* config/xtensa/libgcc-xtensa.ver: New file.
[official-gcc.git] / gcc / tree-vrp.c
blob404531f45042dd65a517420289390e4b893bb750
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph;
45 /* Local functions. */
46 static int compare_values (tree val1, tree val2);
47 static int compare_values_warnv (tree val1, tree val2, bool *);
48 static void vrp_meet (value_range_t *, value_range_t *);
49 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
50 tree, tree, bool, bool *);
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
72 /* Value being compared against. */
73 tree val;
75 /* Expression to compare. */
76 tree expr;
78 /* Next node in the linked list. */
79 struct assert_locus_d *next;
82 typedef struct assert_locus_d *assert_locus_t;
84 /* If bit I is present, it means that SSA name N_i has a list of
85 assertions that should be inserted in the IL. */
86 static bitmap need_assert_for;
88 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
89 holds a list of ASSERT_LOCUS_T nodes that describe where
90 ASSERT_EXPRs for SSA name N_I should be inserted. */
91 static assert_locus_t *asserts_for;
93 /* Set of blocks visited in find_assert_locations. Used to avoid
94 visiting the same block more than once. */
95 static sbitmap blocks_visited;
97 /* Value range array. After propagation, VR_VALUE[I] holds the range
98 of values that SSA name N_I may take. */
99 static value_range_t **vr_value;
101 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
102 number of executable edges we saw the last time we visited the
103 node. */
104 static int *vr_phi_edge_counts;
106 typedef struct {
107 tree stmt;
108 tree vec;
109 } switch_update;
111 static VEC (edge, heap) *to_remove_edges;
112 DEF_VEC_O(switch_update);
113 DEF_VEC_ALLOC_O(switch_update, heap);
114 static VEC (switch_update, heap) *to_update_switch_stmts;
117 /* Return the maximum value for TYPEs base type. */
119 static inline tree
120 vrp_val_max (const_tree type)
122 if (!INTEGRAL_TYPE_P (type))
123 return NULL_TREE;
125 /* For integer sub-types the values for the base type are relevant. */
126 if (TREE_TYPE (type))
127 type = TREE_TYPE (type);
129 return TYPE_MAX_VALUE (type);
132 /* Return the minimum value for TYPEs base type. */
134 static inline tree
135 vrp_val_min (const_tree type)
137 if (!INTEGRAL_TYPE_P (type))
138 return NULL_TREE;
140 /* For integer sub-types the values for the base type are relevant. */
141 if (TREE_TYPE (type))
142 type = TREE_TYPE (type);
144 return TYPE_MIN_VALUE (type);
147 /* Return whether VAL is equal to the maximum value of its type. This
148 will be true for a positive overflow infinity. We can't do a
149 simple equality comparison with TYPE_MAX_VALUE because C typedefs
150 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
151 to the integer constant with the same value in the type. */
153 static inline bool
154 vrp_val_is_max (const_tree val)
156 tree type_max = vrp_val_max (TREE_TYPE (val));
157 return (val == type_max
158 || (type_max != NULL_TREE
159 && operand_equal_p (val, type_max, 0)));
162 /* Return whether VAL is equal to the minimum value of its type. This
163 will be true for a negative overflow infinity. */
165 static inline bool
166 vrp_val_is_min (const_tree val)
168 tree type_min = vrp_val_min (TREE_TYPE (val));
169 return (val == type_min
170 || (type_min != NULL_TREE
171 && operand_equal_p (val, type_min, 0)));
175 /* Return whether TYPE should use an overflow infinity distinct from
176 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
177 represent a signed overflow during VRP computations. An infinity
178 is distinct from a half-range, which will go from some number to
179 TYPE_{MIN,MAX}_VALUE. */
181 static inline bool
182 needs_overflow_infinity (const_tree type)
184 return (INTEGRAL_TYPE_P (type)
185 && !TYPE_OVERFLOW_WRAPS (type)
186 /* Integer sub-types never overflow as they are never
187 operands of arithmetic operators. */
188 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
191 /* Return whether TYPE can support our overflow infinity
192 representation: we use the TREE_OVERFLOW flag, which only exists
193 for constants. If TYPE doesn't support this, we don't optimize
194 cases which would require signed overflow--we drop them to
195 VARYING. */
197 static inline bool
198 supports_overflow_infinity (const_tree type)
200 tree min = vrp_val_min (type), max = vrp_val_max (type);
201 #ifdef ENABLE_CHECKING
202 gcc_assert (needs_overflow_infinity (type));
203 #endif
204 return (min != NULL_TREE
205 && CONSTANT_CLASS_P (min)
206 && max != NULL_TREE
207 && CONSTANT_CLASS_P (max));
210 /* VAL is the maximum or minimum value of a type. Return a
211 corresponding overflow infinity. */
213 static inline tree
214 make_overflow_infinity (tree val)
216 #ifdef ENABLE_CHECKING
217 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
218 #endif
219 val = copy_node (val);
220 TREE_OVERFLOW (val) = 1;
221 return val;
224 /* Return a negative overflow infinity for TYPE. */
226 static inline tree
227 negative_overflow_infinity (tree type)
229 #ifdef ENABLE_CHECKING
230 gcc_assert (supports_overflow_infinity (type));
231 #endif
232 return make_overflow_infinity (vrp_val_min (type));
235 /* Return a positive overflow infinity for TYPE. */
237 static inline tree
238 positive_overflow_infinity (tree type)
240 #ifdef ENABLE_CHECKING
241 gcc_assert (supports_overflow_infinity (type));
242 #endif
243 return make_overflow_infinity (vrp_val_max (type));
246 /* Return whether VAL is a negative overflow infinity. */
248 static inline bool
249 is_negative_overflow_infinity (const_tree val)
251 return (needs_overflow_infinity (TREE_TYPE (val))
252 && CONSTANT_CLASS_P (val)
253 && TREE_OVERFLOW (val)
254 && vrp_val_is_min (val));
257 /* Return whether VAL is a positive overflow infinity. */
259 static inline bool
260 is_positive_overflow_infinity (const_tree val)
262 return (needs_overflow_infinity (TREE_TYPE (val))
263 && CONSTANT_CLASS_P (val)
264 && TREE_OVERFLOW (val)
265 && vrp_val_is_max (val));
268 /* Return whether VAL is a positive or negative overflow infinity. */
270 static inline bool
271 is_overflow_infinity (const_tree val)
273 return (needs_overflow_infinity (TREE_TYPE (val))
274 && CONSTANT_CLASS_P (val)
275 && TREE_OVERFLOW (val)
276 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
279 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
280 the same value with TREE_OVERFLOW clear. This can be used to avoid
281 confusing a regular value with an overflow value. */
283 static inline tree
284 avoid_overflow_infinity (tree val)
286 if (!is_overflow_infinity (val))
287 return val;
289 if (vrp_val_is_max (val))
290 return vrp_val_max (TREE_TYPE (val));
291 else
293 #ifdef ENABLE_CHECKING
294 gcc_assert (vrp_val_is_min (val));
295 #endif
296 return vrp_val_min (TREE_TYPE (val));
301 /* Return true if ARG is marked with the nonnull attribute in the
302 current function signature. */
304 static bool
305 nonnull_arg_p (const_tree arg)
307 tree t, attrs, fntype;
308 unsigned HOST_WIDE_INT arg_num;
310 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
312 /* The static chain decl is always non null. */
313 if (arg == cfun->static_chain_decl)
314 return true;
316 fntype = TREE_TYPE (current_function_decl);
317 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
319 /* If "nonnull" wasn't specified, we know nothing about the argument. */
320 if (attrs == NULL_TREE)
321 return false;
323 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
324 if (TREE_VALUE (attrs) == NULL_TREE)
325 return true;
327 /* Get the position number for ARG in the function signature. */
328 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
330 t = TREE_CHAIN (t), arg_num++)
332 if (t == arg)
333 break;
336 gcc_assert (t == arg);
338 /* Now see if ARG_NUM is mentioned in the nonnull list. */
339 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
341 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
342 return true;
345 return false;
349 /* Set value range VR to VR_VARYING. */
351 static inline void
352 set_value_range_to_varying (value_range_t *vr)
354 vr->type = VR_VARYING;
355 vr->min = vr->max = NULL_TREE;
356 if (vr->equiv)
357 bitmap_clear (vr->equiv);
361 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
363 static void
364 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
365 tree max, bitmap equiv)
367 #if defined ENABLE_CHECKING
368 /* Check the validity of the range. */
369 if (t == VR_RANGE || t == VR_ANTI_RANGE)
371 int cmp;
373 gcc_assert (min && max);
375 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
376 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
378 cmp = compare_values (min, max);
379 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
381 if (needs_overflow_infinity (TREE_TYPE (min)))
382 gcc_assert (!is_overflow_infinity (min)
383 || !is_overflow_infinity (max));
386 if (t == VR_UNDEFINED || t == VR_VARYING)
387 gcc_assert (min == NULL_TREE && max == NULL_TREE);
389 if (t == VR_UNDEFINED || t == VR_VARYING)
390 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
391 #endif
393 vr->type = t;
394 vr->min = min;
395 vr->max = max;
397 /* Since updating the equivalence set involves deep copying the
398 bitmaps, only do it if absolutely necessary. */
399 if (vr->equiv == NULL
400 && equiv != NULL)
401 vr->equiv = BITMAP_ALLOC (NULL);
403 if (equiv != vr->equiv)
405 if (equiv && !bitmap_empty_p (equiv))
406 bitmap_copy (vr->equiv, equiv);
407 else
408 bitmap_clear (vr->equiv);
413 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
414 This means adjusting T, MIN and MAX representing the case of a
415 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
416 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
417 In corner cases where MAX+1 or MIN-1 wraps this will fall back
418 to varying.
419 This routine exists to ease canonicalization in the case where we
420 extract ranges from var + CST op limit. */
422 static void
423 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
424 tree min, tree max, bitmap equiv)
426 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
427 if ((t != VR_RANGE
428 && t != VR_ANTI_RANGE)
429 || TREE_CODE (min) != INTEGER_CST
430 || TREE_CODE (max) != INTEGER_CST)
432 set_value_range (vr, t, min, max, equiv);
433 return;
436 /* Wrong order for min and max, to swap them and the VR type we need
437 to adjust them. */
438 if (tree_int_cst_lt (max, min))
440 tree one = build_int_cst (TREE_TYPE (min), 1);
441 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
442 max = int_const_binop (MINUS_EXPR, min, one, 0);
443 min = tmp;
445 /* There's one corner case, if we had [C+1, C] before we now have
446 that again. But this represents an empty value range, so drop
447 to varying in this case. */
448 if (tree_int_cst_lt (max, min))
450 set_value_range_to_varying (vr);
451 return;
454 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
457 /* Anti-ranges that can be represented as ranges should be so. */
458 if (t == VR_ANTI_RANGE)
460 bool is_min = vrp_val_is_min (min);
461 bool is_max = vrp_val_is_max (max);
463 if (is_min && is_max)
465 /* We cannot deal with empty ranges, drop to varying. */
466 set_value_range_to_varying (vr);
467 return;
469 else if (is_min
470 /* As a special exception preserve non-null ranges. */
471 && !(TYPE_UNSIGNED (TREE_TYPE (min))
472 && integer_zerop (max)))
474 tree one = build_int_cst (TREE_TYPE (max), 1);
475 min = int_const_binop (PLUS_EXPR, max, one, 0);
476 max = vrp_val_max (TREE_TYPE (max));
477 t = VR_RANGE;
479 else if (is_max)
481 tree one = build_int_cst (TREE_TYPE (min), 1);
482 max = int_const_binop (MINUS_EXPR, min, one, 0);
483 min = vrp_val_min (TREE_TYPE (min));
484 t = VR_RANGE;
488 set_value_range (vr, t, min, max, equiv);
491 /* Copy value range FROM into value range TO. */
493 static inline void
494 copy_value_range (value_range_t *to, value_range_t *from)
496 set_value_range (to, from->type, from->min, from->max, from->equiv);
499 /* Set value range VR to a single value. This function is only called
500 with values we get from statements, and exists to clear the
501 TREE_OVERFLOW flag so that we don't think we have an overflow
502 infinity when we shouldn't. */
504 static inline void
505 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
507 gcc_assert (is_gimple_min_invariant (val));
508 val = avoid_overflow_infinity (val);
509 set_value_range (vr, VR_RANGE, val, val, equiv);
512 /* Set value range VR to a non-negative range of type TYPE.
513 OVERFLOW_INFINITY indicates whether to use an overflow infinity
514 rather than TYPE_MAX_VALUE; this should be true if we determine
515 that the range is nonnegative based on the assumption that signed
516 overflow does not occur. */
518 static inline void
519 set_value_range_to_nonnegative (value_range_t *vr, tree type,
520 bool overflow_infinity)
522 tree zero;
524 if (overflow_infinity && !supports_overflow_infinity (type))
526 set_value_range_to_varying (vr);
527 return;
530 zero = build_int_cst (type, 0);
531 set_value_range (vr, VR_RANGE, zero,
532 (overflow_infinity
533 ? positive_overflow_infinity (type)
534 : TYPE_MAX_VALUE (type)),
535 vr->equiv);
538 /* Set value range VR to a non-NULL range of type TYPE. */
540 static inline void
541 set_value_range_to_nonnull (value_range_t *vr, tree type)
543 tree zero = build_int_cst (type, 0);
544 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
548 /* Set value range VR to a NULL range of type TYPE. */
550 static inline void
551 set_value_range_to_null (value_range_t *vr, tree type)
553 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
557 /* Set value range VR to a range of a truthvalue of type TYPE. */
559 static inline void
560 set_value_range_to_truthvalue (value_range_t *vr, tree type)
562 if (TYPE_PRECISION (type) == 1)
563 set_value_range_to_varying (vr);
564 else
565 set_value_range (vr, VR_RANGE,
566 build_int_cst (type, 0), build_int_cst (type, 1),
567 vr->equiv);
571 /* Set value range VR to VR_UNDEFINED. */
573 static inline void
574 set_value_range_to_undefined (value_range_t *vr)
576 vr->type = VR_UNDEFINED;
577 vr->min = vr->max = NULL_TREE;
578 if (vr->equiv)
579 bitmap_clear (vr->equiv);
583 /* Return value range information for VAR.
585 If we have no values ranges recorded (ie, VRP is not running), then
586 return NULL. Otherwise create an empty range if none existed for VAR. */
588 static value_range_t *
589 get_value_range (const_tree var)
591 value_range_t *vr;
592 tree sym;
593 unsigned ver = SSA_NAME_VERSION (var);
595 /* If we have no recorded ranges, then return NULL. */
596 if (! vr_value)
597 return NULL;
599 vr = vr_value[ver];
600 if (vr)
601 return vr;
603 /* Create a default value range. */
604 vr_value[ver] = vr = XCNEW (value_range_t);
606 /* Defer allocating the equivalence set. */
607 vr->equiv = NULL;
609 /* If VAR is a default definition, the variable can take any value
610 in VAR's type. */
611 sym = SSA_NAME_VAR (var);
612 if (SSA_NAME_IS_DEFAULT_DEF (var))
614 /* Try to use the "nonnull" attribute to create ~[0, 0]
615 anti-ranges for pointers. Note that this is only valid with
616 default definitions of PARM_DECLs. */
617 if (TREE_CODE (sym) == PARM_DECL
618 && POINTER_TYPE_P (TREE_TYPE (sym))
619 && nonnull_arg_p (sym))
620 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
621 else
622 set_value_range_to_varying (vr);
625 return vr;
628 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
630 static inline bool
631 vrp_operand_equal_p (const_tree val1, const_tree val2)
633 if (val1 == val2)
634 return true;
635 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
636 return false;
637 if (is_overflow_infinity (val1))
638 return is_overflow_infinity (val2);
639 return true;
642 /* Return true, if the bitmaps B1 and B2 are equal. */
644 static inline bool
645 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
647 return (b1 == b2
648 || (b1 && b2
649 && bitmap_equal_p (b1, b2)));
652 /* Update the value range and equivalence set for variable VAR to
653 NEW_VR. Return true if NEW_VR is different from VAR's previous
654 value.
656 NOTE: This function assumes that NEW_VR is a temporary value range
657 object created for the sole purpose of updating VAR's range. The
658 storage used by the equivalence set from NEW_VR will be freed by
659 this function. Do not call update_value_range when NEW_VR
660 is the range object associated with another SSA name. */
662 static inline bool
663 update_value_range (const_tree var, value_range_t *new_vr)
665 value_range_t *old_vr;
666 bool is_new;
668 /* Update the value range, if necessary. */
669 old_vr = get_value_range (var);
670 is_new = old_vr->type != new_vr->type
671 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
672 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
673 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
675 if (is_new)
676 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
677 new_vr->equiv);
679 BITMAP_FREE (new_vr->equiv);
681 return is_new;
685 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
686 point where equivalence processing can be turned on/off. */
688 static void
689 add_equivalence (bitmap *equiv, const_tree var)
691 unsigned ver = SSA_NAME_VERSION (var);
692 value_range_t *vr = vr_value[ver];
694 if (*equiv == NULL)
695 *equiv = BITMAP_ALLOC (NULL);
696 bitmap_set_bit (*equiv, ver);
697 if (vr && vr->equiv)
698 bitmap_ior_into (*equiv, vr->equiv);
702 /* Return true if VR is ~[0, 0]. */
704 static inline bool
705 range_is_nonnull (value_range_t *vr)
707 return vr->type == VR_ANTI_RANGE
708 && integer_zerop (vr->min)
709 && integer_zerop (vr->max);
713 /* Return true if VR is [0, 0]. */
715 static inline bool
716 range_is_null (value_range_t *vr)
718 return vr->type == VR_RANGE
719 && integer_zerop (vr->min)
720 && integer_zerop (vr->max);
724 /* Return true if value range VR involves at least one symbol. */
726 static inline bool
727 symbolic_range_p (value_range_t *vr)
729 return (!is_gimple_min_invariant (vr->min)
730 || !is_gimple_min_invariant (vr->max));
733 /* Return true if value range VR uses an overflow infinity. */
735 static inline bool
736 overflow_infinity_range_p (value_range_t *vr)
738 return (vr->type == VR_RANGE
739 && (is_overflow_infinity (vr->min)
740 || is_overflow_infinity (vr->max)));
743 /* Return false if we can not make a valid comparison based on VR;
744 this will be the case if it uses an overflow infinity and overflow
745 is not undefined (i.e., -fno-strict-overflow is in effect).
746 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
747 uses an overflow infinity. */
749 static bool
750 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
752 gcc_assert (vr->type == VR_RANGE);
753 if (is_overflow_infinity (vr->min))
755 *strict_overflow_p = true;
756 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
757 return false;
759 if (is_overflow_infinity (vr->max))
761 *strict_overflow_p = true;
762 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
763 return false;
765 return true;
769 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
770 ranges obtained so far. */
772 static bool
773 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
775 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
776 || (TREE_CODE (expr) == SSA_NAME
777 && ssa_name_nonnegative_p (expr)));
780 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
781 obtained so far. */
783 static bool
784 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
786 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p)
787 || (TREE_CODE (expr) == SSA_NAME
788 && ssa_name_nonzero_p (expr)))
789 return true;
791 /* If we have an expression of the form &X->a, then the expression
792 is nonnull if X is nonnull. */
793 if (TREE_CODE (expr) == ADDR_EXPR)
795 tree base = get_base_address (TREE_OPERAND (expr, 0));
797 if (base != NULL_TREE
798 && TREE_CODE (base) == INDIRECT_REF
799 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
801 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
802 if (range_is_nonnull (vr))
803 return true;
807 return false;
810 /* Returns true if EXPR is a valid value (as expected by compare_values) --
811 a gimple invariant, or SSA_NAME +- CST. */
813 static bool
814 valid_value_p (tree expr)
816 if (TREE_CODE (expr) == SSA_NAME)
817 return true;
819 if (TREE_CODE (expr) == PLUS_EXPR
820 || TREE_CODE (expr) == MINUS_EXPR)
821 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
822 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
824 return is_gimple_min_invariant (expr);
827 /* Return
828 1 if VAL < VAL2
829 0 if !(VAL < VAL2)
830 -2 if those are incomparable. */
831 static inline int
832 operand_less_p (tree val, tree val2)
834 /* LT is folded faster than GE and others. Inline the common case. */
835 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
837 if (TYPE_UNSIGNED (TREE_TYPE (val)))
838 return INT_CST_LT_UNSIGNED (val, val2);
839 else
841 if (INT_CST_LT (val, val2))
842 return 1;
845 else
847 tree tcmp;
849 fold_defer_overflow_warnings ();
851 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
853 fold_undefer_and_ignore_overflow_warnings ();
855 if (!tcmp
856 || TREE_CODE (tcmp) != INTEGER_CST)
857 return -2;
859 if (!integer_zerop (tcmp))
860 return 1;
863 /* val >= val2, not considering overflow infinity. */
864 if (is_negative_overflow_infinity (val))
865 return is_negative_overflow_infinity (val2) ? 0 : 1;
866 else if (is_positive_overflow_infinity (val2))
867 return is_positive_overflow_infinity (val) ? 0 : 1;
869 return 0;
872 /* Compare two values VAL1 and VAL2. Return
874 -2 if VAL1 and VAL2 cannot be compared at compile-time,
875 -1 if VAL1 < VAL2,
876 0 if VAL1 == VAL2,
877 +1 if VAL1 > VAL2, and
878 +2 if VAL1 != VAL2
880 This is similar to tree_int_cst_compare but supports pointer values
881 and values that cannot be compared at compile time.
883 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
884 true if the return value is only valid if we assume that signed
885 overflow is undefined. */
887 static int
888 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
890 if (val1 == val2)
891 return 0;
893 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
894 both integers. */
895 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
896 == POINTER_TYPE_P (TREE_TYPE (val2)));
897 /* Convert the two values into the same type. This is needed because
898 sizetype causes sign extension even for unsigned types. */
899 val2 = fold_convert (TREE_TYPE (val1), val2);
900 STRIP_USELESS_TYPE_CONVERSION (val2);
902 if ((TREE_CODE (val1) == SSA_NAME
903 || TREE_CODE (val1) == PLUS_EXPR
904 || TREE_CODE (val1) == MINUS_EXPR)
905 && (TREE_CODE (val2) == SSA_NAME
906 || TREE_CODE (val2) == PLUS_EXPR
907 || TREE_CODE (val2) == MINUS_EXPR))
909 tree n1, c1, n2, c2;
910 enum tree_code code1, code2;
912 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
913 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
914 same name, return -2. */
915 if (TREE_CODE (val1) == SSA_NAME)
917 code1 = SSA_NAME;
918 n1 = val1;
919 c1 = NULL_TREE;
921 else
923 code1 = TREE_CODE (val1);
924 n1 = TREE_OPERAND (val1, 0);
925 c1 = TREE_OPERAND (val1, 1);
926 if (tree_int_cst_sgn (c1) == -1)
928 if (is_negative_overflow_infinity (c1))
929 return -2;
930 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
931 if (!c1)
932 return -2;
933 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
937 if (TREE_CODE (val2) == SSA_NAME)
939 code2 = SSA_NAME;
940 n2 = val2;
941 c2 = NULL_TREE;
943 else
945 code2 = TREE_CODE (val2);
946 n2 = TREE_OPERAND (val2, 0);
947 c2 = TREE_OPERAND (val2, 1);
948 if (tree_int_cst_sgn (c2) == -1)
950 if (is_negative_overflow_infinity (c2))
951 return -2;
952 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
953 if (!c2)
954 return -2;
955 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
959 /* Both values must use the same name. */
960 if (n1 != n2)
961 return -2;
963 if (code1 == SSA_NAME
964 && code2 == SSA_NAME)
965 /* NAME == NAME */
966 return 0;
968 /* If overflow is defined we cannot simplify more. */
969 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
970 return -2;
972 if (strict_overflow_p != NULL
973 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
974 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
975 *strict_overflow_p = true;
977 if (code1 == SSA_NAME)
979 if (code2 == PLUS_EXPR)
980 /* NAME < NAME + CST */
981 return -1;
982 else if (code2 == MINUS_EXPR)
983 /* NAME > NAME - CST */
984 return 1;
986 else if (code1 == PLUS_EXPR)
988 if (code2 == SSA_NAME)
989 /* NAME + CST > NAME */
990 return 1;
991 else if (code2 == PLUS_EXPR)
992 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
993 return compare_values_warnv (c1, c2, strict_overflow_p);
994 else if (code2 == MINUS_EXPR)
995 /* NAME + CST1 > NAME - CST2 */
996 return 1;
998 else if (code1 == MINUS_EXPR)
1000 if (code2 == SSA_NAME)
1001 /* NAME - CST < NAME */
1002 return -1;
1003 else if (code2 == PLUS_EXPR)
1004 /* NAME - CST1 < NAME + CST2 */
1005 return -1;
1006 else if (code2 == MINUS_EXPR)
1007 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1008 C1 and C2 are swapped in the call to compare_values. */
1009 return compare_values_warnv (c2, c1, strict_overflow_p);
1012 gcc_unreachable ();
1015 /* We cannot compare non-constants. */
1016 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1017 return -2;
1019 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1021 /* We cannot compare overflowed values, except for overflow
1022 infinities. */
1023 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1025 if (strict_overflow_p != NULL)
1026 *strict_overflow_p = true;
1027 if (is_negative_overflow_infinity (val1))
1028 return is_negative_overflow_infinity (val2) ? 0 : -1;
1029 else if (is_negative_overflow_infinity (val2))
1030 return 1;
1031 else if (is_positive_overflow_infinity (val1))
1032 return is_positive_overflow_infinity (val2) ? 0 : 1;
1033 else if (is_positive_overflow_infinity (val2))
1034 return -1;
1035 return -2;
1038 return tree_int_cst_compare (val1, val2);
1040 else
1042 tree t;
1044 /* First see if VAL1 and VAL2 are not the same. */
1045 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1046 return 0;
1048 /* If VAL1 is a lower address than VAL2, return -1. */
1049 if (operand_less_p (val1, val2) == 1)
1050 return -1;
1052 /* If VAL1 is a higher address than VAL2, return +1. */
1053 if (operand_less_p (val2, val1) == 1)
1054 return 1;
1056 /* If VAL1 is different than VAL2, return +2.
1057 For integer constants we either have already returned -1 or 1
1058 or they are equivalent. We still might succeed in proving
1059 something about non-trivial operands. */
1060 if (TREE_CODE (val1) != INTEGER_CST
1061 || TREE_CODE (val2) != INTEGER_CST)
1063 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1064 if (t && integer_onep (t))
1065 return 2;
1068 return -2;
1072 /* Compare values like compare_values_warnv, but treat comparisons of
1073 nonconstants which rely on undefined overflow as incomparable. */
1075 static int
1076 compare_values (tree val1, tree val2)
1078 bool sop;
1079 int ret;
1081 sop = false;
1082 ret = compare_values_warnv (val1, val2, &sop);
1083 if (sop
1084 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1085 ret = -2;
1086 return ret;
1090 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1091 0 if VAL is not inside VR,
1092 -2 if we cannot tell either way.
1094 FIXME, the current semantics of this functions are a bit quirky
1095 when taken in the context of VRP. In here we do not care
1096 about VR's type. If VR is the anti-range ~[3, 5] the call
1097 value_inside_range (4, VR) will return 1.
1099 This is counter-intuitive in a strict sense, but the callers
1100 currently expect this. They are calling the function
1101 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1102 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1103 themselves.
1105 This also applies to value_ranges_intersect_p and
1106 range_includes_zero_p. The semantics of VR_RANGE and
1107 VR_ANTI_RANGE should be encoded here, but that also means
1108 adapting the users of these functions to the new semantics.
1110 Benchmark compile/20001226-1.c compilation time after changing this
1111 function. */
1113 static inline int
1114 value_inside_range (tree val, value_range_t * vr)
1116 int cmp1, cmp2;
1118 cmp1 = operand_less_p (val, vr->min);
1119 if (cmp1 == -2)
1120 return -2;
1121 if (cmp1 == 1)
1122 return 0;
1124 cmp2 = operand_less_p (vr->max, val);
1125 if (cmp2 == -2)
1126 return -2;
1128 return !cmp2;
1132 /* Return true if value ranges VR0 and VR1 have a non-empty
1133 intersection.
1135 Benchmark compile/20001226-1.c compilation time after changing this
1136 function.
1139 static inline bool
1140 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1142 /* The value ranges do not intersect if the maximum of the first range is
1143 less than the minimum of the second range or vice versa.
1144 When those relations are unknown, we can't do any better. */
1145 if (operand_less_p (vr0->max, vr1->min) != 0)
1146 return false;
1147 if (operand_less_p (vr1->max, vr0->min) != 0)
1148 return false;
1149 return true;
1153 /* Return true if VR includes the value zero, false otherwise. FIXME,
1154 currently this will return false for an anti-range like ~[-4, 3].
1155 This will be wrong when the semantics of value_inside_range are
1156 modified (currently the users of this function expect these
1157 semantics). */
1159 static inline bool
1160 range_includes_zero_p (value_range_t *vr)
1162 tree zero;
1164 gcc_assert (vr->type != VR_UNDEFINED
1165 && vr->type != VR_VARYING
1166 && !symbolic_range_p (vr));
1168 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1169 return (value_inside_range (zero, vr) == 1);
1172 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1173 false otherwise or if no value range information is available. */
1175 bool
1176 ssa_name_nonnegative_p (const_tree t)
1178 value_range_t *vr = get_value_range (t);
1180 if (!vr)
1181 return false;
1183 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1184 which would return a useful value should be encoded as a VR_RANGE. */
1185 if (vr->type == VR_RANGE)
1187 int result = compare_values (vr->min, integer_zero_node);
1189 return (result == 0 || result == 1);
1191 return false;
1194 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1195 false otherwise or if no value range information is available. */
1197 bool
1198 ssa_name_nonzero_p (const_tree t)
1200 value_range_t *vr = get_value_range (t);
1202 if (!vr)
1203 return false;
1205 /* A VR_RANGE which does not include zero is a nonzero value. */
1206 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1207 return ! range_includes_zero_p (vr);
1209 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1210 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1211 return range_includes_zero_p (vr);
1213 return false;
1217 /* Extract value range information from an ASSERT_EXPR EXPR and store
1218 it in *VR_P. */
1220 static void
1221 extract_range_from_assert (value_range_t *vr_p, tree expr)
1223 tree var, cond, limit, min, max, type;
1224 value_range_t *var_vr, *limit_vr;
1225 enum tree_code cond_code;
1227 var = ASSERT_EXPR_VAR (expr);
1228 cond = ASSERT_EXPR_COND (expr);
1230 gcc_assert (COMPARISON_CLASS_P (cond));
1232 /* Find VAR in the ASSERT_EXPR conditional. */
1233 if (var == TREE_OPERAND (cond, 0)
1234 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1235 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1237 /* If the predicate is of the form VAR COMP LIMIT, then we just
1238 take LIMIT from the RHS and use the same comparison code. */
1239 cond_code = TREE_CODE (cond);
1240 limit = TREE_OPERAND (cond, 1);
1241 cond = TREE_OPERAND (cond, 0);
1243 else
1245 /* If the predicate is of the form LIMIT COMP VAR, then we need
1246 to flip around the comparison code to create the proper range
1247 for VAR. */
1248 cond_code = swap_tree_comparison (TREE_CODE (cond));
1249 limit = TREE_OPERAND (cond, 0);
1250 cond = TREE_OPERAND (cond, 1);
1253 limit = avoid_overflow_infinity (limit);
1255 type = TREE_TYPE (limit);
1256 gcc_assert (limit != var);
1258 /* For pointer arithmetic, we only keep track of pointer equality
1259 and inequality. */
1260 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1262 set_value_range_to_varying (vr_p);
1263 return;
1266 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1267 try to use LIMIT's range to avoid creating symbolic ranges
1268 unnecessarily. */
1269 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1271 /* LIMIT's range is only interesting if it has any useful information. */
1272 if (limit_vr
1273 && (limit_vr->type == VR_UNDEFINED
1274 || limit_vr->type == VR_VARYING
1275 || symbolic_range_p (limit_vr)))
1276 limit_vr = NULL;
1278 /* Initially, the new range has the same set of equivalences of
1279 VAR's range. This will be revised before returning the final
1280 value. Since assertions may be chained via mutually exclusive
1281 predicates, we will need to trim the set of equivalences before
1282 we are done. */
1283 gcc_assert (vr_p->equiv == NULL);
1284 add_equivalence (&vr_p->equiv, var);
1286 /* Extract a new range based on the asserted comparison for VAR and
1287 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1288 will only use it for equality comparisons (EQ_EXPR). For any
1289 other kind of assertion, we cannot derive a range from LIMIT's
1290 anti-range that can be used to describe the new range. For
1291 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1292 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1293 no single range for x_2 that could describe LE_EXPR, so we might
1294 as well build the range [b_4, +INF] for it.
1295 One special case we handle is extracting a range from a
1296 range test encoded as (unsigned)var + CST <= limit. */
1297 if (TREE_CODE (cond) == NOP_EXPR
1298 || TREE_CODE (cond) == PLUS_EXPR)
1300 if (TREE_CODE (cond) == PLUS_EXPR)
1302 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1303 TREE_OPERAND (cond, 1));
1304 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1305 cond = TREE_OPERAND (cond, 0);
1307 else
1309 min = build_int_cst (TREE_TYPE (var), 0);
1310 max = limit;
1313 /* Make sure to not set TREE_OVERFLOW on the final type
1314 conversion. We are willingly interpreting large positive
1315 unsigned values as negative singed values here. */
1316 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1317 TREE_INT_CST_HIGH (min), 0, false);
1318 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1319 TREE_INT_CST_HIGH (max), 0, false);
1321 /* We can transform a max, min range to an anti-range or
1322 vice-versa. Use set_and_canonicalize_value_range which does
1323 this for us. */
1324 if (cond_code == LE_EXPR)
1325 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1326 min, max, vr_p->equiv);
1327 else if (cond_code == GT_EXPR)
1328 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1329 min, max, vr_p->equiv);
1330 else
1331 gcc_unreachable ();
1333 else if (cond_code == EQ_EXPR)
1335 enum value_range_type range_type;
1337 if (limit_vr)
1339 range_type = limit_vr->type;
1340 min = limit_vr->min;
1341 max = limit_vr->max;
1343 else
1345 range_type = VR_RANGE;
1346 min = limit;
1347 max = limit;
1350 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1352 /* When asserting the equality VAR == LIMIT and LIMIT is another
1353 SSA name, the new range will also inherit the equivalence set
1354 from LIMIT. */
1355 if (TREE_CODE (limit) == SSA_NAME)
1356 add_equivalence (&vr_p->equiv, limit);
1358 else if (cond_code == NE_EXPR)
1360 /* As described above, when LIMIT's range is an anti-range and
1361 this assertion is an inequality (NE_EXPR), then we cannot
1362 derive anything from the anti-range. For instance, if
1363 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1364 not imply that VAR's range is [0, 0]. So, in the case of
1365 anti-ranges, we just assert the inequality using LIMIT and
1366 not its anti-range.
1368 If LIMIT_VR is a range, we can only use it to build a new
1369 anti-range if LIMIT_VR is a single-valued range. For
1370 instance, if LIMIT_VR is [0, 1], the predicate
1371 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1372 Rather, it means that for value 0 VAR should be ~[0, 0]
1373 and for value 1, VAR should be ~[1, 1]. We cannot
1374 represent these ranges.
1376 The only situation in which we can build a valid
1377 anti-range is when LIMIT_VR is a single-valued range
1378 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1379 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1380 if (limit_vr
1381 && limit_vr->type == VR_RANGE
1382 && compare_values (limit_vr->min, limit_vr->max) == 0)
1384 min = limit_vr->min;
1385 max = limit_vr->max;
1387 else
1389 /* In any other case, we cannot use LIMIT's range to build a
1390 valid anti-range. */
1391 min = max = limit;
1394 /* If MIN and MAX cover the whole range for their type, then
1395 just use the original LIMIT. */
1396 if (INTEGRAL_TYPE_P (type)
1397 && vrp_val_is_min (min)
1398 && vrp_val_is_max (max))
1399 min = max = limit;
1401 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1403 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1405 min = TYPE_MIN_VALUE (type);
1407 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1408 max = limit;
1409 else
1411 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1412 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1413 LT_EXPR. */
1414 max = limit_vr->max;
1417 /* If the maximum value forces us to be out of bounds, simply punt.
1418 It would be pointless to try and do anything more since this
1419 all should be optimized away above us. */
1420 if ((cond_code == LT_EXPR
1421 && compare_values (max, min) == 0)
1422 || is_overflow_infinity (max))
1423 set_value_range_to_varying (vr_p);
1424 else
1426 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1427 if (cond_code == LT_EXPR)
1429 tree one = build_int_cst (type, 1);
1430 max = fold_build2 (MINUS_EXPR, type, max, one);
1431 if (EXPR_P (max))
1432 TREE_NO_WARNING (max) = 1;
1435 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1438 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1440 max = TYPE_MAX_VALUE (type);
1442 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1443 min = limit;
1444 else
1446 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1447 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1448 GT_EXPR. */
1449 min = limit_vr->min;
1452 /* If the minimum value forces us to be out of bounds, simply punt.
1453 It would be pointless to try and do anything more since this
1454 all should be optimized away above us. */
1455 if ((cond_code == GT_EXPR
1456 && compare_values (min, max) == 0)
1457 || is_overflow_infinity (min))
1458 set_value_range_to_varying (vr_p);
1459 else
1461 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1462 if (cond_code == GT_EXPR)
1464 tree one = build_int_cst (type, 1);
1465 min = fold_build2 (PLUS_EXPR, type, min, one);
1466 if (EXPR_P (min))
1467 TREE_NO_WARNING (min) = 1;
1470 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1473 else
1474 gcc_unreachable ();
1476 /* If VAR already had a known range, it may happen that the new
1477 range we have computed and VAR's range are not compatible. For
1478 instance,
1480 if (p_5 == NULL)
1481 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1482 x_7 = p_6->fld;
1483 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1485 While the above comes from a faulty program, it will cause an ICE
1486 later because p_8 and p_6 will have incompatible ranges and at
1487 the same time will be considered equivalent. A similar situation
1488 would arise from
1490 if (i_5 > 10)
1491 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1492 if (i_5 < 5)
1493 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1495 Again i_6 and i_7 will have incompatible ranges. It would be
1496 pointless to try and do anything with i_7's range because
1497 anything dominated by 'if (i_5 < 5)' will be optimized away.
1498 Note, due to the wa in which simulation proceeds, the statement
1499 i_7 = ASSERT_EXPR <...> we would never be visited because the
1500 conditional 'if (i_5 < 5)' always evaluates to false. However,
1501 this extra check does not hurt and may protect against future
1502 changes to VRP that may get into a situation similar to the
1503 NULL pointer dereference example.
1505 Note that these compatibility tests are only needed when dealing
1506 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1507 are both anti-ranges, they will always be compatible, because two
1508 anti-ranges will always have a non-empty intersection. */
1510 var_vr = get_value_range (var);
1512 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1513 ranges or anti-ranges. */
1514 if (vr_p->type == VR_VARYING
1515 || vr_p->type == VR_UNDEFINED
1516 || var_vr->type == VR_VARYING
1517 || var_vr->type == VR_UNDEFINED
1518 || symbolic_range_p (vr_p)
1519 || symbolic_range_p (var_vr))
1520 return;
1522 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1524 /* If the two ranges have a non-empty intersection, we can
1525 refine the resulting range. Since the assert expression
1526 creates an equivalency and at the same time it asserts a
1527 predicate, we can take the intersection of the two ranges to
1528 get better precision. */
1529 if (value_ranges_intersect_p (var_vr, vr_p))
1531 /* Use the larger of the two minimums. */
1532 if (compare_values (vr_p->min, var_vr->min) == -1)
1533 min = var_vr->min;
1534 else
1535 min = vr_p->min;
1537 /* Use the smaller of the two maximums. */
1538 if (compare_values (vr_p->max, var_vr->max) == 1)
1539 max = var_vr->max;
1540 else
1541 max = vr_p->max;
1543 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1545 else
1547 /* The two ranges do not intersect, set the new range to
1548 VARYING, because we will not be able to do anything
1549 meaningful with it. */
1550 set_value_range_to_varying (vr_p);
1553 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1554 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1556 /* A range and an anti-range will cancel each other only if
1557 their ends are the same. For instance, in the example above,
1558 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1559 so VR_P should be set to VR_VARYING. */
1560 if (compare_values (var_vr->min, vr_p->min) == 0
1561 && compare_values (var_vr->max, vr_p->max) == 0)
1562 set_value_range_to_varying (vr_p);
1563 else
1565 tree min, max, anti_min, anti_max, real_min, real_max;
1566 int cmp;
1568 /* We want to compute the logical AND of the two ranges;
1569 there are three cases to consider.
1572 1. The VR_ANTI_RANGE range is completely within the
1573 VR_RANGE and the endpoints of the ranges are
1574 different. In that case the resulting range
1575 should be whichever range is more precise.
1576 Typically that will be the VR_RANGE.
1578 2. The VR_ANTI_RANGE is completely disjoint from
1579 the VR_RANGE. In this case the resulting range
1580 should be the VR_RANGE.
1582 3. There is some overlap between the VR_ANTI_RANGE
1583 and the VR_RANGE.
1585 3a. If the high limit of the VR_ANTI_RANGE resides
1586 within the VR_RANGE, then the result is a new
1587 VR_RANGE starting at the high limit of the
1588 VR_ANTI_RANGE + 1 and extending to the
1589 high limit of the original VR_RANGE.
1591 3b. If the low limit of the VR_ANTI_RANGE resides
1592 within the VR_RANGE, then the result is a new
1593 VR_RANGE starting at the low limit of the original
1594 VR_RANGE and extending to the low limit of the
1595 VR_ANTI_RANGE - 1. */
1596 if (vr_p->type == VR_ANTI_RANGE)
1598 anti_min = vr_p->min;
1599 anti_max = vr_p->max;
1600 real_min = var_vr->min;
1601 real_max = var_vr->max;
1603 else
1605 anti_min = var_vr->min;
1606 anti_max = var_vr->max;
1607 real_min = vr_p->min;
1608 real_max = vr_p->max;
1612 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1613 not including any endpoints. */
1614 if (compare_values (anti_max, real_max) == -1
1615 && compare_values (anti_min, real_min) == 1)
1617 /* If the range is covering the whole valid range of
1618 the type keep the anti-range. */
1619 if (!vrp_val_is_min (real_min)
1620 || !vrp_val_is_max (real_max))
1621 set_value_range (vr_p, VR_RANGE, real_min,
1622 real_max, vr_p->equiv);
1624 /* Case 2, VR_ANTI_RANGE completely disjoint from
1625 VR_RANGE. */
1626 else if (compare_values (anti_min, real_max) == 1
1627 || compare_values (anti_max, real_min) == -1)
1629 set_value_range (vr_p, VR_RANGE, real_min,
1630 real_max, vr_p->equiv);
1632 /* Case 3a, the anti-range extends into the low
1633 part of the real range. Thus creating a new
1634 low for the real range. */
1635 else if (((cmp = compare_values (anti_max, real_min)) == 1
1636 || cmp == 0)
1637 && compare_values (anti_max, real_max) == -1)
1639 gcc_assert (!is_positive_overflow_infinity (anti_max));
1640 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1641 && vrp_val_is_max (anti_max))
1643 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1645 set_value_range_to_varying (vr_p);
1646 return;
1648 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1650 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1651 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1652 anti_max,
1653 build_int_cst (TREE_TYPE (var_vr->min), 1));
1654 else
1655 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1656 anti_max, size_int (1));
1657 max = real_max;
1658 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1660 /* Case 3b, the anti-range extends into the high
1661 part of the real range. Thus creating a new
1662 higher for the real range. */
1663 else if (compare_values (anti_min, real_min) == 1
1664 && ((cmp = compare_values (anti_min, real_max)) == -1
1665 || cmp == 0))
1667 gcc_assert (!is_negative_overflow_infinity (anti_min));
1668 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1669 && vrp_val_is_min (anti_min))
1671 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1673 set_value_range_to_varying (vr_p);
1674 return;
1676 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1678 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1679 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1680 anti_min,
1681 build_int_cst (TREE_TYPE (var_vr->min), 1));
1682 else
1683 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1684 anti_min,
1685 size_int (-1));
1686 min = real_min;
1687 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1694 /* Extract range information from SSA name VAR and store it in VR. If
1695 VAR has an interesting range, use it. Otherwise, create the
1696 range [VAR, VAR] and return it. This is useful in situations where
1697 we may have conditionals testing values of VARYING names. For
1698 instance,
1700 x_3 = y_5;
1701 if (x_3 > y_5)
1704 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1705 always false. */
1707 static void
1708 extract_range_from_ssa_name (value_range_t *vr, tree var)
1710 value_range_t *var_vr = get_value_range (var);
1712 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1713 copy_value_range (vr, var_vr);
1714 else
1715 set_value_range (vr, VR_RANGE, var, var, NULL);
1717 add_equivalence (&vr->equiv, var);
1721 /* Wrapper around int_const_binop. If the operation overflows and we
1722 are not using wrapping arithmetic, then adjust the result to be
1723 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1724 NULL_TREE if we need to use an overflow infinity representation but
1725 the type does not support it. */
1727 static tree
1728 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1730 tree res;
1732 res = int_const_binop (code, val1, val2, 0);
1734 /* If we are not using wrapping arithmetic, operate symbolically
1735 on -INF and +INF. */
1736 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1738 int checkz = compare_values (res, val1);
1739 bool overflow = false;
1741 /* Ensure that res = val1 [+*] val2 >= val1
1742 or that res = val1 - val2 <= val1. */
1743 if ((code == PLUS_EXPR
1744 && !(checkz == 1 || checkz == 0))
1745 || (code == MINUS_EXPR
1746 && !(checkz == 0 || checkz == -1)))
1748 overflow = true;
1750 /* Checking for multiplication overflow is done by dividing the
1751 output of the multiplication by the first input of the
1752 multiplication. If the result of that division operation is
1753 not equal to the second input of the multiplication, then the
1754 multiplication overflowed. */
1755 else if (code == MULT_EXPR && !integer_zerop (val1))
1757 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1758 res,
1759 val1, 0);
1760 int check = compare_values (tmp, val2);
1762 if (check != 0)
1763 overflow = true;
1766 if (overflow)
1768 res = copy_node (res);
1769 TREE_OVERFLOW (res) = 1;
1773 else if ((TREE_OVERFLOW (res)
1774 && !TREE_OVERFLOW (val1)
1775 && !TREE_OVERFLOW (val2))
1776 || is_overflow_infinity (val1)
1777 || is_overflow_infinity (val2))
1779 /* If the operation overflowed but neither VAL1 nor VAL2 are
1780 overflown, return -INF or +INF depending on the operation
1781 and the combination of signs of the operands. */
1782 int sgn1 = tree_int_cst_sgn (val1);
1783 int sgn2 = tree_int_cst_sgn (val2);
1785 if (needs_overflow_infinity (TREE_TYPE (res))
1786 && !supports_overflow_infinity (TREE_TYPE (res)))
1787 return NULL_TREE;
1789 /* We have to punt on adding infinities of different signs,
1790 since we can't tell what the sign of the result should be.
1791 Likewise for subtracting infinities of the same sign. */
1792 if (((code == PLUS_EXPR && sgn1 != sgn2)
1793 || (code == MINUS_EXPR && sgn1 == sgn2))
1794 && is_overflow_infinity (val1)
1795 && is_overflow_infinity (val2))
1796 return NULL_TREE;
1798 /* Don't try to handle division or shifting of infinities. */
1799 if ((code == TRUNC_DIV_EXPR
1800 || code == FLOOR_DIV_EXPR
1801 || code == CEIL_DIV_EXPR
1802 || code == EXACT_DIV_EXPR
1803 || code == ROUND_DIV_EXPR
1804 || code == RSHIFT_EXPR)
1805 && (is_overflow_infinity (val1)
1806 || is_overflow_infinity (val2)))
1807 return NULL_TREE;
1809 /* Notice that we only need to handle the restricted set of
1810 operations handled by extract_range_from_binary_expr.
1811 Among them, only multiplication, addition and subtraction
1812 can yield overflow without overflown operands because we
1813 are working with integral types only... except in the
1814 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1815 for division too. */
1817 /* For multiplication, the sign of the overflow is given
1818 by the comparison of the signs of the operands. */
1819 if ((code == MULT_EXPR && sgn1 == sgn2)
1820 /* For addition, the operands must be of the same sign
1821 to yield an overflow. Its sign is therefore that
1822 of one of the operands, for example the first. For
1823 infinite operands X + -INF is negative, not positive. */
1824 || (code == PLUS_EXPR
1825 && (sgn1 >= 0
1826 ? !is_negative_overflow_infinity (val2)
1827 : is_positive_overflow_infinity (val2)))
1828 /* For subtraction, non-infinite operands must be of
1829 different signs to yield an overflow. Its sign is
1830 therefore that of the first operand or the opposite of
1831 that of the second operand. A first operand of 0 counts
1832 as positive here, for the corner case 0 - (-INF), which
1833 overflows, but must yield +INF. For infinite operands 0
1834 - INF is negative, not positive. */
1835 || (code == MINUS_EXPR
1836 && (sgn1 >= 0
1837 ? !is_positive_overflow_infinity (val2)
1838 : is_negative_overflow_infinity (val2)))
1839 /* We only get in here with positive shift count, so the
1840 overflow direction is the same as the sign of val1.
1841 Actually rshift does not overflow at all, but we only
1842 handle the case of shifting overflowed -INF and +INF. */
1843 || (code == RSHIFT_EXPR
1844 && sgn1 >= 0)
1845 /* For division, the only case is -INF / -1 = +INF. */
1846 || code == TRUNC_DIV_EXPR
1847 || code == FLOOR_DIV_EXPR
1848 || code == CEIL_DIV_EXPR
1849 || code == EXACT_DIV_EXPR
1850 || code == ROUND_DIV_EXPR)
1851 return (needs_overflow_infinity (TREE_TYPE (res))
1852 ? positive_overflow_infinity (TREE_TYPE (res))
1853 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1854 else
1855 return (needs_overflow_infinity (TREE_TYPE (res))
1856 ? negative_overflow_infinity (TREE_TYPE (res))
1857 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1860 return res;
1864 /* Extract range information from a binary expression EXPR based on
1865 the ranges of each of its operands and the expression code. */
1867 static void
1868 extract_range_from_binary_expr (value_range_t *vr,
1869 enum tree_code code,
1870 tree expr_type, tree op0, tree op1)
1872 enum value_range_type type;
1873 tree min, max;
1874 int cmp;
1875 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1876 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1878 /* Not all binary expressions can be applied to ranges in a
1879 meaningful way. Handle only arithmetic operations. */
1880 if (code != PLUS_EXPR
1881 && code != MINUS_EXPR
1882 && code != POINTER_PLUS_EXPR
1883 && code != MULT_EXPR
1884 && code != TRUNC_DIV_EXPR
1885 && code != FLOOR_DIV_EXPR
1886 && code != CEIL_DIV_EXPR
1887 && code != EXACT_DIV_EXPR
1888 && code != ROUND_DIV_EXPR
1889 && code != RSHIFT_EXPR
1890 && code != MIN_EXPR
1891 && code != MAX_EXPR
1892 && code != BIT_AND_EXPR
1893 && code != TRUTH_AND_EXPR
1894 && code != TRUTH_OR_EXPR)
1896 set_value_range_to_varying (vr);
1897 return;
1900 /* Get value ranges for each operand. For constant operands, create
1901 a new value range with the operand to simplify processing. */
1902 if (TREE_CODE (op0) == SSA_NAME)
1903 vr0 = *(get_value_range (op0));
1904 else if (is_gimple_min_invariant (op0))
1905 set_value_range_to_value (&vr0, op0, NULL);
1906 else
1907 set_value_range_to_varying (&vr0);
1909 if (TREE_CODE (op1) == SSA_NAME)
1910 vr1 = *(get_value_range (op1));
1911 else if (is_gimple_min_invariant (op1))
1912 set_value_range_to_value (&vr1, op1, NULL);
1913 else
1914 set_value_range_to_varying (&vr1);
1916 /* If either range is UNDEFINED, so is the result. */
1917 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1919 set_value_range_to_undefined (vr);
1920 return;
1923 /* The type of the resulting value range defaults to VR0.TYPE. */
1924 type = vr0.type;
1926 /* Refuse to operate on VARYING ranges, ranges of different kinds
1927 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1928 because we may be able to derive a useful range even if one of
1929 the operands is VR_VARYING or symbolic range. TODO, we may be
1930 able to derive anti-ranges in some cases. */
1931 if (code != BIT_AND_EXPR
1932 && code != TRUTH_AND_EXPR
1933 && code != TRUTH_OR_EXPR
1934 && (vr0.type == VR_VARYING
1935 || vr1.type == VR_VARYING
1936 || vr0.type != vr1.type
1937 || symbolic_range_p (&vr0)
1938 || symbolic_range_p (&vr1)))
1940 set_value_range_to_varying (vr);
1941 return;
1944 /* Now evaluate the expression to determine the new range. */
1945 if (POINTER_TYPE_P (expr_type)
1946 || POINTER_TYPE_P (TREE_TYPE (op0))
1947 || POINTER_TYPE_P (TREE_TYPE (op1)))
1949 if (code == MIN_EXPR || code == MAX_EXPR)
1951 /* For MIN/MAX expressions with pointers, we only care about
1952 nullness, if both are non null, then the result is nonnull.
1953 If both are null, then the result is null. Otherwise they
1954 are varying. */
1955 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1956 set_value_range_to_nonnull (vr, expr_type);
1957 else if (range_is_null (&vr0) && range_is_null (&vr1))
1958 set_value_range_to_null (vr, expr_type);
1959 else
1960 set_value_range_to_varying (vr);
1962 return;
1964 gcc_assert (code == POINTER_PLUS_EXPR);
1965 /* For pointer types, we are really only interested in asserting
1966 whether the expression evaluates to non-NULL. */
1967 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1968 set_value_range_to_nonnull (vr, expr_type);
1969 else if (range_is_null (&vr0) && range_is_null (&vr1))
1970 set_value_range_to_null (vr, expr_type);
1971 else
1972 set_value_range_to_varying (vr);
1974 return;
1977 /* For integer ranges, apply the operation to each end of the
1978 range and see what we end up with. */
1979 if (code == TRUTH_AND_EXPR
1980 || code == TRUTH_OR_EXPR)
1982 /* If one of the operands is zero, we know that the whole
1983 expression evaluates zero. */
1984 if (code == TRUTH_AND_EXPR
1985 && ((vr0.type == VR_RANGE
1986 && integer_zerop (vr0.min)
1987 && integer_zerop (vr0.max))
1988 || (vr1.type == VR_RANGE
1989 && integer_zerop (vr1.min)
1990 && integer_zerop (vr1.max))))
1992 type = VR_RANGE;
1993 min = max = build_int_cst (expr_type, 0);
1995 /* If one of the operands is one, we know that the whole
1996 expression evaluates one. */
1997 else if (code == TRUTH_OR_EXPR
1998 && ((vr0.type == VR_RANGE
1999 && integer_onep (vr0.min)
2000 && integer_onep (vr0.max))
2001 || (vr1.type == VR_RANGE
2002 && integer_onep (vr1.min)
2003 && integer_onep (vr1.max))))
2005 type = VR_RANGE;
2006 min = max = build_int_cst (expr_type, 1);
2008 else if (vr0.type != VR_VARYING
2009 && vr1.type != VR_VARYING
2010 && vr0.type == vr1.type
2011 && !symbolic_range_p (&vr0)
2012 && !overflow_infinity_range_p (&vr0)
2013 && !symbolic_range_p (&vr1)
2014 && !overflow_infinity_range_p (&vr1))
2016 /* Boolean expressions cannot be folded with int_const_binop. */
2017 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2018 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2020 else
2022 /* The result of a TRUTH_*_EXPR is always true or false. */
2023 set_value_range_to_truthvalue (vr, expr_type);
2024 return;
2027 else if (code == PLUS_EXPR
2028 || code == MIN_EXPR
2029 || code == MAX_EXPR)
2031 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2032 VR_VARYING. It would take more effort to compute a precise
2033 range for such a case. For example, if we have op0 == 1 and
2034 op1 == -1 with their ranges both being ~[0,0], we would have
2035 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2036 Note that we are guaranteed to have vr0.type == vr1.type at
2037 this point. */
2038 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2040 set_value_range_to_varying (vr);
2041 return;
2044 /* For operations that make the resulting range directly
2045 proportional to the original ranges, apply the operation to
2046 the same end of each range. */
2047 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2048 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2050 else if (code == MULT_EXPR
2051 || code == TRUNC_DIV_EXPR
2052 || code == FLOOR_DIV_EXPR
2053 || code == CEIL_DIV_EXPR
2054 || code == EXACT_DIV_EXPR
2055 || code == ROUND_DIV_EXPR
2056 || code == RSHIFT_EXPR)
2058 tree val[4];
2059 size_t i;
2060 bool sop;
2062 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2063 drop to VR_VARYING. It would take more effort to compute a
2064 precise range for such a case. For example, if we have
2065 op0 == 65536 and op1 == 65536 with their ranges both being
2066 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2067 we cannot claim that the product is in ~[0,0]. Note that we
2068 are guaranteed to have vr0.type == vr1.type at this
2069 point. */
2070 if (code == MULT_EXPR
2071 && vr0.type == VR_ANTI_RANGE
2072 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2074 set_value_range_to_varying (vr);
2075 return;
2078 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2079 then drop to VR_VARYING. Outside of this range we get undefined
2080 behavior from the shift operation. We cannot even trust
2081 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2082 shifts, and the operation at the tree level may be widened. */
2083 if (code == RSHIFT_EXPR)
2085 if (vr1.type == VR_ANTI_RANGE
2086 || !vrp_expr_computes_nonnegative (op1, &sop)
2087 || (operand_less_p
2088 (build_int_cst (TREE_TYPE (vr1.max),
2089 TYPE_PRECISION (expr_type) - 1),
2090 vr1.max) != 0))
2092 set_value_range_to_varying (vr);
2093 return;
2097 /* Multiplications and divisions are a bit tricky to handle,
2098 depending on the mix of signs we have in the two ranges, we
2099 need to operate on different values to get the minimum and
2100 maximum values for the new range. One approach is to figure
2101 out all the variations of range combinations and do the
2102 operations.
2104 However, this involves several calls to compare_values and it
2105 is pretty convoluted. It's simpler to do the 4 operations
2106 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2107 MAX1) and then figure the smallest and largest values to form
2108 the new range. */
2110 /* Divisions by zero result in a VARYING value. */
2111 else if (code != MULT_EXPR
2112 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
2114 set_value_range_to_varying (vr);
2115 return;
2118 /* Compute the 4 cross operations. */
2119 sop = false;
2120 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2121 if (val[0] == NULL_TREE)
2122 sop = true;
2124 if (vr1.max == vr1.min)
2125 val[1] = NULL_TREE;
2126 else
2128 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2129 if (val[1] == NULL_TREE)
2130 sop = true;
2133 if (vr0.max == vr0.min)
2134 val[2] = NULL_TREE;
2135 else
2137 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2138 if (val[2] == NULL_TREE)
2139 sop = true;
2142 if (vr0.min == vr0.max || vr1.min == vr1.max)
2143 val[3] = NULL_TREE;
2144 else
2146 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2147 if (val[3] == NULL_TREE)
2148 sop = true;
2151 if (sop)
2153 set_value_range_to_varying (vr);
2154 return;
2157 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2158 of VAL[i]. */
2159 min = val[0];
2160 max = val[0];
2161 for (i = 1; i < 4; i++)
2163 if (!is_gimple_min_invariant (min)
2164 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2165 || !is_gimple_min_invariant (max)
2166 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2167 break;
2169 if (val[i])
2171 if (!is_gimple_min_invariant (val[i])
2172 || (TREE_OVERFLOW (val[i])
2173 && !is_overflow_infinity (val[i])))
2175 /* If we found an overflowed value, set MIN and MAX
2176 to it so that we set the resulting range to
2177 VARYING. */
2178 min = max = val[i];
2179 break;
2182 if (compare_values (val[i], min) == -1)
2183 min = val[i];
2185 if (compare_values (val[i], max) == 1)
2186 max = val[i];
2190 else if (code == MINUS_EXPR)
2192 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2193 VR_VARYING. It would take more effort to compute a precise
2194 range for such a case. For example, if we have op0 == 1 and
2195 op1 == 1 with their ranges both being ~[0,0], we would have
2196 op0 - op1 == 0, so we cannot claim that the difference is in
2197 ~[0,0]. Note that we are guaranteed to have
2198 vr0.type == vr1.type at this point. */
2199 if (vr0.type == VR_ANTI_RANGE)
2201 set_value_range_to_varying (vr);
2202 return;
2205 /* For MINUS_EXPR, apply the operation to the opposite ends of
2206 each range. */
2207 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2208 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2210 else if (code == BIT_AND_EXPR)
2212 if (vr0.type == VR_RANGE
2213 && vr0.min == vr0.max
2214 && TREE_CODE (vr0.max) == INTEGER_CST
2215 && !TREE_OVERFLOW (vr0.max)
2216 && tree_int_cst_sgn (vr0.max) >= 0)
2218 min = build_int_cst (expr_type, 0);
2219 max = vr0.max;
2221 else if (vr1.type == VR_RANGE
2222 && vr1.min == vr1.max
2223 && TREE_CODE (vr1.max) == INTEGER_CST
2224 && !TREE_OVERFLOW (vr1.max)
2225 && tree_int_cst_sgn (vr1.max) >= 0)
2227 type = VR_RANGE;
2228 min = build_int_cst (expr_type, 0);
2229 max = vr1.max;
2231 else
2233 set_value_range_to_varying (vr);
2234 return;
2237 else
2238 gcc_unreachable ();
2240 /* If either MIN or MAX overflowed, then set the resulting range to
2241 VARYING. But we do accept an overflow infinity
2242 representation. */
2243 if (min == NULL_TREE
2244 || !is_gimple_min_invariant (min)
2245 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2246 || max == NULL_TREE
2247 || !is_gimple_min_invariant (max)
2248 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2250 set_value_range_to_varying (vr);
2251 return;
2254 /* We punt if:
2255 1) [-INF, +INF]
2256 2) [-INF, +-INF(OVF)]
2257 3) [+-INF(OVF), +INF]
2258 4) [+-INF(OVF), +-INF(OVF)]
2259 We learn nothing when we have INF and INF(OVF) on both sides.
2260 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2261 overflow. */
2262 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2263 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2265 set_value_range_to_varying (vr);
2266 return;
2269 cmp = compare_values (min, max);
2270 if (cmp == -2 || cmp == 1)
2272 /* If the new range has its limits swapped around (MIN > MAX),
2273 then the operation caused one of them to wrap around, mark
2274 the new range VARYING. */
2275 set_value_range_to_varying (vr);
2277 else
2278 set_value_range (vr, type, min, max, NULL);
2282 /* Extract range information from a unary expression EXPR based on
2283 the range of its operand and the expression code. */
2285 static void
2286 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2287 tree type, tree op0)
2289 tree min, max;
2290 int cmp;
2291 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2293 /* Refuse to operate on certain unary expressions for which we
2294 cannot easily determine a resulting range. */
2295 if (code == FIX_TRUNC_EXPR
2296 || code == FLOAT_EXPR
2297 || code == BIT_NOT_EXPR
2298 || code == CONJ_EXPR)
2300 set_value_range_to_varying (vr);
2301 return;
2304 /* Get value ranges for the operand. For constant operands, create
2305 a new value range with the operand to simplify processing. */
2306 if (TREE_CODE (op0) == SSA_NAME)
2307 vr0 = *(get_value_range (op0));
2308 else if (is_gimple_min_invariant (op0))
2309 set_value_range_to_value (&vr0, op0, NULL);
2310 else
2311 set_value_range_to_varying (&vr0);
2313 /* If VR0 is UNDEFINED, so is the result. */
2314 if (vr0.type == VR_UNDEFINED)
2316 set_value_range_to_undefined (vr);
2317 return;
2320 /* Refuse to operate on symbolic ranges, or if neither operand is
2321 a pointer or integral type. */
2322 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2323 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2324 || (vr0.type != VR_VARYING
2325 && symbolic_range_p (&vr0)))
2327 set_value_range_to_varying (vr);
2328 return;
2331 /* If the expression involves pointers, we are only interested in
2332 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2333 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2335 bool sop;
2337 sop = false;
2338 if (range_is_nonnull (&vr0)
2339 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2340 && !sop))
2341 set_value_range_to_nonnull (vr, type);
2342 else if (range_is_null (&vr0))
2343 set_value_range_to_null (vr, type);
2344 else
2345 set_value_range_to_varying (vr);
2347 return;
2350 /* Handle unary expressions on integer ranges. */
2351 if ((code == NOP_EXPR
2352 || code == CONVERT_EXPR)
2353 && INTEGRAL_TYPE_P (type)
2354 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2356 tree inner_type = TREE_TYPE (op0);
2357 tree outer_type = type;
2359 /* Always use base-types here. This is important for the
2360 correct signedness. */
2361 if (TREE_TYPE (inner_type))
2362 inner_type = TREE_TYPE (inner_type);
2363 if (TREE_TYPE (outer_type))
2364 outer_type = TREE_TYPE (outer_type);
2366 /* If VR0 is varying and we increase the type precision, assume
2367 a full range for the following transformation. */
2368 if (vr0.type == VR_VARYING
2369 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2371 vr0.type = VR_RANGE;
2372 vr0.min = TYPE_MIN_VALUE (inner_type);
2373 vr0.max = TYPE_MAX_VALUE (inner_type);
2376 /* If VR0 is a constant range or anti-range and the conversion is
2377 not truncating we can convert the min and max values and
2378 canonicalize the resulting range. Otherwise we can do the
2379 conversion if the size of the range is less than what the
2380 precision of the target type can represent and the range is
2381 not an anti-range. */
2382 if ((vr0.type == VR_RANGE
2383 || vr0.type == VR_ANTI_RANGE)
2384 && TREE_CODE (vr0.min) == INTEGER_CST
2385 && TREE_CODE (vr0.max) == INTEGER_CST
2386 && !is_overflow_infinity (vr0.min)
2387 && !is_overflow_infinity (vr0.max)
2388 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2389 || (vr0.type == VR_RANGE
2390 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2391 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2392 size_int (TYPE_PRECISION (outer_type)), 0)))))
2394 tree new_min, new_max;
2395 new_min = force_fit_type_double (outer_type,
2396 TREE_INT_CST_LOW (vr0.min),
2397 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2398 new_max = force_fit_type_double (outer_type,
2399 TREE_INT_CST_LOW (vr0.max),
2400 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2401 set_and_canonicalize_value_range (vr, vr0.type,
2402 new_min, new_max, NULL);
2403 return;
2406 set_value_range_to_varying (vr);
2407 return;
2410 /* Conversion of a VR_VARYING value to a wider type can result
2411 in a usable range. So wait until after we've handled conversions
2412 before dropping the result to VR_VARYING if we had a source
2413 operand that is VR_VARYING. */
2414 if (vr0.type == VR_VARYING)
2416 set_value_range_to_varying (vr);
2417 return;
2420 /* Apply the operation to each end of the range and see what we end
2421 up with. */
2422 if (code == NEGATE_EXPR
2423 && !TYPE_UNSIGNED (type))
2425 /* NEGATE_EXPR flips the range around. We need to treat
2426 TYPE_MIN_VALUE specially. */
2427 if (is_positive_overflow_infinity (vr0.max))
2428 min = negative_overflow_infinity (type);
2429 else if (is_negative_overflow_infinity (vr0.max))
2430 min = positive_overflow_infinity (type);
2431 else if (!vrp_val_is_min (vr0.max))
2432 min = fold_unary_to_constant (code, type, vr0.max);
2433 else if (needs_overflow_infinity (type))
2435 if (supports_overflow_infinity (type)
2436 && !is_overflow_infinity (vr0.min)
2437 && !vrp_val_is_min (vr0.min))
2438 min = positive_overflow_infinity (type);
2439 else
2441 set_value_range_to_varying (vr);
2442 return;
2445 else
2446 min = TYPE_MIN_VALUE (type);
2448 if (is_positive_overflow_infinity (vr0.min))
2449 max = negative_overflow_infinity (type);
2450 else if (is_negative_overflow_infinity (vr0.min))
2451 max = positive_overflow_infinity (type);
2452 else if (!vrp_val_is_min (vr0.min))
2453 max = fold_unary_to_constant (code, type, vr0.min);
2454 else if (needs_overflow_infinity (type))
2456 if (supports_overflow_infinity (type))
2457 max = positive_overflow_infinity (type);
2458 else
2460 set_value_range_to_varying (vr);
2461 return;
2464 else
2465 max = TYPE_MIN_VALUE (type);
2467 else if (code == NEGATE_EXPR
2468 && TYPE_UNSIGNED (type))
2470 if (!range_includes_zero_p (&vr0))
2472 max = fold_unary_to_constant (code, type, vr0.min);
2473 min = fold_unary_to_constant (code, type, vr0.max);
2475 else
2477 if (range_is_null (&vr0))
2478 set_value_range_to_null (vr, type);
2479 else
2480 set_value_range_to_varying (vr);
2481 return;
2484 else if (code == ABS_EXPR
2485 && !TYPE_UNSIGNED (type))
2487 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2488 useful range. */
2489 if (!TYPE_OVERFLOW_UNDEFINED (type)
2490 && ((vr0.type == VR_RANGE
2491 && vrp_val_is_min (vr0.min))
2492 || (vr0.type == VR_ANTI_RANGE
2493 && !vrp_val_is_min (vr0.min)
2494 && !range_includes_zero_p (&vr0))))
2496 set_value_range_to_varying (vr);
2497 return;
2500 /* ABS_EXPR may flip the range around, if the original range
2501 included negative values. */
2502 if (is_overflow_infinity (vr0.min))
2503 min = positive_overflow_infinity (type);
2504 else if (!vrp_val_is_min (vr0.min))
2505 min = fold_unary_to_constant (code, type, vr0.min);
2506 else if (!needs_overflow_infinity (type))
2507 min = TYPE_MAX_VALUE (type);
2508 else if (supports_overflow_infinity (type))
2509 min = positive_overflow_infinity (type);
2510 else
2512 set_value_range_to_varying (vr);
2513 return;
2516 if (is_overflow_infinity (vr0.max))
2517 max = positive_overflow_infinity (type);
2518 else if (!vrp_val_is_min (vr0.max))
2519 max = fold_unary_to_constant (code, type, vr0.max);
2520 else if (!needs_overflow_infinity (type))
2521 max = TYPE_MAX_VALUE (type);
2522 else if (supports_overflow_infinity (type))
2523 max = positive_overflow_infinity (type);
2524 else
2526 set_value_range_to_varying (vr);
2527 return;
2530 cmp = compare_values (min, max);
2532 /* If a VR_ANTI_RANGEs contains zero, then we have
2533 ~[-INF, min(MIN, MAX)]. */
2534 if (vr0.type == VR_ANTI_RANGE)
2536 if (range_includes_zero_p (&vr0))
2538 /* Take the lower of the two values. */
2539 if (cmp != 1)
2540 max = min;
2542 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2543 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2544 flag_wrapv is set and the original anti-range doesn't include
2545 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2546 if (TYPE_OVERFLOW_WRAPS (type))
2548 tree type_min_value = TYPE_MIN_VALUE (type);
2550 min = (vr0.min != type_min_value
2551 ? int_const_binop (PLUS_EXPR, type_min_value,
2552 integer_one_node, 0)
2553 : type_min_value);
2555 else
2557 if (overflow_infinity_range_p (&vr0))
2558 min = negative_overflow_infinity (type);
2559 else
2560 min = TYPE_MIN_VALUE (type);
2563 else
2565 /* All else has failed, so create the range [0, INF], even for
2566 flag_wrapv since TYPE_MIN_VALUE is in the original
2567 anti-range. */
2568 vr0.type = VR_RANGE;
2569 min = build_int_cst (type, 0);
2570 if (needs_overflow_infinity (type))
2572 if (supports_overflow_infinity (type))
2573 max = positive_overflow_infinity (type);
2574 else
2576 set_value_range_to_varying (vr);
2577 return;
2580 else
2581 max = TYPE_MAX_VALUE (type);
2585 /* If the range contains zero then we know that the minimum value in the
2586 range will be zero. */
2587 else if (range_includes_zero_p (&vr0))
2589 if (cmp == 1)
2590 max = min;
2591 min = build_int_cst (type, 0);
2593 else
2595 /* If the range was reversed, swap MIN and MAX. */
2596 if (cmp == 1)
2598 tree t = min;
2599 min = max;
2600 max = t;
2604 else
2606 /* Otherwise, operate on each end of the range. */
2607 min = fold_unary_to_constant (code, type, vr0.min);
2608 max = fold_unary_to_constant (code, type, vr0.max);
2610 if (needs_overflow_infinity (type))
2612 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2614 /* If both sides have overflowed, we don't know
2615 anything. */
2616 if ((is_overflow_infinity (vr0.min)
2617 || TREE_OVERFLOW (min))
2618 && (is_overflow_infinity (vr0.max)
2619 || TREE_OVERFLOW (max)))
2621 set_value_range_to_varying (vr);
2622 return;
2625 if (is_overflow_infinity (vr0.min))
2626 min = vr0.min;
2627 else if (TREE_OVERFLOW (min))
2629 if (supports_overflow_infinity (type))
2630 min = (tree_int_cst_sgn (min) >= 0
2631 ? positive_overflow_infinity (TREE_TYPE (min))
2632 : negative_overflow_infinity (TREE_TYPE (min)));
2633 else
2635 set_value_range_to_varying (vr);
2636 return;
2640 if (is_overflow_infinity (vr0.max))
2641 max = vr0.max;
2642 else if (TREE_OVERFLOW (max))
2644 if (supports_overflow_infinity (type))
2645 max = (tree_int_cst_sgn (max) >= 0
2646 ? positive_overflow_infinity (TREE_TYPE (max))
2647 : negative_overflow_infinity (TREE_TYPE (max)));
2648 else
2650 set_value_range_to_varying (vr);
2651 return;
2657 cmp = compare_values (min, max);
2658 if (cmp == -2 || cmp == 1)
2660 /* If the new range has its limits swapped around (MIN > MAX),
2661 then the operation caused one of them to wrap around, mark
2662 the new range VARYING. */
2663 set_value_range_to_varying (vr);
2665 else
2666 set_value_range (vr, vr0.type, min, max, NULL);
2670 /* Extract range information from a conditional expression EXPR based on
2671 the ranges of each of its operands and the expression code. */
2673 static void
2674 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2676 tree op0, op1;
2677 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2678 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2680 /* Get value ranges for each operand. For constant operands, create
2681 a new value range with the operand to simplify processing. */
2682 op0 = COND_EXPR_THEN (expr);
2683 if (TREE_CODE (op0) == SSA_NAME)
2684 vr0 = *(get_value_range (op0));
2685 else if (is_gimple_min_invariant (op0))
2686 set_value_range_to_value (&vr0, op0, NULL);
2687 else
2688 set_value_range_to_varying (&vr0);
2690 op1 = COND_EXPR_ELSE (expr);
2691 if (TREE_CODE (op1) == SSA_NAME)
2692 vr1 = *(get_value_range (op1));
2693 else if (is_gimple_min_invariant (op1))
2694 set_value_range_to_value (&vr1, op1, NULL);
2695 else
2696 set_value_range_to_varying (&vr1);
2698 /* The resulting value range is the union of the operand ranges */
2699 vrp_meet (&vr0, &vr1);
2700 copy_value_range (vr, &vr0);
2704 /* Extract range information from a comparison expression EXPR based
2705 on the range of its operand and the expression code. */
2707 static void
2708 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
2709 tree type, tree op0, tree op1)
2711 bool sop = false;
2712 tree val = vrp_evaluate_conditional_warnv_with_ops (code,
2713 op0,
2714 op1,
2715 false, &sop);
2717 /* A disadvantage of using a special infinity as an overflow
2718 representation is that we lose the ability to record overflow
2719 when we don't have an infinity. So we have to ignore a result
2720 which relies on overflow. */
2722 if (val && !is_overflow_infinity (val) && !sop)
2724 /* Since this expression was found on the RHS of an assignment,
2725 its type may be different from _Bool. Convert VAL to EXPR's
2726 type. */
2727 val = fold_convert (type, val);
2728 if (is_gimple_min_invariant (val))
2729 set_value_range_to_value (vr, val, vr->equiv);
2730 else
2731 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2733 else
2734 /* The result of a comparison is always true or false. */
2735 set_value_range_to_truthvalue (vr, type);
2739 /* Try to compute a useful range out of expression EXPR and store it
2740 in *VR. */
2742 static void
2743 extract_range_from_expr (value_range_t *vr, tree expr)
2745 enum tree_code code = TREE_CODE (expr);
2747 if (code == ASSERT_EXPR)
2748 extract_range_from_assert (vr, expr);
2749 else if (code == SSA_NAME)
2750 extract_range_from_ssa_name (vr, expr);
2751 else if (TREE_CODE_CLASS (code) == tcc_binary
2752 || code == TRUTH_AND_EXPR
2753 || code == TRUTH_OR_EXPR
2754 || code == TRUTH_XOR_EXPR)
2755 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
2756 TREE_OPERAND (expr, 0),
2757 TREE_OPERAND (expr, 1));
2758 else if (TREE_CODE_CLASS (code) == tcc_unary)
2759 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
2760 TREE_OPERAND (expr, 0));
2761 else if (code == COND_EXPR)
2762 extract_range_from_cond_expr (vr, expr);
2763 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2764 extract_range_from_comparison (vr, TREE_CODE (expr), TREE_TYPE (expr),
2765 TREE_OPERAND (expr, 0),
2766 TREE_OPERAND (expr, 1));
2767 else if (is_gimple_min_invariant (expr))
2768 set_value_range_to_value (vr, expr, NULL);
2769 else
2770 set_value_range_to_varying (vr);
2772 /* If we got a varying range from the tests above, try a final
2773 time to derive a nonnegative or nonzero range. This time
2774 relying primarily on generic routines in fold in conjunction
2775 with range data. */
2776 if (vr->type == VR_VARYING)
2778 bool sop = false;
2780 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2781 && vrp_expr_computes_nonnegative (expr, &sop))
2782 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2783 sop || is_overflow_infinity (expr));
2784 else if (vrp_expr_computes_nonzero (expr, &sop)
2785 && !sop)
2786 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2790 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2791 would be profitable to adjust VR using scalar evolution information
2792 for VAR. If so, update VR with the new limits. */
2794 static void
2795 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2796 tree var)
2798 tree init, step, chrec, tmin, tmax, min, max, type;
2799 enum ev_direction dir;
2801 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2802 better opportunities than a regular range, but I'm not sure. */
2803 if (vr->type == VR_ANTI_RANGE)
2804 return;
2806 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2808 /* Like in PR19590, scev can return a constant function. */
2809 if (is_gimple_min_invariant (chrec))
2811 set_value_range_to_value (vr, chrec, vr->equiv);
2812 return;
2815 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2816 return;
2818 init = initial_condition_in_loop_num (chrec, loop->num);
2819 step = evolution_part_in_loop_num (chrec, loop->num);
2821 /* If STEP is symbolic, we can't know whether INIT will be the
2822 minimum or maximum value in the range. Also, unless INIT is
2823 a simple expression, compare_values and possibly other functions
2824 in tree-vrp won't be able to handle it. */
2825 if (step == NULL_TREE
2826 || !is_gimple_min_invariant (step)
2827 || !valid_value_p (init))
2828 return;
2830 dir = scev_direction (chrec);
2831 if (/* Do not adjust ranges if we do not know whether the iv increases
2832 or decreases, ... */
2833 dir == EV_DIR_UNKNOWN
2834 /* ... or if it may wrap. */
2835 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2836 true))
2837 return;
2839 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2840 negative_overflow_infinity and positive_overflow_infinity,
2841 because we have concluded that the loop probably does not
2842 wrap. */
2844 type = TREE_TYPE (var);
2845 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2846 tmin = lower_bound_in_type (type, type);
2847 else
2848 tmin = TYPE_MIN_VALUE (type);
2849 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2850 tmax = upper_bound_in_type (type, type);
2851 else
2852 tmax = TYPE_MAX_VALUE (type);
2854 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2856 min = tmin;
2857 max = tmax;
2859 /* For VARYING or UNDEFINED ranges, just about anything we get
2860 from scalar evolutions should be better. */
2862 if (dir == EV_DIR_DECREASES)
2863 max = init;
2864 else
2865 min = init;
2867 /* If we would create an invalid range, then just assume we
2868 know absolutely nothing. This may be over-conservative,
2869 but it's clearly safe, and should happen only in unreachable
2870 parts of code, or for invalid programs. */
2871 if (compare_values (min, max) == 1)
2872 return;
2874 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2876 else if (vr->type == VR_RANGE)
2878 min = vr->min;
2879 max = vr->max;
2881 if (dir == EV_DIR_DECREASES)
2883 /* INIT is the maximum value. If INIT is lower than VR->MAX
2884 but no smaller than VR->MIN, set VR->MAX to INIT. */
2885 if (compare_values (init, max) == -1)
2887 max = init;
2889 /* If we just created an invalid range with the minimum
2890 greater than the maximum, we fail conservatively.
2891 This should happen only in unreachable
2892 parts of code, or for invalid programs. */
2893 if (compare_values (min, max) == 1)
2894 return;
2897 /* According to the loop information, the variable does not
2898 overflow. If we think it does, probably because of an
2899 overflow due to arithmetic on a different INF value,
2900 reset now. */
2901 if (is_negative_overflow_infinity (min))
2902 min = tmin;
2904 else
2906 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2907 if (compare_values (init, min) == 1)
2909 min = init;
2911 /* Again, avoid creating invalid range by failing. */
2912 if (compare_values (min, max) == 1)
2913 return;
2916 if (is_positive_overflow_infinity (max))
2917 max = tmax;
2920 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2924 /* Return true if VAR may overflow at STMT. This checks any available
2925 loop information to see if we can determine that VAR does not
2926 overflow. */
2928 static bool
2929 vrp_var_may_overflow (tree var, tree stmt)
2931 struct loop *l;
2932 tree chrec, init, step;
2934 if (current_loops == NULL)
2935 return true;
2937 l = loop_containing_stmt (stmt);
2938 if (l == NULL)
2939 return true;
2941 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2942 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2943 return true;
2945 init = initial_condition_in_loop_num (chrec, l->num);
2946 step = evolution_part_in_loop_num (chrec, l->num);
2948 if (step == NULL_TREE
2949 || !is_gimple_min_invariant (step)
2950 || !valid_value_p (init))
2951 return true;
2953 /* If we get here, we know something useful about VAR based on the
2954 loop information. If it wraps, it may overflow. */
2956 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2957 true))
2958 return true;
2960 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2962 print_generic_expr (dump_file, var, 0);
2963 fprintf (dump_file, ": loop information indicates does not overflow\n");
2966 return false;
2970 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2972 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2973 all the values in the ranges.
2975 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2977 - Return NULL_TREE if it is not always possible to determine the
2978 value of the comparison.
2980 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2981 overflow infinity was used in the test. */
2984 static tree
2985 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2986 bool *strict_overflow_p)
2988 /* VARYING or UNDEFINED ranges cannot be compared. */
2989 if (vr0->type == VR_VARYING
2990 || vr0->type == VR_UNDEFINED
2991 || vr1->type == VR_VARYING
2992 || vr1->type == VR_UNDEFINED)
2993 return NULL_TREE;
2995 /* Anti-ranges need to be handled separately. */
2996 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2998 /* If both are anti-ranges, then we cannot compute any
2999 comparison. */
3000 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3001 return NULL_TREE;
3003 /* These comparisons are never statically computable. */
3004 if (comp == GT_EXPR
3005 || comp == GE_EXPR
3006 || comp == LT_EXPR
3007 || comp == LE_EXPR)
3008 return NULL_TREE;
3010 /* Equality can be computed only between a range and an
3011 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3012 if (vr0->type == VR_RANGE)
3014 /* To simplify processing, make VR0 the anti-range. */
3015 value_range_t *tmp = vr0;
3016 vr0 = vr1;
3017 vr1 = tmp;
3020 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3022 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3023 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3024 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3026 return NULL_TREE;
3029 if (!usable_range_p (vr0, strict_overflow_p)
3030 || !usable_range_p (vr1, strict_overflow_p))
3031 return NULL_TREE;
3033 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3034 operands around and change the comparison code. */
3035 if (comp == GT_EXPR || comp == GE_EXPR)
3037 value_range_t *tmp;
3038 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3039 tmp = vr0;
3040 vr0 = vr1;
3041 vr1 = tmp;
3044 if (comp == EQ_EXPR)
3046 /* Equality may only be computed if both ranges represent
3047 exactly one value. */
3048 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3049 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3051 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3052 strict_overflow_p);
3053 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3054 strict_overflow_p);
3055 if (cmp_min == 0 && cmp_max == 0)
3056 return boolean_true_node;
3057 else if (cmp_min != -2 && cmp_max != -2)
3058 return boolean_false_node;
3060 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3061 else if (compare_values_warnv (vr0->min, vr1->max,
3062 strict_overflow_p) == 1
3063 || compare_values_warnv (vr1->min, vr0->max,
3064 strict_overflow_p) == 1)
3065 return boolean_false_node;
3067 return NULL_TREE;
3069 else if (comp == NE_EXPR)
3071 int cmp1, cmp2;
3073 /* If VR0 is completely to the left or completely to the right
3074 of VR1, they are always different. Notice that we need to
3075 make sure that both comparisons yield similar results to
3076 avoid comparing values that cannot be compared at
3077 compile-time. */
3078 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3079 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3080 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3081 return boolean_true_node;
3083 /* If VR0 and VR1 represent a single value and are identical,
3084 return false. */
3085 else if (compare_values_warnv (vr0->min, vr0->max,
3086 strict_overflow_p) == 0
3087 && compare_values_warnv (vr1->min, vr1->max,
3088 strict_overflow_p) == 0
3089 && compare_values_warnv (vr0->min, vr1->min,
3090 strict_overflow_p) == 0
3091 && compare_values_warnv (vr0->max, vr1->max,
3092 strict_overflow_p) == 0)
3093 return boolean_false_node;
3095 /* Otherwise, they may or may not be different. */
3096 else
3097 return NULL_TREE;
3099 else if (comp == LT_EXPR || comp == LE_EXPR)
3101 int tst;
3103 /* If VR0 is to the left of VR1, return true. */
3104 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3105 if ((comp == LT_EXPR && tst == -1)
3106 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3108 if (overflow_infinity_range_p (vr0)
3109 || overflow_infinity_range_p (vr1))
3110 *strict_overflow_p = true;
3111 return boolean_true_node;
3114 /* If VR0 is to the right of VR1, return false. */
3115 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3116 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3117 || (comp == LE_EXPR && tst == 1))
3119 if (overflow_infinity_range_p (vr0)
3120 || overflow_infinity_range_p (vr1))
3121 *strict_overflow_p = true;
3122 return boolean_false_node;
3125 /* Otherwise, we don't know. */
3126 return NULL_TREE;
3129 gcc_unreachable ();
3133 /* Given a value range VR, a value VAL and a comparison code COMP, return
3134 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3135 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3136 always returns false. Return NULL_TREE if it is not always
3137 possible to determine the value of the comparison. Also set
3138 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3139 infinity was used in the test. */
3141 static tree
3142 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3143 bool *strict_overflow_p)
3145 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3146 return NULL_TREE;
3148 /* Anti-ranges need to be handled separately. */
3149 if (vr->type == VR_ANTI_RANGE)
3151 /* For anti-ranges, the only predicates that we can compute at
3152 compile time are equality and inequality. */
3153 if (comp == GT_EXPR
3154 || comp == GE_EXPR
3155 || comp == LT_EXPR
3156 || comp == LE_EXPR)
3157 return NULL_TREE;
3159 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3160 if (value_inside_range (val, vr) == 1)
3161 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3163 return NULL_TREE;
3166 if (!usable_range_p (vr, strict_overflow_p))
3167 return NULL_TREE;
3169 if (comp == EQ_EXPR)
3171 /* EQ_EXPR may only be computed if VR represents exactly
3172 one value. */
3173 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3175 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3176 if (cmp == 0)
3177 return boolean_true_node;
3178 else if (cmp == -1 || cmp == 1 || cmp == 2)
3179 return boolean_false_node;
3181 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3182 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3183 return boolean_false_node;
3185 return NULL_TREE;
3187 else if (comp == NE_EXPR)
3189 /* If VAL is not inside VR, then they are always different. */
3190 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3191 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3192 return boolean_true_node;
3194 /* If VR represents exactly one value equal to VAL, then return
3195 false. */
3196 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3197 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3198 return boolean_false_node;
3200 /* Otherwise, they may or may not be different. */
3201 return NULL_TREE;
3203 else if (comp == LT_EXPR || comp == LE_EXPR)
3205 int tst;
3207 /* If VR is to the left of VAL, return true. */
3208 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3209 if ((comp == LT_EXPR && tst == -1)
3210 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3212 if (overflow_infinity_range_p (vr))
3213 *strict_overflow_p = true;
3214 return boolean_true_node;
3217 /* If VR is to the right of VAL, return false. */
3218 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3219 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3220 || (comp == LE_EXPR && tst == 1))
3222 if (overflow_infinity_range_p (vr))
3223 *strict_overflow_p = true;
3224 return boolean_false_node;
3227 /* Otherwise, we don't know. */
3228 return NULL_TREE;
3230 else if (comp == GT_EXPR || comp == GE_EXPR)
3232 int tst;
3234 /* If VR is to the right of VAL, return true. */
3235 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3236 if ((comp == GT_EXPR && tst == 1)
3237 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3239 if (overflow_infinity_range_p (vr))
3240 *strict_overflow_p = true;
3241 return boolean_true_node;
3244 /* If VR is to the left of VAL, return false. */
3245 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3246 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3247 || (comp == GE_EXPR && tst == -1))
3249 if (overflow_infinity_range_p (vr))
3250 *strict_overflow_p = true;
3251 return boolean_false_node;
3254 /* Otherwise, we don't know. */
3255 return NULL_TREE;
3258 gcc_unreachable ();
3262 /* Debugging dumps. */
3264 void dump_value_range (FILE *, value_range_t *);
3265 void debug_value_range (value_range_t *);
3266 void dump_all_value_ranges (FILE *);
3267 void debug_all_value_ranges (void);
3268 void dump_vr_equiv (FILE *, bitmap);
3269 void debug_vr_equiv (bitmap);
3272 /* Dump value range VR to FILE. */
3274 void
3275 dump_value_range (FILE *file, value_range_t *vr)
3277 if (vr == NULL)
3278 fprintf (file, "[]");
3279 else if (vr->type == VR_UNDEFINED)
3280 fprintf (file, "UNDEFINED");
3281 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3283 tree type = TREE_TYPE (vr->min);
3285 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3287 if (is_negative_overflow_infinity (vr->min))
3288 fprintf (file, "-INF(OVF)");
3289 else if (INTEGRAL_TYPE_P (type)
3290 && !TYPE_UNSIGNED (type)
3291 && vrp_val_is_min (vr->min))
3292 fprintf (file, "-INF");
3293 else
3294 print_generic_expr (file, vr->min, 0);
3296 fprintf (file, ", ");
3298 if (is_positive_overflow_infinity (vr->max))
3299 fprintf (file, "+INF(OVF)");
3300 else if (INTEGRAL_TYPE_P (type)
3301 && vrp_val_is_max (vr->max))
3302 fprintf (file, "+INF");
3303 else
3304 print_generic_expr (file, vr->max, 0);
3306 fprintf (file, "]");
3308 if (vr->equiv)
3310 bitmap_iterator bi;
3311 unsigned i, c = 0;
3313 fprintf (file, " EQUIVALENCES: { ");
3315 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3317 print_generic_expr (file, ssa_name (i), 0);
3318 fprintf (file, " ");
3319 c++;
3322 fprintf (file, "} (%u elements)", c);
3325 else if (vr->type == VR_VARYING)
3326 fprintf (file, "VARYING");
3327 else
3328 fprintf (file, "INVALID RANGE");
3332 /* Dump value range VR to stderr. */
3334 void
3335 debug_value_range (value_range_t *vr)
3337 dump_value_range (stderr, vr);
3338 fprintf (stderr, "\n");
3342 /* Dump value ranges of all SSA_NAMEs to FILE. */
3344 void
3345 dump_all_value_ranges (FILE *file)
3347 size_t i;
3349 for (i = 0; i < num_ssa_names; i++)
3351 if (vr_value[i])
3353 print_generic_expr (file, ssa_name (i), 0);
3354 fprintf (file, ": ");
3355 dump_value_range (file, vr_value[i]);
3356 fprintf (file, "\n");
3360 fprintf (file, "\n");
3364 /* Dump all value ranges to stderr. */
3366 void
3367 debug_all_value_ranges (void)
3369 dump_all_value_ranges (stderr);
3373 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3374 create a new SSA name N and return the assertion assignment
3375 'V = ASSERT_EXPR <V, V OP W>'. */
3377 static tree
3378 build_assert_expr_for (tree cond, tree v)
3380 tree n, assertion;
3382 gcc_assert (TREE_CODE (v) == SSA_NAME);
3383 n = duplicate_ssa_name (v, NULL_TREE);
3385 if (COMPARISON_CLASS_P (cond))
3387 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3388 assertion = build_gimple_modify_stmt (n, a);
3390 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3392 /* Given !V, build the assignment N = false. */
3393 tree op0 = TREE_OPERAND (cond, 0);
3394 gcc_assert (op0 == v);
3395 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3397 else if (TREE_CODE (cond) == SSA_NAME)
3399 /* Given V, build the assignment N = true. */
3400 gcc_assert (v == cond);
3401 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3403 else
3404 gcc_unreachable ();
3406 SSA_NAME_DEF_STMT (n) = assertion;
3408 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3409 operand of the ASSERT_EXPR. Register the new name and the old one
3410 in the replacement table so that we can fix the SSA web after
3411 adding all the ASSERT_EXPRs. */
3412 register_new_name_mapping (n, v);
3414 return assertion;
3418 /* Return false if EXPR is a predicate expression involving floating
3419 point values. */
3421 static inline bool
3422 fp_predicate (const_tree expr)
3424 return (COMPARISON_CLASS_P (expr)
3425 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3429 /* If the range of values taken by OP can be inferred after STMT executes,
3430 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3431 describes the inferred range. Return true if a range could be
3432 inferred. */
3434 static bool
3435 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3437 *val_p = NULL_TREE;
3438 *comp_code_p = ERROR_MARK;
3440 /* Do not attempt to infer anything in names that flow through
3441 abnormal edges. */
3442 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3443 return false;
3445 /* Similarly, don't infer anything from statements that may throw
3446 exceptions. */
3447 if (tree_could_throw_p (stmt))
3448 return false;
3450 /* If STMT is the last statement of a basic block with no
3451 successors, there is no point inferring anything about any of its
3452 operands. We would not be able to find a proper insertion point
3453 for the assertion, anyway. */
3454 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3455 return false;
3457 /* We can only assume that a pointer dereference will yield
3458 non-NULL if -fdelete-null-pointer-checks is enabled. */
3459 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3461 unsigned num_uses, num_loads, num_stores;
3463 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3464 if (num_loads + num_stores > 0)
3466 *val_p = build_int_cst (TREE_TYPE (op), 0);
3467 *comp_code_p = NE_EXPR;
3468 return true;
3472 return false;
3476 void dump_asserts_for (FILE *, tree);
3477 void debug_asserts_for (tree);
3478 void dump_all_asserts (FILE *);
3479 void debug_all_asserts (void);
3481 /* Dump all the registered assertions for NAME to FILE. */
3483 void
3484 dump_asserts_for (FILE *file, tree name)
3486 assert_locus_t loc;
3488 fprintf (file, "Assertions to be inserted for ");
3489 print_generic_expr (file, name, 0);
3490 fprintf (file, "\n");
3492 loc = asserts_for[SSA_NAME_VERSION (name)];
3493 while (loc)
3495 fprintf (file, "\t");
3496 print_generic_expr (file, bsi_stmt (loc->si), 0);
3497 fprintf (file, "\n\tBB #%d", loc->bb->index);
3498 if (loc->e)
3500 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3501 loc->e->dest->index);
3502 dump_edge_info (file, loc->e, 0);
3504 fprintf (file, "\n\tPREDICATE: ");
3505 print_generic_expr (file, name, 0);
3506 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3507 print_generic_expr (file, loc->val, 0);
3508 fprintf (file, "\n\n");
3509 loc = loc->next;
3512 fprintf (file, "\n");
3516 /* Dump all the registered assertions for NAME to stderr. */
3518 void
3519 debug_asserts_for (tree name)
3521 dump_asserts_for (stderr, name);
3525 /* Dump all the registered assertions for all the names to FILE. */
3527 void
3528 dump_all_asserts (FILE *file)
3530 unsigned i;
3531 bitmap_iterator bi;
3533 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3534 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3535 dump_asserts_for (file, ssa_name (i));
3536 fprintf (file, "\n");
3540 /* Dump all the registered assertions for all the names to stderr. */
3542 void
3543 debug_all_asserts (void)
3545 dump_all_asserts (stderr);
3549 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3550 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3551 E->DEST, then register this location as a possible insertion point
3552 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3554 BB, E and SI provide the exact insertion point for the new
3555 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3556 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3557 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3558 must not be NULL. */
3560 static void
3561 register_new_assert_for (tree name, tree expr,
3562 enum tree_code comp_code,
3563 tree val,
3564 basic_block bb,
3565 edge e,
3566 block_stmt_iterator si)
3568 assert_locus_t n, loc, last_loc;
3569 bool found;
3570 basic_block dest_bb;
3572 #if defined ENABLE_CHECKING
3573 gcc_assert (bb == NULL || e == NULL);
3575 if (e == NULL)
3576 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3577 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3578 #endif
3580 /* The new assertion A will be inserted at BB or E. We need to
3581 determine if the new location is dominated by a previously
3582 registered location for A. If we are doing an edge insertion,
3583 assume that A will be inserted at E->DEST. Note that this is not
3584 necessarily true.
3586 If E is a critical edge, it will be split. But even if E is
3587 split, the new block will dominate the same set of blocks that
3588 E->DEST dominates.
3590 The reverse, however, is not true, blocks dominated by E->DEST
3591 will not be dominated by the new block created to split E. So,
3592 if the insertion location is on a critical edge, we will not use
3593 the new location to move another assertion previously registered
3594 at a block dominated by E->DEST. */
3595 dest_bb = (bb) ? bb : e->dest;
3597 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3598 VAL at a block dominating DEST_BB, then we don't need to insert a new
3599 one. Similarly, if the same assertion already exists at a block
3600 dominated by DEST_BB and the new location is not on a critical
3601 edge, then update the existing location for the assertion (i.e.,
3602 move the assertion up in the dominance tree).
3604 Note, this is implemented as a simple linked list because there
3605 should not be more than a handful of assertions registered per
3606 name. If this becomes a performance problem, a table hashed by
3607 COMP_CODE and VAL could be implemented. */
3608 loc = asserts_for[SSA_NAME_VERSION (name)];
3609 last_loc = loc;
3610 found = false;
3611 while (loc)
3613 if (loc->comp_code == comp_code
3614 && (loc->val == val
3615 || operand_equal_p (loc->val, val, 0))
3616 && (loc->expr == expr
3617 || operand_equal_p (loc->expr, expr, 0)))
3619 /* If the assertion NAME COMP_CODE VAL has already been
3620 registered at a basic block that dominates DEST_BB, then
3621 we don't need to insert the same assertion again. Note
3622 that we don't check strict dominance here to avoid
3623 replicating the same assertion inside the same basic
3624 block more than once (e.g., when a pointer is
3625 dereferenced several times inside a block).
3627 An exception to this rule are edge insertions. If the
3628 new assertion is to be inserted on edge E, then it will
3629 dominate all the other insertions that we may want to
3630 insert in DEST_BB. So, if we are doing an edge
3631 insertion, don't do this dominance check. */
3632 if (e == NULL
3633 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3634 return;
3636 /* Otherwise, if E is not a critical edge and DEST_BB
3637 dominates the existing location for the assertion, move
3638 the assertion up in the dominance tree by updating its
3639 location information. */
3640 if ((e == NULL || !EDGE_CRITICAL_P (e))
3641 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3643 loc->bb = dest_bb;
3644 loc->e = e;
3645 loc->si = si;
3646 return;
3650 /* Update the last node of the list and move to the next one. */
3651 last_loc = loc;
3652 loc = loc->next;
3655 /* If we didn't find an assertion already registered for
3656 NAME COMP_CODE VAL, add a new one at the end of the list of
3657 assertions associated with NAME. */
3658 n = XNEW (struct assert_locus_d);
3659 n->bb = dest_bb;
3660 n->e = e;
3661 n->si = si;
3662 n->comp_code = comp_code;
3663 n->val = val;
3664 n->expr = expr;
3665 n->next = NULL;
3667 if (last_loc)
3668 last_loc->next = n;
3669 else
3670 asserts_for[SSA_NAME_VERSION (name)] = n;
3672 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3675 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
3676 Extract a suitable test code and value and store them into *CODE_P and
3677 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
3679 If no extraction was possible, return FALSE, otherwise return TRUE.
3681 If INVERT is true, then we invert the result stored into *CODE_P. */
3683 static bool
3684 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
3685 tree cond_op0, tree cond_op1,
3686 bool invert, enum tree_code *code_p,
3687 tree *val_p)
3689 enum tree_code comp_code;
3690 tree val;
3692 /* Otherwise, we have a comparison of the form NAME COMP VAL
3693 or VAL COMP NAME. */
3694 if (name == cond_op1)
3696 /* If the predicate is of the form VAL COMP NAME, flip
3697 COMP around because we need to register NAME as the
3698 first operand in the predicate. */
3699 comp_code = swap_tree_comparison (cond_code);
3700 val = cond_op0;
3702 else
3704 /* The comparison is of the form NAME COMP VAL, so the
3705 comparison code remains unchanged. */
3706 comp_code = cond_code;
3707 val = cond_op1;
3710 /* Invert the comparison code as necessary. */
3711 if (invert)
3712 comp_code = invert_tree_comparison (comp_code, 0);
3714 /* VRP does not handle float types. */
3715 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3716 return false;
3718 /* Do not register always-false predicates.
3719 FIXME: this works around a limitation in fold() when dealing with
3720 enumerations. Given 'enum { N1, N2 } x;', fold will not
3721 fold 'if (x > N2)' to 'if (0)'. */
3722 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3723 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3725 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3726 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3728 if (comp_code == GT_EXPR
3729 && (!max
3730 || compare_values (val, max) == 0))
3731 return false;
3733 if (comp_code == LT_EXPR
3734 && (!min
3735 || compare_values (val, min) == 0))
3736 return false;
3738 *code_p = comp_code;
3739 *val_p = val;
3740 return true;
3743 /* Try to register an edge assertion for SSA name NAME on edge E for
3744 the condition COND contributing to the conditional jump pointed to by BSI.
3745 Invert the condition COND if INVERT is true.
3746 Return true if an assertion for NAME could be registered. */
3748 static bool
3749 register_edge_assert_for_2 (tree name, edge e, block_stmt_iterator bsi,
3750 enum tree_code cond_code,
3751 tree cond_op0, tree cond_op1, bool invert)
3753 tree val;
3754 enum tree_code comp_code;
3755 bool retval = false;
3757 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3758 cond_op0,
3759 cond_op1,
3760 invert, &comp_code, &val))
3761 return false;
3763 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3764 reachable from E. */
3765 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name))
3766 && !has_single_use (name))
3768 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
3769 retval = true;
3772 /* In the case of NAME <= CST and NAME being defined as
3773 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
3774 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
3775 This catches range and anti-range tests. */
3776 if ((comp_code == LE_EXPR
3777 || comp_code == GT_EXPR)
3778 && TREE_CODE (val) == INTEGER_CST
3779 && TYPE_UNSIGNED (TREE_TYPE (val)))
3781 tree def_stmt = SSA_NAME_DEF_STMT (name);
3782 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
3784 /* Extract CST2 from the (optional) addition. */
3785 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3786 && TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == PLUS_EXPR)
3788 name2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3789 cst2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3790 if (TREE_CODE (name2) == SSA_NAME
3791 && TREE_CODE (cst2) == INTEGER_CST)
3792 def_stmt = SSA_NAME_DEF_STMT (name2);
3795 /* Extract NAME2 from the (optional) sign-changing cast. */
3796 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3797 && CONVERT_EXPR_P (GIMPLE_STMT_OPERAND (def_stmt, 1)))
3799 tree rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
3800 if (CONVERT_EXPR_P (rhs)
3801 && ! TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (rhs, 0)))
3802 && (TYPE_PRECISION (TREE_TYPE (rhs))
3803 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (rhs, 0)))))
3804 name3 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3807 /* If name3 is used later, create an ASSERT_EXPR for it. */
3808 if (name3 != NULL_TREE
3809 && TREE_CODE (name3) == SSA_NAME
3810 && (cst2 == NULL_TREE
3811 || TREE_CODE (cst2) == INTEGER_CST)
3812 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
3813 && TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name3))
3814 && !has_single_use (name3))
3816 tree tmp;
3818 /* Build an expression for the range test. */
3819 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
3820 if (cst2 != NULL_TREE)
3821 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
3823 if (dump_file)
3825 fprintf (dump_file, "Adding assert for ");
3826 print_generic_expr (dump_file, name3, 0);
3827 fprintf (dump_file, " from ");
3828 print_generic_expr (dump_file, tmp, 0);
3829 fprintf (dump_file, "\n");
3832 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
3834 retval = true;
3837 /* If name2 is used later, create an ASSERT_EXPR for it. */
3838 if (name2 != NULL_TREE
3839 && TREE_CODE (name2) == SSA_NAME
3840 && TREE_CODE (cst2) == INTEGER_CST
3841 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
3842 && TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name2))
3843 && !has_single_use (name2))
3845 tree tmp;
3847 /* Build an expression for the range test. */
3848 tmp = name2;
3849 if (TREE_TYPE (name) != TREE_TYPE (name2))
3850 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
3851 if (cst2 != NULL_TREE)
3852 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
3854 if (dump_file)
3856 fprintf (dump_file, "Adding assert for ");
3857 print_generic_expr (dump_file, name2, 0);
3858 fprintf (dump_file, " from ");
3859 print_generic_expr (dump_file, tmp, 0);
3860 fprintf (dump_file, "\n");
3863 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
3865 retval = true;
3869 return retval;
3872 /* OP is an operand of a truth value expression which is known to have
3873 a particular value. Register any asserts for OP and for any
3874 operands in OP's defining statement.
3876 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3877 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3879 static bool
3880 register_edge_assert_for_1 (tree op, enum tree_code code,
3881 edge e, block_stmt_iterator bsi)
3883 bool retval = false;
3884 tree op_def, rhs, val;
3885 enum tree_code rhs_code;
3887 /* We only care about SSA_NAMEs. */
3888 if (TREE_CODE (op) != SSA_NAME)
3889 return false;
3891 /* We know that OP will have a zero or nonzero value. If OP is used
3892 more than once go ahead and register an assert for OP.
3894 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3895 it will always be set for OP (because OP is used in a COND_EXPR in
3896 the subgraph). */
3897 if (!has_single_use (op))
3899 val = build_int_cst (TREE_TYPE (op), 0);
3900 register_new_assert_for (op, op, code, val, NULL, e, bsi);
3901 retval = true;
3904 /* Now look at how OP is set. If it's set from a comparison,
3905 a truth operation or some bit operations, then we may be able
3906 to register information about the operands of that assignment. */
3907 op_def = SSA_NAME_DEF_STMT (op);
3908 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3909 return retval;
3911 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3912 rhs_code = TREE_CODE (rhs);
3914 if (COMPARISON_CLASS_P (rhs))
3916 bool invert = (code == EQ_EXPR ? true : false);
3917 tree op0 = TREE_OPERAND (rhs, 0);
3918 tree op1 = TREE_OPERAND (rhs, 1);
3920 if (TREE_CODE (op0) == SSA_NAME)
3921 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
3922 invert);
3923 if (TREE_CODE (op1) == SSA_NAME)
3924 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
3925 invert);
3927 else if ((code == NE_EXPR
3928 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3929 || TREE_CODE (rhs) == BIT_AND_EXPR))
3930 || (code == EQ_EXPR
3931 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3932 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3934 /* Recurse on each operand. */
3935 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3936 code, e, bsi);
3937 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3938 code, e, bsi);
3940 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3942 /* Recurse, flipping CODE. */
3943 code = invert_tree_comparison (code, false);
3944 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3945 code, e, bsi);
3947 else if (TREE_CODE (rhs) == SSA_NAME)
3949 /* Recurse through the copy. */
3950 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3952 else if (CONVERT_EXPR_P (rhs))
3954 /* Recurse through the type conversion. */
3955 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3956 code, e, bsi);
3959 return retval;
3962 /* Try to register an edge assertion for SSA name NAME on edge E for
3963 the condition COND contributing to the conditional jump pointed to by SI.
3964 Return true if an assertion for NAME could be registered. */
3966 static bool
3967 register_edge_assert_for (tree name, edge e, block_stmt_iterator si,
3968 enum tree_code cond_code, tree cond_op0,
3969 tree cond_op1)
3971 tree val;
3972 enum tree_code comp_code;
3973 bool retval = false;
3974 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3976 /* Do not attempt to infer anything in names that flow through
3977 abnormal edges. */
3978 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3979 return false;
3981 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3982 cond_op0, cond_op1,
3983 is_else_edge,
3984 &comp_code, &val))
3985 return false;
3987 /* Register ASSERT_EXPRs for name. */
3988 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
3989 cond_op1, is_else_edge);
3992 /* If COND is effectively an equality test of an SSA_NAME against
3993 the value zero or one, then we may be able to assert values
3994 for SSA_NAMEs which flow into COND. */
3996 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3997 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3998 have nonzero value. */
3999 if (((comp_code == EQ_EXPR && integer_onep (val))
4000 || (comp_code == NE_EXPR && integer_zerop (val))))
4002 tree def_stmt = SSA_NAME_DEF_STMT (name);
4004 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4005 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
4006 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
4008 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4009 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
4010 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4011 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4015 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4016 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4017 have zero value. */
4018 if (((comp_code == EQ_EXPR && integer_zerop (val))
4019 || (comp_code == NE_EXPR && integer_onep (val))))
4021 tree def_stmt = SSA_NAME_DEF_STMT (name);
4023 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4024 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
4025 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4026 necessarily zero value. */
4027 || (comp_code == EQ_EXPR
4028 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1))
4029 == BIT_IOR_EXPR))))
4031 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4032 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
4033 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4034 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4038 return retval;
4042 static bool find_assert_locations (basic_block bb);
4044 /* Determine whether the outgoing edges of BB should receive an
4045 ASSERT_EXPR for each of the operands of BB's LAST statement.
4046 The last statement of BB must be a COND_EXPR.
4048 If any of the sub-graphs rooted at BB have an interesting use of
4049 the predicate operands, an assert location node is added to the
4050 list of assertions for the corresponding operands. */
4052 static bool
4053 find_conditional_asserts (basic_block bb, tree last)
4055 bool need_assert;
4056 block_stmt_iterator bsi;
4057 tree op;
4058 edge_iterator ei;
4059 edge e;
4060 ssa_op_iter iter;
4062 need_assert = false;
4063 bsi = bsi_for_stmt (last);
4065 /* Look for uses of the operands in each of the sub-graphs
4066 rooted at BB. We need to check each of the outgoing edges
4067 separately, so that we know what kind of ASSERT_EXPR to
4068 insert. */
4069 FOR_EACH_EDGE (e, ei, bb->succs)
4071 if (e->dest == bb)
4072 continue;
4074 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
4075 Otherwise, when we finish traversing each of the sub-graphs, we
4076 won't know whether the variables were found in the sub-graphs or
4077 if they had been found in a block upstream from BB.
4079 This is actually a bad idea is some cases, particularly jump
4080 threading. Consider a CFG like the following:
4090 Assume that one or more operands in the conditional at the
4091 end of block 0 are used in a conditional in block 2, but not
4092 anywhere in block 1. In this case we will not insert any
4093 assert statements in block 1, which may cause us to miss
4094 opportunities to optimize, particularly for jump threading. */
4095 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4096 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4098 /* Traverse the strictly dominated sub-graph rooted at E->DEST
4099 to determine if any of the operands in the conditional
4100 predicate are used. */
4101 need_assert |= find_assert_locations (e->dest);
4103 /* Register the necessary assertions for each operand in the
4104 conditional predicate. */
4105 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4107 tree cond = COND_EXPR_COND (last);
4108 if (op != cond)
4109 need_assert |= register_edge_assert_for (op, e, bsi,
4110 TREE_CODE (cond),
4111 TREE_OPERAND (cond, 0),
4112 TREE_OPERAND (cond, 1));
4113 else
4114 need_assert |= register_edge_assert_for (op, e, bsi, EQ_EXPR, op,
4115 boolean_true_node);
4119 /* Finally, indicate that we have found the operands in the
4120 conditional. */
4121 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4122 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4124 return need_assert;
4127 /* Compare two case labels sorting first by the destination label uid
4128 and then by the case value. */
4130 static int
4131 compare_case_labels (const void *p1, const void *p2)
4133 const_tree const case1 = *(const_tree const*)p1;
4134 const_tree const case2 = *(const_tree const*)p2;
4135 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4136 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4138 if (uid1 < uid2)
4139 return -1;
4140 else if (uid1 == uid2)
4142 /* Make sure the default label is first in a group. */
4143 if (!CASE_LOW (case1))
4144 return -1;
4145 else if (!CASE_LOW (case2))
4146 return 1;
4147 else
4148 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4150 else
4151 return 1;
4154 /* Determine whether the outgoing edges of BB should receive an
4155 ASSERT_EXPR for each of the operands of BB's LAST statement.
4156 The last statement of BB must be a SWITCH_EXPR.
4158 If any of the sub-graphs rooted at BB have an interesting use of
4159 the predicate operands, an assert location node is added to the
4160 list of assertions for the corresponding operands. */
4162 static bool
4163 find_switch_asserts (basic_block bb, tree last)
4165 bool need_assert;
4166 block_stmt_iterator bsi;
4167 tree op;
4168 edge e;
4169 tree vec = SWITCH_LABELS (last), vec2;
4170 size_t n = TREE_VEC_LENGTH (vec);
4171 unsigned int idx;
4173 need_assert = false;
4174 bsi = bsi_for_stmt (last);
4175 op = TREE_OPERAND (last, 0);
4176 if (TREE_CODE (op) != SSA_NAME)
4177 return false;
4179 /* Build a vector of case labels sorted by destination label. */
4180 vec2 = make_tree_vec (n);
4181 for (idx = 0; idx < n; ++idx)
4182 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
4183 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4185 for (idx = 0; idx < n; ++idx)
4187 tree min, max;
4188 tree cl = TREE_VEC_ELT (vec2, idx);
4190 min = CASE_LOW (cl);
4191 max = CASE_HIGH (cl);
4193 /* If there are multiple case labels with the same destination
4194 we need to combine them to a single value range for the edge. */
4195 if (idx + 1 < n
4196 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4198 /* Skip labels until the last of the group. */
4199 do {
4200 ++idx;
4201 } while (idx < n
4202 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4203 --idx;
4205 /* Pick up the maximum of the case label range. */
4206 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4207 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4208 else
4209 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4212 /* Nothing to do if the range includes the default label until we
4213 can register anti-ranges. */
4214 if (min == NULL_TREE)
4215 continue;
4217 /* Find the edge to register the assert expr on. */
4218 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4220 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
4221 Otherwise, when we finish traversing each of the sub-graphs, we
4222 won't know whether the variables were found in the sub-graphs or
4223 if they had been found in a block upstream from BB. */
4224 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4226 /* Traverse the strictly dominated sub-graph rooted at E->DEST
4227 to determine if any of the operands in the conditional
4228 predicate are used. */
4229 if (e->dest != bb)
4230 need_assert |= find_assert_locations (e->dest);
4232 /* Register the necessary assertions for the operand in the
4233 SWITCH_EXPR. */
4234 need_assert |= register_edge_assert_for (op, e, bsi,
4235 max ? GE_EXPR : EQ_EXPR,
4237 fold_convert (TREE_TYPE (op),
4238 min));
4239 if (max)
4241 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4243 fold_convert (TREE_TYPE (op),
4244 max));
4248 /* Finally, indicate that we have found the operand in the
4249 SWITCH_EXPR. */
4250 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4252 return need_assert;
4256 /* Traverse all the statements in block BB looking for statements that
4257 may generate useful assertions for the SSA names in their operand.
4258 If a statement produces a useful assertion A for name N_i, then the
4259 list of assertions already generated for N_i is scanned to
4260 determine if A is actually needed.
4262 If N_i already had the assertion A at a location dominating the
4263 current location, then nothing needs to be done. Otherwise, the
4264 new location for A is recorded instead.
4266 1- For every statement S in BB, all the variables used by S are
4267 added to bitmap FOUND_IN_SUBGRAPH.
4269 2- If statement S uses an operand N in a way that exposes a known
4270 value range for N, then if N was not already generated by an
4271 ASSERT_EXPR, create a new assert location for N. For instance,
4272 if N is a pointer and the statement dereferences it, we can
4273 assume that N is not NULL.
4275 3- COND_EXPRs are a special case of #2. We can derive range
4276 information from the predicate but need to insert different
4277 ASSERT_EXPRs for each of the sub-graphs rooted at the
4278 conditional block. If the last statement of BB is a conditional
4279 expression of the form 'X op Y', then
4281 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4283 b) If the conditional is the only entry point to the sub-graph
4284 corresponding to the THEN_CLAUSE, recurse into it. On
4285 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4286 an ASSERT_EXPR is added for the corresponding variable.
4288 c) Repeat step (b) on the ELSE_CLAUSE.
4290 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4292 For instance,
4294 if (a == 9)
4295 b = a;
4296 else
4297 b = c + 1;
4299 In this case, an assertion on the THEN clause is useful to
4300 determine that 'a' is always 9 on that edge. However, an assertion
4301 on the ELSE clause would be unnecessary.
4303 4- If BB does not end in a conditional expression, then we recurse
4304 into BB's dominator children.
4306 At the end of the recursive traversal, every SSA name will have a
4307 list of locations where ASSERT_EXPRs should be added. When a new
4308 location for name N is found, it is registered by calling
4309 register_new_assert_for. That function keeps track of all the
4310 registered assertions to prevent adding unnecessary assertions.
4311 For instance, if a pointer P_4 is dereferenced more than once in a
4312 dominator tree, only the location dominating all the dereference of
4313 P_4 will receive an ASSERT_EXPR.
4315 If this function returns true, then it means that there are names
4316 for which we need to generate ASSERT_EXPRs. Those assertions are
4317 inserted by process_assert_insertions. */
4319 static bool
4320 find_assert_locations (basic_block bb)
4322 block_stmt_iterator si;
4323 tree last, phi;
4324 bool need_assert;
4325 basic_block son;
4327 if (TEST_BIT (blocks_visited, bb->index))
4328 return false;
4330 SET_BIT (blocks_visited, bb->index);
4332 need_assert = false;
4334 /* Traverse all PHI nodes in BB marking used operands. */
4335 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4337 use_operand_p arg_p;
4338 ssa_op_iter i;
4340 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4342 tree arg = USE_FROM_PTR (arg_p);
4343 if (TREE_CODE (arg) == SSA_NAME)
4345 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4346 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4351 /* Traverse all the statements in BB marking used names and looking
4352 for statements that may infer assertions for their used operands. */
4353 last = NULL_TREE;
4354 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4356 tree stmt, op;
4357 ssa_op_iter i;
4359 stmt = bsi_stmt (si);
4361 /* See if we can derive an assertion for any of STMT's operands. */
4362 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4364 tree value;
4365 enum tree_code comp_code;
4367 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4368 the sub-graph of a conditional block, when we return from
4369 this recursive walk, our parent will use the
4370 FOUND_IN_SUBGRAPH bitset to determine if one of the
4371 operands it was looking for was present in the sub-graph. */
4372 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4374 /* If OP is used in such a way that we can infer a value
4375 range for it, and we don't find a previous assertion for
4376 it, create a new assertion location node for OP. */
4377 if (infer_value_range (stmt, op, &comp_code, &value))
4379 /* If we are able to infer a nonzero value range for OP,
4380 then walk backwards through the use-def chain to see if OP
4381 was set via a typecast.
4383 If so, then we can also infer a nonzero value range
4384 for the operand of the NOP_EXPR. */
4385 if (comp_code == NE_EXPR && integer_zerop (value))
4387 tree t = op;
4388 tree def_stmt = SSA_NAME_DEF_STMT (t);
4390 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4391 && TREE_CODE
4392 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4393 && TREE_CODE
4394 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4395 0)) == SSA_NAME
4396 && POINTER_TYPE_P
4397 (TREE_TYPE (TREE_OPERAND
4398 (GIMPLE_STMT_OPERAND (def_stmt,
4399 1), 0))))
4401 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4402 def_stmt = SSA_NAME_DEF_STMT (t);
4404 /* Note we want to register the assert for the
4405 operand of the NOP_EXPR after SI, not after the
4406 conversion. */
4407 if (! has_single_use (t))
4409 register_new_assert_for (t, t, comp_code, value,
4410 bb, NULL, si);
4411 need_assert = true;
4416 /* If OP is used only once, namely in this STMT, don't
4417 bother creating an ASSERT_EXPR for it. Such an
4418 ASSERT_EXPR would do nothing but increase compile time. */
4419 if (!has_single_use (op))
4421 register_new_assert_for (op, op, comp_code, value,
4422 bb, NULL, si);
4423 need_assert = true;
4428 /* Remember the last statement of the block. */
4429 last = stmt;
4432 /* If BB's last statement is a conditional expression
4433 involving integer operands, recurse into each of the sub-graphs
4434 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4435 if (last
4436 && TREE_CODE (last) == COND_EXPR
4437 && !fp_predicate (COND_EXPR_COND (last))
4438 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4439 need_assert |= find_conditional_asserts (bb, last);
4441 if (last
4442 && TREE_CODE (last) == SWITCH_EXPR
4443 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4444 need_assert |= find_switch_asserts (bb, last);
4446 /* Recurse into the dominator children of BB. */
4447 for (son = first_dom_son (CDI_DOMINATORS, bb);
4448 son;
4449 son = next_dom_son (CDI_DOMINATORS, son))
4450 need_assert |= find_assert_locations (son);
4452 return need_assert;
4456 /* Create an ASSERT_EXPR for NAME and insert it in the location
4457 indicated by LOC. Return true if we made any edge insertions. */
4459 static bool
4460 process_assert_insertions_for (tree name, assert_locus_t loc)
4462 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4463 tree stmt, cond, assert_expr;
4464 edge_iterator ei;
4465 edge e;
4467 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4468 assert_expr = build_assert_expr_for (cond, name);
4470 if (loc->e)
4472 /* We have been asked to insert the assertion on an edge. This
4473 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4474 #if defined ENABLE_CHECKING
4475 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4476 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4477 #endif
4479 bsi_insert_on_edge (loc->e, assert_expr);
4480 return true;
4483 /* Otherwise, we can insert right after LOC->SI iff the
4484 statement must not be the last statement in the block. */
4485 stmt = bsi_stmt (loc->si);
4486 if (!stmt_ends_bb_p (stmt))
4488 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4489 return false;
4492 /* If STMT must be the last statement in BB, we can only insert new
4493 assertions on the non-abnormal edge out of BB. Note that since
4494 STMT is not control flow, there may only be one non-abnormal edge
4495 out of BB. */
4496 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4497 if (!(e->flags & EDGE_ABNORMAL))
4499 bsi_insert_on_edge (e, assert_expr);
4500 return true;
4503 gcc_unreachable ();
4507 /* Process all the insertions registered for every name N_i registered
4508 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4509 found in ASSERTS_FOR[i]. */
4511 static void
4512 process_assert_insertions (void)
4514 unsigned i;
4515 bitmap_iterator bi;
4516 bool update_edges_p = false;
4517 int num_asserts = 0;
4519 if (dump_file && (dump_flags & TDF_DETAILS))
4520 dump_all_asserts (dump_file);
4522 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4524 assert_locus_t loc = asserts_for[i];
4525 gcc_assert (loc);
4527 while (loc)
4529 assert_locus_t next = loc->next;
4530 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4531 free (loc);
4532 loc = next;
4533 num_asserts++;
4537 if (update_edges_p)
4538 bsi_commit_edge_inserts ();
4540 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4541 num_asserts);
4545 /* Traverse the flowgraph looking for conditional jumps to insert range
4546 expressions. These range expressions are meant to provide information
4547 to optimizations that need to reason in terms of value ranges. They
4548 will not be expanded into RTL. For instance, given:
4550 x = ...
4551 y = ...
4552 if (x < y)
4553 y = x - 2;
4554 else
4555 x = y + 3;
4557 this pass will transform the code into:
4559 x = ...
4560 y = ...
4561 if (x < y)
4563 x = ASSERT_EXPR <x, x < y>
4564 y = x - 2
4566 else
4568 y = ASSERT_EXPR <y, x <= y>
4569 x = y + 3
4572 The idea is that once copy and constant propagation have run, other
4573 optimizations will be able to determine what ranges of values can 'x'
4574 take in different paths of the code, simply by checking the reaching
4575 definition of 'x'. */
4577 static void
4578 insert_range_assertions (void)
4580 edge e;
4581 edge_iterator ei;
4582 bool update_ssa_p;
4584 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4585 sbitmap_zero (found_in_subgraph);
4587 blocks_visited = sbitmap_alloc (last_basic_block);
4588 sbitmap_zero (blocks_visited);
4590 need_assert_for = BITMAP_ALLOC (NULL);
4591 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4593 calculate_dominance_info (CDI_DOMINATORS);
4595 update_ssa_p = false;
4596 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4597 if (find_assert_locations (e->dest))
4598 update_ssa_p = true;
4600 if (update_ssa_p)
4602 process_assert_insertions ();
4603 update_ssa (TODO_update_ssa_no_phi);
4606 if (dump_file && (dump_flags & TDF_DETAILS))
4608 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4609 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4612 sbitmap_free (found_in_subgraph);
4613 free (asserts_for);
4614 BITMAP_FREE (need_assert_for);
4617 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4618 and "struct" hacks. If VRP can determine that the
4619 array subscript is a constant, check if it is outside valid
4620 range. If the array subscript is a RANGE, warn if it is
4621 non-overlapping with valid range.
4622 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4624 static void
4625 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4627 value_range_t* vr = NULL;
4628 tree low_sub, up_sub;
4629 tree low_bound, up_bound = array_ref_up_bound (ref);
4631 low_sub = up_sub = TREE_OPERAND (ref, 1);
4633 if (!up_bound || TREE_NO_WARNING (ref)
4634 || TREE_CODE (up_bound) != INTEGER_CST
4635 /* Can not check flexible arrays. */
4636 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4637 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4638 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4639 /* Accesses after the end of arrays of size 0 (gcc
4640 extension) and 1 are likely intentional ("struct
4641 hack"). */
4642 || compare_tree_int (up_bound, 1) <= 0)
4643 return;
4645 low_bound = array_ref_low_bound (ref);
4647 if (TREE_CODE (low_sub) == SSA_NAME)
4649 vr = get_value_range (low_sub);
4650 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4652 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4653 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4657 if (vr && vr->type == VR_ANTI_RANGE)
4659 if (TREE_CODE (up_sub) == INTEGER_CST
4660 && tree_int_cst_lt (up_bound, up_sub)
4661 && TREE_CODE (low_sub) == INTEGER_CST
4662 && tree_int_cst_lt (low_sub, low_bound))
4664 warning (OPT_Warray_bounds,
4665 "%Harray subscript is outside array bounds", locus);
4666 TREE_NO_WARNING (ref) = 1;
4669 else if (TREE_CODE (up_sub) == INTEGER_CST
4670 && tree_int_cst_lt (up_bound, up_sub)
4671 && !tree_int_cst_equal (up_bound, up_sub)
4672 && (!ignore_off_by_one
4673 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4674 up_bound,
4675 integer_one_node,
4677 up_sub)))
4679 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4680 locus);
4681 TREE_NO_WARNING (ref) = 1;
4683 else if (TREE_CODE (low_sub) == INTEGER_CST
4684 && tree_int_cst_lt (low_sub, low_bound))
4686 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4687 locus);
4688 TREE_NO_WARNING (ref) = 1;
4692 /* Searches if the expr T, located at LOCATION computes
4693 address of an ARRAY_REF, and call check_array_ref on it. */
4695 static void
4696 search_for_addr_array(tree t, location_t* location)
4698 while (TREE_CODE (t) == SSA_NAME)
4700 t = SSA_NAME_DEF_STMT (t);
4701 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4702 return;
4703 t = GIMPLE_STMT_OPERAND (t, 1);
4707 /* We are only interested in addresses of ARRAY_REF's. */
4708 if (TREE_CODE (t) != ADDR_EXPR)
4709 return;
4711 /* Check each ARRAY_REFs in the reference chain. */
4714 if (TREE_CODE (t) == ARRAY_REF)
4715 check_array_ref (t, location, true /*ignore_off_by_one*/);
4717 t = TREE_OPERAND(t,0);
4719 while (handled_component_p (t));
4722 /* walk_tree() callback that checks if *TP is
4723 an ARRAY_REF inside an ADDR_EXPR (in which an array
4724 subscript one outside the valid range is allowed). Call
4725 check_array_ref for each ARRAY_REF found. The location is
4726 passed in DATA. */
4728 static tree
4729 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4731 tree t = *tp;
4732 tree stmt = (tree)data;
4733 location_t *location = EXPR_LOCUS (stmt);
4735 if (!EXPR_HAS_LOCATION (stmt))
4737 *walk_subtree = FALSE;
4738 return NULL_TREE;
4741 *walk_subtree = TRUE;
4743 if (TREE_CODE (t) == ARRAY_REF)
4744 check_array_ref (t, location, false /*ignore_off_by_one*/);
4746 if (TREE_CODE (t) == INDIRECT_REF
4747 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4748 search_for_addr_array (TREE_OPERAND (t, 0), location);
4749 else if (TREE_CODE (t) == CALL_EXPR)
4751 tree arg;
4752 call_expr_arg_iterator iter;
4754 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4755 search_for_addr_array (arg, location);
4758 if (TREE_CODE (t) == ADDR_EXPR)
4759 *walk_subtree = FALSE;
4761 return NULL_TREE;
4764 /* Walk over all statements of all reachable BBs and call check_array_bounds
4765 on them. */
4767 static void
4768 check_all_array_refs (void)
4770 basic_block bb;
4771 block_stmt_iterator si;
4773 FOR_EACH_BB (bb)
4775 /* Skip bb's that are clearly unreachable. */
4776 if (single_pred_p (bb))
4778 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4779 tree ls = NULL_TREE;
4781 if (!bsi_end_p (bsi_last (pred_bb)))
4782 ls = bsi_stmt (bsi_last (pred_bb));
4784 if (ls && TREE_CODE (ls) == COND_EXPR
4785 && ((COND_EXPR_COND (ls) == boolean_false_node
4786 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4787 || (COND_EXPR_COND (ls) == boolean_true_node
4788 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4789 continue;
4791 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4792 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4793 bsi_stmt (si), NULL);
4797 /* Convert range assertion expressions into the implied copies and
4798 copy propagate away the copies. Doing the trivial copy propagation
4799 here avoids the need to run the full copy propagation pass after
4800 VRP.
4802 FIXME, this will eventually lead to copy propagation removing the
4803 names that had useful range information attached to them. For
4804 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4805 then N_i will have the range [3, +INF].
4807 However, by converting the assertion into the implied copy
4808 operation N_i = N_j, we will then copy-propagate N_j into the uses
4809 of N_i and lose the range information. We may want to hold on to
4810 ASSERT_EXPRs a little while longer as the ranges could be used in
4811 things like jump threading.
4813 The problem with keeping ASSERT_EXPRs around is that passes after
4814 VRP need to handle them appropriately.
4816 Another approach would be to make the range information a first
4817 class property of the SSA_NAME so that it can be queried from
4818 any pass. This is made somewhat more complex by the need for
4819 multiple ranges to be associated with one SSA_NAME. */
4821 static void
4822 remove_range_assertions (void)
4824 basic_block bb;
4825 block_stmt_iterator si;
4827 /* Note that the BSI iterator bump happens at the bottom of the
4828 loop and no bump is necessary if we're removing the statement
4829 referenced by the current BSI. */
4830 FOR_EACH_BB (bb)
4831 for (si = bsi_start (bb); !bsi_end_p (si);)
4833 tree stmt = bsi_stmt (si);
4834 tree use_stmt;
4836 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4837 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4839 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4840 tree cond = fold (ASSERT_EXPR_COND (rhs));
4841 use_operand_p use_p;
4842 imm_use_iterator iter;
4844 gcc_assert (cond != boolean_false_node);
4846 /* Propagate the RHS into every use of the LHS. */
4847 var = ASSERT_EXPR_VAR (rhs);
4848 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4849 GIMPLE_STMT_OPERAND (stmt, 0))
4850 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4852 SET_USE (use_p, var);
4853 gcc_assert (TREE_CODE (var) == SSA_NAME);
4856 /* And finally, remove the copy, it is not needed. */
4857 bsi_remove (&si, true);
4858 release_defs (stmt);
4860 else
4861 bsi_next (&si);
4864 sbitmap_free (blocks_visited);
4868 /* Return true if STMT is interesting for VRP. */
4870 static bool
4871 stmt_interesting_for_vrp (tree stmt)
4873 if (TREE_CODE (stmt) == PHI_NODE
4874 && is_gimple_reg (PHI_RESULT (stmt))
4875 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4876 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4877 return true;
4878 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4880 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4881 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4883 /* In general, assignments with virtual operands are not useful
4884 for deriving ranges, with the obvious exception of calls to
4885 builtin functions. */
4886 if (TREE_CODE (lhs) == SSA_NAME
4887 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4888 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4889 && ((TREE_CODE (rhs) == CALL_EXPR
4890 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4891 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4892 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4893 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4894 return true;
4896 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4897 return true;
4899 return false;
4903 /* Initialize local data structures for VRP. */
4905 static void
4906 vrp_initialize (void)
4908 basic_block bb;
4910 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4911 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4913 FOR_EACH_BB (bb)
4915 block_stmt_iterator si;
4916 tree phi;
4918 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4920 if (!stmt_interesting_for_vrp (phi))
4922 tree lhs = PHI_RESULT (phi);
4923 set_value_range_to_varying (get_value_range (lhs));
4924 DONT_SIMULATE_AGAIN (phi) = true;
4926 else
4927 DONT_SIMULATE_AGAIN (phi) = false;
4930 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4932 tree stmt = bsi_stmt (si);
4934 if (!stmt_interesting_for_vrp (stmt))
4936 ssa_op_iter i;
4937 tree def;
4938 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4939 set_value_range_to_varying (get_value_range (def));
4940 DONT_SIMULATE_AGAIN (stmt) = true;
4942 else
4944 DONT_SIMULATE_AGAIN (stmt) = false;
4951 /* Visit assignment STMT. If it produces an interesting range, record
4952 the SSA name in *OUTPUT_P. */
4954 static enum ssa_prop_result
4955 vrp_visit_assignment (tree stmt, tree *output_p)
4957 tree lhs, rhs, def;
4958 ssa_op_iter iter;
4960 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4961 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4963 /* We only keep track of ranges in integral and pointer types. */
4964 if (TREE_CODE (lhs) == SSA_NAME
4965 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4966 /* It is valid to have NULL MIN/MAX values on a type. See
4967 build_range_type. */
4968 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4969 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4970 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4972 struct loop *l;
4973 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4975 extract_range_from_expr (&new_vr, rhs);
4977 /* If STMT is inside a loop, we may be able to know something
4978 else about the range of LHS by examining scalar evolution
4979 information. */
4980 if (current_loops && (l = loop_containing_stmt (stmt)))
4981 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4983 if (update_value_range (lhs, &new_vr))
4985 *output_p = lhs;
4987 if (dump_file && (dump_flags & TDF_DETAILS))
4989 fprintf (dump_file, "Found new range for ");
4990 print_generic_expr (dump_file, lhs, 0);
4991 fprintf (dump_file, ": ");
4992 dump_value_range (dump_file, &new_vr);
4993 fprintf (dump_file, "\n\n");
4996 if (new_vr.type == VR_VARYING)
4997 return SSA_PROP_VARYING;
4999 return SSA_PROP_INTERESTING;
5002 return SSA_PROP_NOT_INTERESTING;
5005 /* Every other statement produces no useful ranges. */
5006 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5007 set_value_range_to_varying (get_value_range (def));
5009 return SSA_PROP_VARYING;
5012 /* Helper that gets the value range of the SSA_NAME with version I
5013 or a symbolic range containing the SSA_NAME only if the value range
5014 is varying or undefined. */
5016 static inline value_range_t
5017 get_vr_for_comparison (int i)
5019 value_range_t vr = *(vr_value[i]);
5021 /* If name N_i does not have a valid range, use N_i as its own
5022 range. This allows us to compare against names that may
5023 have N_i in their ranges. */
5024 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5026 vr.type = VR_RANGE;
5027 vr.min = ssa_name (i);
5028 vr.max = ssa_name (i);
5031 return vr;
5034 /* Compare all the value ranges for names equivalent to VAR with VAL
5035 using comparison code COMP. Return the same value returned by
5036 compare_range_with_value, including the setting of
5037 *STRICT_OVERFLOW_P. */
5039 static tree
5040 compare_name_with_value (enum tree_code comp, tree var, tree val,
5041 bool *strict_overflow_p)
5043 bitmap_iterator bi;
5044 unsigned i;
5045 bitmap e;
5046 tree retval, t;
5047 int used_strict_overflow;
5048 bool sop;
5049 value_range_t equiv_vr;
5051 /* Get the set of equivalences for VAR. */
5052 e = get_value_range (var)->equiv;
5054 /* Start at -1. Set it to 0 if we do a comparison without relying
5055 on overflow, or 1 if all comparisons rely on overflow. */
5056 used_strict_overflow = -1;
5058 /* Compare vars' value range with val. */
5059 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5060 sop = false;
5061 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5062 if (retval)
5063 used_strict_overflow = sop ? 1 : 0;
5065 /* If the equiv set is empty we have done all work we need to do. */
5066 if (e == NULL)
5068 if (retval
5069 && used_strict_overflow > 0)
5070 *strict_overflow_p = true;
5071 return retval;
5074 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5076 equiv_vr = get_vr_for_comparison (i);
5077 sop = false;
5078 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5079 if (t)
5081 /* If we get different answers from different members
5082 of the equivalence set this check must be in a dead
5083 code region. Folding it to a trap representation
5084 would be correct here. For now just return don't-know. */
5085 if (retval != NULL
5086 && t != retval)
5088 retval = NULL_TREE;
5089 break;
5091 retval = t;
5093 if (!sop)
5094 used_strict_overflow = 0;
5095 else if (used_strict_overflow < 0)
5096 used_strict_overflow = 1;
5100 if (retval
5101 && used_strict_overflow > 0)
5102 *strict_overflow_p = true;
5104 return retval;
5108 /* Given a comparison code COMP and names N1 and N2, compare all the
5109 ranges equivalent to N1 against all the ranges equivalent to N2
5110 to determine the value of N1 COMP N2. Return the same value
5111 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5112 whether we relied on an overflow infinity in the comparison. */
5115 static tree
5116 compare_names (enum tree_code comp, tree n1, tree n2,
5117 bool *strict_overflow_p)
5119 tree t, retval;
5120 bitmap e1, e2;
5121 bitmap_iterator bi1, bi2;
5122 unsigned i1, i2;
5123 int used_strict_overflow;
5124 static bitmap_obstack *s_obstack = NULL;
5125 static bitmap s_e1 = NULL, s_e2 = NULL;
5127 /* Compare the ranges of every name equivalent to N1 against the
5128 ranges of every name equivalent to N2. */
5129 e1 = get_value_range (n1)->equiv;
5130 e2 = get_value_range (n2)->equiv;
5132 /* Use the fake bitmaps if e1 or e2 are not available. */
5133 if (s_obstack == NULL)
5135 s_obstack = XNEW (bitmap_obstack);
5136 bitmap_obstack_initialize (s_obstack);
5137 s_e1 = BITMAP_ALLOC (s_obstack);
5138 s_e2 = BITMAP_ALLOC (s_obstack);
5140 if (e1 == NULL)
5141 e1 = s_e1;
5142 if (e2 == NULL)
5143 e2 = s_e2;
5145 /* Add N1 and N2 to their own set of equivalences to avoid
5146 duplicating the body of the loop just to check N1 and N2
5147 ranges. */
5148 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5149 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5151 /* If the equivalence sets have a common intersection, then the two
5152 names can be compared without checking their ranges. */
5153 if (bitmap_intersect_p (e1, e2))
5155 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5156 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5158 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5159 ? boolean_true_node
5160 : boolean_false_node;
5163 /* Start at -1. Set it to 0 if we do a comparison without relying
5164 on overflow, or 1 if all comparisons rely on overflow. */
5165 used_strict_overflow = -1;
5167 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5168 N2 to their own set of equivalences to avoid duplicating the body
5169 of the loop just to check N1 and N2 ranges. */
5170 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5172 value_range_t vr1 = get_vr_for_comparison (i1);
5174 t = retval = NULL_TREE;
5175 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5177 bool sop = false;
5179 value_range_t vr2 = get_vr_for_comparison (i2);
5181 t = compare_ranges (comp, &vr1, &vr2, &sop);
5182 if (t)
5184 /* If we get different answers from different members
5185 of the equivalence set this check must be in a dead
5186 code region. Folding it to a trap representation
5187 would be correct here. For now just return don't-know. */
5188 if (retval != NULL
5189 && t != retval)
5191 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5192 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5193 return NULL_TREE;
5195 retval = t;
5197 if (!sop)
5198 used_strict_overflow = 0;
5199 else if (used_strict_overflow < 0)
5200 used_strict_overflow = 1;
5204 if (retval)
5206 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5207 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5208 if (used_strict_overflow > 0)
5209 *strict_overflow_p = true;
5210 return retval;
5214 /* None of the equivalent ranges are useful in computing this
5215 comparison. */
5216 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5217 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5218 return NULL_TREE;
5221 /* Helper function for vrp_evaluate_conditional_warnv. */
5223 static tree
5224 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5225 tree op1, bool use_equiv_p,
5226 bool *strict_overflow_p)
5228 /* We only deal with integral and pointer types. */
5229 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5230 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5231 return NULL_TREE;
5233 if (use_equiv_p)
5235 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5236 return compare_names (code, op0, op1,
5237 strict_overflow_p);
5238 else if (TREE_CODE (op0) == SSA_NAME)
5239 return compare_name_with_value (code, op0, op1,
5240 strict_overflow_p);
5241 else if (TREE_CODE (op1) == SSA_NAME)
5242 return (compare_name_with_value
5243 (swap_tree_comparison (code), op1, op0,
5244 strict_overflow_p));
5246 else
5248 value_range_t *vr0, *vr1;
5250 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5251 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5253 if (vr0 && vr1)
5254 return compare_ranges (code, vr0, vr1,
5255 strict_overflow_p);
5256 else if (vr0 && vr1 == NULL)
5257 return compare_range_with_value (code, vr0, op1,
5258 strict_overflow_p);
5259 else if (vr0 == NULL && vr1)
5260 return (compare_range_with_value
5261 (swap_tree_comparison (code), vr1, op0,
5262 strict_overflow_p));
5264 return NULL_TREE;
5267 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5268 information. Return NULL if the conditional can not be evaluated.
5269 The ranges of all the names equivalent with the operands in COND
5270 will be used when trying to compute the value. If the result is
5271 based on undefined signed overflow, issue a warning if
5272 appropriate. */
5274 tree
5275 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, tree stmt)
5277 bool sop;
5278 tree ret;
5280 sop = false;
5281 ret = vrp_evaluate_conditional_warnv_with_ops (code,
5282 op0,
5283 op1,
5284 true,
5285 &sop);
5287 if (ret && sop)
5289 enum warn_strict_overflow_code wc;
5290 const char* warnmsg;
5292 if (is_gimple_min_invariant (ret))
5294 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5295 warnmsg = G_("assuming signed overflow does not occur when "
5296 "simplifying conditional to constant");
5298 else
5300 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5301 warnmsg = G_("assuming signed overflow does not occur when "
5302 "simplifying conditional");
5305 if (issue_strict_overflow_warning (wc))
5307 location_t locus;
5309 if (!EXPR_HAS_LOCATION (stmt))
5310 locus = input_location;
5311 else
5312 locus = EXPR_LOCATION (stmt);
5313 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5317 if (warn_type_limits
5318 && ret
5319 && TREE_CODE_CLASS (code) == tcc_comparison
5320 && TREE_CODE (op0) == SSA_NAME)
5322 /* If the comparison is being folded and the operand on the LHS
5323 is being compared against a constant value that is outside of
5324 the natural range of OP0's type, then the predicate will
5325 always fold regardless of the value of OP0. If -Wtype-limits
5326 was specified, emit a warning. */
5327 const char *warnmsg = NULL;
5328 tree type = TREE_TYPE (op0);
5329 value_range_t *vr0 = get_value_range (op0);
5331 if (vr0->type != VR_VARYING
5332 && INTEGRAL_TYPE_P (type)
5333 && vrp_val_is_min (vr0->min)
5334 && vrp_val_is_max (vr0->max)
5335 && is_gimple_min_invariant (op1))
5337 if (integer_zerop (ret))
5338 warnmsg = G_("comparison always false due to limited range of "
5339 "data type");
5340 else
5341 warnmsg = G_("comparison always true due to limited range of "
5342 "data type");
5345 if (warnmsg)
5347 location_t locus;
5349 if (!EXPR_HAS_LOCATION (stmt))
5350 locus = input_location;
5351 else
5352 locus = EXPR_LOCATION (stmt);
5354 warning (OPT_Wtype_limits, "%H%s", &locus, warnmsg);
5358 return ret;
5362 /* Visit conditional statement STMT. If we can determine which edge
5363 will be taken out of STMT's basic block, record it in
5364 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5365 SSA_PROP_VARYING. */
5367 static enum ssa_prop_result
5368 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5370 tree cond, val;
5371 bool sop;
5373 *taken_edge_p = NULL;
5374 cond = COND_EXPR_COND (stmt);
5376 if (dump_file && (dump_flags & TDF_DETAILS))
5378 tree use;
5379 ssa_op_iter i;
5381 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5382 print_generic_expr (dump_file, cond, 0);
5383 fprintf (dump_file, "\nWith known ranges\n");
5385 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5387 fprintf (dump_file, "\t");
5388 print_generic_expr (dump_file, use, 0);
5389 fprintf (dump_file, ": ");
5390 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5393 fprintf (dump_file, "\n");
5396 /* Compute the value of the predicate COND by checking the known
5397 ranges of each of its operands.
5399 Note that we cannot evaluate all the equivalent ranges here
5400 because those ranges may not yet be final and with the current
5401 propagation strategy, we cannot determine when the value ranges
5402 of the names in the equivalence set have changed.
5404 For instance, given the following code fragment
5406 i_5 = PHI <8, i_13>
5408 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5409 if (i_14 == 1)
5412 Assume that on the first visit to i_14, i_5 has the temporary
5413 range [8, 8] because the second argument to the PHI function is
5414 not yet executable. We derive the range ~[0, 0] for i_14 and the
5415 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5416 the first time, since i_14 is equivalent to the range [8, 8], we
5417 determine that the predicate is always false.
5419 On the next round of propagation, i_13 is determined to be
5420 VARYING, which causes i_5 to drop down to VARYING. So, another
5421 visit to i_14 is scheduled. In this second visit, we compute the
5422 exact same range and equivalence set for i_14, namely ~[0, 0] and
5423 { i_5 }. But we did not have the previous range for i_5
5424 registered, so vrp_visit_assignment thinks that the range for
5425 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5426 is not visited again, which stops propagation from visiting
5427 statements in the THEN clause of that if().
5429 To properly fix this we would need to keep the previous range
5430 value for the names in the equivalence set. This way we would've
5431 discovered that from one visit to the other i_5 changed from
5432 range [8, 8] to VR_VARYING.
5434 However, fixing this apparent limitation may not be worth the
5435 additional checking. Testing on several code bases (GCC, DLV,
5436 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5437 4 more predicates folded in SPEC. */
5438 sop = false;
5440 if (TREE_CODE (cond) == SSA_NAME)
5441 val = vrp_evaluate_conditional_warnv_with_ops (EQ_EXPR,
5442 cond,
5443 boolean_true_node,
5444 false,
5445 &sop);
5446 else
5447 val = vrp_evaluate_conditional_warnv_with_ops (TREE_CODE (cond),
5448 TREE_OPERAND (cond, 0),
5449 TREE_OPERAND (cond, 1),
5450 false,
5451 &sop);
5452 if (val)
5454 if (!sop)
5455 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5456 else
5458 if (dump_file && (dump_flags & TDF_DETAILS))
5459 fprintf (dump_file,
5460 "\nIgnoring predicate evaluation because "
5461 "it assumes that signed overflow is undefined");
5462 val = NULL_TREE;
5466 if (dump_file && (dump_flags & TDF_DETAILS))
5468 fprintf (dump_file, "\nPredicate evaluates to: ");
5469 if (val == NULL_TREE)
5470 fprintf (dump_file, "DON'T KNOW\n");
5471 else
5472 print_generic_stmt (dump_file, val, 0);
5475 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5478 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5479 that includes the value VAL. The search is restricted to the range
5480 [START_IDX, n - 2] where n is the size of VEC (n - 1 is the default label).
5482 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5483 returned.
5485 If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
5486 it is placed in IDX and false is returned.
5488 If VAL is larger than any CASE_LABEL, n - 1 is placed on IDX and false is
5489 returned. */
5491 static bool
5492 find_case_label_index (tree vec, size_t start_idx, tree val, size_t *idx)
5494 size_t n = TREE_VEC_LENGTH (vec);
5495 size_t low, high;
5497 /* Find case label for minimum of the value range or the next one.
5498 At each iteration we are searching in [low, high - 1]. */
5500 for (low = start_idx, high = n - 1; high != low; )
5502 tree t;
5503 int cmp;
5504 /* Note that i != high, so we never ask for n - 1. */
5505 size_t i = (high + low) / 2;
5506 t = TREE_VEC_ELT (vec, i);
5508 /* Cache the result of comparing CASE_LOW and val. */
5509 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5511 if (cmp == 0)
5513 /* Ranges cannot be empty. */
5514 *idx = i;
5515 return true;
5517 else if (cmp > 0)
5518 high = i;
5519 else
5521 low = i + 1;
5522 if (CASE_HIGH (t) != NULL
5523 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5525 *idx = i;
5526 return true;
5531 *idx = high;
5532 return false;
5535 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5536 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5537 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5538 then MAX_IDX < MIN_IDX.
5539 Returns true if the default label is not needed. */
5541 static bool
5542 find_case_label_range (tree vec, tree min, tree max, size_t *min_idx, size_t *max_idx)
5544 size_t i, j;
5545 bool min_take_default = !find_case_label_index (vec, 0, min, &i);
5546 bool max_take_default = !find_case_label_index (vec, i, max, &j);
5548 if (i == j
5549 && min_take_default
5550 && max_take_default)
5552 /* Only the default case label reached.
5553 Return an empty range. */
5554 *min_idx = 1;
5555 *max_idx = 0;
5556 return false;
5558 else
5560 bool take_default = min_take_default || max_take_default;
5561 tree low, high;
5562 size_t k;
5564 if (max_take_default)
5565 j--;
5567 /* If the case label range is continuous, we do not need
5568 the default case label. Verify that. */
5569 high = CASE_LOW (TREE_VEC_ELT (vec, i));
5570 if (CASE_HIGH (TREE_VEC_ELT (vec, i)))
5571 high = CASE_HIGH (TREE_VEC_ELT (vec, i));
5572 for (k = i + 1; k <= j; ++k)
5574 low = CASE_LOW (TREE_VEC_ELT (vec, k));
5575 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5577 take_default = true;
5578 break;
5580 high = low;
5581 if (CASE_HIGH (TREE_VEC_ELT (vec, k)))
5582 high = CASE_HIGH (TREE_VEC_ELT (vec, k));
5585 *min_idx = i;
5586 *max_idx = j;
5587 return !take_default;
5591 /* Visit switch statement STMT. If we can determine which edge
5592 will be taken out of STMT's basic block, record it in
5593 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5594 SSA_PROP_VARYING. */
5596 static enum ssa_prop_result
5597 vrp_visit_switch_stmt (tree stmt, edge *taken_edge_p)
5599 tree op, val;
5600 value_range_t *vr;
5601 size_t i = 0, j = 0, n;
5602 tree vec;
5603 bool take_default;
5605 *taken_edge_p = NULL;
5606 op = TREE_OPERAND (stmt, 0);
5607 if (TREE_CODE (op) != SSA_NAME)
5608 return SSA_PROP_VARYING;
5610 vr = get_value_range (op);
5611 if (dump_file && (dump_flags & TDF_DETAILS))
5613 fprintf (dump_file, "\nVisiting switch expression with operand ");
5614 print_generic_expr (dump_file, op, 0);
5615 fprintf (dump_file, " with known range ");
5616 dump_value_range (dump_file, vr);
5617 fprintf (dump_file, "\n");
5620 if (vr->type != VR_RANGE
5621 || symbolic_range_p (vr))
5622 return SSA_PROP_VARYING;
5624 /* Find the single edge that is taken from the switch expression. */
5625 vec = SWITCH_LABELS (stmt);
5626 n = TREE_VEC_LENGTH (vec);
5628 take_default = !find_case_label_range (vec, vr->min, vr->max, &i, &j);
5630 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
5631 label */
5632 if (j < i)
5634 gcc_assert (take_default);
5635 val = TREE_VEC_ELT (vec, n - 1);
5637 else
5639 /* Check if labels with index i to j and maybe the default label
5640 are all reaching the same label. */
5642 val = TREE_VEC_ELT (vec, i);
5643 if (take_default
5644 && CASE_LABEL (TREE_VEC_ELT (vec, n - 1)) != CASE_LABEL (val))
5646 if (dump_file && (dump_flags & TDF_DETAILS))
5647 fprintf (dump_file, " not a single destination for this "
5648 "range\n");
5649 return SSA_PROP_VARYING;
5651 for (++i; i <= j; ++i)
5653 if (CASE_LABEL (TREE_VEC_ELT (vec, i)) != CASE_LABEL (val))
5655 if (dump_file && (dump_flags & TDF_DETAILS))
5656 fprintf (dump_file, " not a single destination for this "
5657 "range\n");
5658 return SSA_PROP_VARYING;
5663 *taken_edge_p = find_edge (bb_for_stmt (stmt),
5664 label_to_block (CASE_LABEL (val)));
5666 if (dump_file && (dump_flags & TDF_DETAILS))
5668 fprintf (dump_file, " will take edge to ");
5669 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
5672 return SSA_PROP_INTERESTING;
5676 /* Evaluate statement STMT. If the statement produces a useful range,
5677 return SSA_PROP_INTERESTING and record the SSA name with the
5678 interesting range into *OUTPUT_P.
5680 If STMT is a conditional branch and we can determine its truth
5681 value, the taken edge is recorded in *TAKEN_EDGE_P.
5683 If STMT produces a varying value, return SSA_PROP_VARYING. */
5685 static enum ssa_prop_result
5686 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5688 tree def;
5689 ssa_op_iter iter;
5690 stmt_ann_t ann;
5692 if (dump_file && (dump_flags & TDF_DETAILS))
5694 fprintf (dump_file, "\nVisiting statement:\n");
5695 print_generic_stmt (dump_file, stmt, dump_flags);
5696 fprintf (dump_file, "\n");
5699 ann = stmt_ann (stmt);
5700 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5702 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5704 /* In general, assignments with virtual operands are not useful
5705 for deriving ranges, with the obvious exception of calls to
5706 builtin functions. */
5707 if ((TREE_CODE (rhs) == CALL_EXPR
5708 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5709 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5710 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5711 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5712 return vrp_visit_assignment (stmt, output_p);
5714 else if (TREE_CODE (stmt) == COND_EXPR)
5715 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5716 else if (TREE_CODE (stmt) == SWITCH_EXPR)
5717 return vrp_visit_switch_stmt (stmt, taken_edge_p);
5719 /* All other statements produce nothing of interest for VRP, so mark
5720 their outputs varying and prevent further simulation. */
5721 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5722 set_value_range_to_varying (get_value_range (def));
5724 return SSA_PROP_VARYING;
5728 /* Meet operation for value ranges. Given two value ranges VR0 and
5729 VR1, store in VR0 a range that contains both VR0 and VR1. This
5730 may not be the smallest possible such range. */
5732 static void
5733 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5735 if (vr0->type == VR_UNDEFINED)
5737 copy_value_range (vr0, vr1);
5738 return;
5741 if (vr1->type == VR_UNDEFINED)
5743 /* Nothing to do. VR0 already has the resulting range. */
5744 return;
5747 if (vr0->type == VR_VARYING)
5749 /* Nothing to do. VR0 already has the resulting range. */
5750 return;
5753 if (vr1->type == VR_VARYING)
5755 set_value_range_to_varying (vr0);
5756 return;
5759 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5761 int cmp;
5762 tree min, max;
5764 /* Compute the convex hull of the ranges. The lower limit of
5765 the new range is the minimum of the two ranges. If they
5766 cannot be compared, then give up. */
5767 cmp = compare_values (vr0->min, vr1->min);
5768 if (cmp == 0 || cmp == 1)
5769 min = vr1->min;
5770 else if (cmp == -1)
5771 min = vr0->min;
5772 else
5773 goto give_up;
5775 /* Similarly, the upper limit of the new range is the maximum
5776 of the two ranges. If they cannot be compared, then
5777 give up. */
5778 cmp = compare_values (vr0->max, vr1->max);
5779 if (cmp == 0 || cmp == -1)
5780 max = vr1->max;
5781 else if (cmp == 1)
5782 max = vr0->max;
5783 else
5784 goto give_up;
5786 /* Check for useless ranges. */
5787 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5788 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5789 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5790 goto give_up;
5792 /* The resulting set of equivalences is the intersection of
5793 the two sets. */
5794 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5795 bitmap_and_into (vr0->equiv, vr1->equiv);
5796 else if (vr0->equiv && !vr1->equiv)
5797 bitmap_clear (vr0->equiv);
5799 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5801 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5803 /* Two anti-ranges meet only if their complements intersect.
5804 Only handle the case of identical ranges. */
5805 if (compare_values (vr0->min, vr1->min) == 0
5806 && compare_values (vr0->max, vr1->max) == 0
5807 && compare_values (vr0->min, vr0->max) == 0)
5809 /* The resulting set of equivalences is the intersection of
5810 the two sets. */
5811 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5812 bitmap_and_into (vr0->equiv, vr1->equiv);
5813 else if (vr0->equiv && !vr1->equiv)
5814 bitmap_clear (vr0->equiv);
5816 else
5817 goto give_up;
5819 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5821 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5822 only handle the case where the ranges have an empty intersection.
5823 The result of the meet operation is the anti-range. */
5824 if (!symbolic_range_p (vr0)
5825 && !symbolic_range_p (vr1)
5826 && !value_ranges_intersect_p (vr0, vr1))
5828 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5829 set. We need to compute the intersection of the two
5830 equivalence sets. */
5831 if (vr1->type == VR_ANTI_RANGE)
5832 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5834 /* The resulting set of equivalences is the intersection of
5835 the two sets. */
5836 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5837 bitmap_and_into (vr0->equiv, vr1->equiv);
5838 else if (vr0->equiv && !vr1->equiv)
5839 bitmap_clear (vr0->equiv);
5841 else
5842 goto give_up;
5844 else
5845 gcc_unreachable ();
5847 return;
5849 give_up:
5850 /* Failed to find an efficient meet. Before giving up and setting
5851 the result to VARYING, see if we can at least derive a useful
5852 anti-range. FIXME, all this nonsense about distinguishing
5853 anti-ranges from ranges is necessary because of the odd
5854 semantics of range_includes_zero_p and friends. */
5855 if (!symbolic_range_p (vr0)
5856 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5857 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5858 && !symbolic_range_p (vr1)
5859 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5860 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5862 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5864 /* Since this meet operation did not result from the meeting of
5865 two equivalent names, VR0 cannot have any equivalences. */
5866 if (vr0->equiv)
5867 bitmap_clear (vr0->equiv);
5869 else
5870 set_value_range_to_varying (vr0);
5874 /* Visit all arguments for PHI node PHI that flow through executable
5875 edges. If a valid value range can be derived from all the incoming
5876 value ranges, set a new range for the LHS of PHI. */
5878 static enum ssa_prop_result
5879 vrp_visit_phi_node (tree phi)
5881 int i;
5882 tree lhs = PHI_RESULT (phi);
5883 value_range_t *lhs_vr = get_value_range (lhs);
5884 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5885 int edges, old_edges;
5887 copy_value_range (&vr_result, lhs_vr);
5889 if (dump_file && (dump_flags & TDF_DETAILS))
5891 fprintf (dump_file, "\nVisiting PHI node: ");
5892 print_generic_expr (dump_file, phi, dump_flags);
5895 edges = 0;
5896 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5898 edge e = PHI_ARG_EDGE (phi, i);
5900 if (dump_file && (dump_flags & TDF_DETAILS))
5902 fprintf (dump_file,
5903 "\n Argument #%d (%d -> %d %sexecutable)\n",
5904 i, e->src->index, e->dest->index,
5905 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5908 if (e->flags & EDGE_EXECUTABLE)
5910 tree arg = PHI_ARG_DEF (phi, i);
5911 value_range_t vr_arg;
5913 ++edges;
5915 if (TREE_CODE (arg) == SSA_NAME)
5917 vr_arg = *(get_value_range (arg));
5919 else
5921 if (is_overflow_infinity (arg))
5923 arg = copy_node (arg);
5924 TREE_OVERFLOW (arg) = 0;
5927 vr_arg.type = VR_RANGE;
5928 vr_arg.min = arg;
5929 vr_arg.max = arg;
5930 vr_arg.equiv = NULL;
5933 if (dump_file && (dump_flags & TDF_DETAILS))
5935 fprintf (dump_file, "\t");
5936 print_generic_expr (dump_file, arg, dump_flags);
5937 fprintf (dump_file, "\n\tValue: ");
5938 dump_value_range (dump_file, &vr_arg);
5939 fprintf (dump_file, "\n");
5942 vrp_meet (&vr_result, &vr_arg);
5944 if (vr_result.type == VR_VARYING)
5945 break;
5949 if (vr_result.type == VR_VARYING)
5950 goto varying;
5952 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5953 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5955 /* To prevent infinite iterations in the algorithm, derive ranges
5956 when the new value is slightly bigger or smaller than the
5957 previous one. We don't do this if we have seen a new executable
5958 edge; this helps us avoid an overflow infinity for conditionals
5959 which are not in a loop. */
5960 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5961 && edges <= old_edges)
5963 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5965 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5966 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5968 /* If the new minimum is smaller or larger than the previous
5969 one, go all the way to -INF. In the first case, to avoid
5970 iterating millions of times to reach -INF, and in the
5971 other case to avoid infinite bouncing between different
5972 minimums. */
5973 if (cmp_min > 0 || cmp_min < 0)
5975 /* If we will end up with a (-INF, +INF) range, set it
5976 to VARYING. */
5977 if (vrp_val_is_max (vr_result.max))
5978 goto varying;
5980 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5981 || !vrp_var_may_overflow (lhs, phi))
5982 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5983 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5984 vr_result.min =
5985 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5986 else
5987 goto varying;
5990 /* Similarly, if the new maximum is smaller or larger than
5991 the previous one, go all the way to +INF. */
5992 if (cmp_max < 0 || cmp_max > 0)
5994 /* If we will end up with a (-INF, +INF) range, set it
5995 to VARYING. */
5996 if (vrp_val_is_min (vr_result.min))
5997 goto varying;
5999 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6000 || !vrp_var_may_overflow (lhs, phi))
6001 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6002 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6003 vr_result.max =
6004 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6005 else
6006 goto varying;
6011 /* If the new range is different than the previous value, keep
6012 iterating. */
6013 if (update_value_range (lhs, &vr_result))
6014 return SSA_PROP_INTERESTING;
6016 /* Nothing changed, don't add outgoing edges. */
6017 return SSA_PROP_NOT_INTERESTING;
6019 /* No match found. Set the LHS to VARYING. */
6020 varying:
6021 set_value_range_to_varying (lhs_vr);
6022 return SSA_PROP_VARYING;
6025 /* Simplify a division or modulo operator to a right shift or
6026 bitwise and if the first operand is unsigned or is greater
6027 than zero and the second operand is an exact power of two. */
6029 static void
6030 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
6032 tree val = NULL;
6033 tree op = TREE_OPERAND (rhs, 0);
6034 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
6036 if (TYPE_UNSIGNED (TREE_TYPE (op)))
6038 val = integer_one_node;
6040 else
6042 bool sop = false;
6044 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6046 if (val
6047 && sop
6048 && integer_onep (val)
6049 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6051 location_t locus;
6053 if (!EXPR_HAS_LOCATION (stmt))
6054 locus = input_location;
6055 else
6056 locus = EXPR_LOCATION (stmt);
6057 warning (OPT_Wstrict_overflow,
6058 ("%Hassuming signed overflow does not occur when "
6059 "simplifying / or %% to >> or &"),
6060 &locus);
6064 if (val && integer_onep (val))
6066 tree t;
6067 tree op0 = TREE_OPERAND (rhs, 0);
6068 tree op1 = TREE_OPERAND (rhs, 1);
6070 if (rhs_code == TRUNC_DIV_EXPR)
6072 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6073 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
6075 else
6077 t = build_int_cst (TREE_TYPE (op1), 1);
6078 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6079 t = fold_convert (TREE_TYPE (op0), t);
6080 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
6083 GIMPLE_STMT_OPERAND (stmt, 1) = t;
6084 update_stmt (stmt);
6088 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6089 ABS_EXPR. If the operand is <= 0, then simplify the
6090 ABS_EXPR into a NEGATE_EXPR. */
6092 static void
6093 simplify_abs_using_ranges (tree stmt, tree rhs)
6095 tree val = NULL;
6096 tree op = TREE_OPERAND (rhs, 0);
6097 tree type = TREE_TYPE (op);
6098 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
6100 if (TYPE_UNSIGNED (type))
6102 val = integer_zero_node;
6104 else if (vr)
6106 bool sop = false;
6108 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6109 if (!val)
6111 sop = false;
6112 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6113 &sop);
6115 if (val)
6117 if (integer_zerop (val))
6118 val = integer_one_node;
6119 else if (integer_onep (val))
6120 val = integer_zero_node;
6124 if (val
6125 && (integer_onep (val) || integer_zerop (val)))
6127 tree t;
6129 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6131 location_t locus;
6133 if (!EXPR_HAS_LOCATION (stmt))
6134 locus = input_location;
6135 else
6136 locus = EXPR_LOCATION (stmt);
6137 warning (OPT_Wstrict_overflow,
6138 ("%Hassuming signed overflow does not occur when "
6139 "simplifying abs (X) to X or -X"),
6140 &locus);
6143 if (integer_onep (val))
6144 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
6145 else
6146 t = op;
6148 GIMPLE_STMT_OPERAND (stmt, 1) = t;
6149 update_stmt (stmt);
6154 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6155 a known value range VR.
6157 If there is one and only one value which will satisfy the
6158 conditional, then return that value. Else return NULL. */
6160 static tree
6161 test_for_singularity (enum tree_code cond_code, tree op0,
6162 tree op1, value_range_t *vr)
6164 tree min = NULL;
6165 tree max = NULL;
6167 /* Extract minimum/maximum values which satisfy the
6168 the conditional as it was written. */
6169 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6171 /* This should not be negative infinity; there is no overflow
6172 here. */
6173 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6175 max = op1;
6176 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6178 tree one = build_int_cst (TREE_TYPE (op0), 1);
6179 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6180 if (EXPR_P (max))
6181 TREE_NO_WARNING (max) = 1;
6184 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6186 /* This should not be positive infinity; there is no overflow
6187 here. */
6188 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6190 min = op1;
6191 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6193 tree one = build_int_cst (TREE_TYPE (op0), 1);
6194 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6195 if (EXPR_P (min))
6196 TREE_NO_WARNING (min) = 1;
6200 /* Now refine the minimum and maximum values using any
6201 value range information we have for op0. */
6202 if (min && max)
6204 if (compare_values (vr->min, min) == -1)
6205 min = min;
6206 else
6207 min = vr->min;
6208 if (compare_values (vr->max, max) == 1)
6209 max = max;
6210 else
6211 max = vr->max;
6213 /* If the new min/max values have converged to a single value,
6214 then there is only one value which can satisfy the condition,
6215 return that value. */
6216 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6217 return min;
6219 return NULL;
6222 /* Simplify a conditional using a relational operator to an equality
6223 test if the range information indicates only one value can satisfy
6224 the original conditional. */
6226 static void
6227 simplify_cond_using_ranges (tree stmt)
6229 tree cond = COND_EXPR_COND (stmt);
6230 tree op0 = TREE_OPERAND (cond, 0);
6231 tree op1 = TREE_OPERAND (cond, 1);
6232 enum tree_code cond_code = TREE_CODE (cond);
6234 if (cond_code != NE_EXPR
6235 && cond_code != EQ_EXPR
6236 && TREE_CODE (op0) == SSA_NAME
6237 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6238 && is_gimple_min_invariant (op1))
6240 value_range_t *vr = get_value_range (op0);
6242 /* If we have range information for OP0, then we might be
6243 able to simplify this conditional. */
6244 if (vr->type == VR_RANGE)
6246 tree new = test_for_singularity (cond_code, op0, op1, vr);
6248 if (new)
6250 if (dump_file)
6252 fprintf (dump_file, "Simplified relational ");
6253 print_generic_expr (dump_file, cond, 0);
6254 fprintf (dump_file, " into ");
6257 COND_EXPR_COND (stmt)
6258 = build2 (EQ_EXPR, boolean_type_node, op0, new);
6259 update_stmt (stmt);
6261 if (dump_file)
6263 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
6264 fprintf (dump_file, "\n");
6266 return;
6270 /* Try again after inverting the condition. We only deal
6271 with integral types here, so no need to worry about
6272 issues with inverting FP comparisons. */
6273 cond_code = invert_tree_comparison (cond_code, false);
6274 new = test_for_singularity (cond_code, op0, op1, vr);
6276 if (new)
6278 if (dump_file)
6280 fprintf (dump_file, "Simplified relational ");
6281 print_generic_expr (dump_file, cond, 0);
6282 fprintf (dump_file, " into ");
6285 COND_EXPR_COND (stmt)
6286 = build2 (NE_EXPR, boolean_type_node, op0, new);
6287 update_stmt (stmt);
6289 if (dump_file)
6291 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
6292 fprintf (dump_file, "\n");
6294 return;
6301 /* Simplify a switch statement using the value range of the switch
6302 argument. */
6304 static void
6305 simplify_switch_using_ranges (tree stmt)
6307 tree op = TREE_OPERAND (stmt, 0);
6308 value_range_t *vr;
6309 bool take_default;
6310 edge e;
6311 edge_iterator ei;
6312 size_t i = 0, j = 0, n, n2;
6313 tree vec, vec2;
6314 switch_update su;
6316 if (TREE_CODE (op) != SSA_NAME)
6317 return;
6319 vr = get_value_range (op);
6321 /* We can only handle integer ranges. */
6322 if (vr->type != VR_RANGE
6323 || symbolic_range_p (vr))
6324 return;
6326 /* Find case label for min/max of the value range. */
6327 vec = SWITCH_LABELS (stmt);
6328 n = TREE_VEC_LENGTH (vec);
6329 take_default = !find_case_label_range (vec, vr->min, vr->max, &i, &j);
6331 /* Bail out if this is just all edges taken. */
6332 if (i == 0
6333 && j == n - 2
6334 && take_default)
6335 return;
6337 /* Build a new vector of taken case labels. */
6338 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6339 for (n2 = 0; i <= j; ++i, ++n2)
6340 TREE_VEC_ELT (vec2, n2) = TREE_VEC_ELT (vec, i);
6342 /* Add the default edge, if necessary. */
6343 if (take_default)
6344 TREE_VEC_ELT (vec2, n2++) = TREE_VEC_ELT (vec, n - 1);
6346 /* Mark needed edges. */
6347 for (i = 0; i < n2; ++i)
6349 e = find_edge (bb_for_stmt (stmt),
6350 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6351 e->aux = (void *)-1;
6354 /* Queue not needed edges for later removal. */
6355 FOR_EACH_EDGE (e, ei, bb_for_stmt (stmt)->succs)
6357 if (e->aux == (void *)-1)
6359 e->aux = NULL;
6360 continue;
6363 if (dump_file && (dump_flags & TDF_DETAILS))
6365 fprintf (dump_file, "removing unreachable case label\n");
6367 VEC_safe_push (edge, heap, to_remove_edges, e);
6370 /* And queue an update for the stmt. */
6371 su.stmt = stmt;
6372 su.vec = vec2;
6373 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6376 /* Simplify STMT using ranges if possible. */
6378 void
6379 simplify_stmt_using_ranges (tree stmt)
6381 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
6383 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
6384 enum tree_code rhs_code = TREE_CODE (rhs);
6386 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6387 and BIT_AND_EXPR respectively if the first operand is greater
6388 than zero and the second operand is an exact power of two. */
6389 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
6390 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
6391 && integer_pow2p (TREE_OPERAND (rhs, 1)))
6392 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
6394 /* Transform ABS (X) into X or -X as appropriate. */
6395 if (rhs_code == ABS_EXPR
6396 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
6397 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
6398 simplify_abs_using_ranges (stmt, rhs);
6400 else if (TREE_CODE (stmt) == COND_EXPR
6401 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
6402 simplify_cond_using_ranges (stmt);
6403 else if (TREE_CODE (stmt) == SWITCH_EXPR)
6404 simplify_switch_using_ranges (stmt);
6407 /* Stack of dest,src equivalency pairs that need to be restored after
6408 each attempt to thread a block's incoming edge to an outgoing edge.
6410 A NULL entry is used to mark the end of pairs which need to be
6411 restored. */
6412 static VEC(tree,heap) *stack;
6414 /* A trivial wrapper so that we can present the generic jump threading
6415 code with a simple API for simplifying statements. STMT is the
6416 statement we want to simplify, WITHIN_STMT provides the location
6417 for any overflow warnings. */
6419 static tree
6420 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
6422 tree conditional;
6423 /* We only use VRP information to simplify conditionals. This is
6424 overly conservative, but it's unclear if doing more would be
6425 worth the compile time cost. */
6426 if (TREE_CODE (stmt) != COND_EXPR)
6427 return NULL;
6429 conditional = COND_EXPR_COND (stmt);
6430 if (TREE_CODE (conditional) == SSA_NAME)
6431 return vrp_evaluate_conditional (EQ_EXPR,
6432 conditional,
6433 boolean_true_node,
6434 within_stmt);
6435 else
6436 return vrp_evaluate_conditional (TREE_CODE (conditional),
6437 TREE_OPERAND (conditional, 0),
6438 TREE_OPERAND (conditional, 1),
6439 within_stmt);
6442 /* Blocks which have more than one predecessor and more than
6443 one successor present jump threading opportunities, i.e.,
6444 when the block is reached from a specific predecessor, we
6445 may be able to determine which of the outgoing edges will
6446 be traversed. When this optimization applies, we are able
6447 to avoid conditionals at runtime and we may expose secondary
6448 optimization opportunities.
6450 This routine is effectively a driver for the generic jump
6451 threading code. It basically just presents the generic code
6452 with edges that may be suitable for jump threading.
6454 Unlike DOM, we do not iterate VRP if jump threading was successful.
6455 While iterating may expose new opportunities for VRP, it is expected
6456 those opportunities would be very limited and the compile time cost
6457 to expose those opportunities would be significant.
6459 As jump threading opportunities are discovered, they are registered
6460 for later realization. */
6462 static void
6463 identify_jump_threads (void)
6465 basic_block bb;
6466 tree dummy;
6467 int i;
6468 edge e;
6470 /* Ugh. When substituting values earlier in this pass we can
6471 wipe the dominance information. So rebuild the dominator
6472 information as we need it within the jump threading code. */
6473 calculate_dominance_info (CDI_DOMINATORS);
6475 /* We do not allow VRP information to be used for jump threading
6476 across a back edge in the CFG. Otherwise it becomes too
6477 difficult to avoid eliminating loop exit tests. Of course
6478 EDGE_DFS_BACK is not accurate at this time so we have to
6479 recompute it. */
6480 mark_dfs_back_edges ();
6482 /* Do not thread across edges we are about to remove. Just marking
6483 them as EDGE_DFS_BACK will do. */
6484 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6485 e->flags |= EDGE_DFS_BACK;
6487 /* Allocate our unwinder stack to unwind any temporary equivalences
6488 that might be recorded. */
6489 stack = VEC_alloc (tree, heap, 20);
6491 /* To avoid lots of silly node creation, we create a single
6492 conditional and just modify it in-place when attempting to
6493 thread jumps. */
6494 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
6495 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
6497 /* Walk through all the blocks finding those which present a
6498 potential jump threading opportunity. We could set this up
6499 as a dominator walker and record data during the walk, but
6500 I doubt it's worth the effort for the classes of jump
6501 threading opportunities we are trying to identify at this
6502 point in compilation. */
6503 FOR_EACH_BB (bb)
6505 tree last, cond;
6507 /* If the generic jump threading code does not find this block
6508 interesting, then there is nothing to do. */
6509 if (! potentially_threadable_block (bb))
6510 continue;
6512 /* We only care about blocks ending in a COND_EXPR. While there
6513 may be some value in handling SWITCH_EXPR here, I doubt it's
6514 terribly important. */
6515 last = bsi_stmt (bsi_last (bb));
6516 if (TREE_CODE (last) != COND_EXPR)
6517 continue;
6519 /* We're basically looking for any kind of conditional with
6520 integral type arguments. */
6521 cond = COND_EXPR_COND (last);
6522 if ((TREE_CODE (cond) == SSA_NAME
6523 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
6524 || (COMPARISON_CLASS_P (cond)
6525 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
6526 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
6527 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
6528 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
6529 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
6531 edge_iterator ei;
6533 /* We've got a block with multiple predecessors and multiple
6534 successors which also ends in a suitable conditional. For
6535 each predecessor, see if we can thread it to a specific
6536 successor. */
6537 FOR_EACH_EDGE (e, ei, bb->preds)
6539 /* Do not thread across back edges or abnormal edges
6540 in the CFG. */
6541 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
6542 continue;
6544 thread_across_edge (dummy, e, true,
6545 &stack,
6546 simplify_stmt_for_jump_threading);
6551 /* We do not actually update the CFG or SSA graphs at this point as
6552 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6553 handle ASSERT_EXPRs gracefully. */
6556 /* We identified all the jump threading opportunities earlier, but could
6557 not transform the CFG at that time. This routine transforms the
6558 CFG and arranges for the dominator tree to be rebuilt if necessary.
6560 Note the SSA graph update will occur during the normal TODO
6561 processing by the pass manager. */
6562 static void
6563 finalize_jump_threads (void)
6565 thread_through_all_blocks (false);
6566 VEC_free (tree, heap, stack);
6570 /* Traverse all the blocks folding conditionals with known ranges. */
6572 static void
6573 vrp_finalize (void)
6575 size_t i;
6576 prop_value_t *single_val_range;
6577 bool do_value_subst_p;
6579 if (dump_file)
6581 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6582 dump_all_value_ranges (dump_file);
6583 fprintf (dump_file, "\n");
6586 /* We may have ended with ranges that have exactly one value. Those
6587 values can be substituted as any other copy/const propagated
6588 value using substitute_and_fold. */
6589 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
6591 do_value_subst_p = false;
6592 for (i = 0; i < num_ssa_names; i++)
6593 if (vr_value[i]
6594 && vr_value[i]->type == VR_RANGE
6595 && vr_value[i]->min == vr_value[i]->max)
6597 single_val_range[i].value = vr_value[i]->min;
6598 do_value_subst_p = true;
6601 if (!do_value_subst_p)
6603 /* We found no single-valued ranges, don't waste time trying to
6604 do single value substitution in substitute_and_fold. */
6605 free (single_val_range);
6606 single_val_range = NULL;
6609 substitute_and_fold (single_val_range, true);
6611 if (warn_array_bounds)
6612 check_all_array_refs ();
6614 /* We must identify jump threading opportunities before we release
6615 the datastructures built by VRP. */
6616 identify_jump_threads ();
6618 /* Free allocated memory. */
6619 for (i = 0; i < num_ssa_names; i++)
6620 if (vr_value[i])
6622 BITMAP_FREE (vr_value[i]->equiv);
6623 free (vr_value[i]);
6626 free (single_val_range);
6627 free (vr_value);
6628 free (vr_phi_edge_counts);
6630 /* So that we can distinguish between VRP data being available
6631 and not available. */
6632 vr_value = NULL;
6633 vr_phi_edge_counts = NULL;
6637 /* Main entry point to VRP (Value Range Propagation). This pass is
6638 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6639 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6640 Programming Language Design and Implementation, pp. 67-78, 1995.
6641 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6643 This is essentially an SSA-CCP pass modified to deal with ranges
6644 instead of constants.
6646 While propagating ranges, we may find that two or more SSA name
6647 have equivalent, though distinct ranges. For instance,
6649 1 x_9 = p_3->a;
6650 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6651 3 if (p_4 == q_2)
6652 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6653 5 endif
6654 6 if (q_2)
6656 In the code above, pointer p_5 has range [q_2, q_2], but from the
6657 code we can also determine that p_5 cannot be NULL and, if q_2 had
6658 a non-varying range, p_5's range should also be compatible with it.
6660 These equivalences are created by two expressions: ASSERT_EXPR and
6661 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6662 result of another assertion, then we can use the fact that p_5 and
6663 p_4 are equivalent when evaluating p_5's range.
6665 Together with value ranges, we also propagate these equivalences
6666 between names so that we can take advantage of information from
6667 multiple ranges when doing final replacement. Note that this
6668 equivalency relation is transitive but not symmetric.
6670 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6671 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6672 in contexts where that assertion does not hold (e.g., in line 6).
6674 TODO, the main difference between this pass and Patterson's is that
6675 we do not propagate edge probabilities. We only compute whether
6676 edges can be taken or not. That is, instead of having a spectrum
6677 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6678 DON'T KNOW. In the future, it may be worthwhile to propagate
6679 probabilities to aid branch prediction. */
6681 static unsigned int
6682 execute_vrp (void)
6684 int i;
6685 edge e;
6686 switch_update *su;
6688 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6689 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6690 scev_initialize ();
6692 insert_range_assertions ();
6694 to_remove_edges = VEC_alloc (edge, heap, 10);
6695 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
6697 vrp_initialize ();
6698 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6699 vrp_finalize ();
6701 /* ASSERT_EXPRs must be removed before finalizing jump threads
6702 as finalizing jump threads calls the CFG cleanup code which
6703 does not properly handle ASSERT_EXPRs. */
6704 remove_range_assertions ();
6706 /* If we exposed any new variables, go ahead and put them into
6707 SSA form now, before we handle jump threading. This simplifies
6708 interactions between rewriting of _DECL nodes into SSA form
6709 and rewriting SSA_NAME nodes into SSA form after block
6710 duplication and CFG manipulation. */
6711 update_ssa (TODO_update_ssa);
6713 finalize_jump_threads ();
6715 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
6716 CFG in a broken state and requires a cfg_cleanup run. */
6717 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6718 remove_edge (e);
6719 /* Update SWITCH_EXPR case label vector. */
6720 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
6721 SWITCH_LABELS (su->stmt) = su->vec;
6723 if (VEC_length (edge, to_remove_edges) > 0)
6724 free_dominance_info (CDI_DOMINATORS);
6726 VEC_free (edge, heap, to_remove_edges);
6727 VEC_free (switch_update, heap, to_update_switch_stmts);
6729 scev_finalize ();
6730 loop_optimizer_finalize ();
6732 return 0;
6735 static bool
6736 gate_vrp (void)
6738 return flag_tree_vrp != 0;
6741 struct gimple_opt_pass pass_vrp =
6744 GIMPLE_PASS,
6745 "vrp", /* name */
6746 gate_vrp, /* gate */
6747 execute_vrp, /* execute */
6748 NULL, /* sub */
6749 NULL, /* next */
6750 0, /* static_pass_number */
6751 TV_TREE_VRP, /* tv_id */
6752 PROP_ssa | PROP_alias, /* properties_required */
6753 0, /* properties_provided */
6754 0, /* properties_destroyed */
6755 0, /* todo_flags_start */
6756 TODO_cleanup_cfg
6757 | TODO_ggc_collect
6758 | TODO_verify_ssa
6759 | TODO_dump_func
6760 | TODO_update_ssa /* todo_flags_finish */