* gcc.dg/vect/slp-perm-1.c (main): Make sure loops aren't vectorized.
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob6f50fc5453a80c4b039d6f2bfa29dbd243140295
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "output.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-flow.h"
36 #include "tree-pass.h"
37 #include "tree-ssa-propagate.h"
38 #include "langhooks.h"
39 #include "vec.h"
40 #include "value-prof.h"
41 #include "gimple.h"
43 /* This file implements a generic value propagation engine based on
44 the same propagation used by the SSA-CCP algorithm [1].
46 Propagation is performed by simulating the execution of every
47 statement that produces the value being propagated. Simulation
48 proceeds as follows:
50 1- Initially, all edges of the CFG are marked not executable and
51 the CFG worklist is seeded with all the statements in the entry
52 basic block (block 0).
54 2- Every statement S is simulated with a call to the call-back
55 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
56 results:
58 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
59 interest and does not affect any of the work lists.
61 SSA_PROP_VARYING: The value produced by S cannot be determined
62 at compile time. Further simulation of S is not required.
63 If S is a conditional jump, all the outgoing edges for the
64 block are considered executable and added to the work
65 list.
67 SSA_PROP_INTERESTING: S produces a value that can be computed
68 at compile time. Its result can be propagated into the
69 statements that feed from S. Furthermore, if S is a
70 conditional jump, only the edge known to be taken is added
71 to the work list. Edges that are known not to execute are
72 never simulated.
74 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
75 return value from SSA_PROP_VISIT_PHI has the same semantics as
76 described in #2.
78 4- Three work lists are kept. Statements are only added to these
79 lists if they produce one of SSA_PROP_INTERESTING or
80 SSA_PROP_VARYING.
82 CFG_BLOCKS contains the list of blocks to be simulated.
83 Blocks are added to this list if their incoming edges are
84 found executable.
86 VARYING_SSA_EDGES contains the list of statements that feed
87 from statements that produce an SSA_PROP_VARYING result.
88 These are simulated first to speed up processing.
90 INTERESTING_SSA_EDGES contains the list of statements that
91 feed from statements that produce an SSA_PROP_INTERESTING
92 result.
94 5- Simulation terminates when all three work lists are drained.
96 Before calling ssa_propagate, it is important to clear
97 prop_simulate_again_p for all the statements in the program that
98 should be simulated. This initialization allows an implementation
99 to specify which statements should never be simulated.
101 It is also important to compute def-use information before calling
102 ssa_propagate.
104 References:
106 [1] Constant propagation with conditional branches,
107 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
109 [2] Building an Optimizing Compiler,
110 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
112 [3] Advanced Compiler Design and Implementation,
113 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
115 /* Function pointers used to parameterize the propagation engine. */
116 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
117 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
119 /* Keep track of statements that have been added to one of the SSA
120 edges worklists. This flag is used to avoid visiting statements
121 unnecessarily when draining an SSA edge worklist. If while
122 simulating a basic block, we find a statement with
123 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
124 processing from visiting it again.
126 NOTE: users of the propagation engine are not allowed to use
127 the GF_PLF_1 flag. */
128 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
130 /* A bitmap to keep track of executable blocks in the CFG. */
131 static sbitmap executable_blocks;
133 /* Array of control flow edges on the worklist. */
134 static VEC(basic_block,heap) *cfg_blocks;
136 static unsigned int cfg_blocks_num = 0;
137 static int cfg_blocks_tail;
138 static int cfg_blocks_head;
140 static sbitmap bb_in_list;
142 /* Worklist of SSA edges which will need reexamination as their
143 definition has changed. SSA edges are def-use edges in the SSA
144 web. For each D-U edge, we store the target statement or PHI node
145 U. */
146 static GTY(()) VEC(gimple,gc) *interesting_ssa_edges;
148 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
149 list of SSA edges is split into two. One contains all SSA edges
150 who need to be reexamined because their lattice value changed to
151 varying (this worklist), and the other contains all other SSA edges
152 to be reexamined (INTERESTING_SSA_EDGES).
154 Since most values in the program are VARYING, the ideal situation
155 is to move them to that lattice value as quickly as possible.
156 Thus, it doesn't make sense to process any other type of lattice
157 value until all VARYING values are propagated fully, which is one
158 thing using the VARYING worklist achieves. In addition, if we
159 don't use a separate worklist for VARYING edges, we end up with
160 situations where lattice values move from
161 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
162 static GTY(()) VEC(gimple,gc) *varying_ssa_edges;
165 /* Return true if the block worklist empty. */
167 static inline bool
168 cfg_blocks_empty_p (void)
170 return (cfg_blocks_num == 0);
174 /* Add a basic block to the worklist. The block must not be already
175 in the worklist, and it must not be the ENTRY or EXIT block. */
177 static void
178 cfg_blocks_add (basic_block bb)
180 bool head = false;
182 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
183 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
185 if (cfg_blocks_empty_p ())
187 cfg_blocks_tail = cfg_blocks_head = 0;
188 cfg_blocks_num = 1;
190 else
192 cfg_blocks_num++;
193 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
195 /* We have to grow the array now. Adjust to queue to occupy
196 the full space of the original array. We do not need to
197 initialize the newly allocated portion of the array
198 because we keep track of CFG_BLOCKS_HEAD and
199 CFG_BLOCKS_HEAD. */
200 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
201 cfg_blocks_head = 0;
202 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
204 /* Minor optimization: we prefer to see blocks with more
205 predecessors later, because there is more of a chance that
206 the incoming edges will be executable. */
207 else if (EDGE_COUNT (bb->preds)
208 >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
209 cfg_blocks_head)->preds))
210 cfg_blocks_tail = ((cfg_blocks_tail + 1)
211 % VEC_length (basic_block, cfg_blocks));
212 else
214 if (cfg_blocks_head == 0)
215 cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
216 --cfg_blocks_head;
217 head = true;
221 VEC_replace (basic_block, cfg_blocks,
222 head ? cfg_blocks_head : cfg_blocks_tail,
223 bb);
224 SET_BIT (bb_in_list, bb->index);
228 /* Remove a block from the worklist. */
230 static basic_block
231 cfg_blocks_get (void)
233 basic_block bb;
235 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
237 gcc_assert (!cfg_blocks_empty_p ());
238 gcc_assert (bb);
240 cfg_blocks_head = ((cfg_blocks_head + 1)
241 % VEC_length (basic_block, cfg_blocks));
242 --cfg_blocks_num;
243 RESET_BIT (bb_in_list, bb->index);
245 return bb;
249 /* We have just defined a new value for VAR. If IS_VARYING is true,
250 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
251 them to INTERESTING_SSA_EDGES. */
253 static void
254 add_ssa_edge (tree var, bool is_varying)
256 imm_use_iterator iter;
257 use_operand_p use_p;
259 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
261 gimple use_stmt = USE_STMT (use_p);
263 if (prop_simulate_again_p (use_stmt)
264 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
266 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
267 if (is_varying)
268 VEC_safe_push (gimple, gc, varying_ssa_edges, use_stmt);
269 else
270 VEC_safe_push (gimple, gc, interesting_ssa_edges, use_stmt);
276 /* Add edge E to the control flow worklist. */
278 static void
279 add_control_edge (edge e)
281 basic_block bb = e->dest;
282 if (bb == EXIT_BLOCK_PTR)
283 return;
285 /* If the edge had already been executed, skip it. */
286 if (e->flags & EDGE_EXECUTABLE)
287 return;
289 e->flags |= EDGE_EXECUTABLE;
291 /* If the block is already in the list, we're done. */
292 if (TEST_BIT (bb_in_list, bb->index))
293 return;
295 cfg_blocks_add (bb);
297 if (dump_file && (dump_flags & TDF_DETAILS))
298 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
299 e->src->index, e->dest->index);
303 /* Simulate the execution of STMT and update the work lists accordingly. */
305 static void
306 simulate_stmt (gimple stmt)
308 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
309 edge taken_edge = NULL;
310 tree output_name = NULL_TREE;
312 /* Don't bother visiting statements that are already
313 considered varying by the propagator. */
314 if (!prop_simulate_again_p (stmt))
315 return;
317 if (gimple_code (stmt) == GIMPLE_PHI)
319 val = ssa_prop_visit_phi (stmt);
320 output_name = gimple_phi_result (stmt);
322 else
323 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
325 if (val == SSA_PROP_VARYING)
327 prop_set_simulate_again (stmt, false);
329 /* If the statement produced a new varying value, add the SSA
330 edges coming out of OUTPUT_NAME. */
331 if (output_name)
332 add_ssa_edge (output_name, true);
334 /* If STMT transfers control out of its basic block, add
335 all outgoing edges to the work list. */
336 if (stmt_ends_bb_p (stmt))
338 edge e;
339 edge_iterator ei;
340 basic_block bb = gimple_bb (stmt);
341 FOR_EACH_EDGE (e, ei, bb->succs)
342 add_control_edge (e);
345 else if (val == SSA_PROP_INTERESTING)
347 /* If the statement produced new value, add the SSA edges coming
348 out of OUTPUT_NAME. */
349 if (output_name)
350 add_ssa_edge (output_name, false);
352 /* If we know which edge is going to be taken out of this block,
353 add it to the CFG work list. */
354 if (taken_edge)
355 add_control_edge (taken_edge);
359 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
360 drain. This pops statements off the given WORKLIST and processes
361 them until there are no more statements on WORKLIST.
362 We take a pointer to WORKLIST because it may be reallocated when an
363 SSA edge is added to it in simulate_stmt. */
365 static void
366 process_ssa_edge_worklist (VEC(gimple,gc) **worklist)
368 /* Drain the entire worklist. */
369 while (VEC_length (gimple, *worklist) > 0)
371 basic_block bb;
373 /* Pull the statement to simulate off the worklist. */
374 gimple stmt = VEC_pop (gimple, *worklist);
376 /* If this statement was already visited by simulate_block, then
377 we don't need to visit it again here. */
378 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
379 continue;
381 /* STMT is no longer in a worklist. */
382 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
384 if (dump_file && (dump_flags & TDF_DETAILS))
386 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
387 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
390 bb = gimple_bb (stmt);
392 /* PHI nodes are always visited, regardless of whether or not
393 the destination block is executable. Otherwise, visit the
394 statement only if its block is marked executable. */
395 if (gimple_code (stmt) == GIMPLE_PHI
396 || TEST_BIT (executable_blocks, bb->index))
397 simulate_stmt (stmt);
402 /* Simulate the execution of BLOCK. Evaluate the statement associated
403 with each variable reference inside the block. */
405 static void
406 simulate_block (basic_block block)
408 gimple_stmt_iterator gsi;
410 /* There is nothing to do for the exit block. */
411 if (block == EXIT_BLOCK_PTR)
412 return;
414 if (dump_file && (dump_flags & TDF_DETAILS))
415 fprintf (dump_file, "\nSimulating block %d\n", block->index);
417 /* Always simulate PHI nodes, even if we have simulated this block
418 before. */
419 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
420 simulate_stmt (gsi_stmt (gsi));
422 /* If this is the first time we've simulated this block, then we
423 must simulate each of its statements. */
424 if (!TEST_BIT (executable_blocks, block->index))
426 gimple_stmt_iterator j;
427 unsigned int normal_edge_count;
428 edge e, normal_edge;
429 edge_iterator ei;
431 /* Note that we have simulated this block. */
432 SET_BIT (executable_blocks, block->index);
434 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
436 gimple stmt = gsi_stmt (j);
438 /* If this statement is already in the worklist then
439 "cancel" it. The reevaluation implied by the worklist
440 entry will produce the same value we generate here and
441 thus reevaluating it again from the worklist is
442 pointless. */
443 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
444 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
446 simulate_stmt (stmt);
449 /* We can not predict when abnormal and EH edges will be executed, so
450 once a block is considered executable, we consider any
451 outgoing abnormal edges as executable.
453 TODO: This is not exactly true. Simplifying statement might
454 prove it non-throwing and also computed goto can be handled
455 when destination is known.
457 At the same time, if this block has only one successor that is
458 reached by non-abnormal edges, then add that successor to the
459 worklist. */
460 normal_edge_count = 0;
461 normal_edge = NULL;
462 FOR_EACH_EDGE (e, ei, block->succs)
464 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
465 add_control_edge (e);
466 else
468 normal_edge_count++;
469 normal_edge = e;
473 if (normal_edge_count == 1)
474 add_control_edge (normal_edge);
479 /* Initialize local data structures and work lists. */
481 static void
482 ssa_prop_init (void)
484 edge e;
485 edge_iterator ei;
486 basic_block bb;
488 /* Worklists of SSA edges. */
489 interesting_ssa_edges = VEC_alloc (gimple, gc, 20);
490 varying_ssa_edges = VEC_alloc (gimple, gc, 20);
492 executable_blocks = sbitmap_alloc (last_basic_block);
493 sbitmap_zero (executable_blocks);
495 bb_in_list = sbitmap_alloc (last_basic_block);
496 sbitmap_zero (bb_in_list);
498 if (dump_file && (dump_flags & TDF_DETAILS))
499 dump_immediate_uses (dump_file);
501 cfg_blocks = VEC_alloc (basic_block, heap, 20);
502 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
504 /* Initially assume that every edge in the CFG is not executable.
505 (including the edges coming out of ENTRY_BLOCK_PTR). */
506 FOR_ALL_BB (bb)
508 gimple_stmt_iterator si;
510 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
511 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
513 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
514 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
516 FOR_EACH_EDGE (e, ei, bb->succs)
517 e->flags &= ~EDGE_EXECUTABLE;
520 /* Seed the algorithm by adding the successors of the entry block to the
521 edge worklist. */
522 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
523 add_control_edge (e);
527 /* Free allocated storage. */
529 static void
530 ssa_prop_fini (void)
532 VEC_free (gimple, gc, interesting_ssa_edges);
533 VEC_free (gimple, gc, varying_ssa_edges);
534 VEC_free (basic_block, heap, cfg_blocks);
535 cfg_blocks = NULL;
536 sbitmap_free (bb_in_list);
537 sbitmap_free (executable_blocks);
541 /* Return true if EXPR is an acceptable right-hand-side for a
542 GIMPLE assignment. We validate the entire tree, not just
543 the root node, thus catching expressions that embed complex
544 operands that are not permitted in GIMPLE. This function
545 is needed because the folding routines in fold-const.c
546 may return such expressions in some cases, e.g., an array
547 access with an embedded index addition. It may make more
548 sense to have folding routines that are sensitive to the
549 constraints on GIMPLE operands, rather than abandoning any
550 any attempt to fold if the usual folding turns out to be too
551 aggressive. */
553 bool
554 valid_gimple_rhs_p (tree expr)
556 enum tree_code code = TREE_CODE (expr);
558 switch (TREE_CODE_CLASS (code))
560 case tcc_declaration:
561 if (!is_gimple_variable (expr))
562 return false;
563 break;
565 case tcc_constant:
566 /* All constants are ok. */
567 break;
569 case tcc_binary:
570 case tcc_comparison:
571 if (!is_gimple_val (TREE_OPERAND (expr, 0))
572 || !is_gimple_val (TREE_OPERAND (expr, 1)))
573 return false;
574 break;
576 case tcc_unary:
577 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
578 return false;
579 break;
581 case tcc_expression:
582 switch (code)
584 case ADDR_EXPR:
586 tree t;
587 if (is_gimple_min_invariant (expr))
588 return true;
589 t = TREE_OPERAND (expr, 0);
590 while (handled_component_p (t))
592 /* ??? More checks needed, see the GIMPLE verifier. */
593 if ((TREE_CODE (t) == ARRAY_REF
594 || TREE_CODE (t) == ARRAY_RANGE_REF)
595 && !is_gimple_val (TREE_OPERAND (t, 1)))
596 return false;
597 t = TREE_OPERAND (t, 0);
599 if (!is_gimple_id (t))
600 return false;
602 break;
604 case TRUTH_NOT_EXPR:
605 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
606 return false;
607 break;
609 case TRUTH_AND_EXPR:
610 case TRUTH_XOR_EXPR:
611 case TRUTH_OR_EXPR:
612 if (!is_gimple_val (TREE_OPERAND (expr, 0))
613 || !is_gimple_val (TREE_OPERAND (expr, 1)))
614 return false;
615 break;
617 default:
618 return false;
620 break;
622 case tcc_vl_exp:
623 return false;
625 case tcc_exceptional:
626 if (code != SSA_NAME)
627 return false;
628 break;
630 default:
631 return false;
634 return true;
638 /* Return true if EXPR is a CALL_EXPR suitable for representation
639 as a single GIMPLE_CALL statement. If the arguments require
640 further gimplification, return false. */
642 static bool
643 valid_gimple_call_p (tree expr)
645 unsigned i, nargs;
647 if (TREE_CODE (expr) != CALL_EXPR)
648 return false;
650 nargs = call_expr_nargs (expr);
651 for (i = 0; i < nargs; i++)
653 tree arg = CALL_EXPR_ARG (expr, i);
654 if (is_gimple_reg_type (arg))
656 if (!is_gimple_val (arg))
657 return false;
659 else
660 if (!is_gimple_lvalue (arg))
661 return false;
664 return true;
668 /* Make SSA names defined by OLD_STMT point to NEW_STMT
669 as their defining statement. */
671 void
672 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
674 tree var;
675 ssa_op_iter iter;
677 if (gimple_in_ssa_p (cfun))
679 /* Make defined SSA_NAMEs point to the new
680 statement as their definition. */
681 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
683 if (TREE_CODE (var) == SSA_NAME)
684 SSA_NAME_DEF_STMT (var) = new_stmt;
690 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
691 value of EXPR, which is expected to be the result of folding the
692 call. This can only be done if EXPR is a CALL_EXPR with valid
693 GIMPLE operands as arguments, or if it is a suitable RHS expression
694 for a GIMPLE_ASSIGN. More complex expressions will require
695 gimplification, which will introduce addtional statements. In this
696 event, no update is performed, and the function returns false.
697 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
698 replace the statement at *SI_P with an entirely new statement.
699 The new statement need not be a call, e.g., if the original call
700 folded to a constant. */
702 bool
703 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
705 tree lhs;
707 gimple stmt = gsi_stmt (*si_p);
709 gcc_assert (is_gimple_call (stmt));
711 lhs = gimple_call_lhs (stmt);
713 if (valid_gimple_call_p (expr))
715 /* The call has simplified to another call. */
716 tree fn = CALL_EXPR_FN (expr);
717 unsigned i;
718 unsigned nargs = call_expr_nargs (expr);
719 VEC(tree, heap) *args = NULL;
720 gimple new_stmt;
722 if (nargs > 0)
724 args = VEC_alloc (tree, heap, nargs);
725 VEC_safe_grow (tree, heap, args, nargs);
727 for (i = 0; i < nargs; i++)
728 VEC_replace (tree, args, i, CALL_EXPR_ARG (expr, i));
731 new_stmt = gimple_build_call_vec (fn, args);
732 gimple_call_set_lhs (new_stmt, lhs);
733 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
734 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
735 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
736 gimple_set_location (new_stmt, gimple_location (stmt));
737 gsi_replace (si_p, new_stmt, false);
738 VEC_free (tree, heap, args);
740 return true;
742 else if (valid_gimple_rhs_p (expr))
744 gimple new_stmt;
746 /* The call has simplified to an expression
747 that cannot be represented as a GIMPLE_CALL. */
748 if (lhs)
750 /* A value is expected.
751 Introduce a new GIMPLE_ASSIGN statement. */
752 STRIP_USELESS_TYPE_CONVERSION (expr);
753 new_stmt = gimple_build_assign (lhs, expr);
754 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
755 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
756 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
758 else if (!TREE_SIDE_EFFECTS (expr))
760 /* No value is expected, and EXPR has no effect.
761 Replace it with an empty statement. */
762 new_stmt = gimple_build_nop ();
763 unlink_stmt_vdef (stmt);
764 release_defs (stmt);
766 else
768 /* No value is expected, but EXPR has an effect,
769 e.g., it could be a reference to a volatile
770 variable. Create an assignment statement
771 with a dummy (unused) lhs variable. */
772 STRIP_USELESS_TYPE_CONVERSION (expr);
773 lhs = create_tmp_var (TREE_TYPE (expr), NULL);
774 new_stmt = gimple_build_assign (lhs, expr);
775 add_referenced_var (lhs);
776 lhs = make_ssa_name (lhs, new_stmt);
777 gimple_assign_set_lhs (new_stmt, lhs);
778 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
779 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
780 move_ssa_defining_stmt_for_defs (new_stmt, stmt);
782 gimple_set_location (new_stmt, gimple_location (stmt));
783 gsi_replace (si_p, new_stmt, false);
784 return true;
786 else
787 /* The call simplified to an expression that is
788 not a valid GIMPLE RHS. */
789 return false;
793 /* Entry point to the propagation engine.
795 VISIT_STMT is called for every statement visited.
796 VISIT_PHI is called for every PHI node visited. */
798 void
799 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
800 ssa_prop_visit_phi_fn visit_phi)
802 ssa_prop_visit_stmt = visit_stmt;
803 ssa_prop_visit_phi = visit_phi;
805 ssa_prop_init ();
807 /* Iterate until the worklists are empty. */
808 while (!cfg_blocks_empty_p ()
809 || VEC_length (gimple, interesting_ssa_edges) > 0
810 || VEC_length (gimple, varying_ssa_edges) > 0)
812 if (!cfg_blocks_empty_p ())
814 /* Pull the next block to simulate off the worklist. */
815 basic_block dest_block = cfg_blocks_get ();
816 simulate_block (dest_block);
819 /* In order to move things to varying as quickly as
820 possible,process the VARYING_SSA_EDGES worklist first. */
821 process_ssa_edge_worklist (&varying_ssa_edges);
823 /* Now process the INTERESTING_SSA_EDGES worklist. */
824 process_ssa_edge_worklist (&interesting_ssa_edges);
827 ssa_prop_fini ();
831 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
832 is a non-volatile pointer dereference, a structure reference or a
833 reference to a single _DECL. Ignore volatile memory references
834 because they are not interesting for the optimizers. */
836 bool
837 stmt_makes_single_store (gimple stmt)
839 tree lhs;
841 if (gimple_code (stmt) != GIMPLE_ASSIGN
842 && gimple_code (stmt) != GIMPLE_CALL)
843 return false;
845 if (!gimple_vdef (stmt))
846 return false;
848 lhs = gimple_get_lhs (stmt);
850 /* A call statement may have a null LHS. */
851 if (!lhs)
852 return false;
854 return (!TREE_THIS_VOLATILE (lhs)
855 && (DECL_P (lhs)
856 || REFERENCE_CLASS_P (lhs)));
860 /* Propagation statistics. */
861 struct prop_stats_d
863 long num_const_prop;
864 long num_copy_prop;
865 long num_stmts_folded;
866 long num_dce;
869 static struct prop_stats_d prop_stats;
871 /* Replace USE references in statement STMT with the values stored in
872 PROP_VALUE. Return true if at least one reference was replaced. */
874 static bool
875 replace_uses_in (gimple stmt, prop_value_t *prop_value)
877 bool replaced = false;
878 use_operand_p use;
879 ssa_op_iter iter;
881 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
883 tree tuse = USE_FROM_PTR (use);
884 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
886 if (val == tuse || val == NULL_TREE)
887 continue;
889 if (gimple_code (stmt) == GIMPLE_ASM
890 && !may_propagate_copy_into_asm (tuse))
891 continue;
893 if (!may_propagate_copy (tuse, val))
894 continue;
896 if (TREE_CODE (val) != SSA_NAME)
897 prop_stats.num_const_prop++;
898 else
899 prop_stats.num_copy_prop++;
901 propagate_value (use, val);
903 replaced = true;
906 return replaced;
910 /* Replace propagated values into all the arguments for PHI using the
911 values from PROP_VALUE. */
913 static void
914 replace_phi_args_in (gimple phi, prop_value_t *prop_value)
916 size_t i;
917 bool replaced = false;
919 if (dump_file && (dump_flags & TDF_DETAILS))
921 fprintf (dump_file, "Folding PHI node: ");
922 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
925 for (i = 0; i < gimple_phi_num_args (phi); i++)
927 tree arg = gimple_phi_arg_def (phi, i);
929 if (TREE_CODE (arg) == SSA_NAME)
931 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
933 if (val && val != arg && may_propagate_copy (arg, val))
935 if (TREE_CODE (val) != SSA_NAME)
936 prop_stats.num_const_prop++;
937 else
938 prop_stats.num_copy_prop++;
940 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
941 replaced = true;
943 /* If we propagated a copy and this argument flows
944 through an abnormal edge, update the replacement
945 accordingly. */
946 if (TREE_CODE (val) == SSA_NAME
947 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
948 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
953 if (dump_file && (dump_flags & TDF_DETAILS))
955 if (!replaced)
956 fprintf (dump_file, "No folding possible\n");
957 else
959 fprintf (dump_file, "Folded into: ");
960 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
961 fprintf (dump_file, "\n");
967 /* Perform final substitution and folding of propagated values.
969 PROP_VALUE[I] contains the single value that should be substituted
970 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
971 substituted.
973 If FOLD_FN is non-NULL the function will be invoked on all statements
974 before propagating values for pass specific simplification.
976 DO_DCE is true if trivially dead stmts can be removed.
978 Return TRUE when something changed. */
980 bool
981 substitute_and_fold (prop_value_t *prop_value, ssa_prop_fold_stmt_fn fold_fn,
982 bool do_dce)
984 basic_block bb;
985 bool something_changed = false;
987 if (prop_value == NULL && !fold_fn)
988 return false;
990 if (dump_file && (dump_flags & TDF_DETAILS))
991 fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
993 memset (&prop_stats, 0, sizeof (prop_stats));
995 /* Substitute values in every statement of every basic block. */
996 FOR_EACH_BB (bb)
998 gimple_stmt_iterator i;
1000 /* Propagate known values into PHI nodes. */
1001 if (prop_value)
1002 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
1003 replace_phi_args_in (gsi_stmt (i), prop_value);
1005 /* Propagate known values into stmts. Do a backward walk to expose
1006 more trivially deletable stmts. */
1007 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1009 bool did_replace;
1010 gimple stmt = gsi_stmt (i);
1011 gimple old_stmt;
1012 enum gimple_code code = gimple_code (stmt);
1013 gimple_stmt_iterator oldi;
1015 oldi = i;
1016 gsi_prev (&i);
1018 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1019 range information for names and they are discarded
1020 afterwards. */
1022 if (code == GIMPLE_ASSIGN
1023 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1024 continue;
1026 /* No point propagating into a stmt whose result is not used,
1027 but instead we might be able to remove a trivially dead stmt.
1028 Don't do this when called from VRP, since the SSA_NAME which
1029 is going to be released could be still referenced in VRP
1030 ranges. */
1031 if (do_dce
1032 && gimple_get_lhs (stmt)
1033 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1034 && has_zero_uses (gimple_get_lhs (stmt))
1035 && !stmt_could_throw_p (stmt)
1036 && !gimple_has_side_effects (stmt))
1038 gimple_stmt_iterator i2;
1040 if (dump_file && dump_flags & TDF_DETAILS)
1042 fprintf (dump_file, "Removing dead stmt ");
1043 print_gimple_stmt (dump_file, stmt, 0, 0);
1044 fprintf (dump_file, "\n");
1046 prop_stats.num_dce++;
1047 i2 = gsi_for_stmt (stmt);
1048 gsi_remove (&i2, true);
1049 release_defs (stmt);
1050 continue;
1053 /* Replace the statement with its folded version and mark it
1054 folded. */
1055 did_replace = false;
1056 if (dump_file && (dump_flags & TDF_DETAILS))
1058 fprintf (dump_file, "Folding statement: ");
1059 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1062 old_stmt = stmt;
1064 /* Some statements may be simplified using propagator
1065 specific information. Do this before propagating
1066 into the stmt to not disturb pass specific information. */
1067 if (fold_fn
1068 && (*fold_fn)(&oldi))
1070 did_replace = true;
1071 prop_stats.num_stmts_folded++;
1074 /* Only replace real uses if we couldn't fold the
1075 statement using value range information. */
1076 if (prop_value
1077 && !did_replace)
1078 did_replace |= replace_uses_in (stmt, prop_value);
1080 /* If we made a replacement, fold the statement. */
1081 if (did_replace)
1082 fold_stmt (&oldi);
1084 /* Now cleanup. */
1085 if (did_replace)
1087 stmt = gsi_stmt (oldi);
1089 /* If we cleaned up EH information from the statement,
1090 remove EH edges. */
1091 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1092 gimple_purge_dead_eh_edges (bb);
1094 if (is_gimple_assign (stmt)
1095 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1096 == GIMPLE_SINGLE_RHS))
1098 tree rhs = gimple_assign_rhs1 (stmt);
1100 if (TREE_CODE (rhs) == ADDR_EXPR)
1101 recompute_tree_invariant_for_addr_expr (rhs);
1104 /* Determine what needs to be done to update the SSA form. */
1105 update_stmt (stmt);
1106 if (!is_gimple_debug (stmt))
1107 something_changed = true;
1110 if (dump_file && (dump_flags & TDF_DETAILS))
1112 if (did_replace)
1114 fprintf (dump_file, "Folded into: ");
1115 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1116 fprintf (dump_file, "\n");
1118 else
1119 fprintf (dump_file, "Not folded\n");
1124 statistics_counter_event (cfun, "Constants propagated",
1125 prop_stats.num_const_prop);
1126 statistics_counter_event (cfun, "Copies propagated",
1127 prop_stats.num_copy_prop);
1128 statistics_counter_event (cfun, "Statements folded",
1129 prop_stats.num_stmts_folded);
1130 statistics_counter_event (cfun, "Statements deleted",
1131 prop_stats.num_dce);
1132 return something_changed;
1135 #include "gt-tree-ssa-propagate.h"