* config/xtensa/libgcc-xtensa.ver: New file.
[official-gcc.git] / gcc / auto-inc-dec.c
blob35d6c87a6965ff065ff495bfe863ff8d784d44cd
1 /* Discovery of auto-inc and auto-dec instructions.
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "function.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "recog.h"
38 #include "expr.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "dbgcnt.h"
44 /* This pass was originally removed from flow.c. However there is
45 almost nothing that remains of that code.
47 There are (4) basic forms that are matched:
49 a <- b + c
50 ...
53 becomes
55 a <- b
56 ...
57 *(a += c) pre
58 a += c
59 ...
62 becomes
64 *(a += c) pre
66 ...
67 b <- a + c
69 for this case to be true, b must not be assigned or used between
70 the *a and the assignment to b. B must also be a Pmode reg.
72 becomes
74 b <- a
75 ...
76 *(b += c) post
78 ...
79 a <- a + c
81 becomes
83 *(a += c) post
85 There are three types of values of c.
87 1) c is a constant equal to the width of the value being accessed by
88 the pointer. This is useful for machines that have
89 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
90 HAVE_POST_DECREMENT defined.
92 2) c is a constant not equal to the width of the value being accessed
93 by the pointer. This is useful for machines that have
94 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
96 3) c is a register. This is useful for machines that have
97 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
99 The is one special case: if a already had an offset equal to it +-
100 its width and that offset is equal to -c when the increment was
101 before the ref or +c if the increment was after the ref, then if we
102 can do the combination but switch the pre/post bit.
104 (1) FORM_PRE_ADD
106 a <- b + c
108 *(a - c)
110 becomes
112 a <- b
114 *(a += c) post
116 (2) FORM_PRE_INC
118 a += c
120 *(a - c)
122 becomes
124 *(a += c) post
126 (3) FORM_POST_ADD
128 *(a + c)
130 b <- a + c
132 for this case to be true, b must not be assigned or used between
133 the *a and the assignment to b. B must also be a Pmode reg.
135 becomes
137 b <- a
139 *(b += c) pre
142 (4) FORM_POST_INC
144 *(a + c)
146 a <- a + c
148 becomes
150 *(a += c) pre
152 #ifdef AUTO_INC_DEC
154 enum form
156 FORM_PRE_ADD,
157 FORM_PRE_INC,
158 FORM_POST_ADD,
159 FORM_POST_INC,
160 FORM_last
163 /* The states of the second operands of mem refs and inc insns. If no
164 second operand of the mem_ref was found, it is assumed to just be
165 ZERO. SIZE is the size of the mode accessed in the memref. The
166 ANY is used for constants that are not +-size or 0. REG is used if
167 the forms are reg1 + reg2. */
169 enum inc_state
171 INC_ZERO, /* == 0 */
172 INC_NEG_SIZE, /* == +size */
173 INC_POS_SIZE, /* == -size */
174 INC_NEG_ANY, /* == some -constant */
175 INC_POS_ANY, /* == some +constant */
176 INC_REG, /* == some register */
177 INC_last
180 /* The eight forms that pre/post inc/dec can take. */
181 enum gen_form
183 NOTHING,
184 SIMPLE_PRE_INC, /* ++size */
185 SIMPLE_POST_INC, /* size++ */
186 SIMPLE_PRE_DEC, /* --size */
187 SIMPLE_POST_DEC, /* size-- */
188 DISP_PRE, /* ++con */
189 DISP_POST, /* con++ */
190 REG_PRE, /* ++reg */
191 REG_POST /* reg++ */
194 /* Tmp mem rtx for use in cost modeling. */
195 static rtx mem_tmp;
197 static enum inc_state
198 set_inc_state (HOST_WIDE_INT val, int size)
200 if (val == 0)
201 return INC_ZERO;
202 if (val < 0)
203 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
204 else
205 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
208 /* The DECISION_TABLE that describes what form, if any, the increment
209 or decrement will take. It is a three dimensional table. The first
210 index is the type of constant or register found as the second
211 operand of the inc insn. The second index is the type of constant
212 or register found as the second operand of the memory reference (if
213 no second operand exists, 0 is used). The third index is the form
214 and location (relative to the mem reference) of inc insn. */
216 static bool initialized = false;
217 static enum gen_form decision_table[INC_last][INC_last][FORM_last];
219 static void
220 init_decision_table (void)
222 enum gen_form value;
224 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
226 /* Prefer the simple form if both are available. */
227 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
229 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
230 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
232 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
233 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
236 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
238 /* Prefer the simple form if both are available. */
239 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
241 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
242 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
244 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
245 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
248 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
250 /* Prefer the simple form if both are available. */
251 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
253 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
254 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
256 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
257 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
260 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
262 /* Prefer the simple form if both are available. */
263 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
265 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
266 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
268 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
269 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
272 if (HAVE_PRE_MODIFY_DISP)
274 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
275 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
277 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
278 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
280 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
281 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
283 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
284 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
287 if (HAVE_POST_MODIFY_DISP)
289 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
290 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
292 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
293 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
295 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
296 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
298 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
299 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
302 /* This is much simpler than the other cases because we do not look
303 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
304 and INC_NEG_REG states. Most of the use of such states would be
305 on a target that had an R1 - R2 update address form.
307 There is the remote possibility that you could also catch a = a +
308 b; *(a - b) as a postdecrement of (a + b). However, it is
309 unclear if *(a - b) would ever be generated on a machine that did
310 not have that kind of addressing mode. The IA-64 and RS6000 will
311 not do this, and I cannot speak for any other. If any
312 architecture does have an a-b update for, these cases should be
313 added. */
314 if (HAVE_PRE_MODIFY_REG)
316 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
317 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
319 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
320 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
323 if (HAVE_POST_MODIFY_REG)
325 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
326 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
329 initialized = true;
332 /* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
333 "reg_res = reg0+c". */
335 static struct inc_insn
337 rtx insn; /* The insn being parsed. */
338 rtx pat; /* The pattern of the insn. */
339 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
340 enum form form;
341 rtx reg_res;
342 rtx reg0;
343 rtx reg1;
344 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
345 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
346 } inc_insn;
349 /* Dump the parsed inc insn to FILE. */
351 static void
352 dump_inc_insn (FILE *file)
354 const char *f = ((inc_insn.form == FORM_PRE_ADD)
355 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
357 dump_insn_slim (file, inc_insn.insn);
359 switch (inc_insn.form)
361 case FORM_PRE_ADD:
362 case FORM_POST_ADD:
363 if (inc_insn.reg1_is_const)
364 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
365 f, INSN_UID (inc_insn.insn),
366 REGNO (inc_insn.reg_res),
367 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
368 else
369 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
370 f, INSN_UID (inc_insn.insn),
371 REGNO (inc_insn.reg_res),
372 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
373 break;
375 case FORM_PRE_INC:
376 case FORM_POST_INC:
377 if (inc_insn.reg1_is_const)
378 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
379 f, INSN_UID (inc_insn.insn),
380 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
381 else
382 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
383 f, INSN_UID (inc_insn.insn),
384 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
385 break;
387 default:
388 break;
393 /* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
395 static struct mem_insn
397 rtx insn; /* The insn being parsed. */
398 rtx pat; /* The pattern of the insn. */
399 rtx *mem_loc; /* The address of the field that holds the mem */
400 /* that is to be replaced. */
401 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
402 rtx reg0;
403 rtx reg1; /* This is either a reg or a const depending on
404 reg1_is_const. */
405 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
406 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
407 } mem_insn;
410 /* Dump the parsed mem insn to FILE. */
412 static void
413 dump_mem_insn (FILE *file)
415 dump_insn_slim (file, mem_insn.insn);
417 if (mem_insn.reg1_is_const)
418 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
419 INSN_UID (mem_insn.insn),
420 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
421 else
422 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
423 INSN_UID (mem_insn.insn),
424 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
428 /* The following three arrays contain pointers to instructions. They
429 are indexed by REGNO. At any point in the basic block where we are
430 looking these three arrays contain, respectively, the next insn
431 that uses REGNO, the next inc or add insn that uses REGNO and the
432 next insn that sets REGNO.
434 The arrays are not cleared when we move from block to block so
435 whenever an insn is retrieved from these arrays, it's block number
436 must be compared with the current block.
439 static rtx *reg_next_use = NULL;
440 static rtx *reg_next_inc_use = NULL;
441 static rtx *reg_next_def = NULL;
444 /* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
445 not really care about moving any other notes from the inc or add
446 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
447 does not appear that there are any other kinds of relevant notes. */
449 static void
450 move_dead_notes (rtx to_insn, rtx from_insn, rtx pattern)
452 rtx note;
453 rtx next_note;
454 rtx prev_note = NULL;
456 for (note = REG_NOTES (from_insn); note; note = next_note)
458 next_note = XEXP (note, 1);
460 if ((REG_NOTE_KIND (note) == REG_DEAD)
461 && pattern == XEXP (note, 0))
463 XEXP (note, 1) = REG_NOTES (to_insn);
464 REG_NOTES (to_insn) = note;
465 if (prev_note)
466 XEXP (prev_note, 1) = next_note;
467 else
468 REG_NOTES (from_insn) = next_note;
470 else prev_note = note;
475 /* Create a mov insn DEST_REG <- SRC_REG and insert it before
476 NEXT_INSN. */
478 static rtx
479 insert_move_insn_before (rtx next_insn, rtx dest_reg, rtx src_reg)
481 rtx insns;
483 start_sequence ();
484 emit_move_insn (dest_reg, src_reg);
485 insns = get_insns ();
486 end_sequence ();
487 emit_insn_before (insns, next_insn);
488 return insns;
492 /* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
493 increment of INC_REG. To have reached this point, the change is a
494 legitimate one from a dataflow point of view. The only questions
495 are is this a valid change to the instruction and is this a
496 profitable change to the instruction. */
498 static bool
499 attempt_change (rtx new_addr, rtx inc_reg)
501 /* There are four cases: For the two cases that involve an add
502 instruction, we are going to have to delete the add and insert a
503 mov. We are going to assume that the mov is free. This is
504 fairly early in the backend and there are a lot of opportunities
505 for removing that move later. In particular, there is the case
506 where the move may be dead, this is what dead code elimination
507 passes are for. The two cases where we have an inc insn will be
508 handled mov free. */
510 basic_block bb = BASIC_BLOCK (BLOCK_NUM (mem_insn.insn));
511 rtx mov_insn = NULL;
512 int regno;
513 rtx mem = *mem_insn.mem_loc;
514 enum machine_mode mode = GET_MODE (mem);
515 rtx new_mem;
516 int old_cost = 0;
517 int new_cost = 0;
519 PUT_MODE (mem_tmp, mode);
520 XEXP (mem_tmp, 0) = new_addr;
522 old_cost = rtx_cost (mem, 0)
523 + rtx_cost (PATTERN (inc_insn.insn), 0);
524 new_cost = rtx_cost (mem_tmp, 0);
526 /* The first item of business is to see if this is profitable. */
527 if (old_cost < new_cost)
529 if (dump_file)
530 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
531 return false;
534 /* Jump thru a lot of hoops to keep the attributes up to date. We
535 do not want to call one of the change address variants that take
536 an offset even though we know the offset in many cases. These
537 assume you are changing where the address is pointing by the
538 offset. */
539 new_mem = replace_equiv_address_nv (mem, new_addr);
540 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
542 if (dump_file)
543 fprintf (dump_file, "validation failure\n");
544 return false;
547 /* From here to the end of the function we are committed to the
548 change, i.e. nothing fails. Generate any necessary movs, move
549 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
550 switch (inc_insn.form)
552 case FORM_PRE_ADD:
553 /* Replace the addition with a move. Do it at the location of
554 the addition since the operand of the addition may change
555 before the memory reference. */
556 mov_insn = insert_move_insn_before (inc_insn.insn,
557 inc_insn.reg_res, inc_insn.reg0);
558 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
560 regno = REGNO (inc_insn.reg_res);
561 reg_next_def[regno] = mov_insn;
562 reg_next_use[regno] = NULL;
563 regno = REGNO (inc_insn.reg0);
564 reg_next_use[regno] = mov_insn;
565 df_recompute_luids (bb);
566 break;
568 case FORM_POST_INC:
569 regno = REGNO (inc_insn.reg_res);
570 if (reg_next_use[regno] == reg_next_inc_use[regno])
571 reg_next_inc_use[regno] = NULL;
573 /* Fallthru. */
574 case FORM_PRE_INC:
575 regno = REGNO (inc_insn.reg_res);
576 reg_next_def[regno] = mem_insn.insn;
577 reg_next_use[regno] = NULL;
579 break;
581 case FORM_POST_ADD:
582 mov_insn = insert_move_insn_before (mem_insn.insn,
583 inc_insn.reg_res, inc_insn.reg0);
584 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
586 /* Do not move anything to the mov insn because the instruction
587 pointer for the main iteration has not yet hit that. It is
588 still pointing to the mem insn. */
589 regno = REGNO (inc_insn.reg_res);
590 reg_next_def[regno] = mem_insn.insn;
591 reg_next_use[regno] = NULL;
593 regno = REGNO (inc_insn.reg0);
594 reg_next_use[regno] = mem_insn.insn;
595 if ((reg_next_use[regno] == reg_next_inc_use[regno])
596 || (reg_next_inc_use[regno] == inc_insn.insn))
597 reg_next_inc_use[regno] = NULL;
598 df_recompute_luids (bb);
599 break;
601 case FORM_last:
602 default:
603 gcc_unreachable ();
606 if (!inc_insn.reg1_is_const)
608 regno = REGNO (inc_insn.reg1);
609 reg_next_use[regno] = mem_insn.insn;
610 if ((reg_next_use[regno] == reg_next_inc_use[regno])
611 || (reg_next_inc_use[regno] == inc_insn.insn))
612 reg_next_inc_use[regno] = NULL;
615 delete_insn (inc_insn.insn);
617 if (dump_file && mov_insn)
619 fprintf (dump_file, "inserting mov ");
620 dump_insn_slim (dump_file, mov_insn);
623 /* Record that this insn has an implicit side effect. */
624 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
626 if (dump_file)
628 fprintf (dump_file, "****success ");
629 dump_insn_slim (dump_file, mem_insn.insn);
632 return true;
636 /* Try to combine the instruction in INC_INSN with the instruction in
637 MEM_INSN. First the form is determined using the DECISION_TABLE
638 and the results of parsing the INC_INSN and the MEM_INSN.
639 Assuming the form is ok, a prototype new address is built which is
640 passed to ATTEMPT_CHANGE for final processing. */
642 static bool
643 try_merge (void)
645 enum gen_form gen_form;
646 rtx mem = *mem_insn.mem_loc;
647 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
648 inc_insn.reg_res : mem_insn.reg0;
650 /* The width of the mem being accessed. */
651 int size = GET_MODE_SIZE (GET_MODE (mem));
652 rtx last_insn = NULL;
654 switch (inc_insn.form)
656 case FORM_PRE_ADD:
657 case FORM_PRE_INC:
658 last_insn = mem_insn.insn;
659 break;
660 case FORM_POST_INC:
661 case FORM_POST_ADD:
662 last_insn = inc_insn.insn;
663 break;
664 case FORM_last:
665 default:
666 gcc_unreachable ();
669 /* Cannot handle auto inc of the stack. */
670 if (inc_reg == stack_pointer_rtx)
672 if (dump_file)
673 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
674 return false;
677 /* Look to see if the inc register is dead after the memory
678 reference. If it is, do not do the combination. */
679 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
681 if (dump_file)
682 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
683 return false;
686 mem_insn.reg1_state = (mem_insn.reg1_is_const)
687 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
688 inc_insn.reg1_state = (inc_insn.reg1_is_const)
689 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
691 /* Now get the form that we are generating. */
692 gen_form = decision_table
693 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
695 if (dbg_cnt (auto_inc_dec) == false)
696 return false;
698 switch (gen_form)
700 default:
701 case NOTHING:
702 return false;
704 case SIMPLE_PRE_INC: /* ++size */
705 if (dump_file)
706 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
707 return attempt_change (gen_rtx_PRE_INC (Pmode, inc_reg), inc_reg);
708 break;
710 case SIMPLE_POST_INC: /* size++ */
711 if (dump_file)
712 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
713 return attempt_change (gen_rtx_POST_INC (Pmode, inc_reg), inc_reg);
714 break;
716 case SIMPLE_PRE_DEC: /* --size */
717 if (dump_file)
718 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
719 return attempt_change (gen_rtx_PRE_DEC (Pmode, inc_reg), inc_reg);
720 break;
722 case SIMPLE_POST_DEC: /* size-- */
723 if (dump_file)
724 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
725 return attempt_change (gen_rtx_POST_DEC (Pmode, inc_reg), inc_reg);
726 break;
728 case DISP_PRE: /* ++con */
729 if (dump_file)
730 fprintf (dump_file, "trying DISP_PRE\n");
731 return attempt_change (gen_rtx_PRE_MODIFY (Pmode,
732 inc_reg,
733 gen_rtx_PLUS (Pmode,
734 inc_reg,
735 inc_insn.reg1)),
736 inc_reg);
737 break;
739 case DISP_POST: /* con++ */
740 if (dump_file)
741 fprintf (dump_file, "trying POST_DISP\n");
742 return attempt_change (gen_rtx_POST_MODIFY (Pmode,
743 inc_reg,
744 gen_rtx_PLUS (Pmode,
745 inc_reg,
746 inc_insn.reg1)),
747 inc_reg);
748 break;
750 case REG_PRE: /* ++reg */
751 if (dump_file)
752 fprintf (dump_file, "trying PRE_REG\n");
753 return attempt_change (gen_rtx_PRE_MODIFY (Pmode,
754 inc_reg,
755 gen_rtx_PLUS (Pmode,
756 inc_reg,
757 inc_insn.reg1)),
758 inc_reg);
759 break;
761 case REG_POST: /* reg++ */
762 if (dump_file)
763 fprintf (dump_file, "trying POST_REG\n");
764 return attempt_change (gen_rtx_POST_MODIFY (Pmode,
765 inc_reg,
766 gen_rtx_PLUS (Pmode,
767 inc_reg,
768 inc_insn.reg1)),
769 inc_reg);
770 break;
774 /* Return the next insn that uses (if reg_next_use is passed in
775 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
776 REGNO in BB. */
778 static rtx
779 get_next_ref (int regno, basic_block bb, rtx *next_array)
781 rtx insn = next_array[regno];
783 /* Lazy about cleaning out the next_arrays. */
784 if (insn && BASIC_BLOCK (BLOCK_NUM (insn)) != bb)
786 next_array[regno] = NULL;
787 insn = NULL;
790 return insn;
794 /* Reverse the operands in a mem insn. */
796 static void
797 reverse_mem (void)
799 rtx tmp = mem_insn.reg1;
800 mem_insn.reg1 = mem_insn.reg0;
801 mem_insn.reg0 = tmp;
805 /* Reverse the operands in a inc insn. */
807 static void
808 reverse_inc (void)
810 rtx tmp = inc_insn.reg1;
811 inc_insn.reg1 = inc_insn.reg0;
812 inc_insn.reg0 = tmp;
816 /* Return true if INSN is of a form "a = b op c" where a and b are
817 regs. op is + if c is a reg and +|- if c is a const. Fill in
818 INC_INSN with what is found.
820 This function is called in two contexts, if BEFORE_MEM is true,
821 this is called for each insn in the basic block. If BEFORE_MEM is
822 false, it is called for the instruction in the block that uses the
823 index register for some memory reference that is currently being
824 processed. */
826 static bool
827 parse_add_or_inc (rtx insn, bool before_mem)
829 rtx pat = single_set (insn);
830 if (!pat)
831 return false;
833 /* Result must be single reg. */
834 if (!REG_P (SET_DEST (pat)))
835 return false;
837 if ((GET_CODE (SET_SRC (pat)) != PLUS)
838 && (GET_CODE (SET_SRC (pat)) != MINUS))
839 return false;
841 if (!REG_P (XEXP (SET_SRC (pat), 0)))
842 return false;
844 inc_insn.insn = insn;
845 inc_insn.pat = pat;
846 inc_insn.reg_res = SET_DEST (pat);
847 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
848 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
849 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
850 else
851 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
853 if (GET_CODE (XEXP (SET_SRC (pat), 1)) == CONST_INT)
855 /* Process a = b + c where c is a const. */
856 inc_insn.reg1_is_const = true;
857 if (GET_CODE (SET_SRC (pat)) == PLUS)
859 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
860 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
862 else
864 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
865 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
867 return true;
869 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
870 && (REG_P (XEXP (SET_SRC (pat), 1)))
871 && GET_CODE (SET_SRC (pat)) == PLUS)
873 /* Process a = b + c where c is a reg. */
874 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
875 inc_insn.reg1_is_const = false;
877 if (inc_insn.form == FORM_PRE_INC
878 || inc_insn.form == FORM_POST_INC)
879 return true;
880 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
882 /* Reverse the two operands and turn *_ADD into *_INC since
883 a = c + a. */
884 reverse_inc ();
885 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
886 return true;
888 else
889 return true;
892 return false;
896 /* A recursive function that checks all of the mem uses in
897 ADDRESS_OF_X to see if any single one of them is compatible with
898 what has been found in inc_insn.
900 -1 is returned for success. 0 is returned if nothing was found and
901 1 is returned for failure. */
903 static int
904 find_address (rtx *address_of_x)
906 rtx x = *address_of_x;
907 enum rtx_code code = GET_CODE (x);
908 const char *const fmt = GET_RTX_FORMAT (code);
909 int i;
910 int value = 0;
911 int tem;
913 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
915 /* Match with *reg0. */
916 mem_insn.mem_loc = address_of_x;
917 mem_insn.reg0 = inc_insn.reg_res;
918 mem_insn.reg1_is_const = true;
919 mem_insn.reg1_val = 0;
920 mem_insn.reg1 = GEN_INT (0);
921 return -1;
923 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
924 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
926 rtx b = XEXP (XEXP (x, 0), 1);
927 mem_insn.mem_loc = address_of_x;
928 mem_insn.reg0 = inc_insn.reg_res;
929 mem_insn.reg1 = b;
930 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
931 if (GET_CODE (b) == CONST_INT)
933 /* Match with *(reg0 + reg1) where reg1 is a const. */
934 HOST_WIDE_INT val = INTVAL (b);
935 if (inc_insn.reg1_is_const
936 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
938 mem_insn.reg1_val = val;
939 return -1;
942 else if (!inc_insn.reg1_is_const
943 && rtx_equal_p (inc_insn.reg1, b))
944 /* Match with *(reg0 + reg1). */
945 return -1;
948 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
950 /* If REG occurs inside a MEM used in a bit-field reference,
951 that is unacceptable. */
952 if (find_address (&XEXP (x, 0)))
953 return 1;
956 if (x == inc_insn.reg_res)
957 return 1;
959 /* Time for some deep diving. */
960 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
962 if (fmt[i] == 'e')
964 tem = find_address (&XEXP (x, i));
965 /* If this is the first use, let it go so the rest of the
966 insn can be checked. */
967 if (value == 0)
968 value = tem;
969 else if (tem != 0)
970 /* More than one match was found. */
971 return 1;
973 else if (fmt[i] == 'E')
975 int j;
976 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
978 tem = find_address (&XVECEXP (x, i, j));
979 /* If this is the first use, let it go so the rest of
980 the insn can be checked. */
981 if (value == 0)
982 value = tem;
983 else if (tem != 0)
984 /* More than one match was found. */
985 return 1;
989 return value;
992 /* Once a suitable mem reference has been found and the MEM_INSN
993 structure has been filled in, FIND_INC is called to see if there is
994 a suitable add or inc insn that follows the mem reference and
995 determine if it is suitable to merge.
997 In the case where the MEM_INSN has two registers in the reference,
998 this function may be called recursively. The first time looking
999 for an add of the first register, and if that fails, looking for an
1000 add of the second register. The FIRST_TRY parameter is used to
1001 only allow the parameters to be reversed once. */
1003 static bool
1004 find_inc (bool first_try)
1006 rtx insn;
1007 basic_block bb = BASIC_BLOCK (BLOCK_NUM (mem_insn.insn));
1008 rtx other_insn;
1009 struct df_ref **def_rec;
1011 /* Make sure this reg appears only once in this insn. */
1012 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
1014 if (dump_file)
1015 fprintf (dump_file, "mem count failure\n");
1016 return false;
1019 if (dump_file)
1020 dump_mem_insn (dump_file);
1022 /* Find the next use that is an inc. */
1023 insn = get_next_ref (REGNO (mem_insn.reg0),
1024 BASIC_BLOCK (BLOCK_NUM (mem_insn.insn)),
1025 reg_next_inc_use);
1026 if (!insn)
1027 return false;
1029 /* Even though we know the next use is an add or inc because it came
1030 from the reg_next_inc_use, we must still reparse. */
1031 if (!parse_add_or_inc (insn, false))
1033 /* Next use was not an add. Look for one extra case. It could be
1034 that we have:
1036 *(a + b)
1037 ...= a;
1038 ...= b + a
1040 if we reverse the operands in the mem ref we would
1041 find this. Only try it once though. */
1042 if (first_try && !mem_insn.reg1_is_const)
1044 reverse_mem ();
1045 return find_inc (false);
1047 else
1048 return false;
1051 /* Need to assure that none of the operands of the inc instruction are
1052 assigned to by the mem insn. */
1053 for (def_rec = DF_INSN_DEFS (mem_insn.insn); *def_rec; def_rec++)
1055 struct df_ref *def = *def_rec;
1056 unsigned int regno = DF_REF_REGNO (def);
1057 if ((regno == REGNO (inc_insn.reg0))
1058 || (regno == REGNO (inc_insn.reg_res)))
1060 if (dump_file)
1061 fprintf (dump_file, "inc conflicts with store failure.\n");
1062 return false;
1064 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1066 if (dump_file)
1067 fprintf (dump_file, "inc conflicts with store failure.\n");
1068 return false;
1072 if (dump_file)
1073 dump_inc_insn (dump_file);
1075 if (inc_insn.form == FORM_POST_ADD)
1077 /* Make sure that there is no insn that assigns to inc_insn.res
1078 between the mem_insn and the inc_insn. */
1079 rtx other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1080 BASIC_BLOCK (BLOCK_NUM (mem_insn.insn)),
1081 reg_next_def);
1082 if (other_insn != inc_insn.insn)
1084 if (dump_file)
1085 fprintf (dump_file,
1086 "result of add is assigned to between mem and inc insns.\n");
1087 return false;
1090 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1091 BASIC_BLOCK (BLOCK_NUM (mem_insn.insn)),
1092 reg_next_use);
1093 if (other_insn
1094 && (other_insn != inc_insn.insn)
1095 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1097 if (dump_file)
1098 fprintf (dump_file,
1099 "result of add is used between mem and inc insns.\n");
1100 return false;
1103 /* For the post_add to work, the result_reg of the inc must not be
1104 used in the mem insn since this will become the new index
1105 register. */
1106 if (count_occurrences (PATTERN (mem_insn.insn), inc_insn.reg_res, 1) != 0)
1108 if (dump_file)
1109 fprintf (dump_file, "base reg replacement failure.\n");
1110 return false;
1114 if (mem_insn.reg1_is_const)
1116 if (mem_insn.reg1_val == 0)
1118 if (!inc_insn.reg1_is_const)
1120 /* The mem looks like *r0 and the rhs of the add has two
1121 registers. */
1122 int luid = DF_INSN_LUID (inc_insn.insn);
1123 if (inc_insn.form == FORM_POST_ADD)
1125 /* The trick is that we are not going to increment r0,
1126 we are going to increment the result of the add insn.
1127 For this trick to be correct, the result reg of
1128 the inc must be a valid addressing reg. */
1129 if (GET_MODE (inc_insn.reg_res) != Pmode)
1131 if (dump_file)
1132 fprintf (dump_file, "base reg mode failure.\n");
1133 return false;
1136 /* We also need to make sure that the next use of
1137 inc result is after the inc. */
1138 other_insn
1139 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1140 if (other_insn && luid > DF_INSN_LUID (other_insn))
1141 return false;
1143 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1144 reverse_inc ();
1147 other_insn
1148 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1149 if (other_insn && luid > DF_INSN_LUID (other_insn))
1150 return false;
1153 /* Both the inc/add and the mem have a constant. Need to check
1154 that the constants are ok. */
1155 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1156 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1157 return false;
1159 else
1161 /* The mem insn is of the form *(a + b) where a and b are both
1162 regs. It may be that in order to match the add or inc we
1163 need to treat it as if it was *(b + a). It may also be that
1164 the add is of the form a + c where c does not match b and
1165 then we just abandon this. */
1167 int luid = DF_INSN_LUID (inc_insn.insn);
1168 rtx other_insn;
1170 /* Make sure this reg appears only once in this insn. */
1171 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1172 return false;
1174 if (inc_insn.form == FORM_POST_ADD)
1176 /* For this trick to be correct, the result reg of the inc
1177 must be a valid addressing reg. */
1178 if (GET_MODE (inc_insn.reg_res) != Pmode)
1180 if (dump_file)
1181 fprintf (dump_file, "base reg mode failure.\n");
1182 return false;
1185 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1187 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1189 /* See comment above on find_inc (false) call. */
1190 if (first_try)
1192 reverse_mem ();
1193 return find_inc (false);
1195 else
1196 return false;
1199 /* Need to check that there are no assignments to b
1200 before the add insn. */
1201 other_insn
1202 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1203 if (other_insn && luid > DF_INSN_LUID (other_insn))
1204 return false;
1205 /* All ok for the next step. */
1207 else
1209 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1210 or else we would not have found the inc insn. */
1211 reverse_mem ();
1212 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1214 /* See comment above on find_inc (false) call. */
1215 if (first_try)
1216 return find_inc (false);
1217 else
1218 return false;
1220 /* To have gotten here know that.
1221 *(b + a)
1223 ... = (b + a)
1225 We also know that the lhs of the inc is not b or a. We
1226 need to make sure that there are no assignments to b
1227 between the mem ref and the inc. */
1229 other_insn
1230 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1231 if (other_insn && luid > DF_INSN_LUID (other_insn))
1232 return false;
1235 /* Need to check that the next use of the add result is later than
1236 add insn since this will be the reg incremented. */
1237 other_insn
1238 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1239 if (other_insn && luid > DF_INSN_LUID (other_insn))
1240 return false;
1242 else /* FORM_POST_INC. There is less to check here because we
1243 know that operands must line up. */
1245 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1246 /* See comment above on find_inc (false) call. */
1248 if (first_try)
1250 reverse_mem ();
1251 return find_inc (false);
1253 else
1254 return false;
1257 /* To have gotten here know that.
1258 *(a + b)
1260 ... = (a + b)
1262 We also know that the lhs of the inc is not b. We need to make
1263 sure that there are no assignments to b between the mem ref and
1264 the inc. */
1265 other_insn
1266 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1267 if (other_insn && luid > DF_INSN_LUID (other_insn))
1268 return false;
1272 if (inc_insn.form == FORM_POST_INC)
1274 other_insn
1275 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1276 /* When we found inc_insn, we were looking for the
1277 next add or inc, not the next insn that used the
1278 reg. Because we are going to increment the reg
1279 in this form, we need to make sure that there
1280 were no intervening uses of reg. */
1281 if (inc_insn.insn != other_insn)
1282 return false;
1285 return try_merge ();
1289 /* A recursive function that walks ADDRESS_OF_X to find all of the mem
1290 uses in pat that could be used as an auto inc or dec. It then
1291 calls FIND_INC for each one. */
1293 static bool
1294 find_mem (rtx *address_of_x)
1296 rtx x = *address_of_x;
1297 enum rtx_code code = GET_CODE (x);
1298 const char *const fmt = GET_RTX_FORMAT (code);
1299 int i;
1301 if (code == MEM && REG_P (XEXP (x, 0)))
1303 /* Match with *reg0. */
1304 mem_insn.mem_loc = address_of_x;
1305 mem_insn.reg0 = XEXP (x, 0);
1306 mem_insn.reg1_is_const = true;
1307 mem_insn.reg1_val = 0;
1308 mem_insn.reg1 = GEN_INT (0);
1309 if (find_inc (true))
1310 return true;
1312 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1313 && REG_P (XEXP (XEXP (x, 0), 0)))
1315 rtx reg1 = XEXP (XEXP (x, 0), 1);
1316 mem_insn.mem_loc = address_of_x;
1317 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1318 mem_insn.reg1 = reg1;
1319 if (GET_CODE (reg1) == CONST_INT)
1321 mem_insn.reg1_is_const = true;
1322 /* Match with *(reg0 + c) where c is a const. */
1323 mem_insn.reg1_val = INTVAL (reg1);
1324 if (find_inc (true))
1325 return true;
1327 else if (REG_P (reg1))
1329 /* Match with *(reg0 + reg1). */
1330 mem_insn.reg1_is_const = false;
1331 if (find_inc (true))
1332 return true;
1336 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1338 /* If REG occurs inside a MEM used in a bit-field reference,
1339 that is unacceptable. */
1340 return false;
1343 /* Time for some deep diving. */
1344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346 if (fmt[i] == 'e')
1348 if (find_mem (&XEXP (x, i)))
1349 return true;
1351 else if (fmt[i] == 'E')
1353 int j;
1354 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1355 if (find_mem (&XVECEXP (x, i, j)))
1356 return true;
1359 return false;
1363 /* Try to combine all incs and decs by constant values with memory
1364 references in BB. */
1366 static void
1367 merge_in_block (int max_reg, basic_block bb)
1369 rtx insn;
1370 rtx curr;
1371 int success_in_block = 0;
1373 if (dump_file)
1374 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1376 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1378 unsigned int uid = INSN_UID (insn);
1379 bool insn_is_add_or_inc = true;
1381 if (!INSN_P (insn))
1382 continue;
1384 /* This continue is deliberate. We do not want the uses of the
1385 jump put into reg_next_use because it is not considered safe to
1386 combine a preincrement with a jump. */
1387 if (JUMP_P (insn))
1388 continue;
1390 if (dump_file)
1391 dump_insn_slim (dump_file, insn);
1393 /* Does this instruction increment or decrement a register? */
1394 if (parse_add_or_inc (insn, true))
1396 int regno = REGNO (inc_insn.reg_res);
1397 /* Cannot handle case where there are three separate regs
1398 before a mem ref. Too many moves would be needed to be
1399 profitable. */
1400 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1402 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1403 if (mem_insn.insn)
1405 bool ok = true;
1406 if (!inc_insn.reg1_is_const)
1408 /* We are only here if we are going to try a
1409 HAVE_*_MODIFY_REG type transformation. c is a
1410 reg and we must sure that the path from the
1411 inc_insn to the mem_insn.insn is both def and use
1412 clear of c because the inc insn is going to move
1413 into the mem_insn.insn. */
1414 int luid = DF_INSN_LUID (mem_insn.insn);
1415 rtx other_insn
1416 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1418 if (other_insn && luid > DF_INSN_LUID (other_insn))
1419 ok = false;
1421 other_insn
1422 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1424 if (other_insn && luid > DF_INSN_LUID (other_insn))
1425 ok = false;
1428 if (dump_file)
1429 dump_inc_insn (dump_file);
1431 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1433 if (dump_file)
1434 dump_mem_insn (dump_file);
1435 if (try_merge ())
1437 success_in_block++;
1438 insn_is_add_or_inc = false;
1444 else
1446 insn_is_add_or_inc = false;
1447 mem_insn.insn = insn;
1448 if (find_mem (&PATTERN (insn)))
1449 success_in_block++;
1452 /* If the inc insn was merged with a mem, the inc insn is gone
1453 and there is noting to update. */
1454 if (DF_INSN_UID_GET(uid))
1456 struct df_ref **def_rec;
1457 struct df_ref **use_rec;
1458 /* Need to update next use. */
1459 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1461 struct df_ref *def = *def_rec;
1462 reg_next_use[DF_REF_REGNO (def)] = NULL;
1463 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1464 reg_next_def[DF_REF_REGNO (def)] = insn;
1467 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1469 struct df_ref *use = *use_rec;
1470 reg_next_use[DF_REF_REGNO (use)] = insn;
1471 if (insn_is_add_or_inc)
1472 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1473 else
1474 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
1477 else if (dump_file)
1478 fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
1481 /* If we were successful, try again. There may have been several
1482 opportunities that were interleaved. This is rare but
1483 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1484 if (success_in_block)
1486 /* In this case, we must clear these vectors since the trick of
1487 testing if the stale insn in the block will not work. */
1488 memset (reg_next_use, 0, max_reg * sizeof(rtx));
1489 memset (reg_next_inc_use, 0, max_reg * sizeof(rtx));
1490 memset (reg_next_def, 0, max_reg * sizeof(rtx));
1491 df_recompute_luids (bb);
1492 merge_in_block (max_reg, bb);
1496 #endif
1498 static unsigned int
1499 rest_of_handle_auto_inc_dec (void)
1501 #ifdef AUTO_INC_DEC
1502 basic_block bb;
1503 int max_reg = max_reg_num ();
1505 if (!initialized)
1506 init_decision_table ();
1508 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1510 df_note_add_problem ();
1511 df_analyze ();
1513 reg_next_use = XCNEWVEC (rtx, max_reg);
1514 reg_next_inc_use = XCNEWVEC (rtx, max_reg);
1515 reg_next_def = XCNEWVEC (rtx, max_reg);
1516 FOR_EACH_BB (bb)
1517 merge_in_block (max_reg, bb);
1519 free (reg_next_use);
1520 free (reg_next_inc_use);
1521 free (reg_next_def);
1523 mem_tmp = NULL;
1524 #endif
1525 return 0;
1529 /* Discover auto-inc auto-dec instructions. */
1531 static bool
1532 gate_auto_inc_dec (void)
1534 #ifdef AUTO_INC_DEC
1535 return (optimize > 0 && flag_auto_inc_dec);
1536 #else
1537 return false;
1538 #endif
1542 struct rtl_opt_pass pass_inc_dec =
1545 RTL_PASS,
1546 "auto-inc-dec", /* name */
1547 gate_auto_inc_dec, /* gate */
1548 rest_of_handle_auto_inc_dec, /* execute */
1549 NULL, /* sub */
1550 NULL, /* next */
1551 0, /* static_pass_number */
1552 TV_AUTO_INC_DEC, /* tv_id */
1553 0, /* properties_required */
1554 0, /* properties_provided */
1555 0, /* properties_destroyed */
1556 0, /* todo_flags_start */
1557 TODO_dump_func |
1558 TODO_df_finish, /* todo_flags_finish */