methods; the
235 rationale is equal to that of tree-based containers supporting
236 these methods (see <a href=
237 "tree_based_containers.html#add_methods">Tree-Based
238 Containers::Additional Methods</a>).</p>
239 </div>
240 </body>
241 </html>