* cfg.c (update_bb_profile_for_threading): Do not rescale the
[official-gcc.git] / gcc / cfg.c
blobb008bad3343614c8bf41e57876e09fc65ae09039
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "alloc-pool.h"
65 #include "timevar.h"
66 #include "ggc.h"
68 /* The obstack on which the flow graph components are allocated. */
70 struct obstack flow_obstack;
71 static char *flow_firstobj;
73 /* Number of basic blocks in the current function. */
75 int n_basic_blocks;
77 /* First free basic block number. */
79 int last_basic_block;
81 /* Number of edges in the current function. */
83 int n_edges;
85 /* The basic block array. */
87 varray_type basic_block_info;
89 /* The special entry and exit blocks. */
90 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
92 /* Memory alloc pool for bb member rbi. */
93 alloc_pool rbi_pool;
95 void debug_flow_info (void);
96 static void free_edge (edge);
98 /* Indicate the presence of the profile. */
99 enum profile_status profile_status;
101 /* Called once at initialization time. */
103 void
104 init_flow (void)
106 static int initialized;
108 n_edges = 0;
110 if (!initialized)
112 gcc_obstack_init (&flow_obstack);
113 flow_firstobj = obstack_alloc (&flow_obstack, 0);
114 initialized = 1;
116 else
118 obstack_free (&flow_obstack, flow_firstobj);
119 flow_firstobj = obstack_alloc (&flow_obstack, 0);
122 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
123 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
124 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
125 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
126 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
127 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
130 /* Helper function for remove_edge and clear_edges. Frees edge structure
131 without actually unlinking it from the pred/succ lists. */
133 static void
134 free_edge (edge e ATTRIBUTE_UNUSED)
136 n_edges--;
137 ggc_free (e);
140 /* Free the memory associated with the edge structures. */
142 void
143 clear_edges (void)
145 basic_block bb;
146 edge e;
147 edge_iterator ei;
149 FOR_EACH_BB (bb)
151 FOR_EACH_EDGE (e, ei, bb->succs)
152 free_edge (e);
153 VEC_truncate (edge, bb->succs, 0);
154 VEC_truncate (edge, bb->preds, 0);
157 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
158 free_edge (e);
159 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
160 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
162 gcc_assert (!n_edges);
165 /* Allocate memory for basic_block. */
167 basic_block
168 alloc_block (void)
170 basic_block bb;
171 bb = ggc_alloc_cleared (sizeof (*bb));
172 return bb;
175 /* Create memory pool for rbi_pool. */
177 void
178 alloc_rbi_pool (void)
180 rbi_pool = create_alloc_pool ("rbi pool",
181 sizeof (struct reorder_block_def),
182 n_basic_blocks + 2);
185 /* Free rbi_pool. */
187 void
188 free_rbi_pool (void)
190 free_alloc_pool (rbi_pool);
193 /* Initialize rbi (the structure containing data used by basic block
194 duplication and reordering) for the given basic block. */
196 void
197 initialize_bb_rbi (basic_block bb)
199 gcc_assert (!bb->rbi);
200 bb->rbi = pool_alloc (rbi_pool);
201 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
204 /* Link block B to chain after AFTER. */
205 void
206 link_block (basic_block b, basic_block after)
208 b->next_bb = after->next_bb;
209 b->prev_bb = after;
210 after->next_bb = b;
211 b->next_bb->prev_bb = b;
214 /* Unlink block B from chain. */
215 void
216 unlink_block (basic_block b)
218 b->next_bb->prev_bb = b->prev_bb;
219 b->prev_bb->next_bb = b->next_bb;
220 b->prev_bb = NULL;
221 b->next_bb = NULL;
224 /* Sequentially order blocks and compact the arrays. */
225 void
226 compact_blocks (void)
228 int i;
229 basic_block bb;
231 i = 0;
232 FOR_EACH_BB (bb)
234 BASIC_BLOCK (i) = bb;
235 bb->index = i;
236 i++;
239 gcc_assert (i == n_basic_blocks);
241 for (; i < last_basic_block; i++)
242 BASIC_BLOCK (i) = NULL;
244 last_basic_block = n_basic_blocks;
247 /* Remove block B from the basic block array. */
249 void
250 expunge_block (basic_block b)
252 unlink_block (b);
253 BASIC_BLOCK (b->index) = NULL;
254 n_basic_blocks--;
255 /* We should be able to ggc_free here, but we are not.
256 The dead SSA_NAMES are left pointing to dead statements that are pointing
257 to dead basic blocks making garbage collector to die.
258 We should be able to release all dead SSA_NAMES and at the same time we should
259 clear out BB pointer of dead statements consistently. */
262 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
263 created edge. Use this only if you are sure that this edge can't
264 possibly already exist. */
266 edge
267 unchecked_make_edge (basic_block src, basic_block dst, int flags)
269 edge e;
270 e = ggc_alloc_cleared (sizeof (*e));
271 n_edges++;
273 VEC_safe_push (edge, src->succs, e);
274 VEC_safe_push (edge, dst->preds, e);
276 e->src = src;
277 e->dest = dst;
278 e->flags = flags;
279 e->dest_idx = EDGE_COUNT (dst->preds) - 1;
281 return e;
284 /* Create an edge connecting SRC and DST with FLAGS optionally using
285 edge cache CACHE. Return the new edge, NULL if already exist. */
287 edge
288 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
290 int use_edge_cache;
291 edge e;
292 edge_iterator ei;
294 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
295 many edges to them, or we didn't allocate memory for it. */
296 use_edge_cache = (edge_cache
297 && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
299 /* Make sure we don't add duplicate edges. */
300 switch (use_edge_cache)
302 default:
303 /* Quick test for non-existence of the edge. */
304 if (! TEST_BIT (edge_cache[src->index], dst->index))
305 break;
307 /* The edge exists; early exit if no work to do. */
308 if (flags == 0)
309 return NULL;
311 /* Fall through. */
312 case 0:
313 FOR_EACH_EDGE (e, ei, src->succs)
314 if (e->dest == dst)
316 e->flags |= flags;
317 return NULL;
319 break;
322 e = unchecked_make_edge (src, dst, flags);
324 if (use_edge_cache)
325 SET_BIT (edge_cache[src->index], dst->index);
327 return e;
330 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
331 created edge or NULL if already exist. */
333 edge
334 make_edge (basic_block src, basic_block dest, int flags)
336 return cached_make_edge (NULL, src, dest, flags);
339 /* Create an edge connecting SRC to DEST and set probability by knowing
340 that it is the single edge leaving SRC. */
342 edge
343 make_single_succ_edge (basic_block src, basic_block dest, int flags)
345 edge e = make_edge (src, dest, flags);
347 e->probability = REG_BR_PROB_BASE;
348 e->count = src->count;
349 return e;
352 /* This function will remove an edge from the flow graph. */
354 void
355 remove_edge (edge e)
357 edge tmp;
358 basic_block src, dest;
359 unsigned int dest_idx;
360 bool found = false;
361 edge_iterator ei;
363 src = e->src;
364 dest = e->dest;
365 dest_idx = e->dest_idx;
367 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
369 if (tmp == e)
371 VEC_unordered_remove (edge, src->succs, ei.index);
372 found = true;
373 break;
375 else
376 ei_next (&ei);
379 gcc_assert (found);
381 VEC_unordered_remove (edge, dest->preds, dest_idx);
383 /* If we removed an edge in the middle of the edge vector, we need
384 to update dest_idx of the edge that moved into the "hole". */
385 if (dest_idx < EDGE_COUNT (dest->preds))
386 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
388 free_edge (e);
391 /* Redirect an edge's successor from one block to another. */
393 void
394 redirect_edge_succ (edge e, basic_block new_succ)
396 basic_block dest = e->dest;
397 unsigned int dest_idx = e->dest_idx;
399 VEC_unordered_remove (edge, dest->preds, dest_idx);
401 /* If we removed an edge in the middle of the edge vector, we need
402 to update dest_idx of the edge that moved into the "hole". */
403 if (dest_idx < EDGE_COUNT (dest->preds))
404 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
406 /* Reconnect the edge to the new successor block. */
407 VEC_safe_push (edge, new_succ->preds, e);
408 e->dest = new_succ;
409 e->dest_idx = EDGE_COUNT (new_succ->preds) - 1;
412 /* Like previous but avoid possible duplicate edge. */
414 edge
415 redirect_edge_succ_nodup (edge e, basic_block new_succ)
417 edge s;
419 s = find_edge (e->src, new_succ);
420 if (s && s != e)
422 s->flags |= e->flags;
423 s->probability += e->probability;
424 if (s->probability > REG_BR_PROB_BASE)
425 s->probability = REG_BR_PROB_BASE;
426 s->count += e->count;
427 remove_edge (e);
428 e = s;
430 else
431 redirect_edge_succ (e, new_succ);
433 return e;
436 /* Redirect an edge's predecessor from one block to another. */
438 void
439 redirect_edge_pred (edge e, basic_block new_pred)
441 edge tmp;
442 edge_iterator ei;
443 bool found = false;
445 /* Disconnect the edge from the old predecessor block. */
446 for (ei = ei_start (e->src->succs); (tmp = ei_safe_edge (ei)); )
448 if (tmp == e)
450 VEC_unordered_remove (edge, e->src->succs, ei.index);
451 found = true;
452 break;
454 else
455 ei_next (&ei);
458 gcc_assert (found);
460 /* Reconnect the edge to the new predecessor block. */
461 VEC_safe_push (edge, new_pred->succs, e);
462 e->src = new_pred;
465 /* Clear all basic block flags, with the exception of partitioning. */
466 void
467 clear_bb_flags (void)
469 basic_block bb;
471 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
472 bb->flags = BB_PARTITION (bb);
475 /* Check the consistency of profile information. We can't do that
476 in verify_flow_info, as the counts may get invalid for incompletely
477 solved graphs, later eliminating of conditionals or roundoff errors.
478 It is still practical to have them reported for debugging of simple
479 testcases. */
480 void
481 check_bb_profile (basic_block bb, FILE * file)
483 edge e;
484 int sum = 0;
485 gcov_type lsum;
486 edge_iterator ei;
488 if (profile_status == PROFILE_ABSENT)
489 return;
491 if (bb != EXIT_BLOCK_PTR)
493 FOR_EACH_EDGE (e, ei, bb->succs)
494 sum += e->probability;
495 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
496 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
497 sum * 100.0 / REG_BR_PROB_BASE);
498 lsum = 0;
499 FOR_EACH_EDGE (e, ei, bb->succs)
500 lsum += e->count;
501 if (EDGE_COUNT (bb->succs)
502 && (lsum - bb->count > 100 || lsum - bb->count < -100))
503 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
504 (int) lsum, (int) bb->count);
506 if (bb != ENTRY_BLOCK_PTR)
508 sum = 0;
509 FOR_EACH_EDGE (e, ei, bb->preds)
510 sum += EDGE_FREQUENCY (e);
511 if (abs (sum - bb->frequency) > 100)
512 fprintf (file,
513 "Invalid sum of incoming frequencies %i, should be %i\n",
514 sum, bb->frequency);
515 lsum = 0;
516 FOR_EACH_EDGE (e, ei, bb->preds)
517 lsum += e->count;
518 if (lsum - bb->count > 100 || lsum - bb->count < -100)
519 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
520 (int) lsum, (int) bb->count);
524 void
525 dump_flow_info (FILE *file)
527 int i;
528 basic_block bb;
529 static const char * const reg_class_names[] = REG_CLASS_NAMES;
531 if (reg_n_info)
533 int max_regno = max_reg_num ();
534 fprintf (file, "%d registers.\n", max_regno);
535 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
536 if (REG_N_REFS (i))
538 enum reg_class class, altclass;
540 fprintf (file, "\nRegister %d used %d times across %d insns",
541 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
542 if (REG_BASIC_BLOCK (i) >= 0)
543 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
544 if (REG_N_SETS (i))
545 fprintf (file, "; set %d time%s", REG_N_SETS (i),
546 (REG_N_SETS (i) == 1) ? "" : "s");
547 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
548 fprintf (file, "; user var");
549 if (REG_N_DEATHS (i) != 1)
550 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
551 if (REG_N_CALLS_CROSSED (i) == 1)
552 fprintf (file, "; crosses 1 call");
553 else if (REG_N_CALLS_CROSSED (i))
554 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
555 if (regno_reg_rtx[i] != NULL
556 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
557 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
559 class = reg_preferred_class (i);
560 altclass = reg_alternate_class (i);
561 if (class != GENERAL_REGS || altclass != ALL_REGS)
563 if (altclass == ALL_REGS || class == ALL_REGS)
564 fprintf (file, "; pref %s", reg_class_names[(int) class]);
565 else if (altclass == NO_REGS)
566 fprintf (file, "; %s or none", reg_class_names[(int) class]);
567 else
568 fprintf (file, "; pref %s, else %s",
569 reg_class_names[(int) class],
570 reg_class_names[(int) altclass]);
573 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
574 fprintf (file, "; pointer");
575 fprintf (file, ".\n");
579 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
580 FOR_EACH_BB (bb)
582 edge e;
583 edge_iterator ei;
585 fprintf (file, "\nBasic block %d ", bb->index);
586 fprintf (file, "prev %d, next %d, ",
587 bb->prev_bb->index, bb->next_bb->index);
588 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
589 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
590 fprintf (file, ", freq %i", bb->frequency);
591 if (maybe_hot_bb_p (bb))
592 fprintf (file, ", maybe hot");
593 if (probably_never_executed_bb_p (bb))
594 fprintf (file, ", probably never executed");
595 fprintf (file, ".\n");
597 fprintf (file, "Predecessors: ");
598 FOR_EACH_EDGE (e, ei, bb->preds)
599 dump_edge_info (file, e, 0);
601 fprintf (file, "\nSuccessors: ");
602 FOR_EACH_EDGE (e, ei, bb->succs)
603 dump_edge_info (file, e, 1);
605 if (bb->global_live_at_start)
607 fprintf (file, "\nRegisters live at start:");
608 dump_regset (bb->global_live_at_start, file);
611 if (bb->global_live_at_end)
613 fprintf (file, "\nRegisters live at end:");
614 dump_regset (bb->global_live_at_end, file);
617 putc ('\n', file);
618 check_bb_profile (bb, file);
621 putc ('\n', file);
624 void
625 debug_flow_info (void)
627 dump_flow_info (stderr);
630 void
631 dump_edge_info (FILE *file, edge e, int do_succ)
633 basic_block side = (do_succ ? e->dest : e->src);
635 if (side == ENTRY_BLOCK_PTR)
636 fputs (" ENTRY", file);
637 else if (side == EXIT_BLOCK_PTR)
638 fputs (" EXIT", file);
639 else
640 fprintf (file, " %d", side->index);
642 if (e->probability)
643 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
645 if (e->count)
647 fprintf (file, " count:");
648 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
651 if (e->flags)
653 static const char * const bitnames[] = {
654 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
655 "can_fallthru", "irreducible", "sibcall", "loop_exit",
656 "true", "false", "exec"
658 int comma = 0;
659 int i, flags = e->flags;
661 fputs (" (", file);
662 for (i = 0; flags; i++)
663 if (flags & (1 << i))
665 flags &= ~(1 << i);
667 if (comma)
668 fputc (',', file);
669 if (i < (int) ARRAY_SIZE (bitnames))
670 fputs (bitnames[i], file);
671 else
672 fprintf (file, "%d", i);
673 comma = 1;
676 fputc (')', file);
680 /* Simple routines to easily allocate AUX fields of basic blocks. */
682 static struct obstack block_aux_obstack;
683 static void *first_block_aux_obj = 0;
684 static struct obstack edge_aux_obstack;
685 static void *first_edge_aux_obj = 0;
687 /* Allocate a memory block of SIZE as BB->aux. The obstack must
688 be first initialized by alloc_aux_for_blocks. */
690 inline void
691 alloc_aux_for_block (basic_block bb, int size)
693 /* Verify that aux field is clear. */
694 gcc_assert (!bb->aux && first_block_aux_obj);
695 bb->aux = obstack_alloc (&block_aux_obstack, size);
696 memset (bb->aux, 0, size);
699 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
700 alloc_aux_for_block for each basic block. */
702 void
703 alloc_aux_for_blocks (int size)
705 static int initialized;
707 if (!initialized)
709 gcc_obstack_init (&block_aux_obstack);
710 initialized = 1;
712 else
713 /* Check whether AUX data are still allocated. */
714 gcc_assert (!first_block_aux_obj);
716 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
717 if (size)
719 basic_block bb;
721 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
722 alloc_aux_for_block (bb, size);
726 /* Clear AUX pointers of all blocks. */
728 void
729 clear_aux_for_blocks (void)
731 basic_block bb;
733 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
734 bb->aux = NULL;
737 /* Free data allocated in block_aux_obstack and clear AUX pointers
738 of all blocks. */
740 void
741 free_aux_for_blocks (void)
743 gcc_assert (first_block_aux_obj);
744 obstack_free (&block_aux_obstack, first_block_aux_obj);
745 first_block_aux_obj = NULL;
747 clear_aux_for_blocks ();
750 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
751 be first initialized by alloc_aux_for_edges. */
753 inline void
754 alloc_aux_for_edge (edge e, int size)
756 /* Verify that aux field is clear. */
757 gcc_assert (!e->aux && first_edge_aux_obj);
758 e->aux = obstack_alloc (&edge_aux_obstack, size);
759 memset (e->aux, 0, size);
762 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
763 alloc_aux_for_edge for each basic edge. */
765 void
766 alloc_aux_for_edges (int size)
768 static int initialized;
770 if (!initialized)
772 gcc_obstack_init (&edge_aux_obstack);
773 initialized = 1;
775 else
776 /* Check whether AUX data are still allocated. */
777 gcc_assert (!first_edge_aux_obj);
779 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
780 if (size)
782 basic_block bb;
784 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
786 edge e;
787 edge_iterator ei;
789 FOR_EACH_EDGE (e, ei, bb->succs)
790 alloc_aux_for_edge (e, size);
795 /* Clear AUX pointers of all edges. */
797 void
798 clear_aux_for_edges (void)
800 basic_block bb;
801 edge e;
803 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
805 edge_iterator ei;
806 FOR_EACH_EDGE (e, ei, bb->succs)
807 e->aux = NULL;
811 /* Free data allocated in edge_aux_obstack and clear AUX pointers
812 of all edges. */
814 void
815 free_aux_for_edges (void)
817 gcc_assert (first_edge_aux_obj);
818 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
819 first_edge_aux_obj = NULL;
821 clear_aux_for_edges ();
824 void
825 debug_bb (basic_block bb)
827 dump_bb (bb, stderr, 0);
830 basic_block
831 debug_bb_n (int n)
833 basic_block bb = BASIC_BLOCK (n);
834 dump_bb (bb, stderr, 0);
835 return bb;
838 /* Dumps cfg related information about basic block BB to FILE. */
840 static void
841 dump_cfg_bb_info (FILE *file, basic_block bb)
843 unsigned i;
844 edge_iterator ei;
845 bool first = true;
846 static const char * const bb_bitnames[] =
848 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
850 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
851 edge e;
853 fprintf (file, "Basic block %d", bb->index);
854 for (i = 0; i < n_bitnames; i++)
855 if (bb->flags & (1 << i))
857 if (first)
858 fprintf (file, " (");
859 else
860 fprintf (file, ", ");
861 first = false;
862 fprintf (file, bb_bitnames[i]);
864 if (!first)
865 fprintf (file, ")");
866 fprintf (file, "\n");
868 fprintf (file, "Predecessors: ");
869 FOR_EACH_EDGE (e, ei, bb->preds)
870 dump_edge_info (file, e, 0);
872 fprintf (file, "\nSuccessors: ");
873 FOR_EACH_EDGE (e, ei, bb->succs)
874 dump_edge_info (file, e, 1);
875 fprintf (file, "\n\n");
878 /* Dumps a brief description of cfg to FILE. */
880 void
881 brief_dump_cfg (FILE *file)
883 basic_block bb;
885 FOR_EACH_BB (bb)
887 dump_cfg_bb_info (file, bb);
891 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
892 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
893 redirected to destination of TAKEN_EDGE.
895 This function may leave the profile inconsistent in the case TAKEN_EDGE
896 frequency or count is believed to be lower than FREQUENCY or COUNT
897 respectively. */
898 void
899 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
900 gcov_type count, edge taken_edge)
902 edge c;
903 int prob;
904 edge_iterator ei;
906 bb->count -= count;
907 if (bb->count < 0)
908 bb->count = 0;
910 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
911 Watch for overflows. */
912 if (bb->frequency)
913 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
914 else
915 prob = 0;
916 if (prob > taken_edge->probability)
918 if (dump_file)
919 fprintf (dump_file, "Jump threading proved probability of edge "
920 "%i->%i too small (it is %i, should be %i).\n",
921 taken_edge->src->index, taken_edge->dest->index,
922 taken_edge->probability, prob);
923 prob = taken_edge->probability;
926 /* Now rescale the probabilities. */
927 taken_edge->probability -= prob;
928 prob = REG_BR_PROB_BASE - prob;
929 bb->frequency -= edge_frequency;
930 if (bb->frequency < 0)
931 bb->frequency = 0;
932 if (prob <= 0)
934 if (dump_file)
935 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
936 "frequency of block should end up being 0, it is %i\n",
937 bb->index, bb->frequency);
938 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
939 ei = ei_start (bb->succs);
940 ei_next (&ei);
941 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
942 c->probability = 0;
944 else if (prob != REG_BR_PROB_BASE)
946 int scale = REG_BR_PROB_BASE / prob;
948 FOR_EACH_EDGE (c, ei, bb->succs)
949 c->probability *= scale;
952 if (bb != taken_edge->src)
953 abort ();
954 taken_edge->count -= count;
955 if (taken_edge->count < 0)
956 taken_edge->count = 0;