* gcc.dg/vect/slp-perm-1.c (main): Make sure loops aren't vectorized.
[official-gcc.git] / gcc / tree-vect-loop.c
blob49a8721c55d4f5c5de9f2f012c265f6763d43f2c
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "optabs.h"
39 #include "params.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-vectorizer.h"
45 #include "target.h"
47 /* Loop Vectorization Pass.
49 This pass tries to vectorize loops.
51 For example, the vectorizer transforms the following simple loop:
53 short a[N]; short b[N]; short c[N]; int i;
55 for (i=0; i<N; i++){
56 a[i] = b[i] + c[i];
59 as if it was manually vectorized by rewriting the source code into:
61 typedef int __attribute__((mode(V8HI))) v8hi;
62 short a[N]; short b[N]; short c[N]; int i;
63 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
64 v8hi va, vb, vc;
66 for (i=0; i<N/8; i++){
67 vb = pb[i];
68 vc = pc[i];
69 va = vb + vc;
70 pa[i] = va;
73 The main entry to this pass is vectorize_loops(), in which
74 the vectorizer applies a set of analyses on a given set of loops,
75 followed by the actual vectorization transformation for the loops that
76 had successfully passed the analysis phase.
77 Throughout this pass we make a distinction between two types of
78 data: scalars (which are represented by SSA_NAMES), and memory references
79 ("data-refs"). These two types of data require different handling both
80 during analysis and transformation. The types of data-refs that the
81 vectorizer currently supports are ARRAY_REFS which base is an array DECL
82 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
83 accesses are required to have a simple (consecutive) access pattern.
85 Analysis phase:
86 ===============
87 The driver for the analysis phase is vect_analyze_loop().
88 It applies a set of analyses, some of which rely on the scalar evolution
89 analyzer (scev) developed by Sebastian Pop.
91 During the analysis phase the vectorizer records some information
92 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
93 loop, as well as general information about the loop as a whole, which is
94 recorded in a "loop_vec_info" struct attached to each loop.
96 Transformation phase:
97 =====================
98 The loop transformation phase scans all the stmts in the loop, and
99 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
100 the loop that needs to be vectorized. It inserts the vector code sequence
101 just before the scalar stmt S, and records a pointer to the vector code
102 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
103 attached to S). This pointer will be used for the vectorization of following
104 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
105 otherwise, we rely on dead code elimination for removing it.
107 For example, say stmt S1 was vectorized into stmt VS1:
109 VS1: vb = px[i];
110 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
111 S2: a = b;
113 To vectorize stmt S2, the vectorizer first finds the stmt that defines
114 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
115 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
116 resulting sequence would be:
118 VS1: vb = px[i];
119 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
120 VS2: va = vb;
121 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
123 Operands that are not SSA_NAMEs, are data-refs that appear in
124 load/store operations (like 'x[i]' in S1), and are handled differently.
126 Target modeling:
127 =================
128 Currently the only target specific information that is used is the
129 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
130 support different sizes of vectors, for now will need to specify one value
131 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
133 Since we only vectorize operations which vector form can be
134 expressed using existing tree codes, to verify that an operation is
135 supported, the vectorizer checks the relevant optab at the relevant
136 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
137 the value found is CODE_FOR_nothing, then there's no target support, and
138 we can't vectorize the stmt.
140 For additional information on this project see:
141 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
185 if (vect_print_dump_info (REPORT_DETAILS))
186 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
188 for (i = 0; i < nbbs; i++)
190 basic_block bb = bbs[i];
192 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
194 phi = gsi_stmt (si);
195 stmt_info = vinfo_for_stmt (phi);
196 if (vect_print_dump_info (REPORT_DETAILS))
198 fprintf (vect_dump, "==> examining phi: ");
199 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
202 gcc_assert (stmt_info);
204 if (STMT_VINFO_RELEVANT_P (stmt_info))
206 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
207 scalar_type = TREE_TYPE (PHI_RESULT (phi));
209 if (vect_print_dump_info (REPORT_DETAILS))
211 fprintf (vect_dump, "get vectype for scalar type: ");
212 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
215 vectype = get_vectype_for_scalar_type (scalar_type);
216 if (!vectype)
218 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
220 fprintf (vect_dump,
221 "not vectorized: unsupported data-type ");
222 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
224 return false;
226 STMT_VINFO_VECTYPE (stmt_info) = vectype;
228 if (vect_print_dump_info (REPORT_DETAILS))
230 fprintf (vect_dump, "vectype: ");
231 print_generic_expr (vect_dump, vectype, TDF_SLIM);
234 nunits = TYPE_VECTOR_SUBPARTS (vectype);
235 if (vect_print_dump_info (REPORT_DETAILS))
236 fprintf (vect_dump, "nunits = %d", nunits);
238 if (!vectorization_factor
239 || (nunits > vectorization_factor))
240 vectorization_factor = nunits;
244 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
246 tree vf_vectype;
247 gimple stmt = gsi_stmt (si);
248 stmt_info = vinfo_for_stmt (stmt);
250 if (vect_print_dump_info (REPORT_DETAILS))
252 fprintf (vect_dump, "==> examining statement: ");
253 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
256 gcc_assert (stmt_info);
258 /* skip stmts which do not need to be vectorized. */
259 if (!STMT_VINFO_RELEVANT_P (stmt_info)
260 && !STMT_VINFO_LIVE_P (stmt_info))
262 if (vect_print_dump_info (REPORT_DETAILS))
263 fprintf (vect_dump, "skip.");
264 continue;
267 if (gimple_get_lhs (stmt) == NULL_TREE)
269 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
271 fprintf (vect_dump, "not vectorized: irregular stmt.");
272 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
274 return false;
277 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
279 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
281 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
282 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
284 return false;
287 if (STMT_VINFO_VECTYPE (stmt_info))
289 /* The only case when a vectype had been already set is for stmts
290 that contain a dataref, or for "pattern-stmts" (stmts generated
291 by the vectorizer to represent/replace a certain idiom). */
292 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
293 || is_pattern_stmt_p (stmt_info));
294 vectype = STMT_VINFO_VECTYPE (stmt_info);
296 else
298 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info)
299 && !is_pattern_stmt_p (stmt_info));
301 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
302 if (vect_print_dump_info (REPORT_DETAILS))
304 fprintf (vect_dump, "get vectype for scalar type: ");
305 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
307 vectype = get_vectype_for_scalar_type (scalar_type);
308 if (!vectype)
310 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
312 fprintf (vect_dump,
313 "not vectorized: unsupported data-type ");
314 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
316 return false;
319 STMT_VINFO_VECTYPE (stmt_info) = vectype;
322 /* The vectorization factor is according to the smallest
323 scalar type (or the largest vector size, but we only
324 support one vector size per loop). */
325 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
326 &dummy);
327 if (vect_print_dump_info (REPORT_DETAILS))
329 fprintf (vect_dump, "get vectype for scalar type: ");
330 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
332 vf_vectype = get_vectype_for_scalar_type (scalar_type);
333 if (!vf_vectype)
335 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
337 fprintf (vect_dump,
338 "not vectorized: unsupported data-type ");
339 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
341 return false;
344 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
345 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
347 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
349 fprintf (vect_dump,
350 "not vectorized: different sized vector "
351 "types in statement, ");
352 print_generic_expr (vect_dump, vectype, TDF_SLIM);
353 fprintf (vect_dump, " and ");
354 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
356 return false;
359 if (vect_print_dump_info (REPORT_DETAILS))
361 fprintf (vect_dump, "vectype: ");
362 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
365 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
366 if (vect_print_dump_info (REPORT_DETAILS))
367 fprintf (vect_dump, "nunits = %d", nunits);
369 if (!vectorization_factor
370 || (nunits > vectorization_factor))
371 vectorization_factor = nunits;
375 /* TODO: Analyze cost. Decide if worth while to vectorize. */
376 if (vect_print_dump_info (REPORT_DETAILS))
377 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
378 if (vectorization_factor <= 1)
380 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
381 fprintf (vect_dump, "not vectorized: unsupported data-type");
382 return false;
384 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
386 return true;
390 /* Function vect_is_simple_iv_evolution.
392 FORNOW: A simple evolution of an induction variables in the loop is
393 considered a polynomial evolution with constant step. */
395 static bool
396 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
397 tree * step)
399 tree init_expr;
400 tree step_expr;
401 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
403 /* When there is no evolution in this loop, the evolution function
404 is not "simple". */
405 if (evolution_part == NULL_TREE)
406 return false;
408 /* When the evolution is a polynomial of degree >= 2
409 the evolution function is not "simple". */
410 if (tree_is_chrec (evolution_part))
411 return false;
413 step_expr = evolution_part;
414 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
416 if (vect_print_dump_info (REPORT_DETAILS))
418 fprintf (vect_dump, "step: ");
419 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
420 fprintf (vect_dump, ", init: ");
421 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
424 *init = init_expr;
425 *step = step_expr;
427 if (TREE_CODE (step_expr) != INTEGER_CST)
429 if (vect_print_dump_info (REPORT_DETAILS))
430 fprintf (vect_dump, "step unknown.");
431 return false;
434 return true;
437 /* Function vect_analyze_scalar_cycles_1.
439 Examine the cross iteration def-use cycles of scalar variables
440 in LOOP. LOOP_VINFO represents the loop that is now being
441 considered for vectorization (can be LOOP, or an outer-loop
442 enclosing LOOP). */
444 static void
445 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
447 basic_block bb = loop->header;
448 tree dumy;
449 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
450 gimple_stmt_iterator gsi;
451 bool double_reduc;
453 if (vect_print_dump_info (REPORT_DETAILS))
454 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
456 /* First - identify all inductions. Reduction detection assumes that all the
457 inductions have been identified, therefore, this order must not be
458 changed. */
459 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
461 gimple phi = gsi_stmt (gsi);
462 tree access_fn = NULL;
463 tree def = PHI_RESULT (phi);
464 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
466 if (vect_print_dump_info (REPORT_DETAILS))
468 fprintf (vect_dump, "Analyze phi: ");
469 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
472 /* Skip virtual phi's. The data dependences that are associated with
473 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
474 if (!is_gimple_reg (SSA_NAME_VAR (def)))
475 continue;
477 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
479 /* Analyze the evolution function. */
480 access_fn = analyze_scalar_evolution (loop, def);
481 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
483 fprintf (vect_dump, "Access function of PHI: ");
484 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
487 if (!access_fn
488 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
490 VEC_safe_push (gimple, heap, worklist, phi);
491 continue;
494 if (vect_print_dump_info (REPORT_DETAILS))
495 fprintf (vect_dump, "Detected induction.");
496 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
500 /* Second - identify all reductions and nested cycles. */
501 while (VEC_length (gimple, worklist) > 0)
503 gimple phi = VEC_pop (gimple, worklist);
504 tree def = PHI_RESULT (phi);
505 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
506 gimple reduc_stmt;
507 bool nested_cycle;
509 if (vect_print_dump_info (REPORT_DETAILS))
511 fprintf (vect_dump, "Analyze phi: ");
512 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
515 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
516 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
518 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
519 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
520 &double_reduc);
521 if (reduc_stmt)
523 if (double_reduc)
525 if (vect_print_dump_info (REPORT_DETAILS))
526 fprintf (vect_dump, "Detected double reduction.");
528 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
529 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
530 vect_double_reduction_def;
532 else
534 if (nested_cycle)
536 if (vect_print_dump_info (REPORT_DETAILS))
537 fprintf (vect_dump, "Detected vectorizable nested cycle.");
539 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
540 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
541 vect_nested_cycle;
543 else
545 if (vect_print_dump_info (REPORT_DETAILS))
546 fprintf (vect_dump, "Detected reduction.");
548 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
549 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
550 vect_reduction_def;
551 /* Store the reduction cycles for possible vectorization in
552 loop-aware SLP. */
553 VEC_safe_push (gimple, heap,
554 LOOP_VINFO_REDUCTIONS (loop_vinfo),
555 reduc_stmt);
559 else
560 if (vect_print_dump_info (REPORT_DETAILS))
561 fprintf (vect_dump, "Unknown def-use cycle pattern.");
564 VEC_free (gimple, heap, worklist);
568 /* Function vect_analyze_scalar_cycles.
570 Examine the cross iteration def-use cycles of scalar variables, by
571 analyzing the loop-header PHIs of scalar variables; Classify each
572 cycle as one of the following: invariant, induction, reduction, unknown.
573 We do that for the loop represented by LOOP_VINFO, and also to its
574 inner-loop, if exists.
575 Examples for scalar cycles:
577 Example1: reduction:
579 loop1:
580 for (i=0; i<N; i++)
581 sum += a[i];
583 Example2: induction:
585 loop2:
586 for (i=0; i<N; i++)
587 a[i] = i; */
589 static void
590 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
592 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
594 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
596 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
597 Reductions in such inner-loop therefore have different properties than
598 the reductions in the nest that gets vectorized:
599 1. When vectorized, they are executed in the same order as in the original
600 scalar loop, so we can't change the order of computation when
601 vectorizing them.
602 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
603 current checks are too strict. */
605 if (loop->inner)
606 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
609 /* Function vect_get_loop_niters.
611 Determine how many iterations the loop is executed.
612 If an expression that represents the number of iterations
613 can be constructed, place it in NUMBER_OF_ITERATIONS.
614 Return the loop exit condition. */
616 static gimple
617 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
619 tree niters;
621 if (vect_print_dump_info (REPORT_DETAILS))
622 fprintf (vect_dump, "=== get_loop_niters ===");
624 niters = number_of_exit_cond_executions (loop);
626 if (niters != NULL_TREE
627 && niters != chrec_dont_know)
629 *number_of_iterations = niters;
631 if (vect_print_dump_info (REPORT_DETAILS))
633 fprintf (vect_dump, "==> get_loop_niters:" );
634 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
638 return get_loop_exit_condition (loop);
642 /* Function bb_in_loop_p
644 Used as predicate for dfs order traversal of the loop bbs. */
646 static bool
647 bb_in_loop_p (const_basic_block bb, const void *data)
649 const struct loop *const loop = (const struct loop *)data;
650 if (flow_bb_inside_loop_p (loop, bb))
651 return true;
652 return false;
656 /* Function new_loop_vec_info.
658 Create and initialize a new loop_vec_info struct for LOOP, as well as
659 stmt_vec_info structs for all the stmts in LOOP. */
661 static loop_vec_info
662 new_loop_vec_info (struct loop *loop)
664 loop_vec_info res;
665 basic_block *bbs;
666 gimple_stmt_iterator si;
667 unsigned int i, nbbs;
669 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
670 LOOP_VINFO_LOOP (res) = loop;
672 bbs = get_loop_body (loop);
674 /* Create/Update stmt_info for all stmts in the loop. */
675 for (i = 0; i < loop->num_nodes; i++)
677 basic_block bb = bbs[i];
679 /* BBs in a nested inner-loop will have been already processed (because
680 we will have called vect_analyze_loop_form for any nested inner-loop).
681 Therefore, for stmts in an inner-loop we just want to update the
682 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
683 loop_info of the outer-loop we are currently considering to vectorize
684 (instead of the loop_info of the inner-loop).
685 For stmts in other BBs we need to create a stmt_info from scratch. */
686 if (bb->loop_father != loop)
688 /* Inner-loop bb. */
689 gcc_assert (loop->inner && bb->loop_father == loop->inner);
690 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
692 gimple phi = gsi_stmt (si);
693 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
694 loop_vec_info inner_loop_vinfo =
695 STMT_VINFO_LOOP_VINFO (stmt_info);
696 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
697 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
699 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
701 gimple stmt = gsi_stmt (si);
702 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
703 loop_vec_info inner_loop_vinfo =
704 STMT_VINFO_LOOP_VINFO (stmt_info);
705 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
706 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
709 else
711 /* bb in current nest. */
712 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
714 gimple phi = gsi_stmt (si);
715 gimple_set_uid (phi, 0);
716 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
719 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
721 gimple stmt = gsi_stmt (si);
722 gimple_set_uid (stmt, 0);
723 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
728 /* CHECKME: We want to visit all BBs before their successors (except for
729 latch blocks, for which this assertion wouldn't hold). In the simple
730 case of the loop forms we allow, a dfs order of the BBs would the same
731 as reversed postorder traversal, so we are safe. */
733 free (bbs);
734 bbs = XCNEWVEC (basic_block, loop->num_nodes);
735 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
736 bbs, loop->num_nodes, loop);
737 gcc_assert (nbbs == loop->num_nodes);
739 LOOP_VINFO_BBS (res) = bbs;
740 LOOP_VINFO_NITERS (res) = NULL;
741 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
742 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
743 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
744 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
745 LOOP_VINFO_VECT_FACTOR (res) = 0;
746 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
747 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
748 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
749 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
750 VEC_alloc (gimple, heap,
751 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
752 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
753 VEC_alloc (ddr_p, heap,
754 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
755 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
756 LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
757 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
758 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
759 LOOP_VINFO_PEELING_HTAB (res) = NULL;
761 return res;
765 /* Function destroy_loop_vec_info.
767 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
768 stmts in the loop. */
770 void
771 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
773 struct loop *loop;
774 basic_block *bbs;
775 int nbbs;
776 gimple_stmt_iterator si;
777 int j;
778 VEC (slp_instance, heap) *slp_instances;
779 slp_instance instance;
781 if (!loop_vinfo)
782 return;
784 loop = LOOP_VINFO_LOOP (loop_vinfo);
786 bbs = LOOP_VINFO_BBS (loop_vinfo);
787 nbbs = loop->num_nodes;
789 if (!clean_stmts)
791 free (LOOP_VINFO_BBS (loop_vinfo));
792 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
793 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
794 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
796 free (loop_vinfo);
797 loop->aux = NULL;
798 return;
801 for (j = 0; j < nbbs; j++)
803 basic_block bb = bbs[j];
804 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
805 free_stmt_vec_info (gsi_stmt (si));
807 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
809 gimple stmt = gsi_stmt (si);
810 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
812 if (stmt_info)
814 /* Check if this is a "pattern stmt" (introduced by the
815 vectorizer during the pattern recognition pass). */
816 bool remove_stmt_p = false;
817 gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
818 if (orig_stmt)
820 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
821 if (orig_stmt_info
822 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
823 remove_stmt_p = true;
826 /* Free stmt_vec_info. */
827 free_stmt_vec_info (stmt);
829 /* Remove dead "pattern stmts". */
830 if (remove_stmt_p)
831 gsi_remove (&si, true);
833 gsi_next (&si);
837 free (LOOP_VINFO_BBS (loop_vinfo));
838 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
839 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
840 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
841 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
842 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
843 for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
844 vect_free_slp_instance (instance);
846 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
847 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
848 VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
850 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
851 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
853 free (loop_vinfo);
854 loop->aux = NULL;
858 /* Function vect_analyze_loop_1.
860 Apply a set of analyses on LOOP, and create a loop_vec_info struct
861 for it. The different analyses will record information in the
862 loop_vec_info struct. This is a subset of the analyses applied in
863 vect_analyze_loop, to be applied on an inner-loop nested in the loop
864 that is now considered for (outer-loop) vectorization. */
866 static loop_vec_info
867 vect_analyze_loop_1 (struct loop *loop)
869 loop_vec_info loop_vinfo;
871 if (vect_print_dump_info (REPORT_DETAILS))
872 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
874 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
876 loop_vinfo = vect_analyze_loop_form (loop);
877 if (!loop_vinfo)
879 if (vect_print_dump_info (REPORT_DETAILS))
880 fprintf (vect_dump, "bad inner-loop form.");
881 return NULL;
884 return loop_vinfo;
888 /* Function vect_analyze_loop_form.
890 Verify that certain CFG restrictions hold, including:
891 - the loop has a pre-header
892 - the loop has a single entry and exit
893 - the loop exit condition is simple enough, and the number of iterations
894 can be analyzed (a countable loop). */
896 loop_vec_info
897 vect_analyze_loop_form (struct loop *loop)
899 loop_vec_info loop_vinfo;
900 gimple loop_cond;
901 tree number_of_iterations = NULL;
902 loop_vec_info inner_loop_vinfo = NULL;
904 if (vect_print_dump_info (REPORT_DETAILS))
905 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
907 /* Different restrictions apply when we are considering an inner-most loop,
908 vs. an outer (nested) loop.
909 (FORNOW. May want to relax some of these restrictions in the future). */
911 if (!loop->inner)
913 /* Inner-most loop. We currently require that the number of BBs is
914 exactly 2 (the header and latch). Vectorizable inner-most loops
915 look like this:
917 (pre-header)
919 header <--------+
920 | | |
921 | +--> latch --+
923 (exit-bb) */
925 if (loop->num_nodes != 2)
927 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
928 fprintf (vect_dump, "not vectorized: control flow in loop.");
929 return NULL;
932 if (empty_block_p (loop->header))
934 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
935 fprintf (vect_dump, "not vectorized: empty loop.");
936 return NULL;
939 else
941 struct loop *innerloop = loop->inner;
942 edge entryedge;
944 /* Nested loop. We currently require that the loop is doubly-nested,
945 contains a single inner loop, and the number of BBs is exactly 5.
946 Vectorizable outer-loops look like this:
948 (pre-header)
950 header <---+
952 inner-loop |
954 tail ------+
956 (exit-bb)
958 The inner-loop has the properties expected of inner-most loops
959 as described above. */
961 if ((loop->inner)->inner || (loop->inner)->next)
963 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
964 fprintf (vect_dump, "not vectorized: multiple nested loops.");
965 return NULL;
968 /* Analyze the inner-loop. */
969 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
970 if (!inner_loop_vinfo)
972 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
973 fprintf (vect_dump, "not vectorized: Bad inner loop.");
974 return NULL;
977 if (!expr_invariant_in_loop_p (loop,
978 LOOP_VINFO_NITERS (inner_loop_vinfo)))
980 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
981 fprintf (vect_dump,
982 "not vectorized: inner-loop count not invariant.");
983 destroy_loop_vec_info (inner_loop_vinfo, true);
984 return NULL;
987 if (loop->num_nodes != 5)
989 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
990 fprintf (vect_dump, "not vectorized: control flow in loop.");
991 destroy_loop_vec_info (inner_loop_vinfo, true);
992 return NULL;
995 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
996 entryedge = EDGE_PRED (innerloop->header, 0);
997 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
998 entryedge = EDGE_PRED (innerloop->header, 1);
1000 if (entryedge->src != loop->header
1001 || !single_exit (innerloop)
1002 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1004 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1005 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
1006 destroy_loop_vec_info (inner_loop_vinfo, true);
1007 return NULL;
1010 if (vect_print_dump_info (REPORT_DETAILS))
1011 fprintf (vect_dump, "Considering outer-loop vectorization.");
1014 if (!single_exit (loop)
1015 || EDGE_COUNT (loop->header->preds) != 2)
1017 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1019 if (!single_exit (loop))
1020 fprintf (vect_dump, "not vectorized: multiple exits.");
1021 else if (EDGE_COUNT (loop->header->preds) != 2)
1022 fprintf (vect_dump, "not vectorized: too many incoming edges.");
1024 if (inner_loop_vinfo)
1025 destroy_loop_vec_info (inner_loop_vinfo, true);
1026 return NULL;
1029 /* We assume that the loop exit condition is at the end of the loop. i.e,
1030 that the loop is represented as a do-while (with a proper if-guard
1031 before the loop if needed), where the loop header contains all the
1032 executable statements, and the latch is empty. */
1033 if (!empty_block_p (loop->latch)
1034 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1036 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1037 fprintf (vect_dump, "not vectorized: unexpected loop form.");
1038 if (inner_loop_vinfo)
1039 destroy_loop_vec_info (inner_loop_vinfo, true);
1040 return NULL;
1043 /* Make sure there exists a single-predecessor exit bb: */
1044 if (!single_pred_p (single_exit (loop)->dest))
1046 edge e = single_exit (loop);
1047 if (!(e->flags & EDGE_ABNORMAL))
1049 split_loop_exit_edge (e);
1050 if (vect_print_dump_info (REPORT_DETAILS))
1051 fprintf (vect_dump, "split exit edge.");
1053 else
1055 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1056 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1057 if (inner_loop_vinfo)
1058 destroy_loop_vec_info (inner_loop_vinfo, true);
1059 return NULL;
1063 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1064 if (!loop_cond)
1066 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1067 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1068 if (inner_loop_vinfo)
1069 destroy_loop_vec_info (inner_loop_vinfo, true);
1070 return NULL;
1073 if (!number_of_iterations)
1075 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1076 fprintf (vect_dump,
1077 "not vectorized: number of iterations cannot be computed.");
1078 if (inner_loop_vinfo)
1079 destroy_loop_vec_info (inner_loop_vinfo, true);
1080 return NULL;
1083 if (chrec_contains_undetermined (number_of_iterations))
1085 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1086 fprintf (vect_dump, "Infinite number of iterations.");
1087 if (inner_loop_vinfo)
1088 destroy_loop_vec_info (inner_loop_vinfo, true);
1089 return NULL;
1092 if (!NITERS_KNOWN_P (number_of_iterations))
1094 if (vect_print_dump_info (REPORT_DETAILS))
1096 fprintf (vect_dump, "Symbolic number of iterations is ");
1097 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1100 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1102 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1103 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1104 if (inner_loop_vinfo)
1105 destroy_loop_vec_info (inner_loop_vinfo, false);
1106 return NULL;
1109 loop_vinfo = new_loop_vec_info (loop);
1110 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1111 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1113 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1115 /* CHECKME: May want to keep it around it in the future. */
1116 if (inner_loop_vinfo)
1117 destroy_loop_vec_info (inner_loop_vinfo, false);
1119 gcc_assert (!loop->aux);
1120 loop->aux = loop_vinfo;
1121 return loop_vinfo;
1125 /* Get cost by calling cost target builtin. */
1127 static inline
1128 int vect_get_cost (enum vect_cost_for_stmt type_of_cost)
1130 tree dummy_type = NULL;
1131 int dummy = 0;
1133 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1134 dummy_type, dummy);
1138 /* Function vect_analyze_loop_operations.
1140 Scan the loop stmts and make sure they are all vectorizable. */
1142 static bool
1143 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1145 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1146 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1147 int nbbs = loop->num_nodes;
1148 gimple_stmt_iterator si;
1149 unsigned int vectorization_factor = 0;
1150 int i;
1151 gimple phi;
1152 stmt_vec_info stmt_info;
1153 bool need_to_vectorize = false;
1154 int min_profitable_iters;
1155 int min_scalar_loop_bound;
1156 unsigned int th;
1157 bool only_slp_in_loop = true, ok;
1159 if (vect_print_dump_info (REPORT_DETAILS))
1160 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1162 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1163 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1165 for (i = 0; i < nbbs; i++)
1167 basic_block bb = bbs[i];
1169 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1171 phi = gsi_stmt (si);
1172 ok = true;
1174 stmt_info = vinfo_for_stmt (phi);
1175 if (vect_print_dump_info (REPORT_DETAILS))
1177 fprintf (vect_dump, "examining phi: ");
1178 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1181 if (! is_loop_header_bb_p (bb))
1183 /* inner-loop loop-closed exit phi in outer-loop vectorization
1184 (i.e. a phi in the tail of the outer-loop).
1185 FORNOW: we currently don't support the case that these phis
1186 are not used in the outerloop (unless it is double reduction,
1187 i.e., this phi is vect_reduction_def), cause this case
1188 requires to actually do something here. */
1189 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1190 || STMT_VINFO_LIVE_P (stmt_info))
1191 && STMT_VINFO_DEF_TYPE (stmt_info)
1192 != vect_double_reduction_def)
1194 if (vect_print_dump_info (REPORT_DETAILS))
1195 fprintf (vect_dump,
1196 "Unsupported loop-closed phi in outer-loop.");
1197 return false;
1199 continue;
1202 gcc_assert (stmt_info);
1204 if (STMT_VINFO_LIVE_P (stmt_info))
1206 /* FORNOW: not yet supported. */
1207 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1208 fprintf (vect_dump, "not vectorized: value used after loop.");
1209 return false;
1212 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1213 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1215 /* A scalar-dependence cycle that we don't support. */
1216 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1217 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1218 return false;
1221 if (STMT_VINFO_RELEVANT_P (stmt_info))
1223 need_to_vectorize = true;
1224 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1225 ok = vectorizable_induction (phi, NULL, NULL);
1228 if (!ok)
1230 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1232 fprintf (vect_dump,
1233 "not vectorized: relevant phi not supported: ");
1234 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1236 return false;
1240 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1242 gimple stmt = gsi_stmt (si);
1243 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1245 gcc_assert (stmt_info);
1247 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1248 return false;
1250 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1251 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1252 && !PURE_SLP_STMT (stmt_info))
1253 /* STMT needs both SLP and loop-based vectorization. */
1254 only_slp_in_loop = false;
1256 } /* bbs */
1258 /* All operations in the loop are either irrelevant (deal with loop
1259 control, or dead), or only used outside the loop and can be moved
1260 out of the loop (e.g. invariants, inductions). The loop can be
1261 optimized away by scalar optimizations. We're better off not
1262 touching this loop. */
1263 if (!need_to_vectorize)
1265 if (vect_print_dump_info (REPORT_DETAILS))
1266 fprintf (vect_dump,
1267 "All the computation can be taken out of the loop.");
1268 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1269 fprintf (vect_dump,
1270 "not vectorized: redundant loop. no profit to vectorize.");
1271 return false;
1274 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1275 vectorization factor of the loop is the unrolling factor required by the
1276 SLP instances. If that unrolling factor is 1, we say, that we perform
1277 pure SLP on loop - cross iteration parallelism is not exploited. */
1278 if (only_slp_in_loop)
1279 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1280 else
1281 vectorization_factor = least_common_multiple (vectorization_factor,
1282 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1284 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1286 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1287 && vect_print_dump_info (REPORT_DETAILS))
1288 fprintf (vect_dump,
1289 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1290 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1292 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1293 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1295 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1296 fprintf (vect_dump, "not vectorized: iteration count too small.");
1297 if (vect_print_dump_info (REPORT_DETAILS))
1298 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1299 "vectorization factor.");
1300 return false;
1303 /* Analyze cost. Decide if worth while to vectorize. */
1305 /* Once VF is set, SLP costs should be updated since the number of created
1306 vector stmts depends on VF. */
1307 vect_update_slp_costs_according_to_vf (loop_vinfo);
1309 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1310 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1312 if (min_profitable_iters < 0)
1314 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1315 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1316 if (vect_print_dump_info (REPORT_DETAILS))
1317 fprintf (vect_dump, "not vectorized: vector version will never be "
1318 "profitable.");
1319 return false;
1322 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1323 * vectorization_factor) - 1);
1325 /* Use the cost model only if it is more conservative than user specified
1326 threshold. */
1328 th = (unsigned) min_scalar_loop_bound;
1329 if (min_profitable_iters
1330 && (!min_scalar_loop_bound
1331 || min_profitable_iters > min_scalar_loop_bound))
1332 th = (unsigned) min_profitable_iters;
1334 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1335 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1337 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1338 fprintf (vect_dump, "not vectorized: vectorization not "
1339 "profitable.");
1340 if (vect_print_dump_info (REPORT_DETAILS))
1341 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1342 "user specified loop bound parameter or minimum "
1343 "profitable iterations (whichever is more conservative).");
1344 return false;
1347 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1348 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1349 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1351 if (vect_print_dump_info (REPORT_DETAILS))
1352 fprintf (vect_dump, "epilog loop required.");
1353 if (!vect_can_advance_ivs_p (loop_vinfo))
1355 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1356 fprintf (vect_dump,
1357 "not vectorized: can't create epilog loop 1.");
1358 return false;
1360 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1362 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1363 fprintf (vect_dump,
1364 "not vectorized: can't create epilog loop 2.");
1365 return false;
1369 return true;
1373 /* Function vect_analyze_loop.
1375 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1376 for it. The different analyses will record information in the
1377 loop_vec_info struct. */
1378 loop_vec_info
1379 vect_analyze_loop (struct loop *loop)
1381 bool ok;
1382 loop_vec_info loop_vinfo;
1383 int max_vf = MAX_VECTORIZATION_FACTOR;
1384 int min_vf = 2;
1386 if (vect_print_dump_info (REPORT_DETAILS))
1387 fprintf (vect_dump, "===== analyze_loop_nest =====");
1389 if (loop_outer (loop)
1390 && loop_vec_info_for_loop (loop_outer (loop))
1391 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1393 if (vect_print_dump_info (REPORT_DETAILS))
1394 fprintf (vect_dump, "outer-loop already vectorized.");
1395 return NULL;
1398 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1400 loop_vinfo = vect_analyze_loop_form (loop);
1401 if (!loop_vinfo)
1403 if (vect_print_dump_info (REPORT_DETAILS))
1404 fprintf (vect_dump, "bad loop form.");
1405 return NULL;
1408 /* Find all data references in the loop (which correspond to vdefs/vuses)
1409 and analyze their evolution in the loop. Also adjust the minimal
1410 vectorization factor according to the loads and stores.
1412 FORNOW: Handle only simple, array references, which
1413 alignment can be forced, and aligned pointer-references. */
1415 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1416 if (!ok)
1418 if (vect_print_dump_info (REPORT_DETAILS))
1419 fprintf (vect_dump, "bad data references.");
1420 destroy_loop_vec_info (loop_vinfo, true);
1421 return NULL;
1424 /* Classify all cross-iteration scalar data-flow cycles.
1425 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1427 vect_analyze_scalar_cycles (loop_vinfo);
1429 vect_pattern_recog (loop_vinfo);
1431 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1433 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1434 if (!ok)
1436 if (vect_print_dump_info (REPORT_DETAILS))
1437 fprintf (vect_dump, "unexpected pattern.");
1438 destroy_loop_vec_info (loop_vinfo, true);
1439 return NULL;
1442 /* Analyze data dependences between the data-refs in the loop
1443 and adjust the maximum vectorization factor according to
1444 the dependences.
1445 FORNOW: fail at the first data dependence that we encounter. */
1447 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
1448 if (!ok
1449 || max_vf < min_vf)
1451 if (vect_print_dump_info (REPORT_DETAILS))
1452 fprintf (vect_dump, "bad data dependence.");
1453 destroy_loop_vec_info (loop_vinfo, true);
1454 return NULL;
1457 ok = vect_determine_vectorization_factor (loop_vinfo);
1458 if (!ok)
1460 if (vect_print_dump_info (REPORT_DETAILS))
1461 fprintf (vect_dump, "can't determine vectorization factor.");
1462 destroy_loop_vec_info (loop_vinfo, true);
1463 return NULL;
1465 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1467 if (vect_print_dump_info (REPORT_DETAILS))
1468 fprintf (vect_dump, "bad data dependence.");
1469 destroy_loop_vec_info (loop_vinfo, true);
1470 return NULL;
1473 /* Analyze the alignment of the data-refs in the loop.
1474 Fail if a data reference is found that cannot be vectorized. */
1476 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1477 if (!ok)
1479 if (vect_print_dump_info (REPORT_DETAILS))
1480 fprintf (vect_dump, "bad data alignment.");
1481 destroy_loop_vec_info (loop_vinfo, true);
1482 return NULL;
1485 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1486 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1488 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1489 if (!ok)
1491 if (vect_print_dump_info (REPORT_DETAILS))
1492 fprintf (vect_dump, "bad data access.");
1493 destroy_loop_vec_info (loop_vinfo, true);
1494 return NULL;
1497 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1498 It is important to call pruning after vect_analyze_data_ref_accesses,
1499 since we use grouping information gathered by interleaving analysis. */
1500 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1501 if (!ok)
1503 if (vect_print_dump_info (REPORT_DETAILS))
1504 fprintf (vect_dump, "too long list of versioning for alias "
1505 "run-time tests.");
1506 destroy_loop_vec_info (loop_vinfo, true);
1507 return NULL;
1510 /* This pass will decide on using loop versioning and/or loop peeling in
1511 order to enhance the alignment of data references in the loop. */
1513 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1514 if (!ok)
1516 if (vect_print_dump_info (REPORT_DETAILS))
1517 fprintf (vect_dump, "bad data alignment.");
1518 destroy_loop_vec_info (loop_vinfo, true);
1519 return NULL;
1522 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1523 ok = vect_analyze_slp (loop_vinfo, NULL);
1524 if (ok)
1526 /* Decide which possible SLP instances to SLP. */
1527 vect_make_slp_decision (loop_vinfo);
1529 /* Find stmts that need to be both vectorized and SLPed. */
1530 vect_detect_hybrid_slp (loop_vinfo);
1533 /* Scan all the operations in the loop and make sure they are
1534 vectorizable. */
1536 ok = vect_analyze_loop_operations (loop_vinfo);
1537 if (!ok)
1539 if (vect_print_dump_info (REPORT_DETAILS))
1540 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1541 destroy_loop_vec_info (loop_vinfo, true);
1542 return NULL;
1545 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1547 return loop_vinfo;
1551 /* Function reduction_code_for_scalar_code
1553 Input:
1554 CODE - tree_code of a reduction operations.
1556 Output:
1557 REDUC_CODE - the corresponding tree-code to be used to reduce the
1558 vector of partial results into a single scalar result (which
1559 will also reside in a vector) or ERROR_MARK if the operation is
1560 a supported reduction operation, but does not have such tree-code.
1562 Return FALSE if CODE currently cannot be vectorized as reduction. */
1564 static bool
1565 reduction_code_for_scalar_code (enum tree_code code,
1566 enum tree_code *reduc_code)
1568 switch (code)
1570 case MAX_EXPR:
1571 *reduc_code = REDUC_MAX_EXPR;
1572 return true;
1574 case MIN_EXPR:
1575 *reduc_code = REDUC_MIN_EXPR;
1576 return true;
1578 case PLUS_EXPR:
1579 *reduc_code = REDUC_PLUS_EXPR;
1580 return true;
1582 case MULT_EXPR:
1583 case MINUS_EXPR:
1584 case BIT_IOR_EXPR:
1585 case BIT_XOR_EXPR:
1586 case BIT_AND_EXPR:
1587 *reduc_code = ERROR_MARK;
1588 return true;
1590 default:
1591 return false;
1596 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1597 STMT is printed with a message MSG. */
1599 static void
1600 report_vect_op (gimple stmt, const char *msg)
1602 fprintf (vect_dump, "%s", msg);
1603 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1607 /* Function vect_is_simple_reduction_1
1609 (1) Detect a cross-iteration def-use cycle that represents a simple
1610 reduction computation. We look for the following pattern:
1612 loop_header:
1613 a1 = phi < a0, a2 >
1614 a3 = ...
1615 a2 = operation (a3, a1)
1617 such that:
1618 1. operation is commutative and associative and it is safe to
1619 change the order of the computation (if CHECK_REDUCTION is true)
1620 2. no uses for a2 in the loop (a2 is used out of the loop)
1621 3. no uses of a1 in the loop besides the reduction operation.
1623 Condition 1 is tested here.
1624 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1626 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1627 nested cycles, if CHECK_REDUCTION is false.
1629 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1630 reductions:
1632 a1 = phi < a0, a2 >
1633 inner loop (def of a3)
1634 a2 = phi < a3 >
1636 If MODIFY is true it tries also to rework the code in-place to enable
1637 detection of more reduction patterns. For the time being we rewrite
1638 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
1641 static gimple
1642 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
1643 bool check_reduction, bool *double_reduc,
1644 bool modify)
1646 struct loop *loop = (gimple_bb (phi))->loop_father;
1647 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1648 edge latch_e = loop_latch_edge (loop);
1649 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1650 gimple def_stmt, def1 = NULL, def2 = NULL;
1651 enum tree_code orig_code, code;
1652 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1653 tree type;
1654 int nloop_uses;
1655 tree name;
1656 imm_use_iterator imm_iter;
1657 use_operand_p use_p;
1658 bool phi_def;
1660 *double_reduc = false;
1662 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1663 otherwise, we assume outer loop vectorization. */
1664 gcc_assert ((check_reduction && loop == vect_loop)
1665 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1667 name = PHI_RESULT (phi);
1668 nloop_uses = 0;
1669 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1671 gimple use_stmt = USE_STMT (use_p);
1672 if (is_gimple_debug (use_stmt))
1673 continue;
1674 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1675 && vinfo_for_stmt (use_stmt)
1676 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1677 nloop_uses++;
1678 if (nloop_uses > 1)
1680 if (vect_print_dump_info (REPORT_DETAILS))
1681 fprintf (vect_dump, "reduction used in loop.");
1682 return NULL;
1686 if (TREE_CODE (loop_arg) != SSA_NAME)
1688 if (vect_print_dump_info (REPORT_DETAILS))
1690 fprintf (vect_dump, "reduction: not ssa_name: ");
1691 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1693 return NULL;
1696 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1697 if (!def_stmt)
1699 if (vect_print_dump_info (REPORT_DETAILS))
1700 fprintf (vect_dump, "reduction: no def_stmt.");
1701 return NULL;
1704 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
1706 if (vect_print_dump_info (REPORT_DETAILS))
1707 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1708 return NULL;
1711 if (is_gimple_assign (def_stmt))
1713 name = gimple_assign_lhs (def_stmt);
1714 phi_def = false;
1716 else
1718 name = PHI_RESULT (def_stmt);
1719 phi_def = true;
1722 nloop_uses = 0;
1723 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1725 gimple use_stmt = USE_STMT (use_p);
1726 if (is_gimple_debug (use_stmt))
1727 continue;
1728 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1729 && vinfo_for_stmt (use_stmt)
1730 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1731 nloop_uses++;
1732 if (nloop_uses > 1)
1734 if (vect_print_dump_info (REPORT_DETAILS))
1735 fprintf (vect_dump, "reduction used in loop.");
1736 return NULL;
1740 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
1741 defined in the inner loop. */
1742 if (phi_def)
1744 op1 = PHI_ARG_DEF (def_stmt, 0);
1746 if (gimple_phi_num_args (def_stmt) != 1
1747 || TREE_CODE (op1) != SSA_NAME)
1749 if (vect_print_dump_info (REPORT_DETAILS))
1750 fprintf (vect_dump, "unsupported phi node definition.");
1752 return NULL;
1755 def1 = SSA_NAME_DEF_STMT (op1);
1756 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1757 && loop->inner
1758 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
1759 && is_gimple_assign (def1))
1761 if (vect_print_dump_info (REPORT_DETAILS))
1762 report_vect_op (def_stmt, "detected double reduction: ");
1764 *double_reduc = true;
1765 return def_stmt;
1768 return NULL;
1771 code = orig_code = gimple_assign_rhs_code (def_stmt);
1773 /* We can handle "res -= x[i]", which is non-associative by
1774 simply rewriting this into "res += -x[i]". Avoid changing
1775 gimple instruction for the first simple tests and only do this
1776 if we're allowed to change code at all. */
1777 if (code == MINUS_EXPR && modify)
1778 code = PLUS_EXPR;
1780 if (check_reduction
1781 && (!commutative_tree_code (code) || !associative_tree_code (code)))
1783 if (vect_print_dump_info (REPORT_DETAILS))
1784 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
1785 return NULL;
1788 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
1790 if (code != COND_EXPR)
1792 if (vect_print_dump_info (REPORT_DETAILS))
1793 report_vect_op (def_stmt, "reduction: not binary operation: ");
1795 return NULL;
1798 op3 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
1799 if (COMPARISON_CLASS_P (op3))
1801 op4 = TREE_OPERAND (op3, 1);
1802 op3 = TREE_OPERAND (op3, 0);
1805 op1 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 1);
1806 op2 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 2);
1808 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
1810 if (vect_print_dump_info (REPORT_DETAILS))
1811 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1813 return NULL;
1816 else
1818 op1 = gimple_assign_rhs1 (def_stmt);
1819 op2 = gimple_assign_rhs2 (def_stmt);
1821 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1823 if (vect_print_dump_info (REPORT_DETAILS))
1824 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1826 return NULL;
1830 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
1831 if ((TREE_CODE (op1) == SSA_NAME
1832 && !types_compatible_p (type,TREE_TYPE (op1)))
1833 || (TREE_CODE (op2) == SSA_NAME
1834 && !types_compatible_p (type, TREE_TYPE (op2)))
1835 || (op3 && TREE_CODE (op3) == SSA_NAME
1836 && !types_compatible_p (type, TREE_TYPE (op3)))
1837 || (op4 && TREE_CODE (op4) == SSA_NAME
1838 && !types_compatible_p (type, TREE_TYPE (op4))))
1840 if (vect_print_dump_info (REPORT_DETAILS))
1842 fprintf (vect_dump, "reduction: multiple types: operation type: ");
1843 print_generic_expr (vect_dump, type, TDF_SLIM);
1844 fprintf (vect_dump, ", operands types: ");
1845 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1846 fprintf (vect_dump, ",");
1847 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1848 if (op3)
1850 fprintf (vect_dump, ",");
1851 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
1854 if (op4)
1856 fprintf (vect_dump, ",");
1857 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
1861 return NULL;
1864 /* Check that it's ok to change the order of the computation.
1865 Generally, when vectorizing a reduction we change the order of the
1866 computation. This may change the behavior of the program in some
1867 cases, so we need to check that this is ok. One exception is when
1868 vectorizing an outer-loop: the inner-loop is executed sequentially,
1869 and therefore vectorizing reductions in the inner-loop during
1870 outer-loop vectorization is safe. */
1872 /* CHECKME: check for !flag_finite_math_only too? */
1873 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
1874 && check_reduction)
1876 /* Changing the order of operations changes the semantics. */
1877 if (vect_print_dump_info (REPORT_DETAILS))
1878 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
1879 return NULL;
1881 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
1882 && check_reduction)
1884 /* Changing the order of operations changes the semantics. */
1885 if (vect_print_dump_info (REPORT_DETAILS))
1886 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
1887 return NULL;
1889 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
1891 /* Changing the order of operations changes the semantics. */
1892 if (vect_print_dump_info (REPORT_DETAILS))
1893 report_vect_op (def_stmt,
1894 "reduction: unsafe fixed-point math optimization: ");
1895 return NULL;
1898 /* If we detected "res -= x[i]" earlier, rewrite it into
1899 "res += -x[i]" now. If this turns out to be useless reassoc
1900 will clean it up again. */
1901 if (orig_code == MINUS_EXPR)
1903 tree rhs = gimple_assign_rhs2 (def_stmt);
1904 tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
1905 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
1906 rhs, NULL);
1907 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
1908 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
1909 loop_info, NULL));
1910 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
1911 gimple_assign_set_rhs2 (def_stmt, negrhs);
1912 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
1913 update_stmt (def_stmt);
1916 /* Reduction is safe. We're dealing with one of the following:
1917 1) integer arithmetic and no trapv
1918 2) floating point arithmetic, and special flags permit this optimization
1919 3) nested cycle (i.e., outer loop vectorization). */
1920 if (TREE_CODE (op1) == SSA_NAME)
1921 def1 = SSA_NAME_DEF_STMT (op1);
1923 if (TREE_CODE (op2) == SSA_NAME)
1924 def2 = SSA_NAME_DEF_STMT (op2);
1926 if (code != COND_EXPR
1927 && (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)))
1929 if (vect_print_dump_info (REPORT_DETAILS))
1930 report_vect_op (def_stmt, "reduction: no defs for operands: ");
1931 return NULL;
1934 /* Check that one def is the reduction def, defined by PHI,
1935 the other def is either defined in the loop ("vect_internal_def"),
1936 or it's an induction (defined by a loop-header phi-node). */
1938 if (def2 && def2 == phi
1939 && (code == COND_EXPR
1940 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
1941 && (is_gimple_assign (def1)
1942 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1943 == vect_induction_def
1944 || (gimple_code (def1) == GIMPLE_PHI
1945 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1946 == vect_internal_def
1947 && !is_loop_header_bb_p (gimple_bb (def1)))))))
1949 if (vect_print_dump_info (REPORT_DETAILS))
1950 report_vect_op (def_stmt, "detected reduction: ");
1951 return def_stmt;
1953 else if (def1 && def1 == phi
1954 && (code == COND_EXPR
1955 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
1956 && (is_gimple_assign (def2)
1957 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
1958 == vect_induction_def
1959 || (gimple_code (def2) == GIMPLE_PHI
1960 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
1961 == vect_internal_def
1962 && !is_loop_header_bb_p (gimple_bb (def2)))))))
1964 if (check_reduction)
1966 /* Swap operands (just for simplicity - so that the rest of the code
1967 can assume that the reduction variable is always the last (second)
1968 argument). */
1969 if (vect_print_dump_info (REPORT_DETAILS))
1970 report_vect_op (def_stmt,
1971 "detected reduction: need to swap operands: ");
1973 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
1974 gimple_assign_rhs2_ptr (def_stmt));
1976 else
1978 if (vect_print_dump_info (REPORT_DETAILS))
1979 report_vect_op (def_stmt, "detected reduction: ");
1982 return def_stmt;
1984 else
1986 if (vect_print_dump_info (REPORT_DETAILS))
1987 report_vect_op (def_stmt, "reduction: unknown pattern: ");
1989 return NULL;
1993 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
1994 in-place. Arguments as there. */
1996 static gimple
1997 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
1998 bool check_reduction, bool *double_reduc)
2000 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2001 double_reduc, false);
2004 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2005 in-place if it enables detection of more reductions. Arguments
2006 as there. */
2008 gimple
2009 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2010 bool check_reduction, bool *double_reduc)
2012 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2013 double_reduc, true);
2016 /* Calculate the cost of one scalar iteration of the loop. */
2018 vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
2020 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2021 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2022 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2023 int innerloop_iters, i, stmt_cost;
2025 /* Count statements in scalar loop. Using this as scalar cost for a single
2026 iteration for now.
2028 TODO: Add outer loop support.
2030 TODO: Consider assigning different costs to different scalar
2031 statements. */
2033 /* FORNOW. */
2034 if (loop->inner)
2035 innerloop_iters = 50; /* FIXME */
2037 for (i = 0; i < nbbs; i++)
2039 gimple_stmt_iterator si;
2040 basic_block bb = bbs[i];
2042 if (bb->loop_father == loop->inner)
2043 factor = innerloop_iters;
2044 else
2045 factor = 1;
2047 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2049 gimple stmt = gsi_stmt (si);
2050 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2052 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2053 continue;
2055 /* Skip stmts that are not vectorized inside the loop. */
2056 if (stmt_info
2057 && !STMT_VINFO_RELEVANT_P (stmt_info)
2058 && (!STMT_VINFO_LIVE_P (stmt_info)
2059 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2060 continue;
2062 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2064 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2065 stmt_cost = vect_get_cost (scalar_load);
2066 else
2067 stmt_cost = vect_get_cost (scalar_store);
2069 else
2070 stmt_cost = vect_get_cost (scalar_stmt);
2072 scalar_single_iter_cost += stmt_cost * factor;
2075 return scalar_single_iter_cost;
2078 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2080 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2081 int *peel_iters_epilogue,
2082 int scalar_single_iter_cost)
2084 int peel_guard_costs = 0;
2085 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2087 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2089 *peel_iters_epilogue = vf/2;
2090 if (vect_print_dump_info (REPORT_COST))
2091 fprintf (vect_dump, "cost model: "
2092 "epilogue peel iters set to vf/2 because "
2093 "loop iterations are unknown .");
2095 /* If peeled iterations are known but number of scalar loop
2096 iterations are unknown, count a taken branch per peeled loop. */
2097 peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
2099 else
2101 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2102 peel_iters_prologue = niters < peel_iters_prologue ?
2103 niters : peel_iters_prologue;
2104 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2107 return (peel_iters_prologue * scalar_single_iter_cost)
2108 + (*peel_iters_epilogue * scalar_single_iter_cost)
2109 + peel_guard_costs;
2112 /* Function vect_estimate_min_profitable_iters
2114 Return the number of iterations required for the vector version of the
2115 loop to be profitable relative to the cost of the scalar version of the
2116 loop.
2118 TODO: Take profile info into account before making vectorization
2119 decisions, if available. */
2122 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
2124 int i;
2125 int min_profitable_iters;
2126 int peel_iters_prologue;
2127 int peel_iters_epilogue;
2128 int vec_inside_cost = 0;
2129 int vec_outside_cost = 0;
2130 int scalar_single_iter_cost = 0;
2131 int scalar_outside_cost = 0;
2132 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2133 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2134 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2135 int nbbs = loop->num_nodes;
2136 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2137 int peel_guard_costs = 0;
2138 int innerloop_iters = 0, factor;
2139 VEC (slp_instance, heap) *slp_instances;
2140 slp_instance instance;
2142 /* Cost model disabled. */
2143 if (!flag_vect_cost_model)
2145 if (vect_print_dump_info (REPORT_COST))
2146 fprintf (vect_dump, "cost model disabled.");
2147 return 0;
2150 /* Requires loop versioning tests to handle misalignment. */
2151 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2153 /* FIXME: Make cost depend on complexity of individual check. */
2154 vec_outside_cost +=
2155 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
2156 if (vect_print_dump_info (REPORT_COST))
2157 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2158 "versioning to treat misalignment.\n");
2161 /* Requires loop versioning with alias checks. */
2162 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2164 /* FIXME: Make cost depend on complexity of individual check. */
2165 vec_outside_cost +=
2166 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
2167 if (vect_print_dump_info (REPORT_COST))
2168 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2169 "versioning aliasing.\n");
2172 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2173 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2174 vec_outside_cost += vect_get_cost (cond_branch_taken);
2176 /* Count statements in scalar loop. Using this as scalar cost for a single
2177 iteration for now.
2179 TODO: Add outer loop support.
2181 TODO: Consider assigning different costs to different scalar
2182 statements. */
2184 /* FORNOW. */
2185 if (loop->inner)
2186 innerloop_iters = 50; /* FIXME */
2188 for (i = 0; i < nbbs; i++)
2190 gimple_stmt_iterator si;
2191 basic_block bb = bbs[i];
2193 if (bb->loop_father == loop->inner)
2194 factor = innerloop_iters;
2195 else
2196 factor = 1;
2198 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2200 gimple stmt = gsi_stmt (si);
2201 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2202 /* Skip stmts that are not vectorized inside the loop. */
2203 if (!STMT_VINFO_RELEVANT_P (stmt_info)
2204 && (!STMT_VINFO_LIVE_P (stmt_info)
2205 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2206 continue;
2207 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
2208 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
2209 some of the "outside" costs are generated inside the outer-loop. */
2210 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
2214 scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
2216 /* Add additional cost for the peeled instructions in prologue and epilogue
2217 loop.
2219 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2220 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2222 TODO: Build an expression that represents peel_iters for prologue and
2223 epilogue to be used in a run-time test. */
2225 if (npeel < 0)
2227 peel_iters_prologue = vf/2;
2228 if (vect_print_dump_info (REPORT_COST))
2229 fprintf (vect_dump, "cost model: "
2230 "prologue peel iters set to vf/2.");
2232 /* If peeling for alignment is unknown, loop bound of main loop becomes
2233 unknown. */
2234 peel_iters_epilogue = vf/2;
2235 if (vect_print_dump_info (REPORT_COST))
2236 fprintf (vect_dump, "cost model: "
2237 "epilogue peel iters set to vf/2 because "
2238 "peeling for alignment is unknown .");
2240 /* If peeled iterations are unknown, count a taken branch and a not taken
2241 branch per peeled loop. Even if scalar loop iterations are known,
2242 vector iterations are not known since peeled prologue iterations are
2243 not known. Hence guards remain the same. */
2244 peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
2245 + vect_get_cost (cond_branch_not_taken));
2246 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2247 + (peel_iters_epilogue * scalar_single_iter_cost)
2248 + peel_guard_costs;
2250 else
2252 peel_iters_prologue = npeel;
2253 vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
2254 peel_iters_prologue, &peel_iters_epilogue,
2255 scalar_single_iter_cost);
2258 /* FORNOW: The scalar outside cost is incremented in one of the
2259 following ways:
2261 1. The vectorizer checks for alignment and aliasing and generates
2262 a condition that allows dynamic vectorization. A cost model
2263 check is ANDED with the versioning condition. Hence scalar code
2264 path now has the added cost of the versioning check.
2266 if (cost > th & versioning_check)
2267 jmp to vector code
2269 Hence run-time scalar is incremented by not-taken branch cost.
2271 2. The vectorizer then checks if a prologue is required. If the
2272 cost model check was not done before during versioning, it has to
2273 be done before the prologue check.
2275 if (cost <= th)
2276 prologue = scalar_iters
2277 if (prologue == 0)
2278 jmp to vector code
2279 else
2280 execute prologue
2281 if (prologue == num_iters)
2282 go to exit
2284 Hence the run-time scalar cost is incremented by a taken branch,
2285 plus a not-taken branch, plus a taken branch cost.
2287 3. The vectorizer then checks if an epilogue is required. If the
2288 cost model check was not done before during prologue check, it
2289 has to be done with the epilogue check.
2291 if (prologue == 0)
2292 jmp to vector code
2293 else
2294 execute prologue
2295 if (prologue == num_iters)
2296 go to exit
2297 vector code:
2298 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2299 jmp to epilogue
2301 Hence the run-time scalar cost should be incremented by 2 taken
2302 branches.
2304 TODO: The back end may reorder the BBS's differently and reverse
2305 conditions/branch directions. Change the estimates below to
2306 something more reasonable. */
2308 /* If the number of iterations is known and we do not do versioning, we can
2309 decide whether to vectorize at compile time. Hence the scalar version
2310 do not carry cost model guard costs. */
2311 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2312 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2313 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2315 /* Cost model check occurs at versioning. */
2316 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2317 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2318 scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
2319 else
2321 /* Cost model check occurs at prologue generation. */
2322 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2323 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
2324 + vect_get_cost (cond_branch_not_taken);
2325 /* Cost model check occurs at epilogue generation. */
2326 else
2327 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
2331 /* Add SLP costs. */
2332 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2333 for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
2335 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2336 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2339 /* Calculate number of iterations required to make the vector version
2340 profitable, relative to the loop bodies only. The following condition
2341 must hold true:
2342 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2343 where
2344 SIC = scalar iteration cost, VIC = vector iteration cost,
2345 VOC = vector outside cost, VF = vectorization factor,
2346 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2347 SOC = scalar outside cost for run time cost model check. */
2349 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2351 if (vec_outside_cost <= 0)
2352 min_profitable_iters = 1;
2353 else
2355 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2356 - vec_inside_cost * peel_iters_prologue
2357 - vec_inside_cost * peel_iters_epilogue)
2358 / ((scalar_single_iter_cost * vf)
2359 - vec_inside_cost);
2361 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2362 <= ((vec_inside_cost * min_profitable_iters)
2363 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2364 min_profitable_iters++;
2367 /* vector version will never be profitable. */
2368 else
2370 if (vect_print_dump_info (REPORT_COST))
2371 fprintf (vect_dump, "cost model: the vector iteration cost = %d "
2372 "divided by the scalar iteration cost = %d "
2373 "is greater or equal to the vectorization factor = %d.",
2374 vec_inside_cost, scalar_single_iter_cost, vf);
2375 return -1;
2378 if (vect_print_dump_info (REPORT_COST))
2380 fprintf (vect_dump, "Cost model analysis: \n");
2381 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2382 vec_inside_cost);
2383 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2384 vec_outside_cost);
2385 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2386 scalar_single_iter_cost);
2387 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2388 fprintf (vect_dump, " prologue iterations: %d\n",
2389 peel_iters_prologue);
2390 fprintf (vect_dump, " epilogue iterations: %d\n",
2391 peel_iters_epilogue);
2392 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2393 min_profitable_iters);
2396 min_profitable_iters =
2397 min_profitable_iters < vf ? vf : min_profitable_iters;
2399 /* Because the condition we create is:
2400 if (niters <= min_profitable_iters)
2401 then skip the vectorized loop. */
2402 min_profitable_iters--;
2404 if (vect_print_dump_info (REPORT_COST))
2405 fprintf (vect_dump, " Profitability threshold = %d\n",
2406 min_profitable_iters);
2408 return min_profitable_iters;
2412 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2413 functions. Design better to avoid maintenance issues. */
2415 /* Function vect_model_reduction_cost.
2417 Models cost for a reduction operation, including the vector ops
2418 generated within the strip-mine loop, the initial definition before
2419 the loop, and the epilogue code that must be generated. */
2421 static bool
2422 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2423 int ncopies)
2425 int outer_cost = 0;
2426 enum tree_code code;
2427 optab optab;
2428 tree vectype;
2429 gimple stmt, orig_stmt;
2430 tree reduction_op;
2431 enum machine_mode mode;
2432 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2433 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2436 /* Cost of reduction op inside loop. */
2437 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2438 += ncopies * vect_get_cost (vector_stmt);
2440 stmt = STMT_VINFO_STMT (stmt_info);
2442 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2444 case GIMPLE_SINGLE_RHS:
2445 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2446 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2447 break;
2448 case GIMPLE_UNARY_RHS:
2449 reduction_op = gimple_assign_rhs1 (stmt);
2450 break;
2451 case GIMPLE_BINARY_RHS:
2452 reduction_op = gimple_assign_rhs2 (stmt);
2453 break;
2454 default:
2455 gcc_unreachable ();
2458 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2459 if (!vectype)
2461 if (vect_print_dump_info (REPORT_COST))
2463 fprintf (vect_dump, "unsupported data-type ");
2464 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2466 return false;
2469 mode = TYPE_MODE (vectype);
2470 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2472 if (!orig_stmt)
2473 orig_stmt = STMT_VINFO_STMT (stmt_info);
2475 code = gimple_assign_rhs_code (orig_stmt);
2477 /* Add in cost for initial definition. */
2478 outer_cost += vect_get_cost (scalar_to_vec);
2480 /* Determine cost of epilogue code.
2482 We have a reduction operator that will reduce the vector in one statement.
2483 Also requires scalar extract. */
2485 if (!nested_in_vect_loop_p (loop, orig_stmt))
2487 if (reduc_code != ERROR_MARK)
2488 outer_cost += vect_get_cost (vector_stmt)
2489 + vect_get_cost (vec_to_scalar);
2490 else
2492 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2493 tree bitsize =
2494 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2495 int element_bitsize = tree_low_cst (bitsize, 1);
2496 int nelements = vec_size_in_bits / element_bitsize;
2498 optab = optab_for_tree_code (code, vectype, optab_default);
2500 /* We have a whole vector shift available. */
2501 if (VECTOR_MODE_P (mode)
2502 && optab_handler (optab, mode) != CODE_FOR_nothing
2503 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
2504 /* Final reduction via vector shifts and the reduction operator. Also
2505 requires scalar extract. */
2506 outer_cost += ((exact_log2(nelements) * 2)
2507 * vect_get_cost (vector_stmt)
2508 + vect_get_cost (vec_to_scalar));
2509 else
2510 /* Use extracts and reduction op for final reduction. For N elements,
2511 we have N extracts and N-1 reduction ops. */
2512 outer_cost += ((nelements + nelements - 1)
2513 * vect_get_cost (vector_stmt));
2517 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2519 if (vect_print_dump_info (REPORT_COST))
2520 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2521 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2522 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2524 return true;
2528 /* Function vect_model_induction_cost.
2530 Models cost for induction operations. */
2532 static void
2533 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2535 /* loop cost for vec_loop. */
2536 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2537 = ncopies * vect_get_cost (vector_stmt);
2538 /* prologue cost for vec_init and vec_step. */
2539 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
2540 = 2 * vect_get_cost (scalar_to_vec);
2542 if (vect_print_dump_info (REPORT_COST))
2543 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2544 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2545 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2549 /* Function get_initial_def_for_induction
2551 Input:
2552 STMT - a stmt that performs an induction operation in the loop.
2553 IV_PHI - the initial value of the induction variable
2555 Output:
2556 Return a vector variable, initialized with the first VF values of
2557 the induction variable. E.g., for an iv with IV_PHI='X' and
2558 evolution S, for a vector of 4 units, we want to return:
2559 [X, X + S, X + 2*S, X + 3*S]. */
2561 static tree
2562 get_initial_def_for_induction (gimple iv_phi)
2564 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2565 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2566 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2567 tree scalar_type = TREE_TYPE (gimple_phi_result (iv_phi));
2568 tree vectype;
2569 int nunits;
2570 edge pe = loop_preheader_edge (loop);
2571 struct loop *iv_loop;
2572 basic_block new_bb;
2573 tree vec, vec_init, vec_step, t;
2574 tree access_fn;
2575 tree new_var;
2576 tree new_name;
2577 gimple init_stmt, induction_phi, new_stmt;
2578 tree induc_def, vec_def, vec_dest;
2579 tree init_expr, step_expr;
2580 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2581 int i;
2582 bool ok;
2583 int ncopies;
2584 tree expr;
2585 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2586 bool nested_in_vect_loop = false;
2587 gimple_seq stmts = NULL;
2588 imm_use_iterator imm_iter;
2589 use_operand_p use_p;
2590 gimple exit_phi;
2591 edge latch_e;
2592 tree loop_arg;
2593 gimple_stmt_iterator si;
2594 basic_block bb = gimple_bb (iv_phi);
2595 tree stepvectype;
2597 vectype = get_vectype_for_scalar_type (scalar_type);
2598 gcc_assert (vectype);
2599 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2600 ncopies = vf / nunits;
2602 gcc_assert (phi_info);
2603 gcc_assert (ncopies >= 1);
2605 /* Find the first insertion point in the BB. */
2606 si = gsi_after_labels (bb);
2608 if (INTEGRAL_TYPE_P (scalar_type))
2609 step_expr = build_int_cst (scalar_type, 0);
2610 else if (POINTER_TYPE_P (scalar_type))
2611 step_expr = size_zero_node;
2612 else
2613 step_expr = build_real (scalar_type, dconst0);
2615 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2616 if (nested_in_vect_loop_p (loop, iv_phi))
2618 nested_in_vect_loop = true;
2619 iv_loop = loop->inner;
2621 else
2622 iv_loop = loop;
2623 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2625 latch_e = loop_latch_edge (iv_loop);
2626 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2628 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2629 gcc_assert (access_fn);
2630 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2631 &init_expr, &step_expr);
2632 gcc_assert (ok);
2633 pe = loop_preheader_edge (iv_loop);
2635 /* Create the vector that holds the initial_value of the induction. */
2636 if (nested_in_vect_loop)
2638 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2639 been created during vectorization of previous stmts; We obtain it from
2640 the STMT_VINFO_VEC_STMT of the defining stmt. */
2641 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2642 loop_preheader_edge (iv_loop));
2643 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2645 else
2647 /* iv_loop is the loop to be vectorized. Create:
2648 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2649 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2650 add_referenced_var (new_var);
2652 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
2653 if (stmts)
2655 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2656 gcc_assert (!new_bb);
2659 t = NULL_TREE;
2660 t = tree_cons (NULL_TREE, init_expr, t);
2661 for (i = 1; i < nunits; i++)
2663 /* Create: new_name_i = new_name + step_expr */
2664 enum tree_code code = POINTER_TYPE_P (scalar_type)
2665 ? POINTER_PLUS_EXPR : PLUS_EXPR;
2666 init_stmt = gimple_build_assign_with_ops (code, new_var,
2667 new_name, step_expr);
2668 new_name = make_ssa_name (new_var, init_stmt);
2669 gimple_assign_set_lhs (init_stmt, new_name);
2671 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
2672 gcc_assert (!new_bb);
2674 if (vect_print_dump_info (REPORT_DETAILS))
2676 fprintf (vect_dump, "created new init_stmt: ");
2677 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
2679 t = tree_cons (NULL_TREE, new_name, t);
2681 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
2682 vec = build_constructor_from_list (vectype, nreverse (t));
2683 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
2687 /* Create the vector that holds the step of the induction. */
2688 if (nested_in_vect_loop)
2689 /* iv_loop is nested in the loop to be vectorized. Generate:
2690 vec_step = [S, S, S, S] */
2691 new_name = step_expr;
2692 else
2694 /* iv_loop is the loop to be vectorized. Generate:
2695 vec_step = [VF*S, VF*S, VF*S, VF*S] */
2696 expr = build_int_cst (TREE_TYPE (step_expr), vf);
2697 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2698 expr, step_expr);
2701 t = NULL_TREE;
2702 for (i = 0; i < nunits; i++)
2703 t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
2704 gcc_assert (CONSTANT_CLASS_P (new_name));
2705 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
2706 gcc_assert (stepvectype);
2707 vec = build_vector (stepvectype, t);
2708 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2711 /* Create the following def-use cycle:
2712 loop prolog:
2713 vec_init = ...
2714 vec_step = ...
2715 loop:
2716 vec_iv = PHI <vec_init, vec_loop>
2718 STMT
2720 vec_loop = vec_iv + vec_step; */
2722 /* Create the induction-phi that defines the induction-operand. */
2723 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
2724 add_referenced_var (vec_dest);
2725 induction_phi = create_phi_node (vec_dest, iv_loop->header);
2726 set_vinfo_for_stmt (induction_phi,
2727 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
2728 induc_def = PHI_RESULT (induction_phi);
2730 /* Create the iv update inside the loop */
2731 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2732 induc_def, vec_step);
2733 vec_def = make_ssa_name (vec_dest, new_stmt);
2734 gimple_assign_set_lhs (new_stmt, vec_def);
2735 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2736 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
2737 NULL));
2739 /* Set the arguments of the phi node: */
2740 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
2741 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
2742 UNKNOWN_LOCATION);
2745 /* In case that vectorization factor (VF) is bigger than the number
2746 of elements that we can fit in a vectype (nunits), we have to generate
2747 more than one vector stmt - i.e - we need to "unroll" the
2748 vector stmt by a factor VF/nunits. For more details see documentation
2749 in vectorizable_operation. */
2751 if (ncopies > 1)
2753 stmt_vec_info prev_stmt_vinfo;
2754 /* FORNOW. This restriction should be relaxed. */
2755 gcc_assert (!nested_in_vect_loop);
2757 /* Create the vector that holds the step of the induction. */
2758 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
2759 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2760 expr, step_expr);
2761 t = NULL_TREE;
2762 for (i = 0; i < nunits; i++)
2763 t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
2764 gcc_assert (CONSTANT_CLASS_P (new_name));
2765 vec = build_vector (stepvectype, t);
2766 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2768 vec_def = induc_def;
2769 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
2770 for (i = 1; i < ncopies; i++)
2772 /* vec_i = vec_prev + vec_step */
2773 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2774 vec_def, vec_step);
2775 vec_def = make_ssa_name (vec_dest, new_stmt);
2776 gimple_assign_set_lhs (new_stmt, vec_def);
2778 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2779 set_vinfo_for_stmt (new_stmt,
2780 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
2781 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
2782 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
2786 if (nested_in_vect_loop)
2788 /* Find the loop-closed exit-phi of the induction, and record
2789 the final vector of induction results: */
2790 exit_phi = NULL;
2791 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
2793 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
2795 exit_phi = USE_STMT (use_p);
2796 break;
2799 if (exit_phi)
2801 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
2802 /* FORNOW. Currently not supporting the case that an inner-loop induction
2803 is not used in the outer-loop (i.e. only outside the outer-loop). */
2804 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
2805 && !STMT_VINFO_LIVE_P (stmt_vinfo));
2807 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
2808 if (vect_print_dump_info (REPORT_DETAILS))
2810 fprintf (vect_dump, "vector of inductions after inner-loop:");
2811 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
2817 if (vect_print_dump_info (REPORT_DETAILS))
2819 fprintf (vect_dump, "transform induction: created def-use cycle: ");
2820 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
2821 fprintf (vect_dump, "\n");
2822 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
2825 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
2826 return induc_def;
2830 /* Function get_initial_def_for_reduction
2832 Input:
2833 STMT - a stmt that performs a reduction operation in the loop.
2834 INIT_VAL - the initial value of the reduction variable
2836 Output:
2837 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
2838 of the reduction (used for adjusting the epilog - see below).
2839 Return a vector variable, initialized according to the operation that STMT
2840 performs. This vector will be used as the initial value of the
2841 vector of partial results.
2843 Option1 (adjust in epilog): Initialize the vector as follows:
2844 add/bit or/xor: [0,0,...,0,0]
2845 mult/bit and: [1,1,...,1,1]
2846 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
2847 and when necessary (e.g. add/mult case) let the caller know
2848 that it needs to adjust the result by init_val.
2850 Option2: Initialize the vector as follows:
2851 add/bit or/xor: [init_val,0,0,...,0]
2852 mult/bit and: [init_val,1,1,...,1]
2853 min/max/cond_expr: [init_val,init_val,...,init_val]
2854 and no adjustments are needed.
2856 For example, for the following code:
2858 s = init_val;
2859 for (i=0;i<n;i++)
2860 s = s + a[i];
2862 STMT is 's = s + a[i]', and the reduction variable is 's'.
2863 For a vector of 4 units, we want to return either [0,0,0,init_val],
2864 or [0,0,0,0] and let the caller know that it needs to adjust
2865 the result at the end by 'init_val'.
2867 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
2868 initialization vector is simpler (same element in all entries), if
2869 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
2871 A cost model should help decide between these two schemes. */
2873 tree
2874 get_initial_def_for_reduction (gimple stmt, tree init_val,
2875 tree *adjustment_def)
2877 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2878 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2879 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2880 tree scalar_type = TREE_TYPE (init_val);
2881 tree vectype = get_vectype_for_scalar_type (scalar_type);
2882 int nunits;
2883 enum tree_code code = gimple_assign_rhs_code (stmt);
2884 tree def_for_init;
2885 tree init_def;
2886 tree t = NULL_TREE;
2887 int i;
2888 bool nested_in_vect_loop = false;
2889 tree init_value;
2890 REAL_VALUE_TYPE real_init_val = dconst0;
2891 int int_init_val = 0;
2892 gimple def_stmt = NULL;
2894 gcc_assert (vectype);
2895 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2897 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
2898 || SCALAR_FLOAT_TYPE_P (scalar_type));
2900 if (nested_in_vect_loop_p (loop, stmt))
2901 nested_in_vect_loop = true;
2902 else
2903 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
2905 /* In case of double reduction we only create a vector variable to be put
2906 in the reduction phi node. The actual statement creation is done in
2907 vect_create_epilog_for_reduction. */
2908 if (adjustment_def && nested_in_vect_loop
2909 && TREE_CODE (init_val) == SSA_NAME
2910 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
2911 && gimple_code (def_stmt) == GIMPLE_PHI
2912 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2913 && vinfo_for_stmt (def_stmt)
2914 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2915 == vect_double_reduction_def)
2917 *adjustment_def = NULL;
2918 return vect_create_destination_var (init_val, vectype);
2921 if (TREE_CONSTANT (init_val))
2923 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2924 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
2925 else
2926 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
2928 else
2929 init_value = init_val;
2931 switch (code)
2933 case WIDEN_SUM_EXPR:
2934 case DOT_PROD_EXPR:
2935 case PLUS_EXPR:
2936 case MINUS_EXPR:
2937 case BIT_IOR_EXPR:
2938 case BIT_XOR_EXPR:
2939 case MULT_EXPR:
2940 case BIT_AND_EXPR:
2941 /* ADJUSMENT_DEF is NULL when called from
2942 vect_create_epilog_for_reduction to vectorize double reduction. */
2943 if (adjustment_def)
2945 if (nested_in_vect_loop)
2946 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
2947 NULL);
2948 else
2949 *adjustment_def = init_val;
2952 if (code == MULT_EXPR)
2954 real_init_val = dconst1;
2955 int_init_val = 1;
2958 if (code == BIT_AND_EXPR)
2959 int_init_val = -1;
2961 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2962 def_for_init = build_real (scalar_type, real_init_val);
2963 else
2964 def_for_init = build_int_cst (scalar_type, int_init_val);
2966 /* Create a vector of '0' or '1' except the first element. */
2967 for (i = nunits - 2; i >= 0; --i)
2968 t = tree_cons (NULL_TREE, def_for_init, t);
2970 /* Option1: the first element is '0' or '1' as well. */
2971 if (adjustment_def)
2973 t = tree_cons (NULL_TREE, def_for_init, t);
2974 init_def = build_vector (vectype, t);
2975 break;
2978 /* Option2: the first element is INIT_VAL. */
2979 t = tree_cons (NULL_TREE, init_value, t);
2980 if (TREE_CONSTANT (init_val))
2981 init_def = build_vector (vectype, t);
2982 else
2983 init_def = build_constructor_from_list (vectype, t);
2985 break;
2987 case MIN_EXPR:
2988 case MAX_EXPR:
2989 case COND_EXPR:
2990 if (adjustment_def)
2992 *adjustment_def = NULL_TREE;
2993 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
2994 break;
2997 for (i = nunits - 1; i >= 0; --i)
2998 t = tree_cons (NULL_TREE, init_value, t);
3000 if (TREE_CONSTANT (init_val))
3001 init_def = build_vector (vectype, t);
3002 else
3003 init_def = build_constructor_from_list (vectype, t);
3005 break;
3007 default:
3008 gcc_unreachable ();
3011 return init_def;
3015 /* Function vect_create_epilog_for_reduction
3017 Create code at the loop-epilog to finalize the result of a reduction
3018 computation.
3020 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3021 reduction statements.
3022 STMT is the scalar reduction stmt that is being vectorized.
3023 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3024 number of elements that we can fit in a vectype (nunits). In this case
3025 we have to generate more than one vector stmt - i.e - we need to "unroll"
3026 the vector stmt by a factor VF/nunits. For more details see documentation
3027 in vectorizable_operation.
3028 REDUC_CODE is the tree-code for the epilog reduction.
3029 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3030 computation.
3031 REDUC_INDEX is the index of the operand in the right hand side of the
3032 statement that is defined by REDUCTION_PHI.
3033 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3034 SLP_NODE is an SLP node containing a group of reduction statements. The
3035 first one in this group is STMT.
3037 This function:
3038 1. Creates the reduction def-use cycles: sets the arguments for
3039 REDUCTION_PHIS:
3040 The loop-entry argument is the vectorized initial-value of the reduction.
3041 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3042 sums.
3043 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3044 by applying the operation specified by REDUC_CODE if available, or by
3045 other means (whole-vector shifts or a scalar loop).
3046 The function also creates a new phi node at the loop exit to preserve
3047 loop-closed form, as illustrated below.
3049 The flow at the entry to this function:
3051 loop:
3052 vec_def = phi <null, null> # REDUCTION_PHI
3053 VECT_DEF = vector_stmt # vectorized form of STMT
3054 s_loop = scalar_stmt # (scalar) STMT
3055 loop_exit:
3056 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3057 use <s_out0>
3058 use <s_out0>
3060 The above is transformed by this function into:
3062 loop:
3063 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3064 VECT_DEF = vector_stmt # vectorized form of STMT
3065 s_loop = scalar_stmt # (scalar) STMT
3066 loop_exit:
3067 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3068 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3069 v_out2 = reduce <v_out1>
3070 s_out3 = extract_field <v_out2, 0>
3071 s_out4 = adjust_result <s_out3>
3072 use <s_out4>
3073 use <s_out4>
3076 static void
3077 vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
3078 int ncopies, enum tree_code reduc_code,
3079 VEC (gimple, heap) *reduction_phis,
3080 int reduc_index, bool double_reduc,
3081 slp_tree slp_node)
3083 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3084 stmt_vec_info prev_phi_info;
3085 tree vectype;
3086 enum machine_mode mode;
3087 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3088 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3089 basic_block exit_bb;
3090 tree scalar_dest;
3091 tree scalar_type;
3092 gimple new_phi = NULL, phi;
3093 gimple_stmt_iterator exit_gsi;
3094 tree vec_dest;
3095 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3096 gimple epilog_stmt = NULL;
3097 enum tree_code code = gimple_assign_rhs_code (stmt);
3098 gimple exit_phi;
3099 tree bitsize, bitpos;
3100 tree adjustment_def = NULL;
3101 tree vec_initial_def = NULL;
3102 tree reduction_op, expr, def;
3103 tree orig_name, scalar_result;
3104 imm_use_iterator imm_iter;
3105 use_operand_p use_p;
3106 bool extract_scalar_result = false;
3107 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3108 bool nested_in_vect_loop = false;
3109 VEC (gimple, heap) *new_phis = NULL;
3110 enum vect_def_type dt = vect_unknown_def_type;
3111 int j, i;
3112 VEC (tree, heap) *scalar_results = NULL;
3113 unsigned int group_size = 1, k, ratio;
3114 VEC (tree, heap) *vec_initial_defs = NULL;
3115 VEC (gimple, heap) *phis;
3117 if (slp_node)
3118 group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
3120 if (nested_in_vect_loop_p (loop, stmt))
3122 outer_loop = loop;
3123 loop = loop->inner;
3124 nested_in_vect_loop = true;
3125 gcc_assert (!slp_node);
3128 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3130 case GIMPLE_SINGLE_RHS:
3131 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3132 == ternary_op);
3133 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3134 break;
3135 case GIMPLE_UNARY_RHS:
3136 reduction_op = gimple_assign_rhs1 (stmt);
3137 break;
3138 case GIMPLE_BINARY_RHS:
3139 reduction_op = reduc_index ?
3140 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3141 break;
3142 default:
3143 gcc_unreachable ();
3146 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3147 gcc_assert (vectype);
3148 mode = TYPE_MODE (vectype);
3150 /* 1. Create the reduction def-use cycle:
3151 Set the arguments of REDUCTION_PHIS, i.e., transform
3153 loop:
3154 vec_def = phi <null, null> # REDUCTION_PHI
3155 VECT_DEF = vector_stmt # vectorized form of STMT
3158 into:
3160 loop:
3161 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3162 VECT_DEF = vector_stmt # vectorized form of STMT
3165 (in case of SLP, do it for all the phis). */
3167 /* Get the loop-entry arguments. */
3168 if (slp_node)
3169 vect_get_slp_defs (slp_node, &vec_initial_defs, NULL, reduc_index);
3170 else
3172 vec_initial_defs = VEC_alloc (tree, heap, 1);
3173 /* For the case of reduction, vect_get_vec_def_for_operand returns
3174 the scalar def before the loop, that defines the initial value
3175 of the reduction variable. */
3176 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3177 &adjustment_def);
3178 VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
3181 /* Set phi nodes arguments. */
3182 for (i = 0; VEC_iterate (gimple, reduction_phis, i, phi); i++)
3184 tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
3185 tree def = VEC_index (tree, vect_defs, i);
3186 for (j = 0; j < ncopies; j++)
3188 /* Set the loop-entry arg of the reduction-phi. */
3189 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3190 UNKNOWN_LOCATION);
3192 /* Set the loop-latch arg for the reduction-phi. */
3193 if (j > 0)
3194 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3196 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3198 if (vect_print_dump_info (REPORT_DETAILS))
3200 fprintf (vect_dump, "transform reduction: created def-use"
3201 " cycle: ");
3202 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
3203 fprintf (vect_dump, "\n");
3204 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
3205 TDF_SLIM);
3208 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3212 VEC_free (tree, heap, vec_initial_defs);
3214 /* 2. Create epilog code.
3215 The reduction epilog code operates across the elements of the vector
3216 of partial results computed by the vectorized loop.
3217 The reduction epilog code consists of:
3219 step 1: compute the scalar result in a vector (v_out2)
3220 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3221 step 3: adjust the scalar result (s_out3) if needed.
3223 Step 1 can be accomplished using one the following three schemes:
3224 (scheme 1) using reduc_code, if available.
3225 (scheme 2) using whole-vector shifts, if available.
3226 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3227 combined.
3229 The overall epilog code looks like this:
3231 s_out0 = phi <s_loop> # original EXIT_PHI
3232 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3233 v_out2 = reduce <v_out1> # step 1
3234 s_out3 = extract_field <v_out2, 0> # step 2
3235 s_out4 = adjust_result <s_out3> # step 3
3237 (step 3 is optional, and steps 1 and 2 may be combined).
3238 Lastly, the uses of s_out0 are replaced by s_out4. */
3241 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3242 v_out1 = phi <VECT_DEF>
3243 Store them in NEW_PHIS. */
3245 exit_bb = single_exit (loop)->dest;
3246 prev_phi_info = NULL;
3247 new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
3248 for (i = 0; VEC_iterate (tree, vect_defs, i, def); i++)
3250 for (j = 0; j < ncopies; j++)
3252 phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
3253 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3254 if (j == 0)
3255 VEC_quick_push (gimple, new_phis, phi);
3256 else
3258 def = vect_get_vec_def_for_stmt_copy (dt, def);
3259 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3262 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3263 prev_phi_info = vinfo_for_stmt (phi);
3267 exit_gsi = gsi_after_labels (exit_bb);
3269 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3270 (i.e. when reduc_code is not available) and in the final adjustment
3271 code (if needed). Also get the original scalar reduction variable as
3272 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3273 represents a reduction pattern), the tree-code and scalar-def are
3274 taken from the original stmt that the pattern-stmt (STMT) replaces.
3275 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3276 are taken from STMT. */
3278 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3279 if (!orig_stmt)
3281 /* Regular reduction */
3282 orig_stmt = stmt;
3284 else
3286 /* Reduction pattern */
3287 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3288 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3289 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3292 code = gimple_assign_rhs_code (orig_stmt);
3293 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3294 partial results are added and not subtracted. */
3295 if (code == MINUS_EXPR)
3296 code = PLUS_EXPR;
3298 scalar_dest = gimple_assign_lhs (orig_stmt);
3299 scalar_type = TREE_TYPE (scalar_dest);
3300 scalar_results = VEC_alloc (tree, heap, group_size);
3301 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3302 bitsize = TYPE_SIZE (scalar_type);
3304 /* In case this is a reduction in an inner-loop while vectorizing an outer
3305 loop - we don't need to extract a single scalar result at the end of the
3306 inner-loop (unless it is double reduction, i.e., the use of reduction is
3307 outside the outer-loop). The final vector of partial results will be used
3308 in the vectorized outer-loop, or reduced to a scalar result at the end of
3309 the outer-loop. */
3310 if (nested_in_vect_loop && !double_reduc)
3311 goto vect_finalize_reduction;
3313 /* 2.3 Create the reduction code, using one of the three schemes described
3314 above. In SLP we simply need to extract all the elements from the
3315 vector (without reducing them), so we use scalar shifts. */
3316 if (reduc_code != ERROR_MARK && !slp_node)
3318 tree tmp;
3320 /*** Case 1: Create:
3321 v_out2 = reduc_expr <v_out1> */
3323 if (vect_print_dump_info (REPORT_DETAILS))
3324 fprintf (vect_dump, "Reduce using direct vector reduction.");
3326 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3327 new_phi = VEC_index (gimple, new_phis, 0);
3328 tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
3329 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3330 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3331 gimple_assign_set_lhs (epilog_stmt, new_temp);
3332 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3334 extract_scalar_result = true;
3336 else
3338 enum tree_code shift_code = ERROR_MARK;
3339 bool have_whole_vector_shift = true;
3340 int bit_offset;
3341 int element_bitsize = tree_low_cst (bitsize, 1);
3342 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3343 tree vec_temp;
3345 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3346 shift_code = VEC_RSHIFT_EXPR;
3347 else
3348 have_whole_vector_shift = false;
3350 /* Regardless of whether we have a whole vector shift, if we're
3351 emulating the operation via tree-vect-generic, we don't want
3352 to use it. Only the first round of the reduction is likely
3353 to still be profitable via emulation. */
3354 /* ??? It might be better to emit a reduction tree code here, so that
3355 tree-vect-generic can expand the first round via bit tricks. */
3356 if (!VECTOR_MODE_P (mode))
3357 have_whole_vector_shift = false;
3358 else
3360 optab optab = optab_for_tree_code (code, vectype, optab_default);
3361 if (optab_handler (optab, mode) == CODE_FOR_nothing)
3362 have_whole_vector_shift = false;
3365 if (have_whole_vector_shift && !slp_node)
3367 /*** Case 2: Create:
3368 for (offset = VS/2; offset >= element_size; offset/=2)
3370 Create: va' = vec_shift <va, offset>
3371 Create: va = vop <va, va'>
3372 } */
3374 if (vect_print_dump_info (REPORT_DETAILS))
3375 fprintf (vect_dump, "Reduce using vector shifts");
3377 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3378 new_phi = VEC_index (gimple, new_phis, 0);
3379 new_temp = PHI_RESULT (new_phi);
3380 for (bit_offset = vec_size_in_bits/2;
3381 bit_offset >= element_bitsize;
3382 bit_offset /= 2)
3384 tree bitpos = size_int (bit_offset);
3386 epilog_stmt = gimple_build_assign_with_ops (shift_code,
3387 vec_dest, new_temp, bitpos);
3388 new_name = make_ssa_name (vec_dest, epilog_stmt);
3389 gimple_assign_set_lhs (epilog_stmt, new_name);
3390 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3392 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3393 new_name, new_temp);
3394 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3395 gimple_assign_set_lhs (epilog_stmt, new_temp);
3396 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3399 extract_scalar_result = true;
3401 else
3403 tree rhs;
3405 /*** Case 3: Create:
3406 s = extract_field <v_out2, 0>
3407 for (offset = element_size;
3408 offset < vector_size;
3409 offset += element_size;)
3411 Create: s' = extract_field <v_out2, offset>
3412 Create: s = op <s, s'> // For non SLP cases
3413 } */
3415 if (vect_print_dump_info (REPORT_DETAILS))
3416 fprintf (vect_dump, "Reduce using scalar code. ");
3418 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3419 for (i = 0; VEC_iterate (gimple, new_phis, i, new_phi); i++)
3421 vec_temp = PHI_RESULT (new_phi);
3422 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3423 bitsize_zero_node);
3424 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3425 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3426 gimple_assign_set_lhs (epilog_stmt, new_temp);
3427 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3429 /* In SLP we don't need to apply reduction operation, so we just
3430 collect s' values in SCALAR_RESULTS. */
3431 if (slp_node)
3432 VEC_safe_push (tree, heap, scalar_results, new_temp);
3434 for (bit_offset = element_bitsize;
3435 bit_offset < vec_size_in_bits;
3436 bit_offset += element_bitsize)
3438 tree bitpos = bitsize_int (bit_offset);
3439 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
3440 bitsize, bitpos);
3442 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3443 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3444 gimple_assign_set_lhs (epilog_stmt, new_name);
3445 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3447 if (slp_node)
3449 /* In SLP we don't need to apply reduction operation, so
3450 we just collect s' values in SCALAR_RESULTS. */
3451 new_temp = new_name;
3452 VEC_safe_push (tree, heap, scalar_results, new_name);
3454 else
3456 epilog_stmt = gimple_build_assign_with_ops (code,
3457 new_scalar_dest, new_name, new_temp);
3458 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3459 gimple_assign_set_lhs (epilog_stmt, new_temp);
3460 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3465 /* The only case where we need to reduce scalar results in SLP, is
3466 unrolling. If the size of SCALAR_RESULTS is greater than
3467 GROUP_SIZE, we reduce them combining elements modulo
3468 GROUP_SIZE. */
3469 if (slp_node)
3471 tree res, first_res, new_res;
3472 gimple new_stmt;
3474 /* Reduce multiple scalar results in case of SLP unrolling. */
3475 for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
3476 j++)
3478 first_res = VEC_index (tree, scalar_results, j % group_size);
3479 new_stmt = gimple_build_assign_with_ops (code,
3480 new_scalar_dest, first_res, res);
3481 new_res = make_ssa_name (new_scalar_dest, new_stmt);
3482 gimple_assign_set_lhs (new_stmt, new_res);
3483 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
3484 VEC_replace (tree, scalar_results, j % group_size, new_res);
3487 else
3488 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
3489 VEC_safe_push (tree, heap, scalar_results, new_temp);
3491 extract_scalar_result = false;
3495 /* 2.4 Extract the final scalar result. Create:
3496 s_out3 = extract_field <v_out2, bitpos> */
3498 if (extract_scalar_result)
3500 tree rhs;
3502 if (vect_print_dump_info (REPORT_DETAILS))
3503 fprintf (vect_dump, "extract scalar result");
3505 if (BYTES_BIG_ENDIAN)
3506 bitpos = size_binop (MULT_EXPR,
3507 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3508 TYPE_SIZE (scalar_type));
3509 else
3510 bitpos = bitsize_zero_node;
3512 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3513 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3514 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3515 gimple_assign_set_lhs (epilog_stmt, new_temp);
3516 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3517 VEC_safe_push (tree, heap, scalar_results, new_temp);
3520 vect_finalize_reduction:
3522 /* 2.5 Adjust the final result by the initial value of the reduction
3523 variable. (When such adjustment is not needed, then
3524 'adjustment_def' is zero). For example, if code is PLUS we create:
3525 new_temp = loop_exit_def + adjustment_def */
3527 if (adjustment_def)
3529 gcc_assert (!slp_node);
3530 if (nested_in_vect_loop)
3532 new_phi = VEC_index (gimple, new_phis, 0);
3533 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3534 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3535 new_dest = vect_create_destination_var (scalar_dest, vectype);
3537 else
3539 new_temp = VEC_index (tree, scalar_results, 0);
3540 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3541 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3542 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3545 epilog_stmt = gimple_build_assign (new_dest, expr);
3546 new_temp = make_ssa_name (new_dest, epilog_stmt);
3547 gimple_assign_set_lhs (epilog_stmt, new_temp);
3548 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3549 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3550 if (nested_in_vect_loop)
3552 set_vinfo_for_stmt (epilog_stmt,
3553 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3554 NULL));
3555 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3556 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3558 if (!double_reduc)
3559 VEC_quick_push (tree, scalar_results, new_temp);
3560 else
3561 VEC_replace (tree, scalar_results, 0, new_temp);
3563 else
3564 VEC_replace (tree, scalar_results, 0, new_temp);
3566 VEC_replace (gimple, new_phis, 0, epilog_stmt);
3569 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
3570 phis with new adjusted scalar results, i.e., replace use <s_out0>
3571 with use <s_out4>.
3573 Transform:
3574 loop_exit:
3575 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3576 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3577 v_out2 = reduce <v_out1>
3578 s_out3 = extract_field <v_out2, 0>
3579 s_out4 = adjust_result <s_out3>
3580 use <s_out0>
3581 use <s_out0>
3583 into:
3585 loop_exit:
3586 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3587 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3588 v_out2 = reduce <v_out1>
3589 s_out3 = extract_field <v_out2, 0>
3590 s_out4 = adjust_result <s_out3>
3591 use <s_out4>
3592 use <s_out4> */
3594 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
3595 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
3596 need to match SCALAR_RESULTS with corresponding statements. The first
3597 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
3598 the first vector stmt, etc.
3599 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
3600 if (group_size > VEC_length (gimple, new_phis))
3602 ratio = group_size / VEC_length (gimple, new_phis);
3603 gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
3605 else
3606 ratio = 1;
3608 for (k = 0; k < group_size; k++)
3610 if (k % ratio == 0)
3612 epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
3613 reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
3616 if (slp_node)
3618 gimple current_stmt = VEC_index (gimple,
3619 SLP_TREE_SCALAR_STMTS (slp_node), k);
3621 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
3622 /* SLP statements can't participate in patterns. */
3623 gcc_assert (!orig_stmt);
3624 scalar_dest = gimple_assign_lhs (current_stmt);
3627 phis = VEC_alloc (gimple, heap, 3);
3628 /* Find the loop-closed-use at the loop exit of the original scalar
3629 result. (The reduction result is expected to have two immediate uses -
3630 one at the latch block, and one at the loop exit). */
3631 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3632 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3633 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3635 /* We expect to have found an exit_phi because of loop-closed-ssa
3636 form. */
3637 gcc_assert (!VEC_empty (gimple, phis));
3639 for (i = 0; VEC_iterate (gimple, phis, i, exit_phi); i++)
3641 if (outer_loop)
3643 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
3644 gimple vect_phi;
3646 /* FORNOW. Currently not supporting the case that an inner-loop
3647 reduction is not used in the outer-loop (but only outside the
3648 outer-loop), unless it is double reduction. */
3649 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
3650 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
3651 || double_reduc);
3653 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
3654 if (!double_reduc
3655 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
3656 != vect_double_reduction_def)
3657 continue;
3659 /* Handle double reduction:
3661 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
3662 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
3663 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
3664 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
3666 At that point the regular reduction (stmt2 and stmt3) is
3667 already vectorized, as well as the exit phi node, stmt4.
3668 Here we vectorize the phi node of double reduction, stmt1, and
3669 update all relevant statements. */
3671 /* Go through all the uses of s2 to find double reduction phi
3672 node, i.e., stmt1 above. */
3673 orig_name = PHI_RESULT (exit_phi);
3674 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3676 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
3677 stmt_vec_info new_phi_vinfo;
3678 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
3679 basic_block bb = gimple_bb (use_stmt);
3680 gimple use;
3682 /* Check that USE_STMT is really double reduction phi
3683 node. */
3684 if (gimple_code (use_stmt) != GIMPLE_PHI
3685 || gimple_phi_num_args (use_stmt) != 2
3686 || !use_stmt_vinfo
3687 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
3688 != vect_double_reduction_def
3689 || bb->loop_father != outer_loop)
3690 continue;
3692 /* Create vector phi node for double reduction:
3693 vs1 = phi <vs0, vs2>
3694 vs1 was created previously in this function by a call to
3695 vect_get_vec_def_for_operand and is stored in
3696 vec_initial_def;
3697 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
3698 vs0 is created here. */
3700 /* Create vector phi node. */
3701 vect_phi = create_phi_node (vec_initial_def, bb);
3702 new_phi_vinfo = new_stmt_vec_info (vect_phi,
3703 loop_vec_info_for_loop (outer_loop), NULL);
3704 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
3706 /* Create vs0 - initial def of the double reduction phi. */
3707 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
3708 loop_preheader_edge (outer_loop));
3709 init_def = get_initial_def_for_reduction (stmt,
3710 preheader_arg, NULL);
3711 vect_phi_init = vect_init_vector (use_stmt, init_def,
3712 vectype, NULL);
3714 /* Update phi node arguments with vs0 and vs2. */
3715 add_phi_arg (vect_phi, vect_phi_init,
3716 loop_preheader_edge (outer_loop),
3717 UNKNOWN_LOCATION);
3718 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
3719 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
3720 if (vect_print_dump_info (REPORT_DETAILS))
3722 fprintf (vect_dump, "created double reduction phi "
3723 "node: ");
3724 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
3727 vect_phi_res = PHI_RESULT (vect_phi);
3729 /* Replace the use, i.e., set the correct vs1 in the regular
3730 reduction phi node. FORNOW, NCOPIES is always 1, so the
3731 loop is redundant. */
3732 use = reduction_phi;
3733 for (j = 0; j < ncopies; j++)
3735 edge pr_edge = loop_preheader_edge (loop);
3736 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
3737 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
3742 /* Replace the uses: */
3743 orig_name = PHI_RESULT (exit_phi);
3744 scalar_result = VEC_index (tree, scalar_results, k);
3745 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3746 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3747 SET_USE (use_p, scalar_result);
3750 VEC_free (gimple, heap, phis);
3753 VEC_free (tree, heap, scalar_results);
3754 VEC_free (gimple, heap, new_phis);
3758 /* Function vectorizable_reduction.
3760 Check if STMT performs a reduction operation that can be vectorized.
3761 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3762 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3763 Return FALSE if not a vectorizable STMT, TRUE otherwise.
3765 This function also handles reduction idioms (patterns) that have been
3766 recognized in advance during vect_pattern_recog. In this case, STMT may be
3767 of this form:
3768 X = pattern_expr (arg0, arg1, ..., X)
3769 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
3770 sequence that had been detected and replaced by the pattern-stmt (STMT).
3772 In some cases of reduction patterns, the type of the reduction variable X is
3773 different than the type of the other arguments of STMT.
3774 In such cases, the vectype that is used when transforming STMT into a vector
3775 stmt is different than the vectype that is used to determine the
3776 vectorization factor, because it consists of a different number of elements
3777 than the actual number of elements that are being operated upon in parallel.
3779 For example, consider an accumulation of shorts into an int accumulator.
3780 On some targets it's possible to vectorize this pattern operating on 8
3781 shorts at a time (hence, the vectype for purposes of determining the
3782 vectorization factor should be V8HI); on the other hand, the vectype that
3783 is used to create the vector form is actually V4SI (the type of the result).
3785 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
3786 indicates what is the actual level of parallelism (V8HI in the example), so
3787 that the right vectorization factor would be derived. This vectype
3788 corresponds to the type of arguments to the reduction stmt, and should *NOT*
3789 be used to create the vectorized stmt. The right vectype for the vectorized
3790 stmt is obtained from the type of the result X:
3791 get_vectype_for_scalar_type (TREE_TYPE (X))
3793 This means that, contrary to "regular" reductions (or "regular" stmts in
3794 general), the following equation:
3795 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
3796 does *NOT* necessarily hold for reduction patterns. */
3798 bool
3799 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
3800 gimple *vec_stmt, slp_tree slp_node)
3802 tree vec_dest;
3803 tree scalar_dest;
3804 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
3805 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3806 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3807 tree vectype_in = NULL_TREE;
3808 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3809 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3810 enum tree_code code, orig_code, epilog_reduc_code;
3811 enum machine_mode vec_mode;
3812 int op_type;
3813 optab optab, reduc_optab;
3814 tree new_temp = NULL_TREE;
3815 tree def;
3816 gimple def_stmt;
3817 enum vect_def_type dt;
3818 gimple new_phi = NULL;
3819 tree scalar_type;
3820 bool is_simple_use;
3821 gimple orig_stmt;
3822 stmt_vec_info orig_stmt_info;
3823 tree expr = NULL_TREE;
3824 int i;
3825 int ncopies;
3826 int epilog_copies;
3827 stmt_vec_info prev_stmt_info, prev_phi_info;
3828 bool single_defuse_cycle = false;
3829 tree reduc_def = NULL_TREE;
3830 gimple new_stmt = NULL;
3831 int j;
3832 tree ops[3];
3833 bool nested_cycle = false, found_nested_cycle_def = false;
3834 gimple reduc_def_stmt = NULL;
3835 /* The default is that the reduction variable is the last in statement. */
3836 int reduc_index = 2;
3837 bool double_reduc = false, dummy;
3838 basic_block def_bb;
3839 struct loop * def_stmt_loop, *outer_loop = NULL;
3840 tree def_arg;
3841 gimple def_arg_stmt;
3842 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
3843 VEC (gimple, heap) *phis = NULL;
3844 int vec_num;
3845 tree def0, def1;
3847 if (nested_in_vect_loop_p (loop, stmt))
3849 outer_loop = loop;
3850 loop = loop->inner;
3851 nested_cycle = true;
3854 /* 1. Is vectorizable reduction? */
3855 /* Not supportable if the reduction variable is used in the loop. */
3856 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
3857 return false;
3859 /* Reductions that are not used even in an enclosing outer-loop,
3860 are expected to be "live" (used out of the loop). */
3861 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
3862 && !STMT_VINFO_LIVE_P (stmt_info))
3863 return false;
3865 /* Make sure it was already recognized as a reduction computation. */
3866 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
3867 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
3868 return false;
3870 /* 2. Has this been recognized as a reduction pattern?
3872 Check if STMT represents a pattern that has been recognized
3873 in earlier analysis stages. For stmts that represent a pattern,
3874 the STMT_VINFO_RELATED_STMT field records the last stmt in
3875 the original sequence that constitutes the pattern. */
3877 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3878 if (orig_stmt)
3880 orig_stmt_info = vinfo_for_stmt (orig_stmt);
3881 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
3882 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
3883 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
3886 /* 3. Check the operands of the operation. The first operands are defined
3887 inside the loop body. The last operand is the reduction variable,
3888 which is defined by the loop-header-phi. */
3890 gcc_assert (is_gimple_assign (stmt));
3892 /* Flatten RHS */
3893 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3895 case GIMPLE_SINGLE_RHS:
3896 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
3897 if (op_type == ternary_op)
3899 tree rhs = gimple_assign_rhs1 (stmt);
3900 ops[0] = TREE_OPERAND (rhs, 0);
3901 ops[1] = TREE_OPERAND (rhs, 1);
3902 ops[2] = TREE_OPERAND (rhs, 2);
3903 code = TREE_CODE (rhs);
3905 else
3906 return false;
3907 break;
3909 case GIMPLE_BINARY_RHS:
3910 code = gimple_assign_rhs_code (stmt);
3911 op_type = TREE_CODE_LENGTH (code);
3912 gcc_assert (op_type == binary_op);
3913 ops[0] = gimple_assign_rhs1 (stmt);
3914 ops[1] = gimple_assign_rhs2 (stmt);
3915 break;
3917 case GIMPLE_UNARY_RHS:
3918 return false;
3920 default:
3921 gcc_unreachable ();
3924 scalar_dest = gimple_assign_lhs (stmt);
3925 scalar_type = TREE_TYPE (scalar_dest);
3926 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
3927 && !SCALAR_FLOAT_TYPE_P (scalar_type))
3928 return false;
3930 /* All uses but the last are expected to be defined in the loop.
3931 The last use is the reduction variable. In case of nested cycle this
3932 assumption is not true: we use reduc_index to record the index of the
3933 reduction variable. */
3934 for (i = 0; i < op_type-1; i++)
3936 tree tem;
3938 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
3939 if (i == 0 && code == COND_EXPR)
3940 continue;
3942 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL,
3943 &def_stmt, &def, &dt, &tem);
3944 if (!vectype_in)
3945 vectype_in = tem;
3946 gcc_assert (is_simple_use);
3947 if (dt != vect_internal_def
3948 && dt != vect_external_def
3949 && dt != vect_constant_def
3950 && dt != vect_induction_def
3951 && !(dt == vect_nested_cycle && nested_cycle))
3952 return false;
3954 if (dt == vect_nested_cycle)
3956 found_nested_cycle_def = true;
3957 reduc_def_stmt = def_stmt;
3958 reduc_index = i;
3962 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, NULL, &def_stmt,
3963 &def, &dt);
3964 gcc_assert (is_simple_use);
3965 gcc_assert (dt == vect_reduction_def
3966 || dt == vect_nested_cycle
3967 || ((dt == vect_internal_def || dt == vect_external_def
3968 || dt == vect_constant_def || dt == vect_induction_def)
3969 && nested_cycle && found_nested_cycle_def));
3970 if (!found_nested_cycle_def)
3971 reduc_def_stmt = def_stmt;
3973 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
3974 if (orig_stmt)
3975 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
3976 reduc_def_stmt,
3977 !nested_cycle,
3978 &dummy));
3979 else
3980 gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
3981 !nested_cycle, &dummy));
3983 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
3984 return false;
3986 if (slp_node)
3987 ncopies = 1;
3988 else
3989 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
3990 / TYPE_VECTOR_SUBPARTS (vectype_in));
3992 gcc_assert (ncopies >= 1);
3994 vec_mode = TYPE_MODE (vectype_in);
3996 if (code == COND_EXPR)
3998 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0))
4000 if (vect_print_dump_info (REPORT_DETAILS))
4001 fprintf (vect_dump, "unsupported condition in reduction");
4003 return false;
4006 else
4008 /* 4. Supportable by target? */
4010 /* 4.1. check support for the operation in the loop */
4011 optab = optab_for_tree_code (code, vectype_in, optab_default);
4012 if (!optab)
4014 if (vect_print_dump_info (REPORT_DETAILS))
4015 fprintf (vect_dump, "no optab.");
4017 return false;
4020 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4022 if (vect_print_dump_info (REPORT_DETAILS))
4023 fprintf (vect_dump, "op not supported by target.");
4025 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4026 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4027 < vect_min_worthwhile_factor (code))
4028 return false;
4030 if (vect_print_dump_info (REPORT_DETAILS))
4031 fprintf (vect_dump, "proceeding using word mode.");
4034 /* Worthwhile without SIMD support? */
4035 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4036 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4037 < vect_min_worthwhile_factor (code))
4039 if (vect_print_dump_info (REPORT_DETAILS))
4040 fprintf (vect_dump, "not worthwhile without SIMD support.");
4042 return false;
4046 /* 4.2. Check support for the epilog operation.
4048 If STMT represents a reduction pattern, then the type of the
4049 reduction variable may be different than the type of the rest
4050 of the arguments. For example, consider the case of accumulation
4051 of shorts into an int accumulator; The original code:
4052 S1: int_a = (int) short_a;
4053 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4055 was replaced with:
4056 STMT: int_acc = widen_sum <short_a, int_acc>
4058 This means that:
4059 1. The tree-code that is used to create the vector operation in the
4060 epilog code (that reduces the partial results) is not the
4061 tree-code of STMT, but is rather the tree-code of the original
4062 stmt from the pattern that STMT is replacing. I.e, in the example
4063 above we want to use 'widen_sum' in the loop, but 'plus' in the
4064 epilog.
4065 2. The type (mode) we use to check available target support
4066 for the vector operation to be created in the *epilog*, is
4067 determined by the type of the reduction variable (in the example
4068 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4069 However the type (mode) we use to check available target support
4070 for the vector operation to be created *inside the loop*, is
4071 determined by the type of the other arguments to STMT (in the
4072 example we'd check this: optab_handler (widen_sum_optab,
4073 vect_short_mode)).
4075 This is contrary to "regular" reductions, in which the types of all
4076 the arguments are the same as the type of the reduction variable.
4077 For "regular" reductions we can therefore use the same vector type
4078 (and also the same tree-code) when generating the epilog code and
4079 when generating the code inside the loop. */
4081 if (orig_stmt)
4083 /* This is a reduction pattern: get the vectype from the type of the
4084 reduction variable, and get the tree-code from orig_stmt. */
4085 orig_code = gimple_assign_rhs_code (orig_stmt);
4086 gcc_assert (vectype_out);
4087 vec_mode = TYPE_MODE (vectype_out);
4089 else
4091 /* Regular reduction: use the same vectype and tree-code as used for
4092 the vector code inside the loop can be used for the epilog code. */
4093 orig_code = code;
4096 if (nested_cycle)
4098 def_bb = gimple_bb (reduc_def_stmt);
4099 def_stmt_loop = def_bb->loop_father;
4100 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4101 loop_preheader_edge (def_stmt_loop));
4102 if (TREE_CODE (def_arg) == SSA_NAME
4103 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4104 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4105 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4106 && vinfo_for_stmt (def_arg_stmt)
4107 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4108 == vect_double_reduction_def)
4109 double_reduc = true;
4112 epilog_reduc_code = ERROR_MARK;
4113 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4115 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4116 optab_default);
4117 if (!reduc_optab)
4119 if (vect_print_dump_info (REPORT_DETAILS))
4120 fprintf (vect_dump, "no optab for reduction.");
4122 epilog_reduc_code = ERROR_MARK;
4125 if (reduc_optab
4126 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4128 if (vect_print_dump_info (REPORT_DETAILS))
4129 fprintf (vect_dump, "reduc op not supported by target.");
4131 epilog_reduc_code = ERROR_MARK;
4134 else
4136 if (!nested_cycle || double_reduc)
4138 if (vect_print_dump_info (REPORT_DETAILS))
4139 fprintf (vect_dump, "no reduc code for scalar code.");
4141 return false;
4145 if (double_reduc && ncopies > 1)
4147 if (vect_print_dump_info (REPORT_DETAILS))
4148 fprintf (vect_dump, "multiple types in double reduction");
4150 return false;
4153 if (!vec_stmt) /* transformation not required. */
4155 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4156 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4157 return false;
4158 return true;
4161 /** Transform. **/
4163 if (vect_print_dump_info (REPORT_DETAILS))
4164 fprintf (vect_dump, "transform reduction.");
4166 /* FORNOW: Multiple types are not supported for condition. */
4167 if (code == COND_EXPR)
4168 gcc_assert (ncopies == 1);
4170 /* Create the destination vector */
4171 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4173 /* In case the vectorization factor (VF) is bigger than the number
4174 of elements that we can fit in a vectype (nunits), we have to generate
4175 more than one vector stmt - i.e - we need to "unroll" the
4176 vector stmt by a factor VF/nunits. For more details see documentation
4177 in vectorizable_operation. */
4179 /* If the reduction is used in an outer loop we need to generate
4180 VF intermediate results, like so (e.g. for ncopies=2):
4181 r0 = phi (init, r0)
4182 r1 = phi (init, r1)
4183 r0 = x0 + r0;
4184 r1 = x1 + r1;
4185 (i.e. we generate VF results in 2 registers).
4186 In this case we have a separate def-use cycle for each copy, and therefore
4187 for each copy we get the vector def for the reduction variable from the
4188 respective phi node created for this copy.
4190 Otherwise (the reduction is unused in the loop nest), we can combine
4191 together intermediate results, like so (e.g. for ncopies=2):
4192 r = phi (init, r)
4193 r = x0 + r;
4194 r = x1 + r;
4195 (i.e. we generate VF/2 results in a single register).
4196 In this case for each copy we get the vector def for the reduction variable
4197 from the vectorized reduction operation generated in the previous iteration.
4200 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
4202 single_defuse_cycle = true;
4203 epilog_copies = 1;
4205 else
4206 epilog_copies = ncopies;
4208 prev_stmt_info = NULL;
4209 prev_phi_info = NULL;
4210 if (slp_node)
4212 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4213 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
4214 == TYPE_VECTOR_SUBPARTS (vectype_in));
4216 else
4218 vec_num = 1;
4219 vec_oprnds0 = VEC_alloc (tree, heap, 1);
4220 if (op_type == ternary_op)
4221 vec_oprnds1 = VEC_alloc (tree, heap, 1);
4224 phis = VEC_alloc (gimple, heap, vec_num);
4225 vect_defs = VEC_alloc (tree, heap, vec_num);
4226 if (!slp_node)
4227 VEC_quick_push (tree, vect_defs, NULL_TREE);
4229 for (j = 0; j < ncopies; j++)
4231 if (j == 0 || !single_defuse_cycle)
4233 for (i = 0; i < vec_num; i++)
4235 /* Create the reduction-phi that defines the reduction
4236 operand. */
4237 new_phi = create_phi_node (vec_dest, loop->header);
4238 set_vinfo_for_stmt (new_phi,
4239 new_stmt_vec_info (new_phi, loop_vinfo,
4240 NULL));
4241 if (j == 0 || slp_node)
4242 VEC_quick_push (gimple, phis, new_phi);
4246 if (code == COND_EXPR)
4248 gcc_assert (!slp_node);
4249 vectorizable_condition (stmt, gsi, vec_stmt,
4250 PHI_RESULT (VEC_index (gimple, phis, 0)),
4251 reduc_index);
4252 /* Multiple types are not supported for condition. */
4253 break;
4256 /* Handle uses. */
4257 if (j == 0)
4259 if (slp_node)
4260 vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1, -1);
4261 else
4263 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
4264 stmt, NULL);
4265 VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
4266 if (op_type == ternary_op)
4268 if (reduc_index == 0)
4269 loop_vec_def1 = vect_get_vec_def_for_operand (ops[2], stmt,
4270 NULL);
4271 else
4272 loop_vec_def1 = vect_get_vec_def_for_operand (ops[1], stmt,
4273 NULL);
4275 VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
4279 else
4281 if (!slp_node)
4283 enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
4284 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
4285 VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
4286 if (op_type == ternary_op)
4288 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
4289 loop_vec_def1);
4290 VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
4294 if (single_defuse_cycle)
4295 reduc_def = gimple_assign_lhs (new_stmt);
4297 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
4300 for (i = 0; VEC_iterate (tree, vec_oprnds0, i, def0); i++)
4302 if (slp_node)
4303 reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
4304 else
4306 if (!single_defuse_cycle || j == 0)
4307 reduc_def = PHI_RESULT (new_phi);
4310 def1 = ((op_type == ternary_op)
4311 ? VEC_index (tree, vec_oprnds1, i) : NULL);
4312 if (op_type == binary_op)
4314 if (reduc_index == 0)
4315 expr = build2 (code, vectype_out, reduc_def, def0);
4316 else
4317 expr = build2 (code, vectype_out, def0, reduc_def);
4319 else
4321 if (reduc_index == 0)
4322 expr = build3 (code, vectype_out, reduc_def, def0, def1);
4323 else
4325 if (reduc_index == 1)
4326 expr = build3 (code, vectype_out, def0, reduc_def, def1);
4327 else
4328 expr = build3 (code, vectype_out, def0, def1, reduc_def);
4332 new_stmt = gimple_build_assign (vec_dest, expr);
4333 new_temp = make_ssa_name (vec_dest, new_stmt);
4334 gimple_assign_set_lhs (new_stmt, new_temp);
4335 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4336 if (slp_node)
4338 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
4339 VEC_quick_push (tree, vect_defs, new_temp);
4341 else
4342 VEC_replace (tree, vect_defs, 0, new_temp);
4345 if (slp_node)
4346 continue;
4348 if (j == 0)
4349 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4350 else
4351 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4353 prev_stmt_info = vinfo_for_stmt (new_stmt);
4354 prev_phi_info = vinfo_for_stmt (new_phi);
4357 /* Finalize the reduction-phi (set its arguments) and create the
4358 epilog reduction code. */
4359 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
4361 new_temp = gimple_assign_lhs (*vec_stmt);
4362 VEC_replace (tree, vect_defs, 0, new_temp);
4365 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
4366 epilog_reduc_code, phis, reduc_index,
4367 double_reduc, slp_node);
4369 VEC_free (gimple, heap, phis);
4370 VEC_free (tree, heap, vec_oprnds0);
4371 if (vec_oprnds1)
4372 VEC_free (tree, heap, vec_oprnds1);
4374 return true;
4377 /* Function vect_min_worthwhile_factor.
4379 For a loop where we could vectorize the operation indicated by CODE,
4380 return the minimum vectorization factor that makes it worthwhile
4381 to use generic vectors. */
4383 vect_min_worthwhile_factor (enum tree_code code)
4385 switch (code)
4387 case PLUS_EXPR:
4388 case MINUS_EXPR:
4389 case NEGATE_EXPR:
4390 return 4;
4392 case BIT_AND_EXPR:
4393 case BIT_IOR_EXPR:
4394 case BIT_XOR_EXPR:
4395 case BIT_NOT_EXPR:
4396 return 2;
4398 default:
4399 return INT_MAX;
4404 /* Function vectorizable_induction
4406 Check if PHI performs an induction computation that can be vectorized.
4407 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
4408 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
4409 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4411 bool
4412 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4413 gimple *vec_stmt)
4415 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
4416 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4417 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4418 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4419 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4420 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4421 tree vec_def;
4423 gcc_assert (ncopies >= 1);
4424 /* FORNOW. This restriction should be relaxed. */
4425 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
4427 if (vect_print_dump_info (REPORT_DETAILS))
4428 fprintf (vect_dump, "multiple types in nested loop.");
4429 return false;
4432 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4433 return false;
4435 /* FORNOW: SLP not supported. */
4436 if (STMT_SLP_TYPE (stmt_info))
4437 return false;
4439 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4441 if (gimple_code (phi) != GIMPLE_PHI)
4442 return false;
4444 if (!vec_stmt) /* transformation not required. */
4446 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4447 if (vect_print_dump_info (REPORT_DETAILS))
4448 fprintf (vect_dump, "=== vectorizable_induction ===");
4449 vect_model_induction_cost (stmt_info, ncopies);
4450 return true;
4453 /** Transform. **/
4455 if (vect_print_dump_info (REPORT_DETAILS))
4456 fprintf (vect_dump, "transform induction phi.");
4458 vec_def = get_initial_def_for_induction (phi);
4459 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
4460 return true;
4463 /* Function vectorizable_live_operation.
4465 STMT computes a value that is used outside the loop. Check if
4466 it can be supported. */
4468 bool
4469 vectorizable_live_operation (gimple stmt,
4470 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4471 gimple *vec_stmt ATTRIBUTE_UNUSED)
4473 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4474 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4475 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4476 int i;
4477 int op_type;
4478 tree op;
4479 tree def;
4480 gimple def_stmt;
4481 enum vect_def_type dt;
4482 enum tree_code code;
4483 enum gimple_rhs_class rhs_class;
4485 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
4487 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
4488 return false;
4490 if (!is_gimple_assign (stmt))
4491 return false;
4493 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4494 return false;
4496 /* FORNOW. CHECKME. */
4497 if (nested_in_vect_loop_p (loop, stmt))
4498 return false;
4500 code = gimple_assign_rhs_code (stmt);
4501 op_type = TREE_CODE_LENGTH (code);
4502 rhs_class = get_gimple_rhs_class (code);
4503 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
4504 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
4506 /* FORNOW: support only if all uses are invariant. This means
4507 that the scalar operations can remain in place, unvectorized.
4508 The original last scalar value that they compute will be used. */
4510 for (i = 0; i < op_type; i++)
4512 if (rhs_class == GIMPLE_SINGLE_RHS)
4513 op = TREE_OPERAND (gimple_op (stmt, 1), i);
4514 else
4515 op = gimple_op (stmt, i + 1);
4516 if (op
4517 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
4519 if (vect_print_dump_info (REPORT_DETAILS))
4520 fprintf (vect_dump, "use not simple.");
4521 return false;
4524 if (dt != vect_external_def && dt != vect_constant_def)
4525 return false;
4528 /* No transformation is required for the cases we currently support. */
4529 return true;
4532 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
4534 static void
4535 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
4537 ssa_op_iter op_iter;
4538 imm_use_iterator imm_iter;
4539 def_operand_p def_p;
4540 gimple ustmt;
4542 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
4544 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
4546 basic_block bb;
4548 if (!is_gimple_debug (ustmt))
4549 continue;
4551 bb = gimple_bb (ustmt);
4553 if (!flow_bb_inside_loop_p (loop, bb))
4555 if (gimple_debug_bind_p (ustmt))
4557 if (vect_print_dump_info (REPORT_DETAILS))
4558 fprintf (vect_dump, "killing debug use");
4560 gimple_debug_bind_reset_value (ustmt);
4561 update_stmt (ustmt);
4563 else
4564 gcc_unreachable ();
4570 /* Function vect_transform_loop.
4572 The analysis phase has determined that the loop is vectorizable.
4573 Vectorize the loop - created vectorized stmts to replace the scalar
4574 stmts in the loop, and update the loop exit condition. */
4576 void
4577 vect_transform_loop (loop_vec_info loop_vinfo)
4579 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4580 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
4581 int nbbs = loop->num_nodes;
4582 gimple_stmt_iterator si;
4583 int i;
4584 tree ratio = NULL;
4585 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4586 bool strided_store;
4587 bool slp_scheduled = false;
4588 unsigned int nunits;
4589 tree cond_expr = NULL_TREE;
4590 gimple_seq cond_expr_stmt_list = NULL;
4591 bool do_peeling_for_loop_bound;
4593 if (vect_print_dump_info (REPORT_DETAILS))
4594 fprintf (vect_dump, "=== vec_transform_loop ===");
4596 /* Peel the loop if there are data refs with unknown alignment.
4597 Only one data ref with unknown store is allowed. */
4599 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
4600 vect_do_peeling_for_alignment (loop_vinfo);
4602 do_peeling_for_loop_bound
4603 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4604 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4605 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0));
4607 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
4608 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
4609 vect_loop_versioning (loop_vinfo,
4610 !do_peeling_for_loop_bound,
4611 &cond_expr, &cond_expr_stmt_list);
4613 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
4614 compile time constant), or it is a constant that doesn't divide by the
4615 vectorization factor, then an epilog loop needs to be created.
4616 We therefore duplicate the loop: the original loop will be vectorized,
4617 and will compute the first (n/VF) iterations. The second copy of the loop
4618 will remain scalar and will compute the remaining (n%VF) iterations.
4619 (VF is the vectorization factor). */
4621 if (do_peeling_for_loop_bound)
4622 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
4623 cond_expr, cond_expr_stmt_list);
4624 else
4625 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
4626 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
4628 /* 1) Make sure the loop header has exactly two entries
4629 2) Make sure we have a preheader basic block. */
4631 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
4633 split_edge (loop_preheader_edge (loop));
4635 /* FORNOW: the vectorizer supports only loops which body consist
4636 of one basic block (header + empty latch). When the vectorizer will
4637 support more involved loop forms, the order by which the BBs are
4638 traversed need to be reconsidered. */
4640 for (i = 0; i < nbbs; i++)
4642 basic_block bb = bbs[i];
4643 stmt_vec_info stmt_info;
4644 gimple phi;
4646 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4648 phi = gsi_stmt (si);
4649 if (vect_print_dump_info (REPORT_DETAILS))
4651 fprintf (vect_dump, "------>vectorizing phi: ");
4652 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
4654 stmt_info = vinfo_for_stmt (phi);
4655 if (!stmt_info)
4656 continue;
4658 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4659 vect_loop_kill_debug_uses (loop, phi);
4661 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4662 && !STMT_VINFO_LIVE_P (stmt_info))
4663 continue;
4665 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
4666 != (unsigned HOST_WIDE_INT) vectorization_factor)
4667 && vect_print_dump_info (REPORT_DETAILS))
4668 fprintf (vect_dump, "multiple-types.");
4670 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
4672 if (vect_print_dump_info (REPORT_DETAILS))
4673 fprintf (vect_dump, "transform phi.");
4674 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
4678 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
4680 gimple stmt = gsi_stmt (si);
4681 bool is_store;
4683 if (vect_print_dump_info (REPORT_DETAILS))
4685 fprintf (vect_dump, "------>vectorizing statement: ");
4686 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4689 stmt_info = vinfo_for_stmt (stmt);
4691 /* vector stmts created in the outer-loop during vectorization of
4692 stmts in an inner-loop may not have a stmt_info, and do not
4693 need to be vectorized. */
4694 if (!stmt_info)
4696 gsi_next (&si);
4697 continue;
4700 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4701 vect_loop_kill_debug_uses (loop, stmt);
4703 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4704 && !STMT_VINFO_LIVE_P (stmt_info))
4706 gsi_next (&si);
4707 continue;
4710 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
4711 nunits =
4712 (unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4713 if (!STMT_SLP_TYPE (stmt_info)
4714 && nunits != (unsigned int) vectorization_factor
4715 && vect_print_dump_info (REPORT_DETAILS))
4716 /* For SLP VF is set according to unrolling factor, and not to
4717 vector size, hence for SLP this print is not valid. */
4718 fprintf (vect_dump, "multiple-types.");
4720 /* SLP. Schedule all the SLP instances when the first SLP stmt is
4721 reached. */
4722 if (STMT_SLP_TYPE (stmt_info))
4724 if (!slp_scheduled)
4726 slp_scheduled = true;
4728 if (vect_print_dump_info (REPORT_DETAILS))
4729 fprintf (vect_dump, "=== scheduling SLP instances ===");
4731 vect_schedule_slp (loop_vinfo, NULL);
4734 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
4735 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
4737 gsi_next (&si);
4738 continue;
4742 /* -------- vectorize statement ------------ */
4743 if (vect_print_dump_info (REPORT_DETAILS))
4744 fprintf (vect_dump, "transform statement.");
4746 strided_store = false;
4747 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
4748 if (is_store)
4750 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
4752 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
4753 interleaving chain was completed - free all the stores in
4754 the chain. */
4755 vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
4756 gsi_remove (&si, true);
4757 continue;
4759 else
4761 /* Free the attached stmt_vec_info and remove the stmt. */
4762 free_stmt_vec_info (stmt);
4763 gsi_remove (&si, true);
4764 continue;
4767 gsi_next (&si);
4768 } /* stmts in BB */
4769 } /* BBs in loop */
4771 slpeel_make_loop_iterate_ntimes (loop, ratio);
4773 /* The memory tags and pointers in vectorized statements need to
4774 have their SSA forms updated. FIXME, why can't this be delayed
4775 until all the loops have been transformed? */
4776 update_ssa (TODO_update_ssa);
4778 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4779 fprintf (vect_dump, "LOOP VECTORIZED.");
4780 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4781 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");